fsstack/ecryptfs: remove unused get_nlinks param to fsstack_copy_attr_all
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8
AB
64static struct kmem_cache *anon_vma_cachep;
65
66static inline struct anon_vma *anon_vma_alloc(void)
67{
68 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
69}
70
db114b83 71void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
72{
73 kmem_cache_free(anon_vma_cachep, anon_vma);
74}
1da177e4 75
d9d332e0
LT
76/**
77 * anon_vma_prepare - attach an anon_vma to a memory region
78 * @vma: the memory region in question
79 *
80 * This makes sure the memory mapping described by 'vma' has
81 * an 'anon_vma' attached to it, so that we can associate the
82 * anonymous pages mapped into it with that anon_vma.
83 *
84 * The common case will be that we already have one, but if
85 * if not we either need to find an adjacent mapping that we
86 * can re-use the anon_vma from (very common when the only
87 * reason for splitting a vma has been mprotect()), or we
88 * allocate a new one.
89 *
90 * Anon-vma allocations are very subtle, because we may have
91 * optimistically looked up an anon_vma in page_lock_anon_vma()
92 * and that may actually touch the spinlock even in the newly
93 * allocated vma (it depends on RCU to make sure that the
94 * anon_vma isn't actually destroyed).
95 *
96 * As a result, we need to do proper anon_vma locking even
97 * for the new allocation. At the same time, we do not want
98 * to do any locking for the common case of already having
99 * an anon_vma.
100 *
101 * This must be called with the mmap_sem held for reading.
102 */
1da177e4
LT
103int anon_vma_prepare(struct vm_area_struct *vma)
104{
105 struct anon_vma *anon_vma = vma->anon_vma;
106
107 might_sleep();
108 if (unlikely(!anon_vma)) {
109 struct mm_struct *mm = vma->vm_mm;
d9d332e0 110 struct anon_vma *allocated;
1da177e4
LT
111
112 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
113 allocated = NULL;
114 if (!anon_vma) {
1da177e4
LT
115 anon_vma = anon_vma_alloc();
116 if (unlikely(!anon_vma))
117 return -ENOMEM;
118 allocated = anon_vma;
1da177e4 119 }
d9d332e0 120 spin_lock(&anon_vma->lock);
1da177e4
LT
121
122 /* page_table_lock to protect against threads */
123 spin_lock(&mm->page_table_lock);
124 if (likely(!vma->anon_vma)) {
125 vma->anon_vma = anon_vma;
0697212a 126 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
127 allocated = NULL;
128 }
129 spin_unlock(&mm->page_table_lock);
130
d9d332e0 131 spin_unlock(&anon_vma->lock);
1da177e4
LT
132 if (unlikely(allocated))
133 anon_vma_free(allocated);
134 }
135 return 0;
136}
137
138void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
139{
140 BUG_ON(vma->anon_vma != next->anon_vma);
141 list_del(&next->anon_vma_node);
142}
143
144void __anon_vma_link(struct vm_area_struct *vma)
145{
146 struct anon_vma *anon_vma = vma->anon_vma;
147
30acbaba 148 if (anon_vma)
0697212a 149 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
150}
151
152void anon_vma_link(struct vm_area_struct *vma)
153{
154 struct anon_vma *anon_vma = vma->anon_vma;
155
156 if (anon_vma) {
157 spin_lock(&anon_vma->lock);
0697212a 158 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
159 spin_unlock(&anon_vma->lock);
160 }
161}
162
163void anon_vma_unlink(struct vm_area_struct *vma)
164{
165 struct anon_vma *anon_vma = vma->anon_vma;
166 int empty;
167
168 if (!anon_vma)
169 return;
170
171 spin_lock(&anon_vma->lock);
1da177e4
LT
172 list_del(&vma->anon_vma_node);
173
174 /* We must garbage collect the anon_vma if it's empty */
db114b83 175 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
1da177e4
LT
176 spin_unlock(&anon_vma->lock);
177
178 if (empty)
179 anon_vma_free(anon_vma);
180}
181
51cc5068 182static void anon_vma_ctor(void *data)
1da177e4 183{
a35afb83 184 struct anon_vma *anon_vma = data;
1da177e4 185
a35afb83 186 spin_lock_init(&anon_vma->lock);
db114b83 187 ksm_refcount_init(anon_vma);
a35afb83 188 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
189}
190
191void __init anon_vma_init(void)
192{
193 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 194 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
195}
196
197/*
198 * Getting a lock on a stable anon_vma from a page off the LRU is
199 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
200 */
10be22df 201struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 202{
34bbd704 203 struct anon_vma *anon_vma;
1da177e4
LT
204 unsigned long anon_mapping;
205
206 rcu_read_lock();
80e14822 207 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 208 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
209 goto out;
210 if (!page_mapped(page))
211 goto out;
212
213 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
214 spin_lock(&anon_vma->lock);
34bbd704 215 return anon_vma;
1da177e4
LT
216out:
217 rcu_read_unlock();
34bbd704
ON
218 return NULL;
219}
220
10be22df 221void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
222{
223 spin_unlock(&anon_vma->lock);
224 rcu_read_unlock();
1da177e4
LT
225}
226
227/*
3ad33b24
LS
228 * At what user virtual address is page expected in @vma?
229 * Returns virtual address or -EFAULT if page's index/offset is not
230 * within the range mapped the @vma.
1da177e4
LT
231 */
232static inline unsigned long
233vma_address(struct page *page, struct vm_area_struct *vma)
234{
235 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
236 unsigned long address;
237
238 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
239 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 240 /* page should be within @vma mapping range */
1da177e4
LT
241 return -EFAULT;
242 }
243 return address;
244}
245
246/*
bf89c8c8
HS
247 * At what user virtual address is page expected in vma?
248 * checking that the page matches the vma.
1da177e4
LT
249 */
250unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
251{
252 if (PageAnon(page)) {
3ca7b3c5 253 if (vma->anon_vma != page_anon_vma(page))
1da177e4
LT
254 return -EFAULT;
255 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
256 if (!vma->vm_file ||
257 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
258 return -EFAULT;
259 } else
260 return -EFAULT;
261 return vma_address(page, vma);
262}
263
81b4082d
ND
264/*
265 * Check that @page is mapped at @address into @mm.
266 *
479db0bf
NP
267 * If @sync is false, page_check_address may perform a racy check to avoid
268 * the page table lock when the pte is not present (helpful when reclaiming
269 * highly shared pages).
270 *
b8072f09 271 * On success returns with pte mapped and locked.
81b4082d 272 */
ceffc078 273pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 274 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
275{
276 pgd_t *pgd;
277 pud_t *pud;
278 pmd_t *pmd;
279 pte_t *pte;
c0718806 280 spinlock_t *ptl;
81b4082d 281
81b4082d 282 pgd = pgd_offset(mm, address);
c0718806
HD
283 if (!pgd_present(*pgd))
284 return NULL;
285
286 pud = pud_offset(pgd, address);
287 if (!pud_present(*pud))
288 return NULL;
289
290 pmd = pmd_offset(pud, address);
291 if (!pmd_present(*pmd))
292 return NULL;
293
294 pte = pte_offset_map(pmd, address);
295 /* Make a quick check before getting the lock */
479db0bf 296 if (!sync && !pte_present(*pte)) {
c0718806
HD
297 pte_unmap(pte);
298 return NULL;
299 }
300
4c21e2f2 301 ptl = pte_lockptr(mm, pmd);
c0718806
HD
302 spin_lock(ptl);
303 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
304 *ptlp = ptl;
305 return pte;
81b4082d 306 }
c0718806
HD
307 pte_unmap_unlock(pte, ptl);
308 return NULL;
81b4082d
ND
309}
310
b291f000
NP
311/**
312 * page_mapped_in_vma - check whether a page is really mapped in a VMA
313 * @page: the page to test
314 * @vma: the VMA to test
315 *
316 * Returns 1 if the page is mapped into the page tables of the VMA, 0
317 * if the page is not mapped into the page tables of this VMA. Only
318 * valid for normal file or anonymous VMAs.
319 */
6a46079c 320int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
321{
322 unsigned long address;
323 pte_t *pte;
324 spinlock_t *ptl;
325
326 address = vma_address(page, vma);
327 if (address == -EFAULT) /* out of vma range */
328 return 0;
329 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
330 if (!pte) /* the page is not in this mm */
331 return 0;
332 pte_unmap_unlock(pte, ptl);
333
334 return 1;
335}
336
1da177e4
LT
337/*
338 * Subfunctions of page_referenced: page_referenced_one called
339 * repeatedly from either page_referenced_anon or page_referenced_file.
340 */
5ad64688
HD
341int page_referenced_one(struct page *page, struct vm_area_struct *vma,
342 unsigned long address, unsigned int *mapcount,
343 unsigned long *vm_flags)
1da177e4
LT
344{
345 struct mm_struct *mm = vma->vm_mm;
1da177e4 346 pte_t *pte;
c0718806 347 spinlock_t *ptl;
1da177e4
LT
348 int referenced = 0;
349
479db0bf 350 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
351 if (!pte)
352 goto out;
1da177e4 353
b291f000
NP
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
5a9bbdcd 359 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 360 *mapcount = 1; /* break early from loop */
03ef83af 361 *vm_flags |= VM_LOCKED;
b291f000
NP
362 goto out_unmap;
363 }
364
4917e5d0
JW
365 if (ptep_clear_flush_young_notify(vma, address, pte)) {
366 /*
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
372 */
373 if (likely(!VM_SequentialReadHint(vma)))
374 referenced++;
375 }
1da177e4 376
c0718806
HD
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
f7b7fd8f 379 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
380 rwsem_is_locked(&mm->mmap_sem))
381 referenced++;
382
b291f000 383out_unmap:
c0718806
HD
384 (*mapcount)--;
385 pte_unmap_unlock(pte, ptl);
273f047e 386
6fe6b7e3
WF
387 if (referenced)
388 *vm_flags |= vma->vm_flags;
273f047e 389out:
1da177e4
LT
390 return referenced;
391}
392
bed7161a 393static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
394 struct mem_cgroup *mem_cont,
395 unsigned long *vm_flags)
1da177e4
LT
396{
397 unsigned int mapcount;
398 struct anon_vma *anon_vma;
399 struct vm_area_struct *vma;
400 int referenced = 0;
401
402 anon_vma = page_lock_anon_vma(page);
403 if (!anon_vma)
404 return referenced;
405
406 mapcount = page_mapcount(page);
407 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1cb1729b
HD
408 unsigned long address = vma_address(page, vma);
409 if (address == -EFAULT)
410 continue;
bed7161a
BS
411 /*
412 * If we are reclaiming on behalf of a cgroup, skip
413 * counting on behalf of references from different
414 * cgroups
415 */
bd845e38 416 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 417 continue;
1cb1729b 418 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 419 &mapcount, vm_flags);
1da177e4
LT
420 if (!mapcount)
421 break;
422 }
34bbd704
ON
423
424 page_unlock_anon_vma(anon_vma);
1da177e4
LT
425 return referenced;
426}
427
428/**
429 * page_referenced_file - referenced check for object-based rmap
430 * @page: the page we're checking references on.
43d8eac4 431 * @mem_cont: target memory controller
6fe6b7e3 432 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
433 *
434 * For an object-based mapped page, find all the places it is mapped and
435 * check/clear the referenced flag. This is done by following the page->mapping
436 * pointer, then walking the chain of vmas it holds. It returns the number
437 * of references it found.
438 *
439 * This function is only called from page_referenced for object-based pages.
440 */
bed7161a 441static int page_referenced_file(struct page *page,
6fe6b7e3
WF
442 struct mem_cgroup *mem_cont,
443 unsigned long *vm_flags)
1da177e4
LT
444{
445 unsigned int mapcount;
446 struct address_space *mapping = page->mapping;
447 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
448 struct vm_area_struct *vma;
449 struct prio_tree_iter iter;
450 int referenced = 0;
451
452 /*
453 * The caller's checks on page->mapping and !PageAnon have made
454 * sure that this is a file page: the check for page->mapping
455 * excludes the case just before it gets set on an anon page.
456 */
457 BUG_ON(PageAnon(page));
458
459 /*
460 * The page lock not only makes sure that page->mapping cannot
461 * suddenly be NULLified by truncation, it makes sure that the
462 * structure at mapping cannot be freed and reused yet,
463 * so we can safely take mapping->i_mmap_lock.
464 */
465 BUG_ON(!PageLocked(page));
466
467 spin_lock(&mapping->i_mmap_lock);
468
469 /*
470 * i_mmap_lock does not stabilize mapcount at all, but mapcount
471 * is more likely to be accurate if we note it after spinning.
472 */
473 mapcount = page_mapcount(page);
474
475 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
476 unsigned long address = vma_address(page, vma);
477 if (address == -EFAULT)
478 continue;
bed7161a
BS
479 /*
480 * If we are reclaiming on behalf of a cgroup, skip
481 * counting on behalf of references from different
482 * cgroups
483 */
bd845e38 484 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 485 continue;
1cb1729b 486 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 487 &mapcount, vm_flags);
1da177e4
LT
488 if (!mapcount)
489 break;
490 }
491
492 spin_unlock(&mapping->i_mmap_lock);
493 return referenced;
494}
495
496/**
497 * page_referenced - test if the page was referenced
498 * @page: the page to test
499 * @is_locked: caller holds lock on the page
43d8eac4 500 * @mem_cont: target memory controller
6fe6b7e3 501 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
502 *
503 * Quick test_and_clear_referenced for all mappings to a page,
504 * returns the number of ptes which referenced the page.
505 */
6fe6b7e3
WF
506int page_referenced(struct page *page,
507 int is_locked,
508 struct mem_cgroup *mem_cont,
509 unsigned long *vm_flags)
1da177e4
LT
510{
511 int referenced = 0;
5ad64688 512 int we_locked = 0;
1da177e4 513
1da177e4
LT
514 if (TestClearPageReferenced(page))
515 referenced++;
516
6fe6b7e3 517 *vm_flags = 0;
3ca7b3c5 518 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
519 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
520 we_locked = trylock_page(page);
521 if (!we_locked) {
522 referenced++;
523 goto out;
524 }
525 }
526 if (unlikely(PageKsm(page)))
527 referenced += page_referenced_ksm(page, mem_cont,
528 vm_flags);
529 else if (PageAnon(page))
6fe6b7e3
WF
530 referenced += page_referenced_anon(page, mem_cont,
531 vm_flags);
5ad64688 532 else if (page->mapping)
6fe6b7e3
WF
533 referenced += page_referenced_file(page, mem_cont,
534 vm_flags);
5ad64688 535 if (we_locked)
1da177e4 536 unlock_page(page);
1da177e4 537 }
5ad64688 538out:
5b7baf05
CB
539 if (page_test_and_clear_young(page))
540 referenced++;
541
1da177e4
LT
542 return referenced;
543}
544
1cb1729b
HD
545static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
546 unsigned long address)
d08b3851
PZ
547{
548 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 549 pte_t *pte;
d08b3851
PZ
550 spinlock_t *ptl;
551 int ret = 0;
552
479db0bf 553 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
554 if (!pte)
555 goto out;
556
c2fda5fe
PZ
557 if (pte_dirty(*pte) || pte_write(*pte)) {
558 pte_t entry;
d08b3851 559
c2fda5fe 560 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 561 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
562 entry = pte_wrprotect(entry);
563 entry = pte_mkclean(entry);
d6e88e67 564 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
565 ret = 1;
566 }
d08b3851 567
d08b3851
PZ
568 pte_unmap_unlock(pte, ptl);
569out:
570 return ret;
571}
572
573static int page_mkclean_file(struct address_space *mapping, struct page *page)
574{
575 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
576 struct vm_area_struct *vma;
577 struct prio_tree_iter iter;
578 int ret = 0;
579
580 BUG_ON(PageAnon(page));
581
582 spin_lock(&mapping->i_mmap_lock);
583 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
584 if (vma->vm_flags & VM_SHARED) {
585 unsigned long address = vma_address(page, vma);
586 if (address == -EFAULT)
587 continue;
588 ret += page_mkclean_one(page, vma, address);
589 }
d08b3851
PZ
590 }
591 spin_unlock(&mapping->i_mmap_lock);
592 return ret;
593}
594
595int page_mkclean(struct page *page)
596{
597 int ret = 0;
598
599 BUG_ON(!PageLocked(page));
600
601 if (page_mapped(page)) {
602 struct address_space *mapping = page_mapping(page);
ce7e9fae 603 if (mapping) {
d08b3851 604 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
605 if (page_test_dirty(page)) {
606 page_clear_dirty(page);
607 ret = 1;
608 }
6c210482 609 }
d08b3851
PZ
610 }
611
612 return ret;
613}
60b59bea 614EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 615
9617d95e 616/**
43d8eac4 617 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
618 * @page: the page to add the mapping to
619 * @vma: the vm area in which the mapping is added
620 * @address: the user virtual address mapped
621 */
622static void __page_set_anon_rmap(struct page *page,
623 struct vm_area_struct *vma, unsigned long address)
624{
625 struct anon_vma *anon_vma = vma->anon_vma;
626
627 BUG_ON(!anon_vma);
628 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
629 page->mapping = (struct address_space *) anon_vma;
9617d95e 630 page->index = linear_page_index(vma, address);
9617d95e
NP
631}
632
c97a9e10 633/**
43d8eac4 634 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
635 * @page: the page to add the mapping to
636 * @vma: the vm area in which the mapping is added
637 * @address: the user virtual address mapped
638 */
639static void __page_check_anon_rmap(struct page *page,
640 struct vm_area_struct *vma, unsigned long address)
641{
642#ifdef CONFIG_DEBUG_VM
643 /*
644 * The page's anon-rmap details (mapping and index) are guaranteed to
645 * be set up correctly at this point.
646 *
647 * We have exclusion against page_add_anon_rmap because the caller
648 * always holds the page locked, except if called from page_dup_rmap,
649 * in which case the page is already known to be setup.
650 *
651 * We have exclusion against page_add_new_anon_rmap because those pages
652 * are initially only visible via the pagetables, and the pte is locked
653 * over the call to page_add_new_anon_rmap.
654 */
655 struct anon_vma *anon_vma = vma->anon_vma;
656 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657 BUG_ON(page->mapping != (struct address_space *)anon_vma);
658 BUG_ON(page->index != linear_page_index(vma, address));
659#endif
660}
661
1da177e4
LT
662/**
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page: the page to add the mapping to
665 * @vma: the vm area in which the mapping is added
666 * @address: the user virtual address mapped
667 *
5ad64688 668 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
669 * the anon_vma case: to serialize mapping,index checking after setting,
670 * and to ensure that PageAnon is not being upgraded racily to PageKsm
671 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
672 */
673void page_add_anon_rmap(struct page *page,
674 struct vm_area_struct *vma, unsigned long address)
675{
5ad64688
HD
676 int first = atomic_inc_and_test(&page->_mapcount);
677 if (first)
678 __inc_zone_page_state(page, NR_ANON_PAGES);
679 if (unlikely(PageKsm(page)))
680 return;
681
c97a9e10
NP
682 VM_BUG_ON(!PageLocked(page));
683 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 684 if (first)
9617d95e 685 __page_set_anon_rmap(page, vma, address);
69029cd5 686 else
c97a9e10 687 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
688}
689
43d8eac4 690/**
9617d95e
NP
691 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
692 * @page: the page to add the mapping to
693 * @vma: the vm area in which the mapping is added
694 * @address: the user virtual address mapped
695 *
696 * Same as page_add_anon_rmap but must only be called on *new* pages.
697 * This means the inc-and-test can be bypassed.
c97a9e10 698 * Page does not have to be locked.
9617d95e
NP
699 */
700void page_add_new_anon_rmap(struct page *page,
701 struct vm_area_struct *vma, unsigned long address)
702{
b5934c53 703 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
704 SetPageSwapBacked(page);
705 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 706 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e 707 __page_set_anon_rmap(page, vma, address);
b5934c53 708 if (page_evictable(page, vma))
cbf84b7a 709 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
710 else
711 add_page_to_unevictable_list(page);
9617d95e
NP
712}
713
1da177e4
LT
714/**
715 * page_add_file_rmap - add pte mapping to a file page
716 * @page: the page to add the mapping to
717 *
b8072f09 718 * The caller needs to hold the pte lock.
1da177e4
LT
719 */
720void page_add_file_rmap(struct page *page)
721{
d69b042f 722 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 723 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 724 mem_cgroup_update_file_mapped(page, 1);
d69b042f 725 }
1da177e4
LT
726}
727
728/**
729 * page_remove_rmap - take down pte mapping from a page
730 * @page: page to remove mapping from
731 *
b8072f09 732 * The caller needs to hold the pte lock.
1da177e4 733 */
edc315fd 734void page_remove_rmap(struct page *page)
1da177e4 735{
b904dcfe
KM
736 /* page still mapped by someone else? */
737 if (!atomic_add_negative(-1, &page->_mapcount))
738 return;
739
740 /*
741 * Now that the last pte has gone, s390 must transfer dirty
742 * flag from storage key to struct page. We can usually skip
743 * this if the page is anon, so about to be freed; but perhaps
744 * not if it's in swapcache - there might be another pte slot
745 * containing the swap entry, but page not yet written to swap.
746 */
747 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
748 page_clear_dirty(page);
749 set_page_dirty(page);
1da177e4 750 }
b904dcfe
KM
751 if (PageAnon(page)) {
752 mem_cgroup_uncharge_page(page);
753 __dec_zone_page_state(page, NR_ANON_PAGES);
754 } else {
755 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 756 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 757 }
b904dcfe
KM
758 /*
759 * It would be tidy to reset the PageAnon mapping here,
760 * but that might overwrite a racing page_add_anon_rmap
761 * which increments mapcount after us but sets mapping
762 * before us: so leave the reset to free_hot_cold_page,
763 * and remember that it's only reliable while mapped.
764 * Leaving it set also helps swapoff to reinstate ptes
765 * faster for those pages still in swapcache.
766 */
1da177e4
LT
767}
768
769/*
770 * Subfunctions of try_to_unmap: try_to_unmap_one called
771 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
772 */
5ad64688
HD
773int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
774 unsigned long address, enum ttu_flags flags)
1da177e4
LT
775{
776 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
777 pte_t *pte;
778 pte_t pteval;
c0718806 779 spinlock_t *ptl;
1da177e4
LT
780 int ret = SWAP_AGAIN;
781
479db0bf 782 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 783 if (!pte)
81b4082d 784 goto out;
1da177e4
LT
785
786 /*
787 * If the page is mlock()d, we cannot swap it out.
788 * If it's recently referenced (perhaps page_referenced
789 * skipped over this mm) then we should reactivate it.
790 */
14fa31b8 791 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
792 if (vma->vm_flags & VM_LOCKED)
793 goto out_mlock;
794
af8e3354 795 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 796 goto out_unmap;
14fa31b8
AK
797 }
798 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
799 if (ptep_clear_flush_young_notify(vma, address, pte)) {
800 ret = SWAP_FAIL;
801 goto out_unmap;
802 }
803 }
1da177e4 804
1da177e4
LT
805 /* Nuke the page table entry. */
806 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 807 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
808
809 /* Move the dirty bit to the physical page now the pte is gone. */
810 if (pte_dirty(pteval))
811 set_page_dirty(page);
812
365e9c87
HD
813 /* Update high watermark before we lower rss */
814 update_hiwater_rss(mm);
815
888b9f7c
AK
816 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
817 if (PageAnon(page))
818 dec_mm_counter(mm, anon_rss);
819 else
820 dec_mm_counter(mm, file_rss);
821 set_pte_at(mm, address, pte,
822 swp_entry_to_pte(make_hwpoison_entry(page)));
823 } else if (PageAnon(page)) {
4c21e2f2 824 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
825
826 if (PageSwapCache(page)) {
827 /*
828 * Store the swap location in the pte.
829 * See handle_pte_fault() ...
830 */
570a335b
HD
831 if (swap_duplicate(entry) < 0) {
832 set_pte_at(mm, address, pte, pteval);
833 ret = SWAP_FAIL;
834 goto out_unmap;
835 }
0697212a
CL
836 if (list_empty(&mm->mmlist)) {
837 spin_lock(&mmlist_lock);
838 if (list_empty(&mm->mmlist))
839 list_add(&mm->mmlist, &init_mm.mmlist);
840 spin_unlock(&mmlist_lock);
841 }
442c9137 842 dec_mm_counter(mm, anon_rss);
64cdd548 843 } else if (PAGE_MIGRATION) {
0697212a
CL
844 /*
845 * Store the pfn of the page in a special migration
846 * pte. do_swap_page() will wait until the migration
847 * pte is removed and then restart fault handling.
848 */
14fa31b8 849 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 850 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
851 }
852 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
853 BUG_ON(pte_file(*pte));
14fa31b8 854 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
855 /* Establish migration entry for a file page */
856 swp_entry_t entry;
857 entry = make_migration_entry(page, pte_write(pteval));
858 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
859 } else
4294621f 860 dec_mm_counter(mm, file_rss);
1da177e4 861
edc315fd 862 page_remove_rmap(page);
1da177e4
LT
863 page_cache_release(page);
864
865out_unmap:
c0718806 866 pte_unmap_unlock(pte, ptl);
caed0f48
KM
867out:
868 return ret;
53f79acb 869
caed0f48
KM
870out_mlock:
871 pte_unmap_unlock(pte, ptl);
872
873
874 /*
875 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
876 * unstable result and race. Plus, We can't wait here because
877 * we now hold anon_vma->lock or mapping->i_mmap_lock.
878 * if trylock failed, the page remain in evictable lru and later
879 * vmscan could retry to move the page to unevictable lru if the
880 * page is actually mlocked.
881 */
882 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
883 if (vma->vm_flags & VM_LOCKED) {
884 mlock_vma_page(page);
885 ret = SWAP_MLOCK;
53f79acb 886 }
caed0f48 887 up_read(&vma->vm_mm->mmap_sem);
53f79acb 888 }
1da177e4
LT
889 return ret;
890}
891
892/*
893 * objrmap doesn't work for nonlinear VMAs because the assumption that
894 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
895 * Consequently, given a particular page and its ->index, we cannot locate the
896 * ptes which are mapping that page without an exhaustive linear search.
897 *
898 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
899 * maps the file to which the target page belongs. The ->vm_private_data field
900 * holds the current cursor into that scan. Successive searches will circulate
901 * around the vma's virtual address space.
902 *
903 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
904 * more scanning pressure is placed against them as well. Eventually pages
905 * will become fully unmapped and are eligible for eviction.
906 *
907 * For very sparsely populated VMAs this is a little inefficient - chances are
908 * there there won't be many ptes located within the scan cluster. In this case
909 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
910 *
911 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
912 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
913 * rather than unmapping them. If we encounter the "check_page" that vmscan is
914 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
915 */
916#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
917#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
918
b291f000
NP
919static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
920 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
921{
922 struct mm_struct *mm = vma->vm_mm;
923 pgd_t *pgd;
924 pud_t *pud;
925 pmd_t *pmd;
c0718806 926 pte_t *pte;
1da177e4 927 pte_t pteval;
c0718806 928 spinlock_t *ptl;
1da177e4
LT
929 struct page *page;
930 unsigned long address;
931 unsigned long end;
b291f000
NP
932 int ret = SWAP_AGAIN;
933 int locked_vma = 0;
1da177e4 934
1da177e4
LT
935 address = (vma->vm_start + cursor) & CLUSTER_MASK;
936 end = address + CLUSTER_SIZE;
937 if (address < vma->vm_start)
938 address = vma->vm_start;
939 if (end > vma->vm_end)
940 end = vma->vm_end;
941
942 pgd = pgd_offset(mm, address);
943 if (!pgd_present(*pgd))
b291f000 944 return ret;
1da177e4
LT
945
946 pud = pud_offset(pgd, address);
947 if (!pud_present(*pud))
b291f000 948 return ret;
1da177e4
LT
949
950 pmd = pmd_offset(pud, address);
951 if (!pmd_present(*pmd))
b291f000
NP
952 return ret;
953
954 /*
af8e3354 955 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
956 * keep the sem while scanning the cluster for mlocking pages.
957 */
af8e3354 958 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
959 locked_vma = (vma->vm_flags & VM_LOCKED);
960 if (!locked_vma)
961 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
962 }
c0718806
HD
963
964 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 965
365e9c87
HD
966 /* Update high watermark before we lower rss */
967 update_hiwater_rss(mm);
968
c0718806 969 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
970 if (!pte_present(*pte))
971 continue;
6aab341e
LT
972 page = vm_normal_page(vma, address, *pte);
973 BUG_ON(!page || PageAnon(page));
1da177e4 974
b291f000
NP
975 if (locked_vma) {
976 mlock_vma_page(page); /* no-op if already mlocked */
977 if (page == check_page)
978 ret = SWAP_MLOCK;
979 continue; /* don't unmap */
980 }
981
cddb8a5c 982 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
983 continue;
984
985 /* Nuke the page table entry. */
eca35133 986 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 987 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
988
989 /* If nonlinear, store the file page offset in the pte. */
990 if (page->index != linear_page_index(vma, address))
991 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
992
993 /* Move the dirty bit to the physical page now the pte is gone. */
994 if (pte_dirty(pteval))
995 set_page_dirty(page);
996
edc315fd 997 page_remove_rmap(page);
1da177e4 998 page_cache_release(page);
4294621f 999 dec_mm_counter(mm, file_rss);
1da177e4
LT
1000 (*mapcount)--;
1001 }
c0718806 1002 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1003 if (locked_vma)
1004 up_read(&vma->vm_mm->mmap_sem);
1005 return ret;
1da177e4
LT
1006}
1007
b291f000
NP
1008/**
1009 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1010 * rmap method
1011 * @page: the page to unmap/unlock
8051be5e 1012 * @flags: action and flags
b291f000
NP
1013 *
1014 * Find all the mappings of a page using the mapping pointer and the vma chains
1015 * contained in the anon_vma struct it points to.
1016 *
1017 * This function is only called from try_to_unmap/try_to_munlock for
1018 * anonymous pages.
1019 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1020 * where the page was found will be held for write. So, we won't recheck
1021 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1022 * 'LOCKED.
1023 */
14fa31b8 1024static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1025{
1026 struct anon_vma *anon_vma;
1027 struct vm_area_struct *vma;
1028 int ret = SWAP_AGAIN;
b291f000 1029
1da177e4
LT
1030 anon_vma = page_lock_anon_vma(page);
1031 if (!anon_vma)
1032 return ret;
1033
1034 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1cb1729b
HD
1035 unsigned long address = vma_address(page, vma);
1036 if (address == -EFAULT)
1037 continue;
1038 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1039 if (ret != SWAP_AGAIN || !page_mapped(page))
1040 break;
1da177e4 1041 }
34bbd704
ON
1042
1043 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1044 return ret;
1045}
1046
1047/**
b291f000
NP
1048 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1049 * @page: the page to unmap/unlock
14fa31b8 1050 * @flags: action and flags
1da177e4
LT
1051 *
1052 * Find all the mappings of a page using the mapping pointer and the vma chains
1053 * contained in the address_space struct it points to.
1054 *
b291f000
NP
1055 * This function is only called from try_to_unmap/try_to_munlock for
1056 * object-based pages.
1057 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1058 * where the page was found will be held for write. So, we won't recheck
1059 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1060 * 'LOCKED.
1da177e4 1061 */
14fa31b8 1062static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1063{
1064 struct address_space *mapping = page->mapping;
1065 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1066 struct vm_area_struct *vma;
1067 struct prio_tree_iter iter;
1068 int ret = SWAP_AGAIN;
1069 unsigned long cursor;
1070 unsigned long max_nl_cursor = 0;
1071 unsigned long max_nl_size = 0;
1072 unsigned int mapcount;
1073
1074 spin_lock(&mapping->i_mmap_lock);
1075 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1076 unsigned long address = vma_address(page, vma);
1077 if (address == -EFAULT)
1078 continue;
1079 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1080 if (ret != SWAP_AGAIN || !page_mapped(page))
1081 goto out;
1da177e4
LT
1082 }
1083
1084 if (list_empty(&mapping->i_mmap_nonlinear))
1085 goto out;
1086
53f79acb
HD
1087 /*
1088 * We don't bother to try to find the munlocked page in nonlinears.
1089 * It's costly. Instead, later, page reclaim logic may call
1090 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1091 */
1092 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1093 goto out;
1094
1da177e4
LT
1095 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1096 shared.vm_set.list) {
1da177e4
LT
1097 cursor = (unsigned long) vma->vm_private_data;
1098 if (cursor > max_nl_cursor)
1099 max_nl_cursor = cursor;
1100 cursor = vma->vm_end - vma->vm_start;
1101 if (cursor > max_nl_size)
1102 max_nl_size = cursor;
1103 }
1104
b291f000 1105 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1106 ret = SWAP_FAIL;
1107 goto out;
1108 }
1109
1110 /*
1111 * We don't try to search for this page in the nonlinear vmas,
1112 * and page_referenced wouldn't have found it anyway. Instead
1113 * just walk the nonlinear vmas trying to age and unmap some.
1114 * The mapcount of the page we came in with is irrelevant,
1115 * but even so use it as a guide to how hard we should try?
1116 */
1117 mapcount = page_mapcount(page);
1118 if (!mapcount)
1119 goto out;
1120 cond_resched_lock(&mapping->i_mmap_lock);
1121
1122 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1123 if (max_nl_cursor == 0)
1124 max_nl_cursor = CLUSTER_SIZE;
1125
1126 do {
1127 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1128 shared.vm_set.list) {
1da177e4 1129 cursor = (unsigned long) vma->vm_private_data;
839b9685 1130 while ( cursor < max_nl_cursor &&
1da177e4 1131 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1132 if (try_to_unmap_cluster(cursor, &mapcount,
1133 vma, page) == SWAP_MLOCK)
1134 ret = SWAP_MLOCK;
1da177e4
LT
1135 cursor += CLUSTER_SIZE;
1136 vma->vm_private_data = (void *) cursor;
1137 if ((int)mapcount <= 0)
1138 goto out;
1139 }
1140 vma->vm_private_data = (void *) max_nl_cursor;
1141 }
1142 cond_resched_lock(&mapping->i_mmap_lock);
1143 max_nl_cursor += CLUSTER_SIZE;
1144 } while (max_nl_cursor <= max_nl_size);
1145
1146 /*
1147 * Don't loop forever (perhaps all the remaining pages are
1148 * in locked vmas). Reset cursor on all unreserved nonlinear
1149 * vmas, now forgetting on which ones it had fallen behind.
1150 */
101d2be7
HD
1151 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1152 vma->vm_private_data = NULL;
1da177e4
LT
1153out:
1154 spin_unlock(&mapping->i_mmap_lock);
1155 return ret;
1156}
1157
1158/**
1159 * try_to_unmap - try to remove all page table mappings to a page
1160 * @page: the page to get unmapped
14fa31b8 1161 * @flags: action and flags
1da177e4
LT
1162 *
1163 * Tries to remove all the page table entries which are mapping this
1164 * page, used in the pageout path. Caller must hold the page lock.
1165 * Return values are:
1166 *
1167 * SWAP_SUCCESS - we succeeded in removing all mappings
1168 * SWAP_AGAIN - we missed a mapping, try again later
1169 * SWAP_FAIL - the page is unswappable
b291f000 1170 * SWAP_MLOCK - page is mlocked.
1da177e4 1171 */
14fa31b8 1172int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1173{
1174 int ret;
1175
1da177e4
LT
1176 BUG_ON(!PageLocked(page));
1177
5ad64688
HD
1178 if (unlikely(PageKsm(page)))
1179 ret = try_to_unmap_ksm(page, flags);
1180 else if (PageAnon(page))
14fa31b8 1181 ret = try_to_unmap_anon(page, flags);
1da177e4 1182 else
14fa31b8 1183 ret = try_to_unmap_file(page, flags);
b291f000 1184 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1185 ret = SWAP_SUCCESS;
1186 return ret;
1187}
81b4082d 1188
b291f000
NP
1189/**
1190 * try_to_munlock - try to munlock a page
1191 * @page: the page to be munlocked
1192 *
1193 * Called from munlock code. Checks all of the VMAs mapping the page
1194 * to make sure nobody else has this page mlocked. The page will be
1195 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1196 *
1197 * Return values are:
1198 *
53f79acb 1199 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1200 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1201 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1202 * SWAP_MLOCK - page is now mlocked.
1203 */
1204int try_to_munlock(struct page *page)
1205{
1206 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1207
5ad64688
HD
1208 if (unlikely(PageKsm(page)))
1209 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1210 else if (PageAnon(page))
14fa31b8 1211 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1212 else
14fa31b8 1213 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1214}
e9995ef9
HD
1215
1216#ifdef CONFIG_MIGRATION
1217/*
1218 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1219 * Called by migrate.c to remove migration ptes, but might be used more later.
1220 */
1221static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1222 struct vm_area_struct *, unsigned long, void *), void *arg)
1223{
1224 struct anon_vma *anon_vma;
1225 struct vm_area_struct *vma;
1226 int ret = SWAP_AGAIN;
1227
1228 /*
1229 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1230 * because that depends on page_mapped(); but not all its usages
1231 * are holding mmap_sem, which also gave the necessary guarantee
1232 * (that this anon_vma's slab has not already been destroyed).
1233 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1234 * is risky, and currently limits the usefulness of rmap_walk().
1235 */
1236 anon_vma = page_anon_vma(page);
1237 if (!anon_vma)
1238 return ret;
1239 spin_lock(&anon_vma->lock);
1240 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1241 unsigned long address = vma_address(page, vma);
1242 if (address == -EFAULT)
1243 continue;
1244 ret = rmap_one(page, vma, address, arg);
1245 if (ret != SWAP_AGAIN)
1246 break;
1247 }
1248 spin_unlock(&anon_vma->lock);
1249 return ret;
1250}
1251
1252static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1253 struct vm_area_struct *, unsigned long, void *), void *arg)
1254{
1255 struct address_space *mapping = page->mapping;
1256 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1257 struct vm_area_struct *vma;
1258 struct prio_tree_iter iter;
1259 int ret = SWAP_AGAIN;
1260
1261 if (!mapping)
1262 return ret;
1263 spin_lock(&mapping->i_mmap_lock);
1264 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1265 unsigned long address = vma_address(page, vma);
1266 if (address == -EFAULT)
1267 continue;
1268 ret = rmap_one(page, vma, address, arg);
1269 if (ret != SWAP_AGAIN)
1270 break;
1271 }
1272 /*
1273 * No nonlinear handling: being always shared, nonlinear vmas
1274 * never contain migration ptes. Decide what to do about this
1275 * limitation to linear when we need rmap_walk() on nonlinear.
1276 */
1277 spin_unlock(&mapping->i_mmap_lock);
1278 return ret;
1279}
1280
1281int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1282 struct vm_area_struct *, unsigned long, void *), void *arg)
1283{
1284 VM_BUG_ON(!PageLocked(page));
1285
1286 if (unlikely(PageKsm(page)))
1287 return rmap_walk_ksm(page, rmap_one, arg);
1288 else if (PageAnon(page))
1289 return rmap_walk_anon(page, rmap_one, arg);
1290 else
1291 return rmap_walk_file(page, rmap_one, arg);
1292}
1293#endif /* CONFIG_MIGRATION */