libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d00181b9 695 unsigned int max_order = MAX_ORDER;
1da177e4 696
d29bb978 697 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 698 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 699
ed0ae21d 700 VM_BUG_ON(migratetype == -1);
3c605096
JK
701 if (is_migrate_isolate(migratetype)) {
702 /*
703 * We restrict max order of merging to prevent merge
704 * between freepages on isolate pageblock and normal
705 * pageblock. Without this, pageblock isolation
706 * could cause incorrect freepage accounting.
707 */
d00181b9 708 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 709 } else {
8f82b55d 710 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 711 }
ed0ae21d 712
3c605096 713 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 714
309381fe
SL
715 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
716 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 717
3c605096 718 while (order < max_order - 1) {
43506fad
KC
719 buddy_idx = __find_buddy_index(page_idx, order);
720 buddy = page + (buddy_idx - page_idx);
cb2b95e1 721 if (!page_is_buddy(page, buddy, order))
3c82d0ce 722 break;
c0a32fc5
SG
723 /*
724 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
725 * merge with it and move up one order.
726 */
727 if (page_is_guard(buddy)) {
2847cf95 728 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
729 } else {
730 list_del(&buddy->lru);
731 zone->free_area[order].nr_free--;
732 rmv_page_order(buddy);
733 }
43506fad 734 combined_idx = buddy_idx & page_idx;
1da177e4
LT
735 page = page + (combined_idx - page_idx);
736 page_idx = combined_idx;
737 order++;
738 }
739 set_page_order(page, order);
6dda9d55
CZ
740
741 /*
742 * If this is not the largest possible page, check if the buddy
743 * of the next-highest order is free. If it is, it's possible
744 * that pages are being freed that will coalesce soon. In case,
745 * that is happening, add the free page to the tail of the list
746 * so it's less likely to be used soon and more likely to be merged
747 * as a higher order page
748 */
b7f50cfa 749 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 750 struct page *higher_page, *higher_buddy;
43506fad
KC
751 combined_idx = buddy_idx & page_idx;
752 higher_page = page + (combined_idx - page_idx);
753 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 754 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
755 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
756 list_add_tail(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 goto out;
759 }
760 }
761
762 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
763out:
1da177e4
LT
764 zone->free_area[order].nr_free++;
765}
766
224abf92 767static inline int free_pages_check(struct page *page)
1da177e4 768{
d230dec1 769 const char *bad_reason = NULL;
f0b791a3
DH
770 unsigned long bad_flags = 0;
771
53f9263b 772 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
773 bad_reason = "nonzero mapcount";
774 if (unlikely(page->mapping != NULL))
775 bad_reason = "non-NULL mapping";
fe896d18 776 if (unlikely(page_ref_count(page) != 0))
f0b791a3
DH
777 bad_reason = "nonzero _count";
778 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
779 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
780 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
781 }
9edad6ea
JW
782#ifdef CONFIG_MEMCG
783 if (unlikely(page->mem_cgroup))
784 bad_reason = "page still charged to cgroup";
785#endif
f0b791a3
DH
786 if (unlikely(bad_reason)) {
787 bad_page(page, bad_reason, bad_flags);
79f4b7bf 788 return 1;
8cc3b392 789 }
90572890 790 page_cpupid_reset_last(page);
79f4b7bf
HD
791 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
792 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
793 return 0;
1da177e4
LT
794}
795
796/*
5f8dcc21 797 * Frees a number of pages from the PCP lists
1da177e4 798 * Assumes all pages on list are in same zone, and of same order.
207f36ee 799 * count is the number of pages to free.
1da177e4
LT
800 *
801 * If the zone was previously in an "all pages pinned" state then look to
802 * see if this freeing clears that state.
803 *
804 * And clear the zone's pages_scanned counter, to hold off the "all pages are
805 * pinned" detection logic.
806 */
5f8dcc21
MG
807static void free_pcppages_bulk(struct zone *zone, int count,
808 struct per_cpu_pages *pcp)
1da177e4 809{
5f8dcc21 810 int migratetype = 0;
a6f9edd6 811 int batch_free = 0;
72853e29 812 int to_free = count;
0d5d823a 813 unsigned long nr_scanned;
5f8dcc21 814
c54ad30c 815 spin_lock(&zone->lock);
0d5d823a
MG
816 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
817 if (nr_scanned)
818 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 819
72853e29 820 while (to_free) {
48db57f8 821 struct page *page;
5f8dcc21
MG
822 struct list_head *list;
823
824 /*
a6f9edd6
MG
825 * Remove pages from lists in a round-robin fashion. A
826 * batch_free count is maintained that is incremented when an
827 * empty list is encountered. This is so more pages are freed
828 * off fuller lists instead of spinning excessively around empty
829 * lists
5f8dcc21
MG
830 */
831 do {
a6f9edd6 832 batch_free++;
5f8dcc21
MG
833 if (++migratetype == MIGRATE_PCPTYPES)
834 migratetype = 0;
835 list = &pcp->lists[migratetype];
836 } while (list_empty(list));
48db57f8 837
1d16871d
NK
838 /* This is the only non-empty list. Free them all. */
839 if (batch_free == MIGRATE_PCPTYPES)
840 batch_free = to_free;
841
a6f9edd6 842 do {
770c8aaa
BZ
843 int mt; /* migratetype of the to-be-freed page */
844
a16601c5 845 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
846 /* must delete as __free_one_page list manipulates */
847 list_del(&page->lru);
aa016d14 848
bb14c2c7 849 mt = get_pcppage_migratetype(page);
aa016d14
VB
850 /* MIGRATE_ISOLATE page should not go to pcplists */
851 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
852 /* Pageblock could have been isolated meanwhile */
8f82b55d 853 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 854 mt = get_pageblock_migratetype(page);
51bb1a40 855
dc4b0caf 856 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 857 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 858 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 859 }
c54ad30c 860 spin_unlock(&zone->lock);
1da177e4
LT
861}
862
dc4b0caf
MG
863static void free_one_page(struct zone *zone,
864 struct page *page, unsigned long pfn,
7aeb09f9 865 unsigned int order,
ed0ae21d 866 int migratetype)
1da177e4 867{
0d5d823a 868 unsigned long nr_scanned;
006d22d9 869 spin_lock(&zone->lock);
0d5d823a
MG
870 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
871 if (nr_scanned)
872 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 873
ad53f92e
JK
874 if (unlikely(has_isolate_pageblock(zone) ||
875 is_migrate_isolate(migratetype))) {
876 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 877 }
dc4b0caf 878 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 879 spin_unlock(&zone->lock);
48db57f8
NP
880}
881
81422f29
KS
882static int free_tail_pages_check(struct page *head_page, struct page *page)
883{
1d798ca3
KS
884 int ret = 1;
885
886 /*
887 * We rely page->lru.next never has bit 0 set, unless the page
888 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
889 */
890 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
891
892 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
893 ret = 0;
894 goto out;
895 }
9a982250
KS
896 switch (page - head_page) {
897 case 1:
898 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
899 if (unlikely(compound_mapcount(page))) {
900 bad_page(page, "nonzero compound_mapcount", 0);
901 goto out;
902 }
9a982250
KS
903 break;
904 case 2:
905 /*
906 * the second tail page: ->mapping is
907 * page_deferred_list().next -- ignore value.
908 */
909 break;
910 default:
911 if (page->mapping != TAIL_MAPPING) {
912 bad_page(page, "corrupted mapping in tail page", 0);
913 goto out;
914 }
915 break;
1c290f64 916 }
81422f29
KS
917 if (unlikely(!PageTail(page))) {
918 bad_page(page, "PageTail not set", 0);
1d798ca3 919 goto out;
81422f29 920 }
1d798ca3
KS
921 if (unlikely(compound_head(page) != head_page)) {
922 bad_page(page, "compound_head not consistent", 0);
923 goto out;
81422f29 924 }
1d798ca3
KS
925 ret = 0;
926out:
1c290f64 927 page->mapping = NULL;
1d798ca3
KS
928 clear_compound_head(page);
929 return ret;
81422f29
KS
930}
931
1e8ce83c
RH
932static void __meminit __init_single_page(struct page *page, unsigned long pfn,
933 unsigned long zone, int nid)
934{
1e8ce83c 935 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
936 init_page_count(page);
937 page_mapcount_reset(page);
938 page_cpupid_reset_last(page);
1e8ce83c 939
1e8ce83c
RH
940 INIT_LIST_HEAD(&page->lru);
941#ifdef WANT_PAGE_VIRTUAL
942 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
943 if (!is_highmem_idx(zone))
944 set_page_address(page, __va(pfn << PAGE_SHIFT));
945#endif
946}
947
948static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
949 int nid)
950{
951 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
952}
953
7e18adb4
MG
954#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
955static void init_reserved_page(unsigned long pfn)
956{
957 pg_data_t *pgdat;
958 int nid, zid;
959
960 if (!early_page_uninitialised(pfn))
961 return;
962
963 nid = early_pfn_to_nid(pfn);
964 pgdat = NODE_DATA(nid);
965
966 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
967 struct zone *zone = &pgdat->node_zones[zid];
968
969 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
970 break;
971 }
972 __init_single_pfn(pfn, zid, nid);
973}
974#else
975static inline void init_reserved_page(unsigned long pfn)
976{
977}
978#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
979
92923ca3
NZ
980/*
981 * Initialised pages do not have PageReserved set. This function is
982 * called for each range allocated by the bootmem allocator and
983 * marks the pages PageReserved. The remaining valid pages are later
984 * sent to the buddy page allocator.
985 */
7e18adb4 986void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
987{
988 unsigned long start_pfn = PFN_DOWN(start);
989 unsigned long end_pfn = PFN_UP(end);
990
7e18adb4
MG
991 for (; start_pfn < end_pfn; start_pfn++) {
992 if (pfn_valid(start_pfn)) {
993 struct page *page = pfn_to_page(start_pfn);
994
995 init_reserved_page(start_pfn);
1d798ca3
KS
996
997 /* Avoid false-positive PageTail() */
998 INIT_LIST_HEAD(&page->lru);
999
7e18adb4
MG
1000 SetPageReserved(page);
1001 }
1002 }
92923ca3
NZ
1003}
1004
ec95f53a 1005static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1006{
81422f29
KS
1007 bool compound = PageCompound(page);
1008 int i, bad = 0;
1da177e4 1009
ab1f306f 1010 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1012
b413d48a 1013 trace_mm_page_free(page, order);
b1eeab67 1014 kmemcheck_free_shadow(page, order);
b8c73fc2 1015 kasan_free_pages(page, order);
b1eeab67 1016
8dd60a3a
AA
1017 if (PageAnon(page))
1018 page->mapping = NULL;
81422f29
KS
1019 bad += free_pages_check(page);
1020 for (i = 1; i < (1 << order); i++) {
1021 if (compound)
1022 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1023 bad += free_pages_check(page + i);
81422f29 1024 }
8cc3b392 1025 if (bad)
ec95f53a 1026 return false;
689bcebf 1027
48c96a36
JK
1028 reset_page_owner(page, order);
1029
3ac7fe5a 1030 if (!PageHighMem(page)) {
b8af2941
PK
1031 debug_check_no_locks_freed(page_address(page),
1032 PAGE_SIZE << order);
3ac7fe5a
TG
1033 debug_check_no_obj_freed(page_address(page),
1034 PAGE_SIZE << order);
1035 }
dafb1367 1036 arch_free_page(page, order);
8823b1db 1037 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1038 kernel_map_pages(page, 1 << order, 0);
dafb1367 1039
ec95f53a
KM
1040 return true;
1041}
1042
1043static void __free_pages_ok(struct page *page, unsigned int order)
1044{
1045 unsigned long flags;
95e34412 1046 int migratetype;
dc4b0caf 1047 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1048
1049 if (!free_pages_prepare(page, order))
1050 return;
1051
cfc47a28 1052 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1053 local_irq_save(flags);
f8891e5e 1054 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1055 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1056 local_irq_restore(flags);
1da177e4
LT
1057}
1058
0e1cc95b 1059static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1060 unsigned long pfn, unsigned int order)
a226f6c8 1061{
c3993076 1062 unsigned int nr_pages = 1 << order;
e2d0bd2b 1063 struct page *p = page;
c3993076 1064 unsigned int loop;
a226f6c8 1065
e2d0bd2b
YL
1066 prefetchw(p);
1067 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1068 prefetchw(p + 1);
c3993076
JW
1069 __ClearPageReserved(p);
1070 set_page_count(p, 0);
a226f6c8 1071 }
e2d0bd2b
YL
1072 __ClearPageReserved(p);
1073 set_page_count(p, 0);
c3993076 1074
e2d0bd2b 1075 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1076 set_page_refcounted(page);
1077 __free_pages(page, order);
a226f6c8
DH
1078}
1079
75a592a4
MG
1080#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1081 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1082
75a592a4
MG
1083static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1084
1085int __meminit early_pfn_to_nid(unsigned long pfn)
1086{
7ace9917 1087 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1088 int nid;
1089
7ace9917 1090 spin_lock(&early_pfn_lock);
75a592a4 1091 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1092 if (nid < 0)
1093 nid = 0;
1094 spin_unlock(&early_pfn_lock);
1095
1096 return nid;
75a592a4
MG
1097}
1098#endif
1099
1100#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1101static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1102 struct mminit_pfnnid_cache *state)
1103{
1104 int nid;
1105
1106 nid = __early_pfn_to_nid(pfn, state);
1107 if (nid >= 0 && nid != node)
1108 return false;
1109 return true;
1110}
1111
1112/* Only safe to use early in boot when initialisation is single-threaded */
1113static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1114{
1115 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1116}
1117
1118#else
1119
1120static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1121{
1122 return true;
1123}
1124static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1125 struct mminit_pfnnid_cache *state)
1126{
1127 return true;
1128}
1129#endif
1130
1131
0e1cc95b 1132void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1133 unsigned int order)
1134{
1135 if (early_page_uninitialised(pfn))
1136 return;
1137 return __free_pages_boot_core(page, pfn, order);
1138}
1139
7cf91a98
JK
1140/*
1141 * Check that the whole (or subset of) a pageblock given by the interval of
1142 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1143 * with the migration of free compaction scanner. The scanners then need to
1144 * use only pfn_valid_within() check for arches that allow holes within
1145 * pageblocks.
1146 *
1147 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1148 *
1149 * It's possible on some configurations to have a setup like node0 node1 node0
1150 * i.e. it's possible that all pages within a zones range of pages do not
1151 * belong to a single zone. We assume that a border between node0 and node1
1152 * can occur within a single pageblock, but not a node0 node1 node0
1153 * interleaving within a single pageblock. It is therefore sufficient to check
1154 * the first and last page of a pageblock and avoid checking each individual
1155 * page in a pageblock.
1156 */
1157struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1158 unsigned long end_pfn, struct zone *zone)
1159{
1160 struct page *start_page;
1161 struct page *end_page;
1162
1163 /* end_pfn is one past the range we are checking */
1164 end_pfn--;
1165
1166 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1167 return NULL;
1168
1169 start_page = pfn_to_page(start_pfn);
1170
1171 if (page_zone(start_page) != zone)
1172 return NULL;
1173
1174 end_page = pfn_to_page(end_pfn);
1175
1176 /* This gives a shorter code than deriving page_zone(end_page) */
1177 if (page_zone_id(start_page) != page_zone_id(end_page))
1178 return NULL;
1179
1180 return start_page;
1181}
1182
1183void set_zone_contiguous(struct zone *zone)
1184{
1185 unsigned long block_start_pfn = zone->zone_start_pfn;
1186 unsigned long block_end_pfn;
1187
1188 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1189 for (; block_start_pfn < zone_end_pfn(zone);
1190 block_start_pfn = block_end_pfn,
1191 block_end_pfn += pageblock_nr_pages) {
1192
1193 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1194
1195 if (!__pageblock_pfn_to_page(block_start_pfn,
1196 block_end_pfn, zone))
1197 return;
1198 }
1199
1200 /* We confirm that there is no hole */
1201 zone->contiguous = true;
1202}
1203
1204void clear_zone_contiguous(struct zone *zone)
1205{
1206 zone->contiguous = false;
1207}
1208
7e18adb4 1209#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1210static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1211 unsigned long pfn, int nr_pages)
1212{
1213 int i;
1214
1215 if (!page)
1216 return;
1217
1218 /* Free a large naturally-aligned chunk if possible */
1219 if (nr_pages == MAX_ORDER_NR_PAGES &&
1220 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1221 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1222 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1223 return;
1224 }
1225
1226 for (i = 0; i < nr_pages; i++, page++, pfn++)
1227 __free_pages_boot_core(page, pfn, 0);
1228}
1229
d3cd131d
NS
1230/* Completion tracking for deferred_init_memmap() threads */
1231static atomic_t pgdat_init_n_undone __initdata;
1232static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1233
1234static inline void __init pgdat_init_report_one_done(void)
1235{
1236 if (atomic_dec_and_test(&pgdat_init_n_undone))
1237 complete(&pgdat_init_all_done_comp);
1238}
0e1cc95b 1239
7e18adb4 1240/* Initialise remaining memory on a node */
0e1cc95b 1241static int __init deferred_init_memmap(void *data)
7e18adb4 1242{
0e1cc95b
MG
1243 pg_data_t *pgdat = data;
1244 int nid = pgdat->node_id;
7e18adb4
MG
1245 struct mminit_pfnnid_cache nid_init_state = { };
1246 unsigned long start = jiffies;
1247 unsigned long nr_pages = 0;
1248 unsigned long walk_start, walk_end;
1249 int i, zid;
1250 struct zone *zone;
7e18adb4 1251 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1252 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1253
0e1cc95b 1254 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1255 pgdat_init_report_one_done();
0e1cc95b
MG
1256 return 0;
1257 }
1258
1259 /* Bind memory initialisation thread to a local node if possible */
1260 if (!cpumask_empty(cpumask))
1261 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1262
1263 /* Sanity check boundaries */
1264 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1265 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1266 pgdat->first_deferred_pfn = ULONG_MAX;
1267
1268 /* Only the highest zone is deferred so find it */
1269 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1270 zone = pgdat->node_zones + zid;
1271 if (first_init_pfn < zone_end_pfn(zone))
1272 break;
1273 }
1274
1275 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1276 unsigned long pfn, end_pfn;
54608c3f 1277 struct page *page = NULL;
a4de83dd
MG
1278 struct page *free_base_page = NULL;
1279 unsigned long free_base_pfn = 0;
1280 int nr_to_free = 0;
7e18adb4
MG
1281
1282 end_pfn = min(walk_end, zone_end_pfn(zone));
1283 pfn = first_init_pfn;
1284 if (pfn < walk_start)
1285 pfn = walk_start;
1286 if (pfn < zone->zone_start_pfn)
1287 pfn = zone->zone_start_pfn;
1288
1289 for (; pfn < end_pfn; pfn++) {
54608c3f 1290 if (!pfn_valid_within(pfn))
a4de83dd 1291 goto free_range;
7e18adb4 1292
54608c3f
MG
1293 /*
1294 * Ensure pfn_valid is checked every
1295 * MAX_ORDER_NR_PAGES for memory holes
1296 */
1297 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1298 if (!pfn_valid(pfn)) {
1299 page = NULL;
a4de83dd 1300 goto free_range;
54608c3f
MG
1301 }
1302 }
1303
1304 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1305 page = NULL;
a4de83dd 1306 goto free_range;
54608c3f
MG
1307 }
1308
1309 /* Minimise pfn page lookups and scheduler checks */
1310 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1311 page++;
1312 } else {
a4de83dd
MG
1313 nr_pages += nr_to_free;
1314 deferred_free_range(free_base_page,
1315 free_base_pfn, nr_to_free);
1316 free_base_page = NULL;
1317 free_base_pfn = nr_to_free = 0;
1318
54608c3f
MG
1319 page = pfn_to_page(pfn);
1320 cond_resched();
1321 }
7e18adb4
MG
1322
1323 if (page->flags) {
1324 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1325 goto free_range;
7e18adb4
MG
1326 }
1327
1328 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1329 if (!free_base_page) {
1330 free_base_page = page;
1331 free_base_pfn = pfn;
1332 nr_to_free = 0;
1333 }
1334 nr_to_free++;
1335
1336 /* Where possible, batch up pages for a single free */
1337 continue;
1338free_range:
1339 /* Free the current block of pages to allocator */
1340 nr_pages += nr_to_free;
1341 deferred_free_range(free_base_page, free_base_pfn,
1342 nr_to_free);
1343 free_base_page = NULL;
1344 free_base_pfn = nr_to_free = 0;
7e18adb4 1345 }
a4de83dd 1346
7e18adb4
MG
1347 first_init_pfn = max(end_pfn, first_init_pfn);
1348 }
1349
1350 /* Sanity check that the next zone really is unpopulated */
1351 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1352
0e1cc95b 1353 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1354 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1355
1356 pgdat_init_report_one_done();
0e1cc95b
MG
1357 return 0;
1358}
7cf91a98 1359#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1360
1361void __init page_alloc_init_late(void)
1362{
7cf91a98
JK
1363 struct zone *zone;
1364
1365#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1366 int nid;
1367
d3cd131d
NS
1368 /* There will be num_node_state(N_MEMORY) threads */
1369 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1370 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1371 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1372 }
1373
1374 /* Block until all are initialised */
d3cd131d 1375 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1376
1377 /* Reinit limits that are based on free pages after the kernel is up */
1378 files_maxfiles_init();
7cf91a98
JK
1379#endif
1380
1381 for_each_populated_zone(zone)
1382 set_zone_contiguous(zone);
7e18adb4 1383}
7e18adb4 1384
47118af0 1385#ifdef CONFIG_CMA
9cf510a5 1386/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1387void __init init_cma_reserved_pageblock(struct page *page)
1388{
1389 unsigned i = pageblock_nr_pages;
1390 struct page *p = page;
1391
1392 do {
1393 __ClearPageReserved(p);
1394 set_page_count(p, 0);
1395 } while (++p, --i);
1396
47118af0 1397 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1398
1399 if (pageblock_order >= MAX_ORDER) {
1400 i = pageblock_nr_pages;
1401 p = page;
1402 do {
1403 set_page_refcounted(p);
1404 __free_pages(p, MAX_ORDER - 1);
1405 p += MAX_ORDER_NR_PAGES;
1406 } while (i -= MAX_ORDER_NR_PAGES);
1407 } else {
1408 set_page_refcounted(page);
1409 __free_pages(page, pageblock_order);
1410 }
1411
3dcc0571 1412 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1413}
1414#endif
1da177e4
LT
1415
1416/*
1417 * The order of subdivision here is critical for the IO subsystem.
1418 * Please do not alter this order without good reasons and regression
1419 * testing. Specifically, as large blocks of memory are subdivided,
1420 * the order in which smaller blocks are delivered depends on the order
1421 * they're subdivided in this function. This is the primary factor
1422 * influencing the order in which pages are delivered to the IO
1423 * subsystem according to empirical testing, and this is also justified
1424 * by considering the behavior of a buddy system containing a single
1425 * large block of memory acted on by a series of small allocations.
1426 * This behavior is a critical factor in sglist merging's success.
1427 *
6d49e352 1428 * -- nyc
1da177e4 1429 */
085cc7d5 1430static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1431 int low, int high, struct free_area *area,
1432 int migratetype)
1da177e4
LT
1433{
1434 unsigned long size = 1 << high;
1435
1436 while (high > low) {
1437 area--;
1438 high--;
1439 size >>= 1;
309381fe 1440 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1441
2847cf95 1442 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1443 debug_guardpage_enabled() &&
2847cf95 1444 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1445 /*
1446 * Mark as guard pages (or page), that will allow to
1447 * merge back to allocator when buddy will be freed.
1448 * Corresponding page table entries will not be touched,
1449 * pages will stay not present in virtual address space
1450 */
2847cf95 1451 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1452 continue;
1453 }
b2a0ac88 1454 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1455 area->nr_free++;
1456 set_page_order(&page[size], high);
1457 }
1da177e4
LT
1458}
1459
1da177e4
LT
1460/*
1461 * This page is about to be returned from the page allocator
1462 */
2a7684a2 1463static inline int check_new_page(struct page *page)
1da177e4 1464{
d230dec1 1465 const char *bad_reason = NULL;
f0b791a3
DH
1466 unsigned long bad_flags = 0;
1467
53f9263b 1468 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1469 bad_reason = "nonzero mapcount";
1470 if (unlikely(page->mapping != NULL))
1471 bad_reason = "non-NULL mapping";
fe896d18 1472 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1473 bad_reason = "nonzero _count";
f4c18e6f
NH
1474 if (unlikely(page->flags & __PG_HWPOISON)) {
1475 bad_reason = "HWPoisoned (hardware-corrupted)";
1476 bad_flags = __PG_HWPOISON;
1477 }
f0b791a3
DH
1478 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1479 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1480 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1481 }
9edad6ea
JW
1482#ifdef CONFIG_MEMCG
1483 if (unlikely(page->mem_cgroup))
1484 bad_reason = "page still charged to cgroup";
1485#endif
f0b791a3
DH
1486 if (unlikely(bad_reason)) {
1487 bad_page(page, bad_reason, bad_flags);
689bcebf 1488 return 1;
8cc3b392 1489 }
2a7684a2
WF
1490 return 0;
1491}
1492
1414c7f4
LA
1493static inline bool free_pages_prezeroed(bool poisoned)
1494{
1495 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1496 page_poisoning_enabled() && poisoned;
1497}
1498
75379191
VB
1499static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1500 int alloc_flags)
2a7684a2
WF
1501{
1502 int i;
1414c7f4 1503 bool poisoned = true;
2a7684a2
WF
1504
1505 for (i = 0; i < (1 << order); i++) {
1506 struct page *p = page + i;
1507 if (unlikely(check_new_page(p)))
1508 return 1;
1414c7f4
LA
1509 if (poisoned)
1510 poisoned &= page_is_poisoned(p);
2a7684a2 1511 }
689bcebf 1512
4c21e2f2 1513 set_page_private(page, 0);
7835e98b 1514 set_page_refcounted(page);
cc102509
NP
1515
1516 arch_alloc_page(page, order);
1da177e4 1517 kernel_map_pages(page, 1 << order, 1);
8823b1db 1518 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1519 kasan_alloc_pages(page, order);
17cf4406 1520
1414c7f4 1521 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1522 for (i = 0; i < (1 << order); i++)
1523 clear_highpage(page + i);
17cf4406
NP
1524
1525 if (order && (gfp_flags & __GFP_COMP))
1526 prep_compound_page(page, order);
1527
48c96a36
JK
1528 set_page_owner(page, order, gfp_flags);
1529
75379191 1530 /*
2f064f34 1531 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1532 * allocate the page. The expectation is that the caller is taking
1533 * steps that will free more memory. The caller should avoid the page
1534 * being used for !PFMEMALLOC purposes.
1535 */
2f064f34
MH
1536 if (alloc_flags & ALLOC_NO_WATERMARKS)
1537 set_page_pfmemalloc(page);
1538 else
1539 clear_page_pfmemalloc(page);
75379191 1540
689bcebf 1541 return 0;
1da177e4
LT
1542}
1543
56fd56b8
MG
1544/*
1545 * Go through the free lists for the given migratetype and remove
1546 * the smallest available page from the freelists
1547 */
728ec980
MG
1548static inline
1549struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1550 int migratetype)
1551{
1552 unsigned int current_order;
b8af2941 1553 struct free_area *area;
56fd56b8
MG
1554 struct page *page;
1555
1556 /* Find a page of the appropriate size in the preferred list */
1557 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1558 area = &(zone->free_area[current_order]);
a16601c5 1559 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1560 struct page, lru);
a16601c5
GT
1561 if (!page)
1562 continue;
56fd56b8
MG
1563 list_del(&page->lru);
1564 rmv_page_order(page);
1565 area->nr_free--;
56fd56b8 1566 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1567 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1568 return page;
1569 }
1570
1571 return NULL;
1572}
1573
1574
b2a0ac88
MG
1575/*
1576 * This array describes the order lists are fallen back to when
1577 * the free lists for the desirable migrate type are depleted
1578 */
47118af0 1579static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1580 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1581 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1582 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1583#ifdef CONFIG_CMA
974a786e 1584 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1585#endif
194159fb 1586#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1587 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1588#endif
b2a0ac88
MG
1589};
1590
dc67647b
JK
1591#ifdef CONFIG_CMA
1592static struct page *__rmqueue_cma_fallback(struct zone *zone,
1593 unsigned int order)
1594{
1595 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1596}
1597#else
1598static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1599 unsigned int order) { return NULL; }
1600#endif
1601
c361be55
MG
1602/*
1603 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1604 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1605 * boundary. If alignment is required, use move_freepages_block()
1606 */
435b405c 1607int move_freepages(struct zone *zone,
b69a7288
AB
1608 struct page *start_page, struct page *end_page,
1609 int migratetype)
c361be55
MG
1610{
1611 struct page *page;
d00181b9 1612 unsigned int order;
d100313f 1613 int pages_moved = 0;
c361be55
MG
1614
1615#ifndef CONFIG_HOLES_IN_ZONE
1616 /*
1617 * page_zone is not safe to call in this context when
1618 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1619 * anyway as we check zone boundaries in move_freepages_block().
1620 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1621 * grouping pages by mobility
c361be55 1622 */
97ee4ba7 1623 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1624#endif
1625
1626 for (page = start_page; page <= end_page;) {
344c790e 1627 /* Make sure we are not inadvertently changing nodes */
309381fe 1628 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1629
c361be55
MG
1630 if (!pfn_valid_within(page_to_pfn(page))) {
1631 page++;
1632 continue;
1633 }
1634
1635 if (!PageBuddy(page)) {
1636 page++;
1637 continue;
1638 }
1639
1640 order = page_order(page);
84be48d8
KS
1641 list_move(&page->lru,
1642 &zone->free_area[order].free_list[migratetype]);
c361be55 1643 page += 1 << order;
d100313f 1644 pages_moved += 1 << order;
c361be55
MG
1645 }
1646
d100313f 1647 return pages_moved;
c361be55
MG
1648}
1649
ee6f509c 1650int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1651 int migratetype)
c361be55
MG
1652{
1653 unsigned long start_pfn, end_pfn;
1654 struct page *start_page, *end_page;
1655
1656 start_pfn = page_to_pfn(page);
d9c23400 1657 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1658 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1659 end_page = start_page + pageblock_nr_pages - 1;
1660 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1661
1662 /* Do not cross zone boundaries */
108bcc96 1663 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1664 start_page = page;
108bcc96 1665 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1666 return 0;
1667
1668 return move_freepages(zone, start_page, end_page, migratetype);
1669}
1670
2f66a68f
MG
1671static void change_pageblock_range(struct page *pageblock_page,
1672 int start_order, int migratetype)
1673{
1674 int nr_pageblocks = 1 << (start_order - pageblock_order);
1675
1676 while (nr_pageblocks--) {
1677 set_pageblock_migratetype(pageblock_page, migratetype);
1678 pageblock_page += pageblock_nr_pages;
1679 }
1680}
1681
fef903ef 1682/*
9c0415eb
VB
1683 * When we are falling back to another migratetype during allocation, try to
1684 * steal extra free pages from the same pageblocks to satisfy further
1685 * allocations, instead of polluting multiple pageblocks.
1686 *
1687 * If we are stealing a relatively large buddy page, it is likely there will
1688 * be more free pages in the pageblock, so try to steal them all. For
1689 * reclaimable and unmovable allocations, we steal regardless of page size,
1690 * as fragmentation caused by those allocations polluting movable pageblocks
1691 * is worse than movable allocations stealing from unmovable and reclaimable
1692 * pageblocks.
fef903ef 1693 */
4eb7dce6
JK
1694static bool can_steal_fallback(unsigned int order, int start_mt)
1695{
1696 /*
1697 * Leaving this order check is intended, although there is
1698 * relaxed order check in next check. The reason is that
1699 * we can actually steal whole pageblock if this condition met,
1700 * but, below check doesn't guarantee it and that is just heuristic
1701 * so could be changed anytime.
1702 */
1703 if (order >= pageblock_order)
1704 return true;
1705
1706 if (order >= pageblock_order / 2 ||
1707 start_mt == MIGRATE_RECLAIMABLE ||
1708 start_mt == MIGRATE_UNMOVABLE ||
1709 page_group_by_mobility_disabled)
1710 return true;
1711
1712 return false;
1713}
1714
1715/*
1716 * This function implements actual steal behaviour. If order is large enough,
1717 * we can steal whole pageblock. If not, we first move freepages in this
1718 * pageblock and check whether half of pages are moved or not. If half of
1719 * pages are moved, we can change migratetype of pageblock and permanently
1720 * use it's pages as requested migratetype in the future.
1721 */
1722static void steal_suitable_fallback(struct zone *zone, struct page *page,
1723 int start_type)
fef903ef 1724{
d00181b9 1725 unsigned int current_order = page_order(page);
4eb7dce6 1726 int pages;
fef903ef 1727
fef903ef
SB
1728 /* Take ownership for orders >= pageblock_order */
1729 if (current_order >= pageblock_order) {
1730 change_pageblock_range(page, current_order, start_type);
3a1086fb 1731 return;
fef903ef
SB
1732 }
1733
4eb7dce6 1734 pages = move_freepages_block(zone, page, start_type);
fef903ef 1735
4eb7dce6
JK
1736 /* Claim the whole block if over half of it is free */
1737 if (pages >= (1 << (pageblock_order-1)) ||
1738 page_group_by_mobility_disabled)
1739 set_pageblock_migratetype(page, start_type);
1740}
1741
2149cdae
JK
1742/*
1743 * Check whether there is a suitable fallback freepage with requested order.
1744 * If only_stealable is true, this function returns fallback_mt only if
1745 * we can steal other freepages all together. This would help to reduce
1746 * fragmentation due to mixed migratetype pages in one pageblock.
1747 */
1748int find_suitable_fallback(struct free_area *area, unsigned int order,
1749 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1750{
1751 int i;
1752 int fallback_mt;
1753
1754 if (area->nr_free == 0)
1755 return -1;
1756
1757 *can_steal = false;
1758 for (i = 0;; i++) {
1759 fallback_mt = fallbacks[migratetype][i];
974a786e 1760 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1761 break;
1762
1763 if (list_empty(&area->free_list[fallback_mt]))
1764 continue;
fef903ef 1765
4eb7dce6
JK
1766 if (can_steal_fallback(order, migratetype))
1767 *can_steal = true;
1768
2149cdae
JK
1769 if (!only_stealable)
1770 return fallback_mt;
1771
1772 if (*can_steal)
1773 return fallback_mt;
fef903ef 1774 }
4eb7dce6
JK
1775
1776 return -1;
fef903ef
SB
1777}
1778
0aaa29a5
MG
1779/*
1780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1781 * there are no empty page blocks that contain a page with a suitable order
1782 */
1783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1784 unsigned int alloc_order)
1785{
1786 int mt;
1787 unsigned long max_managed, flags;
1788
1789 /*
1790 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1791 * Check is race-prone but harmless.
1792 */
1793 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1794 if (zone->nr_reserved_highatomic >= max_managed)
1795 return;
1796
1797 spin_lock_irqsave(&zone->lock, flags);
1798
1799 /* Recheck the nr_reserved_highatomic limit under the lock */
1800 if (zone->nr_reserved_highatomic >= max_managed)
1801 goto out_unlock;
1802
1803 /* Yoink! */
1804 mt = get_pageblock_migratetype(page);
1805 if (mt != MIGRATE_HIGHATOMIC &&
1806 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1807 zone->nr_reserved_highatomic += pageblock_nr_pages;
1808 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1809 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1810 }
1811
1812out_unlock:
1813 spin_unlock_irqrestore(&zone->lock, flags);
1814}
1815
1816/*
1817 * Used when an allocation is about to fail under memory pressure. This
1818 * potentially hurts the reliability of high-order allocations when under
1819 * intense memory pressure but failed atomic allocations should be easier
1820 * to recover from than an OOM.
1821 */
1822static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1823{
1824 struct zonelist *zonelist = ac->zonelist;
1825 unsigned long flags;
1826 struct zoneref *z;
1827 struct zone *zone;
1828 struct page *page;
1829 int order;
1830
1831 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1832 ac->nodemask) {
1833 /* Preserve at least one pageblock */
1834 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1835 continue;
1836
1837 spin_lock_irqsave(&zone->lock, flags);
1838 for (order = 0; order < MAX_ORDER; order++) {
1839 struct free_area *area = &(zone->free_area[order]);
1840
a16601c5
GT
1841 page = list_first_entry_or_null(
1842 &area->free_list[MIGRATE_HIGHATOMIC],
1843 struct page, lru);
1844 if (!page)
0aaa29a5
MG
1845 continue;
1846
0aaa29a5
MG
1847 /*
1848 * It should never happen but changes to locking could
1849 * inadvertently allow a per-cpu drain to add pages
1850 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1851 * and watch for underflows.
1852 */
1853 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1854 zone->nr_reserved_highatomic);
1855
1856 /*
1857 * Convert to ac->migratetype and avoid the normal
1858 * pageblock stealing heuristics. Minimally, the caller
1859 * is doing the work and needs the pages. More
1860 * importantly, if the block was always converted to
1861 * MIGRATE_UNMOVABLE or another type then the number
1862 * of pageblocks that cannot be completely freed
1863 * may increase.
1864 */
1865 set_pageblock_migratetype(page, ac->migratetype);
1866 move_freepages_block(zone, page, ac->migratetype);
1867 spin_unlock_irqrestore(&zone->lock, flags);
1868 return;
1869 }
1870 spin_unlock_irqrestore(&zone->lock, flags);
1871 }
1872}
1873
b2a0ac88 1874/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1875static inline struct page *
7aeb09f9 1876__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1877{
b8af2941 1878 struct free_area *area;
7aeb09f9 1879 unsigned int current_order;
b2a0ac88 1880 struct page *page;
4eb7dce6
JK
1881 int fallback_mt;
1882 bool can_steal;
b2a0ac88
MG
1883
1884 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1885 for (current_order = MAX_ORDER-1;
1886 current_order >= order && current_order <= MAX_ORDER-1;
1887 --current_order) {
4eb7dce6
JK
1888 area = &(zone->free_area[current_order]);
1889 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1890 start_migratetype, false, &can_steal);
4eb7dce6
JK
1891 if (fallback_mt == -1)
1892 continue;
b2a0ac88 1893
a16601c5 1894 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1895 struct page, lru);
1896 if (can_steal)
1897 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1898
4eb7dce6
JK
1899 /* Remove the page from the freelists */
1900 area->nr_free--;
1901 list_del(&page->lru);
1902 rmv_page_order(page);
3a1086fb 1903
4eb7dce6
JK
1904 expand(zone, page, order, current_order, area,
1905 start_migratetype);
1906 /*
bb14c2c7 1907 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1908 * migratetype depending on the decisions in
bb14c2c7
VB
1909 * find_suitable_fallback(). This is OK as long as it does not
1910 * differ for MIGRATE_CMA pageblocks. Those can be used as
1911 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1912 */
bb14c2c7 1913 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1914
4eb7dce6
JK
1915 trace_mm_page_alloc_extfrag(page, order, current_order,
1916 start_migratetype, fallback_mt);
e0fff1bd 1917
4eb7dce6 1918 return page;
b2a0ac88
MG
1919 }
1920
728ec980 1921 return NULL;
b2a0ac88
MG
1922}
1923
56fd56b8 1924/*
1da177e4
LT
1925 * Do the hard work of removing an element from the buddy allocator.
1926 * Call me with the zone->lock already held.
1927 */
b2a0ac88 1928static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1929 int migratetype)
1da177e4 1930{
1da177e4
LT
1931 struct page *page;
1932
56fd56b8 1933 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1934 if (unlikely(!page)) {
dc67647b
JK
1935 if (migratetype == MIGRATE_MOVABLE)
1936 page = __rmqueue_cma_fallback(zone, order);
1937
1938 if (!page)
1939 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1940 }
1941
0d3d062a 1942 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1943 return page;
1da177e4
LT
1944}
1945
5f63b720 1946/*
1da177e4
LT
1947 * Obtain a specified number of elements from the buddy allocator, all under
1948 * a single hold of the lock, for efficiency. Add them to the supplied list.
1949 * Returns the number of new pages which were placed at *list.
1950 */
5f63b720 1951static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1952 unsigned long count, struct list_head *list,
b745bc85 1953 int migratetype, bool cold)
1da177e4 1954{
5bcc9f86 1955 int i;
5f63b720 1956
c54ad30c 1957 spin_lock(&zone->lock);
1da177e4 1958 for (i = 0; i < count; ++i) {
6ac0206b 1959 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1960 if (unlikely(page == NULL))
1da177e4 1961 break;
81eabcbe
MG
1962
1963 /*
1964 * Split buddy pages returned by expand() are received here
1965 * in physical page order. The page is added to the callers and
1966 * list and the list head then moves forward. From the callers
1967 * perspective, the linked list is ordered by page number in
1968 * some conditions. This is useful for IO devices that can
1969 * merge IO requests if the physical pages are ordered
1970 * properly.
1971 */
b745bc85 1972 if (likely(!cold))
e084b2d9
MG
1973 list_add(&page->lru, list);
1974 else
1975 list_add_tail(&page->lru, list);
81eabcbe 1976 list = &page->lru;
bb14c2c7 1977 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1978 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1979 -(1 << order));
1da177e4 1980 }
f2260e6b 1981 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1982 spin_unlock(&zone->lock);
085cc7d5 1983 return i;
1da177e4
LT
1984}
1985
4ae7c039 1986#ifdef CONFIG_NUMA
8fce4d8e 1987/*
4037d452
CL
1988 * Called from the vmstat counter updater to drain pagesets of this
1989 * currently executing processor on remote nodes after they have
1990 * expired.
1991 *
879336c3
CL
1992 * Note that this function must be called with the thread pinned to
1993 * a single processor.
8fce4d8e 1994 */
4037d452 1995void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1996{
4ae7c039 1997 unsigned long flags;
7be12fc9 1998 int to_drain, batch;
4ae7c039 1999
4037d452 2000 local_irq_save(flags);
4db0c3c2 2001 batch = READ_ONCE(pcp->batch);
7be12fc9 2002 to_drain = min(pcp->count, batch);
2a13515c
KM
2003 if (to_drain > 0) {
2004 free_pcppages_bulk(zone, to_drain, pcp);
2005 pcp->count -= to_drain;
2006 }
4037d452 2007 local_irq_restore(flags);
4ae7c039
CL
2008}
2009#endif
2010
9f8f2172 2011/*
93481ff0 2012 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2013 *
2014 * The processor must either be the current processor and the
2015 * thread pinned to the current processor or a processor that
2016 * is not online.
2017 */
93481ff0 2018static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2019{
c54ad30c 2020 unsigned long flags;
93481ff0
VB
2021 struct per_cpu_pageset *pset;
2022 struct per_cpu_pages *pcp;
1da177e4 2023
93481ff0
VB
2024 local_irq_save(flags);
2025 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2026
93481ff0
VB
2027 pcp = &pset->pcp;
2028 if (pcp->count) {
2029 free_pcppages_bulk(zone, pcp->count, pcp);
2030 pcp->count = 0;
2031 }
2032 local_irq_restore(flags);
2033}
3dfa5721 2034
93481ff0
VB
2035/*
2036 * Drain pcplists of all zones on the indicated processor.
2037 *
2038 * The processor must either be the current processor and the
2039 * thread pinned to the current processor or a processor that
2040 * is not online.
2041 */
2042static void drain_pages(unsigned int cpu)
2043{
2044 struct zone *zone;
2045
2046 for_each_populated_zone(zone) {
2047 drain_pages_zone(cpu, zone);
1da177e4
LT
2048 }
2049}
1da177e4 2050
9f8f2172
CL
2051/*
2052 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2053 *
2054 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2055 * the single zone's pages.
9f8f2172 2056 */
93481ff0 2057void drain_local_pages(struct zone *zone)
9f8f2172 2058{
93481ff0
VB
2059 int cpu = smp_processor_id();
2060
2061 if (zone)
2062 drain_pages_zone(cpu, zone);
2063 else
2064 drain_pages(cpu);
9f8f2172
CL
2065}
2066
2067/*
74046494
GBY
2068 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2069 *
93481ff0
VB
2070 * When zone parameter is non-NULL, spill just the single zone's pages.
2071 *
74046494
GBY
2072 * Note that this code is protected against sending an IPI to an offline
2073 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2074 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2075 * nothing keeps CPUs from showing up after we populated the cpumask and
2076 * before the call to on_each_cpu_mask().
9f8f2172 2077 */
93481ff0 2078void drain_all_pages(struct zone *zone)
9f8f2172 2079{
74046494 2080 int cpu;
74046494
GBY
2081
2082 /*
2083 * Allocate in the BSS so we wont require allocation in
2084 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2085 */
2086 static cpumask_t cpus_with_pcps;
2087
2088 /*
2089 * We don't care about racing with CPU hotplug event
2090 * as offline notification will cause the notified
2091 * cpu to drain that CPU pcps and on_each_cpu_mask
2092 * disables preemption as part of its processing
2093 */
2094 for_each_online_cpu(cpu) {
93481ff0
VB
2095 struct per_cpu_pageset *pcp;
2096 struct zone *z;
74046494 2097 bool has_pcps = false;
93481ff0
VB
2098
2099 if (zone) {
74046494 2100 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2101 if (pcp->pcp.count)
74046494 2102 has_pcps = true;
93481ff0
VB
2103 } else {
2104 for_each_populated_zone(z) {
2105 pcp = per_cpu_ptr(z->pageset, cpu);
2106 if (pcp->pcp.count) {
2107 has_pcps = true;
2108 break;
2109 }
74046494
GBY
2110 }
2111 }
93481ff0 2112
74046494
GBY
2113 if (has_pcps)
2114 cpumask_set_cpu(cpu, &cpus_with_pcps);
2115 else
2116 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2117 }
93481ff0
VB
2118 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2119 zone, 1);
9f8f2172
CL
2120}
2121
296699de 2122#ifdef CONFIG_HIBERNATION
1da177e4
LT
2123
2124void mark_free_pages(struct zone *zone)
2125{
f623f0db
RW
2126 unsigned long pfn, max_zone_pfn;
2127 unsigned long flags;
7aeb09f9 2128 unsigned int order, t;
86760a2c 2129 struct page *page;
1da177e4 2130
8080fc03 2131 if (zone_is_empty(zone))
1da177e4
LT
2132 return;
2133
2134 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2135
108bcc96 2136 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2137 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2138 if (pfn_valid(pfn)) {
86760a2c 2139 page = pfn_to_page(pfn);
7be98234
RW
2140 if (!swsusp_page_is_forbidden(page))
2141 swsusp_unset_page_free(page);
f623f0db 2142 }
1da177e4 2143
b2a0ac88 2144 for_each_migratetype_order(order, t) {
86760a2c
GT
2145 list_for_each_entry(page,
2146 &zone->free_area[order].free_list[t], lru) {
f623f0db 2147 unsigned long i;
1da177e4 2148
86760a2c 2149 pfn = page_to_pfn(page);
f623f0db 2150 for (i = 0; i < (1UL << order); i++)
7be98234 2151 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2152 }
b2a0ac88 2153 }
1da177e4
LT
2154 spin_unlock_irqrestore(&zone->lock, flags);
2155}
e2c55dc8 2156#endif /* CONFIG_PM */
1da177e4 2157
1da177e4
LT
2158/*
2159 * Free a 0-order page
b745bc85 2160 * cold == true ? free a cold page : free a hot page
1da177e4 2161 */
b745bc85 2162void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2163{
2164 struct zone *zone = page_zone(page);
2165 struct per_cpu_pages *pcp;
2166 unsigned long flags;
dc4b0caf 2167 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2168 int migratetype;
1da177e4 2169
ec95f53a 2170 if (!free_pages_prepare(page, 0))
689bcebf
HD
2171 return;
2172
dc4b0caf 2173 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2174 set_pcppage_migratetype(page, migratetype);
1da177e4 2175 local_irq_save(flags);
f8891e5e 2176 __count_vm_event(PGFREE);
da456f14 2177
5f8dcc21
MG
2178 /*
2179 * We only track unmovable, reclaimable and movable on pcp lists.
2180 * Free ISOLATE pages back to the allocator because they are being
2181 * offlined but treat RESERVE as movable pages so we can get those
2182 * areas back if necessary. Otherwise, we may have to free
2183 * excessively into the page allocator
2184 */
2185 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2186 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2187 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2188 goto out;
2189 }
2190 migratetype = MIGRATE_MOVABLE;
2191 }
2192
99dcc3e5 2193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2194 if (!cold)
5f8dcc21 2195 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2196 else
2197 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2198 pcp->count++;
48db57f8 2199 if (pcp->count >= pcp->high) {
4db0c3c2 2200 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2201 free_pcppages_bulk(zone, batch, pcp);
2202 pcp->count -= batch;
48db57f8 2203 }
5f8dcc21
MG
2204
2205out:
1da177e4 2206 local_irq_restore(flags);
1da177e4
LT
2207}
2208
cc59850e
KK
2209/*
2210 * Free a list of 0-order pages
2211 */
b745bc85 2212void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2213{
2214 struct page *page, *next;
2215
2216 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2217 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2218 free_hot_cold_page(page, cold);
2219 }
2220}
2221
8dfcc9ba
NP
2222/*
2223 * split_page takes a non-compound higher-order page, and splits it into
2224 * n (1<<order) sub-pages: page[0..n]
2225 * Each sub-page must be freed individually.
2226 *
2227 * Note: this is probably too low level an operation for use in drivers.
2228 * Please consult with lkml before using this in your driver.
2229 */
2230void split_page(struct page *page, unsigned int order)
2231{
2232 int i;
e2cfc911 2233 gfp_t gfp_mask;
8dfcc9ba 2234
309381fe
SL
2235 VM_BUG_ON_PAGE(PageCompound(page), page);
2236 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2237
2238#ifdef CONFIG_KMEMCHECK
2239 /*
2240 * Split shadow pages too, because free(page[0]) would
2241 * otherwise free the whole shadow.
2242 */
2243 if (kmemcheck_page_is_tracked(page))
2244 split_page(virt_to_page(page[0].shadow), order);
2245#endif
2246
e2cfc911
JK
2247 gfp_mask = get_page_owner_gfp(page);
2248 set_page_owner(page, 0, gfp_mask);
48c96a36 2249 for (i = 1; i < (1 << order); i++) {
7835e98b 2250 set_page_refcounted(page + i);
e2cfc911 2251 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2252 }
8dfcc9ba 2253}
5853ff23 2254EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2255
3c605096 2256int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2257{
748446bb
MG
2258 unsigned long watermark;
2259 struct zone *zone;
2139cbe6 2260 int mt;
748446bb
MG
2261
2262 BUG_ON(!PageBuddy(page));
2263
2264 zone = page_zone(page);
2e30abd1 2265 mt = get_pageblock_migratetype(page);
748446bb 2266
194159fb 2267 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2268 /* Obey watermarks as if the page was being allocated */
2269 watermark = low_wmark_pages(zone) + (1 << order);
2270 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2271 return 0;
2272
8fb74b9f 2273 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2274 }
748446bb
MG
2275
2276 /* Remove page from free list */
2277 list_del(&page->lru);
2278 zone->free_area[order].nr_free--;
2279 rmv_page_order(page);
2139cbe6 2280
e2cfc911 2281 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2282
8fb74b9f 2283 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2284 if (order >= pageblock_order - 1) {
2285 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2286 for (; page < endpage; page += pageblock_nr_pages) {
2287 int mt = get_pageblock_migratetype(page);
194159fb 2288 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2289 set_pageblock_migratetype(page,
2290 MIGRATE_MOVABLE);
2291 }
748446bb
MG
2292 }
2293
f3a14ced 2294
8fb74b9f 2295 return 1UL << order;
1fb3f8ca
MG
2296}
2297
2298/*
2299 * Similar to split_page except the page is already free. As this is only
2300 * being used for migration, the migratetype of the block also changes.
2301 * As this is called with interrupts disabled, the caller is responsible
2302 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2303 * are enabled.
2304 *
2305 * Note: this is probably too low level an operation for use in drivers.
2306 * Please consult with lkml before using this in your driver.
2307 */
2308int split_free_page(struct page *page)
2309{
2310 unsigned int order;
2311 int nr_pages;
2312
1fb3f8ca
MG
2313 order = page_order(page);
2314
8fb74b9f 2315 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2316 if (!nr_pages)
2317 return 0;
2318
2319 /* Split into individual pages */
2320 set_page_refcounted(page);
2321 split_page(page, order);
2322 return nr_pages;
748446bb
MG
2323}
2324
1da177e4 2325/*
75379191 2326 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2327 */
0a15c3e9
MG
2328static inline
2329struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2330 struct zone *zone, unsigned int order,
0aaa29a5 2331 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2332{
2333 unsigned long flags;
689bcebf 2334 struct page *page;
b745bc85 2335 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2336
48db57f8 2337 if (likely(order == 0)) {
1da177e4 2338 struct per_cpu_pages *pcp;
5f8dcc21 2339 struct list_head *list;
1da177e4 2340
1da177e4 2341 local_irq_save(flags);
99dcc3e5
CL
2342 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2343 list = &pcp->lists[migratetype];
5f8dcc21 2344 if (list_empty(list)) {
535131e6 2345 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2346 pcp->batch, list,
e084b2d9 2347 migratetype, cold);
5f8dcc21 2348 if (unlikely(list_empty(list)))
6fb332fa 2349 goto failed;
535131e6 2350 }
b92a6edd 2351
5f8dcc21 2352 if (cold)
a16601c5 2353 page = list_last_entry(list, struct page, lru);
5f8dcc21 2354 else
a16601c5 2355 page = list_first_entry(list, struct page, lru);
5f8dcc21 2356
b92a6edd
MG
2357 list_del(&page->lru);
2358 pcp->count--;
7fb1d9fc 2359 } else {
0f352e53
MH
2360 /*
2361 * We most definitely don't want callers attempting to
2362 * allocate greater than order-1 page units with __GFP_NOFAIL.
2363 */
2364 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2365 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2366
2367 page = NULL;
2368 if (alloc_flags & ALLOC_HARDER) {
2369 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2370 if (page)
2371 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2372 }
2373 if (!page)
6ac0206b 2374 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2375 spin_unlock(&zone->lock);
2376 if (!page)
2377 goto failed;
d1ce749a 2378 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2379 get_pcppage_migratetype(page));
1da177e4
LT
2380 }
2381
3a025760 2382 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2383 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2384 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2385 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2386
f8891e5e 2387 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2388 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2389 local_irq_restore(flags);
1da177e4 2390
309381fe 2391 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2392 return page;
a74609fa
NP
2393
2394failed:
2395 local_irq_restore(flags);
a74609fa 2396 return NULL;
1da177e4
LT
2397}
2398
933e312e
AM
2399#ifdef CONFIG_FAIL_PAGE_ALLOC
2400
b2588c4b 2401static struct {
933e312e
AM
2402 struct fault_attr attr;
2403
621a5f7a 2404 bool ignore_gfp_highmem;
71baba4b 2405 bool ignore_gfp_reclaim;
54114994 2406 u32 min_order;
933e312e
AM
2407} fail_page_alloc = {
2408 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2409 .ignore_gfp_reclaim = true,
621a5f7a 2410 .ignore_gfp_highmem = true,
54114994 2411 .min_order = 1,
933e312e
AM
2412};
2413
2414static int __init setup_fail_page_alloc(char *str)
2415{
2416 return setup_fault_attr(&fail_page_alloc.attr, str);
2417}
2418__setup("fail_page_alloc=", setup_fail_page_alloc);
2419
deaf386e 2420static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2421{
54114994 2422 if (order < fail_page_alloc.min_order)
deaf386e 2423 return false;
933e312e 2424 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2425 return false;
933e312e 2426 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2427 return false;
71baba4b
MG
2428 if (fail_page_alloc.ignore_gfp_reclaim &&
2429 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2430 return false;
933e312e
AM
2431
2432 return should_fail(&fail_page_alloc.attr, 1 << order);
2433}
2434
2435#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2436
2437static int __init fail_page_alloc_debugfs(void)
2438{
f4ae40a6 2439 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2440 struct dentry *dir;
933e312e 2441
dd48c085
AM
2442 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2443 &fail_page_alloc.attr);
2444 if (IS_ERR(dir))
2445 return PTR_ERR(dir);
933e312e 2446
b2588c4b 2447 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2448 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2449 goto fail;
2450 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2451 &fail_page_alloc.ignore_gfp_highmem))
2452 goto fail;
2453 if (!debugfs_create_u32("min-order", mode, dir,
2454 &fail_page_alloc.min_order))
2455 goto fail;
2456
2457 return 0;
2458fail:
dd48c085 2459 debugfs_remove_recursive(dir);
933e312e 2460
b2588c4b 2461 return -ENOMEM;
933e312e
AM
2462}
2463
2464late_initcall(fail_page_alloc_debugfs);
2465
2466#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2467
2468#else /* CONFIG_FAIL_PAGE_ALLOC */
2469
deaf386e 2470static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2471{
deaf386e 2472 return false;
933e312e
AM
2473}
2474
2475#endif /* CONFIG_FAIL_PAGE_ALLOC */
2476
1da177e4 2477/*
97a16fc8
MG
2478 * Return true if free base pages are above 'mark'. For high-order checks it
2479 * will return true of the order-0 watermark is reached and there is at least
2480 * one free page of a suitable size. Checking now avoids taking the zone lock
2481 * to check in the allocation paths if no pages are free.
1da177e4 2482 */
7aeb09f9
MG
2483static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2484 unsigned long mark, int classzone_idx, int alloc_flags,
2485 long free_pages)
1da177e4 2486{
d23ad423 2487 long min = mark;
1da177e4 2488 int o;
97a16fc8 2489 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2490
0aaa29a5 2491 /* free_pages may go negative - that's OK */
df0a6daa 2492 free_pages -= (1 << order) - 1;
0aaa29a5 2493
7fb1d9fc 2494 if (alloc_flags & ALLOC_HIGH)
1da177e4 2495 min -= min / 2;
0aaa29a5
MG
2496
2497 /*
2498 * If the caller does not have rights to ALLOC_HARDER then subtract
2499 * the high-atomic reserves. This will over-estimate the size of the
2500 * atomic reserve but it avoids a search.
2501 */
97a16fc8 2502 if (likely(!alloc_harder))
0aaa29a5
MG
2503 free_pages -= z->nr_reserved_highatomic;
2504 else
1da177e4 2505 min -= min / 4;
e2b19197 2506
d95ea5d1
BZ
2507#ifdef CONFIG_CMA
2508 /* If allocation can't use CMA areas don't use free CMA pages */
2509 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2510 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2511#endif
026b0814 2512
97a16fc8
MG
2513 /*
2514 * Check watermarks for an order-0 allocation request. If these
2515 * are not met, then a high-order request also cannot go ahead
2516 * even if a suitable page happened to be free.
2517 */
2518 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2519 return false;
1da177e4 2520
97a16fc8
MG
2521 /* If this is an order-0 request then the watermark is fine */
2522 if (!order)
2523 return true;
2524
2525 /* For a high-order request, check at least one suitable page is free */
2526 for (o = order; o < MAX_ORDER; o++) {
2527 struct free_area *area = &z->free_area[o];
2528 int mt;
2529
2530 if (!area->nr_free)
2531 continue;
2532
2533 if (alloc_harder)
2534 return true;
1da177e4 2535
97a16fc8
MG
2536 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2537 if (!list_empty(&area->free_list[mt]))
2538 return true;
2539 }
2540
2541#ifdef CONFIG_CMA
2542 if ((alloc_flags & ALLOC_CMA) &&
2543 !list_empty(&area->free_list[MIGRATE_CMA])) {
2544 return true;
2545 }
2546#endif
1da177e4 2547 }
97a16fc8 2548 return false;
88f5acf8
MG
2549}
2550
7aeb09f9 2551bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2552 int classzone_idx, int alloc_flags)
2553{
2554 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2555 zone_page_state(z, NR_FREE_PAGES));
2556}
2557
7aeb09f9 2558bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2559 unsigned long mark, int classzone_idx)
88f5acf8
MG
2560{
2561 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2562
2563 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2564 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2565
e2b19197 2566 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2567 free_pages);
1da177e4
LT
2568}
2569
9276b1bc 2570#ifdef CONFIG_NUMA
81c0a2bb
JW
2571static bool zone_local(struct zone *local_zone, struct zone *zone)
2572{
fff4068c 2573 return local_zone->node == zone->node;
81c0a2bb
JW
2574}
2575
957f822a
DR
2576static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2577{
5f7a75ac
MG
2578 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2579 RECLAIM_DISTANCE;
957f822a 2580}
9276b1bc 2581#else /* CONFIG_NUMA */
81c0a2bb
JW
2582static bool zone_local(struct zone *local_zone, struct zone *zone)
2583{
2584 return true;
2585}
2586
957f822a
DR
2587static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2588{
2589 return true;
2590}
9276b1bc
PJ
2591#endif /* CONFIG_NUMA */
2592
4ffeaf35
MG
2593static void reset_alloc_batches(struct zone *preferred_zone)
2594{
2595 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2596
2597 do {
2598 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2599 high_wmark_pages(zone) - low_wmark_pages(zone) -
2600 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2601 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2602 } while (zone++ != preferred_zone);
2603}
2604
7fb1d9fc 2605/*
0798e519 2606 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2607 * a page.
2608 */
2609static struct page *
a9263751
VB
2610get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2611 const struct alloc_context *ac)
753ee728 2612{
a9263751 2613 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2614 struct zoneref *z;
7fb1d9fc 2615 struct page *page = NULL;
5117f45d 2616 struct zone *zone;
4ffeaf35
MG
2617 int nr_fair_skipped = 0;
2618 bool zonelist_rescan;
54a6eb5c 2619
9276b1bc 2620zonelist_scan:
4ffeaf35
MG
2621 zonelist_rescan = false;
2622
7fb1d9fc 2623 /*
9276b1bc 2624 * Scan zonelist, looking for a zone with enough free.
344736f2 2625 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2626 */
a9263751
VB
2627 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2628 ac->nodemask) {
e085dbc5
JW
2629 unsigned long mark;
2630
664eedde
MG
2631 if (cpusets_enabled() &&
2632 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2633 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2634 continue;
81c0a2bb
JW
2635 /*
2636 * Distribute pages in proportion to the individual
2637 * zone size to ensure fair page aging. The zone a
2638 * page was allocated in should have no effect on the
2639 * time the page has in memory before being reclaimed.
81c0a2bb 2640 */
3a025760 2641 if (alloc_flags & ALLOC_FAIR) {
a9263751 2642 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2643 break;
57054651 2644 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2645 nr_fair_skipped++;
3a025760 2646 continue;
4ffeaf35 2647 }
81c0a2bb 2648 }
a756cf59
JW
2649 /*
2650 * When allocating a page cache page for writing, we
2651 * want to get it from a zone that is within its dirty
2652 * limit, such that no single zone holds more than its
2653 * proportional share of globally allowed dirty pages.
2654 * The dirty limits take into account the zone's
2655 * lowmem reserves and high watermark so that kswapd
2656 * should be able to balance it without having to
2657 * write pages from its LRU list.
2658 *
2659 * This may look like it could increase pressure on
2660 * lower zones by failing allocations in higher zones
2661 * before they are full. But the pages that do spill
2662 * over are limited as the lower zones are protected
2663 * by this very same mechanism. It should not become
2664 * a practical burden to them.
2665 *
2666 * XXX: For now, allow allocations to potentially
2667 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2668 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2669 * which is important when on a NUMA setup the allowed
2670 * zones are together not big enough to reach the
2671 * global limit. The proper fix for these situations
2672 * will require awareness of zones in the
2673 * dirty-throttling and the flusher threads.
2674 */
c9ab0c4f 2675 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2676 continue;
7fb1d9fc 2677
e085dbc5
JW
2678 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2679 if (!zone_watermark_ok(zone, order, mark,
a9263751 2680 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2681 int ret;
2682
5dab2911
MG
2683 /* Checked here to keep the fast path fast */
2684 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2685 if (alloc_flags & ALLOC_NO_WATERMARKS)
2686 goto try_this_zone;
2687
957f822a 2688 if (zone_reclaim_mode == 0 ||
a9263751 2689 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2690 continue;
2691
fa5e084e
MG
2692 ret = zone_reclaim(zone, gfp_mask, order);
2693 switch (ret) {
2694 case ZONE_RECLAIM_NOSCAN:
2695 /* did not scan */
cd38b115 2696 continue;
fa5e084e
MG
2697 case ZONE_RECLAIM_FULL:
2698 /* scanned but unreclaimable */
cd38b115 2699 continue;
fa5e084e
MG
2700 default:
2701 /* did we reclaim enough */
fed2719e 2702 if (zone_watermark_ok(zone, order, mark,
a9263751 2703 ac->classzone_idx, alloc_flags))
fed2719e
MG
2704 goto try_this_zone;
2705
fed2719e 2706 continue;
0798e519 2707 }
7fb1d9fc
RS
2708 }
2709
fa5e084e 2710try_this_zone:
a9263751 2711 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2712 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2713 if (page) {
2714 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2715 goto try_this_zone;
0aaa29a5
MG
2716
2717 /*
2718 * If this is a high-order atomic allocation then check
2719 * if the pageblock should be reserved for the future
2720 */
2721 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2722 reserve_highatomic_pageblock(page, zone, order);
2723
75379191
VB
2724 return page;
2725 }
54a6eb5c 2726 }
9276b1bc 2727
4ffeaf35
MG
2728 /*
2729 * The first pass makes sure allocations are spread fairly within the
2730 * local node. However, the local node might have free pages left
2731 * after the fairness batches are exhausted, and remote zones haven't
2732 * even been considered yet. Try once more without fairness, and
2733 * include remote zones now, before entering the slowpath and waking
2734 * kswapd: prefer spilling to a remote zone over swapping locally.
2735 */
2736 if (alloc_flags & ALLOC_FAIR) {
2737 alloc_flags &= ~ALLOC_FAIR;
2738 if (nr_fair_skipped) {
2739 zonelist_rescan = true;
a9263751 2740 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2741 }
2742 if (nr_online_nodes > 1)
2743 zonelist_rescan = true;
2744 }
2745
4ffeaf35
MG
2746 if (zonelist_rescan)
2747 goto zonelist_scan;
2748
2749 return NULL;
753ee728
MH
2750}
2751
29423e77
DR
2752/*
2753 * Large machines with many possible nodes should not always dump per-node
2754 * meminfo in irq context.
2755 */
2756static inline bool should_suppress_show_mem(void)
2757{
2758 bool ret = false;
2759
2760#if NODES_SHIFT > 8
2761 ret = in_interrupt();
2762#endif
2763 return ret;
2764}
2765
a238ab5b
DH
2766static DEFINE_RATELIMIT_STATE(nopage_rs,
2767 DEFAULT_RATELIMIT_INTERVAL,
2768 DEFAULT_RATELIMIT_BURST);
2769
d00181b9 2770void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2771{
a238ab5b
DH
2772 unsigned int filter = SHOW_MEM_FILTER_NODES;
2773
c0a32fc5
SG
2774 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2775 debug_guardpage_minorder() > 0)
a238ab5b
DH
2776 return;
2777
2778 /*
2779 * This documents exceptions given to allocations in certain
2780 * contexts that are allowed to allocate outside current's set
2781 * of allowed nodes.
2782 */
2783 if (!(gfp_mask & __GFP_NOMEMALLOC))
2784 if (test_thread_flag(TIF_MEMDIE) ||
2785 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2786 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2787 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2788 filter &= ~SHOW_MEM_FILTER_NODES;
2789
2790 if (fmt) {
3ee9a4f0
JP
2791 struct va_format vaf;
2792 va_list args;
2793
a238ab5b 2794 va_start(args, fmt);
3ee9a4f0
JP
2795
2796 vaf.fmt = fmt;
2797 vaf.va = &args;
2798
2799 pr_warn("%pV", &vaf);
2800
a238ab5b
DH
2801 va_end(args);
2802 }
2803
c5c990e8
VB
2804 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2805 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2806 dump_stack();
2807 if (!should_suppress_show_mem())
2808 show_mem(filter);
2809}
2810
11e33f6a
MG
2811static inline struct page *
2812__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2813 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2814{
6e0fc46d
DR
2815 struct oom_control oc = {
2816 .zonelist = ac->zonelist,
2817 .nodemask = ac->nodemask,
2818 .gfp_mask = gfp_mask,
2819 .order = order,
6e0fc46d 2820 };
11e33f6a
MG
2821 struct page *page;
2822
9879de73
JW
2823 *did_some_progress = 0;
2824
9879de73 2825 /*
dc56401f
JW
2826 * Acquire the oom lock. If that fails, somebody else is
2827 * making progress for us.
9879de73 2828 */
dc56401f 2829 if (!mutex_trylock(&oom_lock)) {
9879de73 2830 *did_some_progress = 1;
11e33f6a 2831 schedule_timeout_uninterruptible(1);
1da177e4
LT
2832 return NULL;
2833 }
6b1de916 2834
11e33f6a
MG
2835 /*
2836 * Go through the zonelist yet one more time, keep very high watermark
2837 * here, this is only to catch a parallel oom killing, we must fail if
2838 * we're still under heavy pressure.
2839 */
a9263751
VB
2840 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2841 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2842 if (page)
11e33f6a
MG
2843 goto out;
2844
4365a567 2845 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2846 /* Coredumps can quickly deplete all memory reserves */
2847 if (current->flags & PF_DUMPCORE)
2848 goto out;
4365a567
KH
2849 /* The OOM killer will not help higher order allocs */
2850 if (order > PAGE_ALLOC_COSTLY_ORDER)
2851 goto out;
03668b3c 2852 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2853 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2854 goto out;
9083905a 2855 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2856 if (!(gfp_mask & __GFP_FS)) {
2857 /*
2858 * XXX: Page reclaim didn't yield anything,
2859 * and the OOM killer can't be invoked, but
9083905a 2860 * keep looping as per tradition.
0a687aac
TH
2861 *
2862 * But do not keep looping if oom_killer_disable()
2863 * was already called, for the system is trying to
2864 * enter a quiescent state during suspend.
cc873177 2865 */
0a687aac 2866 *did_some_progress = !oom_killer_disabled;
9879de73 2867 goto out;
cc873177 2868 }
9083905a
JW
2869 if (pm_suspended_storage())
2870 goto out;
4167e9b2 2871 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2872 if (gfp_mask & __GFP_THISNODE)
2873 goto out;
2874 }
11e33f6a 2875 /* Exhausted what can be done so it's blamo time */
5020e285 2876 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2877 *did_some_progress = 1;
5020e285
MH
2878
2879 if (gfp_mask & __GFP_NOFAIL) {
2880 page = get_page_from_freelist(gfp_mask, order,
2881 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2882 /*
2883 * fallback to ignore cpuset restriction if our nodes
2884 * are depleted
2885 */
2886 if (!page)
2887 page = get_page_from_freelist(gfp_mask, order,
2888 ALLOC_NO_WATERMARKS, ac);
2889 }
2890 }
11e33f6a 2891out:
dc56401f 2892 mutex_unlock(&oom_lock);
11e33f6a
MG
2893 return page;
2894}
2895
56de7263
MG
2896#ifdef CONFIG_COMPACTION
2897/* Try memory compaction for high-order allocations before reclaim */
2898static struct page *
2899__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2900 int alloc_flags, const struct alloc_context *ac,
2901 enum migrate_mode mode, int *contended_compaction,
2902 bool *deferred_compaction)
56de7263 2903{
53853e2d 2904 unsigned long compact_result;
98dd3b48 2905 struct page *page;
53853e2d
VB
2906
2907 if (!order)
66199712 2908 return NULL;
66199712 2909
c06b1fca 2910 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2911 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2912 mode, contended_compaction);
c06b1fca 2913 current->flags &= ~PF_MEMALLOC;
56de7263 2914
98dd3b48
VB
2915 switch (compact_result) {
2916 case COMPACT_DEFERRED:
53853e2d 2917 *deferred_compaction = true;
98dd3b48
VB
2918 /* fall-through */
2919 case COMPACT_SKIPPED:
2920 return NULL;
2921 default:
2922 break;
2923 }
53853e2d 2924
98dd3b48
VB
2925 /*
2926 * At least in one zone compaction wasn't deferred or skipped, so let's
2927 * count a compaction stall
2928 */
2929 count_vm_event(COMPACTSTALL);
8fb74b9f 2930
a9263751
VB
2931 page = get_page_from_freelist(gfp_mask, order,
2932 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2933
98dd3b48
VB
2934 if (page) {
2935 struct zone *zone = page_zone(page);
53853e2d 2936
98dd3b48
VB
2937 zone->compact_blockskip_flush = false;
2938 compaction_defer_reset(zone, order, true);
2939 count_vm_event(COMPACTSUCCESS);
2940 return page;
2941 }
56de7263 2942
98dd3b48
VB
2943 /*
2944 * It's bad if compaction run occurs and fails. The most likely reason
2945 * is that pages exist, but not enough to satisfy watermarks.
2946 */
2947 count_vm_event(COMPACTFAIL);
66199712 2948
98dd3b48 2949 cond_resched();
56de7263
MG
2950
2951 return NULL;
2952}
2953#else
2954static inline struct page *
2955__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2956 int alloc_flags, const struct alloc_context *ac,
2957 enum migrate_mode mode, int *contended_compaction,
2958 bool *deferred_compaction)
56de7263
MG
2959{
2960 return NULL;
2961}
2962#endif /* CONFIG_COMPACTION */
2963
bba90710
MS
2964/* Perform direct synchronous page reclaim */
2965static int
a9263751
VB
2966__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2967 const struct alloc_context *ac)
11e33f6a 2968{
11e33f6a 2969 struct reclaim_state reclaim_state;
bba90710 2970 int progress;
11e33f6a
MG
2971
2972 cond_resched();
2973
2974 /* We now go into synchronous reclaim */
2975 cpuset_memory_pressure_bump();
c06b1fca 2976 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2977 lockdep_set_current_reclaim_state(gfp_mask);
2978 reclaim_state.reclaimed_slab = 0;
c06b1fca 2979 current->reclaim_state = &reclaim_state;
11e33f6a 2980
a9263751
VB
2981 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2982 ac->nodemask);
11e33f6a 2983
c06b1fca 2984 current->reclaim_state = NULL;
11e33f6a 2985 lockdep_clear_current_reclaim_state();
c06b1fca 2986 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2987
2988 cond_resched();
2989
bba90710
MS
2990 return progress;
2991}
2992
2993/* The really slow allocator path where we enter direct reclaim */
2994static inline struct page *
2995__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2996 int alloc_flags, const struct alloc_context *ac,
2997 unsigned long *did_some_progress)
bba90710
MS
2998{
2999 struct page *page = NULL;
3000 bool drained = false;
3001
a9263751 3002 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3003 if (unlikely(!(*did_some_progress)))
3004 return NULL;
11e33f6a 3005
9ee493ce 3006retry:
a9263751
VB
3007 page = get_page_from_freelist(gfp_mask, order,
3008 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3009
3010 /*
3011 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3012 * pages are pinned on the per-cpu lists or in high alloc reserves.
3013 * Shrink them them and try again
9ee493ce
MG
3014 */
3015 if (!page && !drained) {
0aaa29a5 3016 unreserve_highatomic_pageblock(ac);
93481ff0 3017 drain_all_pages(NULL);
9ee493ce
MG
3018 drained = true;
3019 goto retry;
3020 }
3021
11e33f6a
MG
3022 return page;
3023}
3024
a9263751 3025static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3026{
3027 struct zoneref *z;
3028 struct zone *zone;
3029
a9263751
VB
3030 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3031 ac->high_zoneidx, ac->nodemask)
3032 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3033}
3034
341ce06f
PZ
3035static inline int
3036gfp_to_alloc_flags(gfp_t gfp_mask)
3037{
341ce06f 3038 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3039
a56f57ff 3040 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3041 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3042
341ce06f
PZ
3043 /*
3044 * The caller may dip into page reserves a bit more if the caller
3045 * cannot run direct reclaim, or if the caller has realtime scheduling
3046 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3047 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3048 */
e6223a3b 3049 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3050
d0164adc 3051 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3052 /*
b104a35d
DR
3053 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3054 * if it can't schedule.
5c3240d9 3055 */
b104a35d 3056 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3057 alloc_flags |= ALLOC_HARDER;
523b9458 3058 /*
b104a35d 3059 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3060 * comment for __cpuset_node_allowed().
523b9458 3061 */
341ce06f 3062 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3063 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3064 alloc_flags |= ALLOC_HARDER;
3065
b37f1dd0
MG
3066 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3067 if (gfp_mask & __GFP_MEMALLOC)
3068 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3069 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3070 alloc_flags |= ALLOC_NO_WATERMARKS;
3071 else if (!in_interrupt() &&
3072 ((current->flags & PF_MEMALLOC) ||
3073 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3074 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3075 }
d95ea5d1 3076#ifdef CONFIG_CMA
43e7a34d 3077 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3078 alloc_flags |= ALLOC_CMA;
3079#endif
341ce06f
PZ
3080 return alloc_flags;
3081}
3082
072bb0aa
MG
3083bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3084{
b37f1dd0 3085 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3086}
3087
d0164adc
MG
3088static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3089{
3090 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3091}
3092
11e33f6a
MG
3093static inline struct page *
3094__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3095 struct alloc_context *ac)
11e33f6a 3096{
d0164adc 3097 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3098 struct page *page = NULL;
3099 int alloc_flags;
3100 unsigned long pages_reclaimed = 0;
3101 unsigned long did_some_progress;
e0b9daeb 3102 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3103 bool deferred_compaction = false;
1f9efdef 3104 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3105
72807a74
MG
3106 /*
3107 * In the slowpath, we sanity check order to avoid ever trying to
3108 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3109 * be using allocators in order of preference for an area that is
3110 * too large.
3111 */
1fc28b70
MG
3112 if (order >= MAX_ORDER) {
3113 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3114 return NULL;
1fc28b70 3115 }
1da177e4 3116
d0164adc
MG
3117 /*
3118 * We also sanity check to catch abuse of atomic reserves being used by
3119 * callers that are not in atomic context.
3120 */
3121 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3122 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3123 gfp_mask &= ~__GFP_ATOMIC;
3124
9879de73 3125retry:
d0164adc 3126 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3127 wake_all_kswapds(order, ac);
1da177e4 3128
9bf2229f 3129 /*
7fb1d9fc
RS
3130 * OK, we're below the kswapd watermark and have kicked background
3131 * reclaim. Now things get more complex, so set up alloc_flags according
3132 * to how we want to proceed.
9bf2229f 3133 */
341ce06f 3134 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3135
f33261d7
DR
3136 /*
3137 * Find the true preferred zone if the allocation is unconstrained by
3138 * cpusets.
3139 */
a9263751 3140 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3141 struct zoneref *preferred_zoneref;
a9263751
VB
3142 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3143 ac->high_zoneidx, NULL, &ac->preferred_zone);
3144 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3145 }
f33261d7 3146
341ce06f 3147 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3148 page = get_page_from_freelist(gfp_mask, order,
3149 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3150 if (page)
3151 goto got_pg;
1da177e4 3152
11e33f6a 3153 /* Allocate without watermarks if the context allows */
341ce06f 3154 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3155 /*
3156 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3157 * the allocation is high priority and these type of
3158 * allocations are system rather than user orientated
3159 */
a9263751 3160 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3161 page = get_page_from_freelist(gfp_mask, order,
3162 ALLOC_NO_WATERMARKS, ac);
3163 if (page)
3164 goto got_pg;
1da177e4
LT
3165 }
3166
d0164adc
MG
3167 /* Caller is not willing to reclaim, we can't balance anything */
3168 if (!can_direct_reclaim) {
aed0a0e3 3169 /*
33d53103
MH
3170 * All existing users of the __GFP_NOFAIL are blockable, so warn
3171 * of any new users that actually allow this type of allocation
3172 * to fail.
aed0a0e3
DR
3173 */
3174 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3175 goto nopage;
aed0a0e3 3176 }
1da177e4 3177
341ce06f 3178 /* Avoid recursion of direct reclaim */
33d53103
MH
3179 if (current->flags & PF_MEMALLOC) {
3180 /*
3181 * __GFP_NOFAIL request from this context is rather bizarre
3182 * because we cannot reclaim anything and only can loop waiting
3183 * for somebody to do a work for us.
3184 */
3185 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3186 cond_resched();
3187 goto retry;
3188 }
341ce06f 3189 goto nopage;
33d53103 3190 }
341ce06f 3191
6583bb64
DR
3192 /* Avoid allocations with no watermarks from looping endlessly */
3193 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3194 goto nopage;
3195
77f1fe6b
MG
3196 /*
3197 * Try direct compaction. The first pass is asynchronous. Subsequent
3198 * attempts after direct reclaim are synchronous
3199 */
a9263751
VB
3200 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3201 migration_mode,
3202 &contended_compaction,
53853e2d 3203 &deferred_compaction);
56de7263
MG
3204 if (page)
3205 goto got_pg;
75f30861 3206
1f9efdef 3207 /* Checks for THP-specific high-order allocations */
d0164adc 3208 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3209 /*
3210 * If compaction is deferred for high-order allocations, it is
3211 * because sync compaction recently failed. If this is the case
3212 * and the caller requested a THP allocation, we do not want
3213 * to heavily disrupt the system, so we fail the allocation
3214 * instead of entering direct reclaim.
3215 */
3216 if (deferred_compaction)
3217 goto nopage;
3218
3219 /*
3220 * In all zones where compaction was attempted (and not
3221 * deferred or skipped), lock contention has been detected.
3222 * For THP allocation we do not want to disrupt the others
3223 * so we fallback to base pages instead.
3224 */
3225 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3226 goto nopage;
3227
3228 /*
3229 * If compaction was aborted due to need_resched(), we do not
3230 * want to further increase allocation latency, unless it is
3231 * khugepaged trying to collapse.
3232 */
3233 if (contended_compaction == COMPACT_CONTENDED_SCHED
3234 && !(current->flags & PF_KTHREAD))
3235 goto nopage;
3236 }
66199712 3237
8fe78048
DR
3238 /*
3239 * It can become very expensive to allocate transparent hugepages at
3240 * fault, so use asynchronous memory compaction for THP unless it is
3241 * khugepaged trying to collapse.
3242 */
d0164adc 3243 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3244 migration_mode = MIGRATE_SYNC_LIGHT;
3245
11e33f6a 3246 /* Try direct reclaim and then allocating */
a9263751
VB
3247 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3248 &did_some_progress);
11e33f6a
MG
3249 if (page)
3250 goto got_pg;
1da177e4 3251
9083905a
JW
3252 /* Do not loop if specifically requested */
3253 if (gfp_mask & __GFP_NORETRY)
3254 goto noretry;
3255
3256 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3257 pages_reclaimed += did_some_progress;
9083905a
JW
3258 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3259 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3260 /* Wait for some write requests to complete then retry */
a9263751 3261 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3262 goto retry;
1da177e4
LT
3263 }
3264
9083905a
JW
3265 /* Reclaim has failed us, start killing things */
3266 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3267 if (page)
3268 goto got_pg;
3269
3270 /* Retry as long as the OOM killer is making progress */
3271 if (did_some_progress)
3272 goto retry;
3273
3274noretry:
3275 /*
3276 * High-order allocations do not necessarily loop after
3277 * direct reclaim and reclaim/compaction depends on compaction
3278 * being called after reclaim so call directly if necessary
3279 */
3280 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3281 ac, migration_mode,
3282 &contended_compaction,
3283 &deferred_compaction);
3284 if (page)
3285 goto got_pg;
1da177e4 3286nopage:
a238ab5b 3287 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3288got_pg:
072bb0aa 3289 return page;
1da177e4 3290}
11e33f6a
MG
3291
3292/*
3293 * This is the 'heart' of the zoned buddy allocator.
3294 */
3295struct page *
3296__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3297 struct zonelist *zonelist, nodemask_t *nodemask)
3298{
d8846374 3299 struct zoneref *preferred_zoneref;
cc9a6c87 3300 struct page *page = NULL;
cc9a6c87 3301 unsigned int cpuset_mems_cookie;
3a025760 3302 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3303 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3304 struct alloc_context ac = {
3305 .high_zoneidx = gfp_zone(gfp_mask),
3306 .nodemask = nodemask,
3307 .migratetype = gfpflags_to_migratetype(gfp_mask),
3308 };
11e33f6a 3309
dcce284a
BH
3310 gfp_mask &= gfp_allowed_mask;
3311
11e33f6a
MG
3312 lockdep_trace_alloc(gfp_mask);
3313
d0164adc 3314 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3315
3316 if (should_fail_alloc_page(gfp_mask, order))
3317 return NULL;
3318
3319 /*
3320 * Check the zones suitable for the gfp_mask contain at least one
3321 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3322 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3323 */
3324 if (unlikely(!zonelist->_zonerefs->zone))
3325 return NULL;
3326
a9263751 3327 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3328 alloc_flags |= ALLOC_CMA;
3329
cc9a6c87 3330retry_cpuset:
d26914d1 3331 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3332
a9263751
VB
3333 /* We set it here, as __alloc_pages_slowpath might have changed it */
3334 ac.zonelist = zonelist;
c9ab0c4f
MG
3335
3336 /* Dirty zone balancing only done in the fast path */
3337 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3338
5117f45d 3339 /* The preferred zone is used for statistics later */
a9263751
VB
3340 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3341 ac.nodemask ? : &cpuset_current_mems_allowed,
3342 &ac.preferred_zone);
3343 if (!ac.preferred_zone)
cc9a6c87 3344 goto out;
a9263751 3345 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3346
3347 /* First allocation attempt */
91fbdc0f 3348 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3349 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3350 if (unlikely(!page)) {
3351 /*
3352 * Runtime PM, block IO and its error handling path
3353 * can deadlock because I/O on the device might not
3354 * complete.
3355 */
91fbdc0f 3356 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3357 ac.spread_dirty_pages = false;
91fbdc0f 3358
a9263751 3359 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3360 }
11e33f6a 3361
23f086f9
XQ
3362 if (kmemcheck_enabled && page)
3363 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3364
a9263751 3365 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3366
3367out:
3368 /*
3369 * When updating a task's mems_allowed, it is possible to race with
3370 * parallel threads in such a way that an allocation can fail while
3371 * the mask is being updated. If a page allocation is about to fail,
3372 * check if the cpuset changed during allocation and if so, retry.
3373 */
d26914d1 3374 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3375 goto retry_cpuset;
3376
11e33f6a 3377 return page;
1da177e4 3378}
d239171e 3379EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3380
3381/*
3382 * Common helper functions.
3383 */
920c7a5d 3384unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3385{
945a1113
AM
3386 struct page *page;
3387
3388 /*
3389 * __get_free_pages() returns a 32-bit address, which cannot represent
3390 * a highmem page
3391 */
3392 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3393
1da177e4
LT
3394 page = alloc_pages(gfp_mask, order);
3395 if (!page)
3396 return 0;
3397 return (unsigned long) page_address(page);
3398}
1da177e4
LT
3399EXPORT_SYMBOL(__get_free_pages);
3400
920c7a5d 3401unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3402{
945a1113 3403 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3404}
1da177e4
LT
3405EXPORT_SYMBOL(get_zeroed_page);
3406
920c7a5d 3407void __free_pages(struct page *page, unsigned int order)
1da177e4 3408{
b5810039 3409 if (put_page_testzero(page)) {
1da177e4 3410 if (order == 0)
b745bc85 3411 free_hot_cold_page(page, false);
1da177e4
LT
3412 else
3413 __free_pages_ok(page, order);
3414 }
3415}
3416
3417EXPORT_SYMBOL(__free_pages);
3418
920c7a5d 3419void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3420{
3421 if (addr != 0) {
725d704e 3422 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3423 __free_pages(virt_to_page((void *)addr), order);
3424 }
3425}
3426
3427EXPORT_SYMBOL(free_pages);
3428
b63ae8ca
AD
3429/*
3430 * Page Fragment:
3431 * An arbitrary-length arbitrary-offset area of memory which resides
3432 * within a 0 or higher order page. Multiple fragments within that page
3433 * are individually refcounted, in the page's reference counter.
3434 *
3435 * The page_frag functions below provide a simple allocation framework for
3436 * page fragments. This is used by the network stack and network device
3437 * drivers to provide a backing region of memory for use as either an
3438 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3439 */
3440static struct page *__page_frag_refill(struct page_frag_cache *nc,
3441 gfp_t gfp_mask)
3442{
3443 struct page *page = NULL;
3444 gfp_t gfp = gfp_mask;
3445
3446#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3447 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3448 __GFP_NOMEMALLOC;
3449 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3450 PAGE_FRAG_CACHE_MAX_ORDER);
3451 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3452#endif
3453 if (unlikely(!page))
3454 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3455
3456 nc->va = page ? page_address(page) : NULL;
3457
3458 return page;
3459}
3460
3461void *__alloc_page_frag(struct page_frag_cache *nc,
3462 unsigned int fragsz, gfp_t gfp_mask)
3463{
3464 unsigned int size = PAGE_SIZE;
3465 struct page *page;
3466 int offset;
3467
3468 if (unlikely(!nc->va)) {
3469refill:
3470 page = __page_frag_refill(nc, gfp_mask);
3471 if (!page)
3472 return NULL;
3473
3474#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3475 /* if size can vary use size else just use PAGE_SIZE */
3476 size = nc->size;
3477#endif
3478 /* Even if we own the page, we do not use atomic_set().
3479 * This would break get_page_unless_zero() users.
3480 */
fe896d18 3481 page_ref_add(page, size - 1);
b63ae8ca
AD
3482
3483 /* reset page count bias and offset to start of new frag */
2f064f34 3484 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3485 nc->pagecnt_bias = size;
3486 nc->offset = size;
3487 }
3488
3489 offset = nc->offset - fragsz;
3490 if (unlikely(offset < 0)) {
3491 page = virt_to_page(nc->va);
3492
fe896d18 3493 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3494 goto refill;
3495
3496#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3497 /* if size can vary use size else just use PAGE_SIZE */
3498 size = nc->size;
3499#endif
3500 /* OK, page count is 0, we can safely set it */
fe896d18 3501 set_page_count(page, size);
b63ae8ca
AD
3502
3503 /* reset page count bias and offset to start of new frag */
3504 nc->pagecnt_bias = size;
3505 offset = size - fragsz;
3506 }
3507
3508 nc->pagecnt_bias--;
3509 nc->offset = offset;
3510
3511 return nc->va + offset;
3512}
3513EXPORT_SYMBOL(__alloc_page_frag);
3514
3515/*
3516 * Frees a page fragment allocated out of either a compound or order 0 page.
3517 */
3518void __free_page_frag(void *addr)
3519{
3520 struct page *page = virt_to_head_page(addr);
3521
3522 if (unlikely(put_page_testzero(page)))
3523 __free_pages_ok(page, compound_order(page));
3524}
3525EXPORT_SYMBOL(__free_page_frag);
3526
6a1a0d3b 3527/*
52383431 3528 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3529 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3530 * equivalent to alloc_pages.
6a1a0d3b 3531 *
52383431
VD
3532 * It should be used when the caller would like to use kmalloc, but since the
3533 * allocation is large, it has to fall back to the page allocator.
3534 */
3535struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3536{
3537 struct page *page;
52383431 3538
52383431 3539 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3540 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3541 __free_pages(page, order);
3542 page = NULL;
3543 }
52383431
VD
3544 return page;
3545}
3546
3547struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3548{
3549 struct page *page;
52383431 3550
52383431 3551 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3552 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3553 __free_pages(page, order);
3554 page = NULL;
3555 }
52383431
VD
3556 return page;
3557}
3558
3559/*
3560 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3561 * alloc_kmem_pages.
6a1a0d3b 3562 */
52383431 3563void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3564{
d05e83a6 3565 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3566 __free_pages(page, order);
3567}
3568
52383431 3569void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3570{
3571 if (addr != 0) {
3572 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3573 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3574 }
3575}
3576
d00181b9
KS
3577static void *make_alloc_exact(unsigned long addr, unsigned int order,
3578 size_t size)
ee85c2e1
AK
3579{
3580 if (addr) {
3581 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3582 unsigned long used = addr + PAGE_ALIGN(size);
3583
3584 split_page(virt_to_page((void *)addr), order);
3585 while (used < alloc_end) {
3586 free_page(used);
3587 used += PAGE_SIZE;
3588 }
3589 }
3590 return (void *)addr;
3591}
3592
2be0ffe2
TT
3593/**
3594 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3595 * @size: the number of bytes to allocate
3596 * @gfp_mask: GFP flags for the allocation
3597 *
3598 * This function is similar to alloc_pages(), except that it allocates the
3599 * minimum number of pages to satisfy the request. alloc_pages() can only
3600 * allocate memory in power-of-two pages.
3601 *
3602 * This function is also limited by MAX_ORDER.
3603 *
3604 * Memory allocated by this function must be released by free_pages_exact().
3605 */
3606void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3607{
3608 unsigned int order = get_order(size);
3609 unsigned long addr;
3610
3611 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3612 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3613}
3614EXPORT_SYMBOL(alloc_pages_exact);
3615
ee85c2e1
AK
3616/**
3617 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3618 * pages on a node.
b5e6ab58 3619 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3620 * @size: the number of bytes to allocate
3621 * @gfp_mask: GFP flags for the allocation
3622 *
3623 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3624 * back.
ee85c2e1 3625 */
e1931811 3626void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3627{
d00181b9 3628 unsigned int order = get_order(size);
ee85c2e1
AK
3629 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3630 if (!p)
3631 return NULL;
3632 return make_alloc_exact((unsigned long)page_address(p), order, size);
3633}
ee85c2e1 3634
2be0ffe2
TT
3635/**
3636 * free_pages_exact - release memory allocated via alloc_pages_exact()
3637 * @virt: the value returned by alloc_pages_exact.
3638 * @size: size of allocation, same value as passed to alloc_pages_exact().
3639 *
3640 * Release the memory allocated by a previous call to alloc_pages_exact.
3641 */
3642void free_pages_exact(void *virt, size_t size)
3643{
3644 unsigned long addr = (unsigned long)virt;
3645 unsigned long end = addr + PAGE_ALIGN(size);
3646
3647 while (addr < end) {
3648 free_page(addr);
3649 addr += PAGE_SIZE;
3650 }
3651}
3652EXPORT_SYMBOL(free_pages_exact);
3653
e0fb5815
ZY
3654/**
3655 * nr_free_zone_pages - count number of pages beyond high watermark
3656 * @offset: The zone index of the highest zone
3657 *
3658 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3659 * high watermark within all zones at or below a given zone index. For each
3660 * zone, the number of pages is calculated as:
834405c3 3661 * managed_pages - high_pages
e0fb5815 3662 */
ebec3862 3663static unsigned long nr_free_zone_pages(int offset)
1da177e4 3664{
dd1a239f 3665 struct zoneref *z;
54a6eb5c
MG
3666 struct zone *zone;
3667
e310fd43 3668 /* Just pick one node, since fallback list is circular */
ebec3862 3669 unsigned long sum = 0;
1da177e4 3670
0e88460d 3671 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3672
54a6eb5c 3673 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3674 unsigned long size = zone->managed_pages;
41858966 3675 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3676 if (size > high)
3677 sum += size - high;
1da177e4
LT
3678 }
3679
3680 return sum;
3681}
3682
e0fb5815
ZY
3683/**
3684 * nr_free_buffer_pages - count number of pages beyond high watermark
3685 *
3686 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3687 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3688 */
ebec3862 3689unsigned long nr_free_buffer_pages(void)
1da177e4 3690{
af4ca457 3691 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3692}
c2f1a551 3693EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3694
e0fb5815
ZY
3695/**
3696 * nr_free_pagecache_pages - count number of pages beyond high watermark
3697 *
3698 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3699 * high watermark within all zones.
1da177e4 3700 */
ebec3862 3701unsigned long nr_free_pagecache_pages(void)
1da177e4 3702{
2a1e274a 3703 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3704}
08e0f6a9
CL
3705
3706static inline void show_node(struct zone *zone)
1da177e4 3707{
e5adfffc 3708 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3709 printk("Node %d ", zone_to_nid(zone));
1da177e4 3710}
1da177e4 3711
d02bd27b
IR
3712long si_mem_available(void)
3713{
3714 long available;
3715 unsigned long pagecache;
3716 unsigned long wmark_low = 0;
3717 unsigned long pages[NR_LRU_LISTS];
3718 struct zone *zone;
3719 int lru;
3720
3721 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3722 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3723
3724 for_each_zone(zone)
3725 wmark_low += zone->watermark[WMARK_LOW];
3726
3727 /*
3728 * Estimate the amount of memory available for userspace allocations,
3729 * without causing swapping.
3730 */
3731 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3732
3733 /*
3734 * Not all the page cache can be freed, otherwise the system will
3735 * start swapping. Assume at least half of the page cache, or the
3736 * low watermark worth of cache, needs to stay.
3737 */
3738 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3739 pagecache -= min(pagecache / 2, wmark_low);
3740 available += pagecache;
3741
3742 /*
3743 * Part of the reclaimable slab consists of items that are in use,
3744 * and cannot be freed. Cap this estimate at the low watermark.
3745 */
3746 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3747 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3748
3749 if (available < 0)
3750 available = 0;
3751 return available;
3752}
3753EXPORT_SYMBOL_GPL(si_mem_available);
3754
1da177e4
LT
3755void si_meminfo(struct sysinfo *val)
3756{
3757 val->totalram = totalram_pages;
cc7452b6 3758 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3759 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3760 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3761 val->totalhigh = totalhigh_pages;
3762 val->freehigh = nr_free_highpages();
1da177e4
LT
3763 val->mem_unit = PAGE_SIZE;
3764}
3765
3766EXPORT_SYMBOL(si_meminfo);
3767
3768#ifdef CONFIG_NUMA
3769void si_meminfo_node(struct sysinfo *val, int nid)
3770{
cdd91a77
JL
3771 int zone_type; /* needs to be signed */
3772 unsigned long managed_pages = 0;
1da177e4
LT
3773 pg_data_t *pgdat = NODE_DATA(nid);
3774
cdd91a77
JL
3775 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3776 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3777 val->totalram = managed_pages;
cc7452b6 3778 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3779 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3780#ifdef CONFIG_HIGHMEM
b40da049 3781 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3782 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3783 NR_FREE_PAGES);
98d2b0eb
CL
3784#else
3785 val->totalhigh = 0;
3786 val->freehigh = 0;
3787#endif
1da177e4
LT
3788 val->mem_unit = PAGE_SIZE;
3789}
3790#endif
3791
ddd588b5 3792/*
7bf02ea2
DR
3793 * Determine whether the node should be displayed or not, depending on whether
3794 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3795 */
7bf02ea2 3796bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3797{
3798 bool ret = false;
cc9a6c87 3799 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3800
3801 if (!(flags & SHOW_MEM_FILTER_NODES))
3802 goto out;
3803
cc9a6c87 3804 do {
d26914d1 3805 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3806 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3807 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3808out:
3809 return ret;
3810}
3811
1da177e4
LT
3812#define K(x) ((x) << (PAGE_SHIFT-10))
3813
377e4f16
RV
3814static void show_migration_types(unsigned char type)
3815{
3816 static const char types[MIGRATE_TYPES] = {
3817 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3818 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3819 [MIGRATE_RECLAIMABLE] = 'E',
3820 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3821#ifdef CONFIG_CMA
3822 [MIGRATE_CMA] = 'C',
3823#endif
194159fb 3824#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3825 [MIGRATE_ISOLATE] = 'I',
194159fb 3826#endif
377e4f16
RV
3827 };
3828 char tmp[MIGRATE_TYPES + 1];
3829 char *p = tmp;
3830 int i;
3831
3832 for (i = 0; i < MIGRATE_TYPES; i++) {
3833 if (type & (1 << i))
3834 *p++ = types[i];
3835 }
3836
3837 *p = '\0';
3838 printk("(%s) ", tmp);
3839}
3840
1da177e4
LT
3841/*
3842 * Show free area list (used inside shift_scroll-lock stuff)
3843 * We also calculate the percentage fragmentation. We do this by counting the
3844 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3845 *
3846 * Bits in @filter:
3847 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3848 * cpuset.
1da177e4 3849 */
7bf02ea2 3850void show_free_areas(unsigned int filter)
1da177e4 3851{
d1bfcdb8 3852 unsigned long free_pcp = 0;
c7241913 3853 int cpu;
1da177e4
LT
3854 struct zone *zone;
3855
ee99c71c 3856 for_each_populated_zone(zone) {
7bf02ea2 3857 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3858 continue;
d1bfcdb8 3859
761b0677
KK
3860 for_each_online_cpu(cpu)
3861 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3862 }
3863
a731286d
KM
3864 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3865 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3866 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3867 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3868 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3869 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3870 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3871 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3872 global_page_state(NR_ISOLATED_ANON),
3873 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3874 global_page_state(NR_INACTIVE_FILE),
a731286d 3875 global_page_state(NR_ISOLATED_FILE),
7b854121 3876 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3877 global_page_state(NR_FILE_DIRTY),
ce866b34 3878 global_page_state(NR_WRITEBACK),
fd39fc85 3879 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3880 global_page_state(NR_SLAB_RECLAIMABLE),
3881 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3882 global_page_state(NR_FILE_MAPPED),
4b02108a 3883 global_page_state(NR_SHMEM),
a25700a5 3884 global_page_state(NR_PAGETABLE),
d1ce749a 3885 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3886 global_page_state(NR_FREE_PAGES),
3887 free_pcp,
d1ce749a 3888 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3889
ee99c71c 3890 for_each_populated_zone(zone) {
1da177e4
LT
3891 int i;
3892
7bf02ea2 3893 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3894 continue;
d1bfcdb8
KK
3895
3896 free_pcp = 0;
3897 for_each_online_cpu(cpu)
3898 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3899
1da177e4
LT
3900 show_node(zone);
3901 printk("%s"
3902 " free:%lukB"
3903 " min:%lukB"
3904 " low:%lukB"
3905 " high:%lukB"
4f98a2fe
RR
3906 " active_anon:%lukB"
3907 " inactive_anon:%lukB"
3908 " active_file:%lukB"
3909 " inactive_file:%lukB"
7b854121 3910 " unevictable:%lukB"
a731286d
KM
3911 " isolated(anon):%lukB"
3912 " isolated(file):%lukB"
1da177e4 3913 " present:%lukB"
9feedc9d 3914 " managed:%lukB"
4a0aa73f
KM
3915 " mlocked:%lukB"
3916 " dirty:%lukB"
3917 " writeback:%lukB"
3918 " mapped:%lukB"
4b02108a 3919 " shmem:%lukB"
4a0aa73f
KM
3920 " slab_reclaimable:%lukB"
3921 " slab_unreclaimable:%lukB"
c6a7f572 3922 " kernel_stack:%lukB"
4a0aa73f
KM
3923 " pagetables:%lukB"
3924 " unstable:%lukB"
3925 " bounce:%lukB"
d1bfcdb8
KK
3926 " free_pcp:%lukB"
3927 " local_pcp:%ukB"
d1ce749a 3928 " free_cma:%lukB"
4a0aa73f 3929 " writeback_tmp:%lukB"
1da177e4
LT
3930 " pages_scanned:%lu"
3931 " all_unreclaimable? %s"
3932 "\n",
3933 zone->name,
88f5acf8 3934 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3935 K(min_wmark_pages(zone)),
3936 K(low_wmark_pages(zone)),
3937 K(high_wmark_pages(zone)),
4f98a2fe
RR
3938 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3939 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3940 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3941 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3942 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3943 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3944 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3945 K(zone->present_pages),
9feedc9d 3946 K(zone->managed_pages),
4a0aa73f
KM
3947 K(zone_page_state(zone, NR_MLOCK)),
3948 K(zone_page_state(zone, NR_FILE_DIRTY)),
3949 K(zone_page_state(zone, NR_WRITEBACK)),
3950 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3951 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3952 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3953 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3954 zone_page_state(zone, NR_KERNEL_STACK) *
3955 THREAD_SIZE / 1024,
4a0aa73f
KM
3956 K(zone_page_state(zone, NR_PAGETABLE)),
3957 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3958 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3959 K(free_pcp),
3960 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3961 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3962 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3963 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3964 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3965 );
3966 printk("lowmem_reserve[]:");
3967 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3968 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3969 printk("\n");
3970 }
3971
ee99c71c 3972 for_each_populated_zone(zone) {
d00181b9
KS
3973 unsigned int order;
3974 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3975 unsigned char types[MAX_ORDER];
1da177e4 3976
7bf02ea2 3977 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3978 continue;
1da177e4
LT
3979 show_node(zone);
3980 printk("%s: ", zone->name);
1da177e4
LT
3981
3982 spin_lock_irqsave(&zone->lock, flags);
3983 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3984 struct free_area *area = &zone->free_area[order];
3985 int type;
3986
3987 nr[order] = area->nr_free;
8f9de51a 3988 total += nr[order] << order;
377e4f16
RV
3989
3990 types[order] = 0;
3991 for (type = 0; type < MIGRATE_TYPES; type++) {
3992 if (!list_empty(&area->free_list[type]))
3993 types[order] |= 1 << type;
3994 }
1da177e4
LT
3995 }
3996 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3997 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3998 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3999 if (nr[order])
4000 show_migration_types(types[order]);
4001 }
1da177e4
LT
4002 printk("= %lukB\n", K(total));
4003 }
4004
949f7ec5
DR
4005 hugetlb_show_meminfo();
4006
e6f3602d
LW
4007 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4008
1da177e4
LT
4009 show_swap_cache_info();
4010}
4011
19770b32
MG
4012static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4013{
4014 zoneref->zone = zone;
4015 zoneref->zone_idx = zone_idx(zone);
4016}
4017
1da177e4
LT
4018/*
4019 * Builds allocation fallback zone lists.
1a93205b
CL
4020 *
4021 * Add all populated zones of a node to the zonelist.
1da177e4 4022 */
f0c0b2b8 4023static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4024 int nr_zones)
1da177e4 4025{
1a93205b 4026 struct zone *zone;
bc732f1d 4027 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4028
4029 do {
2f6726e5 4030 zone_type--;
070f8032 4031 zone = pgdat->node_zones + zone_type;
1a93205b 4032 if (populated_zone(zone)) {
dd1a239f
MG
4033 zoneref_set_zone(zone,
4034 &zonelist->_zonerefs[nr_zones++]);
070f8032 4035 check_highest_zone(zone_type);
1da177e4 4036 }
2f6726e5 4037 } while (zone_type);
bc732f1d 4038
070f8032 4039 return nr_zones;
1da177e4
LT
4040}
4041
f0c0b2b8
KH
4042
4043/*
4044 * zonelist_order:
4045 * 0 = automatic detection of better ordering.
4046 * 1 = order by ([node] distance, -zonetype)
4047 * 2 = order by (-zonetype, [node] distance)
4048 *
4049 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4050 * the same zonelist. So only NUMA can configure this param.
4051 */
4052#define ZONELIST_ORDER_DEFAULT 0
4053#define ZONELIST_ORDER_NODE 1
4054#define ZONELIST_ORDER_ZONE 2
4055
4056/* zonelist order in the kernel.
4057 * set_zonelist_order() will set this to NODE or ZONE.
4058 */
4059static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4060static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4061
4062
1da177e4 4063#ifdef CONFIG_NUMA
f0c0b2b8
KH
4064/* The value user specified ....changed by config */
4065static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4066/* string for sysctl */
4067#define NUMA_ZONELIST_ORDER_LEN 16
4068char numa_zonelist_order[16] = "default";
4069
4070/*
4071 * interface for configure zonelist ordering.
4072 * command line option "numa_zonelist_order"
4073 * = "[dD]efault - default, automatic configuration.
4074 * = "[nN]ode - order by node locality, then by zone within node
4075 * = "[zZ]one - order by zone, then by locality within zone
4076 */
4077
4078static int __parse_numa_zonelist_order(char *s)
4079{
4080 if (*s == 'd' || *s == 'D') {
4081 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4082 } else if (*s == 'n' || *s == 'N') {
4083 user_zonelist_order = ZONELIST_ORDER_NODE;
4084 } else if (*s == 'z' || *s == 'Z') {
4085 user_zonelist_order = ZONELIST_ORDER_ZONE;
4086 } else {
1170532b 4087 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4088 return -EINVAL;
4089 }
4090 return 0;
4091}
4092
4093static __init int setup_numa_zonelist_order(char *s)
4094{
ecb256f8
VL
4095 int ret;
4096
4097 if (!s)
4098 return 0;
4099
4100 ret = __parse_numa_zonelist_order(s);
4101 if (ret == 0)
4102 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4103
4104 return ret;
f0c0b2b8
KH
4105}
4106early_param("numa_zonelist_order", setup_numa_zonelist_order);
4107
4108/*
4109 * sysctl handler for numa_zonelist_order
4110 */
cccad5b9 4111int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4112 void __user *buffer, size_t *length,
f0c0b2b8
KH
4113 loff_t *ppos)
4114{
4115 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4116 int ret;
443c6f14 4117 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4118
443c6f14 4119 mutex_lock(&zl_order_mutex);
dacbde09
CG
4120 if (write) {
4121 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4122 ret = -EINVAL;
4123 goto out;
4124 }
4125 strcpy(saved_string, (char *)table->data);
4126 }
8d65af78 4127 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4128 if (ret)
443c6f14 4129 goto out;
f0c0b2b8
KH
4130 if (write) {
4131 int oldval = user_zonelist_order;
dacbde09
CG
4132
4133 ret = __parse_numa_zonelist_order((char *)table->data);
4134 if (ret) {
f0c0b2b8
KH
4135 /*
4136 * bogus value. restore saved string
4137 */
dacbde09 4138 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4139 NUMA_ZONELIST_ORDER_LEN);
4140 user_zonelist_order = oldval;
4eaf3f64
HL
4141 } else if (oldval != user_zonelist_order) {
4142 mutex_lock(&zonelists_mutex);
9adb62a5 4143 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4144 mutex_unlock(&zonelists_mutex);
4145 }
f0c0b2b8 4146 }
443c6f14
AK
4147out:
4148 mutex_unlock(&zl_order_mutex);
4149 return ret;
f0c0b2b8
KH
4150}
4151
4152
62bc62a8 4153#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4154static int node_load[MAX_NUMNODES];
4155
1da177e4 4156/**
4dc3b16b 4157 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4158 * @node: node whose fallback list we're appending
4159 * @used_node_mask: nodemask_t of already used nodes
4160 *
4161 * We use a number of factors to determine which is the next node that should
4162 * appear on a given node's fallback list. The node should not have appeared
4163 * already in @node's fallback list, and it should be the next closest node
4164 * according to the distance array (which contains arbitrary distance values
4165 * from each node to each node in the system), and should also prefer nodes
4166 * with no CPUs, since presumably they'll have very little allocation pressure
4167 * on them otherwise.
4168 * It returns -1 if no node is found.
4169 */
f0c0b2b8 4170static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4171{
4cf808eb 4172 int n, val;
1da177e4 4173 int min_val = INT_MAX;
00ef2d2f 4174 int best_node = NUMA_NO_NODE;
a70f7302 4175 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4176
4cf808eb
LT
4177 /* Use the local node if we haven't already */
4178 if (!node_isset(node, *used_node_mask)) {
4179 node_set(node, *used_node_mask);
4180 return node;
4181 }
1da177e4 4182
4b0ef1fe 4183 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4184
4185 /* Don't want a node to appear more than once */
4186 if (node_isset(n, *used_node_mask))
4187 continue;
4188
1da177e4
LT
4189 /* Use the distance array to find the distance */
4190 val = node_distance(node, n);
4191
4cf808eb
LT
4192 /* Penalize nodes under us ("prefer the next node") */
4193 val += (n < node);
4194
1da177e4 4195 /* Give preference to headless and unused nodes */
a70f7302
RR
4196 tmp = cpumask_of_node(n);
4197 if (!cpumask_empty(tmp))
1da177e4
LT
4198 val += PENALTY_FOR_NODE_WITH_CPUS;
4199
4200 /* Slight preference for less loaded node */
4201 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4202 val += node_load[n];
4203
4204 if (val < min_val) {
4205 min_val = val;
4206 best_node = n;
4207 }
4208 }
4209
4210 if (best_node >= 0)
4211 node_set(best_node, *used_node_mask);
4212
4213 return best_node;
4214}
4215
f0c0b2b8
KH
4216
4217/*
4218 * Build zonelists ordered by node and zones within node.
4219 * This results in maximum locality--normal zone overflows into local
4220 * DMA zone, if any--but risks exhausting DMA zone.
4221 */
4222static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4223{
f0c0b2b8 4224 int j;
1da177e4 4225 struct zonelist *zonelist;
f0c0b2b8 4226
54a6eb5c 4227 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4228 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4229 ;
bc732f1d 4230 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4231 zonelist->_zonerefs[j].zone = NULL;
4232 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4233}
4234
523b9458
CL
4235/*
4236 * Build gfp_thisnode zonelists
4237 */
4238static void build_thisnode_zonelists(pg_data_t *pgdat)
4239{
523b9458
CL
4240 int j;
4241 struct zonelist *zonelist;
4242
54a6eb5c 4243 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4244 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4245 zonelist->_zonerefs[j].zone = NULL;
4246 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4247}
4248
f0c0b2b8
KH
4249/*
4250 * Build zonelists ordered by zone and nodes within zones.
4251 * This results in conserving DMA zone[s] until all Normal memory is
4252 * exhausted, but results in overflowing to remote node while memory
4253 * may still exist in local DMA zone.
4254 */
4255static int node_order[MAX_NUMNODES];
4256
4257static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4258{
f0c0b2b8
KH
4259 int pos, j, node;
4260 int zone_type; /* needs to be signed */
4261 struct zone *z;
4262 struct zonelist *zonelist;
4263
54a6eb5c
MG
4264 zonelist = &pgdat->node_zonelists[0];
4265 pos = 0;
4266 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4267 for (j = 0; j < nr_nodes; j++) {
4268 node = node_order[j];
4269 z = &NODE_DATA(node)->node_zones[zone_type];
4270 if (populated_zone(z)) {
dd1a239f
MG
4271 zoneref_set_zone(z,
4272 &zonelist->_zonerefs[pos++]);
54a6eb5c 4273 check_highest_zone(zone_type);
f0c0b2b8
KH
4274 }
4275 }
f0c0b2b8 4276 }
dd1a239f
MG
4277 zonelist->_zonerefs[pos].zone = NULL;
4278 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4279}
4280
3193913c
MG
4281#if defined(CONFIG_64BIT)
4282/*
4283 * Devices that require DMA32/DMA are relatively rare and do not justify a
4284 * penalty to every machine in case the specialised case applies. Default
4285 * to Node-ordering on 64-bit NUMA machines
4286 */
4287static int default_zonelist_order(void)
4288{
4289 return ZONELIST_ORDER_NODE;
4290}
4291#else
4292/*
4293 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4294 * by the kernel. If processes running on node 0 deplete the low memory zone
4295 * then reclaim will occur more frequency increasing stalls and potentially
4296 * be easier to OOM if a large percentage of the zone is under writeback or
4297 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4298 * Hence, default to zone ordering on 32-bit.
4299 */
f0c0b2b8
KH
4300static int default_zonelist_order(void)
4301{
f0c0b2b8
KH
4302 return ZONELIST_ORDER_ZONE;
4303}
3193913c 4304#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4305
4306static void set_zonelist_order(void)
4307{
4308 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4309 current_zonelist_order = default_zonelist_order();
4310 else
4311 current_zonelist_order = user_zonelist_order;
4312}
4313
4314static void build_zonelists(pg_data_t *pgdat)
4315{
c00eb15a 4316 int i, node, load;
1da177e4 4317 nodemask_t used_mask;
f0c0b2b8
KH
4318 int local_node, prev_node;
4319 struct zonelist *zonelist;
d00181b9 4320 unsigned int order = current_zonelist_order;
1da177e4
LT
4321
4322 /* initialize zonelists */
523b9458 4323 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4324 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4325 zonelist->_zonerefs[0].zone = NULL;
4326 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4327 }
4328
4329 /* NUMA-aware ordering of nodes */
4330 local_node = pgdat->node_id;
62bc62a8 4331 load = nr_online_nodes;
1da177e4
LT
4332 prev_node = local_node;
4333 nodes_clear(used_mask);
f0c0b2b8 4334
f0c0b2b8 4335 memset(node_order, 0, sizeof(node_order));
c00eb15a 4336 i = 0;
f0c0b2b8 4337
1da177e4
LT
4338 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4339 /*
4340 * We don't want to pressure a particular node.
4341 * So adding penalty to the first node in same
4342 * distance group to make it round-robin.
4343 */
957f822a
DR
4344 if (node_distance(local_node, node) !=
4345 node_distance(local_node, prev_node))
f0c0b2b8
KH
4346 node_load[node] = load;
4347
1da177e4
LT
4348 prev_node = node;
4349 load--;
f0c0b2b8
KH
4350 if (order == ZONELIST_ORDER_NODE)
4351 build_zonelists_in_node_order(pgdat, node);
4352 else
c00eb15a 4353 node_order[i++] = node; /* remember order */
f0c0b2b8 4354 }
1da177e4 4355
f0c0b2b8
KH
4356 if (order == ZONELIST_ORDER_ZONE) {
4357 /* calculate node order -- i.e., DMA last! */
c00eb15a 4358 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4359 }
523b9458
CL
4360
4361 build_thisnode_zonelists(pgdat);
1da177e4
LT
4362}
4363
7aac7898
LS
4364#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4365/*
4366 * Return node id of node used for "local" allocations.
4367 * I.e., first node id of first zone in arg node's generic zonelist.
4368 * Used for initializing percpu 'numa_mem', which is used primarily
4369 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4370 */
4371int local_memory_node(int node)
4372{
4373 struct zone *zone;
4374
4375 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4376 gfp_zone(GFP_KERNEL),
4377 NULL,
4378 &zone);
4379 return zone->node;
4380}
4381#endif
f0c0b2b8 4382
1da177e4
LT
4383#else /* CONFIG_NUMA */
4384
f0c0b2b8
KH
4385static void set_zonelist_order(void)
4386{
4387 current_zonelist_order = ZONELIST_ORDER_ZONE;
4388}
4389
4390static void build_zonelists(pg_data_t *pgdat)
1da177e4 4391{
19655d34 4392 int node, local_node;
54a6eb5c
MG
4393 enum zone_type j;
4394 struct zonelist *zonelist;
1da177e4
LT
4395
4396 local_node = pgdat->node_id;
1da177e4 4397
54a6eb5c 4398 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4399 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4400
54a6eb5c
MG
4401 /*
4402 * Now we build the zonelist so that it contains the zones
4403 * of all the other nodes.
4404 * We don't want to pressure a particular node, so when
4405 * building the zones for node N, we make sure that the
4406 * zones coming right after the local ones are those from
4407 * node N+1 (modulo N)
4408 */
4409 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4410 if (!node_online(node))
4411 continue;
bc732f1d 4412 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4413 }
54a6eb5c
MG
4414 for (node = 0; node < local_node; node++) {
4415 if (!node_online(node))
4416 continue;
bc732f1d 4417 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4418 }
4419
dd1a239f
MG
4420 zonelist->_zonerefs[j].zone = NULL;
4421 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4422}
4423
4424#endif /* CONFIG_NUMA */
4425
99dcc3e5
CL
4426/*
4427 * Boot pageset table. One per cpu which is going to be used for all
4428 * zones and all nodes. The parameters will be set in such a way
4429 * that an item put on a list will immediately be handed over to
4430 * the buddy list. This is safe since pageset manipulation is done
4431 * with interrupts disabled.
4432 *
4433 * The boot_pagesets must be kept even after bootup is complete for
4434 * unused processors and/or zones. They do play a role for bootstrapping
4435 * hotplugged processors.
4436 *
4437 * zoneinfo_show() and maybe other functions do
4438 * not check if the processor is online before following the pageset pointer.
4439 * Other parts of the kernel may not check if the zone is available.
4440 */
4441static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4442static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4443static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4444
4eaf3f64
HL
4445/*
4446 * Global mutex to protect against size modification of zonelists
4447 * as well as to serialize pageset setup for the new populated zone.
4448 */
4449DEFINE_MUTEX(zonelists_mutex);
4450
9b1a4d38 4451/* return values int ....just for stop_machine() */
4ed7e022 4452static int __build_all_zonelists(void *data)
1da177e4 4453{
6811378e 4454 int nid;
99dcc3e5 4455 int cpu;
9adb62a5 4456 pg_data_t *self = data;
9276b1bc 4457
7f9cfb31
BL
4458#ifdef CONFIG_NUMA
4459 memset(node_load, 0, sizeof(node_load));
4460#endif
9adb62a5
JL
4461
4462 if (self && !node_online(self->node_id)) {
4463 build_zonelists(self);
9adb62a5
JL
4464 }
4465
9276b1bc 4466 for_each_online_node(nid) {
7ea1530a
CL
4467 pg_data_t *pgdat = NODE_DATA(nid);
4468
4469 build_zonelists(pgdat);
9276b1bc 4470 }
99dcc3e5
CL
4471
4472 /*
4473 * Initialize the boot_pagesets that are going to be used
4474 * for bootstrapping processors. The real pagesets for
4475 * each zone will be allocated later when the per cpu
4476 * allocator is available.
4477 *
4478 * boot_pagesets are used also for bootstrapping offline
4479 * cpus if the system is already booted because the pagesets
4480 * are needed to initialize allocators on a specific cpu too.
4481 * F.e. the percpu allocator needs the page allocator which
4482 * needs the percpu allocator in order to allocate its pagesets
4483 * (a chicken-egg dilemma).
4484 */
7aac7898 4485 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4486 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4487
7aac7898
LS
4488#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4489 /*
4490 * We now know the "local memory node" for each node--
4491 * i.e., the node of the first zone in the generic zonelist.
4492 * Set up numa_mem percpu variable for on-line cpus. During
4493 * boot, only the boot cpu should be on-line; we'll init the
4494 * secondary cpus' numa_mem as they come on-line. During
4495 * node/memory hotplug, we'll fixup all on-line cpus.
4496 */
4497 if (cpu_online(cpu))
4498 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4499#endif
4500 }
4501
6811378e
YG
4502 return 0;
4503}
4504
061f67bc
RV
4505static noinline void __init
4506build_all_zonelists_init(void)
4507{
4508 __build_all_zonelists(NULL);
4509 mminit_verify_zonelist();
4510 cpuset_init_current_mems_allowed();
4511}
4512
4eaf3f64
HL
4513/*
4514 * Called with zonelists_mutex held always
4515 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4516 *
4517 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4518 * [we're only called with non-NULL zone through __meminit paths] and
4519 * (2) call of __init annotated helper build_all_zonelists_init
4520 * [protected by SYSTEM_BOOTING].
4eaf3f64 4521 */
9adb62a5 4522void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4523{
f0c0b2b8
KH
4524 set_zonelist_order();
4525
6811378e 4526 if (system_state == SYSTEM_BOOTING) {
061f67bc 4527 build_all_zonelists_init();
6811378e 4528 } else {
e9959f0f 4529#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4530 if (zone)
4531 setup_zone_pageset(zone);
e9959f0f 4532#endif
dd1895e2
CS
4533 /* we have to stop all cpus to guarantee there is no user
4534 of zonelist */
9adb62a5 4535 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4536 /* cpuset refresh routine should be here */
4537 }
bd1e22b8 4538 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4539 /*
4540 * Disable grouping by mobility if the number of pages in the
4541 * system is too low to allow the mechanism to work. It would be
4542 * more accurate, but expensive to check per-zone. This check is
4543 * made on memory-hotadd so a system can start with mobility
4544 * disabled and enable it later
4545 */
d9c23400 4546 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4547 page_group_by_mobility_disabled = 1;
4548 else
4549 page_group_by_mobility_disabled = 0;
4550
756a025f
JP
4551 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4552 nr_online_nodes,
4553 zonelist_order_name[current_zonelist_order],
4554 page_group_by_mobility_disabled ? "off" : "on",
4555 vm_total_pages);
f0c0b2b8 4556#ifdef CONFIG_NUMA
f88dfff5 4557 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4558#endif
1da177e4
LT
4559}
4560
4561/*
4562 * Helper functions to size the waitqueue hash table.
4563 * Essentially these want to choose hash table sizes sufficiently
4564 * large so that collisions trying to wait on pages are rare.
4565 * But in fact, the number of active page waitqueues on typical
4566 * systems is ridiculously low, less than 200. So this is even
4567 * conservative, even though it seems large.
4568 *
4569 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4570 * waitqueues, i.e. the size of the waitq table given the number of pages.
4571 */
4572#define PAGES_PER_WAITQUEUE 256
4573
cca448fe 4574#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4575static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4576{
4577 unsigned long size = 1;
4578
4579 pages /= PAGES_PER_WAITQUEUE;
4580
4581 while (size < pages)
4582 size <<= 1;
4583
4584 /*
4585 * Once we have dozens or even hundreds of threads sleeping
4586 * on IO we've got bigger problems than wait queue collision.
4587 * Limit the size of the wait table to a reasonable size.
4588 */
4589 size = min(size, 4096UL);
4590
4591 return max(size, 4UL);
4592}
cca448fe
YG
4593#else
4594/*
4595 * A zone's size might be changed by hot-add, so it is not possible to determine
4596 * a suitable size for its wait_table. So we use the maximum size now.
4597 *
4598 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4599 *
4600 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4601 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4602 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4603 *
4604 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4605 * or more by the traditional way. (See above). It equals:
4606 *
4607 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4608 * ia64(16K page size) : = ( 8G + 4M)byte.
4609 * powerpc (64K page size) : = (32G +16M)byte.
4610 */
4611static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4612{
4613 return 4096UL;
4614}
4615#endif
1da177e4
LT
4616
4617/*
4618 * This is an integer logarithm so that shifts can be used later
4619 * to extract the more random high bits from the multiplicative
4620 * hash function before the remainder is taken.
4621 */
4622static inline unsigned long wait_table_bits(unsigned long size)
4623{
4624 return ffz(~size);
4625}
4626
1da177e4
LT
4627/*
4628 * Initially all pages are reserved - free ones are freed
4629 * up by free_all_bootmem() once the early boot process is
4630 * done. Non-atomic initialization, single-pass.
4631 */
c09b4240 4632void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4633 unsigned long start_pfn, enum memmap_context context)
1da177e4 4634{
4b94ffdc 4635 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4636 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4637 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4638 unsigned long pfn;
3a80a7fa 4639 unsigned long nr_initialised = 0;
342332e6
TI
4640#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4641 struct memblock_region *r = NULL, *tmp;
4642#endif
1da177e4 4643
22b31eec
HD
4644 if (highest_memmap_pfn < end_pfn - 1)
4645 highest_memmap_pfn = end_pfn - 1;
4646
4b94ffdc
DW
4647 /*
4648 * Honor reservation requested by the driver for this ZONE_DEVICE
4649 * memory
4650 */
4651 if (altmap && start_pfn == altmap->base_pfn)
4652 start_pfn += altmap->reserve;
4653
cbe8dd4a 4654 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4655 /*
b72d0ffb
AM
4656 * There can be holes in boot-time mem_map[]s handed to this
4657 * function. They do not exist on hotplugged memory.
a2f3aa02 4658 */
b72d0ffb
AM
4659 if (context != MEMMAP_EARLY)
4660 goto not_early;
4661
4662 if (!early_pfn_valid(pfn))
4663 continue;
4664 if (!early_pfn_in_nid(pfn, nid))
4665 continue;
4666 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4667 break;
342332e6
TI
4668
4669#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4670 /*
4671 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4672 * from zone_movable_pfn[nid] to end of each node should be
4673 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4674 */
4675 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4676 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4677 continue;
342332e6 4678
b72d0ffb
AM
4679 /*
4680 * Check given memblock attribute by firmware which can affect
4681 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4682 * mirrored, it's an overlapped memmap init. skip it.
4683 */
4684 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4685 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4686 for_each_memblock(memory, tmp)
4687 if (pfn < memblock_region_memory_end_pfn(tmp))
4688 break;
4689 r = tmp;
4690 }
4691 if (pfn >= memblock_region_memory_base_pfn(r) &&
4692 memblock_is_mirror(r)) {
4693 /* already initialized as NORMAL */
4694 pfn = memblock_region_memory_end_pfn(r);
4695 continue;
342332e6 4696 }
a2f3aa02 4697 }
b72d0ffb 4698#endif
ac5d2539 4699
b72d0ffb 4700not_early:
ac5d2539
MG
4701 /*
4702 * Mark the block movable so that blocks are reserved for
4703 * movable at startup. This will force kernel allocations
4704 * to reserve their blocks rather than leaking throughout
4705 * the address space during boot when many long-lived
974a786e 4706 * kernel allocations are made.
ac5d2539
MG
4707 *
4708 * bitmap is created for zone's valid pfn range. but memmap
4709 * can be created for invalid pages (for alignment)
4710 * check here not to call set_pageblock_migratetype() against
4711 * pfn out of zone.
4712 */
4713 if (!(pfn & (pageblock_nr_pages - 1))) {
4714 struct page *page = pfn_to_page(pfn);
4715
4716 __init_single_page(page, pfn, zone, nid);
4717 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4718 } else {
4719 __init_single_pfn(pfn, zone, nid);
4720 }
1da177e4
LT
4721 }
4722}
4723
1e548deb 4724static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4725{
7aeb09f9 4726 unsigned int order, t;
b2a0ac88
MG
4727 for_each_migratetype_order(order, t) {
4728 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4729 zone->free_area[order].nr_free = 0;
4730 }
4731}
4732
4733#ifndef __HAVE_ARCH_MEMMAP_INIT
4734#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4735 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4736#endif
4737
7cd2b0a3 4738static int zone_batchsize(struct zone *zone)
e7c8d5c9 4739{
3a6be87f 4740#ifdef CONFIG_MMU
e7c8d5c9
CL
4741 int batch;
4742
4743 /*
4744 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4745 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4746 *
4747 * OK, so we don't know how big the cache is. So guess.
4748 */
b40da049 4749 batch = zone->managed_pages / 1024;
ba56e91c
SR
4750 if (batch * PAGE_SIZE > 512 * 1024)
4751 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4752 batch /= 4; /* We effectively *= 4 below */
4753 if (batch < 1)
4754 batch = 1;
4755
4756 /*
0ceaacc9
NP
4757 * Clamp the batch to a 2^n - 1 value. Having a power
4758 * of 2 value was found to be more likely to have
4759 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4760 *
0ceaacc9
NP
4761 * For example if 2 tasks are alternately allocating
4762 * batches of pages, one task can end up with a lot
4763 * of pages of one half of the possible page colors
4764 * and the other with pages of the other colors.
e7c8d5c9 4765 */
9155203a 4766 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4767
e7c8d5c9 4768 return batch;
3a6be87f
DH
4769
4770#else
4771 /* The deferral and batching of frees should be suppressed under NOMMU
4772 * conditions.
4773 *
4774 * The problem is that NOMMU needs to be able to allocate large chunks
4775 * of contiguous memory as there's no hardware page translation to
4776 * assemble apparent contiguous memory from discontiguous pages.
4777 *
4778 * Queueing large contiguous runs of pages for batching, however,
4779 * causes the pages to actually be freed in smaller chunks. As there
4780 * can be a significant delay between the individual batches being
4781 * recycled, this leads to the once large chunks of space being
4782 * fragmented and becoming unavailable for high-order allocations.
4783 */
4784 return 0;
4785#endif
e7c8d5c9
CL
4786}
4787
8d7a8fa9
CS
4788/*
4789 * pcp->high and pcp->batch values are related and dependent on one another:
4790 * ->batch must never be higher then ->high.
4791 * The following function updates them in a safe manner without read side
4792 * locking.
4793 *
4794 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4795 * those fields changing asynchronously (acording the the above rule).
4796 *
4797 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4798 * outside of boot time (or some other assurance that no concurrent updaters
4799 * exist).
4800 */
4801static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4802 unsigned long batch)
4803{
4804 /* start with a fail safe value for batch */
4805 pcp->batch = 1;
4806 smp_wmb();
4807
4808 /* Update high, then batch, in order */
4809 pcp->high = high;
4810 smp_wmb();
4811
4812 pcp->batch = batch;
4813}
4814
3664033c 4815/* a companion to pageset_set_high() */
4008bab7
CS
4816static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4817{
8d7a8fa9 4818 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4819}
4820
88c90dbc 4821static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4822{
4823 struct per_cpu_pages *pcp;
5f8dcc21 4824 int migratetype;
2caaad41 4825
1c6fe946
MD
4826 memset(p, 0, sizeof(*p));
4827
3dfa5721 4828 pcp = &p->pcp;
2caaad41 4829 pcp->count = 0;
5f8dcc21
MG
4830 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4831 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4832}
4833
88c90dbc
CS
4834static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4835{
4836 pageset_init(p);
4837 pageset_set_batch(p, batch);
4838}
4839
8ad4b1fb 4840/*
3664033c 4841 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4842 * to the value high for the pageset p.
4843 */
3664033c 4844static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4845 unsigned long high)
4846{
8d7a8fa9
CS
4847 unsigned long batch = max(1UL, high / 4);
4848 if ((high / 4) > (PAGE_SHIFT * 8))
4849 batch = PAGE_SHIFT * 8;
8ad4b1fb 4850
8d7a8fa9 4851 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4852}
4853
7cd2b0a3
DR
4854static void pageset_set_high_and_batch(struct zone *zone,
4855 struct per_cpu_pageset *pcp)
56cef2b8 4856{
56cef2b8 4857 if (percpu_pagelist_fraction)
3664033c 4858 pageset_set_high(pcp,
56cef2b8
CS
4859 (zone->managed_pages /
4860 percpu_pagelist_fraction));
4861 else
4862 pageset_set_batch(pcp, zone_batchsize(zone));
4863}
4864
169f6c19
CS
4865static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4866{
4867 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4868
4869 pageset_init(pcp);
4870 pageset_set_high_and_batch(zone, pcp);
4871}
4872
4ed7e022 4873static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4874{
4875 int cpu;
319774e2 4876 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4877 for_each_possible_cpu(cpu)
4878 zone_pageset_init(zone, cpu);
319774e2
WF
4879}
4880
2caaad41 4881/*
99dcc3e5
CL
4882 * Allocate per cpu pagesets and initialize them.
4883 * Before this call only boot pagesets were available.
e7c8d5c9 4884 */
99dcc3e5 4885void __init setup_per_cpu_pageset(void)
e7c8d5c9 4886{
99dcc3e5 4887 struct zone *zone;
e7c8d5c9 4888
319774e2
WF
4889 for_each_populated_zone(zone)
4890 setup_zone_pageset(zone);
e7c8d5c9
CL
4891}
4892
577a32f6 4893static noinline __init_refok
cca448fe 4894int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4895{
4896 int i;
cca448fe 4897 size_t alloc_size;
ed8ece2e
DH
4898
4899 /*
4900 * The per-page waitqueue mechanism uses hashed waitqueues
4901 * per zone.
4902 */
02b694de
YG
4903 zone->wait_table_hash_nr_entries =
4904 wait_table_hash_nr_entries(zone_size_pages);
4905 zone->wait_table_bits =
4906 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4907 alloc_size = zone->wait_table_hash_nr_entries
4908 * sizeof(wait_queue_head_t);
4909
cd94b9db 4910 if (!slab_is_available()) {
cca448fe 4911 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4912 memblock_virt_alloc_node_nopanic(
4913 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4914 } else {
4915 /*
4916 * This case means that a zone whose size was 0 gets new memory
4917 * via memory hot-add.
4918 * But it may be the case that a new node was hot-added. In
4919 * this case vmalloc() will not be able to use this new node's
4920 * memory - this wait_table must be initialized to use this new
4921 * node itself as well.
4922 * To use this new node's memory, further consideration will be
4923 * necessary.
4924 */
8691f3a7 4925 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4926 }
4927 if (!zone->wait_table)
4928 return -ENOMEM;
ed8ece2e 4929
b8af2941 4930 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4931 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4932
4933 return 0;
ed8ece2e
DH
4934}
4935
c09b4240 4936static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4937{
99dcc3e5
CL
4938 /*
4939 * per cpu subsystem is not up at this point. The following code
4940 * relies on the ability of the linker to provide the
4941 * offset of a (static) per cpu variable into the per cpu area.
4942 */
4943 zone->pageset = &boot_pageset;
ed8ece2e 4944
b38a8725 4945 if (populated_zone(zone))
99dcc3e5
CL
4946 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4947 zone->name, zone->present_pages,
4948 zone_batchsize(zone));
ed8ece2e
DH
4949}
4950
4ed7e022 4951int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4952 unsigned long zone_start_pfn,
b171e409 4953 unsigned long size)
ed8ece2e
DH
4954{
4955 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4956 int ret;
4957 ret = zone_wait_table_init(zone, size);
4958 if (ret)
4959 return ret;
ed8ece2e
DH
4960 pgdat->nr_zones = zone_idx(zone) + 1;
4961
ed8ece2e
DH
4962 zone->zone_start_pfn = zone_start_pfn;
4963
708614e6
MG
4964 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4965 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4966 pgdat->node_id,
4967 (unsigned long)zone_idx(zone),
4968 zone_start_pfn, (zone_start_pfn + size));
4969
1e548deb 4970 zone_init_free_lists(zone);
718127cc
YG
4971
4972 return 0;
ed8ece2e
DH
4973}
4974
0ee332c1 4975#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4976#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4977
c713216d
MG
4978/*
4979 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4980 */
8a942fde
MG
4981int __meminit __early_pfn_to_nid(unsigned long pfn,
4982 struct mminit_pfnnid_cache *state)
c713216d 4983{
c13291a5 4984 unsigned long start_pfn, end_pfn;
e76b63f8 4985 int nid;
7c243c71 4986
8a942fde
MG
4987 if (state->last_start <= pfn && pfn < state->last_end)
4988 return state->last_nid;
c713216d 4989
e76b63f8
YL
4990 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4991 if (nid != -1) {
8a942fde
MG
4992 state->last_start = start_pfn;
4993 state->last_end = end_pfn;
4994 state->last_nid = nid;
e76b63f8
YL
4995 }
4996
4997 return nid;
c713216d
MG
4998}
4999#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5000
c713216d 5001/**
6782832e 5002 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5003 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5004 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5005 *
7d018176
ZZ
5006 * If an architecture guarantees that all ranges registered contain no holes
5007 * and may be freed, this this function may be used instead of calling
5008 * memblock_free_early_nid() manually.
c713216d 5009 */
c13291a5 5010void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5011{
c13291a5
TH
5012 unsigned long start_pfn, end_pfn;
5013 int i, this_nid;
edbe7d23 5014
c13291a5
TH
5015 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5016 start_pfn = min(start_pfn, max_low_pfn);
5017 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5018
c13291a5 5019 if (start_pfn < end_pfn)
6782832e
SS
5020 memblock_free_early_nid(PFN_PHYS(start_pfn),
5021 (end_pfn - start_pfn) << PAGE_SHIFT,
5022 this_nid);
edbe7d23 5023 }
edbe7d23 5024}
edbe7d23 5025
c713216d
MG
5026/**
5027 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5028 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5029 *
7d018176
ZZ
5030 * If an architecture guarantees that all ranges registered contain no holes and may
5031 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5032 */
5033void __init sparse_memory_present_with_active_regions(int nid)
5034{
c13291a5
TH
5035 unsigned long start_pfn, end_pfn;
5036 int i, this_nid;
c713216d 5037
c13291a5
TH
5038 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5039 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5040}
5041
5042/**
5043 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5044 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5045 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5046 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5047 *
5048 * It returns the start and end page frame of a node based on information
7d018176 5049 * provided by memblock_set_node(). If called for a node
c713216d 5050 * with no available memory, a warning is printed and the start and end
88ca3b94 5051 * PFNs will be 0.
c713216d 5052 */
a3142c8e 5053void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5054 unsigned long *start_pfn, unsigned long *end_pfn)
5055{
c13291a5 5056 unsigned long this_start_pfn, this_end_pfn;
c713216d 5057 int i;
c13291a5 5058
c713216d
MG
5059 *start_pfn = -1UL;
5060 *end_pfn = 0;
5061
c13291a5
TH
5062 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5063 *start_pfn = min(*start_pfn, this_start_pfn);
5064 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5065 }
5066
633c0666 5067 if (*start_pfn == -1UL)
c713216d 5068 *start_pfn = 0;
c713216d
MG
5069}
5070
2a1e274a
MG
5071/*
5072 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5073 * assumption is made that zones within a node are ordered in monotonic
5074 * increasing memory addresses so that the "highest" populated zone is used
5075 */
b69a7288 5076static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5077{
5078 int zone_index;
5079 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5080 if (zone_index == ZONE_MOVABLE)
5081 continue;
5082
5083 if (arch_zone_highest_possible_pfn[zone_index] >
5084 arch_zone_lowest_possible_pfn[zone_index])
5085 break;
5086 }
5087
5088 VM_BUG_ON(zone_index == -1);
5089 movable_zone = zone_index;
5090}
5091
5092/*
5093 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5094 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5095 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5096 * in each node depending on the size of each node and how evenly kernelcore
5097 * is distributed. This helper function adjusts the zone ranges
5098 * provided by the architecture for a given node by using the end of the
5099 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5100 * zones within a node are in order of monotonic increases memory addresses
5101 */
b69a7288 5102static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5103 unsigned long zone_type,
5104 unsigned long node_start_pfn,
5105 unsigned long node_end_pfn,
5106 unsigned long *zone_start_pfn,
5107 unsigned long *zone_end_pfn)
5108{
5109 /* Only adjust if ZONE_MOVABLE is on this node */
5110 if (zone_movable_pfn[nid]) {
5111 /* Size ZONE_MOVABLE */
5112 if (zone_type == ZONE_MOVABLE) {
5113 *zone_start_pfn = zone_movable_pfn[nid];
5114 *zone_end_pfn = min(node_end_pfn,
5115 arch_zone_highest_possible_pfn[movable_zone]);
5116
2a1e274a
MG
5117 /* Check if this whole range is within ZONE_MOVABLE */
5118 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5119 *zone_start_pfn = *zone_end_pfn;
5120 }
5121}
5122
c713216d
MG
5123/*
5124 * Return the number of pages a zone spans in a node, including holes
5125 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5126 */
6ea6e688 5127static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5128 unsigned long zone_type,
7960aedd
ZY
5129 unsigned long node_start_pfn,
5130 unsigned long node_end_pfn,
d91749c1
TI
5131 unsigned long *zone_start_pfn,
5132 unsigned long *zone_end_pfn,
c713216d
MG
5133 unsigned long *ignored)
5134{
b5685e92 5135 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5136 if (!node_start_pfn && !node_end_pfn)
5137 return 0;
5138
7960aedd 5139 /* Get the start and end of the zone */
d91749c1
TI
5140 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5141 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5142 adjust_zone_range_for_zone_movable(nid, zone_type,
5143 node_start_pfn, node_end_pfn,
d91749c1 5144 zone_start_pfn, zone_end_pfn);
c713216d
MG
5145
5146 /* Check that this node has pages within the zone's required range */
d91749c1 5147 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5148 return 0;
5149
5150 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5151 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5152 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5153
5154 /* Return the spanned pages */
d91749c1 5155 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5156}
5157
5158/*
5159 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5160 * then all holes in the requested range will be accounted for.
c713216d 5161 */
32996250 5162unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5163 unsigned long range_start_pfn,
5164 unsigned long range_end_pfn)
5165{
96e907d1
TH
5166 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5167 unsigned long start_pfn, end_pfn;
5168 int i;
c713216d 5169
96e907d1
TH
5170 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5171 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5172 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5173 nr_absent -= end_pfn - start_pfn;
c713216d 5174 }
96e907d1 5175 return nr_absent;
c713216d
MG
5176}
5177
5178/**
5179 * absent_pages_in_range - Return number of page frames in holes within a range
5180 * @start_pfn: The start PFN to start searching for holes
5181 * @end_pfn: The end PFN to stop searching for holes
5182 *
88ca3b94 5183 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5184 */
5185unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5186 unsigned long end_pfn)
5187{
5188 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5189}
5190
5191/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5192static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5193 unsigned long zone_type,
7960aedd
ZY
5194 unsigned long node_start_pfn,
5195 unsigned long node_end_pfn,
c713216d
MG
5196 unsigned long *ignored)
5197{
96e907d1
TH
5198 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5199 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5200 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5201 unsigned long nr_absent;
9c7cd687 5202
b5685e92 5203 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5204 if (!node_start_pfn && !node_end_pfn)
5205 return 0;
5206
96e907d1
TH
5207 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5208 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5209
2a1e274a
MG
5210 adjust_zone_range_for_zone_movable(nid, zone_type,
5211 node_start_pfn, node_end_pfn,
5212 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5213 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5214
5215 /*
5216 * ZONE_MOVABLE handling.
5217 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5218 * and vice versa.
5219 */
5220 if (zone_movable_pfn[nid]) {
5221 if (mirrored_kernelcore) {
5222 unsigned long start_pfn, end_pfn;
5223 struct memblock_region *r;
5224
5225 for_each_memblock(memory, r) {
5226 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5227 zone_start_pfn, zone_end_pfn);
5228 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5229 zone_start_pfn, zone_end_pfn);
5230
5231 if (zone_type == ZONE_MOVABLE &&
5232 memblock_is_mirror(r))
5233 nr_absent += end_pfn - start_pfn;
5234
5235 if (zone_type == ZONE_NORMAL &&
5236 !memblock_is_mirror(r))
5237 nr_absent += end_pfn - start_pfn;
5238 }
5239 } else {
5240 if (zone_type == ZONE_NORMAL)
5241 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5242 }
5243 }
5244
5245 return nr_absent;
c713216d 5246}
0e0b864e 5247
0ee332c1 5248#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5249static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5250 unsigned long zone_type,
7960aedd
ZY
5251 unsigned long node_start_pfn,
5252 unsigned long node_end_pfn,
d91749c1
TI
5253 unsigned long *zone_start_pfn,
5254 unsigned long *zone_end_pfn,
c713216d
MG
5255 unsigned long *zones_size)
5256{
d91749c1
TI
5257 unsigned int zone;
5258
5259 *zone_start_pfn = node_start_pfn;
5260 for (zone = 0; zone < zone_type; zone++)
5261 *zone_start_pfn += zones_size[zone];
5262
5263 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5264
c713216d
MG
5265 return zones_size[zone_type];
5266}
5267
6ea6e688 5268static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5269 unsigned long zone_type,
7960aedd
ZY
5270 unsigned long node_start_pfn,
5271 unsigned long node_end_pfn,
c713216d
MG
5272 unsigned long *zholes_size)
5273{
5274 if (!zholes_size)
5275 return 0;
5276
5277 return zholes_size[zone_type];
5278}
20e6926d 5279
0ee332c1 5280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5281
a3142c8e 5282static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5283 unsigned long node_start_pfn,
5284 unsigned long node_end_pfn,
5285 unsigned long *zones_size,
5286 unsigned long *zholes_size)
c713216d 5287{
febd5949 5288 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5289 enum zone_type i;
5290
febd5949
GZ
5291 for (i = 0; i < MAX_NR_ZONES; i++) {
5292 struct zone *zone = pgdat->node_zones + i;
d91749c1 5293 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5294 unsigned long size, real_size;
c713216d 5295
febd5949
GZ
5296 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5297 node_start_pfn,
5298 node_end_pfn,
d91749c1
TI
5299 &zone_start_pfn,
5300 &zone_end_pfn,
febd5949
GZ
5301 zones_size);
5302 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5303 node_start_pfn, node_end_pfn,
5304 zholes_size);
d91749c1
TI
5305 if (size)
5306 zone->zone_start_pfn = zone_start_pfn;
5307 else
5308 zone->zone_start_pfn = 0;
febd5949
GZ
5309 zone->spanned_pages = size;
5310 zone->present_pages = real_size;
5311
5312 totalpages += size;
5313 realtotalpages += real_size;
5314 }
5315
5316 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5317 pgdat->node_present_pages = realtotalpages;
5318 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5319 realtotalpages);
5320}
5321
835c134e
MG
5322#ifndef CONFIG_SPARSEMEM
5323/*
5324 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5325 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5326 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5327 * round what is now in bits to nearest long in bits, then return it in
5328 * bytes.
5329 */
7c45512d 5330static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5331{
5332 unsigned long usemapsize;
5333
7c45512d 5334 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5335 usemapsize = roundup(zonesize, pageblock_nr_pages);
5336 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5337 usemapsize *= NR_PAGEBLOCK_BITS;
5338 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5339
5340 return usemapsize / 8;
5341}
5342
5343static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5344 struct zone *zone,
5345 unsigned long zone_start_pfn,
5346 unsigned long zonesize)
835c134e 5347{
7c45512d 5348 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5349 zone->pageblock_flags = NULL;
58a01a45 5350 if (usemapsize)
6782832e
SS
5351 zone->pageblock_flags =
5352 memblock_virt_alloc_node_nopanic(usemapsize,
5353 pgdat->node_id);
835c134e
MG
5354}
5355#else
7c45512d
LT
5356static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5357 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5358#endif /* CONFIG_SPARSEMEM */
5359
d9c23400 5360#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5361
d9c23400 5362/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5363void __paginginit set_pageblock_order(void)
d9c23400 5364{
955c1cd7
AM
5365 unsigned int order;
5366
d9c23400
MG
5367 /* Check that pageblock_nr_pages has not already been setup */
5368 if (pageblock_order)
5369 return;
5370
955c1cd7
AM
5371 if (HPAGE_SHIFT > PAGE_SHIFT)
5372 order = HUGETLB_PAGE_ORDER;
5373 else
5374 order = MAX_ORDER - 1;
5375
d9c23400
MG
5376 /*
5377 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5378 * This value may be variable depending on boot parameters on IA64 and
5379 * powerpc.
d9c23400
MG
5380 */
5381 pageblock_order = order;
5382}
5383#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5384
ba72cb8c
MG
5385/*
5386 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5387 * is unused as pageblock_order is set at compile-time. See
5388 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5389 * the kernel config
ba72cb8c 5390 */
15ca220e 5391void __paginginit set_pageblock_order(void)
ba72cb8c 5392{
ba72cb8c 5393}
d9c23400
MG
5394
5395#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5396
01cefaef
JL
5397static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5398 unsigned long present_pages)
5399{
5400 unsigned long pages = spanned_pages;
5401
5402 /*
5403 * Provide a more accurate estimation if there are holes within
5404 * the zone and SPARSEMEM is in use. If there are holes within the
5405 * zone, each populated memory region may cost us one or two extra
5406 * memmap pages due to alignment because memmap pages for each
5407 * populated regions may not naturally algined on page boundary.
5408 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5409 */
5410 if (spanned_pages > present_pages + (present_pages >> 4) &&
5411 IS_ENABLED(CONFIG_SPARSEMEM))
5412 pages = present_pages;
5413
5414 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5415}
5416
1da177e4
LT
5417/*
5418 * Set up the zone data structures:
5419 * - mark all pages reserved
5420 * - mark all memory queues empty
5421 * - clear the memory bitmaps
6527af5d
MK
5422 *
5423 * NOTE: pgdat should get zeroed by caller.
1da177e4 5424 */
7f3eb55b 5425static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5426{
2f1b6248 5427 enum zone_type j;
ed8ece2e 5428 int nid = pgdat->node_id;
718127cc 5429 int ret;
1da177e4 5430
208d54e5 5431 pgdat_resize_init(pgdat);
8177a420
AA
5432#ifdef CONFIG_NUMA_BALANCING
5433 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5434 pgdat->numabalancing_migrate_nr_pages = 0;
5435 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5436#endif
5437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5438 spin_lock_init(&pgdat->split_queue_lock);
5439 INIT_LIST_HEAD(&pgdat->split_queue);
5440 pgdat->split_queue_len = 0;
8177a420 5441#endif
1da177e4 5442 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5443 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5444#ifdef CONFIG_COMPACTION
5445 init_waitqueue_head(&pgdat->kcompactd_wait);
5446#endif
eefa864b 5447 pgdat_page_ext_init(pgdat);
5f63b720 5448
1da177e4
LT
5449 for (j = 0; j < MAX_NR_ZONES; j++) {
5450 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5451 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5452 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5453
febd5949
GZ
5454 size = zone->spanned_pages;
5455 realsize = freesize = zone->present_pages;
1da177e4 5456
0e0b864e 5457 /*
9feedc9d 5458 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5459 * is used by this zone for memmap. This affects the watermark
5460 * and per-cpu initialisations
5461 */
01cefaef 5462 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5463 if (!is_highmem_idx(j)) {
5464 if (freesize >= memmap_pages) {
5465 freesize -= memmap_pages;
5466 if (memmap_pages)
5467 printk(KERN_DEBUG
5468 " %s zone: %lu pages used for memmap\n",
5469 zone_names[j], memmap_pages);
5470 } else
1170532b 5471 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5472 zone_names[j], memmap_pages, freesize);
5473 }
0e0b864e 5474
6267276f 5475 /* Account for reserved pages */
9feedc9d
JL
5476 if (j == 0 && freesize > dma_reserve) {
5477 freesize -= dma_reserve;
d903ef9f 5478 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5479 zone_names[0], dma_reserve);
0e0b864e
MG
5480 }
5481
98d2b0eb 5482 if (!is_highmem_idx(j))
9feedc9d 5483 nr_kernel_pages += freesize;
01cefaef
JL
5484 /* Charge for highmem memmap if there are enough kernel pages */
5485 else if (nr_kernel_pages > memmap_pages * 2)
5486 nr_kernel_pages -= memmap_pages;
9feedc9d 5487 nr_all_pages += freesize;
1da177e4 5488
9feedc9d
JL
5489 /*
5490 * Set an approximate value for lowmem here, it will be adjusted
5491 * when the bootmem allocator frees pages into the buddy system.
5492 * And all highmem pages will be managed by the buddy system.
5493 */
5494 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5495#ifdef CONFIG_NUMA
d5f541ed 5496 zone->node = nid;
9feedc9d 5497 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5498 / 100;
9feedc9d 5499 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5500#endif
1da177e4
LT
5501 zone->name = zone_names[j];
5502 spin_lock_init(&zone->lock);
5503 spin_lock_init(&zone->lru_lock);
bdc8cb98 5504 zone_seqlock_init(zone);
1da177e4 5505 zone->zone_pgdat = pgdat;
ed8ece2e 5506 zone_pcp_init(zone);
81c0a2bb
JW
5507
5508 /* For bootup, initialized properly in watermark setup */
5509 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5510
bea8c150 5511 lruvec_init(&zone->lruvec);
1da177e4
LT
5512 if (!size)
5513 continue;
5514
955c1cd7 5515 set_pageblock_order();
7c45512d 5516 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5517 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5518 BUG_ON(ret);
76cdd58e 5519 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5520 }
5521}
5522
577a32f6 5523static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5524{
b0aeba74 5525 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5526 unsigned long __maybe_unused offset = 0;
5527
1da177e4
LT
5528 /* Skip empty nodes */
5529 if (!pgdat->node_spanned_pages)
5530 return;
5531
d41dee36 5532#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5533 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5534 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5535 /* ia64 gets its own node_mem_map, before this, without bootmem */
5536 if (!pgdat->node_mem_map) {
b0aeba74 5537 unsigned long size, end;
d41dee36
AW
5538 struct page *map;
5539
e984bb43
BP
5540 /*
5541 * The zone's endpoints aren't required to be MAX_ORDER
5542 * aligned but the node_mem_map endpoints must be in order
5543 * for the buddy allocator to function correctly.
5544 */
108bcc96 5545 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5546 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5547 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5548 map = alloc_remap(pgdat->node_id, size);
5549 if (!map)
6782832e
SS
5550 map = memblock_virt_alloc_node_nopanic(size,
5551 pgdat->node_id);
a1c34a3b 5552 pgdat->node_mem_map = map + offset;
1da177e4 5553 }
12d810c1 5554#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5555 /*
5556 * With no DISCONTIG, the global mem_map is just set as node 0's
5557 */
c713216d 5558 if (pgdat == NODE_DATA(0)) {
1da177e4 5559 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5560#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5561 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5562 mem_map -= offset;
0ee332c1 5563#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5564 }
1da177e4 5565#endif
d41dee36 5566#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5567}
5568
9109fb7b
JW
5569void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5570 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5571{
9109fb7b 5572 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5573 unsigned long start_pfn = 0;
5574 unsigned long end_pfn = 0;
9109fb7b 5575
88fdf75d 5576 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5577 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5578
3a80a7fa 5579 reset_deferred_meminit(pgdat);
1da177e4
LT
5580 pgdat->node_id = nid;
5581 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5582#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5583 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5584 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5585 (u64)start_pfn << PAGE_SHIFT,
5586 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5587#else
5588 start_pfn = node_start_pfn;
7960aedd
ZY
5589#endif
5590 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5591 zones_size, zholes_size);
1da177e4
LT
5592
5593 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5594#ifdef CONFIG_FLAT_NODE_MEM_MAP
5595 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5596 nid, (unsigned long)pgdat,
5597 (unsigned long)pgdat->node_mem_map);
5598#endif
1da177e4 5599
7f3eb55b 5600 free_area_init_core(pgdat);
1da177e4
LT
5601}
5602
0ee332c1 5603#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5604
5605#if MAX_NUMNODES > 1
5606/*
5607 * Figure out the number of possible node ids.
5608 */
f9872caf 5609void __init setup_nr_node_ids(void)
418508c1 5610{
904a9553 5611 unsigned int highest;
418508c1 5612
904a9553 5613 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5614 nr_node_ids = highest + 1;
5615}
418508c1
MS
5616#endif
5617
1e01979c
TH
5618/**
5619 * node_map_pfn_alignment - determine the maximum internode alignment
5620 *
5621 * This function should be called after node map is populated and sorted.
5622 * It calculates the maximum power of two alignment which can distinguish
5623 * all the nodes.
5624 *
5625 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5626 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5627 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5628 * shifted, 1GiB is enough and this function will indicate so.
5629 *
5630 * This is used to test whether pfn -> nid mapping of the chosen memory
5631 * model has fine enough granularity to avoid incorrect mapping for the
5632 * populated node map.
5633 *
5634 * Returns the determined alignment in pfn's. 0 if there is no alignment
5635 * requirement (single node).
5636 */
5637unsigned long __init node_map_pfn_alignment(void)
5638{
5639 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5640 unsigned long start, end, mask;
1e01979c 5641 int last_nid = -1;
c13291a5 5642 int i, nid;
1e01979c 5643
c13291a5 5644 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5645 if (!start || last_nid < 0 || last_nid == nid) {
5646 last_nid = nid;
5647 last_end = end;
5648 continue;
5649 }
5650
5651 /*
5652 * Start with a mask granular enough to pin-point to the
5653 * start pfn and tick off bits one-by-one until it becomes
5654 * too coarse to separate the current node from the last.
5655 */
5656 mask = ~((1 << __ffs(start)) - 1);
5657 while (mask && last_end <= (start & (mask << 1)))
5658 mask <<= 1;
5659
5660 /* accumulate all internode masks */
5661 accl_mask |= mask;
5662 }
5663
5664 /* convert mask to number of pages */
5665 return ~accl_mask + 1;
5666}
5667
a6af2bc3 5668/* Find the lowest pfn for a node */
b69a7288 5669static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5670{
a6af2bc3 5671 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5672 unsigned long start_pfn;
5673 int i;
1abbfb41 5674
c13291a5
TH
5675 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5676 min_pfn = min(min_pfn, start_pfn);
c713216d 5677
a6af2bc3 5678 if (min_pfn == ULONG_MAX) {
1170532b 5679 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5680 return 0;
5681 }
5682
5683 return min_pfn;
c713216d
MG
5684}
5685
5686/**
5687 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5688 *
5689 * It returns the minimum PFN based on information provided via
7d018176 5690 * memblock_set_node().
c713216d
MG
5691 */
5692unsigned long __init find_min_pfn_with_active_regions(void)
5693{
5694 return find_min_pfn_for_node(MAX_NUMNODES);
5695}
5696
37b07e41
LS
5697/*
5698 * early_calculate_totalpages()
5699 * Sum pages in active regions for movable zone.
4b0ef1fe 5700 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5701 */
484f51f8 5702static unsigned long __init early_calculate_totalpages(void)
7e63efef 5703{
7e63efef 5704 unsigned long totalpages = 0;
c13291a5
TH
5705 unsigned long start_pfn, end_pfn;
5706 int i, nid;
5707
5708 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5709 unsigned long pages = end_pfn - start_pfn;
7e63efef 5710
37b07e41
LS
5711 totalpages += pages;
5712 if (pages)
4b0ef1fe 5713 node_set_state(nid, N_MEMORY);
37b07e41 5714 }
b8af2941 5715 return totalpages;
7e63efef
MG
5716}
5717
2a1e274a
MG
5718/*
5719 * Find the PFN the Movable zone begins in each node. Kernel memory
5720 * is spread evenly between nodes as long as the nodes have enough
5721 * memory. When they don't, some nodes will have more kernelcore than
5722 * others
5723 */
b224ef85 5724static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5725{
5726 int i, nid;
5727 unsigned long usable_startpfn;
5728 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5729 /* save the state before borrow the nodemask */
4b0ef1fe 5730 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5731 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5732 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5733 struct memblock_region *r;
b2f3eebe
TC
5734
5735 /* Need to find movable_zone earlier when movable_node is specified. */
5736 find_usable_zone_for_movable();
5737
5738 /*
5739 * If movable_node is specified, ignore kernelcore and movablecore
5740 * options.
5741 */
5742 if (movable_node_is_enabled()) {
136199f0
EM
5743 for_each_memblock(memory, r) {
5744 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5745 continue;
5746
136199f0 5747 nid = r->nid;
b2f3eebe 5748
136199f0 5749 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5750 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5751 min(usable_startpfn, zone_movable_pfn[nid]) :
5752 usable_startpfn;
5753 }
5754
5755 goto out2;
5756 }
2a1e274a 5757
342332e6
TI
5758 /*
5759 * If kernelcore=mirror is specified, ignore movablecore option
5760 */
5761 if (mirrored_kernelcore) {
5762 bool mem_below_4gb_not_mirrored = false;
5763
5764 for_each_memblock(memory, r) {
5765 if (memblock_is_mirror(r))
5766 continue;
5767
5768 nid = r->nid;
5769
5770 usable_startpfn = memblock_region_memory_base_pfn(r);
5771
5772 if (usable_startpfn < 0x100000) {
5773 mem_below_4gb_not_mirrored = true;
5774 continue;
5775 }
5776
5777 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5778 min(usable_startpfn, zone_movable_pfn[nid]) :
5779 usable_startpfn;
5780 }
5781
5782 if (mem_below_4gb_not_mirrored)
5783 pr_warn("This configuration results in unmirrored kernel memory.");
5784
5785 goto out2;
5786 }
5787
7e63efef 5788 /*
b2f3eebe 5789 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5790 * kernelcore that corresponds so that memory usable for
5791 * any allocation type is evenly spread. If both kernelcore
5792 * and movablecore are specified, then the value of kernelcore
5793 * will be used for required_kernelcore if it's greater than
5794 * what movablecore would have allowed.
5795 */
5796 if (required_movablecore) {
7e63efef
MG
5797 unsigned long corepages;
5798
5799 /*
5800 * Round-up so that ZONE_MOVABLE is at least as large as what
5801 * was requested by the user
5802 */
5803 required_movablecore =
5804 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5805 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5806 corepages = totalpages - required_movablecore;
5807
5808 required_kernelcore = max(required_kernelcore, corepages);
5809 }
5810
bde304bd
XQ
5811 /*
5812 * If kernelcore was not specified or kernelcore size is larger
5813 * than totalpages, there is no ZONE_MOVABLE.
5814 */
5815 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5816 goto out;
2a1e274a
MG
5817
5818 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5819 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5820
5821restart:
5822 /* Spread kernelcore memory as evenly as possible throughout nodes */
5823 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5824 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5825 unsigned long start_pfn, end_pfn;
5826
2a1e274a
MG
5827 /*
5828 * Recalculate kernelcore_node if the division per node
5829 * now exceeds what is necessary to satisfy the requested
5830 * amount of memory for the kernel
5831 */
5832 if (required_kernelcore < kernelcore_node)
5833 kernelcore_node = required_kernelcore / usable_nodes;
5834
5835 /*
5836 * As the map is walked, we track how much memory is usable
5837 * by the kernel using kernelcore_remaining. When it is
5838 * 0, the rest of the node is usable by ZONE_MOVABLE
5839 */
5840 kernelcore_remaining = kernelcore_node;
5841
5842 /* Go through each range of PFNs within this node */
c13291a5 5843 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5844 unsigned long size_pages;
5845
c13291a5 5846 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5847 if (start_pfn >= end_pfn)
5848 continue;
5849
5850 /* Account for what is only usable for kernelcore */
5851 if (start_pfn < usable_startpfn) {
5852 unsigned long kernel_pages;
5853 kernel_pages = min(end_pfn, usable_startpfn)
5854 - start_pfn;
5855
5856 kernelcore_remaining -= min(kernel_pages,
5857 kernelcore_remaining);
5858 required_kernelcore -= min(kernel_pages,
5859 required_kernelcore);
5860
5861 /* Continue if range is now fully accounted */
5862 if (end_pfn <= usable_startpfn) {
5863
5864 /*
5865 * Push zone_movable_pfn to the end so
5866 * that if we have to rebalance
5867 * kernelcore across nodes, we will
5868 * not double account here
5869 */
5870 zone_movable_pfn[nid] = end_pfn;
5871 continue;
5872 }
5873 start_pfn = usable_startpfn;
5874 }
5875
5876 /*
5877 * The usable PFN range for ZONE_MOVABLE is from
5878 * start_pfn->end_pfn. Calculate size_pages as the
5879 * number of pages used as kernelcore
5880 */
5881 size_pages = end_pfn - start_pfn;
5882 if (size_pages > kernelcore_remaining)
5883 size_pages = kernelcore_remaining;
5884 zone_movable_pfn[nid] = start_pfn + size_pages;
5885
5886 /*
5887 * Some kernelcore has been met, update counts and
5888 * break if the kernelcore for this node has been
b8af2941 5889 * satisfied
2a1e274a
MG
5890 */
5891 required_kernelcore -= min(required_kernelcore,
5892 size_pages);
5893 kernelcore_remaining -= size_pages;
5894 if (!kernelcore_remaining)
5895 break;
5896 }
5897 }
5898
5899 /*
5900 * If there is still required_kernelcore, we do another pass with one
5901 * less node in the count. This will push zone_movable_pfn[nid] further
5902 * along on the nodes that still have memory until kernelcore is
b8af2941 5903 * satisfied
2a1e274a
MG
5904 */
5905 usable_nodes--;
5906 if (usable_nodes && required_kernelcore > usable_nodes)
5907 goto restart;
5908
b2f3eebe 5909out2:
2a1e274a
MG
5910 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5911 for (nid = 0; nid < MAX_NUMNODES; nid++)
5912 zone_movable_pfn[nid] =
5913 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5914
20e6926d 5915out:
66918dcd 5916 /* restore the node_state */
4b0ef1fe 5917 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5918}
5919
4b0ef1fe
LJ
5920/* Any regular or high memory on that node ? */
5921static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5922{
37b07e41
LS
5923 enum zone_type zone_type;
5924
4b0ef1fe
LJ
5925 if (N_MEMORY == N_NORMAL_MEMORY)
5926 return;
5927
5928 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5929 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5930 if (populated_zone(zone)) {
4b0ef1fe
LJ
5931 node_set_state(nid, N_HIGH_MEMORY);
5932 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5933 zone_type <= ZONE_NORMAL)
5934 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5935 break;
5936 }
37b07e41 5937 }
37b07e41
LS
5938}
5939
c713216d
MG
5940/**
5941 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5942 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5943 *
5944 * This will call free_area_init_node() for each active node in the system.
7d018176 5945 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5946 * zone in each node and their holes is calculated. If the maximum PFN
5947 * between two adjacent zones match, it is assumed that the zone is empty.
5948 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5949 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5950 * starts where the previous one ended. For example, ZONE_DMA32 starts
5951 * at arch_max_dma_pfn.
5952 */
5953void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5954{
c13291a5
TH
5955 unsigned long start_pfn, end_pfn;
5956 int i, nid;
a6af2bc3 5957
c713216d
MG
5958 /* Record where the zone boundaries are */
5959 memset(arch_zone_lowest_possible_pfn, 0,
5960 sizeof(arch_zone_lowest_possible_pfn));
5961 memset(arch_zone_highest_possible_pfn, 0,
5962 sizeof(arch_zone_highest_possible_pfn));
5963 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5964 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5965 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5966 if (i == ZONE_MOVABLE)
5967 continue;
c713216d
MG
5968 arch_zone_lowest_possible_pfn[i] =
5969 arch_zone_highest_possible_pfn[i-1];
5970 arch_zone_highest_possible_pfn[i] =
5971 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5972 }
2a1e274a
MG
5973 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5974 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5975
5976 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5977 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5978 find_zone_movable_pfns_for_nodes();
c713216d 5979
c713216d 5980 /* Print out the zone ranges */
f88dfff5 5981 pr_info("Zone ranges:\n");
2a1e274a
MG
5982 for (i = 0; i < MAX_NR_ZONES; i++) {
5983 if (i == ZONE_MOVABLE)
5984 continue;
f88dfff5 5985 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5986 if (arch_zone_lowest_possible_pfn[i] ==
5987 arch_zone_highest_possible_pfn[i])
f88dfff5 5988 pr_cont("empty\n");
72f0ba02 5989 else
8d29e18a
JG
5990 pr_cont("[mem %#018Lx-%#018Lx]\n",
5991 (u64)arch_zone_lowest_possible_pfn[i]
5992 << PAGE_SHIFT,
5993 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5994 << PAGE_SHIFT) - 1);
2a1e274a
MG
5995 }
5996
5997 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5998 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5999 for (i = 0; i < MAX_NUMNODES; i++) {
6000 if (zone_movable_pfn[i])
8d29e18a
JG
6001 pr_info(" Node %d: %#018Lx\n", i,
6002 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6003 }
c713216d 6004
f2d52fe5 6005 /* Print out the early node map */
f88dfff5 6006 pr_info("Early memory node ranges\n");
c13291a5 6007 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6008 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6009 (u64)start_pfn << PAGE_SHIFT,
6010 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6011
6012 /* Initialise every node */
708614e6 6013 mminit_verify_pageflags_layout();
8ef82866 6014 setup_nr_node_ids();
c713216d
MG
6015 for_each_online_node(nid) {
6016 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6017 free_area_init_node(nid, NULL,
c713216d 6018 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6019
6020 /* Any memory on that node */
6021 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6022 node_set_state(nid, N_MEMORY);
6023 check_for_memory(pgdat, nid);
c713216d
MG
6024 }
6025}
2a1e274a 6026
7e63efef 6027static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6028{
6029 unsigned long long coremem;
6030 if (!p)
6031 return -EINVAL;
6032
6033 coremem = memparse(p, &p);
7e63efef 6034 *core = coremem >> PAGE_SHIFT;
2a1e274a 6035
7e63efef 6036 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6037 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6038
6039 return 0;
6040}
ed7ed365 6041
7e63efef
MG
6042/*
6043 * kernelcore=size sets the amount of memory for use for allocations that
6044 * cannot be reclaimed or migrated.
6045 */
6046static int __init cmdline_parse_kernelcore(char *p)
6047{
342332e6
TI
6048 /* parse kernelcore=mirror */
6049 if (parse_option_str(p, "mirror")) {
6050 mirrored_kernelcore = true;
6051 return 0;
6052 }
6053
7e63efef
MG
6054 return cmdline_parse_core(p, &required_kernelcore);
6055}
6056
6057/*
6058 * movablecore=size sets the amount of memory for use for allocations that
6059 * can be reclaimed or migrated.
6060 */
6061static int __init cmdline_parse_movablecore(char *p)
6062{
6063 return cmdline_parse_core(p, &required_movablecore);
6064}
6065
ed7ed365 6066early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6067early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6068
0ee332c1 6069#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6070
c3d5f5f0
JL
6071void adjust_managed_page_count(struct page *page, long count)
6072{
6073 spin_lock(&managed_page_count_lock);
6074 page_zone(page)->managed_pages += count;
6075 totalram_pages += count;
3dcc0571
JL
6076#ifdef CONFIG_HIGHMEM
6077 if (PageHighMem(page))
6078 totalhigh_pages += count;
6079#endif
c3d5f5f0
JL
6080 spin_unlock(&managed_page_count_lock);
6081}
3dcc0571 6082EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6083
11199692 6084unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6085{
11199692
JL
6086 void *pos;
6087 unsigned long pages = 0;
69afade7 6088
11199692
JL
6089 start = (void *)PAGE_ALIGN((unsigned long)start);
6090 end = (void *)((unsigned long)end & PAGE_MASK);
6091 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6092 if ((unsigned int)poison <= 0xFF)
11199692
JL
6093 memset(pos, poison, PAGE_SIZE);
6094 free_reserved_page(virt_to_page(pos));
69afade7
JL
6095 }
6096
6097 if (pages && s)
11199692 6098 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6099 s, pages << (PAGE_SHIFT - 10), start, end);
6100
6101 return pages;
6102}
11199692 6103EXPORT_SYMBOL(free_reserved_area);
69afade7 6104
cfa11e08
JL
6105#ifdef CONFIG_HIGHMEM
6106void free_highmem_page(struct page *page)
6107{
6108 __free_reserved_page(page);
6109 totalram_pages++;
7b4b2a0d 6110 page_zone(page)->managed_pages++;
cfa11e08
JL
6111 totalhigh_pages++;
6112}
6113#endif
6114
7ee3d4e8
JL
6115
6116void __init mem_init_print_info(const char *str)
6117{
6118 unsigned long physpages, codesize, datasize, rosize, bss_size;
6119 unsigned long init_code_size, init_data_size;
6120
6121 physpages = get_num_physpages();
6122 codesize = _etext - _stext;
6123 datasize = _edata - _sdata;
6124 rosize = __end_rodata - __start_rodata;
6125 bss_size = __bss_stop - __bss_start;
6126 init_data_size = __init_end - __init_begin;
6127 init_code_size = _einittext - _sinittext;
6128
6129 /*
6130 * Detect special cases and adjust section sizes accordingly:
6131 * 1) .init.* may be embedded into .data sections
6132 * 2) .init.text.* may be out of [__init_begin, __init_end],
6133 * please refer to arch/tile/kernel/vmlinux.lds.S.
6134 * 3) .rodata.* may be embedded into .text or .data sections.
6135 */
6136#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6137 do { \
6138 if (start <= pos && pos < end && size > adj) \
6139 size -= adj; \
6140 } while (0)
7ee3d4e8
JL
6141
6142 adj_init_size(__init_begin, __init_end, init_data_size,
6143 _sinittext, init_code_size);
6144 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6145 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6146 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6147 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6148
6149#undef adj_init_size
6150
756a025f 6151 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6152#ifdef CONFIG_HIGHMEM
756a025f 6153 ", %luK highmem"
7ee3d4e8 6154#endif
756a025f
JP
6155 "%s%s)\n",
6156 nr_free_pages() << (PAGE_SHIFT - 10),
6157 physpages << (PAGE_SHIFT - 10),
6158 codesize >> 10, datasize >> 10, rosize >> 10,
6159 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6160 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6161 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6162#ifdef CONFIG_HIGHMEM
756a025f 6163 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6164#endif
756a025f 6165 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6166}
6167
0e0b864e 6168/**
88ca3b94
RD
6169 * set_dma_reserve - set the specified number of pages reserved in the first zone
6170 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6171 *
013110a7 6172 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6173 * In the DMA zone, a significant percentage may be consumed by kernel image
6174 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6175 * function may optionally be used to account for unfreeable pages in the
6176 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6177 * smaller per-cpu batchsize.
0e0b864e
MG
6178 */
6179void __init set_dma_reserve(unsigned long new_dma_reserve)
6180{
6181 dma_reserve = new_dma_reserve;
6182}
6183
1da177e4
LT
6184void __init free_area_init(unsigned long *zones_size)
6185{
9109fb7b 6186 free_area_init_node(0, zones_size,
1da177e4
LT
6187 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6188}
1da177e4 6189
1da177e4
LT
6190static int page_alloc_cpu_notify(struct notifier_block *self,
6191 unsigned long action, void *hcpu)
6192{
6193 int cpu = (unsigned long)hcpu;
1da177e4 6194
8bb78442 6195 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6196 lru_add_drain_cpu(cpu);
9f8f2172
CL
6197 drain_pages(cpu);
6198
6199 /*
6200 * Spill the event counters of the dead processor
6201 * into the current processors event counters.
6202 * This artificially elevates the count of the current
6203 * processor.
6204 */
f8891e5e 6205 vm_events_fold_cpu(cpu);
9f8f2172
CL
6206
6207 /*
6208 * Zero the differential counters of the dead processor
6209 * so that the vm statistics are consistent.
6210 *
6211 * This is only okay since the processor is dead and cannot
6212 * race with what we are doing.
6213 */
2bb921e5 6214 cpu_vm_stats_fold(cpu);
1da177e4
LT
6215 }
6216 return NOTIFY_OK;
6217}
1da177e4
LT
6218
6219void __init page_alloc_init(void)
6220{
6221 hotcpu_notifier(page_alloc_cpu_notify, 0);
6222}
6223
cb45b0e9 6224/*
34b10060 6225 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6226 * or min_free_kbytes changes.
6227 */
6228static void calculate_totalreserve_pages(void)
6229{
6230 struct pglist_data *pgdat;
6231 unsigned long reserve_pages = 0;
2f6726e5 6232 enum zone_type i, j;
cb45b0e9
HA
6233
6234 for_each_online_pgdat(pgdat) {
6235 for (i = 0; i < MAX_NR_ZONES; i++) {
6236 struct zone *zone = pgdat->node_zones + i;
3484b2de 6237 long max = 0;
cb45b0e9
HA
6238
6239 /* Find valid and maximum lowmem_reserve in the zone */
6240 for (j = i; j < MAX_NR_ZONES; j++) {
6241 if (zone->lowmem_reserve[j] > max)
6242 max = zone->lowmem_reserve[j];
6243 }
6244
41858966
MG
6245 /* we treat the high watermark as reserved pages. */
6246 max += high_wmark_pages(zone);
cb45b0e9 6247
b40da049
JL
6248 if (max > zone->managed_pages)
6249 max = zone->managed_pages;
a8d01437
JW
6250
6251 zone->totalreserve_pages = max;
6252
cb45b0e9
HA
6253 reserve_pages += max;
6254 }
6255 }
6256 totalreserve_pages = reserve_pages;
6257}
6258
1da177e4
LT
6259/*
6260 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6261 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6262 * has a correct pages reserved value, so an adequate number of
6263 * pages are left in the zone after a successful __alloc_pages().
6264 */
6265static void setup_per_zone_lowmem_reserve(void)
6266{
6267 struct pglist_data *pgdat;
2f6726e5 6268 enum zone_type j, idx;
1da177e4 6269
ec936fc5 6270 for_each_online_pgdat(pgdat) {
1da177e4
LT
6271 for (j = 0; j < MAX_NR_ZONES; j++) {
6272 struct zone *zone = pgdat->node_zones + j;
b40da049 6273 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6274
6275 zone->lowmem_reserve[j] = 0;
6276
2f6726e5
CL
6277 idx = j;
6278 while (idx) {
1da177e4
LT
6279 struct zone *lower_zone;
6280
2f6726e5
CL
6281 idx--;
6282
1da177e4
LT
6283 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6284 sysctl_lowmem_reserve_ratio[idx] = 1;
6285
6286 lower_zone = pgdat->node_zones + idx;
b40da049 6287 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6288 sysctl_lowmem_reserve_ratio[idx];
b40da049 6289 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6290 }
6291 }
6292 }
cb45b0e9
HA
6293
6294 /* update totalreserve_pages */
6295 calculate_totalreserve_pages();
1da177e4
LT
6296}
6297
cfd3da1e 6298static void __setup_per_zone_wmarks(void)
1da177e4
LT
6299{
6300 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6301 unsigned long lowmem_pages = 0;
6302 struct zone *zone;
6303 unsigned long flags;
6304
6305 /* Calculate total number of !ZONE_HIGHMEM pages */
6306 for_each_zone(zone) {
6307 if (!is_highmem(zone))
b40da049 6308 lowmem_pages += zone->managed_pages;
1da177e4
LT
6309 }
6310
6311 for_each_zone(zone) {
ac924c60
AM
6312 u64 tmp;
6313
1125b4e3 6314 spin_lock_irqsave(&zone->lock, flags);
b40da049 6315 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6316 do_div(tmp, lowmem_pages);
1da177e4
LT
6317 if (is_highmem(zone)) {
6318 /*
669ed175
NP
6319 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6320 * need highmem pages, so cap pages_min to a small
6321 * value here.
6322 *
41858966 6323 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6324 * deltas control asynch page reclaim, and so should
669ed175 6325 * not be capped for highmem.
1da177e4 6326 */
90ae8d67 6327 unsigned long min_pages;
1da177e4 6328
b40da049 6329 min_pages = zone->managed_pages / 1024;
90ae8d67 6330 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6331 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6332 } else {
669ed175
NP
6333 /*
6334 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6335 * proportionate to the zone's size.
6336 */
41858966 6337 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6338 }
6339
795ae7a0
JW
6340 /*
6341 * Set the kswapd watermarks distance according to the
6342 * scale factor in proportion to available memory, but
6343 * ensure a minimum size on small systems.
6344 */
6345 tmp = max_t(u64, tmp >> 2,
6346 mult_frac(zone->managed_pages,
6347 watermark_scale_factor, 10000));
6348
6349 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6350 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6351
81c0a2bb 6352 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6353 high_wmark_pages(zone) - low_wmark_pages(zone) -
6354 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6355
1125b4e3 6356 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6357 }
cb45b0e9
HA
6358
6359 /* update totalreserve_pages */
6360 calculate_totalreserve_pages();
1da177e4
LT
6361}
6362
cfd3da1e
MG
6363/**
6364 * setup_per_zone_wmarks - called when min_free_kbytes changes
6365 * or when memory is hot-{added|removed}
6366 *
6367 * Ensures that the watermark[min,low,high] values for each zone are set
6368 * correctly with respect to min_free_kbytes.
6369 */
6370void setup_per_zone_wmarks(void)
6371{
6372 mutex_lock(&zonelists_mutex);
6373 __setup_per_zone_wmarks();
6374 mutex_unlock(&zonelists_mutex);
6375}
6376
55a4462a 6377/*
556adecb
RR
6378 * The inactive anon list should be small enough that the VM never has to
6379 * do too much work, but large enough that each inactive page has a chance
6380 * to be referenced again before it is swapped out.
6381 *
6382 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6383 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6384 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6385 * the anonymous pages are kept on the inactive list.
6386 *
6387 * total target max
6388 * memory ratio inactive anon
6389 * -------------------------------------
6390 * 10MB 1 5MB
6391 * 100MB 1 50MB
6392 * 1GB 3 250MB
6393 * 10GB 10 0.9GB
6394 * 100GB 31 3GB
6395 * 1TB 101 10GB
6396 * 10TB 320 32GB
6397 */
1b79acc9 6398static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6399{
96cb4df5 6400 unsigned int gb, ratio;
556adecb 6401
96cb4df5 6402 /* Zone size in gigabytes */
b40da049 6403 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6404 if (gb)
556adecb 6405 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6406 else
6407 ratio = 1;
556adecb 6408
96cb4df5
MK
6409 zone->inactive_ratio = ratio;
6410}
556adecb 6411
839a4fcc 6412static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6413{
6414 struct zone *zone;
6415
6416 for_each_zone(zone)
6417 calculate_zone_inactive_ratio(zone);
556adecb
RR
6418}
6419
1da177e4
LT
6420/*
6421 * Initialise min_free_kbytes.
6422 *
6423 * For small machines we want it small (128k min). For large machines
6424 * we want it large (64MB max). But it is not linear, because network
6425 * bandwidth does not increase linearly with machine size. We use
6426 *
b8af2941 6427 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6428 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6429 *
6430 * which yields
6431 *
6432 * 16MB: 512k
6433 * 32MB: 724k
6434 * 64MB: 1024k
6435 * 128MB: 1448k
6436 * 256MB: 2048k
6437 * 512MB: 2896k
6438 * 1024MB: 4096k
6439 * 2048MB: 5792k
6440 * 4096MB: 8192k
6441 * 8192MB: 11584k
6442 * 16384MB: 16384k
6443 */
1b79acc9 6444int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6445{
6446 unsigned long lowmem_kbytes;
5f12733e 6447 int new_min_free_kbytes;
1da177e4
LT
6448
6449 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6450 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6451
6452 if (new_min_free_kbytes > user_min_free_kbytes) {
6453 min_free_kbytes = new_min_free_kbytes;
6454 if (min_free_kbytes < 128)
6455 min_free_kbytes = 128;
6456 if (min_free_kbytes > 65536)
6457 min_free_kbytes = 65536;
6458 } else {
6459 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6460 new_min_free_kbytes, user_min_free_kbytes);
6461 }
bc75d33f 6462 setup_per_zone_wmarks();
a6cccdc3 6463 refresh_zone_stat_thresholds();
1da177e4 6464 setup_per_zone_lowmem_reserve();
556adecb 6465 setup_per_zone_inactive_ratio();
1da177e4
LT
6466 return 0;
6467}
bc75d33f 6468module_init(init_per_zone_wmark_min)
1da177e4
LT
6469
6470/*
b8af2941 6471 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6472 * that we can call two helper functions whenever min_free_kbytes
6473 * changes.
6474 */
cccad5b9 6475int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6476 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6477{
da8c757b
HP
6478 int rc;
6479
6480 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6481 if (rc)
6482 return rc;
6483
5f12733e
MH
6484 if (write) {
6485 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6486 setup_per_zone_wmarks();
5f12733e 6487 }
1da177e4
LT
6488 return 0;
6489}
6490
795ae7a0
JW
6491int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6492 void __user *buffer, size_t *length, loff_t *ppos)
6493{
6494 int rc;
6495
6496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6497 if (rc)
6498 return rc;
6499
6500 if (write)
6501 setup_per_zone_wmarks();
6502
6503 return 0;
6504}
6505
9614634f 6506#ifdef CONFIG_NUMA
cccad5b9 6507int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6508 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6509{
6510 struct zone *zone;
6511 int rc;
6512
8d65af78 6513 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6514 if (rc)
6515 return rc;
6516
6517 for_each_zone(zone)
b40da049 6518 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6519 sysctl_min_unmapped_ratio) / 100;
6520 return 0;
6521}
0ff38490 6522
cccad5b9 6523int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6524 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6525{
6526 struct zone *zone;
6527 int rc;
6528
8d65af78 6529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6530 if (rc)
6531 return rc;
6532
6533 for_each_zone(zone)
b40da049 6534 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6535 sysctl_min_slab_ratio) / 100;
6536 return 0;
6537}
9614634f
CL
6538#endif
6539
1da177e4
LT
6540/*
6541 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6542 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6543 * whenever sysctl_lowmem_reserve_ratio changes.
6544 *
6545 * The reserve ratio obviously has absolutely no relation with the
41858966 6546 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6547 * if in function of the boot time zone sizes.
6548 */
cccad5b9 6549int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6550 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6551{
8d65af78 6552 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6553 setup_per_zone_lowmem_reserve();
6554 return 0;
6555}
6556
8ad4b1fb
RS
6557/*
6558 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6559 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6560 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6561 */
cccad5b9 6562int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6563 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6564{
6565 struct zone *zone;
7cd2b0a3 6566 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6567 int ret;
6568
7cd2b0a3
DR
6569 mutex_lock(&pcp_batch_high_lock);
6570 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6571
8d65af78 6572 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6573 if (!write || ret < 0)
6574 goto out;
6575
6576 /* Sanity checking to avoid pcp imbalance */
6577 if (percpu_pagelist_fraction &&
6578 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6579 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6580 ret = -EINVAL;
6581 goto out;
6582 }
6583
6584 /* No change? */
6585 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6586 goto out;
c8e251fa 6587
364df0eb 6588 for_each_populated_zone(zone) {
7cd2b0a3
DR
6589 unsigned int cpu;
6590
22a7f12b 6591 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6592 pageset_set_high_and_batch(zone,
6593 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6594 }
7cd2b0a3 6595out:
c8e251fa 6596 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6597 return ret;
8ad4b1fb
RS
6598}
6599
a9919c79 6600#ifdef CONFIG_NUMA
f034b5d4 6601int hashdist = HASHDIST_DEFAULT;
1da177e4 6602
1da177e4
LT
6603static int __init set_hashdist(char *str)
6604{
6605 if (!str)
6606 return 0;
6607 hashdist = simple_strtoul(str, &str, 0);
6608 return 1;
6609}
6610__setup("hashdist=", set_hashdist);
6611#endif
6612
6613/*
6614 * allocate a large system hash table from bootmem
6615 * - it is assumed that the hash table must contain an exact power-of-2
6616 * quantity of entries
6617 * - limit is the number of hash buckets, not the total allocation size
6618 */
6619void *__init alloc_large_system_hash(const char *tablename,
6620 unsigned long bucketsize,
6621 unsigned long numentries,
6622 int scale,
6623 int flags,
6624 unsigned int *_hash_shift,
6625 unsigned int *_hash_mask,
31fe62b9
TB
6626 unsigned long low_limit,
6627 unsigned long high_limit)
1da177e4 6628{
31fe62b9 6629 unsigned long long max = high_limit;
1da177e4
LT
6630 unsigned long log2qty, size;
6631 void *table = NULL;
6632
6633 /* allow the kernel cmdline to have a say */
6634 if (!numentries) {
6635 /* round applicable memory size up to nearest megabyte */
04903664 6636 numentries = nr_kernel_pages;
a7e83318
JZ
6637
6638 /* It isn't necessary when PAGE_SIZE >= 1MB */
6639 if (PAGE_SHIFT < 20)
6640 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6641
6642 /* limit to 1 bucket per 2^scale bytes of low memory */
6643 if (scale > PAGE_SHIFT)
6644 numentries >>= (scale - PAGE_SHIFT);
6645 else
6646 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6647
6648 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6649 if (unlikely(flags & HASH_SMALL)) {
6650 /* Makes no sense without HASH_EARLY */
6651 WARN_ON(!(flags & HASH_EARLY));
6652 if (!(numentries >> *_hash_shift)) {
6653 numentries = 1UL << *_hash_shift;
6654 BUG_ON(!numentries);
6655 }
6656 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6657 numentries = PAGE_SIZE / bucketsize;
1da177e4 6658 }
6e692ed3 6659 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6660
6661 /* limit allocation size to 1/16 total memory by default */
6662 if (max == 0) {
6663 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6664 do_div(max, bucketsize);
6665 }
074b8517 6666 max = min(max, 0x80000000ULL);
1da177e4 6667
31fe62b9
TB
6668 if (numentries < low_limit)
6669 numentries = low_limit;
1da177e4
LT
6670 if (numentries > max)
6671 numentries = max;
6672
f0d1b0b3 6673 log2qty = ilog2(numentries);
1da177e4
LT
6674
6675 do {
6676 size = bucketsize << log2qty;
6677 if (flags & HASH_EARLY)
6782832e 6678 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6679 else if (hashdist)
6680 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6681 else {
1037b83b
ED
6682 /*
6683 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6684 * some pages at the end of hash table which
6685 * alloc_pages_exact() automatically does
1037b83b 6686 */
264ef8a9 6687 if (get_order(size) < MAX_ORDER) {
a1dd268c 6688 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6689 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6690 }
1da177e4
LT
6691 }
6692 } while (!table && size > PAGE_SIZE && --log2qty);
6693
6694 if (!table)
6695 panic("Failed to allocate %s hash table\n", tablename);
6696
1170532b
JP
6697 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6698 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6699
6700 if (_hash_shift)
6701 *_hash_shift = log2qty;
6702 if (_hash_mask)
6703 *_hash_mask = (1 << log2qty) - 1;
6704
6705 return table;
6706}
a117e66e 6707
835c134e
MG
6708/* Return a pointer to the bitmap storing bits affecting a block of pages */
6709static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6710 unsigned long pfn)
6711{
6712#ifdef CONFIG_SPARSEMEM
6713 return __pfn_to_section(pfn)->pageblock_flags;
6714#else
6715 return zone->pageblock_flags;
6716#endif /* CONFIG_SPARSEMEM */
6717}
6718
6719static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6720{
6721#ifdef CONFIG_SPARSEMEM
6722 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6723 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6724#else
c060f943 6725 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6726 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6727#endif /* CONFIG_SPARSEMEM */
6728}
6729
6730/**
1aab4d77 6731 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6732 * @page: The page within the block of interest
1aab4d77
RD
6733 * @pfn: The target page frame number
6734 * @end_bitidx: The last bit of interest to retrieve
6735 * @mask: mask of bits that the caller is interested in
6736 *
6737 * Return: pageblock_bits flags
835c134e 6738 */
dc4b0caf 6739unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6740 unsigned long end_bitidx,
6741 unsigned long mask)
835c134e
MG
6742{
6743 struct zone *zone;
6744 unsigned long *bitmap;
dc4b0caf 6745 unsigned long bitidx, word_bitidx;
e58469ba 6746 unsigned long word;
835c134e
MG
6747
6748 zone = page_zone(page);
835c134e
MG
6749 bitmap = get_pageblock_bitmap(zone, pfn);
6750 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6751 word_bitidx = bitidx / BITS_PER_LONG;
6752 bitidx &= (BITS_PER_LONG-1);
835c134e 6753
e58469ba
MG
6754 word = bitmap[word_bitidx];
6755 bitidx += end_bitidx;
6756 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6757}
6758
6759/**
dc4b0caf 6760 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6761 * @page: The page within the block of interest
835c134e 6762 * @flags: The flags to set
1aab4d77
RD
6763 * @pfn: The target page frame number
6764 * @end_bitidx: The last bit of interest
6765 * @mask: mask of bits that the caller is interested in
835c134e 6766 */
dc4b0caf
MG
6767void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6768 unsigned long pfn,
e58469ba
MG
6769 unsigned long end_bitidx,
6770 unsigned long mask)
835c134e
MG
6771{
6772 struct zone *zone;
6773 unsigned long *bitmap;
dc4b0caf 6774 unsigned long bitidx, word_bitidx;
e58469ba
MG
6775 unsigned long old_word, word;
6776
6777 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6778
6779 zone = page_zone(page);
835c134e
MG
6780 bitmap = get_pageblock_bitmap(zone, pfn);
6781 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6782 word_bitidx = bitidx / BITS_PER_LONG;
6783 bitidx &= (BITS_PER_LONG-1);
6784
309381fe 6785 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6786
e58469ba
MG
6787 bitidx += end_bitidx;
6788 mask <<= (BITS_PER_LONG - bitidx - 1);
6789 flags <<= (BITS_PER_LONG - bitidx - 1);
6790
4db0c3c2 6791 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6792 for (;;) {
6793 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6794 if (word == old_word)
6795 break;
6796 word = old_word;
6797 }
835c134e 6798}
a5d76b54
KH
6799
6800/*
80934513
MK
6801 * This function checks whether pageblock includes unmovable pages or not.
6802 * If @count is not zero, it is okay to include less @count unmovable pages
6803 *
b8af2941 6804 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6805 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6806 * expect this function should be exact.
a5d76b54 6807 */
b023f468
WC
6808bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6809 bool skip_hwpoisoned_pages)
49ac8255
KH
6810{
6811 unsigned long pfn, iter, found;
47118af0
MN
6812 int mt;
6813
49ac8255
KH
6814 /*
6815 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6816 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6817 */
6818 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6819 return false;
47118af0
MN
6820 mt = get_pageblock_migratetype(page);
6821 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6822 return false;
49ac8255
KH
6823
6824 pfn = page_to_pfn(page);
6825 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6826 unsigned long check = pfn + iter;
6827
29723fcc 6828 if (!pfn_valid_within(check))
49ac8255 6829 continue;
29723fcc 6830
49ac8255 6831 page = pfn_to_page(check);
c8721bbb
NH
6832
6833 /*
6834 * Hugepages are not in LRU lists, but they're movable.
6835 * We need not scan over tail pages bacause we don't
6836 * handle each tail page individually in migration.
6837 */
6838 if (PageHuge(page)) {
6839 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6840 continue;
6841 }
6842
97d255c8
MK
6843 /*
6844 * We can't use page_count without pin a page
6845 * because another CPU can free compound page.
6846 * This check already skips compound tails of THP
6847 * because their page->_count is zero at all time.
6848 */
fe896d18 6849 if (!page_ref_count(page)) {
49ac8255
KH
6850 if (PageBuddy(page))
6851 iter += (1 << page_order(page)) - 1;
6852 continue;
6853 }
97d255c8 6854
b023f468
WC
6855 /*
6856 * The HWPoisoned page may be not in buddy system, and
6857 * page_count() is not 0.
6858 */
6859 if (skip_hwpoisoned_pages && PageHWPoison(page))
6860 continue;
6861
49ac8255
KH
6862 if (!PageLRU(page))
6863 found++;
6864 /*
6b4f7799
JW
6865 * If there are RECLAIMABLE pages, we need to check
6866 * it. But now, memory offline itself doesn't call
6867 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6868 */
6869 /*
6870 * If the page is not RAM, page_count()should be 0.
6871 * we don't need more check. This is an _used_ not-movable page.
6872 *
6873 * The problematic thing here is PG_reserved pages. PG_reserved
6874 * is set to both of a memory hole page and a _used_ kernel
6875 * page at boot.
6876 */
6877 if (found > count)
80934513 6878 return true;
49ac8255 6879 }
80934513 6880 return false;
49ac8255
KH
6881}
6882
6883bool is_pageblock_removable_nolock(struct page *page)
6884{
656a0706
MH
6885 struct zone *zone;
6886 unsigned long pfn;
687875fb
MH
6887
6888 /*
6889 * We have to be careful here because we are iterating over memory
6890 * sections which are not zone aware so we might end up outside of
6891 * the zone but still within the section.
656a0706
MH
6892 * We have to take care about the node as well. If the node is offline
6893 * its NODE_DATA will be NULL - see page_zone.
687875fb 6894 */
656a0706
MH
6895 if (!node_online(page_to_nid(page)))
6896 return false;
6897
6898 zone = page_zone(page);
6899 pfn = page_to_pfn(page);
108bcc96 6900 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6901 return false;
6902
b023f468 6903 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6904}
0c0e6195 6905
080fe206 6906#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6907
6908static unsigned long pfn_max_align_down(unsigned long pfn)
6909{
6910 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6911 pageblock_nr_pages) - 1);
6912}
6913
6914static unsigned long pfn_max_align_up(unsigned long pfn)
6915{
6916 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6917 pageblock_nr_pages));
6918}
6919
041d3a8c 6920/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6921static int __alloc_contig_migrate_range(struct compact_control *cc,
6922 unsigned long start, unsigned long end)
041d3a8c
MN
6923{
6924 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6925 unsigned long nr_reclaimed;
041d3a8c
MN
6926 unsigned long pfn = start;
6927 unsigned int tries = 0;
6928 int ret = 0;
6929
be49a6e1 6930 migrate_prep();
041d3a8c 6931
bb13ffeb 6932 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6933 if (fatal_signal_pending(current)) {
6934 ret = -EINTR;
6935 break;
6936 }
6937
bb13ffeb
MG
6938 if (list_empty(&cc->migratepages)) {
6939 cc->nr_migratepages = 0;
edc2ca61 6940 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6941 if (!pfn) {
6942 ret = -EINTR;
6943 break;
6944 }
6945 tries = 0;
6946 } else if (++tries == 5) {
6947 ret = ret < 0 ? ret : -EBUSY;
6948 break;
6949 }
6950
beb51eaa
MK
6951 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6952 &cc->migratepages);
6953 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6954
9c620e2b 6955 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6956 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6957 }
2a6f5124
SP
6958 if (ret < 0) {
6959 putback_movable_pages(&cc->migratepages);
6960 return ret;
6961 }
6962 return 0;
041d3a8c
MN
6963}
6964
6965/**
6966 * alloc_contig_range() -- tries to allocate given range of pages
6967 * @start: start PFN to allocate
6968 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6969 * @migratetype: migratetype of the underlaying pageblocks (either
6970 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6971 * in range must have the same migratetype and it must
6972 * be either of the two.
041d3a8c
MN
6973 *
6974 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6975 * aligned, however it's the caller's responsibility to guarantee that
6976 * we are the only thread that changes migrate type of pageblocks the
6977 * pages fall in.
6978 *
6979 * The PFN range must belong to a single zone.
6980 *
6981 * Returns zero on success or negative error code. On success all
6982 * pages which PFN is in [start, end) are allocated for the caller and
6983 * need to be freed with free_contig_range().
6984 */
0815f3d8
MN
6985int alloc_contig_range(unsigned long start, unsigned long end,
6986 unsigned migratetype)
041d3a8c 6987{
041d3a8c 6988 unsigned long outer_start, outer_end;
d00181b9
KS
6989 unsigned int order;
6990 int ret = 0;
041d3a8c 6991
bb13ffeb
MG
6992 struct compact_control cc = {
6993 .nr_migratepages = 0,
6994 .order = -1,
6995 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6996 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6997 .ignore_skip_hint = true,
6998 };
6999 INIT_LIST_HEAD(&cc.migratepages);
7000
041d3a8c
MN
7001 /*
7002 * What we do here is we mark all pageblocks in range as
7003 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7004 * have different sizes, and due to the way page allocator
7005 * work, we align the range to biggest of the two pages so
7006 * that page allocator won't try to merge buddies from
7007 * different pageblocks and change MIGRATE_ISOLATE to some
7008 * other migration type.
7009 *
7010 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7011 * migrate the pages from an unaligned range (ie. pages that
7012 * we are interested in). This will put all the pages in
7013 * range back to page allocator as MIGRATE_ISOLATE.
7014 *
7015 * When this is done, we take the pages in range from page
7016 * allocator removing them from the buddy system. This way
7017 * page allocator will never consider using them.
7018 *
7019 * This lets us mark the pageblocks back as
7020 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7021 * aligned range but not in the unaligned, original range are
7022 * put back to page allocator so that buddy can use them.
7023 */
7024
7025 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7026 pfn_max_align_up(end), migratetype,
7027 false);
041d3a8c 7028 if (ret)
86a595f9 7029 return ret;
041d3a8c 7030
8ef5849f
JK
7031 /*
7032 * In case of -EBUSY, we'd like to know which page causes problem.
7033 * So, just fall through. We will check it in test_pages_isolated().
7034 */
bb13ffeb 7035 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7036 if (ret && ret != -EBUSY)
041d3a8c
MN
7037 goto done;
7038
7039 /*
7040 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7041 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7042 * more, all pages in [start, end) are free in page allocator.
7043 * What we are going to do is to allocate all pages from
7044 * [start, end) (that is remove them from page allocator).
7045 *
7046 * The only problem is that pages at the beginning and at the
7047 * end of interesting range may be not aligned with pages that
7048 * page allocator holds, ie. they can be part of higher order
7049 * pages. Because of this, we reserve the bigger range and
7050 * once this is done free the pages we are not interested in.
7051 *
7052 * We don't have to hold zone->lock here because the pages are
7053 * isolated thus they won't get removed from buddy.
7054 */
7055
7056 lru_add_drain_all();
510f5507 7057 drain_all_pages(cc.zone);
041d3a8c
MN
7058
7059 order = 0;
7060 outer_start = start;
7061 while (!PageBuddy(pfn_to_page(outer_start))) {
7062 if (++order >= MAX_ORDER) {
8ef5849f
JK
7063 outer_start = start;
7064 break;
041d3a8c
MN
7065 }
7066 outer_start &= ~0UL << order;
7067 }
7068
8ef5849f
JK
7069 if (outer_start != start) {
7070 order = page_order(pfn_to_page(outer_start));
7071
7072 /*
7073 * outer_start page could be small order buddy page and
7074 * it doesn't include start page. Adjust outer_start
7075 * in this case to report failed page properly
7076 * on tracepoint in test_pages_isolated()
7077 */
7078 if (outer_start + (1UL << order) <= start)
7079 outer_start = start;
7080 }
7081
041d3a8c 7082 /* Make sure the range is really isolated. */
b023f468 7083 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7084 pr_info("%s: [%lx, %lx) PFNs busy\n",
7085 __func__, outer_start, end);
041d3a8c
MN
7086 ret = -EBUSY;
7087 goto done;
7088 }
7089
49f223a9 7090 /* Grab isolated pages from freelists. */
bb13ffeb 7091 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7092 if (!outer_end) {
7093 ret = -EBUSY;
7094 goto done;
7095 }
7096
7097 /* Free head and tail (if any) */
7098 if (start != outer_start)
7099 free_contig_range(outer_start, start - outer_start);
7100 if (end != outer_end)
7101 free_contig_range(end, outer_end - end);
7102
7103done:
7104 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7105 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7106 return ret;
7107}
7108
7109void free_contig_range(unsigned long pfn, unsigned nr_pages)
7110{
bcc2b02f
MS
7111 unsigned int count = 0;
7112
7113 for (; nr_pages--; pfn++) {
7114 struct page *page = pfn_to_page(pfn);
7115
7116 count += page_count(page) != 1;
7117 __free_page(page);
7118 }
7119 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7120}
7121#endif
7122
4ed7e022 7123#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7124/*
7125 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7126 * page high values need to be recalulated.
7127 */
4ed7e022
JL
7128void __meminit zone_pcp_update(struct zone *zone)
7129{
0a647f38 7130 unsigned cpu;
c8e251fa 7131 mutex_lock(&pcp_batch_high_lock);
0a647f38 7132 for_each_possible_cpu(cpu)
169f6c19
CS
7133 pageset_set_high_and_batch(zone,
7134 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7135 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7136}
7137#endif
7138
340175b7
JL
7139void zone_pcp_reset(struct zone *zone)
7140{
7141 unsigned long flags;
5a883813
MK
7142 int cpu;
7143 struct per_cpu_pageset *pset;
340175b7
JL
7144
7145 /* avoid races with drain_pages() */
7146 local_irq_save(flags);
7147 if (zone->pageset != &boot_pageset) {
5a883813
MK
7148 for_each_online_cpu(cpu) {
7149 pset = per_cpu_ptr(zone->pageset, cpu);
7150 drain_zonestat(zone, pset);
7151 }
340175b7
JL
7152 free_percpu(zone->pageset);
7153 zone->pageset = &boot_pageset;
7154 }
7155 local_irq_restore(flags);
7156}
7157
6dcd73d7 7158#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7159/*
7160 * All pages in the range must be isolated before calling this.
7161 */
7162void
7163__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7164{
7165 struct page *page;
7166 struct zone *zone;
7aeb09f9 7167 unsigned int order, i;
0c0e6195
KH
7168 unsigned long pfn;
7169 unsigned long flags;
7170 /* find the first valid pfn */
7171 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7172 if (pfn_valid(pfn))
7173 break;
7174 if (pfn == end_pfn)
7175 return;
7176 zone = page_zone(pfn_to_page(pfn));
7177 spin_lock_irqsave(&zone->lock, flags);
7178 pfn = start_pfn;
7179 while (pfn < end_pfn) {
7180 if (!pfn_valid(pfn)) {
7181 pfn++;
7182 continue;
7183 }
7184 page = pfn_to_page(pfn);
b023f468
WC
7185 /*
7186 * The HWPoisoned page may be not in buddy system, and
7187 * page_count() is not 0.
7188 */
7189 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7190 pfn++;
7191 SetPageReserved(page);
7192 continue;
7193 }
7194
0c0e6195
KH
7195 BUG_ON(page_count(page));
7196 BUG_ON(!PageBuddy(page));
7197 order = page_order(page);
7198#ifdef CONFIG_DEBUG_VM
1170532b
JP
7199 pr_info("remove from free list %lx %d %lx\n",
7200 pfn, 1 << order, end_pfn);
0c0e6195
KH
7201#endif
7202 list_del(&page->lru);
7203 rmv_page_order(page);
7204 zone->free_area[order].nr_free--;
0c0e6195
KH
7205 for (i = 0; i < (1 << order); i++)
7206 SetPageReserved((page+i));
7207 pfn += (1 << order);
7208 }
7209 spin_unlock_irqrestore(&zone->lock, flags);
7210}
7211#endif
8d22ba1b 7212
8d22ba1b
WF
7213bool is_free_buddy_page(struct page *page)
7214{
7215 struct zone *zone = page_zone(page);
7216 unsigned long pfn = page_to_pfn(page);
7217 unsigned long flags;
7aeb09f9 7218 unsigned int order;
8d22ba1b
WF
7219
7220 spin_lock_irqsave(&zone->lock, flags);
7221 for (order = 0; order < MAX_ORDER; order++) {
7222 struct page *page_head = page - (pfn & ((1 << order) - 1));
7223
7224 if (PageBuddy(page_head) && page_order(page_head) >= order)
7225 break;
7226 }
7227 spin_unlock_irqrestore(&zone->lock, flags);
7228
7229 return order < MAX_ORDER;
7230}