libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
1da177e4 66
6952b61d 67#include <asm/io.h>
1da177e4
LT
68#include <asm/pgalloc.h>
69#include <asm/uaccess.h>
70#include <asm/tlb.h>
71#include <asm/tlbflush.h>
72#include <asm/pgtable.h>
73
42b77728
JB
74#include "internal.h"
75
90572890
PZ
76#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
78#endif
79
d41dee36 80#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
81/* use the per-pgdat data instead for discontigmem - mbligh */
82unsigned long max_mapnr;
83struct page *mem_map;
84
85EXPORT_SYMBOL(max_mapnr);
86EXPORT_SYMBOL(mem_map);
87#endif
88
1da177e4
LT
89/*
90 * A number of key systems in x86 including ioremap() rely on the assumption
91 * that high_memory defines the upper bound on direct map memory, then end
92 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
93 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94 * and ZONE_HIGHMEM.
95 */
96void * high_memory;
1da177e4 97
1da177e4 98EXPORT_SYMBOL(high_memory);
1da177e4 99
32a93233
IM
100/*
101 * Randomize the address space (stacks, mmaps, brk, etc.).
102 *
103 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104 * as ancient (libc5 based) binaries can segfault. )
105 */
106int randomize_va_space __read_mostly =
107#ifdef CONFIG_COMPAT_BRK
108 1;
109#else
110 2;
111#endif
a62eaf15
AK
112
113static int __init disable_randmaps(char *s)
114{
115 randomize_va_space = 0;
9b41046c 116 return 1;
a62eaf15
AK
117}
118__setup("norandmaps", disable_randmaps);
119
62eede62 120unsigned long zero_pfn __read_mostly;
03f6462a 121unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 122
0b70068e
AB
123EXPORT_SYMBOL(zero_pfn);
124
a13ea5b7
HD
125/*
126 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127 */
128static int __init init_zero_pfn(void)
129{
130 zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 return 0;
132}
133core_initcall(init_zero_pfn);
a62eaf15 134
d559db08 135
34e55232
KH
136#if defined(SPLIT_RSS_COUNTING)
137
ea48cf78 138void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
139{
140 int i;
141
142 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
143 if (current->rss_stat.count[i]) {
144 add_mm_counter(mm, i, current->rss_stat.count[i]);
145 current->rss_stat.count[i] = 0;
34e55232
KH
146 }
147 }
05af2e10 148 current->rss_stat.events = 0;
34e55232
KH
149}
150
151static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152{
153 struct task_struct *task = current;
154
155 if (likely(task->mm == mm))
156 task->rss_stat.count[member] += val;
157 else
158 add_mm_counter(mm, member, val);
159}
160#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163/* sync counter once per 64 page faults */
164#define TASK_RSS_EVENTS_THRESH (64)
165static void check_sync_rss_stat(struct task_struct *task)
166{
167 if (unlikely(task != current))
168 return;
169 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 170 sync_mm_rss(task->mm);
34e55232 171}
9547d01b 172#else /* SPLIT_RSS_COUNTING */
34e55232
KH
173
174#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177static void check_sync_rss_stat(struct task_struct *task)
178{
179}
180
9547d01b
PZ
181#endif /* SPLIT_RSS_COUNTING */
182
183#ifdef HAVE_GENERIC_MMU_GATHER
184
ca1d6c7d 185static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
186{
187 struct mmu_gather_batch *batch;
188
189 batch = tlb->active;
190 if (batch->next) {
191 tlb->active = batch->next;
ca1d6c7d 192 return true;
9547d01b
PZ
193 }
194
53a59fc6 195 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 196 return false;
53a59fc6 197
9547d01b
PZ
198 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 if (!batch)
ca1d6c7d 200 return false;
9547d01b 201
53a59fc6 202 tlb->batch_count++;
9547d01b
PZ
203 batch->next = NULL;
204 batch->nr = 0;
205 batch->max = MAX_GATHER_BATCH;
206
207 tlb->active->next = batch;
208 tlb->active = batch;
209
ca1d6c7d 210 return true;
9547d01b
PZ
211}
212
213/* tlb_gather_mmu
214 * Called to initialize an (on-stack) mmu_gather structure for page-table
215 * tear-down from @mm. The @fullmm argument is used when @mm is without
216 * users and we're going to destroy the full address space (exit/execve).
217 */
2b047252 218void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
219{
220 tlb->mm = mm;
221
2b047252
LT
222 /* Is it from 0 to ~0? */
223 tlb->fullmm = !(start | (end+1));
1de14c3c 224 tlb->need_flush_all = 0;
9547d01b
PZ
225 tlb->local.next = NULL;
226 tlb->local.nr = 0;
227 tlb->local.max = ARRAY_SIZE(tlb->__pages);
228 tlb->active = &tlb->local;
53a59fc6 229 tlb->batch_count = 0;
9547d01b
PZ
230
231#ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb->batch = NULL;
233#endif
fb7332a9
WD
234
235 __tlb_reset_range(tlb);
9547d01b
PZ
236}
237
1cf35d47 238static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 239{
721c21c1
WD
240 if (!tlb->end)
241 return;
242
9547d01b 243 tlb_flush(tlb);
34ee645e 244 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
245#ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb_table_flush(tlb);
34e55232 247#endif
fb7332a9 248 __tlb_reset_range(tlb);
1cf35d47
LT
249}
250
251static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252{
253 struct mmu_gather_batch *batch;
34e55232 254
721c21c1 255 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
256 free_pages_and_swap_cache(batch->pages, batch->nr);
257 batch->nr = 0;
258 }
259 tlb->active = &tlb->local;
260}
261
1cf35d47
LT
262void tlb_flush_mmu(struct mmu_gather *tlb)
263{
1cf35d47
LT
264 tlb_flush_mmu_tlbonly(tlb);
265 tlb_flush_mmu_free(tlb);
266}
267
9547d01b
PZ
268/* tlb_finish_mmu
269 * Called at the end of the shootdown operation to free up any resources
270 * that were required.
271 */
272void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273{
274 struct mmu_gather_batch *batch, *next;
275
276 tlb_flush_mmu(tlb);
277
278 /* keep the page table cache within bounds */
279 check_pgt_cache();
280
281 for (batch = tlb->local.next; batch; batch = next) {
282 next = batch->next;
283 free_pages((unsigned long)batch, 0);
284 }
285 tlb->local.next = NULL;
286}
287
288/* __tlb_remove_page
289 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290 * handling the additional races in SMP caused by other CPUs caching valid
291 * mappings in their TLBs. Returns the number of free page slots left.
292 * When out of page slots we must call tlb_flush_mmu().
293 */
294int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295{
296 struct mmu_gather_batch *batch;
297
fb7332a9 298 VM_BUG_ON(!tlb->end);
9547d01b 299
9547d01b
PZ
300 batch = tlb->active;
301 batch->pages[batch->nr++] = page;
302 if (batch->nr == batch->max) {
303 if (!tlb_next_batch(tlb))
304 return 0;
0b43c3aa 305 batch = tlb->active;
9547d01b 306 }
309381fe 307 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
308
309 return batch->max - batch->nr;
310}
311
312#endif /* HAVE_GENERIC_MMU_GATHER */
313
26723911
PZ
314#ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316/*
317 * See the comment near struct mmu_table_batch.
318 */
319
320static void tlb_remove_table_smp_sync(void *arg)
321{
322 /* Simply deliver the interrupt */
323}
324
325static void tlb_remove_table_one(void *table)
326{
327 /*
328 * This isn't an RCU grace period and hence the page-tables cannot be
329 * assumed to be actually RCU-freed.
330 *
331 * It is however sufficient for software page-table walkers that rely on
332 * IRQ disabling. See the comment near struct mmu_table_batch.
333 */
334 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 __tlb_remove_table(table);
336}
337
338static void tlb_remove_table_rcu(struct rcu_head *head)
339{
340 struct mmu_table_batch *batch;
341 int i;
342
343 batch = container_of(head, struct mmu_table_batch, rcu);
344
345 for (i = 0; i < batch->nr; i++)
346 __tlb_remove_table(batch->tables[i]);
347
348 free_page((unsigned long)batch);
349}
350
351void tlb_table_flush(struct mmu_gather *tlb)
352{
353 struct mmu_table_batch **batch = &tlb->batch;
354
355 if (*batch) {
356 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 *batch = NULL;
358 }
359}
360
361void tlb_remove_table(struct mmu_gather *tlb, void *table)
362{
363 struct mmu_table_batch **batch = &tlb->batch;
364
26723911
PZ
365 /*
366 * When there's less then two users of this mm there cannot be a
367 * concurrent page-table walk.
368 */
369 if (atomic_read(&tlb->mm->mm_users) < 2) {
370 __tlb_remove_table(table);
371 return;
372 }
373
374 if (*batch == NULL) {
375 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 if (*batch == NULL) {
377 tlb_remove_table_one(table);
378 return;
379 }
380 (*batch)->nr = 0;
381 }
382 (*batch)->tables[(*batch)->nr++] = table;
383 if ((*batch)->nr == MAX_TABLE_BATCH)
384 tlb_table_flush(tlb);
385}
386
9547d01b 387#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 388
1da177e4
LT
389/*
390 * Note: this doesn't free the actual pages themselves. That
391 * has been handled earlier when unmapping all the memory regions.
392 */
9e1b32ca
BH
393static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 unsigned long addr)
1da177e4 395{
2f569afd 396 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 397 pmd_clear(pmd);
9e1b32ca 398 pte_free_tlb(tlb, token, addr);
e1f56c89 399 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
400}
401
e0da382c
HD
402static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 unsigned long addr, unsigned long end,
404 unsigned long floor, unsigned long ceiling)
1da177e4
LT
405{
406 pmd_t *pmd;
407 unsigned long next;
e0da382c 408 unsigned long start;
1da177e4 409
e0da382c 410 start = addr;
1da177e4 411 pmd = pmd_offset(pud, addr);
1da177e4
LT
412 do {
413 next = pmd_addr_end(addr, end);
414 if (pmd_none_or_clear_bad(pmd))
415 continue;
9e1b32ca 416 free_pte_range(tlb, pmd, addr);
1da177e4
LT
417 } while (pmd++, addr = next, addr != end);
418
e0da382c
HD
419 start &= PUD_MASK;
420 if (start < floor)
421 return;
422 if (ceiling) {
423 ceiling &= PUD_MASK;
424 if (!ceiling)
425 return;
1da177e4 426 }
e0da382c
HD
427 if (end - 1 > ceiling - 1)
428 return;
429
430 pmd = pmd_offset(pud, start);
431 pud_clear(pud);
9e1b32ca 432 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 433 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
434}
435
e0da382c
HD
436static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 unsigned long addr, unsigned long end,
438 unsigned long floor, unsigned long ceiling)
1da177e4
LT
439{
440 pud_t *pud;
441 unsigned long next;
e0da382c 442 unsigned long start;
1da177e4 443
e0da382c 444 start = addr;
1da177e4 445 pud = pud_offset(pgd, addr);
1da177e4
LT
446 do {
447 next = pud_addr_end(addr, end);
448 if (pud_none_or_clear_bad(pud))
449 continue;
e0da382c 450 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
451 } while (pud++, addr = next, addr != end);
452
e0da382c
HD
453 start &= PGDIR_MASK;
454 if (start < floor)
455 return;
456 if (ceiling) {
457 ceiling &= PGDIR_MASK;
458 if (!ceiling)
459 return;
1da177e4 460 }
e0da382c
HD
461 if (end - 1 > ceiling - 1)
462 return;
463
464 pud = pud_offset(pgd, start);
465 pgd_clear(pgd);
9e1b32ca 466 pud_free_tlb(tlb, pud, start);
1da177e4
LT
467}
468
469/*
e0da382c 470 * This function frees user-level page tables of a process.
1da177e4 471 */
42b77728 472void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
473 unsigned long addr, unsigned long end,
474 unsigned long floor, unsigned long ceiling)
1da177e4
LT
475{
476 pgd_t *pgd;
477 unsigned long next;
e0da382c
HD
478
479 /*
480 * The next few lines have given us lots of grief...
481 *
482 * Why are we testing PMD* at this top level? Because often
483 * there will be no work to do at all, and we'd prefer not to
484 * go all the way down to the bottom just to discover that.
485 *
486 * Why all these "- 1"s? Because 0 represents both the bottom
487 * of the address space and the top of it (using -1 for the
488 * top wouldn't help much: the masks would do the wrong thing).
489 * The rule is that addr 0 and floor 0 refer to the bottom of
490 * the address space, but end 0 and ceiling 0 refer to the top
491 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 * that end 0 case should be mythical).
493 *
494 * Wherever addr is brought up or ceiling brought down, we must
495 * be careful to reject "the opposite 0" before it confuses the
496 * subsequent tests. But what about where end is brought down
497 * by PMD_SIZE below? no, end can't go down to 0 there.
498 *
499 * Whereas we round start (addr) and ceiling down, by different
500 * masks at different levels, in order to test whether a table
501 * now has no other vmas using it, so can be freed, we don't
502 * bother to round floor or end up - the tests don't need that.
503 */
1da177e4 504
e0da382c
HD
505 addr &= PMD_MASK;
506 if (addr < floor) {
507 addr += PMD_SIZE;
508 if (!addr)
509 return;
510 }
511 if (ceiling) {
512 ceiling &= PMD_MASK;
513 if (!ceiling)
514 return;
515 }
516 if (end - 1 > ceiling - 1)
517 end -= PMD_SIZE;
518 if (addr > end - 1)
519 return;
520
42b77728 521 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
522 do {
523 next = pgd_addr_end(addr, end);
524 if (pgd_none_or_clear_bad(pgd))
525 continue;
42b77728 526 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 527 } while (pgd++, addr = next, addr != end);
e0da382c
HD
528}
529
42b77728 530void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 531 unsigned long floor, unsigned long ceiling)
e0da382c
HD
532{
533 while (vma) {
534 struct vm_area_struct *next = vma->vm_next;
535 unsigned long addr = vma->vm_start;
536
8f4f8c16 537 /*
25d9e2d1 538 * Hide vma from rmap and truncate_pagecache before freeing
539 * pgtables
8f4f8c16 540 */
5beb4930 541 unlink_anon_vmas(vma);
8f4f8c16
HD
542 unlink_file_vma(vma);
543
9da61aef 544 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 545 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 546 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
547 } else {
548 /*
549 * Optimization: gather nearby vmas into one call down
550 */
551 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 552 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
553 vma = next;
554 next = vma->vm_next;
5beb4930 555 unlink_anon_vmas(vma);
8f4f8c16 556 unlink_file_vma(vma);
3bf5ee95
HD
557 }
558 free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
560 }
e0da382c
HD
561 vma = next;
562 }
1da177e4
LT
563}
564
3ed3a4f0 565int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 566{
c4088ebd 567 spinlock_t *ptl;
2f569afd 568 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
569 if (!new)
570 return -ENOMEM;
571
362a61ad
NP
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
c4088ebd 587 ptl = pmd_lock(mm, pmd);
8ac1f832 588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 589 atomic_long_inc(&mm->nr_ptes);
1da177e4 590 pmd_populate(mm, pmd, new);
2f569afd 591 new = NULL;
4b471e88 592 }
c4088ebd 593 spin_unlock(ptl);
2f569afd
MS
594 if (new)
595 pte_free(mm, new);
1bb3630e 596 return 0;
1da177e4
LT
597}
598
1bb3630e 599int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 600{
1bb3630e
HD
601 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602 if (!new)
603 return -ENOMEM;
604
362a61ad
NP
605 smp_wmb(); /* See comment in __pte_alloc */
606
1bb3630e 607 spin_lock(&init_mm.page_table_lock);
8ac1f832 608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 609 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 610 new = NULL;
4b471e88 611 }
1bb3630e 612 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
613 if (new)
614 pte_free_kernel(&init_mm, new);
1bb3630e 615 return 0;
1da177e4
LT
616}
617
d559db08
KH
618static inline void init_rss_vec(int *rss)
619{
620 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621}
622
623static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 624{
d559db08
KH
625 int i;
626
34e55232 627 if (current->mm == mm)
05af2e10 628 sync_mm_rss(mm);
d559db08
KH
629 for (i = 0; i < NR_MM_COUNTERS; i++)
630 if (rss[i])
631 add_mm_counter(mm, i, rss[i]);
ae859762
HD
632}
633
b5810039 634/*
6aab341e
LT
635 * This function is called to print an error when a bad pte
636 * is found. For example, we might have a PFN-mapped pte in
637 * a region that doesn't allow it.
b5810039
NP
638 *
639 * The calling function must still handle the error.
640 */
3dc14741
HD
641static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642 pte_t pte, struct page *page)
b5810039 643{
3dc14741
HD
644 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645 pud_t *pud = pud_offset(pgd, addr);
646 pmd_t *pmd = pmd_offset(pud, addr);
647 struct address_space *mapping;
648 pgoff_t index;
d936cf9b
HD
649 static unsigned long resume;
650 static unsigned long nr_shown;
651 static unsigned long nr_unshown;
652
653 /*
654 * Allow a burst of 60 reports, then keep quiet for that minute;
655 * or allow a steady drip of one report per second.
656 */
657 if (nr_shown == 60) {
658 if (time_before(jiffies, resume)) {
659 nr_unshown++;
660 return;
661 }
662 if (nr_unshown) {
1170532b
JP
663 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
664 nr_unshown);
d936cf9b
HD
665 nr_unshown = 0;
666 }
667 nr_shown = 0;
668 }
669 if (nr_shown++ == 0)
670 resume = jiffies + 60 * HZ;
3dc14741
HD
671
672 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
673 index = linear_page_index(vma, addr);
674
1170532b
JP
675 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
676 current->comm,
677 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 678 if (page)
f0b791a3 679 dump_page(page, "bad pte");
1170532b
JP
680 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
682 /*
683 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
684 */
2682582a
KK
685 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686 vma->vm_file,
687 vma->vm_ops ? vma->vm_ops->fault : NULL,
688 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689 mapping ? mapping->a_ops->readpage : NULL);
b5810039 690 dump_stack();
373d4d09 691 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
692}
693
ee498ed7 694/*
7e675137 695 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 696 *
7e675137
NP
697 * "Special" mappings do not wish to be associated with a "struct page" (either
698 * it doesn't exist, or it exists but they don't want to touch it). In this
699 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 700 *
7e675137
NP
701 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702 * pte bit, in which case this function is trivial. Secondly, an architecture
703 * may not have a spare pte bit, which requires a more complicated scheme,
704 * described below.
705 *
706 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707 * special mapping (even if there are underlying and valid "struct pages").
708 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 709 *
b379d790
JH
710 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
712 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713 * mapping will always honor the rule
6aab341e
LT
714 *
715 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716 *
7e675137
NP
717 * And for normal mappings this is false.
718 *
719 * This restricts such mappings to be a linear translation from virtual address
720 * to pfn. To get around this restriction, we allow arbitrary mappings so long
721 * as the vma is not a COW mapping; in that case, we know that all ptes are
722 * special (because none can have been COWed).
b379d790 723 *
b379d790 724 *
7e675137 725 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
726 *
727 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728 * page" backing, however the difference is that _all_ pages with a struct
729 * page (that is, those where pfn_valid is true) are refcounted and considered
730 * normal pages by the VM. The disadvantage is that pages are refcounted
731 * (which can be slower and simply not an option for some PFNMAP users). The
732 * advantage is that we don't have to follow the strict linearity rule of
733 * PFNMAP mappings in order to support COWable mappings.
734 *
ee498ed7 735 */
7e675137
NP
736#ifdef __HAVE_ARCH_PTE_SPECIAL
737# define HAVE_PTE_SPECIAL 1
738#else
739# define HAVE_PTE_SPECIAL 0
740#endif
741struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742 pte_t pte)
ee498ed7 743{
22b31eec 744 unsigned long pfn = pte_pfn(pte);
7e675137
NP
745
746 if (HAVE_PTE_SPECIAL) {
b38af472 747 if (likely(!pte_special(pte)))
22b31eec 748 goto check_pfn;
667a0a06
DV
749 if (vma->vm_ops && vma->vm_ops->find_special_page)
750 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
62eede62 753 if (!is_zero_pfn(pfn))
22b31eec 754 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
755 return NULL;
756 }
757
758 /* !HAVE_PTE_SPECIAL case follows: */
759
b379d790
JH
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
7e675137
NP
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
772 }
6aab341e
LT
773 }
774
b38af472
HD
775 if (is_zero_pfn(pfn))
776 return NULL;
22b31eec
HD
777check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
781 }
6aab341e
LT
782
783 /*
7e675137 784 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 785 * eg. VDSO mappings can cause them to exist.
6aab341e 786 */
b379d790 787out:
6aab341e 788 return pfn_to_page(pfn);
ee498ed7
HD
789}
790
1da177e4
LT
791/*
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
1da177e4
LT
795 */
796
570a335b 797static inline unsigned long
1da177e4 798copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 800 unsigned long addr, int *rss)
1da177e4 801{
b5810039 802 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
803 pte_t pte = *src_pte;
804 struct page *page;
1da177e4
LT
805
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
0661a336
KS
808 swp_entry_t entry = pte_to_swp_entry(pte);
809
810 if (likely(!non_swap_entry(entry))) {
811 if (swap_duplicate(entry) < 0)
812 return entry.val;
813
814 /* make sure dst_mm is on swapoff's mmlist. */
815 if (unlikely(list_empty(&dst_mm->mmlist))) {
816 spin_lock(&mmlist_lock);
817 if (list_empty(&dst_mm->mmlist))
818 list_add(&dst_mm->mmlist,
819 &src_mm->mmlist);
820 spin_unlock(&mmlist_lock);
821 }
822 rss[MM_SWAPENTS]++;
823 } else if (is_migration_entry(entry)) {
824 page = migration_entry_to_page(entry);
825
eca56ff9 826 rss[mm_counter(page)]++;
0661a336
KS
827
828 if (is_write_migration_entry(entry) &&
829 is_cow_mapping(vm_flags)) {
830 /*
831 * COW mappings require pages in both
832 * parent and child to be set to read.
833 */
834 make_migration_entry_read(&entry);
835 pte = swp_entry_to_pte(entry);
836 if (pte_swp_soft_dirty(*src_pte))
837 pte = pte_swp_mksoft_dirty(pte);
838 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 839 }
1da177e4 840 }
ae859762 841 goto out_set_pte;
1da177e4
LT
842 }
843
1da177e4
LT
844 /*
845 * If it's a COW mapping, write protect it both
846 * in the parent and the child
847 */
67121172 848 if (is_cow_mapping(vm_flags)) {
1da177e4 849 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 850 pte = pte_wrprotect(pte);
1da177e4
LT
851 }
852
853 /*
854 * If it's a shared mapping, mark it clean in
855 * the child
856 */
857 if (vm_flags & VM_SHARED)
858 pte = pte_mkclean(pte);
859 pte = pte_mkold(pte);
6aab341e
LT
860
861 page = vm_normal_page(vma, addr, pte);
862 if (page) {
863 get_page(page);
53f9263b 864 page_dup_rmap(page, false);
eca56ff9 865 rss[mm_counter(page)]++;
6aab341e 866 }
ae859762
HD
867
868out_set_pte:
869 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 870 return 0;
1da177e4
LT
871}
872
21bda264 873static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
874 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
875 unsigned long addr, unsigned long end)
1da177e4 876{
c36987e2 877 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 878 pte_t *src_pte, *dst_pte;
c74df32c 879 spinlock_t *src_ptl, *dst_ptl;
e040f218 880 int progress = 0;
d559db08 881 int rss[NR_MM_COUNTERS];
570a335b 882 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
883
884again:
d559db08
KH
885 init_rss_vec(rss);
886
c74df32c 887 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
888 if (!dst_pte)
889 return -ENOMEM;
ece0e2b6 890 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 891 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 892 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
893 orig_src_pte = src_pte;
894 orig_dst_pte = dst_pte;
6606c3e0 895 arch_enter_lazy_mmu_mode();
1da177e4 896
1da177e4
LT
897 do {
898 /*
899 * We are holding two locks at this point - either of them
900 * could generate latencies in another task on another CPU.
901 */
e040f218
HD
902 if (progress >= 32) {
903 progress = 0;
904 if (need_resched() ||
95c354fe 905 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
906 break;
907 }
1da177e4
LT
908 if (pte_none(*src_pte)) {
909 progress++;
910 continue;
911 }
570a335b
HD
912 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
913 vma, addr, rss);
914 if (entry.val)
915 break;
1da177e4
LT
916 progress += 8;
917 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 918
6606c3e0 919 arch_leave_lazy_mmu_mode();
c74df32c 920 spin_unlock(src_ptl);
ece0e2b6 921 pte_unmap(orig_src_pte);
d559db08 922 add_mm_rss_vec(dst_mm, rss);
c36987e2 923 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 924 cond_resched();
570a335b
HD
925
926 if (entry.val) {
927 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
928 return -ENOMEM;
929 progress = 0;
930 }
1da177e4
LT
931 if (addr != end)
932 goto again;
933 return 0;
934}
935
936static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
938 unsigned long addr, unsigned long end)
939{
940 pmd_t *src_pmd, *dst_pmd;
941 unsigned long next;
942
943 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
944 if (!dst_pmd)
945 return -ENOMEM;
946 src_pmd = pmd_offset(src_pud, addr);
947 do {
948 next = pmd_addr_end(addr, end);
5c7fb56e 949 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 950 int err;
14d1a55c 951 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
952 err = copy_huge_pmd(dst_mm, src_mm,
953 dst_pmd, src_pmd, addr, vma);
954 if (err == -ENOMEM)
955 return -ENOMEM;
956 if (!err)
957 continue;
958 /* fall through */
959 }
1da177e4
LT
960 if (pmd_none_or_clear_bad(src_pmd))
961 continue;
962 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
966 return 0;
967}
968
969static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
971 unsigned long addr, unsigned long end)
972{
973 pud_t *src_pud, *dst_pud;
974 unsigned long next;
975
976 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
977 if (!dst_pud)
978 return -ENOMEM;
979 src_pud = pud_offset(src_pgd, addr);
980 do {
981 next = pud_addr_end(addr, end);
982 if (pud_none_or_clear_bad(src_pud))
983 continue;
984 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
985 vma, addr, next))
986 return -ENOMEM;
987 } while (dst_pud++, src_pud++, addr = next, addr != end);
988 return 0;
989}
990
991int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 struct vm_area_struct *vma)
993{
994 pgd_t *src_pgd, *dst_pgd;
995 unsigned long next;
996 unsigned long addr = vma->vm_start;
997 unsigned long end = vma->vm_end;
2ec74c3e
SG
998 unsigned long mmun_start; /* For mmu_notifiers */
999 unsigned long mmun_end; /* For mmu_notifiers */
1000 bool is_cow;
cddb8a5c 1001 int ret;
1da177e4 1002
d992895b
NP
1003 /*
1004 * Don't copy ptes where a page fault will fill them correctly.
1005 * Fork becomes much lighter when there are big shared or private
1006 * readonly mappings. The tradeoff is that copy_page_range is more
1007 * efficient than faulting.
1008 */
0661a336
KS
1009 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1010 !vma->anon_vma)
1011 return 0;
d992895b 1012
1da177e4
LT
1013 if (is_vm_hugetlb_page(vma))
1014 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1015
b3b9c293 1016 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1017 /*
1018 * We do not free on error cases below as remove_vma
1019 * gets called on error from higher level routine
1020 */
5180da41 1021 ret = track_pfn_copy(vma);
2ab64037 1022 if (ret)
1023 return ret;
1024 }
1025
cddb8a5c
AA
1026 /*
1027 * We need to invalidate the secondary MMU mappings only when
1028 * there could be a permission downgrade on the ptes of the
1029 * parent mm. And a permission downgrade will only happen if
1030 * is_cow_mapping() returns true.
1031 */
2ec74c3e
SG
1032 is_cow = is_cow_mapping(vma->vm_flags);
1033 mmun_start = addr;
1034 mmun_end = end;
1035 if (is_cow)
1036 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1037 mmun_end);
cddb8a5c
AA
1038
1039 ret = 0;
1da177e4
LT
1040 dst_pgd = pgd_offset(dst_mm, addr);
1041 src_pgd = pgd_offset(src_mm, addr);
1042 do {
1043 next = pgd_addr_end(addr, end);
1044 if (pgd_none_or_clear_bad(src_pgd))
1045 continue;
cddb8a5c
AA
1046 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1047 vma, addr, next))) {
1048 ret = -ENOMEM;
1049 break;
1050 }
1da177e4 1051 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1052
2ec74c3e
SG
1053 if (is_cow)
1054 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1055 return ret;
1da177e4
LT
1056}
1057
51c6f666 1058static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1059 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1060 unsigned long addr, unsigned long end,
97a89413 1061 struct zap_details *details)
1da177e4 1062{
b5810039 1063 struct mm_struct *mm = tlb->mm;
d16dfc55 1064 int force_flush = 0;
d559db08 1065 int rss[NR_MM_COUNTERS];
97a89413 1066 spinlock_t *ptl;
5f1a1907 1067 pte_t *start_pte;
97a89413 1068 pte_t *pte;
8a5f14a2 1069 swp_entry_t entry;
d559db08 1070
d16dfc55 1071again:
e303297e 1072 init_rss_vec(rss);
5f1a1907
SR
1073 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1074 pte = start_pte;
6606c3e0 1075 arch_enter_lazy_mmu_mode();
1da177e4
LT
1076 do {
1077 pte_t ptent = *pte;
51c6f666 1078 if (pte_none(ptent)) {
1da177e4 1079 continue;
51c6f666 1080 }
6f5e6b9e 1081
1da177e4 1082 if (pte_present(ptent)) {
ee498ed7 1083 struct page *page;
51c6f666 1084
6aab341e 1085 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1086 if (unlikely(details) && page) {
1087 /*
1088 * unmap_shared_mapping_pages() wants to
1089 * invalidate cache without truncating:
1090 * unmap shared but keep private pages.
1091 */
1092 if (details->check_mapping &&
1093 details->check_mapping != page->mapping)
1094 continue;
1da177e4 1095 }
b5810039 1096 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1097 tlb->fullmm);
1da177e4
LT
1098 tlb_remove_tlb_entry(tlb, pte, addr);
1099 if (unlikely(!page))
1100 continue;
eca56ff9
JM
1101
1102 if (!PageAnon(page)) {
1cf35d47
LT
1103 if (pte_dirty(ptent)) {
1104 force_flush = 1;
6237bcd9 1105 set_page_dirty(page);
1cf35d47 1106 }
4917e5d0 1107 if (pte_young(ptent) &&
64363aad 1108 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1109 mark_page_accessed(page);
6237bcd9 1110 }
eca56ff9 1111 rss[mm_counter(page)]--;
d281ee61 1112 page_remove_rmap(page, false);
3dc14741
HD
1113 if (unlikely(page_mapcount(page) < 0))
1114 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1115 if (unlikely(!__tlb_remove_page(tlb, page))) {
1116 force_flush = 1;
ce9ec37b 1117 addr += PAGE_SIZE;
d16dfc55 1118 break;
1cf35d47 1119 }
1da177e4
LT
1120 continue;
1121 }
8a5f14a2 1122 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1123 if (unlikely(details))
1124 continue;
b084d435 1125
8a5f14a2
KS
1126 entry = pte_to_swp_entry(ptent);
1127 if (!non_swap_entry(entry))
1128 rss[MM_SWAPENTS]--;
1129 else if (is_migration_entry(entry)) {
1130 struct page *page;
9f9f1acd 1131
8a5f14a2 1132 page = migration_entry_to_page(entry);
eca56ff9 1133 rss[mm_counter(page)]--;
b084d435 1134 }
8a5f14a2
KS
1135 if (unlikely(!free_swap_and_cache(entry)))
1136 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1137 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1138 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1139
d559db08 1140 add_mm_rss_vec(mm, rss);
6606c3e0 1141 arch_leave_lazy_mmu_mode();
51c6f666 1142
1cf35d47 1143 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1144 if (force_flush)
1cf35d47 1145 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1146 pte_unmap_unlock(start_pte, ptl);
1147
1148 /*
1149 * If we forced a TLB flush (either due to running out of
1150 * batch buffers or because we needed to flush dirty TLB
1151 * entries before releasing the ptl), free the batched
1152 * memory too. Restart if we didn't do everything.
1153 */
1154 if (force_flush) {
1155 force_flush = 0;
1156 tlb_flush_mmu_free(tlb);
2b047252
LT
1157
1158 if (addr != end)
d16dfc55
PZ
1159 goto again;
1160 }
1161
51c6f666 1162 return addr;
1da177e4
LT
1163}
1164
51c6f666 1165static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1166 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1167 unsigned long addr, unsigned long end,
97a89413 1168 struct zap_details *details)
1da177e4
LT
1169{
1170 pmd_t *pmd;
1171 unsigned long next;
1172
1173 pmd = pmd_offset(pud, addr);
1174 do {
1175 next = pmd_addr_end(addr, end);
5c7fb56e 1176 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1177 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1178#ifdef CONFIG_DEBUG_VM
1179 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1180 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1181 __func__, addr, end,
1182 vma->vm_start,
1183 vma->vm_end);
1184 BUG();
1185 }
1186#endif
78ddc534 1187 split_huge_pmd(vma, pmd, addr);
f21760b1 1188 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1189 goto next;
71e3aac0
AA
1190 /* fall through */
1191 }
1a5a9906
AA
1192 /*
1193 * Here there can be other concurrent MADV_DONTNEED or
1194 * trans huge page faults running, and if the pmd is
1195 * none or trans huge it can change under us. This is
1196 * because MADV_DONTNEED holds the mmap_sem in read
1197 * mode.
1198 */
1199 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1200 goto next;
97a89413 1201 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1202next:
97a89413
PZ
1203 cond_resched();
1204 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1205
1206 return addr;
1da177e4
LT
1207}
1208
51c6f666 1209static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1210 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1211 unsigned long addr, unsigned long end,
97a89413 1212 struct zap_details *details)
1da177e4
LT
1213{
1214 pud_t *pud;
1215 unsigned long next;
1216
1217 pud = pud_offset(pgd, addr);
1218 do {
1219 next = pud_addr_end(addr, end);
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413
PZ
1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 } while (pud++, addr = next, addr != end);
51c6f666
RH
1224
1225 return addr;
1da177e4
LT
1226}
1227
038c7aa1
AV
1228static void unmap_page_range(struct mmu_gather *tlb,
1229 struct vm_area_struct *vma,
1230 unsigned long addr, unsigned long end,
1231 struct zap_details *details)
1da177e4
LT
1232{
1233 pgd_t *pgd;
1234 unsigned long next;
1235
8a5f14a2 1236 if (details && !details->check_mapping)
1da177e4
LT
1237 details = NULL;
1238
1239 BUG_ON(addr >= end);
1240 tlb_start_vma(tlb, vma);
1241 pgd = pgd_offset(vma->vm_mm, addr);
1242 do {
1243 next = pgd_addr_end(addr, end);
97a89413 1244 if (pgd_none_or_clear_bad(pgd))
1da177e4 1245 continue;
97a89413
PZ
1246 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1247 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1248 tlb_end_vma(tlb, vma);
1249}
51c6f666 1250
f5cc4eef
AV
1251
1252static void unmap_single_vma(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1254 unsigned long end_addr,
f5cc4eef
AV
1255 struct zap_details *details)
1256{
1257 unsigned long start = max(vma->vm_start, start_addr);
1258 unsigned long end;
1259
1260 if (start >= vma->vm_end)
1261 return;
1262 end = min(vma->vm_end, end_addr);
1263 if (end <= vma->vm_start)
1264 return;
1265
cbc91f71
SD
1266 if (vma->vm_file)
1267 uprobe_munmap(vma, start, end);
1268
b3b9c293 1269 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1270 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1271
1272 if (start != end) {
1273 if (unlikely(is_vm_hugetlb_page(vma))) {
1274 /*
1275 * It is undesirable to test vma->vm_file as it
1276 * should be non-null for valid hugetlb area.
1277 * However, vm_file will be NULL in the error
7aa6b4ad 1278 * cleanup path of mmap_region. When
f5cc4eef 1279 * hugetlbfs ->mmap method fails,
7aa6b4ad 1280 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1281 * before calling this function to clean up.
1282 * Since no pte has actually been setup, it is
1283 * safe to do nothing in this case.
1284 */
24669e58 1285 if (vma->vm_file) {
83cde9e8 1286 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1287 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1288 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1289 }
f5cc4eef
AV
1290 } else
1291 unmap_page_range(tlb, vma, start, end, details);
1292 }
1da177e4
LT
1293}
1294
1da177e4
LT
1295/**
1296 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1297 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1298 * @vma: the starting vma
1299 * @start_addr: virtual address at which to start unmapping
1300 * @end_addr: virtual address at which to end unmapping
1da177e4 1301 *
508034a3 1302 * Unmap all pages in the vma list.
1da177e4 1303 *
1da177e4
LT
1304 * Only addresses between `start' and `end' will be unmapped.
1305 *
1306 * The VMA list must be sorted in ascending virtual address order.
1307 *
1308 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1309 * range after unmap_vmas() returns. So the only responsibility here is to
1310 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1311 * drops the lock and schedules.
1312 */
6e8bb019 1313void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1314 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1315 unsigned long end_addr)
1da177e4 1316{
cddb8a5c 1317 struct mm_struct *mm = vma->vm_mm;
1da177e4 1318
cddb8a5c 1319 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1320 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1321 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1322 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1323}
1324
1325/**
1326 * zap_page_range - remove user pages in a given range
1327 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1328 * @start: starting address of pages to zap
1da177e4 1329 * @size: number of bytes to zap
8a5f14a2 1330 * @details: details of shared cache invalidation
f5cc4eef
AV
1331 *
1332 * Caller must protect the VMA list
1da177e4 1333 */
7e027b14 1334void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1335 unsigned long size, struct zap_details *details)
1336{
1337 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1338 struct mmu_gather tlb;
7e027b14 1339 unsigned long end = start + size;
1da177e4 1340
1da177e4 1341 lru_add_drain();
2b047252 1342 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1343 update_hiwater_rss(mm);
7e027b14
LT
1344 mmu_notifier_invalidate_range_start(mm, start, end);
1345 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1346 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1347 mmu_notifier_invalidate_range_end(mm, start, end);
1348 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1349}
1350
f5cc4eef
AV
1351/**
1352 * zap_page_range_single - remove user pages in a given range
1353 * @vma: vm_area_struct holding the applicable pages
1354 * @address: starting address of pages to zap
1355 * @size: number of bytes to zap
8a5f14a2 1356 * @details: details of shared cache invalidation
f5cc4eef
AV
1357 *
1358 * The range must fit into one VMA.
1da177e4 1359 */
f5cc4eef 1360static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1361 unsigned long size, struct zap_details *details)
1362{
1363 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1364 struct mmu_gather tlb;
1da177e4 1365 unsigned long end = address + size;
1da177e4 1366
1da177e4 1367 lru_add_drain();
2b047252 1368 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1369 update_hiwater_rss(mm);
f5cc4eef 1370 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1371 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1372 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1373 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1374}
1375
c627f9cc
JS
1376/**
1377 * zap_vma_ptes - remove ptes mapping the vma
1378 * @vma: vm_area_struct holding ptes to be zapped
1379 * @address: starting address of pages to zap
1380 * @size: number of bytes to zap
1381 *
1382 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1383 *
1384 * The entire address range must be fully contained within the vma.
1385 *
1386 * Returns 0 if successful.
1387 */
1388int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1389 unsigned long size)
1390{
1391 if (address < vma->vm_start || address + size > vma->vm_end ||
1392 !(vma->vm_flags & VM_PFNMAP))
1393 return -1;
f5cc4eef 1394 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1395 return 0;
1396}
1397EXPORT_SYMBOL_GPL(zap_vma_ptes);
1398
25ca1d6c 1399pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1400 spinlock_t **ptl)
c9cfcddf
LT
1401{
1402 pgd_t * pgd = pgd_offset(mm, addr);
1403 pud_t * pud = pud_alloc(mm, pgd, addr);
1404 if (pud) {
49c91fb0 1405 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1406 if (pmd) {
1407 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1408 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1409 }
c9cfcddf
LT
1410 }
1411 return NULL;
1412}
1413
238f58d8
LT
1414/*
1415 * This is the old fallback for page remapping.
1416 *
1417 * For historical reasons, it only allows reserved pages. Only
1418 * old drivers should use this, and they needed to mark their
1419 * pages reserved for the old functions anyway.
1420 */
423bad60
NP
1421static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1422 struct page *page, pgprot_t prot)
238f58d8 1423{
423bad60 1424 struct mm_struct *mm = vma->vm_mm;
238f58d8 1425 int retval;
c9cfcddf 1426 pte_t *pte;
8a9f3ccd
BS
1427 spinlock_t *ptl;
1428
238f58d8 1429 retval = -EINVAL;
a145dd41 1430 if (PageAnon(page))
5b4e655e 1431 goto out;
238f58d8
LT
1432 retval = -ENOMEM;
1433 flush_dcache_page(page);
c9cfcddf 1434 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1435 if (!pte)
5b4e655e 1436 goto out;
238f58d8
LT
1437 retval = -EBUSY;
1438 if (!pte_none(*pte))
1439 goto out_unlock;
1440
1441 /* Ok, finally just insert the thing.. */
1442 get_page(page);
eca56ff9 1443 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1444 page_add_file_rmap(page);
1445 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1446
1447 retval = 0;
8a9f3ccd
BS
1448 pte_unmap_unlock(pte, ptl);
1449 return retval;
238f58d8
LT
1450out_unlock:
1451 pte_unmap_unlock(pte, ptl);
1452out:
1453 return retval;
1454}
1455
bfa5bf6d
REB
1456/**
1457 * vm_insert_page - insert single page into user vma
1458 * @vma: user vma to map to
1459 * @addr: target user address of this page
1460 * @page: source kernel page
1461 *
a145dd41
LT
1462 * This allows drivers to insert individual pages they've allocated
1463 * into a user vma.
1464 *
1465 * The page has to be a nice clean _individual_ kernel allocation.
1466 * If you allocate a compound page, you need to have marked it as
1467 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1468 * (see split_page()).
a145dd41
LT
1469 *
1470 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1471 * took an arbitrary page protection parameter. This doesn't allow
1472 * that. Your vma protection will have to be set up correctly, which
1473 * means that if you want a shared writable mapping, you'd better
1474 * ask for a shared writable mapping!
1475 *
1476 * The page does not need to be reserved.
4b6e1e37
KK
1477 *
1478 * Usually this function is called from f_op->mmap() handler
1479 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1480 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1481 * function from other places, for example from page-fault handler.
a145dd41 1482 */
423bad60
NP
1483int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1484 struct page *page)
a145dd41
LT
1485{
1486 if (addr < vma->vm_start || addr >= vma->vm_end)
1487 return -EFAULT;
1488 if (!page_count(page))
1489 return -EINVAL;
4b6e1e37
KK
1490 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1491 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1492 BUG_ON(vma->vm_flags & VM_PFNMAP);
1493 vma->vm_flags |= VM_MIXEDMAP;
1494 }
423bad60 1495 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1496}
e3c3374f 1497EXPORT_SYMBOL(vm_insert_page);
a145dd41 1498
423bad60 1499static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1500 pfn_t pfn, pgprot_t prot)
423bad60
NP
1501{
1502 struct mm_struct *mm = vma->vm_mm;
1503 int retval;
1504 pte_t *pte, entry;
1505 spinlock_t *ptl;
1506
1507 retval = -ENOMEM;
1508 pte = get_locked_pte(mm, addr, &ptl);
1509 if (!pte)
1510 goto out;
1511 retval = -EBUSY;
1512 if (!pte_none(*pte))
1513 goto out_unlock;
1514
1515 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1516 if (pfn_t_devmap(pfn))
1517 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1518 else
1519 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1520 set_pte_at(mm, addr, pte, entry);
4b3073e1 1521 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1522
1523 retval = 0;
1524out_unlock:
1525 pte_unmap_unlock(pte, ptl);
1526out:
1527 return retval;
1528}
1529
e0dc0d8f
NP
1530/**
1531 * vm_insert_pfn - insert single pfn into user vma
1532 * @vma: user vma to map to
1533 * @addr: target user address of this page
1534 * @pfn: source kernel pfn
1535 *
c462f179 1536 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1537 * they've allocated into a user vma. Same comments apply.
1538 *
1539 * This function should only be called from a vm_ops->fault handler, and
1540 * in that case the handler should return NULL.
0d71d10a
NP
1541 *
1542 * vma cannot be a COW mapping.
1543 *
1544 * As this is called only for pages that do not currently exist, we
1545 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1546 */
1547int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1548 unsigned long pfn)
1745cbc5
AL
1549{
1550 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1551}
1552EXPORT_SYMBOL(vm_insert_pfn);
1553
1554/**
1555 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1556 * @vma: user vma to map to
1557 * @addr: target user address of this page
1558 * @pfn: source kernel pfn
1559 * @pgprot: pgprot flags for the inserted page
1560 *
1561 * This is exactly like vm_insert_pfn, except that it allows drivers to
1562 * to override pgprot on a per-page basis.
1563 *
1564 * This only makes sense for IO mappings, and it makes no sense for
1565 * cow mappings. In general, using multiple vmas is preferable;
1566 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1567 * impractical.
1568 */
1569int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1570 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1571{
2ab64037 1572 int ret;
7e675137
NP
1573 /*
1574 * Technically, architectures with pte_special can avoid all these
1575 * restrictions (same for remap_pfn_range). However we would like
1576 * consistency in testing and feature parity among all, so we should
1577 * try to keep these invariants in place for everybody.
1578 */
b379d790
JH
1579 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1580 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1581 (VM_PFNMAP|VM_MIXEDMAP));
1582 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1583 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1584
423bad60
NP
1585 if (addr < vma->vm_start || addr >= vma->vm_end)
1586 return -EFAULT;
f25748e3 1587 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1588 return -EINVAL;
1589
01c8f1c4 1590 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1591
2ab64037 1592 return ret;
423bad60 1593}
1745cbc5 1594EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1595
423bad60 1596int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1597 pfn_t pfn)
423bad60
NP
1598{
1599 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1600
423bad60
NP
1601 if (addr < vma->vm_start || addr >= vma->vm_end)
1602 return -EFAULT;
e0dc0d8f 1603
423bad60
NP
1604 /*
1605 * If we don't have pte special, then we have to use the pfn_valid()
1606 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1607 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1608 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1609 * without pte special, it would there be refcounted as a normal page.
423bad60 1610 */
03fc2da6 1611 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1612 struct page *page;
1613
03fc2da6
DW
1614 /*
1615 * At this point we are committed to insert_page()
1616 * regardless of whether the caller specified flags that
1617 * result in pfn_t_has_page() == false.
1618 */
1619 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1620 return insert_page(vma, addr, page, vma->vm_page_prot);
1621 }
1622 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1623}
423bad60 1624EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1625
1da177e4
LT
1626/*
1627 * maps a range of physical memory into the requested pages. the old
1628 * mappings are removed. any references to nonexistent pages results
1629 * in null mappings (currently treated as "copy-on-access")
1630 */
1631static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1632 unsigned long addr, unsigned long end,
1633 unsigned long pfn, pgprot_t prot)
1634{
1635 pte_t *pte;
c74df32c 1636 spinlock_t *ptl;
1da177e4 1637
c74df32c 1638 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1639 if (!pte)
1640 return -ENOMEM;
6606c3e0 1641 arch_enter_lazy_mmu_mode();
1da177e4
LT
1642 do {
1643 BUG_ON(!pte_none(*pte));
7e675137 1644 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1645 pfn++;
1646 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1647 arch_leave_lazy_mmu_mode();
c74df32c 1648 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1649 return 0;
1650}
1651
1652static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1653 unsigned long addr, unsigned long end,
1654 unsigned long pfn, pgprot_t prot)
1655{
1656 pmd_t *pmd;
1657 unsigned long next;
1658
1659 pfn -= addr >> PAGE_SHIFT;
1660 pmd = pmd_alloc(mm, pud, addr);
1661 if (!pmd)
1662 return -ENOMEM;
f66055ab 1663 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1664 do {
1665 next = pmd_addr_end(addr, end);
1666 if (remap_pte_range(mm, pmd, addr, next,
1667 pfn + (addr >> PAGE_SHIFT), prot))
1668 return -ENOMEM;
1669 } while (pmd++, addr = next, addr != end);
1670 return 0;
1671}
1672
1673static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1674 unsigned long addr, unsigned long end,
1675 unsigned long pfn, pgprot_t prot)
1676{
1677 pud_t *pud;
1678 unsigned long next;
1679
1680 pfn -= addr >> PAGE_SHIFT;
1681 pud = pud_alloc(mm, pgd, addr);
1682 if (!pud)
1683 return -ENOMEM;
1684 do {
1685 next = pud_addr_end(addr, end);
1686 if (remap_pmd_range(mm, pud, addr, next,
1687 pfn + (addr >> PAGE_SHIFT), prot))
1688 return -ENOMEM;
1689 } while (pud++, addr = next, addr != end);
1690 return 0;
1691}
1692
bfa5bf6d
REB
1693/**
1694 * remap_pfn_range - remap kernel memory to userspace
1695 * @vma: user vma to map to
1696 * @addr: target user address to start at
1697 * @pfn: physical address of kernel memory
1698 * @size: size of map area
1699 * @prot: page protection flags for this mapping
1700 *
1701 * Note: this is only safe if the mm semaphore is held when called.
1702 */
1da177e4
LT
1703int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1704 unsigned long pfn, unsigned long size, pgprot_t prot)
1705{
1706 pgd_t *pgd;
1707 unsigned long next;
2d15cab8 1708 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1709 struct mm_struct *mm = vma->vm_mm;
1710 int err;
1711
1712 /*
1713 * Physically remapped pages are special. Tell the
1714 * rest of the world about it:
1715 * VM_IO tells people not to look at these pages
1716 * (accesses can have side effects).
6aab341e
LT
1717 * VM_PFNMAP tells the core MM that the base pages are just
1718 * raw PFN mappings, and do not have a "struct page" associated
1719 * with them.
314e51b9
KK
1720 * VM_DONTEXPAND
1721 * Disable vma merging and expanding with mremap().
1722 * VM_DONTDUMP
1723 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1724 *
1725 * There's a horrible special case to handle copy-on-write
1726 * behaviour that some programs depend on. We mark the "original"
1727 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1728 * See vm_normal_page() for details.
1da177e4 1729 */
b3b9c293
KK
1730 if (is_cow_mapping(vma->vm_flags)) {
1731 if (addr != vma->vm_start || end != vma->vm_end)
1732 return -EINVAL;
fb155c16 1733 vma->vm_pgoff = pfn;
b3b9c293
KK
1734 }
1735
1736 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1737 if (err)
3c8bb73a 1738 return -EINVAL;
fb155c16 1739
314e51b9 1740 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1741
1742 BUG_ON(addr >= end);
1743 pfn -= addr >> PAGE_SHIFT;
1744 pgd = pgd_offset(mm, addr);
1745 flush_cache_range(vma, addr, end);
1da177e4
LT
1746 do {
1747 next = pgd_addr_end(addr, end);
1748 err = remap_pud_range(mm, pgd, addr, next,
1749 pfn + (addr >> PAGE_SHIFT), prot);
1750 if (err)
1751 break;
1752 } while (pgd++, addr = next, addr != end);
2ab64037 1753
1754 if (err)
5180da41 1755 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1756
1da177e4
LT
1757 return err;
1758}
1759EXPORT_SYMBOL(remap_pfn_range);
1760
b4cbb197
LT
1761/**
1762 * vm_iomap_memory - remap memory to userspace
1763 * @vma: user vma to map to
1764 * @start: start of area
1765 * @len: size of area
1766 *
1767 * This is a simplified io_remap_pfn_range() for common driver use. The
1768 * driver just needs to give us the physical memory range to be mapped,
1769 * we'll figure out the rest from the vma information.
1770 *
1771 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1772 * whatever write-combining details or similar.
1773 */
1774int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1775{
1776 unsigned long vm_len, pfn, pages;
1777
1778 /* Check that the physical memory area passed in looks valid */
1779 if (start + len < start)
1780 return -EINVAL;
1781 /*
1782 * You *really* shouldn't map things that aren't page-aligned,
1783 * but we've historically allowed it because IO memory might
1784 * just have smaller alignment.
1785 */
1786 len += start & ~PAGE_MASK;
1787 pfn = start >> PAGE_SHIFT;
1788 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1789 if (pfn + pages < pfn)
1790 return -EINVAL;
1791
1792 /* We start the mapping 'vm_pgoff' pages into the area */
1793 if (vma->vm_pgoff > pages)
1794 return -EINVAL;
1795 pfn += vma->vm_pgoff;
1796 pages -= vma->vm_pgoff;
1797
1798 /* Can we fit all of the mapping? */
1799 vm_len = vma->vm_end - vma->vm_start;
1800 if (vm_len >> PAGE_SHIFT > pages)
1801 return -EINVAL;
1802
1803 /* Ok, let it rip */
1804 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1805}
1806EXPORT_SYMBOL(vm_iomap_memory);
1807
aee16b3c
JF
1808static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1809 unsigned long addr, unsigned long end,
1810 pte_fn_t fn, void *data)
1811{
1812 pte_t *pte;
1813 int err;
2f569afd 1814 pgtable_t token;
94909914 1815 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1816
1817 pte = (mm == &init_mm) ?
1818 pte_alloc_kernel(pmd, addr) :
1819 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1820 if (!pte)
1821 return -ENOMEM;
1822
1823 BUG_ON(pmd_huge(*pmd));
1824
38e0edb1
JF
1825 arch_enter_lazy_mmu_mode();
1826
2f569afd 1827 token = pmd_pgtable(*pmd);
aee16b3c
JF
1828
1829 do {
c36987e2 1830 err = fn(pte++, token, addr, data);
aee16b3c
JF
1831 if (err)
1832 break;
c36987e2 1833 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1834
38e0edb1
JF
1835 arch_leave_lazy_mmu_mode();
1836
aee16b3c
JF
1837 if (mm != &init_mm)
1838 pte_unmap_unlock(pte-1, ptl);
1839 return err;
1840}
1841
1842static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1843 unsigned long addr, unsigned long end,
1844 pte_fn_t fn, void *data)
1845{
1846 pmd_t *pmd;
1847 unsigned long next;
1848 int err;
1849
ceb86879
AK
1850 BUG_ON(pud_huge(*pud));
1851
aee16b3c
JF
1852 pmd = pmd_alloc(mm, pud, addr);
1853 if (!pmd)
1854 return -ENOMEM;
1855 do {
1856 next = pmd_addr_end(addr, end);
1857 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1858 if (err)
1859 break;
1860 } while (pmd++, addr = next, addr != end);
1861 return err;
1862}
1863
1864static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1865 unsigned long addr, unsigned long end,
1866 pte_fn_t fn, void *data)
1867{
1868 pud_t *pud;
1869 unsigned long next;
1870 int err;
1871
1872 pud = pud_alloc(mm, pgd, addr);
1873 if (!pud)
1874 return -ENOMEM;
1875 do {
1876 next = pud_addr_end(addr, end);
1877 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1878 if (err)
1879 break;
1880 } while (pud++, addr = next, addr != end);
1881 return err;
1882}
1883
1884/*
1885 * Scan a region of virtual memory, filling in page tables as necessary
1886 * and calling a provided function on each leaf page table.
1887 */
1888int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1889 unsigned long size, pte_fn_t fn, void *data)
1890{
1891 pgd_t *pgd;
1892 unsigned long next;
57250a5b 1893 unsigned long end = addr + size;
aee16b3c
JF
1894 int err;
1895
9cb65bc3
MP
1896 if (WARN_ON(addr >= end))
1897 return -EINVAL;
1898
aee16b3c
JF
1899 pgd = pgd_offset(mm, addr);
1900 do {
1901 next = pgd_addr_end(addr, end);
1902 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1903 if (err)
1904 break;
1905 } while (pgd++, addr = next, addr != end);
57250a5b 1906
aee16b3c
JF
1907 return err;
1908}
1909EXPORT_SYMBOL_GPL(apply_to_page_range);
1910
8f4e2101 1911/*
9b4bdd2f
KS
1912 * handle_pte_fault chooses page fault handler according to an entry which was
1913 * read non-atomically. Before making any commitment, on those architectures
1914 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1915 * parts, do_swap_page must check under lock before unmapping the pte and
1916 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1917 * and do_anonymous_page can safely check later on).
8f4e2101 1918 */
4c21e2f2 1919static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1920 pte_t *page_table, pte_t orig_pte)
1921{
1922 int same = 1;
1923#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1924 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1925 spinlock_t *ptl = pte_lockptr(mm, pmd);
1926 spin_lock(ptl);
8f4e2101 1927 same = pte_same(*page_table, orig_pte);
4c21e2f2 1928 spin_unlock(ptl);
8f4e2101
HD
1929 }
1930#endif
1931 pte_unmap(page_table);
1932 return same;
1933}
1934
9de455b2 1935static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1936{
0abdd7a8
DW
1937 debug_dma_assert_idle(src);
1938
6aab341e
LT
1939 /*
1940 * If the source page was a PFN mapping, we don't have
1941 * a "struct page" for it. We do a best-effort copy by
1942 * just copying from the original user address. If that
1943 * fails, we just zero-fill it. Live with it.
1944 */
1945 if (unlikely(!src)) {
9b04c5fe 1946 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1947 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1948
1949 /*
1950 * This really shouldn't fail, because the page is there
1951 * in the page tables. But it might just be unreadable,
1952 * in which case we just give up and fill the result with
1953 * zeroes.
1954 */
1955 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1956 clear_page(kaddr);
9b04c5fe 1957 kunmap_atomic(kaddr);
c4ec7b0d 1958 flush_dcache_page(dst);
0ed361de
NP
1959 } else
1960 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1961}
1962
c20cd45e
MH
1963static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1964{
1965 struct file *vm_file = vma->vm_file;
1966
1967 if (vm_file)
1968 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1969
1970 /*
1971 * Special mappings (e.g. VDSO) do not have any file so fake
1972 * a default GFP_KERNEL for them.
1973 */
1974 return GFP_KERNEL;
1975}
1976
fb09a464
KS
1977/*
1978 * Notify the address space that the page is about to become writable so that
1979 * it can prohibit this or wait for the page to get into an appropriate state.
1980 *
1981 * We do this without the lock held, so that it can sleep if it needs to.
1982 */
1983static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984 unsigned long address)
1985{
1986 struct vm_fault vmf;
1987 int ret;
1988
1989 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990 vmf.pgoff = page->index;
1991 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 1992 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 1993 vmf.page = page;
2e4cdab0 1994 vmf.cow_page = NULL;
fb09a464
KS
1995
1996 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1997 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1998 return ret;
1999 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2000 lock_page(page);
2001 if (!page->mapping) {
2002 unlock_page(page);
2003 return 0; /* retry */
2004 }
2005 ret |= VM_FAULT_LOCKED;
2006 } else
2007 VM_BUG_ON_PAGE(!PageLocked(page), page);
2008 return ret;
2009}
2010
4e047f89
SR
2011/*
2012 * Handle write page faults for pages that can be reused in the current vma
2013 *
2014 * This can happen either due to the mapping being with the VM_SHARED flag,
2015 * or due to us being the last reference standing to the page. In either
2016 * case, all we need to do here is to mark the page as writable and update
2017 * any related book-keeping.
2018 */
2019static inline int wp_page_reuse(struct mm_struct *mm,
2020 struct vm_area_struct *vma, unsigned long address,
2021 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2022 struct page *page, int page_mkwrite,
2023 int dirty_shared)
2024 __releases(ptl)
2025{
2026 pte_t entry;
2027 /*
2028 * Clear the pages cpupid information as the existing
2029 * information potentially belongs to a now completely
2030 * unrelated process.
2031 */
2032 if (page)
2033 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2034
2035 flush_cache_page(vma, address, pte_pfn(orig_pte));
2036 entry = pte_mkyoung(orig_pte);
2037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2038 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2039 update_mmu_cache(vma, address, page_table);
2040 pte_unmap_unlock(page_table, ptl);
2041
2042 if (dirty_shared) {
2043 struct address_space *mapping;
2044 int dirtied;
2045
2046 if (!page_mkwrite)
2047 lock_page(page);
2048
2049 dirtied = set_page_dirty(page);
2050 VM_BUG_ON_PAGE(PageAnon(page), page);
2051 mapping = page->mapping;
2052 unlock_page(page);
2053 page_cache_release(page);
2054
2055 if ((dirtied || page_mkwrite) && mapping) {
2056 /*
2057 * Some device drivers do not set page.mapping
2058 * but still dirty their pages
2059 */
2060 balance_dirty_pages_ratelimited(mapping);
2061 }
2062
2063 if (!page_mkwrite)
2064 file_update_time(vma->vm_file);
2065 }
2066
2067 return VM_FAULT_WRITE;
2068}
2069
2f38ab2c
SR
2070/*
2071 * Handle the case of a page which we actually need to copy to a new page.
2072 *
2073 * Called with mmap_sem locked and the old page referenced, but
2074 * without the ptl held.
2075 *
2076 * High level logic flow:
2077 *
2078 * - Allocate a page, copy the content of the old page to the new one.
2079 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2080 * - Take the PTL. If the pte changed, bail out and release the allocated page
2081 * - If the pte is still the way we remember it, update the page table and all
2082 * relevant references. This includes dropping the reference the page-table
2083 * held to the old page, as well as updating the rmap.
2084 * - In any case, unlock the PTL and drop the reference we took to the old page.
2085 */
2086static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2087 unsigned long address, pte_t *page_table, pmd_t *pmd,
2088 pte_t orig_pte, struct page *old_page)
2089{
2090 struct page *new_page = NULL;
2091 spinlock_t *ptl = NULL;
2092 pte_t entry;
2093 int page_copied = 0;
2094 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2095 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2096 struct mem_cgroup *memcg;
2097
2098 if (unlikely(anon_vma_prepare(vma)))
2099 goto oom;
2100
2101 if (is_zero_pfn(pte_pfn(orig_pte))) {
2102 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2103 if (!new_page)
2104 goto oom;
2105 } else {
2106 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2107 if (!new_page)
2108 goto oom;
2109 cow_user_page(new_page, old_page, address, vma);
2110 }
2f38ab2c 2111
f627c2f5 2112 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2113 goto oom_free_new;
2114
eb3c24f3
MG
2115 __SetPageUptodate(new_page);
2116
2f38ab2c
SR
2117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2118
2119 /*
2120 * Re-check the pte - we dropped the lock
2121 */
2122 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2123 if (likely(pte_same(*page_table, orig_pte))) {
2124 if (old_page) {
2125 if (!PageAnon(old_page)) {
eca56ff9
JM
2126 dec_mm_counter_fast(mm,
2127 mm_counter_file(old_page));
2f38ab2c
SR
2128 inc_mm_counter_fast(mm, MM_ANONPAGES);
2129 }
2130 } else {
2131 inc_mm_counter_fast(mm, MM_ANONPAGES);
2132 }
2133 flush_cache_page(vma, address, pte_pfn(orig_pte));
2134 entry = mk_pte(new_page, vma->vm_page_prot);
2135 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2136 /*
2137 * Clear the pte entry and flush it first, before updating the
2138 * pte with the new entry. This will avoid a race condition
2139 * seen in the presence of one thread doing SMC and another
2140 * thread doing COW.
2141 */
2142 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2143 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2144 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2145 lru_cache_add_active_or_unevictable(new_page, vma);
2146 /*
2147 * We call the notify macro here because, when using secondary
2148 * mmu page tables (such as kvm shadow page tables), we want the
2149 * new page to be mapped directly into the secondary page table.
2150 */
2151 set_pte_at_notify(mm, address, page_table, entry);
2152 update_mmu_cache(vma, address, page_table);
2153 if (old_page) {
2154 /*
2155 * Only after switching the pte to the new page may
2156 * we remove the mapcount here. Otherwise another
2157 * process may come and find the rmap count decremented
2158 * before the pte is switched to the new page, and
2159 * "reuse" the old page writing into it while our pte
2160 * here still points into it and can be read by other
2161 * threads.
2162 *
2163 * The critical issue is to order this
2164 * page_remove_rmap with the ptp_clear_flush above.
2165 * Those stores are ordered by (if nothing else,)
2166 * the barrier present in the atomic_add_negative
2167 * in page_remove_rmap.
2168 *
2169 * Then the TLB flush in ptep_clear_flush ensures that
2170 * no process can access the old page before the
2171 * decremented mapcount is visible. And the old page
2172 * cannot be reused until after the decremented
2173 * mapcount is visible. So transitively, TLBs to
2174 * old page will be flushed before it can be reused.
2175 */
d281ee61 2176 page_remove_rmap(old_page, false);
2f38ab2c
SR
2177 }
2178
2179 /* Free the old page.. */
2180 new_page = old_page;
2181 page_copied = 1;
2182 } else {
f627c2f5 2183 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2184 }
2185
2186 if (new_page)
2187 page_cache_release(new_page);
2188
2189 pte_unmap_unlock(page_table, ptl);
2190 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2191 if (old_page) {
2192 /*
2193 * Don't let another task, with possibly unlocked vma,
2194 * keep the mlocked page.
2195 */
2196 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2197 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2198 if (PageMlocked(old_page))
2199 munlock_vma_page(old_page);
2f38ab2c
SR
2200 unlock_page(old_page);
2201 }
2202 page_cache_release(old_page);
2203 }
2204 return page_copied ? VM_FAULT_WRITE : 0;
2205oom_free_new:
2206 page_cache_release(new_page);
2207oom:
2208 if (old_page)
2209 page_cache_release(old_page);
2210 return VM_FAULT_OOM;
2211}
2212
dd906184
BH
2213/*
2214 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2215 * mapping
2216 */
2217static int wp_pfn_shared(struct mm_struct *mm,
2218 struct vm_area_struct *vma, unsigned long address,
2219 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2220 pmd_t *pmd)
2221{
2222 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2223 struct vm_fault vmf = {
2224 .page = NULL,
2225 .pgoff = linear_page_index(vma, address),
2226 .virtual_address = (void __user *)(address & PAGE_MASK),
2227 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2228 };
2229 int ret;
2230
2231 pte_unmap_unlock(page_table, ptl);
2232 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2233 if (ret & VM_FAULT_ERROR)
2234 return ret;
2235 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2236 /*
2237 * We might have raced with another page fault while we
2238 * released the pte_offset_map_lock.
2239 */
2240 if (!pte_same(*page_table, orig_pte)) {
2241 pte_unmap_unlock(page_table, ptl);
2242 return 0;
2243 }
2244 }
2245 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2246 NULL, 0, 0);
2247}
2248
93e478d4
SR
2249static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2250 unsigned long address, pte_t *page_table,
2251 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2252 struct page *old_page)
2253 __releases(ptl)
2254{
2255 int page_mkwrite = 0;
2256
2257 page_cache_get(old_page);
2258
93e478d4
SR
2259 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2260 int tmp;
2261
2262 pte_unmap_unlock(page_table, ptl);
2263 tmp = do_page_mkwrite(vma, old_page, address);
2264 if (unlikely(!tmp || (tmp &
2265 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2266 page_cache_release(old_page);
2267 return tmp;
2268 }
2269 /*
2270 * Since we dropped the lock we need to revalidate
2271 * the PTE as someone else may have changed it. If
2272 * they did, we just return, as we can count on the
2273 * MMU to tell us if they didn't also make it writable.
2274 */
2275 page_table = pte_offset_map_lock(mm, pmd, address,
2276 &ptl);
2277 if (!pte_same(*page_table, orig_pte)) {
2278 unlock_page(old_page);
2279 pte_unmap_unlock(page_table, ptl);
2280 page_cache_release(old_page);
2281 return 0;
2282 }
2283 page_mkwrite = 1;
2284 }
2285
2286 return wp_page_reuse(mm, vma, address, page_table, ptl,
2287 orig_pte, old_page, page_mkwrite, 1);
2288}
2289
1da177e4
LT
2290/*
2291 * This routine handles present pages, when users try to write
2292 * to a shared page. It is done by copying the page to a new address
2293 * and decrementing the shared-page counter for the old page.
2294 *
1da177e4
LT
2295 * Note that this routine assumes that the protection checks have been
2296 * done by the caller (the low-level page fault routine in most cases).
2297 * Thus we can safely just mark it writable once we've done any necessary
2298 * COW.
2299 *
2300 * We also mark the page dirty at this point even though the page will
2301 * change only once the write actually happens. This avoids a few races,
2302 * and potentially makes it more efficient.
2303 *
8f4e2101
HD
2304 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2305 * but allow concurrent faults), with pte both mapped and locked.
2306 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2307 */
65500d23
HD
2308static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2309 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2310 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2311 __releases(ptl)
1da177e4 2312{
2f38ab2c 2313 struct page *old_page;
1da177e4 2314
6aab341e 2315 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2316 if (!old_page) {
2317 /*
64e45507
PF
2318 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2319 * VM_PFNMAP VMA.
251b97f5
PZ
2320 *
2321 * We should not cow pages in a shared writeable mapping.
dd906184 2322 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2323 */
2324 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2325 (VM_WRITE|VM_SHARED))
dd906184
BH
2326 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2327 orig_pte, pmd);
2f38ab2c
SR
2328
2329 pte_unmap_unlock(page_table, ptl);
2330 return wp_page_copy(mm, vma, address, page_table, pmd,
2331 orig_pte, old_page);
251b97f5 2332 }
1da177e4 2333
d08b3851 2334 /*
ee6a6457
PZ
2335 * Take out anonymous pages first, anonymous shared vmas are
2336 * not dirty accountable.
d08b3851 2337 */
9a840895 2338 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2339 if (!trylock_page(old_page)) {
2340 page_cache_get(old_page);
2341 pte_unmap_unlock(page_table, ptl);
2342 lock_page(old_page);
2343 page_table = pte_offset_map_lock(mm, pmd, address,
2344 &ptl);
2345 if (!pte_same(*page_table, orig_pte)) {
2346 unlock_page(old_page);
28766805
SR
2347 pte_unmap_unlock(page_table, ptl);
2348 page_cache_release(old_page);
2349 return 0;
ab967d86
HD
2350 }
2351 page_cache_release(old_page);
ee6a6457 2352 }
b009c024 2353 if (reuse_swap_page(old_page)) {
c44b6743
RR
2354 /*
2355 * The page is all ours. Move it to our anon_vma so
2356 * the rmap code will not search our parent or siblings.
2357 * Protected against the rmap code by the page lock.
2358 */
2359 page_move_anon_rmap(old_page, vma, address);
b009c024 2360 unlock_page(old_page);
4e047f89
SR
2361 return wp_page_reuse(mm, vma, address, page_table, ptl,
2362 orig_pte, old_page, 0, 0);
b009c024 2363 }
ab967d86 2364 unlock_page(old_page);
ee6a6457 2365 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2366 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2367 return wp_page_shared(mm, vma, address, page_table, pmd,
2368 ptl, orig_pte, old_page);
1da177e4 2369 }
1da177e4
LT
2370
2371 /*
2372 * Ok, we need to copy. Oh, well..
2373 */
b5810039 2374 page_cache_get(old_page);
28766805 2375
8f4e2101 2376 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2377 return wp_page_copy(mm, vma, address, page_table, pmd,
2378 orig_pte, old_page);
1da177e4
LT
2379}
2380
97a89413 2381static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2382 unsigned long start_addr, unsigned long end_addr,
2383 struct zap_details *details)
2384{
f5cc4eef 2385 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2386}
2387
6b2dbba8 2388static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2389 struct zap_details *details)
2390{
2391 struct vm_area_struct *vma;
1da177e4
LT
2392 pgoff_t vba, vea, zba, zea;
2393
6b2dbba8 2394 vma_interval_tree_foreach(vma, root,
1da177e4 2395 details->first_index, details->last_index) {
1da177e4
LT
2396
2397 vba = vma->vm_pgoff;
d6e93217 2398 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2399 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2400 zba = details->first_index;
2401 if (zba < vba)
2402 zba = vba;
2403 zea = details->last_index;
2404 if (zea > vea)
2405 zea = vea;
2406
97a89413 2407 unmap_mapping_range_vma(vma,
1da177e4
LT
2408 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2409 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2410 details);
1da177e4
LT
2411 }
2412}
2413
1da177e4 2414/**
8a5f14a2
KS
2415 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2416 * address_space corresponding to the specified page range in the underlying
2417 * file.
2418 *
3d41088f 2419 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2420 * @holebegin: byte in first page to unmap, relative to the start of
2421 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2422 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2423 * must keep the partial page. In contrast, we must get rid of
2424 * partial pages.
2425 * @holelen: size of prospective hole in bytes. This will be rounded
2426 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2427 * end of the file.
2428 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2429 * but 0 when invalidating pagecache, don't throw away private data.
2430 */
2431void unmap_mapping_range(struct address_space *mapping,
2432 loff_t const holebegin, loff_t const holelen, int even_cows)
2433{
2434 struct zap_details details;
2435 pgoff_t hba = holebegin >> PAGE_SHIFT;
2436 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2437
2438 /* Check for overflow. */
2439 if (sizeof(holelen) > sizeof(hlen)) {
2440 long long holeend =
2441 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2442 if (holeend & ~(long long)ULONG_MAX)
2443 hlen = ULONG_MAX - hba + 1;
2444 }
2445
2446 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2447 details.first_index = hba;
2448 details.last_index = hba + hlen - 1;
2449 if (details.last_index < details.first_index)
2450 details.last_index = ULONG_MAX;
1da177e4 2451
0f90cc66
RZ
2452
2453 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2454 i_mmap_lock_write(mapping);
6b2dbba8 2455 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2456 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2457 i_mmap_unlock_write(mapping);
1da177e4
LT
2458}
2459EXPORT_SYMBOL(unmap_mapping_range);
2460
1da177e4 2461/*
8f4e2101
HD
2462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2464 * We return with pte unmapped and unlocked.
2465 *
2466 * We return with the mmap_sem locked or unlocked in the same cases
2467 * as does filemap_fault().
1da177e4 2468 */
65500d23
HD
2469static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2470 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2471 unsigned int flags, pte_t orig_pte)
1da177e4 2472{
8f4e2101 2473 spinlock_t *ptl;
56f31801 2474 struct page *page, *swapcache;
00501b53 2475 struct mem_cgroup *memcg;
65500d23 2476 swp_entry_t entry;
1da177e4 2477 pte_t pte;
d065bd81 2478 int locked;
ad8c2ee8 2479 int exclusive = 0;
83c54070 2480 int ret = 0;
1da177e4 2481
4c21e2f2 2482 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2483 goto out;
65500d23
HD
2484
2485 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2486 if (unlikely(non_swap_entry(entry))) {
2487 if (is_migration_entry(entry)) {
2488 migration_entry_wait(mm, pmd, address);
2489 } else if (is_hwpoison_entry(entry)) {
2490 ret = VM_FAULT_HWPOISON;
2491 } else {
2492 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2493 ret = VM_FAULT_SIGBUS;
d1737fdb 2494 }
0697212a
CL
2495 goto out;
2496 }
0ff92245 2497 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2498 page = lookup_swap_cache(entry);
2499 if (!page) {
02098fea
HD
2500 page = swapin_readahead(entry,
2501 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2502 if (!page) {
2503 /*
8f4e2101
HD
2504 * Back out if somebody else faulted in this pte
2505 * while we released the pte lock.
1da177e4 2506 */
8f4e2101 2507 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2508 if (likely(pte_same(*page_table, orig_pte)))
2509 ret = VM_FAULT_OOM;
0ff92245 2510 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2511 goto unlock;
1da177e4
LT
2512 }
2513
2514 /* Had to read the page from swap area: Major fault */
2515 ret = VM_FAULT_MAJOR;
f8891e5e 2516 count_vm_event(PGMAJFAULT);
456f998e 2517 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2518 } else if (PageHWPoison(page)) {
71f72525
WF
2519 /*
2520 * hwpoisoned dirty swapcache pages are kept for killing
2521 * owner processes (which may be unknown at hwpoison time)
2522 */
d1737fdb
AK
2523 ret = VM_FAULT_HWPOISON;
2524 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2525 swapcache = page;
4779cb31 2526 goto out_release;
1da177e4
LT
2527 }
2528
56f31801 2529 swapcache = page;
d065bd81 2530 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2531
073e587e 2532 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2533 if (!locked) {
2534 ret |= VM_FAULT_RETRY;
2535 goto out_release;
2536 }
073e587e 2537
4969c119 2538 /*
31c4a3d3
HD
2539 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2540 * release the swapcache from under us. The page pin, and pte_same
2541 * test below, are not enough to exclude that. Even if it is still
2542 * swapcache, we need to check that the page's swap has not changed.
4969c119 2543 */
31c4a3d3 2544 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2545 goto out_page;
2546
cbf86cfe
HD
2547 page = ksm_might_need_to_copy(page, vma, address);
2548 if (unlikely(!page)) {
2549 ret = VM_FAULT_OOM;
2550 page = swapcache;
cbf86cfe 2551 goto out_page;
5ad64688
HD
2552 }
2553
f627c2f5 2554 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2555 ret = VM_FAULT_OOM;
bc43f75c 2556 goto out_page;
8a9f3ccd
BS
2557 }
2558
1da177e4 2559 /*
8f4e2101 2560 * Back out if somebody else already faulted in this pte.
1da177e4 2561 */
8f4e2101 2562 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2563 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2564 goto out_nomap;
b8107480
KK
2565
2566 if (unlikely(!PageUptodate(page))) {
2567 ret = VM_FAULT_SIGBUS;
2568 goto out_nomap;
1da177e4
LT
2569 }
2570
8c7c6e34
KH
2571 /*
2572 * The page isn't present yet, go ahead with the fault.
2573 *
2574 * Be careful about the sequence of operations here.
2575 * To get its accounting right, reuse_swap_page() must be called
2576 * while the page is counted on swap but not yet in mapcount i.e.
2577 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2578 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2579 */
1da177e4 2580
34e55232 2581 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2582 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2583 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2584 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2585 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2586 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2587 ret |= VM_FAULT_WRITE;
d281ee61 2588 exclusive = RMAP_EXCLUSIVE;
1da177e4 2589 }
1da177e4 2590 flush_icache_page(vma, page);
179ef71c
CG
2591 if (pte_swp_soft_dirty(orig_pte))
2592 pte = pte_mksoft_dirty(pte);
1da177e4 2593 set_pte_at(mm, address, page_table, pte);
00501b53 2594 if (page == swapcache) {
af34770e 2595 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2596 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2597 } else { /* ksm created a completely new copy */
d281ee61 2598 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2599 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2600 lru_cache_add_active_or_unevictable(page, vma);
2601 }
1da177e4 2602
c475a8ab 2603 swap_free(entry);
5ccc5aba
VD
2604 if (mem_cgroup_swap_full(page) ||
2605 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2606 try_to_free_swap(page);
c475a8ab 2607 unlock_page(page);
56f31801 2608 if (page != swapcache) {
4969c119
AA
2609 /*
2610 * Hold the lock to avoid the swap entry to be reused
2611 * until we take the PT lock for the pte_same() check
2612 * (to avoid false positives from pte_same). For
2613 * further safety release the lock after the swap_free
2614 * so that the swap count won't change under a
2615 * parallel locked swapcache.
2616 */
2617 unlock_page(swapcache);
2618 page_cache_release(swapcache);
2619 }
c475a8ab 2620
30c9f3a9 2621 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2622 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2623 if (ret & VM_FAULT_ERROR)
2624 ret &= VM_FAULT_ERROR;
1da177e4
LT
2625 goto out;
2626 }
2627
2628 /* No need to invalidate - it was non-present before */
4b3073e1 2629 update_mmu_cache(vma, address, page_table);
65500d23 2630unlock:
8f4e2101 2631 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2632out:
2633 return ret;
b8107480 2634out_nomap:
f627c2f5 2635 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2636 pte_unmap_unlock(page_table, ptl);
bc43f75c 2637out_page:
b8107480 2638 unlock_page(page);
4779cb31 2639out_release:
b8107480 2640 page_cache_release(page);
56f31801 2641 if (page != swapcache) {
4969c119
AA
2642 unlock_page(swapcache);
2643 page_cache_release(swapcache);
2644 }
65500d23 2645 return ret;
1da177e4
LT
2646}
2647
320b2b8d 2648/*
8ca3eb08
LT
2649 * This is like a special single-page "expand_{down|up}wards()",
2650 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2651 * doesn't hit another vma.
320b2b8d
LT
2652 */
2653static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2654{
2655 address &= PAGE_MASK;
2656 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2657 struct vm_area_struct *prev = vma->vm_prev;
2658
2659 /*
2660 * Is there a mapping abutting this one below?
2661 *
2662 * That's only ok if it's the same stack mapping
2663 * that has gotten split..
2664 */
2665 if (prev && prev->vm_end == address)
2666 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2667
fee7e49d 2668 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2669 }
8ca3eb08
LT
2670 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2671 struct vm_area_struct *next = vma->vm_next;
2672
2673 /* As VM_GROWSDOWN but s/below/above/ */
2674 if (next && next->vm_start == address + PAGE_SIZE)
2675 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2676
fee7e49d 2677 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2678 }
320b2b8d
LT
2679 return 0;
2680}
2681
1da177e4 2682/*
8f4e2101
HD
2683 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2684 * but allow concurrent faults), and pte mapped but not yet locked.
2685 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2686 */
65500d23
HD
2687static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2688 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2689 unsigned int flags)
1da177e4 2690{
00501b53 2691 struct mem_cgroup *memcg;
8f4e2101
HD
2692 struct page *page;
2693 spinlock_t *ptl;
1da177e4 2694 pte_t entry;
1da177e4 2695
11ac5524
LT
2696 pte_unmap(page_table);
2697
6b7339f4
KS
2698 /* File mapping without ->vm_ops ? */
2699 if (vma->vm_flags & VM_SHARED)
2700 return VM_FAULT_SIGBUS;
2701
11ac5524
LT
2702 /* Check if we need to add a guard page to the stack */
2703 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2704 return VM_FAULT_SIGSEGV;
320b2b8d 2705
11ac5524 2706 /* Use the zero-page for reads */
593befa6 2707 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2708 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2709 vma->vm_page_prot));
11ac5524 2710 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2711 if (!pte_none(*page_table))
2712 goto unlock;
6b251fc9
AA
2713 /* Deliver the page fault to userland, check inside PT lock */
2714 if (userfaultfd_missing(vma)) {
2715 pte_unmap_unlock(page_table, ptl);
2716 return handle_userfault(vma, address, flags,
2717 VM_UFFD_MISSING);
2718 }
a13ea5b7
HD
2719 goto setpte;
2720 }
2721
557ed1fa 2722 /* Allocate our own private page. */
557ed1fa
NP
2723 if (unlikely(anon_vma_prepare(vma)))
2724 goto oom;
2725 page = alloc_zeroed_user_highpage_movable(vma, address);
2726 if (!page)
2727 goto oom;
eb3c24f3 2728
f627c2f5 2729 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2730 goto oom_free_page;
2731
52f37629
MK
2732 /*
2733 * The memory barrier inside __SetPageUptodate makes sure that
2734 * preceeding stores to the page contents become visible before
2735 * the set_pte_at() write.
2736 */
0ed361de 2737 __SetPageUptodate(page);
8f4e2101 2738
557ed1fa 2739 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2740 if (vma->vm_flags & VM_WRITE)
2741 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2742
557ed1fa 2743 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2744 if (!pte_none(*page_table))
557ed1fa 2745 goto release;
9ba69294 2746
6b251fc9
AA
2747 /* Deliver the page fault to userland, check inside PT lock */
2748 if (userfaultfd_missing(vma)) {
2749 pte_unmap_unlock(page_table, ptl);
f627c2f5 2750 mem_cgroup_cancel_charge(page, memcg, false);
6b251fc9
AA
2751 page_cache_release(page);
2752 return handle_userfault(vma, address, flags,
2753 VM_UFFD_MISSING);
2754 }
2755
34e55232 2756 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2757 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2758 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2759 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2760setpte:
65500d23 2761 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2762
2763 /* No need to invalidate - it was non-present before */
4b3073e1 2764 update_mmu_cache(vma, address, page_table);
65500d23 2765unlock:
8f4e2101 2766 pte_unmap_unlock(page_table, ptl);
83c54070 2767 return 0;
8f4e2101 2768release:
f627c2f5 2769 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101
HD
2770 page_cache_release(page);
2771 goto unlock;
8a9f3ccd 2772oom_free_page:
6dbf6d3b 2773 page_cache_release(page);
65500d23 2774oom:
1da177e4
LT
2775 return VM_FAULT_OOM;
2776}
2777
9a95f3cf
PC
2778/*
2779 * The mmap_sem must have been held on entry, and may have been
2780 * released depending on flags and vma->vm_ops->fault() return value.
2781 * See filemap_fault() and __lock_page_retry().
2782 */
7eae74af 2783static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2784 pgoff_t pgoff, unsigned int flags,
2785 struct page *cow_page, struct page **page)
7eae74af
KS
2786{
2787 struct vm_fault vmf;
2788 int ret;
2789
2790 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2791 vmf.pgoff = pgoff;
2792 vmf.flags = flags;
2793 vmf.page = NULL;
c20cd45e 2794 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2795 vmf.cow_page = cow_page;
7eae74af
KS
2796
2797 ret = vma->vm_ops->fault(vma, &vmf);
2798 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2799 return ret;
2e4cdab0
MW
2800 if (!vmf.page)
2801 goto out;
7eae74af
KS
2802
2803 if (unlikely(PageHWPoison(vmf.page))) {
2804 if (ret & VM_FAULT_LOCKED)
2805 unlock_page(vmf.page);
2806 page_cache_release(vmf.page);
2807 return VM_FAULT_HWPOISON;
2808 }
2809
2810 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2811 lock_page(vmf.page);
2812 else
2813 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2814
2e4cdab0 2815 out:
7eae74af
KS
2816 *page = vmf.page;
2817 return ret;
2818}
2819
8c6e50b0
KS
2820/**
2821 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2822 *
2823 * @vma: virtual memory area
2824 * @address: user virtual address
2825 * @page: page to map
2826 * @pte: pointer to target page table entry
2827 * @write: true, if new entry is writable
2828 * @anon: true, if it's anonymous page
2829 *
2830 * Caller must hold page table lock relevant for @pte.
2831 *
2832 * Target users are page handler itself and implementations of
2833 * vm_ops->map_pages.
2834 */
2835void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2836 struct page *page, pte_t *pte, bool write, bool anon)
2837{
2838 pte_t entry;
2839
2840 flush_icache_page(vma, page);
2841 entry = mk_pte(page, vma->vm_page_prot);
2842 if (write)
2843 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2844 if (anon) {
2845 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2846 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2847 } else {
eca56ff9 2848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2849 page_add_file_rmap(page);
2850 }
2851 set_pte_at(vma->vm_mm, address, pte, entry);
2852
2853 /* no need to invalidate: a not-present page won't be cached */
2854 update_mmu_cache(vma, address, pte);
2855}
2856
3a91053a
KS
2857static unsigned long fault_around_bytes __read_mostly =
2858 rounddown_pow_of_two(65536);
a9b0f861 2859
a9b0f861
KS
2860#ifdef CONFIG_DEBUG_FS
2861static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2862{
a9b0f861 2863 *val = fault_around_bytes;
1592eef0
KS
2864 return 0;
2865}
2866
b4903d6e
AR
2867/*
2868 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2869 * rounded down to nearest page order. It's what do_fault_around() expects to
2870 * see.
2871 */
a9b0f861 2872static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2873{
a9b0f861 2874 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2875 return -EINVAL;
b4903d6e
AR
2876 if (val > PAGE_SIZE)
2877 fault_around_bytes = rounddown_pow_of_two(val);
2878 else
2879 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2880 return 0;
2881}
a9b0f861
KS
2882DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2883 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2884
2885static int __init fault_around_debugfs(void)
2886{
2887 void *ret;
2888
a9b0f861
KS
2889 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2890 &fault_around_bytes_fops);
1592eef0 2891 if (!ret)
a9b0f861 2892 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2893 return 0;
2894}
2895late_initcall(fault_around_debugfs);
1592eef0 2896#endif
8c6e50b0 2897
1fdb412b
KS
2898/*
2899 * do_fault_around() tries to map few pages around the fault address. The hope
2900 * is that the pages will be needed soon and this will lower the number of
2901 * faults to handle.
2902 *
2903 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2904 * not ready to be mapped: not up-to-date, locked, etc.
2905 *
2906 * This function is called with the page table lock taken. In the split ptlock
2907 * case the page table lock only protects only those entries which belong to
2908 * the page table corresponding to the fault address.
2909 *
2910 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2911 * only once.
2912 *
2913 * fault_around_pages() defines how many pages we'll try to map.
2914 * do_fault_around() expects it to return a power of two less than or equal to
2915 * PTRS_PER_PTE.
2916 *
2917 * The virtual address of the area that we map is naturally aligned to the
2918 * fault_around_pages() value (and therefore to page order). This way it's
2919 * easier to guarantee that we don't cross page table boundaries.
2920 */
8c6e50b0
KS
2921static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2922 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2923{
aecd6f44 2924 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2925 pgoff_t max_pgoff;
2926 struct vm_fault vmf;
2927 int off;
2928
4db0c3c2 2929 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2930 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2931
2932 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2933 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2934 pte -= off;
2935 pgoff -= off;
2936
2937 /*
2938 * max_pgoff is either end of page table or end of vma
850e9c69 2939 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2940 */
2941 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2942 PTRS_PER_PTE - 1;
2943 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2944 pgoff + nr_pages - 1);
8c6e50b0
KS
2945
2946 /* Check if it makes any sense to call ->map_pages */
2947 while (!pte_none(*pte)) {
2948 if (++pgoff > max_pgoff)
2949 return;
2950 start_addr += PAGE_SIZE;
2951 if (start_addr >= vma->vm_end)
2952 return;
2953 pte++;
2954 }
2955
2956 vmf.virtual_address = (void __user *) start_addr;
2957 vmf.pte = pte;
2958 vmf.pgoff = pgoff;
2959 vmf.max_pgoff = max_pgoff;
2960 vmf.flags = flags;
c20cd45e 2961 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
2962 vma->vm_ops->map_pages(vma, &vmf);
2963}
2964
e655fb29
KS
2965static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2966 unsigned long address, pmd_t *pmd,
2967 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2968{
2969 struct page *fault_page;
2970 spinlock_t *ptl;
3bb97794 2971 pte_t *pte;
8c6e50b0
KS
2972 int ret = 0;
2973
2974 /*
2975 * Let's call ->map_pages() first and use ->fault() as fallback
2976 * if page by the offset is not ready to be mapped (cold cache or
2977 * something).
2978 */
9b4bdd2f 2979 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2980 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2981 do_fault_around(vma, address, pte, pgoff, flags);
2982 if (!pte_same(*pte, orig_pte))
2983 goto unlock_out;
2984 pte_unmap_unlock(pte, ptl);
2985 }
e655fb29 2986
2e4cdab0 2987 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2988 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2989 return ret;
2990
2991 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2992 if (unlikely(!pte_same(*pte, orig_pte))) {
2993 pte_unmap_unlock(pte, ptl);
2994 unlock_page(fault_page);
2995 page_cache_release(fault_page);
2996 return ret;
2997 }
3bb97794 2998 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2999 unlock_page(fault_page);
8c6e50b0
KS
3000unlock_out:
3001 pte_unmap_unlock(pte, ptl);
e655fb29
KS
3002 return ret;
3003}
3004
ec47c3b9
KS
3005static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3006 unsigned long address, pmd_t *pmd,
3007 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3008{
3009 struct page *fault_page, *new_page;
00501b53 3010 struct mem_cgroup *memcg;
ec47c3b9 3011 spinlock_t *ptl;
3bb97794 3012 pte_t *pte;
ec47c3b9
KS
3013 int ret;
3014
3015 if (unlikely(anon_vma_prepare(vma)))
3016 return VM_FAULT_OOM;
3017
3018 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3019 if (!new_page)
3020 return VM_FAULT_OOM;
3021
f627c2f5 3022 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
ec47c3b9
KS
3023 page_cache_release(new_page);
3024 return VM_FAULT_OOM;
3025 }
3026
2e4cdab0 3027 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
3028 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3029 goto uncharge_out;
3030
2e4cdab0
MW
3031 if (fault_page)
3032 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3033 __SetPageUptodate(new_page);
3034
3035 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3036 if (unlikely(!pte_same(*pte, orig_pte))) {
3037 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3038 if (fault_page) {
3039 unlock_page(fault_page);
3040 page_cache_release(fault_page);
3041 } else {
3042 /*
3043 * The fault handler has no page to lock, so it holds
0df9d41a 3044 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3045 */
0df9d41a 3046 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3047 }
ec47c3b9
KS
3048 goto uncharge_out;
3049 }
3bb97794 3050 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3051 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3052 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3053 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3054 if (fault_page) {
3055 unlock_page(fault_page);
3056 page_cache_release(fault_page);
3057 } else {
3058 /*
3059 * The fault handler has no page to lock, so it holds
0df9d41a 3060 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3061 */
0df9d41a 3062 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3063 }
ec47c3b9
KS
3064 return ret;
3065uncharge_out:
f627c2f5 3066 mem_cgroup_cancel_charge(new_page, memcg, false);
ec47c3b9
KS
3067 page_cache_release(new_page);
3068 return ret;
3069}
3070
f0c6d4d2 3071static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3072 unsigned long address, pmd_t *pmd,
54cb8821 3073 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3074{
f0c6d4d2
KS
3075 struct page *fault_page;
3076 struct address_space *mapping;
8f4e2101 3077 spinlock_t *ptl;
3bb97794 3078 pte_t *pte;
f0c6d4d2 3079 int dirtied = 0;
f0c6d4d2 3080 int ret, tmp;
1d65f86d 3081
2e4cdab0 3082 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3083 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3084 return ret;
1da177e4
LT
3085
3086 /*
f0c6d4d2
KS
3087 * Check if the backing address space wants to know that the page is
3088 * about to become writable
1da177e4 3089 */
fb09a464
KS
3090 if (vma->vm_ops->page_mkwrite) {
3091 unlock_page(fault_page);
3092 tmp = do_page_mkwrite(vma, fault_page, address);
3093 if (unlikely(!tmp ||
3094 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3095 page_cache_release(fault_page);
fb09a464 3096 return tmp;
4294621f 3097 }
fb09a464
KS
3098 }
3099
f0c6d4d2
KS
3100 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3101 if (unlikely(!pte_same(*pte, orig_pte))) {
3102 pte_unmap_unlock(pte, ptl);
3103 unlock_page(fault_page);
3104 page_cache_release(fault_page);
3105 return ret;
1da177e4 3106 }
3bb97794 3107 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3108 pte_unmap_unlock(pte, ptl);
b827e496 3109
f0c6d4d2
KS
3110 if (set_page_dirty(fault_page))
3111 dirtied = 1;
d82fa87d
AM
3112 /*
3113 * Take a local copy of the address_space - page.mapping may be zeroed
3114 * by truncate after unlock_page(). The address_space itself remains
3115 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3116 * release semantics to prevent the compiler from undoing this copying.
3117 */
1c290f64 3118 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3119 unlock_page(fault_page);
3120 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3121 /*
3122 * Some device drivers do not set page.mapping but still
3123 * dirty their pages
3124 */
3125 balance_dirty_pages_ratelimited(mapping);
d08b3851 3126 }
d00806b1 3127
74ec6751 3128 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3129 file_update_time(vma->vm_file);
b827e496 3130
1d65f86d 3131 return ret;
54cb8821 3132}
d00806b1 3133
9a95f3cf
PC
3134/*
3135 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136 * but allow concurrent faults).
3137 * The mmap_sem may have been released depending on flags and our
3138 * return value. See filemap_fault() and __lock_page_or_retry().
3139 */
9b4bdd2f 3140static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3141 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3142 unsigned int flags, pte_t orig_pte)
54cb8821 3143{
88193f7c 3144 pgoff_t pgoff = linear_page_index(vma, address);
54cb8821 3145
16abfa08 3146 pte_unmap(page_table);
6b7339f4
KS
3147 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3148 if (!vma->vm_ops->fault)
3149 return VM_FAULT_SIGBUS;
e655fb29
KS
3150 if (!(flags & FAULT_FLAG_WRITE))
3151 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3152 orig_pte);
ec47c3b9
KS
3153 if (!(vma->vm_flags & VM_SHARED))
3154 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3155 orig_pte);
f0c6d4d2 3156 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3157}
3158
b19a9939 3159static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3160 unsigned long addr, int page_nid,
3161 int *flags)
9532fec1
MG
3162{
3163 get_page(page);
3164
3165 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3166 if (page_nid == numa_node_id()) {
9532fec1 3167 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3168 *flags |= TNF_FAULT_LOCAL;
3169 }
9532fec1
MG
3170
3171 return mpol_misplaced(page, vma, addr);
3172}
3173
b19a9939 3174static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3175 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3176{
4daae3b4 3177 struct page *page = NULL;
d10e63f2 3178 spinlock_t *ptl;
8191acbd 3179 int page_nid = -1;
90572890 3180 int last_cpupid;
cbee9f88 3181 int target_nid;
b8593bfd 3182 bool migrated = false;
b191f9b1 3183 bool was_writable = pte_write(pte);
6688cc05 3184 int flags = 0;
d10e63f2 3185
c0e7cad9
MG
3186 /* A PROT_NONE fault should not end up here */
3187 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3188
d10e63f2
MG
3189 /*
3190 * The "pte" at this point cannot be used safely without
3191 * validation through pte_unmap_same(). It's of NUMA type but
3192 * the pfn may be screwed if the read is non atomic.
3193 *
4d942466
MG
3194 * We can safely just do a "set_pte_at()", because the old
3195 * page table entry is not accessible, so there would be no
3196 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3197 */
3198 ptl = pte_lockptr(mm, pmd);
3199 spin_lock(ptl);
4daae3b4
MG
3200 if (unlikely(!pte_same(*ptep, pte))) {
3201 pte_unmap_unlock(ptep, ptl);
3202 goto out;
3203 }
3204
4d942466
MG
3205 /* Make it present again */
3206 pte = pte_modify(pte, vma->vm_page_prot);
3207 pte = pte_mkyoung(pte);
b191f9b1
MG
3208 if (was_writable)
3209 pte = pte_mkwrite(pte);
d10e63f2
MG
3210 set_pte_at(mm, addr, ptep, pte);
3211 update_mmu_cache(vma, addr, ptep);
3212
3213 page = vm_normal_page(vma, addr, pte);
3214 if (!page) {
3215 pte_unmap_unlock(ptep, ptl);
3216 return 0;
3217 }
3218
e81c4802
KS
3219 /* TODO: handle PTE-mapped THP */
3220 if (PageCompound(page)) {
3221 pte_unmap_unlock(ptep, ptl);
3222 return 0;
3223 }
3224
6688cc05 3225 /*
bea66fbd
MG
3226 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3227 * much anyway since they can be in shared cache state. This misses
3228 * the case where a mapping is writable but the process never writes
3229 * to it but pte_write gets cleared during protection updates and
3230 * pte_dirty has unpredictable behaviour between PTE scan updates,
3231 * background writeback, dirty balancing and application behaviour.
6688cc05 3232 */
bea66fbd 3233 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3234 flags |= TNF_NO_GROUP;
3235
dabe1d99
RR
3236 /*
3237 * Flag if the page is shared between multiple address spaces. This
3238 * is later used when determining whether to group tasks together
3239 */
3240 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3241 flags |= TNF_SHARED;
3242
90572890 3243 last_cpupid = page_cpupid_last(page);
8191acbd 3244 page_nid = page_to_nid(page);
04bb2f94 3245 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3246 pte_unmap_unlock(ptep, ptl);
4daae3b4 3247 if (target_nid == -1) {
4daae3b4
MG
3248 put_page(page);
3249 goto out;
3250 }
3251
3252 /* Migrate to the requested node */
1bc115d8 3253 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3254 if (migrated) {
8191acbd 3255 page_nid = target_nid;
6688cc05 3256 flags |= TNF_MIGRATED;
074c2381
MG
3257 } else
3258 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3259
3260out:
8191acbd 3261 if (page_nid != -1)
6688cc05 3262 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3263 return 0;
3264}
3265
b96375f7
MW
3266static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3267 unsigned long address, pmd_t *pmd, unsigned int flags)
3268{
fb6dd5fa 3269 if (vma_is_anonymous(vma))
b96375f7
MW
3270 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3271 if (vma->vm_ops->pmd_fault)
3272 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3273 return VM_FAULT_FALLBACK;
3274}
3275
3276static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3277 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3278 unsigned int flags)
3279{
fb6dd5fa 3280 if (vma_is_anonymous(vma))
b96375f7
MW
3281 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3282 if (vma->vm_ops->pmd_fault)
3283 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3284 return VM_FAULT_FALLBACK;
3285}
3286
1da177e4
LT
3287/*
3288 * These routines also need to handle stuff like marking pages dirty
3289 * and/or accessed for architectures that don't do it in hardware (most
3290 * RISC architectures). The early dirtying is also good on the i386.
3291 *
3292 * There is also a hook called "update_mmu_cache()" that architectures
3293 * with external mmu caches can use to update those (ie the Sparc or
3294 * PowerPC hashed page tables that act as extended TLBs).
3295 *
c74df32c
HD
3296 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3297 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3298 * We return with pte unmapped and unlocked.
3299 *
3300 * The mmap_sem may have been released depending on flags and our
3301 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3302 */
c0292554 3303static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3304 struct vm_area_struct *vma, unsigned long address,
3305 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3306{
3307 pte_t entry;
8f4e2101 3308 spinlock_t *ptl;
1da177e4 3309
e37c6982
CB
3310 /*
3311 * some architectures can have larger ptes than wordsize,
3312 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3313 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3314 * The code below just needs a consistent view for the ifs and
3315 * we later double check anyway with the ptl lock held. So here
3316 * a barrier will do.
3317 */
3318 entry = *pte;
3319 barrier();
1da177e4 3320 if (!pte_present(entry)) {
65500d23 3321 if (pte_none(entry)) {
b5330628
ON
3322 if (vma_is_anonymous(vma))
3323 return do_anonymous_page(mm, vma, address,
3324 pte, pmd, flags);
3325 else
6b7339f4
KS
3326 return do_fault(mm, vma, address, pte, pmd,
3327 flags, entry);
65500d23 3328 }
65500d23 3329 return do_swap_page(mm, vma, address,
30c9f3a9 3330 pte, pmd, flags, entry);
1da177e4
LT
3331 }
3332
8a0516ed 3333 if (pte_protnone(entry))
d10e63f2
MG
3334 return do_numa_page(mm, vma, address, entry, pte, pmd);
3335
4c21e2f2 3336 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3337 spin_lock(ptl);
3338 if (unlikely(!pte_same(*pte, entry)))
3339 goto unlock;
30c9f3a9 3340 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3341 if (!pte_write(entry))
8f4e2101
HD
3342 return do_wp_page(mm, vma, address,
3343 pte, pmd, ptl, entry);
1da177e4
LT
3344 entry = pte_mkdirty(entry);
3345 }
3346 entry = pte_mkyoung(entry);
30c9f3a9 3347 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3348 update_mmu_cache(vma, address, pte);
1a44e149
AA
3349 } else {
3350 /*
3351 * This is needed only for protection faults but the arch code
3352 * is not yet telling us if this is a protection fault or not.
3353 * This still avoids useless tlb flushes for .text page faults
3354 * with threads.
3355 */
30c9f3a9 3356 if (flags & FAULT_FLAG_WRITE)
61c77326 3357 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3358 }
8f4e2101
HD
3359unlock:
3360 pte_unmap_unlock(pte, ptl);
83c54070 3361 return 0;
1da177e4
LT
3362}
3363
3364/*
3365 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3366 *
3367 * The mmap_sem may have been released depending on flags and our
3368 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3369 */
519e5247
JW
3370static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3371 unsigned long address, unsigned int flags)
1da177e4
LT
3372{
3373 pgd_t *pgd;
3374 pud_t *pud;
3375 pmd_t *pmd;
3376 pte_t *pte;
3377
ac9b9c66 3378 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3379 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3380
1da177e4 3381 pgd = pgd_offset(mm, address);
1da177e4
LT
3382 pud = pud_alloc(mm, pgd, address);
3383 if (!pud)
c74df32c 3384 return VM_FAULT_OOM;
1da177e4
LT
3385 pmd = pmd_alloc(mm, pud, address);
3386 if (!pmd)
c74df32c 3387 return VM_FAULT_OOM;
71e3aac0 3388 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3389 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3390 if (!(ret & VM_FAULT_FALLBACK))
3391 return ret;
71e3aac0
AA
3392 } else {
3393 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3394 int ret;
3395
71e3aac0 3396 barrier();
5c7fb56e 3397 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
a1dd450b
WD
3398 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3399
8a0516ed 3400 if (pmd_protnone(orig_pmd))
4daae3b4 3401 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3402 orig_pmd, pmd);
3403
3d59eebc 3404 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3405 ret = wp_huge_pmd(mm, vma, address, pmd,
3406 orig_pmd, flags);
9845cbbd
KS
3407 if (!(ret & VM_FAULT_FALLBACK))
3408 return ret;
a1dd450b
WD
3409 } else {
3410 huge_pmd_set_accessed(mm, vma, address, pmd,
3411 orig_pmd, dirty);
9845cbbd 3412 return 0;
1f1d06c3 3413 }
71e3aac0
AA
3414 }
3415 }
3416
3417 /*
3ed3a4f0 3418 * Use pte_alloc() instead of pte_alloc_map, because we can't
71e3aac0
AA
3419 * run pte_offset_map on the pmd, if an huge pmd could
3420 * materialize from under us from a different thread.
3421 */
3ed3a4f0 3422 if (unlikely(pte_alloc(mm, pmd, address)))
c74df32c 3423 return VM_FAULT_OOM;
ad33bb04
AA
3424 /*
3425 * If a huge pmd materialized under us just retry later. Use
3426 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3427 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3428 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3429 * in a different thread of this mm, in turn leading to a misleading
3430 * pmd_trans_huge() retval. All we have to ensure is that it is a
3431 * regular pmd that we can walk with pte_offset_map() and we can do that
3432 * through an atomic read in C, which is what pmd_trans_unstable()
3433 * provides.
3434 */
3435 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
71e3aac0
AA
3436 return 0;
3437 /*
3438 * A regular pmd is established and it can't morph into a huge pmd
3439 * from under us anymore at this point because we hold the mmap_sem
3440 * read mode and khugepaged takes it in write mode. So now it's
3441 * safe to run pte_offset_map().
3442 */
3443 pte = pte_offset_map(pmd, address);
1da177e4 3444
30c9f3a9 3445 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3446}
3447
9a95f3cf
PC
3448/*
3449 * By the time we get here, we already hold the mm semaphore
3450 *
3451 * The mmap_sem may have been released depending on flags and our
3452 * return value. See filemap_fault() and __lock_page_or_retry().
3453 */
519e5247
JW
3454int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3455 unsigned long address, unsigned int flags)
3456{
3457 int ret;
3458
3459 __set_current_state(TASK_RUNNING);
3460
3461 count_vm_event(PGFAULT);
3462 mem_cgroup_count_vm_event(mm, PGFAULT);
3463
3464 /* do counter updates before entering really critical section. */
3465 check_sync_rss_stat(current);
3466
3467 /*
3468 * Enable the memcg OOM handling for faults triggered in user
3469 * space. Kernel faults are handled more gracefully.
3470 */
3471 if (flags & FAULT_FLAG_USER)
49426420 3472 mem_cgroup_oom_enable();
519e5247
JW
3473
3474 ret = __handle_mm_fault(mm, vma, address, flags);
3475
49426420
JW
3476 if (flags & FAULT_FLAG_USER) {
3477 mem_cgroup_oom_disable();
3478 /*
3479 * The task may have entered a memcg OOM situation but
3480 * if the allocation error was handled gracefully (no
3481 * VM_FAULT_OOM), there is no need to kill anything.
3482 * Just clean up the OOM state peacefully.
3483 */
3484 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3485 mem_cgroup_oom_synchronize(false);
3486 }
3812c8c8 3487
519e5247
JW
3488 return ret;
3489}
e1d6d01a 3490EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3491
1da177e4
LT
3492#ifndef __PAGETABLE_PUD_FOLDED
3493/*
3494 * Allocate page upper directory.
872fec16 3495 * We've already handled the fast-path in-line.
1da177e4 3496 */
1bb3630e 3497int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3498{
c74df32c
HD
3499 pud_t *new = pud_alloc_one(mm, address);
3500 if (!new)
1bb3630e 3501 return -ENOMEM;
1da177e4 3502
362a61ad
NP
3503 smp_wmb(); /* See comment in __pte_alloc */
3504
872fec16 3505 spin_lock(&mm->page_table_lock);
1bb3630e 3506 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3507 pud_free(mm, new);
1bb3630e
HD
3508 else
3509 pgd_populate(mm, pgd, new);
c74df32c 3510 spin_unlock(&mm->page_table_lock);
1bb3630e 3511 return 0;
1da177e4
LT
3512}
3513#endif /* __PAGETABLE_PUD_FOLDED */
3514
3515#ifndef __PAGETABLE_PMD_FOLDED
3516/*
3517 * Allocate page middle directory.
872fec16 3518 * We've already handled the fast-path in-line.
1da177e4 3519 */
1bb3630e 3520int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3521{
c74df32c
HD
3522 pmd_t *new = pmd_alloc_one(mm, address);
3523 if (!new)
1bb3630e 3524 return -ENOMEM;
1da177e4 3525
362a61ad
NP
3526 smp_wmb(); /* See comment in __pte_alloc */
3527
872fec16 3528 spin_lock(&mm->page_table_lock);
1da177e4 3529#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3530 if (!pud_present(*pud)) {
3531 mm_inc_nr_pmds(mm);
1bb3630e 3532 pud_populate(mm, pud, new);
dc6c9a35 3533 } else /* Another has populated it */
5e541973 3534 pmd_free(mm, new);
dc6c9a35
KS
3535#else
3536 if (!pgd_present(*pud)) {
3537 mm_inc_nr_pmds(mm);
1bb3630e 3538 pgd_populate(mm, pud, new);
dc6c9a35
KS
3539 } else /* Another has populated it */
3540 pmd_free(mm, new);
1da177e4 3541#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3542 spin_unlock(&mm->page_table_lock);
1bb3630e 3543 return 0;
e0f39591 3544}
1da177e4
LT
3545#endif /* __PAGETABLE_PMD_FOLDED */
3546
1b36ba81 3547static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3548 pte_t **ptepp, spinlock_t **ptlp)
3549{
3550 pgd_t *pgd;
3551 pud_t *pud;
3552 pmd_t *pmd;
3553 pte_t *ptep;
3554
3555 pgd = pgd_offset(mm, address);
3556 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3557 goto out;
3558
3559 pud = pud_offset(pgd, address);
3560 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3561 goto out;
3562
3563 pmd = pmd_offset(pud, address);
f66055ab 3564 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3565 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3566 goto out;
3567
3568 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3569 if (pmd_huge(*pmd))
3570 goto out;
3571
3572 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3573 if (!ptep)
3574 goto out;
3575 if (!pte_present(*ptep))
3576 goto unlock;
3577 *ptepp = ptep;
3578 return 0;
3579unlock:
3580 pte_unmap_unlock(ptep, *ptlp);
3581out:
3582 return -EINVAL;
3583}
3584
1b36ba81
NK
3585static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3586 pte_t **ptepp, spinlock_t **ptlp)
3587{
3588 int res;
3589
3590 /* (void) is needed to make gcc happy */
3591 (void) __cond_lock(*ptlp,
3592 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3593 return res;
3594}
3595
3b6748e2
JW
3596/**
3597 * follow_pfn - look up PFN at a user virtual address
3598 * @vma: memory mapping
3599 * @address: user virtual address
3600 * @pfn: location to store found PFN
3601 *
3602 * Only IO mappings and raw PFN mappings are allowed.
3603 *
3604 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3605 */
3606int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3607 unsigned long *pfn)
3608{
3609 int ret = -EINVAL;
3610 spinlock_t *ptl;
3611 pte_t *ptep;
3612
3613 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3614 return ret;
3615
3616 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3617 if (ret)
3618 return ret;
3619 *pfn = pte_pfn(*ptep);
3620 pte_unmap_unlock(ptep, ptl);
3621 return 0;
3622}
3623EXPORT_SYMBOL(follow_pfn);
3624
28b2ee20 3625#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3626int follow_phys(struct vm_area_struct *vma,
3627 unsigned long address, unsigned int flags,
3628 unsigned long *prot, resource_size_t *phys)
28b2ee20 3629{
03668a4d 3630 int ret = -EINVAL;
28b2ee20
RR
3631 pte_t *ptep, pte;
3632 spinlock_t *ptl;
28b2ee20 3633
d87fe660 3634 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3635 goto out;
28b2ee20 3636
03668a4d 3637 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3638 goto out;
28b2ee20 3639 pte = *ptep;
03668a4d 3640
28b2ee20
RR
3641 if ((flags & FOLL_WRITE) && !pte_write(pte))
3642 goto unlock;
28b2ee20
RR
3643
3644 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3645 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3646
03668a4d 3647 ret = 0;
28b2ee20
RR
3648unlock:
3649 pte_unmap_unlock(ptep, ptl);
3650out:
d87fe660 3651 return ret;
28b2ee20
RR
3652}
3653
3654int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3655 void *buf, int len, int write)
3656{
3657 resource_size_t phys_addr;
3658 unsigned long prot = 0;
2bc7273b 3659 void __iomem *maddr;
28b2ee20
RR
3660 int offset = addr & (PAGE_SIZE-1);
3661
d87fe660 3662 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3663 return -EINVAL;
3664
9cb12d7b 3665 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3666 if (write)
3667 memcpy_toio(maddr + offset, buf, len);
3668 else
3669 memcpy_fromio(buf, maddr + offset, len);
3670 iounmap(maddr);
3671
3672 return len;
3673}
5a73633e 3674EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3675#endif
3676
0ec76a11 3677/*
206cb636
SW
3678 * Access another process' address space as given in mm. If non-NULL, use the
3679 * given task for page fault accounting.
0ec76a11 3680 */
206cb636
SW
3681static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3682 unsigned long addr, void *buf, int len, int write)
0ec76a11 3683{
0ec76a11 3684 struct vm_area_struct *vma;
0ec76a11
DH
3685 void *old_buf = buf;
3686
0ec76a11 3687 down_read(&mm->mmap_sem);
183ff22b 3688 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3689 while (len) {
3690 int bytes, ret, offset;
3691 void *maddr;
28b2ee20 3692 struct page *page = NULL;
0ec76a11
DH
3693
3694 ret = get_user_pages(tsk, mm, addr, 1,
3695 write, 1, &page, &vma);
28b2ee20 3696 if (ret <= 0) {
dbffcd03
RR
3697#ifndef CONFIG_HAVE_IOREMAP_PROT
3698 break;
3699#else
28b2ee20
RR
3700 /*
3701 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3702 * we can access using slightly different code.
3703 */
28b2ee20 3704 vma = find_vma(mm, addr);
fe936dfc 3705 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3706 break;
3707 if (vma->vm_ops && vma->vm_ops->access)
3708 ret = vma->vm_ops->access(vma, addr, buf,
3709 len, write);
3710 if (ret <= 0)
28b2ee20
RR
3711 break;
3712 bytes = ret;
dbffcd03 3713#endif
0ec76a11 3714 } else {
28b2ee20
RR
3715 bytes = len;
3716 offset = addr & (PAGE_SIZE-1);
3717 if (bytes > PAGE_SIZE-offset)
3718 bytes = PAGE_SIZE-offset;
3719
3720 maddr = kmap(page);
3721 if (write) {
3722 copy_to_user_page(vma, page, addr,
3723 maddr + offset, buf, bytes);
3724 set_page_dirty_lock(page);
3725 } else {
3726 copy_from_user_page(vma, page, addr,
3727 buf, maddr + offset, bytes);
3728 }
3729 kunmap(page);
3730 page_cache_release(page);
0ec76a11 3731 }
0ec76a11
DH
3732 len -= bytes;
3733 buf += bytes;
3734 addr += bytes;
3735 }
3736 up_read(&mm->mmap_sem);
0ec76a11
DH
3737
3738 return buf - old_buf;
3739}
03252919 3740
5ddd36b9 3741/**
ae91dbfc 3742 * access_remote_vm - access another process' address space
5ddd36b9
SW
3743 * @mm: the mm_struct of the target address space
3744 * @addr: start address to access
3745 * @buf: source or destination buffer
3746 * @len: number of bytes to transfer
3747 * @write: whether the access is a write
3748 *
3749 * The caller must hold a reference on @mm.
3750 */
3751int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3752 void *buf, int len, int write)
3753{
3754 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3755}
3756
206cb636
SW
3757/*
3758 * Access another process' address space.
3759 * Source/target buffer must be kernel space,
3760 * Do not walk the page table directly, use get_user_pages
3761 */
3762int access_process_vm(struct task_struct *tsk, unsigned long addr,
3763 void *buf, int len, int write)
3764{
3765 struct mm_struct *mm;
3766 int ret;
3767
3768 mm = get_task_mm(tsk);
3769 if (!mm)
3770 return 0;
3771
3772 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3773 mmput(mm);
3774
3775 return ret;
3776}
3777
03252919
AK
3778/*
3779 * Print the name of a VMA.
3780 */
3781void print_vma_addr(char *prefix, unsigned long ip)
3782{
3783 struct mm_struct *mm = current->mm;
3784 struct vm_area_struct *vma;
3785
e8bff74a
IM
3786 /*
3787 * Do not print if we are in atomic
3788 * contexts (in exception stacks, etc.):
3789 */
3790 if (preempt_count())
3791 return;
3792
03252919
AK
3793 down_read(&mm->mmap_sem);
3794 vma = find_vma(mm, ip);
3795 if (vma && vma->vm_file) {
3796 struct file *f = vma->vm_file;
3797 char *buf = (char *)__get_free_page(GFP_KERNEL);
3798 if (buf) {
2fbc57c5 3799 char *p;
03252919 3800
9bf39ab2 3801 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3802 if (IS_ERR(p))
3803 p = "?";
2fbc57c5 3804 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3805 vma->vm_start,
3806 vma->vm_end - vma->vm_start);
3807 free_page((unsigned long)buf);
3808 }
3809 }
51a07e50 3810 up_read(&mm->mmap_sem);
03252919 3811}
3ee1afa3 3812
662bbcb2 3813#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3814void __might_fault(const char *file, int line)
3ee1afa3 3815{
95156f00
PZ
3816 /*
3817 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3818 * holding the mmap_sem, this is safe because kernel memory doesn't
3819 * get paged out, therefore we'll never actually fault, and the
3820 * below annotations will generate false positives.
3821 */
3822 if (segment_eq(get_fs(), KERNEL_DS))
3823 return;
9ec23531 3824 if (pagefault_disabled())
662bbcb2 3825 return;
9ec23531
DH
3826 __might_sleep(file, line, 0);
3827#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3828 if (current->mm)
3ee1afa3 3829 might_lock_read(&current->mm->mmap_sem);
9ec23531 3830#endif
3ee1afa3 3831}
9ec23531 3832EXPORT_SYMBOL(__might_fault);
3ee1afa3 3833#endif
47ad8475
AA
3834
3835#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3836static void clear_gigantic_page(struct page *page,
3837 unsigned long addr,
3838 unsigned int pages_per_huge_page)
3839{
3840 int i;
3841 struct page *p = page;
3842
3843 might_sleep();
3844 for (i = 0; i < pages_per_huge_page;
3845 i++, p = mem_map_next(p, page, i)) {
3846 cond_resched();
3847 clear_user_highpage(p, addr + i * PAGE_SIZE);
3848 }
3849}
3850void clear_huge_page(struct page *page,
3851 unsigned long addr, unsigned int pages_per_huge_page)
3852{
3853 int i;
3854
3855 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3856 clear_gigantic_page(page, addr, pages_per_huge_page);
3857 return;
3858 }
3859
3860 might_sleep();
3861 for (i = 0; i < pages_per_huge_page; i++) {
3862 cond_resched();
3863 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3864 }
3865}
3866
3867static void copy_user_gigantic_page(struct page *dst, struct page *src,
3868 unsigned long addr,
3869 struct vm_area_struct *vma,
3870 unsigned int pages_per_huge_page)
3871{
3872 int i;
3873 struct page *dst_base = dst;
3874 struct page *src_base = src;
3875
3876 for (i = 0; i < pages_per_huge_page; ) {
3877 cond_resched();
3878 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3879
3880 i++;
3881 dst = mem_map_next(dst, dst_base, i);
3882 src = mem_map_next(src, src_base, i);
3883 }
3884}
3885
3886void copy_user_huge_page(struct page *dst, struct page *src,
3887 unsigned long addr, struct vm_area_struct *vma,
3888 unsigned int pages_per_huge_page)
3889{
3890 int i;
3891
3892 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3893 copy_user_gigantic_page(dst, src, addr, vma,
3894 pages_per_huge_page);
3895 return;
3896 }
3897
3898 might_sleep();
3899 for (i = 0; i < pages_per_huge_page; i++) {
3900 cond_resched();
3901 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3902 }
3903}
3904#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3905
40b64acd 3906#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3907
3908static struct kmem_cache *page_ptl_cachep;
3909
3910void __init ptlock_cache_init(void)
3911{
3912 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3913 SLAB_PANIC, NULL);
3914}
3915
539edb58 3916bool ptlock_alloc(struct page *page)
49076ec2
KS
3917{
3918 spinlock_t *ptl;
3919
b35f1819 3920 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3921 if (!ptl)
3922 return false;
539edb58 3923 page->ptl = ptl;
49076ec2
KS
3924 return true;
3925}
3926
539edb58 3927void ptlock_free(struct page *page)
49076ec2 3928{
b35f1819 3929 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3930}
3931#endif