Merge tag 'mac80211-for-davem-2015-08-14' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
64
b291f000
NP
65#include "internal.h"
66
fdd2e5f8 67static struct kmem_cache *anon_vma_cachep;
5beb4930 68static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
69
70static inline struct anon_vma *anon_vma_alloc(void)
71{
01d8b20d
PZ
72 struct anon_vma *anon_vma;
73
74 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
75 if (anon_vma) {
76 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
77 anon_vma->degree = 1; /* Reference for first vma */
78 anon_vma->parent = anon_vma;
01d8b20d
PZ
79 /*
80 * Initialise the anon_vma root to point to itself. If called
81 * from fork, the root will be reset to the parents anon_vma.
82 */
83 anon_vma->root = anon_vma;
84 }
85
86 return anon_vma;
fdd2e5f8
AB
87}
88
01d8b20d 89static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 90{
01d8b20d 91 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
92
93 /*
4fc3f1d6 94 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
95 * we can safely hold the lock without the anon_vma getting
96 * freed.
97 *
98 * Relies on the full mb implied by the atomic_dec_and_test() from
99 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 100 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 101 *
4fc3f1d6
IM
102 * page_lock_anon_vma_read() VS put_anon_vma()
103 * down_read_trylock() atomic_dec_and_test()
88c22088 104 * LOCK MB
4fc3f1d6 105 * atomic_read() rwsem_is_locked()
88c22088
PZ
106 *
107 * LOCK should suffice since the actual taking of the lock must
108 * happen _before_ what follows.
109 */
7f39dda9 110 might_sleep();
5a505085 111 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 112 anon_vma_lock_write(anon_vma);
08b52706 113 anon_vma_unlock_write(anon_vma);
88c22088
PZ
114 }
115
fdd2e5f8
AB
116 kmem_cache_free(anon_vma_cachep, anon_vma);
117}
1da177e4 118
dd34739c 119static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 120{
dd34739c 121 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
122}
123
e574b5fd 124static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
125{
126 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
127}
128
6583a843
KC
129static void anon_vma_chain_link(struct vm_area_struct *vma,
130 struct anon_vma_chain *avc,
131 struct anon_vma *anon_vma)
132{
133 avc->vma = vma;
134 avc->anon_vma = anon_vma;
135 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 136 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
137}
138
d9d332e0
LT
139/**
140 * anon_vma_prepare - attach an anon_vma to a memory region
141 * @vma: the memory region in question
142 *
143 * This makes sure the memory mapping described by 'vma' has
144 * an 'anon_vma' attached to it, so that we can associate the
145 * anonymous pages mapped into it with that anon_vma.
146 *
147 * The common case will be that we already have one, but if
23a0790a 148 * not we either need to find an adjacent mapping that we
d9d332e0
LT
149 * can re-use the anon_vma from (very common when the only
150 * reason for splitting a vma has been mprotect()), or we
151 * allocate a new one.
152 *
153 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 154 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
155 * and that may actually touch the spinlock even in the newly
156 * allocated vma (it depends on RCU to make sure that the
157 * anon_vma isn't actually destroyed).
158 *
159 * As a result, we need to do proper anon_vma locking even
160 * for the new allocation. At the same time, we do not want
161 * to do any locking for the common case of already having
162 * an anon_vma.
163 *
164 * This must be called with the mmap_sem held for reading.
165 */
1da177e4
LT
166int anon_vma_prepare(struct vm_area_struct *vma)
167{
168 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 169 struct anon_vma_chain *avc;
1da177e4
LT
170
171 might_sleep();
172 if (unlikely(!anon_vma)) {
173 struct mm_struct *mm = vma->vm_mm;
d9d332e0 174 struct anon_vma *allocated;
1da177e4 175
dd34739c 176 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
177 if (!avc)
178 goto out_enomem;
179
1da177e4 180 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
181 allocated = NULL;
182 if (!anon_vma) {
1da177e4
LT
183 anon_vma = anon_vma_alloc();
184 if (unlikely(!anon_vma))
5beb4930 185 goto out_enomem_free_avc;
1da177e4 186 allocated = anon_vma;
1da177e4
LT
187 }
188
4fc3f1d6 189 anon_vma_lock_write(anon_vma);
1da177e4
LT
190 /* page_table_lock to protect against threads */
191 spin_lock(&mm->page_table_lock);
192 if (likely(!vma->anon_vma)) {
193 vma->anon_vma = anon_vma;
6583a843 194 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
195 /* vma reference or self-parent link for new root */
196 anon_vma->degree++;
1da177e4 197 allocated = NULL;
31f2b0eb 198 avc = NULL;
1da177e4
LT
199 }
200 spin_unlock(&mm->page_table_lock);
08b52706 201 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
202
203 if (unlikely(allocated))
01d8b20d 204 put_anon_vma(allocated);
31f2b0eb 205 if (unlikely(avc))
5beb4930 206 anon_vma_chain_free(avc);
1da177e4
LT
207 }
208 return 0;
5beb4930
RR
209
210 out_enomem_free_avc:
211 anon_vma_chain_free(avc);
212 out_enomem:
213 return -ENOMEM;
1da177e4
LT
214}
215
bb4aa396
LT
216/*
217 * This is a useful helper function for locking the anon_vma root as
218 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
219 * have the same vma.
220 *
221 * Such anon_vma's should have the same root, so you'd expect to see
222 * just a single mutex_lock for the whole traversal.
223 */
224static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
225{
226 struct anon_vma *new_root = anon_vma->root;
227 if (new_root != root) {
228 if (WARN_ON_ONCE(root))
5a505085 229 up_write(&root->rwsem);
bb4aa396 230 root = new_root;
5a505085 231 down_write(&root->rwsem);
bb4aa396
LT
232 }
233 return root;
234}
235
236static inline void unlock_anon_vma_root(struct anon_vma *root)
237{
238 if (root)
5a505085 239 up_write(&root->rwsem);
bb4aa396
LT
240}
241
5beb4930
RR
242/*
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
245 *
246 * If dst->anon_vma is NULL this function tries to find and reuse existing
247 * anon_vma which has no vmas and only one child anon_vma. This prevents
248 * degradation of anon_vma hierarchy to endless linear chain in case of
249 * constantly forking task. On the other hand, an anon_vma with more than one
250 * child isn't reused even if there was no alive vma, thus rmap walker has a
251 * good chance of avoiding scanning the whole hierarchy when it searches where
252 * page is mapped.
5beb4930
RR
253 */
254int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 255{
5beb4930 256 struct anon_vma_chain *avc, *pavc;
bb4aa396 257 struct anon_vma *root = NULL;
5beb4930 258
646d87b4 259 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
260 struct anon_vma *anon_vma;
261
dd34739c
LT
262 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
263 if (unlikely(!avc)) {
264 unlock_anon_vma_root(root);
265 root = NULL;
266 avc = anon_vma_chain_alloc(GFP_KERNEL);
267 if (!avc)
268 goto enomem_failure;
269 }
bb4aa396
LT
270 anon_vma = pavc->anon_vma;
271 root = lock_anon_vma_root(root, anon_vma);
272 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
273
274 /*
275 * Reuse existing anon_vma if its degree lower than two,
276 * that means it has no vma and only one anon_vma child.
277 *
278 * Do not chose parent anon_vma, otherwise first child
279 * will always reuse it. Root anon_vma is never reused:
280 * it has self-parent reference and at least one child.
281 */
282 if (!dst->anon_vma && anon_vma != src->anon_vma &&
283 anon_vma->degree < 2)
284 dst->anon_vma = anon_vma;
5beb4930 285 }
7a3ef208
KK
286 if (dst->anon_vma)
287 dst->anon_vma->degree++;
bb4aa396 288 unlock_anon_vma_root(root);
5beb4930 289 return 0;
1da177e4 290
5beb4930 291 enomem_failure:
3fe89b3e
LY
292 /*
293 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
294 * decremented in unlink_anon_vmas().
295 * We can safely do this because callers of anon_vma_clone() don't care
296 * about dst->anon_vma if anon_vma_clone() failed.
297 */
298 dst->anon_vma = NULL;
5beb4930
RR
299 unlink_anon_vmas(dst);
300 return -ENOMEM;
1da177e4
LT
301}
302
5beb4930
RR
303/*
304 * Attach vma to its own anon_vma, as well as to the anon_vmas that
305 * the corresponding VMA in the parent process is attached to.
306 * Returns 0 on success, non-zero on failure.
307 */
308int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 309{
5beb4930
RR
310 struct anon_vma_chain *avc;
311 struct anon_vma *anon_vma;
c4ea95d7 312 int error;
1da177e4 313
5beb4930
RR
314 /* Don't bother if the parent process has no anon_vma here. */
315 if (!pvma->anon_vma)
316 return 0;
317
7a3ef208
KK
318 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
319 vma->anon_vma = NULL;
320
5beb4930
RR
321 /*
322 * First, attach the new VMA to the parent VMA's anon_vmas,
323 * so rmap can find non-COWed pages in child processes.
324 */
c4ea95d7
DF
325 error = anon_vma_clone(vma, pvma);
326 if (error)
327 return error;
5beb4930 328
7a3ef208
KK
329 /* An existing anon_vma has been reused, all done then. */
330 if (vma->anon_vma)
331 return 0;
332
5beb4930
RR
333 /* Then add our own anon_vma. */
334 anon_vma = anon_vma_alloc();
335 if (!anon_vma)
336 goto out_error;
dd34739c 337 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
338 if (!avc)
339 goto out_error_free_anon_vma;
5c341ee1
RR
340
341 /*
342 * The root anon_vma's spinlock is the lock actually used when we
343 * lock any of the anon_vmas in this anon_vma tree.
344 */
345 anon_vma->root = pvma->anon_vma->root;
7a3ef208 346 anon_vma->parent = pvma->anon_vma;
76545066 347 /*
01d8b20d
PZ
348 * With refcounts, an anon_vma can stay around longer than the
349 * process it belongs to. The root anon_vma needs to be pinned until
350 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
351 */
352 get_anon_vma(anon_vma->root);
5beb4930
RR
353 /* Mark this anon_vma as the one where our new (COWed) pages go. */
354 vma->anon_vma = anon_vma;
4fc3f1d6 355 anon_vma_lock_write(anon_vma);
5c341ee1 356 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 357 anon_vma->parent->degree++;
08b52706 358 anon_vma_unlock_write(anon_vma);
5beb4930
RR
359
360 return 0;
361
362 out_error_free_anon_vma:
01d8b20d 363 put_anon_vma(anon_vma);
5beb4930 364 out_error:
4946d54c 365 unlink_anon_vmas(vma);
5beb4930 366 return -ENOMEM;
1da177e4
LT
367}
368
5beb4930
RR
369void unlink_anon_vmas(struct vm_area_struct *vma)
370{
371 struct anon_vma_chain *avc, *next;
eee2acba 372 struct anon_vma *root = NULL;
5beb4930 373
5c341ee1
RR
374 /*
375 * Unlink each anon_vma chained to the VMA. This list is ordered
376 * from newest to oldest, ensuring the root anon_vma gets freed last.
377 */
5beb4930 378 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
379 struct anon_vma *anon_vma = avc->anon_vma;
380
381 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 382 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
383
384 /*
385 * Leave empty anon_vmas on the list - we'll need
386 * to free them outside the lock.
387 */
7a3ef208
KK
388 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
389 anon_vma->parent->degree--;
eee2acba 390 continue;
7a3ef208 391 }
eee2acba
PZ
392
393 list_del(&avc->same_vma);
394 anon_vma_chain_free(avc);
395 }
7a3ef208
KK
396 if (vma->anon_vma)
397 vma->anon_vma->degree--;
eee2acba
PZ
398 unlock_anon_vma_root(root);
399
400 /*
401 * Iterate the list once more, it now only contains empty and unlinked
402 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 403 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
7a3ef208 408 BUG_ON(anon_vma->degree);
eee2acba
PZ
409 put_anon_vma(anon_vma);
410
5beb4930
RR
411 list_del(&avc->same_vma);
412 anon_vma_chain_free(avc);
413 }
414}
415
51cc5068 416static void anon_vma_ctor(void *data)
1da177e4 417{
a35afb83 418 struct anon_vma *anon_vma = data;
1da177e4 419
5a505085 420 init_rwsem(&anon_vma->rwsem);
83813267 421 atomic_set(&anon_vma->refcount, 0);
bf181b9f 422 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
423}
424
425void __init anon_vma_init(void)
426{
427 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 428 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 429 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
430}
431
432/*
6111e4ca
PZ
433 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
434 *
435 * Since there is no serialization what so ever against page_remove_rmap()
436 * the best this function can do is return a locked anon_vma that might
437 * have been relevant to this page.
438 *
439 * The page might have been remapped to a different anon_vma or the anon_vma
440 * returned may already be freed (and even reused).
441 *
bc658c96
PZ
442 * In case it was remapped to a different anon_vma, the new anon_vma will be a
443 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
444 * ensure that any anon_vma obtained from the page will still be valid for as
445 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
446 *
6111e4ca
PZ
447 * All users of this function must be very careful when walking the anon_vma
448 * chain and verify that the page in question is indeed mapped in it
449 * [ something equivalent to page_mapped_in_vma() ].
450 *
451 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
452 * that the anon_vma pointer from page->mapping is valid if there is a
453 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 454 */
746b18d4 455struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 456{
746b18d4 457 struct anon_vma *anon_vma = NULL;
1da177e4
LT
458 unsigned long anon_mapping;
459
460 rcu_read_lock();
4db0c3c2 461 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 462 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
463 goto out;
464 if (!page_mapped(page))
465 goto out;
466
467 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
468 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
469 anon_vma = NULL;
470 goto out;
471 }
f1819427
HD
472
473 /*
474 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
475 * freed. But if it has been unmapped, we have no security against the
476 * anon_vma structure being freed and reused (for another anon_vma:
477 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
478 * above cannot corrupt).
f1819427 479 */
746b18d4 480 if (!page_mapped(page)) {
7f39dda9 481 rcu_read_unlock();
746b18d4 482 put_anon_vma(anon_vma);
7f39dda9 483 return NULL;
746b18d4 484 }
1da177e4
LT
485out:
486 rcu_read_unlock();
746b18d4
PZ
487
488 return anon_vma;
489}
490
88c22088
PZ
491/*
492 * Similar to page_get_anon_vma() except it locks the anon_vma.
493 *
494 * Its a little more complex as it tries to keep the fast path to a single
495 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
496 * reference like with page_get_anon_vma() and then block on the mutex.
497 */
4fc3f1d6 498struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 499{
88c22088 500 struct anon_vma *anon_vma = NULL;
eee0f252 501 struct anon_vma *root_anon_vma;
88c22088 502 unsigned long anon_mapping;
746b18d4 503
88c22088 504 rcu_read_lock();
4db0c3c2 505 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 goto out;
508 if (!page_mapped(page))
509 goto out;
510
511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 512 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 513 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 514 /*
eee0f252
HD
515 * If the page is still mapped, then this anon_vma is still
516 * its anon_vma, and holding the mutex ensures that it will
bc658c96 517 * not go away, see anon_vma_free().
88c22088 518 */
eee0f252 519 if (!page_mapped(page)) {
4fc3f1d6 520 up_read(&root_anon_vma->rwsem);
88c22088
PZ
521 anon_vma = NULL;
522 }
523 goto out;
524 }
746b18d4 525
88c22088
PZ
526 /* trylock failed, we got to sleep */
527 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
528 anon_vma = NULL;
529 goto out;
530 }
531
532 if (!page_mapped(page)) {
7f39dda9 533 rcu_read_unlock();
88c22088 534 put_anon_vma(anon_vma);
7f39dda9 535 return NULL;
88c22088
PZ
536 }
537
538 /* we pinned the anon_vma, its safe to sleep */
539 rcu_read_unlock();
4fc3f1d6 540 anon_vma_lock_read(anon_vma);
88c22088
PZ
541
542 if (atomic_dec_and_test(&anon_vma->refcount)) {
543 /*
544 * Oops, we held the last refcount, release the lock
545 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 546 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 547 */
4fc3f1d6 548 anon_vma_unlock_read(anon_vma);
88c22088
PZ
549 __put_anon_vma(anon_vma);
550 anon_vma = NULL;
551 }
552
553 return anon_vma;
554
555out:
556 rcu_read_unlock();
746b18d4 557 return anon_vma;
34bbd704
ON
558}
559
4fc3f1d6 560void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 561{
4fc3f1d6 562 anon_vma_unlock_read(anon_vma);
1da177e4
LT
563}
564
565/*
3ad33b24 566 * At what user virtual address is page expected in @vma?
1da177e4 567 */
86c2ad19
ML
568static inline unsigned long
569__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 570{
a0f7a756 571 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
572 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
573}
574
575inline unsigned long
576vma_address(struct page *page, struct vm_area_struct *vma)
577{
578 unsigned long address = __vma_address(page, vma);
579
580 /* page should be within @vma mapping range */
81d1b09c 581 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 582
1da177e4
LT
583 return address;
584}
585
586/*
bf89c8c8 587 * At what user virtual address is page expected in vma?
ab941e0f 588 * Caller should check the page is actually part of the vma.
1da177e4
LT
589 */
590unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
591{
86c2ad19 592 unsigned long address;
21d0d443 593 if (PageAnon(page)) {
4829b906
HD
594 struct anon_vma *page__anon_vma = page_anon_vma(page);
595 /*
596 * Note: swapoff's unuse_vma() is more efficient with this
597 * check, and needs it to match anon_vma when KSM is active.
598 */
599 if (!vma->anon_vma || !page__anon_vma ||
600 vma->anon_vma->root != page__anon_vma->root)
21d0d443 601 return -EFAULT;
27ba0644
KS
602 } else if (page->mapping) {
603 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
604 return -EFAULT;
605 } else
606 return -EFAULT;
86c2ad19
ML
607 address = __vma_address(page, vma);
608 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
609 return -EFAULT;
610 return address;
1da177e4
LT
611}
612
6219049a
BL
613pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
614{
615 pgd_t *pgd;
616 pud_t *pud;
617 pmd_t *pmd = NULL;
f72e7dcd 618 pmd_t pmde;
6219049a
BL
619
620 pgd = pgd_offset(mm, address);
621 if (!pgd_present(*pgd))
622 goto out;
623
624 pud = pud_offset(pgd, address);
625 if (!pud_present(*pud))
626 goto out;
627
628 pmd = pmd_offset(pud, address);
f72e7dcd 629 /*
8809aa2d 630 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
631 * without holding anon_vma lock for write. So when looking for a
632 * genuine pmde (in which to find pte), test present and !THP together.
633 */
e37c6982
CB
634 pmde = *pmd;
635 barrier();
f72e7dcd 636 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
637 pmd = NULL;
638out:
639 return pmd;
640}
641
81b4082d
ND
642/*
643 * Check that @page is mapped at @address into @mm.
644 *
479db0bf
NP
645 * If @sync is false, page_check_address may perform a racy check to avoid
646 * the page table lock when the pte is not present (helpful when reclaiming
647 * highly shared pages).
648 *
b8072f09 649 * On success returns with pte mapped and locked.
81b4082d 650 */
e9a81a82 651pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 652 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 653{
81b4082d
ND
654 pmd_t *pmd;
655 pte_t *pte;
c0718806 656 spinlock_t *ptl;
81b4082d 657
0fe6e20b 658 if (unlikely(PageHuge(page))) {
98398c32 659 /* when pud is not present, pte will be NULL */
0fe6e20b 660 pte = huge_pte_offset(mm, address);
98398c32
JW
661 if (!pte)
662 return NULL;
663
cb900f41 664 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
665 goto check;
666 }
667
6219049a
BL
668 pmd = mm_find_pmd(mm, address);
669 if (!pmd)
c0718806
HD
670 return NULL;
671
c0718806
HD
672 pte = pte_offset_map(pmd, address);
673 /* Make a quick check before getting the lock */
479db0bf 674 if (!sync && !pte_present(*pte)) {
c0718806
HD
675 pte_unmap(pte);
676 return NULL;
677 }
678
4c21e2f2 679 ptl = pte_lockptr(mm, pmd);
0fe6e20b 680check:
c0718806
HD
681 spin_lock(ptl);
682 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
683 *ptlp = ptl;
684 return pte;
81b4082d 685 }
c0718806
HD
686 pte_unmap_unlock(pte, ptl);
687 return NULL;
81b4082d
ND
688}
689
b291f000
NP
690/**
691 * page_mapped_in_vma - check whether a page is really mapped in a VMA
692 * @page: the page to test
693 * @vma: the VMA to test
694 *
695 * Returns 1 if the page is mapped into the page tables of the VMA, 0
696 * if the page is not mapped into the page tables of this VMA. Only
697 * valid for normal file or anonymous VMAs.
698 */
6a46079c 699int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
700{
701 unsigned long address;
702 pte_t *pte;
703 spinlock_t *ptl;
704
86c2ad19
ML
705 address = __vma_address(page, vma);
706 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
707 return 0;
708 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
709 if (!pte) /* the page is not in this mm */
710 return 0;
711 pte_unmap_unlock(pte, ptl);
712
713 return 1;
714}
715
9f32624b
JK
716struct page_referenced_arg {
717 int mapcount;
718 int referenced;
719 unsigned long vm_flags;
720 struct mem_cgroup *memcg;
721};
1da177e4 722/*
9f32624b 723 * arg: page_referenced_arg will be passed
1da177e4 724 */
ac769501 725static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 726 unsigned long address, void *arg)
1da177e4
LT
727{
728 struct mm_struct *mm = vma->vm_mm;
117b0791 729 spinlock_t *ptl;
1da177e4 730 int referenced = 0;
9f32624b 731 struct page_referenced_arg *pra = arg;
1da177e4 732
71e3aac0
AA
733 if (unlikely(PageTransHuge(page))) {
734 pmd_t *pmd;
735
2da28bfd
AA
736 /*
737 * rmap might return false positives; we must filter
738 * these out using page_check_address_pmd().
739 */
71e3aac0 740 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
741 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
742 if (!pmd)
9f32624b 743 return SWAP_AGAIN;
2da28bfd
AA
744
745 if (vma->vm_flags & VM_LOCKED) {
117b0791 746 spin_unlock(ptl);
9f32624b
JK
747 pra->vm_flags |= VM_LOCKED;
748 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
749 }
750
751 /* go ahead even if the pmd is pmd_trans_splitting() */
752 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 753 referenced++;
117b0791 754 spin_unlock(ptl);
71e3aac0
AA
755 } else {
756 pte_t *pte;
71e3aac0 757
2da28bfd
AA
758 /*
759 * rmap might return false positives; we must filter
760 * these out using page_check_address().
761 */
71e3aac0
AA
762 pte = page_check_address(page, mm, address, &ptl, 0);
763 if (!pte)
9f32624b 764 return SWAP_AGAIN;
71e3aac0 765
2da28bfd
AA
766 if (vma->vm_flags & VM_LOCKED) {
767 pte_unmap_unlock(pte, ptl);
9f32624b
JK
768 pra->vm_flags |= VM_LOCKED;
769 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
770 }
771
71e3aac0
AA
772 if (ptep_clear_flush_young_notify(vma, address, pte)) {
773 /*
774 * Don't treat a reference through a sequentially read
775 * mapping as such. If the page has been used in
776 * another mapping, we will catch it; if this other
777 * mapping is already gone, the unmap path will have
778 * set PG_referenced or activated the page.
779 */
64363aad 780 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
781 referenced++;
782 }
783 pte_unmap_unlock(pte, ptl);
784 }
785
9f32624b
JK
786 if (referenced) {
787 pra->referenced++;
788 pra->vm_flags |= vma->vm_flags;
1da177e4 789 }
34bbd704 790
9f32624b
JK
791 pra->mapcount--;
792 if (!pra->mapcount)
793 return SWAP_SUCCESS; /* To break the loop */
794
795 return SWAP_AGAIN;
1da177e4
LT
796}
797
9f32624b 798static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 799{
9f32624b
JK
800 struct page_referenced_arg *pra = arg;
801 struct mem_cgroup *memcg = pra->memcg;
1da177e4 802
9f32624b
JK
803 if (!mm_match_cgroup(vma->vm_mm, memcg))
804 return true;
1da177e4 805
9f32624b 806 return false;
1da177e4
LT
807}
808
809/**
810 * page_referenced - test if the page was referenced
811 * @page: the page to test
812 * @is_locked: caller holds lock on the page
72835c86 813 * @memcg: target memory cgroup
6fe6b7e3 814 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
815 *
816 * Quick test_and_clear_referenced for all mappings to a page,
817 * returns the number of ptes which referenced the page.
818 */
6fe6b7e3
WF
819int page_referenced(struct page *page,
820 int is_locked,
72835c86 821 struct mem_cgroup *memcg,
6fe6b7e3 822 unsigned long *vm_flags)
1da177e4 823{
9f32624b 824 int ret;
5ad64688 825 int we_locked = 0;
9f32624b
JK
826 struct page_referenced_arg pra = {
827 .mapcount = page_mapcount(page),
828 .memcg = memcg,
829 };
830 struct rmap_walk_control rwc = {
831 .rmap_one = page_referenced_one,
832 .arg = (void *)&pra,
833 .anon_lock = page_lock_anon_vma_read,
834 };
1da177e4 835
6fe6b7e3 836 *vm_flags = 0;
9f32624b
JK
837 if (!page_mapped(page))
838 return 0;
839
840 if (!page_rmapping(page))
841 return 0;
842
843 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
844 we_locked = trylock_page(page);
845 if (!we_locked)
846 return 1;
1da177e4 847 }
9f32624b
JK
848
849 /*
850 * If we are reclaiming on behalf of a cgroup, skip
851 * counting on behalf of references from different
852 * cgroups
853 */
854 if (memcg) {
855 rwc.invalid_vma = invalid_page_referenced_vma;
856 }
857
858 ret = rmap_walk(page, &rwc);
859 *vm_flags = pra.vm_flags;
860
861 if (we_locked)
862 unlock_page(page);
863
864 return pra.referenced;
1da177e4
LT
865}
866
1cb1729b 867static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 868 unsigned long address, void *arg)
d08b3851
PZ
869{
870 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 871 pte_t *pte;
d08b3851
PZ
872 spinlock_t *ptl;
873 int ret = 0;
9853a407 874 int *cleaned = arg;
d08b3851 875
479db0bf 876 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
877 if (!pte)
878 goto out;
879
c2fda5fe
PZ
880 if (pte_dirty(*pte) || pte_write(*pte)) {
881 pte_t entry;
d08b3851 882
c2fda5fe 883 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 884 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
885 entry = pte_wrprotect(entry);
886 entry = pte_mkclean(entry);
d6e88e67 887 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
888 ret = 1;
889 }
d08b3851 890
d08b3851 891 pte_unmap_unlock(pte, ptl);
2ec74c3e 892
9853a407 893 if (ret) {
2ec74c3e 894 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
895 (*cleaned)++;
896 }
d08b3851 897out:
9853a407 898 return SWAP_AGAIN;
d08b3851
PZ
899}
900
9853a407 901static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 902{
9853a407 903 if (vma->vm_flags & VM_SHARED)
871beb8c 904 return false;
d08b3851 905
871beb8c 906 return true;
d08b3851
PZ
907}
908
909int page_mkclean(struct page *page)
910{
9853a407
JK
911 int cleaned = 0;
912 struct address_space *mapping;
913 struct rmap_walk_control rwc = {
914 .arg = (void *)&cleaned,
915 .rmap_one = page_mkclean_one,
916 .invalid_vma = invalid_mkclean_vma,
917 };
d08b3851
PZ
918
919 BUG_ON(!PageLocked(page));
920
9853a407
JK
921 if (!page_mapped(page))
922 return 0;
923
924 mapping = page_mapping(page);
925 if (!mapping)
926 return 0;
927
928 rmap_walk(page, &rwc);
d08b3851 929
9853a407 930 return cleaned;
d08b3851 931}
60b59bea 932EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 933
c44b6743
RR
934/**
935 * page_move_anon_rmap - move a page to our anon_vma
936 * @page: the page to move to our anon_vma
937 * @vma: the vma the page belongs to
938 * @address: the user virtual address mapped
939 *
940 * When a page belongs exclusively to one process after a COW event,
941 * that page can be moved into the anon_vma that belongs to just that
942 * process, so the rmap code will not search the parent or sibling
943 * processes.
944 */
945void page_move_anon_rmap(struct page *page,
946 struct vm_area_struct *vma, unsigned long address)
947{
948 struct anon_vma *anon_vma = vma->anon_vma;
949
309381fe 950 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 951 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 952 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
953
954 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
955 /*
956 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
957 * simultaneously, so a concurrent reader (eg page_referenced()'s
958 * PageAnon()) will not see one without the other.
959 */
960 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
961}
962
9617d95e 963/**
4e1c1975
AK
964 * __page_set_anon_rmap - set up new anonymous rmap
965 * @page: Page to add to rmap
966 * @vma: VM area to add page to.
967 * @address: User virtual address of the mapping
e8a03feb 968 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
969 */
970static void __page_set_anon_rmap(struct page *page,
e8a03feb 971 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 972{
e8a03feb 973 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 974
e8a03feb 975 BUG_ON(!anon_vma);
ea90002b 976
4e1c1975
AK
977 if (PageAnon(page))
978 return;
979
ea90002b 980 /*
e8a03feb
RR
981 * If the page isn't exclusively mapped into this vma,
982 * we must use the _oldest_ possible anon_vma for the
983 * page mapping!
ea90002b 984 */
4e1c1975 985 if (!exclusive)
288468c3 986 anon_vma = anon_vma->root;
9617d95e 987
9617d95e
NP
988 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
989 page->mapping = (struct address_space *) anon_vma;
9617d95e 990 page->index = linear_page_index(vma, address);
9617d95e
NP
991}
992
c97a9e10 993/**
43d8eac4 994 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
995 * @page: the page to add the mapping to
996 * @vma: the vm area in which the mapping is added
997 * @address: the user virtual address mapped
998 */
999static void __page_check_anon_rmap(struct page *page,
1000 struct vm_area_struct *vma, unsigned long address)
1001{
1002#ifdef CONFIG_DEBUG_VM
1003 /*
1004 * The page's anon-rmap details (mapping and index) are guaranteed to
1005 * be set up correctly at this point.
1006 *
1007 * We have exclusion against page_add_anon_rmap because the caller
1008 * always holds the page locked, except if called from page_dup_rmap,
1009 * in which case the page is already known to be setup.
1010 *
1011 * We have exclusion against page_add_new_anon_rmap because those pages
1012 * are initially only visible via the pagetables, and the pte is locked
1013 * over the call to page_add_new_anon_rmap.
1014 */
44ab57a0 1015 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1016 BUG_ON(page->index != linear_page_index(vma, address));
1017#endif
1018}
1019
1da177e4
LT
1020/**
1021 * page_add_anon_rmap - add pte mapping to an anonymous page
1022 * @page: the page to add the mapping to
1023 * @vma: the vm area in which the mapping is added
1024 * @address: the user virtual address mapped
1025 *
5ad64688 1026 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1027 * the anon_vma case: to serialize mapping,index checking after setting,
1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1029 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1030 */
1031void page_add_anon_rmap(struct page *page,
1032 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1033{
1034 do_page_add_anon_rmap(page, vma, address, 0);
1035}
1036
1037/*
1038 * Special version of the above for do_swap_page, which often runs
1039 * into pages that are exclusively owned by the current process.
1040 * Everybody else should continue to use page_add_anon_rmap above.
1041 */
1042void do_page_add_anon_rmap(struct page *page,
1043 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1044{
5ad64688 1045 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1046 if (first) {
bea04b07
JZ
1047 /*
1048 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1049 * these counters are not modified in interrupt context, and
1050 * pte lock(a spinlock) is held, which implies preemption
1051 * disabled.
1052 */
3cd14fcd 1053 if (PageTransHuge(page))
79134171
AA
1054 __inc_zone_page_state(page,
1055 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1056 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1057 hpage_nr_pages(page));
79134171 1058 }
5ad64688
HD
1059 if (unlikely(PageKsm(page)))
1060 return;
1061
309381fe 1062 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1063 /* address might be in next vma when migration races vma_adjust */
5ad64688 1064 if (first)
ad8c2ee8 1065 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1066 else
c97a9e10 1067 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1068}
1069
43d8eac4 1070/**
9617d95e
NP
1071 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1072 * @page: the page to add the mapping to
1073 * @vma: the vm area in which the mapping is added
1074 * @address: the user virtual address mapped
1075 *
1076 * Same as page_add_anon_rmap but must only be called on *new* pages.
1077 * This means the inc-and-test can be bypassed.
c97a9e10 1078 * Page does not have to be locked.
9617d95e
NP
1079 */
1080void page_add_new_anon_rmap(struct page *page,
1081 struct vm_area_struct *vma, unsigned long address)
1082{
81d1b09c 1083 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1084 SetPageSwapBacked(page);
1085 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1086 if (PageTransHuge(page))
79134171 1087 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1088 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089 hpage_nr_pages(page));
e8a03feb 1090 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1091}
1092
1da177e4
LT
1093/**
1094 * page_add_file_rmap - add pte mapping to a file page
1095 * @page: the page to add the mapping to
1096 *
b8072f09 1097 * The caller needs to hold the pte lock.
1da177e4
LT
1098 */
1099void page_add_file_rmap(struct page *page)
1100{
d7365e78 1101 struct mem_cgroup *memcg;
89c06bd5 1102
6de22619 1103 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1104 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1105 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1106 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1107 }
6de22619 1108 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1109}
1110
8186eb6a
JW
1111static void page_remove_file_rmap(struct page *page)
1112{
1113 struct mem_cgroup *memcg;
8186eb6a 1114
6de22619 1115 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1116
1117 /* page still mapped by someone else? */
1118 if (!atomic_add_negative(-1, &page->_mapcount))
1119 goto out;
1120
1121 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1122 if (unlikely(PageHuge(page)))
1123 goto out;
1124
1125 /*
1126 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1127 * these counters are not modified in interrupt context, and
1128 * pte lock(a spinlock) is held, which implies preemption disabled.
1129 */
1130 __dec_zone_page_state(page, NR_FILE_MAPPED);
1131 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1132
1133 if (unlikely(PageMlocked(page)))
1134 clear_page_mlock(page);
1135out:
6de22619 1136 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1137}
1138
1da177e4
LT
1139/**
1140 * page_remove_rmap - take down pte mapping from a page
1141 * @page: page to remove mapping from
1142 *
b8072f09 1143 * The caller needs to hold the pte lock.
1da177e4 1144 */
edc315fd 1145void page_remove_rmap(struct page *page)
1da177e4 1146{
8186eb6a
JW
1147 if (!PageAnon(page)) {
1148 page_remove_file_rmap(page);
1149 return;
1150 }
89c06bd5 1151
b904dcfe
KM
1152 /* page still mapped by someone else? */
1153 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1154 return;
1155
1156 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1157 if (unlikely(PageHuge(page)))
1158 return;
b904dcfe 1159
0fe6e20b 1160 /*
bea04b07
JZ
1161 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1162 * these counters are not modified in interrupt context, and
bea04b07 1163 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1164 */
8186eb6a
JW
1165 if (PageTransHuge(page))
1166 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1167
1168 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1169 -hpage_nr_pages(page));
1170
e6c509f8
HD
1171 if (unlikely(PageMlocked(page)))
1172 clear_page_mlock(page);
8186eb6a 1173
b904dcfe
KM
1174 /*
1175 * It would be tidy to reset the PageAnon mapping here,
1176 * but that might overwrite a racing page_add_anon_rmap
1177 * which increments mapcount after us but sets mapping
1178 * before us: so leave the reset to free_hot_cold_page,
1179 * and remember that it's only reliable while mapped.
1180 * Leaving it set also helps swapoff to reinstate ptes
1181 * faster for those pages still in swapcache.
1182 */
1da177e4
LT
1183}
1184
1185/*
52629506 1186 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1187 */
ac769501 1188static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1189 unsigned long address, void *arg)
1da177e4
LT
1190{
1191 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1192 pte_t *pte;
1193 pte_t pteval;
c0718806 1194 spinlock_t *ptl;
1da177e4 1195 int ret = SWAP_AGAIN;
52629506 1196 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1197
479db0bf 1198 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1199 if (!pte)
81b4082d 1200 goto out;
1da177e4
LT
1201
1202 /*
1203 * If the page is mlock()d, we cannot swap it out.
1204 * If it's recently referenced (perhaps page_referenced
1205 * skipped over this mm) then we should reactivate it.
1206 */
14fa31b8 1207 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1208 if (vma->vm_flags & VM_LOCKED)
1209 goto out_mlock;
1210
daa5ba76 1211 if (flags & TTU_MUNLOCK)
53f79acb 1212 goto out_unmap;
14fa31b8
AK
1213 }
1214 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1215 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1216 ret = SWAP_FAIL;
1217 goto out_unmap;
1218 }
1219 }
1da177e4 1220
1da177e4
LT
1221 /* Nuke the page table entry. */
1222 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1223 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1224
1225 /* Move the dirty bit to the physical page now the pte is gone. */
1226 if (pte_dirty(pteval))
1227 set_page_dirty(page);
1228
365e9c87
HD
1229 /* Update high watermark before we lower rss */
1230 update_hiwater_rss(mm);
1231
888b9f7c 1232 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1233 if (!PageHuge(page)) {
1234 if (PageAnon(page))
1235 dec_mm_counter(mm, MM_ANONPAGES);
1236 else
1237 dec_mm_counter(mm, MM_FILEPAGES);
1238 }
888b9f7c 1239 set_pte_at(mm, address, pte,
5f24ae58 1240 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1241 } else if (pte_unused(pteval)) {
1242 /*
1243 * The guest indicated that the page content is of no
1244 * interest anymore. Simply discard the pte, vmscan
1245 * will take care of the rest.
1246 */
1247 if (PageAnon(page))
1248 dec_mm_counter(mm, MM_ANONPAGES);
1249 else
1250 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1251 } else if (PageAnon(page)) {
4c21e2f2 1252 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1253 pte_t swp_pte;
0697212a
CL
1254
1255 if (PageSwapCache(page)) {
1256 /*
1257 * Store the swap location in the pte.
1258 * See handle_pte_fault() ...
1259 */
570a335b
HD
1260 if (swap_duplicate(entry) < 0) {
1261 set_pte_at(mm, address, pte, pteval);
1262 ret = SWAP_FAIL;
1263 goto out_unmap;
1264 }
0697212a
CL
1265 if (list_empty(&mm->mmlist)) {
1266 spin_lock(&mmlist_lock);
1267 if (list_empty(&mm->mmlist))
1268 list_add(&mm->mmlist, &init_mm.mmlist);
1269 spin_unlock(&mmlist_lock);
1270 }
d559db08 1271 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1272 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1273 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1274 /*
1275 * Store the pfn of the page in a special migration
1276 * pte. do_swap_page() will wait until the migration
1277 * pte is removed and then restart fault handling.
1278 */
daa5ba76 1279 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1280 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1281 }
179ef71c
CG
1282 swp_pte = swp_entry_to_pte(entry);
1283 if (pte_soft_dirty(pteval))
1284 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1285 set_pte_at(mm, address, pte, swp_pte);
ce1744f4 1286 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1287 (flags & TTU_MIGRATION)) {
04e62a29
CL
1288 /* Establish migration entry for a file page */
1289 swp_entry_t entry;
1290 entry = make_migration_entry(page, pte_write(pteval));
1291 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1292 } else
d559db08 1293 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1294
edc315fd 1295 page_remove_rmap(page);
1da177e4
LT
1296 page_cache_release(page);
1297
1298out_unmap:
c0718806 1299 pte_unmap_unlock(pte, ptl);
daa5ba76 1300 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1301 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1302out:
1303 return ret;
53f79acb 1304
caed0f48
KM
1305out_mlock:
1306 pte_unmap_unlock(pte, ptl);
1307
1308
1309 /*
1310 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1311 * unstable result and race. Plus, We can't wait here because
c8c06efa 1312 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1313 * if trylock failed, the page remain in evictable lru and later
1314 * vmscan could retry to move the page to unevictable lru if the
1315 * page is actually mlocked.
1316 */
1317 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318 if (vma->vm_flags & VM_LOCKED) {
1319 mlock_vma_page(page);
1320 ret = SWAP_MLOCK;
53f79acb 1321 }
caed0f48 1322 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1323 }
1da177e4
LT
1324 return ret;
1325}
1326
71e3aac0 1327bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1328{
1329 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1330
1331 if (!maybe_stack)
1332 return false;
1333
1334 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1335 VM_STACK_INCOMPLETE_SETUP)
1336 return true;
1337
1338 return false;
1339}
1340
52629506
JK
1341static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1342{
1343 return is_vma_temporary_stack(vma);
1344}
1345
52629506
JK
1346static int page_not_mapped(struct page *page)
1347{
1348 return !page_mapped(page);
1349};
1350
1da177e4
LT
1351/**
1352 * try_to_unmap - try to remove all page table mappings to a page
1353 * @page: the page to get unmapped
14fa31b8 1354 * @flags: action and flags
1da177e4
LT
1355 *
1356 * Tries to remove all the page table entries which are mapping this
1357 * page, used in the pageout path. Caller must hold the page lock.
1358 * Return values are:
1359 *
1360 * SWAP_SUCCESS - we succeeded in removing all mappings
1361 * SWAP_AGAIN - we missed a mapping, try again later
1362 * SWAP_FAIL - the page is unswappable
b291f000 1363 * SWAP_MLOCK - page is mlocked.
1da177e4 1364 */
14fa31b8 1365int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1366{
1367 int ret;
52629506
JK
1368 struct rmap_walk_control rwc = {
1369 .rmap_one = try_to_unmap_one,
1370 .arg = (void *)flags,
1371 .done = page_not_mapped,
52629506
JK
1372 .anon_lock = page_lock_anon_vma_read,
1373 };
1da177e4 1374
309381fe 1375 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1376
52629506
JK
1377 /*
1378 * During exec, a temporary VMA is setup and later moved.
1379 * The VMA is moved under the anon_vma lock but not the
1380 * page tables leading to a race where migration cannot
1381 * find the migration ptes. Rather than increasing the
1382 * locking requirements of exec(), migration skips
1383 * temporary VMAs until after exec() completes.
1384 */
daa5ba76 1385 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1386 rwc.invalid_vma = invalid_migration_vma;
1387
1388 ret = rmap_walk(page, &rwc);
1389
b291f000 1390 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1391 ret = SWAP_SUCCESS;
1392 return ret;
1393}
81b4082d 1394
b291f000
NP
1395/**
1396 * try_to_munlock - try to munlock a page
1397 * @page: the page to be munlocked
1398 *
1399 * Called from munlock code. Checks all of the VMAs mapping the page
1400 * to make sure nobody else has this page mlocked. The page will be
1401 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1402 *
1403 * Return values are:
1404 *
53f79acb 1405 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1406 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1407 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1408 * SWAP_MLOCK - page is now mlocked.
1409 */
1410int try_to_munlock(struct page *page)
1411{
e8351ac9
JK
1412 int ret;
1413 struct rmap_walk_control rwc = {
1414 .rmap_one = try_to_unmap_one,
1415 .arg = (void *)TTU_MUNLOCK,
1416 .done = page_not_mapped,
e8351ac9
JK
1417 .anon_lock = page_lock_anon_vma_read,
1418
1419 };
1420
309381fe 1421 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1422
e8351ac9
JK
1423 ret = rmap_walk(page, &rwc);
1424 return ret;
b291f000 1425}
e9995ef9 1426
01d8b20d 1427void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1428{
01d8b20d 1429 struct anon_vma *root = anon_vma->root;
76545066 1430
624483f3 1431 anon_vma_free(anon_vma);
01d8b20d
PZ
1432 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1433 anon_vma_free(root);
76545066 1434}
76545066 1435
0dd1c7bb
JK
1436static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1437 struct rmap_walk_control *rwc)
faecd8dd
JK
1438{
1439 struct anon_vma *anon_vma;
1440
0dd1c7bb
JK
1441 if (rwc->anon_lock)
1442 return rwc->anon_lock(page);
1443
faecd8dd
JK
1444 /*
1445 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1446 * because that depends on page_mapped(); but not all its usages
1447 * are holding mmap_sem. Users without mmap_sem are required to
1448 * take a reference count to prevent the anon_vma disappearing
1449 */
1450 anon_vma = page_anon_vma(page);
1451 if (!anon_vma)
1452 return NULL;
1453
1454 anon_vma_lock_read(anon_vma);
1455 return anon_vma;
1456}
1457
e9995ef9 1458/*
e8351ac9
JK
1459 * rmap_walk_anon - do something to anonymous page using the object-based
1460 * rmap method
1461 * @page: the page to be handled
1462 * @rwc: control variable according to each walk type
1463 *
1464 * Find all the mappings of a page using the mapping pointer and the vma chains
1465 * contained in the anon_vma struct it points to.
1466 *
1467 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1468 * where the page was found will be held for write. So, we won't recheck
1469 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1470 * LOCKED.
e9995ef9 1471 */
051ac83a 1472static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1473{
1474 struct anon_vma *anon_vma;
b258d860 1475 pgoff_t pgoff;
5beb4930 1476 struct anon_vma_chain *avc;
e9995ef9
HD
1477 int ret = SWAP_AGAIN;
1478
0dd1c7bb 1479 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1480 if (!anon_vma)
1481 return ret;
faecd8dd 1482
b258d860 1483 pgoff = page_to_pgoff(page);
bf181b9f 1484 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1485 struct vm_area_struct *vma = avc->vma;
e9995ef9 1486 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1487
1488 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1489 continue;
1490
051ac83a 1491 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1492 if (ret != SWAP_AGAIN)
1493 break;
0dd1c7bb
JK
1494 if (rwc->done && rwc->done(page))
1495 break;
e9995ef9 1496 }
4fc3f1d6 1497 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1498 return ret;
1499}
1500
e8351ac9
JK
1501/*
1502 * rmap_walk_file - do something to file page using the object-based rmap method
1503 * @page: the page to be handled
1504 * @rwc: control variable according to each walk type
1505 *
1506 * Find all the mappings of a page using the mapping pointer and the vma chains
1507 * contained in the address_space struct it points to.
1508 *
1509 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1510 * where the page was found will be held for write. So, we won't recheck
1511 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1512 * LOCKED.
1513 */
051ac83a 1514static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1515{
1516 struct address_space *mapping = page->mapping;
b258d860 1517 pgoff_t pgoff;
e9995ef9 1518 struct vm_area_struct *vma;
e9995ef9
HD
1519 int ret = SWAP_AGAIN;
1520
9f32624b
JK
1521 /*
1522 * The page lock not only makes sure that page->mapping cannot
1523 * suddenly be NULLified by truncation, it makes sure that the
1524 * structure at mapping cannot be freed and reused yet,
c8c06efa 1525 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1526 */
81d1b09c 1527 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1528
e9995ef9
HD
1529 if (!mapping)
1530 return ret;
3dec0ba0 1531
b258d860 1532 pgoff = page_to_pgoff(page);
3dec0ba0 1533 i_mmap_lock_read(mapping);
6b2dbba8 1534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1535 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1536
1537 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1538 continue;
1539
051ac83a 1540 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1541 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1542 goto done;
1543 if (rwc->done && rwc->done(page))
1544 goto done;
e9995ef9 1545 }
0dd1c7bb 1546
0dd1c7bb 1547done:
3dec0ba0 1548 i_mmap_unlock_read(mapping);
e9995ef9
HD
1549 return ret;
1550}
1551
051ac83a 1552int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1553{
e9995ef9 1554 if (unlikely(PageKsm(page)))
051ac83a 1555 return rmap_walk_ksm(page, rwc);
e9995ef9 1556 else if (PageAnon(page))
051ac83a 1557 return rmap_walk_anon(page, rwc);
e9995ef9 1558 else
051ac83a 1559 return rmap_walk_file(page, rwc);
e9995ef9 1560}
0fe6e20b 1561
e3390f67 1562#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1563/*
1564 * The following three functions are for anonymous (private mapped) hugepages.
1565 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1566 * and no lru code, because we handle hugepages differently from common pages.
1567 */
1568static void __hugepage_set_anon_rmap(struct page *page,
1569 struct vm_area_struct *vma, unsigned long address, int exclusive)
1570{
1571 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1572
0fe6e20b 1573 BUG_ON(!anon_vma);
433abed6
NH
1574
1575 if (PageAnon(page))
1576 return;
1577 if (!exclusive)
1578 anon_vma = anon_vma->root;
1579
0fe6e20b
NH
1580 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1581 page->mapping = (struct address_space *) anon_vma;
1582 page->index = linear_page_index(vma, address);
1583}
1584
1585void hugepage_add_anon_rmap(struct page *page,
1586 struct vm_area_struct *vma, unsigned long address)
1587{
1588 struct anon_vma *anon_vma = vma->anon_vma;
1589 int first;
a850ea30
NH
1590
1591 BUG_ON(!PageLocked(page));
0fe6e20b 1592 BUG_ON(!anon_vma);
5dbe0af4 1593 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1594 first = atomic_inc_and_test(&page->_mapcount);
1595 if (first)
1596 __hugepage_set_anon_rmap(page, vma, address, 0);
1597}
1598
1599void hugepage_add_new_anon_rmap(struct page *page,
1600 struct vm_area_struct *vma, unsigned long address)
1601{
1602 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1603 atomic_set(&page->_mapcount, 0);
1604 __hugepage_set_anon_rmap(page, vma, address, 1);
1605}
e3390f67 1606#endif /* CONFIG_HUGETLB_PAGE */