mm/memory.c: use entry = ACCESS_ONCE(*pte) in handle_pte_fault()
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
1da177e4 64
6952b61d 65#include <asm/io.h>
1da177e4
LT
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
42b77728
JB
72#include "internal.h"
73
90572890
PZ
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
76#endif
77
d41dee36 78#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
1da177e4
LT
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
1da177e4 95
1da177e4 96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
120
121/*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124static int __init init_zero_pfn(void)
125{
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128}
129core_initcall(init_zero_pfn);
a62eaf15 130
d559db08 131
34e55232
KH
132#if defined(SPLIT_RSS_COUNTING)
133
ea48cf78 134void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
135{
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
34e55232
KH
142 }
143 }
05af2e10 144 current->rss_stat.events = 0;
34e55232
KH
145}
146
147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148{
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155}
156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159/* sync counter once per 64 page faults */
160#define TASK_RSS_EVENTS_THRESH (64)
161static void check_sync_rss_stat(struct task_struct *task)
162{
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 166 sync_mm_rss(task->mm);
34e55232 167}
9547d01b 168#else /* SPLIT_RSS_COUNTING */
34e55232
KH
169
170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173static void check_sync_rss_stat(struct task_struct *task)
174{
175}
176
9547d01b
PZ
177#endif /* SPLIT_RSS_COUNTING */
178
179#ifdef HAVE_GENERIC_MMU_GATHER
180
181static int tlb_next_batch(struct mmu_gather *tlb)
182{
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
53a59fc6
MH
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
9547d01b
PZ
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
53a59fc6 198 tlb->batch_count++;
9547d01b
PZ
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207}
208
209/* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
2b047252 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
215{
216 tlb->mm = mm;
217
2b047252
LT
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
1de14c3c 220 tlb->need_flush_all = 0;
2b047252
LT
221 tlb->start = start;
222 tlb->end = end;
9547d01b 223 tlb->need_flush = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
233}
234
1cf35d47 235static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 236{
9547d01b
PZ
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
34e55232 241#endif
1cf35d47
LT
242}
243
244static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
34e55232 247
9547d01b
PZ
248 for (batch = &tlb->local; batch; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
251 }
252 tlb->active = &tlb->local;
253}
254
1cf35d47
LT
255void tlb_flush_mmu(struct mmu_gather *tlb)
256{
257 if (!tlb->need_flush)
258 return;
259 tlb_flush_mmu_tlbonly(tlb);
260 tlb_flush_mmu_free(tlb);
261}
262
9547d01b
PZ
263/* tlb_finish_mmu
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
266 */
267void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268{
269 struct mmu_gather_batch *batch, *next;
270
271 tlb_flush_mmu(tlb);
272
273 /* keep the page table cache within bounds */
274 check_pgt_cache();
275
276 for (batch = tlb->local.next; batch; batch = next) {
277 next = batch->next;
278 free_pages((unsigned long)batch, 0);
279 }
280 tlb->local.next = NULL;
281}
282
283/* __tlb_remove_page
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
288 */
289int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290{
291 struct mmu_gather_batch *batch;
292
f21760b1 293 VM_BUG_ON(!tlb->need_flush);
9547d01b 294
9547d01b
PZ
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
0b43c3aa 300 batch = tlb->active;
9547d01b 301 }
309381fe 302 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
303
304 return batch->max - batch->nr;
305}
306
307#endif /* HAVE_GENERIC_MMU_GATHER */
308
26723911
PZ
309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311/*
312 * See the comment near struct mmu_table_batch.
313 */
314
315static void tlb_remove_table_smp_sync(void *arg)
316{
317 /* Simply deliver the interrupt */
318}
319
320static void tlb_remove_table_one(void *table)
321{
322 /*
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
325 *
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
328 */
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
331}
332
333static void tlb_remove_table_rcu(struct rcu_head *head)
334{
335 struct mmu_table_batch *batch;
336 int i;
337
338 batch = container_of(head, struct mmu_table_batch, rcu);
339
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
342
343 free_page((unsigned long)batch);
344}
345
346void tlb_table_flush(struct mmu_gather *tlb)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
353 }
354}
355
356void tlb_remove_table(struct mmu_gather *tlb, void *table)
357{
358 struct mmu_table_batch **batch = &tlb->batch;
359
360 tlb->need_flush = 1;
361
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382}
383
9547d01b 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 385
1da177e4
LT
386/*
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
389 */
9e1b32ca
BH
390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
1da177e4 392{
2f569afd 393 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 394 pmd_clear(pmd);
9e1b32ca 395 pte_free_tlb(tlb, token, addr);
e1f56c89 396 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
397}
398
e0da382c
HD
399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
1da177e4
LT
402{
403 pmd_t *pmd;
404 unsigned long next;
e0da382c 405 unsigned long start;
1da177e4 406
e0da382c 407 start = addr;
1da177e4 408 pmd = pmd_offset(pud, addr);
1da177e4
LT
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
9e1b32ca 413 free_pte_range(tlb, pmd, addr);
1da177e4
LT
414 } while (pmd++, addr = next, addr != end);
415
e0da382c
HD
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
1da177e4 423 }
e0da382c
HD
424 if (end - 1 > ceiling - 1)
425 return;
426
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
9e1b32ca 429 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
430}
431
e0da382c
HD
432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
1da177e4
LT
435{
436 pud_t *pud;
437 unsigned long next;
e0da382c 438 unsigned long start;
1da177e4 439
e0da382c 440 start = addr;
1da177e4 441 pud = pud_offset(pgd, addr);
1da177e4
LT
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
e0da382c 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
447 } while (pud++, addr = next, addr != end);
448
e0da382c
HD
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
1da177e4 456 }
e0da382c
HD
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
9e1b32ca 462 pud_free_tlb(tlb, pud, start);
1da177e4
LT
463}
464
465/*
e0da382c 466 * This function frees user-level page tables of a process.
1da177e4 467 */
42b77728 468void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
1da177e4
LT
471{
472 pgd_t *pgd;
473 unsigned long next;
e0da382c
HD
474
475 /*
476 * The next few lines have given us lots of grief...
477 *
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
481 *
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
489 *
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
494 *
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
499 */
1da177e4 500
e0da382c
HD
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
506 }
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
516
42b77728 517 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
42b77728 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 523 } while (pgd++, addr = next, addr != end);
e0da382c
HD
524}
525
42b77728 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 527 unsigned long floor, unsigned long ceiling)
e0da382c
HD
528{
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
532
8f4f8c16 533 /*
25d9e2d1 534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
8f4f8c16 536 */
5beb4930 537 unlink_anon_vmas(vma);
8f4f8c16
HD
538 unlink_file_vma(vma);
539
9da61aef 540 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 542 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
543 } else {
544 /*
545 * Optimization: gather nearby vmas into one call down
546 */
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 548 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
549 vma = next;
550 next = vma->vm_next;
5beb4930 551 unlink_anon_vmas(vma);
8f4f8c16 552 unlink_file_vma(vma);
3bf5ee95
HD
553 }
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
556 }
e0da382c
HD
557 vma = next;
558 }
1da177e4
LT
559}
560
8ac1f832
AA
561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
1da177e4 563{
c4088ebd 564 spinlock_t *ptl;
2f569afd 565 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 566 int wait_split_huge_page;
1bb3630e
HD
567 if (!new)
568 return -ENOMEM;
569
362a61ad
NP
570 /*
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
574 *
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
582 */
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
c4088ebd 585 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 588 atomic_long_inc(&mm->nr_ptes);
1da177e4 589 pmd_populate(mm, pmd, new);
2f569afd 590 new = NULL;
8ac1f832
AA
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
c4088ebd 593 spin_unlock(ptl);
2f569afd
MS
594 if (new)
595 pte_free(mm, new);
8ac1f832
AA
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 598 return 0;
1da177e4
LT
599}
600
1bb3630e 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 602{
1bb3630e
HD
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
362a61ad
NP
607 smp_wmb(); /* See comment in __pte_alloc */
608
1bb3630e 609 spin_lock(&init_mm.page_table_lock);
8ac1f832 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 611 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 612 new = NULL;
8ac1f832
AA
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 615 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
616 if (new)
617 pte_free_kernel(&init_mm, new);
1bb3630e 618 return 0;
1da177e4
LT
619}
620
d559db08
KH
621static inline void init_rss_vec(int *rss)
622{
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624}
625
626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 627{
d559db08
KH
628 int i;
629
34e55232 630 if (current->mm == mm)
05af2e10 631 sync_mm_rss(mm);
d559db08
KH
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
ae859762
HD
635}
636
b5810039 637/*
6aab341e
LT
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
b5810039
NP
641 *
642 * The calling function must still handle the error.
643 */
3dc14741
HD
644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
b5810039 646{
3dc14741
HD
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
d936cf9b
HD
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
1e9e6365
HD
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
668 nr_unshown);
669 nr_unshown = 0;
670 }
671 nr_shown = 0;
672 }
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
3dc14741
HD
675
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
678
1e9e6365
HD
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 683 if (page)
f0b791a3 684 dump_page(page, "bad pte");
1e9e6365 685 printk(KERN_ALERT
3dc14741
HD
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 /*
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 */
691 if (vma->vm_ops)
071361d3
JP
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
72c2d531 694 if (vma->vm_file)
071361d3
JP
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
b5810039 697 dump_stack();
373d4d09 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
699}
700
ee498ed7 701/*
7e675137 702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 703 *
7e675137
NP
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 707 *
7e675137
NP
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
712 *
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 716 *
b379d790
JH
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
6aab341e
LT
721 *
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723 *
7e675137
NP
724 * And for normal mappings this is false.
725 *
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
b379d790 730 *
b379d790 731 *
7e675137 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
733 *
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
741 *
ee498ed7 742 */
7e675137
NP
743#ifdef __HAVE_ARCH_PTE_SPECIAL
744# define HAVE_PTE_SPECIAL 1
745#else
746# define HAVE_PTE_SPECIAL 0
747#endif
748struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
ee498ed7 750{
22b31eec 751 unsigned long pfn = pte_pfn(pte);
7e675137
NP
752
753 if (HAVE_PTE_SPECIAL) {
c46a7c81 754 if (likely(!pte_special(pte) || pte_numa(pte)))
22b31eec 755 goto check_pfn;
a13ea5b7
HD
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
62eede62 758 if (!is_zero_pfn(pfn))
22b31eec 759 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
b379d790
JH
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
7e675137
NP
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
6aab341e
LT
778 }
779
22b31eec
HD
780check_pfn:
781 if (unlikely(pfn > highest_memmap_pfn)) {
782 print_bad_pte(vma, addr, pte, NULL);
783 return NULL;
784 }
6aab341e 785
c46a7c81
MG
786 if (is_zero_pfn(pfn))
787 return NULL;
788
6aab341e 789 /*
7e675137 790 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 791 * eg. VDSO mappings can cause them to exist.
6aab341e 792 */
b379d790 793out:
6aab341e 794 return pfn_to_page(pfn);
ee498ed7
HD
795}
796
1da177e4
LT
797/*
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
1da177e4
LT
801 */
802
570a335b 803static inline unsigned long
1da177e4 804copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 806 unsigned long addr, int *rss)
1da177e4 807{
b5810039 808 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
809 pte_t pte = *src_pte;
810 struct page *page;
1da177e4
LT
811
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte))) {
814 if (!pte_file(pte)) {
0697212a
CL
815 swp_entry_t entry = pte_to_swp_entry(pte);
816
570a335b
HD
817 if (swap_duplicate(entry) < 0)
818 return entry.val;
819
1da177e4
LT
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm->mmlist))) {
822 spin_lock(&mmlist_lock);
f412ac08
HD
823 if (list_empty(&dst_mm->mmlist))
824 list_add(&dst_mm->mmlist,
825 &src_mm->mmlist);
1da177e4
LT
826 spin_unlock(&mmlist_lock);
827 }
b084d435
KH
828 if (likely(!non_swap_entry(entry)))
829 rss[MM_SWAPENTS]++;
9f9f1acd
KK
830 else if (is_migration_entry(entry)) {
831 page = migration_entry_to_page(entry);
832
833 if (PageAnon(page))
834 rss[MM_ANONPAGES]++;
835 else
836 rss[MM_FILEPAGES]++;
837
838 if (is_write_migration_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
840 /*
841 * COW mappings require pages in both
842 * parent and child to be set to read.
843 */
844 make_migration_entry_read(&entry);
845 pte = swp_entry_to_pte(entry);
c3d16e16
CG
846 if (pte_swp_soft_dirty(*src_pte))
847 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
0697212a 850 }
1da177e4 851 }
ae859762 852 goto out_set_pte;
1da177e4
LT
853 }
854
1da177e4
LT
855 /*
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
858 */
67121172 859 if (is_cow_mapping(vm_flags)) {
1da177e4 860 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 861 pte = pte_wrprotect(pte);
1da177e4
LT
862 }
863
864 /*
865 * If it's a shared mapping, mark it clean in
866 * the child
867 */
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
6aab341e
LT
871
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
21333b2b 875 page_dup_rmap(page);
d559db08
KH
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
6aab341e 880 }
ae859762
HD
881
882out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 884 return 0;
1da177e4
LT
885}
886
71e3aac0
AA
887int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
1da177e4 890{
c36987e2 891 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 892 pte_t *src_pte, *dst_pte;
c74df32c 893 spinlock_t *src_ptl, *dst_ptl;
e040f218 894 int progress = 0;
d559db08 895 int rss[NR_MM_COUNTERS];
570a335b 896 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
897
898again:
d559db08
KH
899 init_rss_vec(rss);
900
c74df32c 901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
902 if (!dst_pte)
903 return -ENOMEM;
ece0e2b6 904 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 905 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
6606c3e0 909 arch_enter_lazy_mmu_mode();
1da177e4 910
1da177e4
LT
911 do {
912 /*
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
915 */
e040f218
HD
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
95c354fe 919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
920 break;
921 }
1da177e4
LT
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
925 }
570a335b
HD
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
1da177e4
LT
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 932
6606c3e0 933 arch_leave_lazy_mmu_mode();
c74df32c 934 spin_unlock(src_ptl);
ece0e2b6 935 pte_unmap(orig_src_pte);
d559db08 936 add_mm_rss_vec(dst_mm, rss);
c36987e2 937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 938 cond_resched();
570a335b
HD
939
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
944 }
1da177e4
LT
945 if (addr != end)
946 goto again;
947 return 0;
948}
949
950static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
953{
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
956
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
71e3aac0
AA
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
14d1a55c 965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
973 }
1da177e4
LT
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
981}
982
983static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
986{
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
989
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1003}
1004
1005int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1007{
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
2ec74c3e
SG
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
cddb8a5c 1015 int ret;
1da177e4 1016
d992895b
NP
1017 /*
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1022 */
4b6e1e37
KK
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1025 if (!vma->anon_vma)
1026 return 0;
1027 }
1028
1da177e4
LT
1029 if (is_vm_hugetlb_page(vma))
1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031
b3b9c293 1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1033 /*
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1036 */
5180da41 1037 ret = track_pfn_copy(vma);
2ab64037 1038 if (ret)
1039 return ret;
1040 }
1041
cddb8a5c
AA
1042 /*
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1047 */
2ec74c3e
SG
1048 is_cow = is_cow_mapping(vma->vm_flags);
1049 mmun_start = addr;
1050 mmun_end = end;
1051 if (is_cow)
1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 mmun_end);
cddb8a5c
AA
1054
1055 ret = 0;
1da177e4
LT
1056 dst_pgd = pgd_offset(dst_mm, addr);
1057 src_pgd = pgd_offset(src_mm, addr);
1058 do {
1059 next = pgd_addr_end(addr, end);
1060 if (pgd_none_or_clear_bad(src_pgd))
1061 continue;
cddb8a5c
AA
1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 vma, addr, next))) {
1064 ret = -ENOMEM;
1065 break;
1066 }
1da177e4 1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1068
2ec74c3e
SG
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1071 return ret;
1da177e4
LT
1072}
1073
51c6f666 1074static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1075 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1076 unsigned long addr, unsigned long end,
97a89413 1077 struct zap_details *details)
1da177e4 1078{
b5810039 1079 struct mm_struct *mm = tlb->mm;
d16dfc55 1080 int force_flush = 0;
d559db08 1081 int rss[NR_MM_COUNTERS];
97a89413 1082 spinlock_t *ptl;
5f1a1907 1083 pte_t *start_pte;
97a89413 1084 pte_t *pte;
d559db08 1085
d16dfc55 1086again:
e303297e 1087 init_rss_vec(rss);
5f1a1907
SR
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
6606c3e0 1090 arch_enter_lazy_mmu_mode();
1da177e4
LT
1091 do {
1092 pte_t ptent = *pte;
51c6f666 1093 if (pte_none(ptent)) {
1da177e4 1094 continue;
51c6f666 1095 }
6f5e6b9e 1096
1da177e4 1097 if (pte_present(ptent)) {
ee498ed7 1098 struct page *page;
51c6f666 1099
6aab341e 1100 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1101 if (unlikely(details) && page) {
1102 /*
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1106 */
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1110 /*
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1113 */
1114 if (details->nonlinear_vma &&
1115 (page->index < details->first_index ||
1116 page->index > details->last_index))
1117 continue;
1118 }
b5810039 1119 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1120 tlb->fullmm);
1da177e4
LT
1121 tlb_remove_tlb_entry(tlb, pte, addr);
1122 if (unlikely(!page))
1123 continue;
1124 if (unlikely(details) && details->nonlinear_vma
1125 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1126 addr) != page->index) {
1127 pte_t ptfile = pgoff_to_pte(page->index);
1128 if (pte_soft_dirty(ptent))
1129 pte_file_mksoft_dirty(ptfile);
1130 set_pte_at(mm, addr, pte, ptfile);
1131 }
1da177e4 1132 if (PageAnon(page))
d559db08 1133 rss[MM_ANONPAGES]--;
6237bcd9 1134 else {
1cf35d47
LT
1135 if (pte_dirty(ptent)) {
1136 force_flush = 1;
6237bcd9 1137 set_page_dirty(page);
1cf35d47 1138 }
4917e5d0 1139 if (pte_young(ptent) &&
64363aad 1140 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1141 mark_page_accessed(page);
d559db08 1142 rss[MM_FILEPAGES]--;
6237bcd9 1143 }
edc315fd 1144 page_remove_rmap(page);
3dc14741
HD
1145 if (unlikely(page_mapcount(page) < 0))
1146 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1147 if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 force_flush = 1;
d16dfc55 1149 break;
1cf35d47 1150 }
1da177e4
LT
1151 continue;
1152 }
1153 /*
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1156 */
1157 if (unlikely(details))
1158 continue;
2509ef26
HD
1159 if (pte_file(ptent)) {
1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1162 } else {
1163 swp_entry_t entry = pte_to_swp_entry(ptent);
1164
1165 if (!non_swap_entry(entry))
1166 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1167 else if (is_migration_entry(entry)) {
1168 struct page *page;
1169
1170 page = migration_entry_to_page(entry);
1171
1172 if (PageAnon(page))
1173 rss[MM_ANONPAGES]--;
1174 else
1175 rss[MM_FILEPAGES]--;
1176 }
b084d435
KH
1177 if (unlikely(!free_swap_and_cache(entry)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 }
9888a1ca 1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1181 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1182
d559db08 1183 add_mm_rss_vec(mm, rss);
6606c3e0 1184 arch_leave_lazy_mmu_mode();
51c6f666 1185
1cf35d47 1186 /* Do the actual TLB flush before dropping ptl */
d16dfc55 1187 if (force_flush) {
2b047252
LT
1188 unsigned long old_end;
1189
2b047252
LT
1190 /*
1191 * Flush the TLB just for the previous segment,
1192 * then update the range to be the remaining
1193 * TLB range.
1194 */
1195 old_end = tlb->end;
e6c495a9 1196 tlb->end = addr;
1cf35d47 1197 tlb_flush_mmu_tlbonly(tlb);
2b047252
LT
1198 tlb->start = addr;
1199 tlb->end = old_end;
1cf35d47
LT
1200 }
1201 pte_unmap_unlock(start_pte, ptl);
1202
1203 /*
1204 * If we forced a TLB flush (either due to running out of
1205 * batch buffers or because we needed to flush dirty TLB
1206 * entries before releasing the ptl), free the batched
1207 * memory too. Restart if we didn't do everything.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
1211 tlb_flush_mmu_free(tlb);
2b047252
LT
1212
1213 if (addr != end)
d16dfc55
PZ
1214 goto again;
1215 }
1216
51c6f666 1217 return addr;
1da177e4
LT
1218}
1219
51c6f666 1220static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1221 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1222 unsigned long addr, unsigned long end,
97a89413 1223 struct zap_details *details)
1da177e4
LT
1224{
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
71e3aac0 1231 if (pmd_trans_huge(*pmd)) {
1a5a9906 1232 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1233#ifdef CONFIG_DEBUG_VM
1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 __func__, addr, end,
1237 vma->vm_start,
1238 vma->vm_end);
1239 BUG();
1240 }
1241#endif
e180377f 1242 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1244 goto next;
71e3aac0
AA
1245 /* fall through */
1246 }
1a5a9906
AA
1247 /*
1248 * Here there can be other concurrent MADV_DONTNEED or
1249 * trans huge page faults running, and if the pmd is
1250 * none or trans huge it can change under us. This is
1251 * because MADV_DONTNEED holds the mmap_sem in read
1252 * mode.
1253 */
1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 goto next;
97a89413 1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1257next:
97a89413
PZ
1258 cond_resched();
1259 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1260
1261 return addr;
1da177e4
LT
1262}
1263
51c6f666 1264static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1265 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1266 unsigned long addr, unsigned long end,
97a89413 1267 struct zap_details *details)
1da177e4
LT
1268{
1269 pud_t *pud;
1270 unsigned long next;
1271
1272 pud = pud_offset(pgd, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
97a89413 1275 if (pud_none_or_clear_bad(pud))
1da177e4 1276 continue;
97a89413
PZ
1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 } while (pud++, addr = next, addr != end);
51c6f666
RH
1279
1280 return addr;
1da177e4
LT
1281}
1282
038c7aa1
AV
1283static void unmap_page_range(struct mmu_gather *tlb,
1284 struct vm_area_struct *vma,
1285 unsigned long addr, unsigned long end,
1286 struct zap_details *details)
1da177e4
LT
1287{
1288 pgd_t *pgd;
1289 unsigned long next;
1290
1291 if (details && !details->check_mapping && !details->nonlinear_vma)
1292 details = NULL;
1293
1294 BUG_ON(addr >= end);
569b846d 1295 mem_cgroup_uncharge_start();
1da177e4
LT
1296 tlb_start_vma(tlb, vma);
1297 pgd = pgd_offset(vma->vm_mm, addr);
1298 do {
1299 next = pgd_addr_end(addr, end);
97a89413 1300 if (pgd_none_or_clear_bad(pgd))
1da177e4 1301 continue;
97a89413
PZ
1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 } while (pgd++, addr = next, addr != end);
1da177e4 1304 tlb_end_vma(tlb, vma);
569b846d 1305 mem_cgroup_uncharge_end();
1da177e4 1306}
51c6f666 1307
f5cc4eef
AV
1308
1309static void unmap_single_vma(struct mmu_gather *tlb,
1310 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1311 unsigned long end_addr,
f5cc4eef
AV
1312 struct zap_details *details)
1313{
1314 unsigned long start = max(vma->vm_start, start_addr);
1315 unsigned long end;
1316
1317 if (start >= vma->vm_end)
1318 return;
1319 end = min(vma->vm_end, end_addr);
1320 if (end <= vma->vm_start)
1321 return;
1322
cbc91f71
SD
1323 if (vma->vm_file)
1324 uprobe_munmap(vma, start, end);
1325
b3b9c293 1326 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1327 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1328
1329 if (start != end) {
1330 if (unlikely(is_vm_hugetlb_page(vma))) {
1331 /*
1332 * It is undesirable to test vma->vm_file as it
1333 * should be non-null for valid hugetlb area.
1334 * However, vm_file will be NULL in the error
7aa6b4ad 1335 * cleanup path of mmap_region. When
f5cc4eef 1336 * hugetlbfs ->mmap method fails,
7aa6b4ad 1337 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1338 * before calling this function to clean up.
1339 * Since no pte has actually been setup, it is
1340 * safe to do nothing in this case.
1341 */
24669e58
AK
1342 if (vma->vm_file) {
1343 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1344 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1345 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 }
f5cc4eef
AV
1347 } else
1348 unmap_page_range(tlb, vma, start, end, details);
1349 }
1da177e4
LT
1350}
1351
1da177e4
LT
1352/**
1353 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1354 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1355 * @vma: the starting vma
1356 * @start_addr: virtual address at which to start unmapping
1357 * @end_addr: virtual address at which to end unmapping
1da177e4 1358 *
508034a3 1359 * Unmap all pages in the vma list.
1da177e4 1360 *
1da177e4
LT
1361 * Only addresses between `start' and `end' will be unmapped.
1362 *
1363 * The VMA list must be sorted in ascending virtual address order.
1364 *
1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366 * range after unmap_vmas() returns. So the only responsibility here is to
1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368 * drops the lock and schedules.
1369 */
6e8bb019 1370void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1371 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1372 unsigned long end_addr)
1da177e4 1373{
cddb8a5c 1374 struct mm_struct *mm = vma->vm_mm;
1da177e4 1375
cddb8a5c 1376 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1377 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1378 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1379 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1380}
1381
1382/**
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1385 * @start: starting address of pages to zap
1da177e4
LT
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1388 *
1389 * Caller must protect the VMA list
1da177e4 1390 */
7e027b14 1391void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1392 unsigned long size, struct zap_details *details)
1393{
1394 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1395 struct mmu_gather tlb;
7e027b14 1396 unsigned long end = start + size;
1da177e4 1397
1da177e4 1398 lru_add_drain();
2b047252 1399 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1400 update_hiwater_rss(mm);
7e027b14
LT
1401 mmu_notifier_invalidate_range_start(mm, start, end);
1402 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1403 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1404 mmu_notifier_invalidate_range_end(mm, start, end);
1405 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1406}
1407
f5cc4eef
AV
1408/**
1409 * zap_page_range_single - remove user pages in a given range
1410 * @vma: vm_area_struct holding the applicable pages
1411 * @address: starting address of pages to zap
1412 * @size: number of bytes to zap
1413 * @details: details of nonlinear truncation or shared cache invalidation
1414 *
1415 * The range must fit into one VMA.
1da177e4 1416 */
f5cc4eef 1417static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1418 unsigned long size, struct zap_details *details)
1419{
1420 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1421 struct mmu_gather tlb;
1da177e4 1422 unsigned long end = address + size;
1da177e4 1423
1da177e4 1424 lru_add_drain();
2b047252 1425 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1426 update_hiwater_rss(mm);
f5cc4eef 1427 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1428 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1429 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1430 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1431}
1432
c627f9cc
JS
1433/**
1434 * zap_vma_ptes - remove ptes mapping the vma
1435 * @vma: vm_area_struct holding ptes to be zapped
1436 * @address: starting address of pages to zap
1437 * @size: number of bytes to zap
1438 *
1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440 *
1441 * The entire address range must be fully contained within the vma.
1442 *
1443 * Returns 0 if successful.
1444 */
1445int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 unsigned long size)
1447{
1448 if (address < vma->vm_start || address + size > vma->vm_end ||
1449 !(vma->vm_flags & VM_PFNMAP))
1450 return -1;
f5cc4eef 1451 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1452 return 0;
1453}
1454EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455
25ca1d6c 1456pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1457 spinlock_t **ptl)
c9cfcddf
LT
1458{
1459 pgd_t * pgd = pgd_offset(mm, addr);
1460 pud_t * pud = pud_alloc(mm, pgd, addr);
1461 if (pud) {
49c91fb0 1462 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1463 if (pmd) {
1464 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1465 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1466 }
c9cfcddf
LT
1467 }
1468 return NULL;
1469}
1470
238f58d8
LT
1471/*
1472 * This is the old fallback for page remapping.
1473 *
1474 * For historical reasons, it only allows reserved pages. Only
1475 * old drivers should use this, and they needed to mark their
1476 * pages reserved for the old functions anyway.
1477 */
423bad60
NP
1478static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1479 struct page *page, pgprot_t prot)
238f58d8 1480{
423bad60 1481 struct mm_struct *mm = vma->vm_mm;
238f58d8 1482 int retval;
c9cfcddf 1483 pte_t *pte;
8a9f3ccd
BS
1484 spinlock_t *ptl;
1485
238f58d8 1486 retval = -EINVAL;
a145dd41 1487 if (PageAnon(page))
5b4e655e 1488 goto out;
238f58d8
LT
1489 retval = -ENOMEM;
1490 flush_dcache_page(page);
c9cfcddf 1491 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1492 if (!pte)
5b4e655e 1493 goto out;
238f58d8
LT
1494 retval = -EBUSY;
1495 if (!pte_none(*pte))
1496 goto out_unlock;
1497
1498 /* Ok, finally just insert the thing.. */
1499 get_page(page);
34e55232 1500 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1501 page_add_file_rmap(page);
1502 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1503
1504 retval = 0;
8a9f3ccd
BS
1505 pte_unmap_unlock(pte, ptl);
1506 return retval;
238f58d8
LT
1507out_unlock:
1508 pte_unmap_unlock(pte, ptl);
1509out:
1510 return retval;
1511}
1512
bfa5bf6d
REB
1513/**
1514 * vm_insert_page - insert single page into user vma
1515 * @vma: user vma to map to
1516 * @addr: target user address of this page
1517 * @page: source kernel page
1518 *
a145dd41
LT
1519 * This allows drivers to insert individual pages they've allocated
1520 * into a user vma.
1521 *
1522 * The page has to be a nice clean _individual_ kernel allocation.
1523 * If you allocate a compound page, you need to have marked it as
1524 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1525 * (see split_page()).
a145dd41
LT
1526 *
1527 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1528 * took an arbitrary page protection parameter. This doesn't allow
1529 * that. Your vma protection will have to be set up correctly, which
1530 * means that if you want a shared writable mapping, you'd better
1531 * ask for a shared writable mapping!
1532 *
1533 * The page does not need to be reserved.
4b6e1e37
KK
1534 *
1535 * Usually this function is called from f_op->mmap() handler
1536 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1537 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1538 * function from other places, for example from page-fault handler.
a145dd41 1539 */
423bad60
NP
1540int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1541 struct page *page)
a145dd41
LT
1542{
1543 if (addr < vma->vm_start || addr >= vma->vm_end)
1544 return -EFAULT;
1545 if (!page_count(page))
1546 return -EINVAL;
4b6e1e37
KK
1547 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1548 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1549 BUG_ON(vma->vm_flags & VM_PFNMAP);
1550 vma->vm_flags |= VM_MIXEDMAP;
1551 }
423bad60 1552 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1553}
e3c3374f 1554EXPORT_SYMBOL(vm_insert_page);
a145dd41 1555
423bad60
NP
1556static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557 unsigned long pfn, pgprot_t prot)
1558{
1559 struct mm_struct *mm = vma->vm_mm;
1560 int retval;
1561 pte_t *pte, entry;
1562 spinlock_t *ptl;
1563
1564 retval = -ENOMEM;
1565 pte = get_locked_pte(mm, addr, &ptl);
1566 if (!pte)
1567 goto out;
1568 retval = -EBUSY;
1569 if (!pte_none(*pte))
1570 goto out_unlock;
1571
1572 /* Ok, finally just insert the thing.. */
1573 entry = pte_mkspecial(pfn_pte(pfn, prot));
1574 set_pte_at(mm, addr, pte, entry);
4b3073e1 1575 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1576
1577 retval = 0;
1578out_unlock:
1579 pte_unmap_unlock(pte, ptl);
1580out:
1581 return retval;
1582}
1583
e0dc0d8f
NP
1584/**
1585 * vm_insert_pfn - insert single pfn into user vma
1586 * @vma: user vma to map to
1587 * @addr: target user address of this page
1588 * @pfn: source kernel pfn
1589 *
c462f179 1590 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1591 * they've allocated into a user vma. Same comments apply.
1592 *
1593 * This function should only be called from a vm_ops->fault handler, and
1594 * in that case the handler should return NULL.
0d71d10a
NP
1595 *
1596 * vma cannot be a COW mapping.
1597 *
1598 * As this is called only for pages that do not currently exist, we
1599 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1600 */
1601int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1602 unsigned long pfn)
e0dc0d8f 1603{
2ab64037 1604 int ret;
e4b866ed 1605 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1606 /*
1607 * Technically, architectures with pte_special can avoid all these
1608 * restrictions (same for remap_pfn_range). However we would like
1609 * consistency in testing and feature parity among all, so we should
1610 * try to keep these invariants in place for everybody.
1611 */
b379d790
JH
1612 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614 (VM_PFNMAP|VM_MIXEDMAP));
1615 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1617
423bad60
NP
1618 if (addr < vma->vm_start || addr >= vma->vm_end)
1619 return -EFAULT;
5180da41 1620 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1621 return -EINVAL;
1622
e4b866ed 1623 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1624
2ab64037 1625 return ret;
423bad60
NP
1626}
1627EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1628
423bad60
NP
1629int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1630 unsigned long pfn)
1631{
1632 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1633
423bad60
NP
1634 if (addr < vma->vm_start || addr >= vma->vm_end)
1635 return -EFAULT;
e0dc0d8f 1636
423bad60
NP
1637 /*
1638 * If we don't have pte special, then we have to use the pfn_valid()
1639 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1640 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1641 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1642 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1643 */
1644 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1645 struct page *page;
1646
1647 page = pfn_to_page(pfn);
1648 return insert_page(vma, addr, page, vma->vm_page_prot);
1649 }
1650 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1651}
423bad60 1652EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1653
1da177e4
LT
1654/*
1655 * maps a range of physical memory into the requested pages. the old
1656 * mappings are removed. any references to nonexistent pages results
1657 * in null mappings (currently treated as "copy-on-access")
1658 */
1659static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1660 unsigned long addr, unsigned long end,
1661 unsigned long pfn, pgprot_t prot)
1662{
1663 pte_t *pte;
c74df32c 1664 spinlock_t *ptl;
1da177e4 1665
c74df32c 1666 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1667 if (!pte)
1668 return -ENOMEM;
6606c3e0 1669 arch_enter_lazy_mmu_mode();
1da177e4
LT
1670 do {
1671 BUG_ON(!pte_none(*pte));
7e675137 1672 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1673 pfn++;
1674 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1675 arch_leave_lazy_mmu_mode();
c74df32c 1676 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1677 return 0;
1678}
1679
1680static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1681 unsigned long addr, unsigned long end,
1682 unsigned long pfn, pgprot_t prot)
1683{
1684 pmd_t *pmd;
1685 unsigned long next;
1686
1687 pfn -= addr >> PAGE_SHIFT;
1688 pmd = pmd_alloc(mm, pud, addr);
1689 if (!pmd)
1690 return -ENOMEM;
f66055ab 1691 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1692 do {
1693 next = pmd_addr_end(addr, end);
1694 if (remap_pte_range(mm, pmd, addr, next,
1695 pfn + (addr >> PAGE_SHIFT), prot))
1696 return -ENOMEM;
1697 } while (pmd++, addr = next, addr != end);
1698 return 0;
1699}
1700
1701static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1702 unsigned long addr, unsigned long end,
1703 unsigned long pfn, pgprot_t prot)
1704{
1705 pud_t *pud;
1706 unsigned long next;
1707
1708 pfn -= addr >> PAGE_SHIFT;
1709 pud = pud_alloc(mm, pgd, addr);
1710 if (!pud)
1711 return -ENOMEM;
1712 do {
1713 next = pud_addr_end(addr, end);
1714 if (remap_pmd_range(mm, pud, addr, next,
1715 pfn + (addr >> PAGE_SHIFT), prot))
1716 return -ENOMEM;
1717 } while (pud++, addr = next, addr != end);
1718 return 0;
1719}
1720
bfa5bf6d
REB
1721/**
1722 * remap_pfn_range - remap kernel memory to userspace
1723 * @vma: user vma to map to
1724 * @addr: target user address to start at
1725 * @pfn: physical address of kernel memory
1726 * @size: size of map area
1727 * @prot: page protection flags for this mapping
1728 *
1729 * Note: this is only safe if the mm semaphore is held when called.
1730 */
1da177e4
LT
1731int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1732 unsigned long pfn, unsigned long size, pgprot_t prot)
1733{
1734 pgd_t *pgd;
1735 unsigned long next;
2d15cab8 1736 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1737 struct mm_struct *mm = vma->vm_mm;
1738 int err;
1739
1740 /*
1741 * Physically remapped pages are special. Tell the
1742 * rest of the world about it:
1743 * VM_IO tells people not to look at these pages
1744 * (accesses can have side effects).
6aab341e
LT
1745 * VM_PFNMAP tells the core MM that the base pages are just
1746 * raw PFN mappings, and do not have a "struct page" associated
1747 * with them.
314e51b9
KK
1748 * VM_DONTEXPAND
1749 * Disable vma merging and expanding with mremap().
1750 * VM_DONTDUMP
1751 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1752 *
1753 * There's a horrible special case to handle copy-on-write
1754 * behaviour that some programs depend on. We mark the "original"
1755 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1756 * See vm_normal_page() for details.
1da177e4 1757 */
b3b9c293
KK
1758 if (is_cow_mapping(vma->vm_flags)) {
1759 if (addr != vma->vm_start || end != vma->vm_end)
1760 return -EINVAL;
fb155c16 1761 vma->vm_pgoff = pfn;
b3b9c293
KK
1762 }
1763
1764 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1765 if (err)
3c8bb73a 1766 return -EINVAL;
fb155c16 1767
314e51b9 1768 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1769
1770 BUG_ON(addr >= end);
1771 pfn -= addr >> PAGE_SHIFT;
1772 pgd = pgd_offset(mm, addr);
1773 flush_cache_range(vma, addr, end);
1da177e4
LT
1774 do {
1775 next = pgd_addr_end(addr, end);
1776 err = remap_pud_range(mm, pgd, addr, next,
1777 pfn + (addr >> PAGE_SHIFT), prot);
1778 if (err)
1779 break;
1780 } while (pgd++, addr = next, addr != end);
2ab64037 1781
1782 if (err)
5180da41 1783 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1784
1da177e4
LT
1785 return err;
1786}
1787EXPORT_SYMBOL(remap_pfn_range);
1788
b4cbb197
LT
1789/**
1790 * vm_iomap_memory - remap memory to userspace
1791 * @vma: user vma to map to
1792 * @start: start of area
1793 * @len: size of area
1794 *
1795 * This is a simplified io_remap_pfn_range() for common driver use. The
1796 * driver just needs to give us the physical memory range to be mapped,
1797 * we'll figure out the rest from the vma information.
1798 *
1799 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1800 * whatever write-combining details or similar.
1801 */
1802int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1803{
1804 unsigned long vm_len, pfn, pages;
1805
1806 /* Check that the physical memory area passed in looks valid */
1807 if (start + len < start)
1808 return -EINVAL;
1809 /*
1810 * You *really* shouldn't map things that aren't page-aligned,
1811 * but we've historically allowed it because IO memory might
1812 * just have smaller alignment.
1813 */
1814 len += start & ~PAGE_MASK;
1815 pfn = start >> PAGE_SHIFT;
1816 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1817 if (pfn + pages < pfn)
1818 return -EINVAL;
1819
1820 /* We start the mapping 'vm_pgoff' pages into the area */
1821 if (vma->vm_pgoff > pages)
1822 return -EINVAL;
1823 pfn += vma->vm_pgoff;
1824 pages -= vma->vm_pgoff;
1825
1826 /* Can we fit all of the mapping? */
1827 vm_len = vma->vm_end - vma->vm_start;
1828 if (vm_len >> PAGE_SHIFT > pages)
1829 return -EINVAL;
1830
1831 /* Ok, let it rip */
1832 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1833}
1834EXPORT_SYMBOL(vm_iomap_memory);
1835
aee16b3c
JF
1836static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1837 unsigned long addr, unsigned long end,
1838 pte_fn_t fn, void *data)
1839{
1840 pte_t *pte;
1841 int err;
2f569afd 1842 pgtable_t token;
94909914 1843 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1844
1845 pte = (mm == &init_mm) ?
1846 pte_alloc_kernel(pmd, addr) :
1847 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1848 if (!pte)
1849 return -ENOMEM;
1850
1851 BUG_ON(pmd_huge(*pmd));
1852
38e0edb1
JF
1853 arch_enter_lazy_mmu_mode();
1854
2f569afd 1855 token = pmd_pgtable(*pmd);
aee16b3c
JF
1856
1857 do {
c36987e2 1858 err = fn(pte++, token, addr, data);
aee16b3c
JF
1859 if (err)
1860 break;
c36987e2 1861 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1862
38e0edb1
JF
1863 arch_leave_lazy_mmu_mode();
1864
aee16b3c
JF
1865 if (mm != &init_mm)
1866 pte_unmap_unlock(pte-1, ptl);
1867 return err;
1868}
1869
1870static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1871 unsigned long addr, unsigned long end,
1872 pte_fn_t fn, void *data)
1873{
1874 pmd_t *pmd;
1875 unsigned long next;
1876 int err;
1877
ceb86879
AK
1878 BUG_ON(pud_huge(*pud));
1879
aee16b3c
JF
1880 pmd = pmd_alloc(mm, pud, addr);
1881 if (!pmd)
1882 return -ENOMEM;
1883 do {
1884 next = pmd_addr_end(addr, end);
1885 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1886 if (err)
1887 break;
1888 } while (pmd++, addr = next, addr != end);
1889 return err;
1890}
1891
1892static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1893 unsigned long addr, unsigned long end,
1894 pte_fn_t fn, void *data)
1895{
1896 pud_t *pud;
1897 unsigned long next;
1898 int err;
1899
1900 pud = pud_alloc(mm, pgd, addr);
1901 if (!pud)
1902 return -ENOMEM;
1903 do {
1904 next = pud_addr_end(addr, end);
1905 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1906 if (err)
1907 break;
1908 } while (pud++, addr = next, addr != end);
1909 return err;
1910}
1911
1912/*
1913 * Scan a region of virtual memory, filling in page tables as necessary
1914 * and calling a provided function on each leaf page table.
1915 */
1916int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1917 unsigned long size, pte_fn_t fn, void *data)
1918{
1919 pgd_t *pgd;
1920 unsigned long next;
57250a5b 1921 unsigned long end = addr + size;
aee16b3c
JF
1922 int err;
1923
1924 BUG_ON(addr >= end);
1925 pgd = pgd_offset(mm, addr);
1926 do {
1927 next = pgd_addr_end(addr, end);
1928 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1929 if (err)
1930 break;
1931 } while (pgd++, addr = next, addr != end);
57250a5b 1932
aee16b3c
JF
1933 return err;
1934}
1935EXPORT_SYMBOL_GPL(apply_to_page_range);
1936
8f4e2101
HD
1937/*
1938 * handle_pte_fault chooses page fault handler according to an entry
1939 * which was read non-atomically. Before making any commitment, on
1940 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 1941 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
1942 * must check under lock before unmapping the pte and proceeding
1943 * (but do_wp_page is only called after already making such a check;
a335b2e1 1944 * and do_anonymous_page can safely check later on).
8f4e2101 1945 */
4c21e2f2 1946static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1947 pte_t *page_table, pte_t orig_pte)
1948{
1949 int same = 1;
1950#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1951 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1952 spinlock_t *ptl = pte_lockptr(mm, pmd);
1953 spin_lock(ptl);
8f4e2101 1954 same = pte_same(*page_table, orig_pte);
4c21e2f2 1955 spin_unlock(ptl);
8f4e2101
HD
1956 }
1957#endif
1958 pte_unmap(page_table);
1959 return same;
1960}
1961
9de455b2 1962static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1963{
0abdd7a8
DW
1964 debug_dma_assert_idle(src);
1965
6aab341e
LT
1966 /*
1967 * If the source page was a PFN mapping, we don't have
1968 * a "struct page" for it. We do a best-effort copy by
1969 * just copying from the original user address. If that
1970 * fails, we just zero-fill it. Live with it.
1971 */
1972 if (unlikely(!src)) {
9b04c5fe 1973 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1974 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1975
1976 /*
1977 * This really shouldn't fail, because the page is there
1978 * in the page tables. But it might just be unreadable,
1979 * in which case we just give up and fill the result with
1980 * zeroes.
1981 */
1982 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1983 clear_page(kaddr);
9b04c5fe 1984 kunmap_atomic(kaddr);
c4ec7b0d 1985 flush_dcache_page(dst);
0ed361de
NP
1986 } else
1987 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1988}
1989
fb09a464
KS
1990/*
1991 * Notify the address space that the page is about to become writable so that
1992 * it can prohibit this or wait for the page to get into an appropriate state.
1993 *
1994 * We do this without the lock held, so that it can sleep if it needs to.
1995 */
1996static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1997 unsigned long address)
1998{
1999 struct vm_fault vmf;
2000 int ret;
2001
2002 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2003 vmf.pgoff = page->index;
2004 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2005 vmf.page = page;
2006
2007 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2008 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2009 return ret;
2010 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2011 lock_page(page);
2012 if (!page->mapping) {
2013 unlock_page(page);
2014 return 0; /* retry */
2015 }
2016 ret |= VM_FAULT_LOCKED;
2017 } else
2018 VM_BUG_ON_PAGE(!PageLocked(page), page);
2019 return ret;
2020}
2021
1da177e4
LT
2022/*
2023 * This routine handles present pages, when users try to write
2024 * to a shared page. It is done by copying the page to a new address
2025 * and decrementing the shared-page counter for the old page.
2026 *
1da177e4
LT
2027 * Note that this routine assumes that the protection checks have been
2028 * done by the caller (the low-level page fault routine in most cases).
2029 * Thus we can safely just mark it writable once we've done any necessary
2030 * COW.
2031 *
2032 * We also mark the page dirty at this point even though the page will
2033 * change only once the write actually happens. This avoids a few races,
2034 * and potentially makes it more efficient.
2035 *
8f4e2101
HD
2036 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2037 * but allow concurrent faults), with pte both mapped and locked.
2038 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2039 */
65500d23
HD
2040static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2042 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2043 __releases(ptl)
1da177e4 2044{
2ec74c3e 2045 struct page *old_page, *new_page = NULL;
1da177e4 2046 pte_t entry;
b009c024 2047 int ret = 0;
a200ee18 2048 int page_mkwrite = 0;
d08b3851 2049 struct page *dirty_page = NULL;
1756954c
DR
2050 unsigned long mmun_start = 0; /* For mmu_notifiers */
2051 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2052
6aab341e 2053 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2054 if (!old_page) {
2055 /*
2056 * VM_MIXEDMAP !pfn_valid() case
2057 *
2058 * We should not cow pages in a shared writeable mapping.
2059 * Just mark the pages writable as we can't do any dirty
2060 * accounting on raw pfn maps.
2061 */
2062 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2063 (VM_WRITE|VM_SHARED))
2064 goto reuse;
6aab341e 2065 goto gotten;
251b97f5 2066 }
1da177e4 2067
d08b3851 2068 /*
ee6a6457
PZ
2069 * Take out anonymous pages first, anonymous shared vmas are
2070 * not dirty accountable.
d08b3851 2071 */
9a840895 2072 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2073 if (!trylock_page(old_page)) {
2074 page_cache_get(old_page);
2075 pte_unmap_unlock(page_table, ptl);
2076 lock_page(old_page);
2077 page_table = pte_offset_map_lock(mm, pmd, address,
2078 &ptl);
2079 if (!pte_same(*page_table, orig_pte)) {
2080 unlock_page(old_page);
ab967d86
HD
2081 goto unlock;
2082 }
2083 page_cache_release(old_page);
ee6a6457 2084 }
b009c024 2085 if (reuse_swap_page(old_page)) {
c44b6743
RR
2086 /*
2087 * The page is all ours. Move it to our anon_vma so
2088 * the rmap code will not search our parent or siblings.
2089 * Protected against the rmap code by the page lock.
2090 */
2091 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2092 unlock_page(old_page);
2093 goto reuse;
2094 }
ab967d86 2095 unlock_page(old_page);
ee6a6457 2096 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2097 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2098 /*
2099 * Only catch write-faults on shared writable pages,
2100 * read-only shared pages can get COWed by
2101 * get_user_pages(.write=1, .force=1).
2102 */
9637a5ef 2103 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2104 int tmp;
9637a5ef
DH
2105 page_cache_get(old_page);
2106 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2107 tmp = do_page_mkwrite(vma, old_page, address);
2108 if (unlikely(!tmp || (tmp &
2109 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2110 page_cache_release(old_page);
2111 return tmp;
c2ec175c 2112 }
9637a5ef
DH
2113 /*
2114 * Since we dropped the lock we need to revalidate
2115 * the PTE as someone else may have changed it. If
2116 * they did, we just return, as we can count on the
2117 * MMU to tell us if they didn't also make it writable.
2118 */
2119 page_table = pte_offset_map_lock(mm, pmd, address,
2120 &ptl);
b827e496
NP
2121 if (!pte_same(*page_table, orig_pte)) {
2122 unlock_page(old_page);
9637a5ef 2123 goto unlock;
b827e496 2124 }
a200ee18
PZ
2125
2126 page_mkwrite = 1;
1da177e4 2127 }
d08b3851
PZ
2128 dirty_page = old_page;
2129 get_page(dirty_page);
9637a5ef 2130
251b97f5 2131reuse:
8c8a743c
PZ
2132 /*
2133 * Clear the pages cpupid information as the existing
2134 * information potentially belongs to a now completely
2135 * unrelated process.
2136 */
2137 if (old_page)
2138 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2139
9637a5ef
DH
2140 flush_cache_page(vma, address, pte_pfn(orig_pte));
2141 entry = pte_mkyoung(orig_pte);
2142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2143 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2144 update_mmu_cache(vma, address, page_table);
72ddc8f7 2145 pte_unmap_unlock(page_table, ptl);
9637a5ef 2146 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2147
2148 if (!dirty_page)
2149 return ret;
2150
2151 /*
2152 * Yes, Virginia, this is actually required to prevent a race
2153 * with clear_page_dirty_for_io() from clearing the page dirty
2154 * bit after it clear all dirty ptes, but before a racing
2155 * do_wp_page installs a dirty pte.
2156 *
f0c6d4d2 2157 * do_shared_fault is protected similarly.
72ddc8f7
ML
2158 */
2159 if (!page_mkwrite) {
2160 wait_on_page_locked(dirty_page);
ed6d7c8e 2161 set_page_dirty_balance(dirty_page);
41c4d25f
JK
2162 /* file_update_time outside page_lock */
2163 if (vma->vm_file)
2164 file_update_time(vma->vm_file);
72ddc8f7
ML
2165 }
2166 put_page(dirty_page);
2167 if (page_mkwrite) {
2168 struct address_space *mapping = dirty_page->mapping;
2169
2170 set_page_dirty(dirty_page);
2171 unlock_page(dirty_page);
2172 page_cache_release(dirty_page);
2173 if (mapping) {
2174 /*
2175 * Some device drivers do not set page.mapping
2176 * but still dirty their pages
2177 */
2178 balance_dirty_pages_ratelimited(mapping);
2179 }
2180 }
2181
72ddc8f7 2182 return ret;
1da177e4 2183 }
1da177e4
LT
2184
2185 /*
2186 * Ok, we need to copy. Oh, well..
2187 */
b5810039 2188 page_cache_get(old_page);
920fc356 2189gotten:
8f4e2101 2190 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2191
2192 if (unlikely(anon_vma_prepare(vma)))
65500d23 2193 goto oom;
a13ea5b7 2194
62eede62 2195 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2196 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2197 if (!new_page)
2198 goto oom;
2199 } else {
2200 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2201 if (!new_page)
2202 goto oom;
2203 cow_user_page(new_page, old_page, address, vma);
2204 }
2205 __SetPageUptodate(new_page);
2206
d715ae08 2207 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2208 goto oom_free_new;
2209
6bdb913f 2210 mmun_start = address & PAGE_MASK;
1756954c 2211 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2212 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2213
1da177e4
LT
2214 /*
2215 * Re-check the pte - we dropped the lock
2216 */
8f4e2101 2217 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2218 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2219 if (old_page) {
920fc356 2220 if (!PageAnon(old_page)) {
34e55232
KH
2221 dec_mm_counter_fast(mm, MM_FILEPAGES);
2222 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2223 }
2224 } else
34e55232 2225 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2226 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2227 entry = mk_pte(new_page, vma->vm_page_prot);
2228 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2229 /*
2230 * Clear the pte entry and flush it first, before updating the
2231 * pte with the new entry. This will avoid a race condition
2232 * seen in the presence of one thread doing SMC and another
2233 * thread doing COW.
2234 */
828502d3 2235 ptep_clear_flush(vma, address, page_table);
9617d95e 2236 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2237 /*
2238 * We call the notify macro here because, when using secondary
2239 * mmu page tables (such as kvm shadow page tables), we want the
2240 * new page to be mapped directly into the secondary page table.
2241 */
2242 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2243 update_mmu_cache(vma, address, page_table);
945754a1
NP
2244 if (old_page) {
2245 /*
2246 * Only after switching the pte to the new page may
2247 * we remove the mapcount here. Otherwise another
2248 * process may come and find the rmap count decremented
2249 * before the pte is switched to the new page, and
2250 * "reuse" the old page writing into it while our pte
2251 * here still points into it and can be read by other
2252 * threads.
2253 *
2254 * The critical issue is to order this
2255 * page_remove_rmap with the ptp_clear_flush above.
2256 * Those stores are ordered by (if nothing else,)
2257 * the barrier present in the atomic_add_negative
2258 * in page_remove_rmap.
2259 *
2260 * Then the TLB flush in ptep_clear_flush ensures that
2261 * no process can access the old page before the
2262 * decremented mapcount is visible. And the old page
2263 * cannot be reused until after the decremented
2264 * mapcount is visible. So transitively, TLBs to
2265 * old page will be flushed before it can be reused.
2266 */
edc315fd 2267 page_remove_rmap(old_page);
945754a1
NP
2268 }
2269
1da177e4
LT
2270 /* Free the old page.. */
2271 new_page = old_page;
f33ea7f4 2272 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2273 } else
2274 mem_cgroup_uncharge_page(new_page);
2275
6bdb913f
HE
2276 if (new_page)
2277 page_cache_release(new_page);
65500d23 2278unlock:
8f4e2101 2279 pte_unmap_unlock(page_table, ptl);
1756954c 2280 if (mmun_end > mmun_start)
6bdb913f 2281 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2282 if (old_page) {
2283 /*
2284 * Don't let another task, with possibly unlocked vma,
2285 * keep the mlocked page.
2286 */
2287 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2288 lock_page(old_page); /* LRU manipulation */
2289 munlock_vma_page(old_page);
2290 unlock_page(old_page);
2291 }
2292 page_cache_release(old_page);
2293 }
f33ea7f4 2294 return ret;
8a9f3ccd 2295oom_free_new:
6dbf6d3b 2296 page_cache_release(new_page);
65500d23 2297oom:
66521d5a 2298 if (old_page)
920fc356 2299 page_cache_release(old_page);
1da177e4
LT
2300 return VM_FAULT_OOM;
2301}
2302
97a89413 2303static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2304 unsigned long start_addr, unsigned long end_addr,
2305 struct zap_details *details)
2306{
f5cc4eef 2307 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2308}
2309
6b2dbba8 2310static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2311 struct zap_details *details)
2312{
2313 struct vm_area_struct *vma;
1da177e4
LT
2314 pgoff_t vba, vea, zba, zea;
2315
6b2dbba8 2316 vma_interval_tree_foreach(vma, root,
1da177e4 2317 details->first_index, details->last_index) {
1da177e4
LT
2318
2319 vba = vma->vm_pgoff;
d6e93217 2320 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2321 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322 zba = details->first_index;
2323 if (zba < vba)
2324 zba = vba;
2325 zea = details->last_index;
2326 if (zea > vea)
2327 zea = vea;
2328
97a89413 2329 unmap_mapping_range_vma(vma,
1da177e4
LT
2330 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2331 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2332 details);
1da177e4
LT
2333 }
2334}
2335
2336static inline void unmap_mapping_range_list(struct list_head *head,
2337 struct zap_details *details)
2338{
2339 struct vm_area_struct *vma;
2340
2341 /*
2342 * In nonlinear VMAs there is no correspondence between virtual address
2343 * offset and file offset. So we must perform an exhaustive search
2344 * across *all* the pages in each nonlinear VMA, not just the pages
2345 * whose virtual address lies outside the file truncation point.
2346 */
6b2dbba8 2347 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2348 details->nonlinear_vma = vma;
97a89413 2349 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2350 }
2351}
2352
2353/**
72fd4a35 2354 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2355 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2356 * @holebegin: byte in first page to unmap, relative to the start of
2357 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2358 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2359 * must keep the partial page. In contrast, we must get rid of
2360 * partial pages.
2361 * @holelen: size of prospective hole in bytes. This will be rounded
2362 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2363 * end of the file.
2364 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365 * but 0 when invalidating pagecache, don't throw away private data.
2366 */
2367void unmap_mapping_range(struct address_space *mapping,
2368 loff_t const holebegin, loff_t const holelen, int even_cows)
2369{
2370 struct zap_details details;
2371 pgoff_t hba = holebegin >> PAGE_SHIFT;
2372 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373
2374 /* Check for overflow. */
2375 if (sizeof(holelen) > sizeof(hlen)) {
2376 long long holeend =
2377 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378 if (holeend & ~(long long)ULONG_MAX)
2379 hlen = ULONG_MAX - hba + 1;
2380 }
2381
2382 details.check_mapping = even_cows? NULL: mapping;
2383 details.nonlinear_vma = NULL;
2384 details.first_index = hba;
2385 details.last_index = hba + hlen - 1;
2386 if (details.last_index < details.first_index)
2387 details.last_index = ULONG_MAX;
1da177e4 2388
1da177e4 2389
3d48ae45 2390 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2391 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2392 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2393 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2394 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2395 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2396}
2397EXPORT_SYMBOL(unmap_mapping_range);
2398
1da177e4 2399/*
8f4e2101
HD
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2403 */
65500d23
HD
2404static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2405 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2406 unsigned int flags, pte_t orig_pte)
1da177e4 2407{
8f4e2101 2408 spinlock_t *ptl;
56f31801 2409 struct page *page, *swapcache;
65500d23 2410 swp_entry_t entry;
1da177e4 2411 pte_t pte;
d065bd81 2412 int locked;
56039efa 2413 struct mem_cgroup *ptr;
ad8c2ee8 2414 int exclusive = 0;
83c54070 2415 int ret = 0;
1da177e4 2416
4c21e2f2 2417 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2418 goto out;
65500d23
HD
2419
2420 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2421 if (unlikely(non_swap_entry(entry))) {
2422 if (is_migration_entry(entry)) {
2423 migration_entry_wait(mm, pmd, address);
2424 } else if (is_hwpoison_entry(entry)) {
2425 ret = VM_FAULT_HWPOISON;
2426 } else {
2427 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2428 ret = VM_FAULT_SIGBUS;
d1737fdb 2429 }
0697212a
CL
2430 goto out;
2431 }
0ff92245 2432 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2433 page = lookup_swap_cache(entry);
2434 if (!page) {
02098fea
HD
2435 page = swapin_readahead(entry,
2436 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2437 if (!page) {
2438 /*
8f4e2101
HD
2439 * Back out if somebody else faulted in this pte
2440 * while we released the pte lock.
1da177e4 2441 */
8f4e2101 2442 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2443 if (likely(pte_same(*page_table, orig_pte)))
2444 ret = VM_FAULT_OOM;
0ff92245 2445 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2446 goto unlock;
1da177e4
LT
2447 }
2448
2449 /* Had to read the page from swap area: Major fault */
2450 ret = VM_FAULT_MAJOR;
f8891e5e 2451 count_vm_event(PGMAJFAULT);
456f998e 2452 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2453 } else if (PageHWPoison(page)) {
71f72525
WF
2454 /*
2455 * hwpoisoned dirty swapcache pages are kept for killing
2456 * owner processes (which may be unknown at hwpoison time)
2457 */
d1737fdb
AK
2458 ret = VM_FAULT_HWPOISON;
2459 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2460 swapcache = page;
4779cb31 2461 goto out_release;
1da177e4
LT
2462 }
2463
56f31801 2464 swapcache = page;
d065bd81 2465 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2466
073e587e 2467 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2468 if (!locked) {
2469 ret |= VM_FAULT_RETRY;
2470 goto out_release;
2471 }
073e587e 2472
4969c119 2473 /*
31c4a3d3
HD
2474 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2475 * release the swapcache from under us. The page pin, and pte_same
2476 * test below, are not enough to exclude that. Even if it is still
2477 * swapcache, we need to check that the page's swap has not changed.
4969c119 2478 */
31c4a3d3 2479 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2480 goto out_page;
2481
cbf86cfe
HD
2482 page = ksm_might_need_to_copy(page, vma, address);
2483 if (unlikely(!page)) {
2484 ret = VM_FAULT_OOM;
2485 page = swapcache;
cbf86cfe 2486 goto out_page;
5ad64688
HD
2487 }
2488
2c26fdd7 2489 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2490 ret = VM_FAULT_OOM;
bc43f75c 2491 goto out_page;
8a9f3ccd
BS
2492 }
2493
1da177e4 2494 /*
8f4e2101 2495 * Back out if somebody else already faulted in this pte.
1da177e4 2496 */
8f4e2101 2497 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2498 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2499 goto out_nomap;
b8107480
KK
2500
2501 if (unlikely(!PageUptodate(page))) {
2502 ret = VM_FAULT_SIGBUS;
2503 goto out_nomap;
1da177e4
LT
2504 }
2505
8c7c6e34
KH
2506 /*
2507 * The page isn't present yet, go ahead with the fault.
2508 *
2509 * Be careful about the sequence of operations here.
2510 * To get its accounting right, reuse_swap_page() must be called
2511 * while the page is counted on swap but not yet in mapcount i.e.
2512 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2513 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2514 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2515 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2516 * in page->private. In this case, a record in swap_cgroup is silently
2517 * discarded at swap_free().
8c7c6e34 2518 */
1da177e4 2519
34e55232 2520 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2521 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2522 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2523 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2524 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2525 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2526 ret |= VM_FAULT_WRITE;
ad8c2ee8 2527 exclusive = 1;
1da177e4 2528 }
1da177e4 2529 flush_icache_page(vma, page);
179ef71c
CG
2530 if (pte_swp_soft_dirty(orig_pte))
2531 pte = pte_mksoft_dirty(pte);
1da177e4 2532 set_pte_at(mm, address, page_table, pte);
56f31801 2533 if (page == swapcache)
af34770e 2534 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
2535 else /* ksm created a completely new copy */
2536 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
2537 /* It's better to call commit-charge after rmap is established */
2538 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2539
c475a8ab 2540 swap_free(entry);
b291f000 2541 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2542 try_to_free_swap(page);
c475a8ab 2543 unlock_page(page);
56f31801 2544 if (page != swapcache) {
4969c119
AA
2545 /*
2546 * Hold the lock to avoid the swap entry to be reused
2547 * until we take the PT lock for the pte_same() check
2548 * (to avoid false positives from pte_same). For
2549 * further safety release the lock after the swap_free
2550 * so that the swap count won't change under a
2551 * parallel locked swapcache.
2552 */
2553 unlock_page(swapcache);
2554 page_cache_release(swapcache);
2555 }
c475a8ab 2556
30c9f3a9 2557 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2558 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2559 if (ret & VM_FAULT_ERROR)
2560 ret &= VM_FAULT_ERROR;
1da177e4
LT
2561 goto out;
2562 }
2563
2564 /* No need to invalidate - it was non-present before */
4b3073e1 2565 update_mmu_cache(vma, address, page_table);
65500d23 2566unlock:
8f4e2101 2567 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2568out:
2569 return ret;
b8107480 2570out_nomap:
7a81b88c 2571 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2572 pte_unmap_unlock(page_table, ptl);
bc43f75c 2573out_page:
b8107480 2574 unlock_page(page);
4779cb31 2575out_release:
b8107480 2576 page_cache_release(page);
56f31801 2577 if (page != swapcache) {
4969c119
AA
2578 unlock_page(swapcache);
2579 page_cache_release(swapcache);
2580 }
65500d23 2581 return ret;
1da177e4
LT
2582}
2583
320b2b8d 2584/*
8ca3eb08
LT
2585 * This is like a special single-page "expand_{down|up}wards()",
2586 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2587 * doesn't hit another vma.
320b2b8d
LT
2588 */
2589static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2590{
2591 address &= PAGE_MASK;
2592 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2593 struct vm_area_struct *prev = vma->vm_prev;
2594
2595 /*
2596 * Is there a mapping abutting this one below?
2597 *
2598 * That's only ok if it's the same stack mapping
2599 * that has gotten split..
2600 */
2601 if (prev && prev->vm_end == address)
2602 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2603
d05f3169 2604 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2605 }
8ca3eb08
LT
2606 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2607 struct vm_area_struct *next = vma->vm_next;
2608
2609 /* As VM_GROWSDOWN but s/below/above/ */
2610 if (next && next->vm_start == address + PAGE_SIZE)
2611 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2612
2613 expand_upwards(vma, address + PAGE_SIZE);
2614 }
320b2b8d
LT
2615 return 0;
2616}
2617
1da177e4 2618/*
8f4e2101
HD
2619 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620 * but allow concurrent faults), and pte mapped but not yet locked.
2621 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2622 */
65500d23
HD
2623static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2624 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2625 unsigned int flags)
1da177e4 2626{
8f4e2101
HD
2627 struct page *page;
2628 spinlock_t *ptl;
1da177e4 2629 pte_t entry;
1da177e4 2630
11ac5524
LT
2631 pte_unmap(page_table);
2632
2633 /* Check if we need to add a guard page to the stack */
2634 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2635 return VM_FAULT_SIGBUS;
2636
11ac5524 2637 /* Use the zero-page for reads */
62eede62
HD
2638 if (!(flags & FAULT_FLAG_WRITE)) {
2639 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2640 vma->vm_page_prot));
11ac5524 2641 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2642 if (!pte_none(*page_table))
2643 goto unlock;
2644 goto setpte;
2645 }
2646
557ed1fa 2647 /* Allocate our own private page. */
557ed1fa
NP
2648 if (unlikely(anon_vma_prepare(vma)))
2649 goto oom;
2650 page = alloc_zeroed_user_highpage_movable(vma, address);
2651 if (!page)
2652 goto oom;
52f37629
MK
2653 /*
2654 * The memory barrier inside __SetPageUptodate makes sure that
2655 * preceeding stores to the page contents become visible before
2656 * the set_pte_at() write.
2657 */
0ed361de 2658 __SetPageUptodate(page);
8f4e2101 2659
d715ae08 2660 if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2661 goto oom_free_page;
2662
557ed1fa 2663 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2664 if (vma->vm_flags & VM_WRITE)
2665 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2666
557ed1fa 2667 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2668 if (!pte_none(*page_table))
557ed1fa 2669 goto release;
9ba69294 2670
34e55232 2671 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2672 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2673setpte:
65500d23 2674 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2675
2676 /* No need to invalidate - it was non-present before */
4b3073e1 2677 update_mmu_cache(vma, address, page_table);
65500d23 2678unlock:
8f4e2101 2679 pte_unmap_unlock(page_table, ptl);
83c54070 2680 return 0;
8f4e2101 2681release:
8a9f3ccd 2682 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2683 page_cache_release(page);
2684 goto unlock;
8a9f3ccd 2685oom_free_page:
6dbf6d3b 2686 page_cache_release(page);
65500d23 2687oom:
1da177e4
LT
2688 return VM_FAULT_OOM;
2689}
2690
7eae74af
KS
2691static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2692 pgoff_t pgoff, unsigned int flags, struct page **page)
2693{
2694 struct vm_fault vmf;
2695 int ret;
2696
2697 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2698 vmf.pgoff = pgoff;
2699 vmf.flags = flags;
2700 vmf.page = NULL;
2701
2702 ret = vma->vm_ops->fault(vma, &vmf);
2703 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2704 return ret;
2705
2706 if (unlikely(PageHWPoison(vmf.page))) {
2707 if (ret & VM_FAULT_LOCKED)
2708 unlock_page(vmf.page);
2709 page_cache_release(vmf.page);
2710 return VM_FAULT_HWPOISON;
2711 }
2712
2713 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2714 lock_page(vmf.page);
2715 else
2716 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2717
2718 *page = vmf.page;
2719 return ret;
2720}
2721
8c6e50b0
KS
2722/**
2723 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2724 *
2725 * @vma: virtual memory area
2726 * @address: user virtual address
2727 * @page: page to map
2728 * @pte: pointer to target page table entry
2729 * @write: true, if new entry is writable
2730 * @anon: true, if it's anonymous page
2731 *
2732 * Caller must hold page table lock relevant for @pte.
2733 *
2734 * Target users are page handler itself and implementations of
2735 * vm_ops->map_pages.
2736 */
2737void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2738 struct page *page, pte_t *pte, bool write, bool anon)
2739{
2740 pte_t entry;
2741
2742 flush_icache_page(vma, page);
2743 entry = mk_pte(page, vma->vm_page_prot);
2744 if (write)
2745 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2747 pte_mksoft_dirty(entry);
2748 if (anon) {
2749 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2750 page_add_new_anon_rmap(page, vma, address);
2751 } else {
2752 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2753 page_add_file_rmap(page);
2754 }
2755 set_pte_at(vma->vm_mm, address, pte, entry);
2756
2757 /* no need to invalidate: a not-present page won't be cached */
2758 update_mmu_cache(vma, address, pte);
2759}
2760
b4903d6e 2761static unsigned long fault_around_bytes = rounddown_pow_of_two(65536);
a9b0f861
KS
2762
2763static inline unsigned long fault_around_pages(void)
2764{
b4903d6e 2765 return fault_around_bytes >> PAGE_SHIFT;
a9b0f861
KS
2766}
2767
2768static inline unsigned long fault_around_mask(void)
2769{
b4903d6e 2770 return ~(fault_around_bytes - 1) & PAGE_MASK;
a9b0f861 2771}
1592eef0 2772
a9b0f861
KS
2773#ifdef CONFIG_DEBUG_FS
2774static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2775{
a9b0f861 2776 *val = fault_around_bytes;
1592eef0
KS
2777 return 0;
2778}
2779
b4903d6e
AR
2780/*
2781 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2782 * rounded down to nearest page order. It's what do_fault_around() expects to
2783 * see.
2784 */
a9b0f861 2785static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2786{
a9b0f861 2787 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2788 return -EINVAL;
b4903d6e
AR
2789 if (val > PAGE_SIZE)
2790 fault_around_bytes = rounddown_pow_of_two(val);
2791 else
2792 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2793 return 0;
2794}
a9b0f861
KS
2795DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2796 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2797
2798static int __init fault_around_debugfs(void)
2799{
2800 void *ret;
2801
a9b0f861
KS
2802 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2803 &fault_around_bytes_fops);
1592eef0 2804 if (!ret)
a9b0f861 2805 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2806 return 0;
2807}
2808late_initcall(fault_around_debugfs);
1592eef0 2809#endif
8c6e50b0 2810
1fdb412b
KS
2811/*
2812 * do_fault_around() tries to map few pages around the fault address. The hope
2813 * is that the pages will be needed soon and this will lower the number of
2814 * faults to handle.
2815 *
2816 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2817 * not ready to be mapped: not up-to-date, locked, etc.
2818 *
2819 * This function is called with the page table lock taken. In the split ptlock
2820 * case the page table lock only protects only those entries which belong to
2821 * the page table corresponding to the fault address.
2822 *
2823 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2824 * only once.
2825 *
2826 * fault_around_pages() defines how many pages we'll try to map.
2827 * do_fault_around() expects it to return a power of two less than or equal to
2828 * PTRS_PER_PTE.
2829 *
2830 * The virtual address of the area that we map is naturally aligned to the
2831 * fault_around_pages() value (and therefore to page order). This way it's
2832 * easier to guarantee that we don't cross page table boundaries.
2833 */
8c6e50b0
KS
2834static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2835 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2836{
2837 unsigned long start_addr;
2838 pgoff_t max_pgoff;
2839 struct vm_fault vmf;
2840 int off;
2841
1592eef0 2842 start_addr = max(address & fault_around_mask(), vma->vm_start);
8c6e50b0
KS
2843 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2844 pte -= off;
2845 pgoff -= off;
2846
2847 /*
2848 * max_pgoff is either end of page table or end of vma
850e9c69 2849 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2850 */
2851 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2852 PTRS_PER_PTE - 1;
2853 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
1592eef0 2854 pgoff + fault_around_pages() - 1);
8c6e50b0
KS
2855
2856 /* Check if it makes any sense to call ->map_pages */
2857 while (!pte_none(*pte)) {
2858 if (++pgoff > max_pgoff)
2859 return;
2860 start_addr += PAGE_SIZE;
2861 if (start_addr >= vma->vm_end)
2862 return;
2863 pte++;
2864 }
2865
2866 vmf.virtual_address = (void __user *) start_addr;
2867 vmf.pte = pte;
2868 vmf.pgoff = pgoff;
2869 vmf.max_pgoff = max_pgoff;
2870 vmf.flags = flags;
2871 vma->vm_ops->map_pages(vma, &vmf);
2872}
2873
e655fb29
KS
2874static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2875 unsigned long address, pmd_t *pmd,
2876 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2877{
2878 struct page *fault_page;
2879 spinlock_t *ptl;
3bb97794 2880 pte_t *pte;
8c6e50b0
KS
2881 int ret = 0;
2882
2883 /*
2884 * Let's call ->map_pages() first and use ->fault() as fallback
2885 * if page by the offset is not ready to be mapped (cold cache or
2886 * something).
2887 */
c118678b
KK
2888 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2889 fault_around_pages() > 1) {
8c6e50b0
KS
2890 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2891 do_fault_around(vma, address, pte, pgoff, flags);
2892 if (!pte_same(*pte, orig_pte))
2893 goto unlock_out;
2894 pte_unmap_unlock(pte, ptl);
2895 }
e655fb29
KS
2896
2897 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2898 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2899 return ret;
2900
2901 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2902 if (unlikely(!pte_same(*pte, orig_pte))) {
2903 pte_unmap_unlock(pte, ptl);
2904 unlock_page(fault_page);
2905 page_cache_release(fault_page);
2906 return ret;
2907 }
3bb97794 2908 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2909 unlock_page(fault_page);
8c6e50b0
KS
2910unlock_out:
2911 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2912 return ret;
2913}
2914
ec47c3b9
KS
2915static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2916 unsigned long address, pmd_t *pmd,
2917 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2918{
2919 struct page *fault_page, *new_page;
2920 spinlock_t *ptl;
3bb97794 2921 pte_t *pte;
ec47c3b9
KS
2922 int ret;
2923
2924 if (unlikely(anon_vma_prepare(vma)))
2925 return VM_FAULT_OOM;
2926
2927 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2928 if (!new_page)
2929 return VM_FAULT_OOM;
2930
d715ae08 2931 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
ec47c3b9
KS
2932 page_cache_release(new_page);
2933 return VM_FAULT_OOM;
2934 }
2935
2936 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2937 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2938 goto uncharge_out;
2939
2940 copy_user_highpage(new_page, fault_page, address, vma);
2941 __SetPageUptodate(new_page);
2942
2943 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2944 if (unlikely(!pte_same(*pte, orig_pte))) {
2945 pte_unmap_unlock(pte, ptl);
2946 unlock_page(fault_page);
2947 page_cache_release(fault_page);
2948 goto uncharge_out;
2949 }
3bb97794 2950 do_set_pte(vma, address, new_page, pte, true, true);
ec47c3b9
KS
2951 pte_unmap_unlock(pte, ptl);
2952 unlock_page(fault_page);
2953 page_cache_release(fault_page);
2954 return ret;
2955uncharge_out:
2956 mem_cgroup_uncharge_page(new_page);
2957 page_cache_release(new_page);
2958 return ret;
2959}
2960
f0c6d4d2 2961static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2962 unsigned long address, pmd_t *pmd,
54cb8821 2963 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2964{
f0c6d4d2
KS
2965 struct page *fault_page;
2966 struct address_space *mapping;
8f4e2101 2967 spinlock_t *ptl;
3bb97794 2968 pte_t *pte;
f0c6d4d2 2969 int dirtied = 0;
f0c6d4d2 2970 int ret, tmp;
1d65f86d 2971
7eae74af
KS
2972 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2973 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 2974 return ret;
1da177e4
LT
2975
2976 /*
f0c6d4d2
KS
2977 * Check if the backing address space wants to know that the page is
2978 * about to become writable
1da177e4 2979 */
fb09a464
KS
2980 if (vma->vm_ops->page_mkwrite) {
2981 unlock_page(fault_page);
2982 tmp = do_page_mkwrite(vma, fault_page, address);
2983 if (unlikely(!tmp ||
2984 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 2985 page_cache_release(fault_page);
fb09a464 2986 return tmp;
4294621f 2987 }
fb09a464
KS
2988 }
2989
f0c6d4d2
KS
2990 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2991 if (unlikely(!pte_same(*pte, orig_pte))) {
2992 pte_unmap_unlock(pte, ptl);
2993 unlock_page(fault_page);
2994 page_cache_release(fault_page);
2995 return ret;
1da177e4 2996 }
3bb97794 2997 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 2998 pte_unmap_unlock(pte, ptl);
b827e496 2999
f0c6d4d2
KS
3000 if (set_page_dirty(fault_page))
3001 dirtied = 1;
3002 mapping = fault_page->mapping;
3003 unlock_page(fault_page);
3004 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3005 /*
3006 * Some device drivers do not set page.mapping but still
3007 * dirty their pages
3008 */
3009 balance_dirty_pages_ratelimited(mapping);
d08b3851 3010 }
d00806b1 3011
f0c6d4d2
KS
3012 /* file_update_time outside page_lock */
3013 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3014 file_update_time(vma->vm_file);
b827e496 3015
1d65f86d 3016 return ret;
54cb8821 3017}
d00806b1 3018
54cb8821
NP
3019static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3021 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3022{
3023 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3024 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3025
16abfa08 3026 pte_unmap(page_table);
e655fb29
KS
3027 if (!(flags & FAULT_FLAG_WRITE))
3028 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3029 orig_pte);
ec47c3b9
KS
3030 if (!(vma->vm_flags & VM_SHARED))
3031 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3032 orig_pte);
f0c6d4d2 3033 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3034}
3035
1da177e4
LT
3036/*
3037 * Fault of a previously existing named mapping. Repopulate the pte
3038 * from the encoded file_pte if possible. This enables swappable
3039 * nonlinear vmas.
8f4e2101
HD
3040 *
3041 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3042 * but allow concurrent faults), and pte mapped but not yet locked.
3043 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3044 */
d0217ac0 3045static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3046 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3047 unsigned int flags, pte_t orig_pte)
1da177e4 3048{
65500d23 3049 pgoff_t pgoff;
1da177e4 3050
30c9f3a9
LT
3051 flags |= FAULT_FLAG_NONLINEAR;
3052
4c21e2f2 3053 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3054 return 0;
1da177e4 3055
2509ef26 3056 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3057 /*
3058 * Page table corrupted: show pte and kill process.
3059 */
3dc14741 3060 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3061 return VM_FAULT_SIGBUS;
65500d23 3062 }
65500d23
HD
3063
3064 pgoff = pte_to_pgoff(orig_pte);
e655fb29
KS
3065 if (!(flags & FAULT_FLAG_WRITE))
3066 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3067 orig_pte);
ec47c3b9
KS
3068 if (!(vma->vm_flags & VM_SHARED))
3069 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3070 orig_pte);
f0c6d4d2 3071 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3072}
3073
b19a9939 3074static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3075 unsigned long addr, int page_nid,
3076 int *flags)
9532fec1
MG
3077{
3078 get_page(page);
3079
3080 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3081 if (page_nid == numa_node_id()) {
9532fec1 3082 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3083 *flags |= TNF_FAULT_LOCAL;
3084 }
9532fec1
MG
3085
3086 return mpol_misplaced(page, vma, addr);
3087}
3088
b19a9939 3089static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3090 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3091{
4daae3b4 3092 struct page *page = NULL;
d10e63f2 3093 spinlock_t *ptl;
8191acbd 3094 int page_nid = -1;
90572890 3095 int last_cpupid;
cbee9f88 3096 int target_nid;
b8593bfd 3097 bool migrated = false;
6688cc05 3098 int flags = 0;
d10e63f2
MG
3099
3100 /*
3101 * The "pte" at this point cannot be used safely without
3102 * validation through pte_unmap_same(). It's of NUMA type but
3103 * the pfn may be screwed if the read is non atomic.
3104 *
3105 * ptep_modify_prot_start is not called as this is clearing
3106 * the _PAGE_NUMA bit and it is not really expected that there
3107 * would be concurrent hardware modifications to the PTE.
3108 */
3109 ptl = pte_lockptr(mm, pmd);
3110 spin_lock(ptl);
4daae3b4
MG
3111 if (unlikely(!pte_same(*ptep, pte))) {
3112 pte_unmap_unlock(ptep, ptl);
3113 goto out;
3114 }
3115
d10e63f2
MG
3116 pte = pte_mknonnuma(pte);
3117 set_pte_at(mm, addr, ptep, pte);
3118 update_mmu_cache(vma, addr, ptep);
3119
3120 page = vm_normal_page(vma, addr, pte);
3121 if (!page) {
3122 pte_unmap_unlock(ptep, ptl);
3123 return 0;
3124 }
a1a46184 3125 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3126
6688cc05
PZ
3127 /*
3128 * Avoid grouping on DSO/COW pages in specific and RO pages
3129 * in general, RO pages shouldn't hurt as much anyway since
3130 * they can be in shared cache state.
3131 */
3132 if (!pte_write(pte))
3133 flags |= TNF_NO_GROUP;
3134
dabe1d99
RR
3135 /*
3136 * Flag if the page is shared between multiple address spaces. This
3137 * is later used when determining whether to group tasks together
3138 */
3139 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3140 flags |= TNF_SHARED;
3141
90572890 3142 last_cpupid = page_cpupid_last(page);
8191acbd 3143 page_nid = page_to_nid(page);
04bb2f94 3144 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3145 pte_unmap_unlock(ptep, ptl);
4daae3b4 3146 if (target_nid == -1) {
4daae3b4
MG
3147 put_page(page);
3148 goto out;
3149 }
3150
3151 /* Migrate to the requested node */
1bc115d8 3152 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3153 if (migrated) {
8191acbd 3154 page_nid = target_nid;
6688cc05
PZ
3155 flags |= TNF_MIGRATED;
3156 }
4daae3b4
MG
3157
3158out:
8191acbd 3159 if (page_nid != -1)
6688cc05 3160 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3161 return 0;
3162}
3163
1da177e4
LT
3164/*
3165 * These routines also need to handle stuff like marking pages dirty
3166 * and/or accessed for architectures that don't do it in hardware (most
3167 * RISC architectures). The early dirtying is also good on the i386.
3168 *
3169 * There is also a hook called "update_mmu_cache()" that architectures
3170 * with external mmu caches can use to update those (ie the Sparc or
3171 * PowerPC hashed page tables that act as extended TLBs).
3172 *
c74df32c
HD
3173 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3174 * but allow concurrent faults), and pte mapped but not yet locked.
3175 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3176 */
c0292554 3177static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3178 struct vm_area_struct *vma, unsigned long address,
3179 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3180{
3181 pte_t entry;
8f4e2101 3182 spinlock_t *ptl;
1da177e4 3183
c0d73261 3184 entry = ACCESS_ONCE(*pte);
1da177e4 3185 if (!pte_present(entry)) {
65500d23 3186 if (pte_none(entry)) {
f4b81804 3187 if (vma->vm_ops) {
3c18ddd1 3188 if (likely(vma->vm_ops->fault))
54cb8821 3189 return do_linear_fault(mm, vma, address,
30c9f3a9 3190 pte, pmd, flags, entry);
f4b81804
JS
3191 }
3192 return do_anonymous_page(mm, vma, address,
30c9f3a9 3193 pte, pmd, flags);
65500d23 3194 }
1da177e4 3195 if (pte_file(entry))
d0217ac0 3196 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3197 pte, pmd, flags, entry);
65500d23 3198 return do_swap_page(mm, vma, address,
30c9f3a9 3199 pte, pmd, flags, entry);
1da177e4
LT
3200 }
3201
d10e63f2
MG
3202 if (pte_numa(entry))
3203 return do_numa_page(mm, vma, address, entry, pte, pmd);
3204
4c21e2f2 3205 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3206 spin_lock(ptl);
3207 if (unlikely(!pte_same(*pte, entry)))
3208 goto unlock;
30c9f3a9 3209 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3210 if (!pte_write(entry))
8f4e2101
HD
3211 return do_wp_page(mm, vma, address,
3212 pte, pmd, ptl, entry);
1da177e4
LT
3213 entry = pte_mkdirty(entry);
3214 }
3215 entry = pte_mkyoung(entry);
30c9f3a9 3216 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3217 update_mmu_cache(vma, address, pte);
1a44e149
AA
3218 } else {
3219 /*
3220 * This is needed only for protection faults but the arch code
3221 * is not yet telling us if this is a protection fault or not.
3222 * This still avoids useless tlb flushes for .text page faults
3223 * with threads.
3224 */
30c9f3a9 3225 if (flags & FAULT_FLAG_WRITE)
61c77326 3226 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3227 }
8f4e2101
HD
3228unlock:
3229 pte_unmap_unlock(pte, ptl);
83c54070 3230 return 0;
1da177e4
LT
3231}
3232
3233/*
3234 * By the time we get here, we already hold the mm semaphore
3235 */
519e5247
JW
3236static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3237 unsigned long address, unsigned int flags)
1da177e4
LT
3238{
3239 pgd_t *pgd;
3240 pud_t *pud;
3241 pmd_t *pmd;
3242 pte_t *pte;
3243
ac9b9c66 3244 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3245 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3246
1da177e4 3247 pgd = pgd_offset(mm, address);
1da177e4
LT
3248 pud = pud_alloc(mm, pgd, address);
3249 if (!pud)
c74df32c 3250 return VM_FAULT_OOM;
1da177e4
LT
3251 pmd = pmd_alloc(mm, pud, address);
3252 if (!pmd)
c74df32c 3253 return VM_FAULT_OOM;
71e3aac0 3254 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3255 int ret = VM_FAULT_FALLBACK;
71e3aac0 3256 if (!vma->vm_ops)
c0292554
KS
3257 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3258 pmd, flags);
3259 if (!(ret & VM_FAULT_FALLBACK))
3260 return ret;
71e3aac0
AA
3261 } else {
3262 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3263 int ret;
3264
71e3aac0
AA
3265 barrier();
3266 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3267 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3268
e53289c0
LT
3269 /*
3270 * If the pmd is splitting, return and retry the
3271 * the fault. Alternative: wait until the split
3272 * is done, and goto retry.
3273 */
3274 if (pmd_trans_splitting(orig_pmd))
3275 return 0;
3276
3d59eebc 3277 if (pmd_numa(orig_pmd))
4daae3b4 3278 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3279 orig_pmd, pmd);
3280
3d59eebc 3281 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3282 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3283 orig_pmd);
9845cbbd
KS
3284 if (!(ret & VM_FAULT_FALLBACK))
3285 return ret;
a1dd450b
WD
3286 } else {
3287 huge_pmd_set_accessed(mm, vma, address, pmd,
3288 orig_pmd, dirty);
9845cbbd 3289 return 0;
1f1d06c3 3290 }
71e3aac0
AA
3291 }
3292 }
3293
3294 /*
3295 * Use __pte_alloc instead of pte_alloc_map, because we can't
3296 * run pte_offset_map on the pmd, if an huge pmd could
3297 * materialize from under us from a different thread.
3298 */
4fd01770
MG
3299 if (unlikely(pmd_none(*pmd)) &&
3300 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3301 return VM_FAULT_OOM;
71e3aac0
AA
3302 /* if an huge pmd materialized from under us just retry later */
3303 if (unlikely(pmd_trans_huge(*pmd)))
3304 return 0;
3305 /*
3306 * A regular pmd is established and it can't morph into a huge pmd
3307 * from under us anymore at this point because we hold the mmap_sem
3308 * read mode and khugepaged takes it in write mode. So now it's
3309 * safe to run pte_offset_map().
3310 */
3311 pte = pte_offset_map(pmd, address);
1da177e4 3312
30c9f3a9 3313 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3314}
3315
519e5247
JW
3316int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3317 unsigned long address, unsigned int flags)
3318{
3319 int ret;
3320
3321 __set_current_state(TASK_RUNNING);
3322
3323 count_vm_event(PGFAULT);
3324 mem_cgroup_count_vm_event(mm, PGFAULT);
3325
3326 /* do counter updates before entering really critical section. */
3327 check_sync_rss_stat(current);
3328
3329 /*
3330 * Enable the memcg OOM handling for faults triggered in user
3331 * space. Kernel faults are handled more gracefully.
3332 */
3333 if (flags & FAULT_FLAG_USER)
49426420 3334 mem_cgroup_oom_enable();
519e5247
JW
3335
3336 ret = __handle_mm_fault(mm, vma, address, flags);
3337
49426420
JW
3338 if (flags & FAULT_FLAG_USER) {
3339 mem_cgroup_oom_disable();
3340 /*
3341 * The task may have entered a memcg OOM situation but
3342 * if the allocation error was handled gracefully (no
3343 * VM_FAULT_OOM), there is no need to kill anything.
3344 * Just clean up the OOM state peacefully.
3345 */
3346 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3347 mem_cgroup_oom_synchronize(false);
3348 }
3812c8c8 3349
519e5247
JW
3350 return ret;
3351}
3352
1da177e4
LT
3353#ifndef __PAGETABLE_PUD_FOLDED
3354/*
3355 * Allocate page upper directory.
872fec16 3356 * We've already handled the fast-path in-line.
1da177e4 3357 */
1bb3630e 3358int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3359{
c74df32c
HD
3360 pud_t *new = pud_alloc_one(mm, address);
3361 if (!new)
1bb3630e 3362 return -ENOMEM;
1da177e4 3363
362a61ad
NP
3364 smp_wmb(); /* See comment in __pte_alloc */
3365
872fec16 3366 spin_lock(&mm->page_table_lock);
1bb3630e 3367 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3368 pud_free(mm, new);
1bb3630e
HD
3369 else
3370 pgd_populate(mm, pgd, new);
c74df32c 3371 spin_unlock(&mm->page_table_lock);
1bb3630e 3372 return 0;
1da177e4
LT
3373}
3374#endif /* __PAGETABLE_PUD_FOLDED */
3375
3376#ifndef __PAGETABLE_PMD_FOLDED
3377/*
3378 * Allocate page middle directory.
872fec16 3379 * We've already handled the fast-path in-line.
1da177e4 3380 */
1bb3630e 3381int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3382{
c74df32c
HD
3383 pmd_t *new = pmd_alloc_one(mm, address);
3384 if (!new)
1bb3630e 3385 return -ENOMEM;
1da177e4 3386
362a61ad
NP
3387 smp_wmb(); /* See comment in __pte_alloc */
3388
872fec16 3389 spin_lock(&mm->page_table_lock);
1da177e4 3390#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3391 if (pud_present(*pud)) /* Another has populated it */
5e541973 3392 pmd_free(mm, new);
1bb3630e
HD
3393 else
3394 pud_populate(mm, pud, new);
1da177e4 3395#else
1bb3630e 3396 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3397 pmd_free(mm, new);
1bb3630e
HD
3398 else
3399 pgd_populate(mm, pud, new);
1da177e4 3400#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3401 spin_unlock(&mm->page_table_lock);
1bb3630e 3402 return 0;
e0f39591 3403}
1da177e4
LT
3404#endif /* __PAGETABLE_PMD_FOLDED */
3405
1da177e4
LT
3406#if !defined(__HAVE_ARCH_GATE_AREA)
3407
3408#if defined(AT_SYSINFO_EHDR)
5ce7852c 3409static struct vm_area_struct gate_vma;
1da177e4
LT
3410
3411static int __init gate_vma_init(void)
3412{
3413 gate_vma.vm_mm = NULL;
3414 gate_vma.vm_start = FIXADDR_USER_START;
3415 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3416 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3417 gate_vma.vm_page_prot = __P101;
909af768 3418
1da177e4
LT
3419 return 0;
3420}
3421__initcall(gate_vma_init);
3422#endif
3423
31db58b3 3424struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3425{
3426#ifdef AT_SYSINFO_EHDR
3427 return &gate_vma;
3428#else
3429 return NULL;
3430#endif
3431}
3432
cae5d390 3433int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3434{
3435#ifdef AT_SYSINFO_EHDR
3436 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3437 return 1;
3438#endif
3439 return 0;
3440}
3441
3442#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3443
1b36ba81 3444static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3445 pte_t **ptepp, spinlock_t **ptlp)
3446{
3447 pgd_t *pgd;
3448 pud_t *pud;
3449 pmd_t *pmd;
3450 pte_t *ptep;
3451
3452 pgd = pgd_offset(mm, address);
3453 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3454 goto out;
3455
3456 pud = pud_offset(pgd, address);
3457 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3458 goto out;
3459
3460 pmd = pmd_offset(pud, address);
f66055ab 3461 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3462 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3463 goto out;
3464
3465 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3466 if (pmd_huge(*pmd))
3467 goto out;
3468
3469 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3470 if (!ptep)
3471 goto out;
3472 if (!pte_present(*ptep))
3473 goto unlock;
3474 *ptepp = ptep;
3475 return 0;
3476unlock:
3477 pte_unmap_unlock(ptep, *ptlp);
3478out:
3479 return -EINVAL;
3480}
3481
1b36ba81
NK
3482static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3483 pte_t **ptepp, spinlock_t **ptlp)
3484{
3485 int res;
3486
3487 /* (void) is needed to make gcc happy */
3488 (void) __cond_lock(*ptlp,
3489 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3490 return res;
3491}
3492
3b6748e2
JW
3493/**
3494 * follow_pfn - look up PFN at a user virtual address
3495 * @vma: memory mapping
3496 * @address: user virtual address
3497 * @pfn: location to store found PFN
3498 *
3499 * Only IO mappings and raw PFN mappings are allowed.
3500 *
3501 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3502 */
3503int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3504 unsigned long *pfn)
3505{
3506 int ret = -EINVAL;
3507 spinlock_t *ptl;
3508 pte_t *ptep;
3509
3510 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3511 return ret;
3512
3513 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3514 if (ret)
3515 return ret;
3516 *pfn = pte_pfn(*ptep);
3517 pte_unmap_unlock(ptep, ptl);
3518 return 0;
3519}
3520EXPORT_SYMBOL(follow_pfn);
3521
28b2ee20 3522#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3523int follow_phys(struct vm_area_struct *vma,
3524 unsigned long address, unsigned int flags,
3525 unsigned long *prot, resource_size_t *phys)
28b2ee20 3526{
03668a4d 3527 int ret = -EINVAL;
28b2ee20
RR
3528 pte_t *ptep, pte;
3529 spinlock_t *ptl;
28b2ee20 3530
d87fe660 3531 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3532 goto out;
28b2ee20 3533
03668a4d 3534 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3535 goto out;
28b2ee20 3536 pte = *ptep;
03668a4d 3537
28b2ee20
RR
3538 if ((flags & FOLL_WRITE) && !pte_write(pte))
3539 goto unlock;
28b2ee20
RR
3540
3541 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3542 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3543
03668a4d 3544 ret = 0;
28b2ee20
RR
3545unlock:
3546 pte_unmap_unlock(ptep, ptl);
3547out:
d87fe660 3548 return ret;
28b2ee20
RR
3549}
3550
3551int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3552 void *buf, int len, int write)
3553{
3554 resource_size_t phys_addr;
3555 unsigned long prot = 0;
2bc7273b 3556 void __iomem *maddr;
28b2ee20
RR
3557 int offset = addr & (PAGE_SIZE-1);
3558
d87fe660 3559 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3560 return -EINVAL;
3561
3562 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3563 if (write)
3564 memcpy_toio(maddr + offset, buf, len);
3565 else
3566 memcpy_fromio(buf, maddr + offset, len);
3567 iounmap(maddr);
3568
3569 return len;
3570}
5a73633e 3571EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3572#endif
3573
0ec76a11 3574/*
206cb636
SW
3575 * Access another process' address space as given in mm. If non-NULL, use the
3576 * given task for page fault accounting.
0ec76a11 3577 */
206cb636
SW
3578static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3579 unsigned long addr, void *buf, int len, int write)
0ec76a11 3580{
0ec76a11 3581 struct vm_area_struct *vma;
0ec76a11
DH
3582 void *old_buf = buf;
3583
0ec76a11 3584 down_read(&mm->mmap_sem);
183ff22b 3585 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3586 while (len) {
3587 int bytes, ret, offset;
3588 void *maddr;
28b2ee20 3589 struct page *page = NULL;
0ec76a11
DH
3590
3591 ret = get_user_pages(tsk, mm, addr, 1,
3592 write, 1, &page, &vma);
28b2ee20
RR
3593 if (ret <= 0) {
3594 /*
3595 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3596 * we can access using slightly different code.
3597 */
3598#ifdef CONFIG_HAVE_IOREMAP_PROT
3599 vma = find_vma(mm, addr);
fe936dfc 3600 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3601 break;
3602 if (vma->vm_ops && vma->vm_ops->access)
3603 ret = vma->vm_ops->access(vma, addr, buf,
3604 len, write);
3605 if (ret <= 0)
3606#endif
3607 break;
3608 bytes = ret;
0ec76a11 3609 } else {
28b2ee20
RR
3610 bytes = len;
3611 offset = addr & (PAGE_SIZE-1);
3612 if (bytes > PAGE_SIZE-offset)
3613 bytes = PAGE_SIZE-offset;
3614
3615 maddr = kmap(page);
3616 if (write) {
3617 copy_to_user_page(vma, page, addr,
3618 maddr + offset, buf, bytes);
3619 set_page_dirty_lock(page);
3620 } else {
3621 copy_from_user_page(vma, page, addr,
3622 buf, maddr + offset, bytes);
3623 }
3624 kunmap(page);
3625 page_cache_release(page);
0ec76a11 3626 }
0ec76a11
DH
3627 len -= bytes;
3628 buf += bytes;
3629 addr += bytes;
3630 }
3631 up_read(&mm->mmap_sem);
0ec76a11
DH
3632
3633 return buf - old_buf;
3634}
03252919 3635
5ddd36b9 3636/**
ae91dbfc 3637 * access_remote_vm - access another process' address space
5ddd36b9
SW
3638 * @mm: the mm_struct of the target address space
3639 * @addr: start address to access
3640 * @buf: source or destination buffer
3641 * @len: number of bytes to transfer
3642 * @write: whether the access is a write
3643 *
3644 * The caller must hold a reference on @mm.
3645 */
3646int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3647 void *buf, int len, int write)
3648{
3649 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3650}
3651
206cb636
SW
3652/*
3653 * Access another process' address space.
3654 * Source/target buffer must be kernel space,
3655 * Do not walk the page table directly, use get_user_pages
3656 */
3657int access_process_vm(struct task_struct *tsk, unsigned long addr,
3658 void *buf, int len, int write)
3659{
3660 struct mm_struct *mm;
3661 int ret;
3662
3663 mm = get_task_mm(tsk);
3664 if (!mm)
3665 return 0;
3666
3667 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3668 mmput(mm);
3669
3670 return ret;
3671}
3672
03252919
AK
3673/*
3674 * Print the name of a VMA.
3675 */
3676void print_vma_addr(char *prefix, unsigned long ip)
3677{
3678 struct mm_struct *mm = current->mm;
3679 struct vm_area_struct *vma;
3680
e8bff74a
IM
3681 /*
3682 * Do not print if we are in atomic
3683 * contexts (in exception stacks, etc.):
3684 */
3685 if (preempt_count())
3686 return;
3687
03252919
AK
3688 down_read(&mm->mmap_sem);
3689 vma = find_vma(mm, ip);
3690 if (vma && vma->vm_file) {
3691 struct file *f = vma->vm_file;
3692 char *buf = (char *)__get_free_page(GFP_KERNEL);
3693 if (buf) {
2fbc57c5 3694 char *p;
03252919 3695
cf28b486 3696 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3697 if (IS_ERR(p))
3698 p = "?";
2fbc57c5 3699 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3700 vma->vm_start,
3701 vma->vm_end - vma->vm_start);
3702 free_page((unsigned long)buf);
3703 }
3704 }
51a07e50 3705 up_read(&mm->mmap_sem);
03252919 3706}
3ee1afa3 3707
662bbcb2 3708#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
3709void might_fault(void)
3710{
95156f00
PZ
3711 /*
3712 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3713 * holding the mmap_sem, this is safe because kernel memory doesn't
3714 * get paged out, therefore we'll never actually fault, and the
3715 * below annotations will generate false positives.
3716 */
3717 if (segment_eq(get_fs(), KERNEL_DS))
3718 return;
3719
3ee1afa3
NP
3720 /*
3721 * it would be nicer only to annotate paths which are not under
3722 * pagefault_disable, however that requires a larger audit and
3723 * providing helpers like get_user_atomic.
3724 */
662bbcb2
MT
3725 if (in_atomic())
3726 return;
3727
3728 __might_sleep(__FILE__, __LINE__, 0);
3729
3730 if (current->mm)
3ee1afa3
NP
3731 might_lock_read(&current->mm->mmap_sem);
3732}
3733EXPORT_SYMBOL(might_fault);
3734#endif
47ad8475
AA
3735
3736#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3737static void clear_gigantic_page(struct page *page,
3738 unsigned long addr,
3739 unsigned int pages_per_huge_page)
3740{
3741 int i;
3742 struct page *p = page;
3743
3744 might_sleep();
3745 for (i = 0; i < pages_per_huge_page;
3746 i++, p = mem_map_next(p, page, i)) {
3747 cond_resched();
3748 clear_user_highpage(p, addr + i * PAGE_SIZE);
3749 }
3750}
3751void clear_huge_page(struct page *page,
3752 unsigned long addr, unsigned int pages_per_huge_page)
3753{
3754 int i;
3755
3756 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3757 clear_gigantic_page(page, addr, pages_per_huge_page);
3758 return;
3759 }
3760
3761 might_sleep();
3762 for (i = 0; i < pages_per_huge_page; i++) {
3763 cond_resched();
3764 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3765 }
3766}
3767
3768static void copy_user_gigantic_page(struct page *dst, struct page *src,
3769 unsigned long addr,
3770 struct vm_area_struct *vma,
3771 unsigned int pages_per_huge_page)
3772{
3773 int i;
3774 struct page *dst_base = dst;
3775 struct page *src_base = src;
3776
3777 for (i = 0; i < pages_per_huge_page; ) {
3778 cond_resched();
3779 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3780
3781 i++;
3782 dst = mem_map_next(dst, dst_base, i);
3783 src = mem_map_next(src, src_base, i);
3784 }
3785}
3786
3787void copy_user_huge_page(struct page *dst, struct page *src,
3788 unsigned long addr, struct vm_area_struct *vma,
3789 unsigned int pages_per_huge_page)
3790{
3791 int i;
3792
3793 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3794 copy_user_gigantic_page(dst, src, addr, vma,
3795 pages_per_huge_page);
3796 return;
3797 }
3798
3799 might_sleep();
3800 for (i = 0; i < pages_per_huge_page; i++) {
3801 cond_resched();
3802 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3803 }
3804}
3805#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3806
40b64acd 3807#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3808
3809static struct kmem_cache *page_ptl_cachep;
3810
3811void __init ptlock_cache_init(void)
3812{
3813 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3814 SLAB_PANIC, NULL);
3815}
3816
539edb58 3817bool ptlock_alloc(struct page *page)
49076ec2
KS
3818{
3819 spinlock_t *ptl;
3820
b35f1819 3821 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3822 if (!ptl)
3823 return false;
539edb58 3824 page->ptl = ptl;
49076ec2
KS
3825 return true;
3826}
3827
539edb58 3828void ptlock_free(struct page *page)
49076ec2 3829{
b35f1819 3830 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3831}
3832#endif