libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698
JW
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
91b0abe3 121
449dd698
JW
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
f9fe48be 127 mapping->nrexceptional++;
91b0abe3 128 /*
f9fe48be 129 * Make sure the nrexceptional update is committed before
91b0abe3
JW
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
449dd698 135 }
91b0abe3 136 mapping->nrpages--;
449dd698
JW
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
91b0abe3
JW
174}
175
1da177e4 176/*
e64a782f 177 * Delete a page from the page cache and free it. Caller has to make
1da177e4 178 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 179 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 180 */
62cccb8c 181void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
182{
183 struct address_space *mapping = page->mapping;
184
fe0bfaaf 185 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
186 /*
187 * if we're uptodate, flush out into the cleancache, otherwise
188 * invalidate any existing cleancache entries. We can't leave
189 * stale data around in the cleancache once our page is gone
190 */
191 if (PageUptodate(page) && PageMappedToDisk(page))
192 cleancache_put_page(page);
193 else
3167760f 194 cleancache_invalidate_page(mapping, page);
c515e1fd 195
06b241f3
HD
196 VM_BUG_ON_PAGE(page_mapped(page), page);
197 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 int mapcount;
199
200 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
201 current->comm, page_to_pfn(page));
202 dump_page(page, "still mapped when deleted");
203 dump_stack();
204 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206 mapcount = page_mapcount(page);
207 if (mapping_exiting(mapping) &&
208 page_count(page) >= mapcount + 2) {
209 /*
210 * All vmas have already been torn down, so it's
211 * a good bet that actually the page is unmapped,
212 * and we'd prefer not to leak it: if we're wrong,
213 * some other bad page check should catch it later.
214 */
215 page_mapcount_reset(page);
216 atomic_sub(mapcount, &page->_count);
217 }
218 }
219
91b0abe3
JW
220 page_cache_tree_delete(mapping, page, shadow);
221
1da177e4 222 page->mapping = NULL;
b85e0eff 223 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 224
4165b9b4
MH
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (!PageHuge(page))
227 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
228 if (PageSwapBacked(page))
229 __dec_zone_page_state(page, NR_SHMEM);
3a692790
LT
230
231 /*
b9ea2515
KK
232 * At this point page must be either written or cleaned by truncate.
233 * Dirty page here signals a bug and loss of unwritten data.
3a692790 234 *
b9ea2515
KK
235 * This fixes dirty accounting after removing the page entirely but
236 * leaves PageDirty set: it has no effect for truncated page and
237 * anyway will be cleared before returning page into buddy allocator.
3a692790 238 */
b9ea2515 239 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 240 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
241}
242
702cfbf9
MK
243/**
244 * delete_from_page_cache - delete page from page cache
245 * @page: the page which the kernel is trying to remove from page cache
246 *
247 * This must be called only on pages that have been verified to be in the page
248 * cache and locked. It will never put the page into the free list, the caller
249 * has a reference on the page.
250 */
251void delete_from_page_cache(struct page *page)
1da177e4
LT
252{
253 struct address_space *mapping = page->mapping;
c4843a75
GT
254 unsigned long flags;
255
6072d13c 256 void (*freepage)(struct page *);
1da177e4 257
cd7619d6 258 BUG_ON(!PageLocked(page));
1da177e4 259
6072d13c 260 freepage = mapping->a_ops->freepage;
c4843a75 261
c4843a75 262 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 263 __delete_from_page_cache(page, NULL);
c4843a75 264 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
265
266 if (freepage)
267 freepage(page);
97cecb5a
MK
268 page_cache_release(page);
269}
270EXPORT_SYMBOL(delete_from_page_cache);
271
865ffef3
DM
272static int filemap_check_errors(struct address_space *mapping)
273{
274 int ret = 0;
275 /* Check for outstanding write errors */
7fcbbaf1
JA
276 if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 278 ret = -ENOSPC;
7fcbbaf1
JA
279 if (test_bit(AS_EIO, &mapping->flags) &&
280 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
281 ret = -EIO;
282 return ret;
283}
284
1da177e4 285/**
485bb99b 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
287 * @mapping: address space structure to write
288 * @start: offset in bytes where the range starts
469eb4d0 289 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 290 * @sync_mode: enable synchronous operation
1da177e4 291 *
485bb99b
RD
292 * Start writeback against all of a mapping's dirty pages that lie
293 * within the byte offsets <start, end> inclusive.
294 *
1da177e4 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 296 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
297 * these two operations is that if a dirty page/buffer is encountered, it must
298 * be waited upon, and not just skipped over.
299 */
ebcf28e1
AM
300int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 loff_t end, int sync_mode)
1da177e4
LT
302{
303 int ret;
304 struct writeback_control wbc = {
305 .sync_mode = sync_mode,
05fe478d 306 .nr_to_write = LONG_MAX,
111ebb6e
OH
307 .range_start = start,
308 .range_end = end,
1da177e4
LT
309 };
310
311 if (!mapping_cap_writeback_dirty(mapping))
312 return 0;
313
b16b1deb 314 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 315 ret = do_writepages(mapping, &wbc);
b16b1deb 316 wbc_detach_inode(&wbc);
1da177e4
LT
317 return ret;
318}
319
320static inline int __filemap_fdatawrite(struct address_space *mapping,
321 int sync_mode)
322{
111ebb6e 323 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
324}
325
326int filemap_fdatawrite(struct address_space *mapping)
327{
328 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329}
330EXPORT_SYMBOL(filemap_fdatawrite);
331
f4c0a0fd 332int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 333 loff_t end)
1da177e4
LT
334{
335 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336}
f4c0a0fd 337EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 338
485bb99b
RD
339/**
340 * filemap_flush - mostly a non-blocking flush
341 * @mapping: target address_space
342 *
1da177e4
LT
343 * This is a mostly non-blocking flush. Not suitable for data-integrity
344 * purposes - I/O may not be started against all dirty pages.
345 */
346int filemap_flush(struct address_space *mapping)
347{
348 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349}
350EXPORT_SYMBOL(filemap_flush);
351
aa750fd7
JN
352static int __filemap_fdatawait_range(struct address_space *mapping,
353 loff_t start_byte, loff_t end_byte)
1da177e4 354{
94004ed7
CH
355 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
356 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
357 struct pagevec pvec;
358 int nr_pages;
aa750fd7 359 int ret = 0;
1da177e4 360
94004ed7 361 if (end_byte < start_byte)
865ffef3 362 goto out;
1da177e4
LT
363
364 pagevec_init(&pvec, 0);
1da177e4
LT
365 while ((index <= end) &&
366 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 PAGECACHE_TAG_WRITEBACK,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 unsigned i;
370
371 for (i = 0; i < nr_pages; i++) {
372 struct page *page = pvec.pages[i];
373
374 /* until radix tree lookup accepts end_index */
375 if (page->index > end)
376 continue;
377
378 wait_on_page_writeback(page);
212260aa 379 if (TestClearPageError(page))
1da177e4
LT
380 ret = -EIO;
381 }
382 pagevec_release(&pvec);
383 cond_resched();
384 }
865ffef3 385out:
aa750fd7
JN
386 return ret;
387}
388
389/**
390 * filemap_fdatawait_range - wait for writeback to complete
391 * @mapping: address space structure to wait for
392 * @start_byte: offset in bytes where the range starts
393 * @end_byte: offset in bytes where the range ends (inclusive)
394 *
395 * Walk the list of under-writeback pages of the given address space
396 * in the given range and wait for all of them. Check error status of
397 * the address space and return it.
398 *
399 * Since the error status of the address space is cleared by this function,
400 * callers are responsible for checking the return value and handling and/or
401 * reporting the error.
402 */
403int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 loff_t end_byte)
405{
406 int ret, ret2;
407
408 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
409 ret2 = filemap_check_errors(mapping);
410 if (!ret)
411 ret = ret2;
1da177e4
LT
412
413 return ret;
414}
d3bccb6f
JK
415EXPORT_SYMBOL(filemap_fdatawait_range);
416
aa750fd7
JN
417/**
418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419 * @mapping: address space structure to wait for
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * and wait for all of them. Unlike filemap_fdatawait(), this function
423 * does not clear error status of the address space.
424 *
425 * Use this function if callers don't handle errors themselves. Expected
426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427 * fsfreeze(8)
428 */
429void filemap_fdatawait_keep_errors(struct address_space *mapping)
430{
431 loff_t i_size = i_size_read(mapping->host);
432
433 if (i_size == 0)
434 return;
435
436 __filemap_fdatawait_range(mapping, 0, i_size - 1);
437}
438
1da177e4 439/**
485bb99b 440 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 441 * @mapping: address space structure to wait for
485bb99b
RD
442 *
443 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
444 * and wait for all of them. Check error status of the address space
445 * and return it.
446 *
447 * Since the error status of the address space is cleared by this function,
448 * callers are responsible for checking the return value and handling and/or
449 * reporting the error.
1da177e4
LT
450 */
451int filemap_fdatawait(struct address_space *mapping)
452{
453 loff_t i_size = i_size_read(mapping->host);
454
455 if (i_size == 0)
456 return 0;
457
94004ed7 458 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
459}
460EXPORT_SYMBOL(filemap_fdatawait);
461
462int filemap_write_and_wait(struct address_space *mapping)
463{
28fd1298 464 int err = 0;
1da177e4 465
7f6d5b52
RZ
466 if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
468 err = filemap_fdatawrite(mapping);
469 /*
470 * Even if the above returned error, the pages may be
471 * written partially (e.g. -ENOSPC), so we wait for it.
472 * But the -EIO is special case, it may indicate the worst
473 * thing (e.g. bug) happened, so we avoid waiting for it.
474 */
475 if (err != -EIO) {
476 int err2 = filemap_fdatawait(mapping);
477 if (!err)
478 err = err2;
479 }
865ffef3
DM
480 } else {
481 err = filemap_check_errors(mapping);
1da177e4 482 }
28fd1298 483 return err;
1da177e4 484}
28fd1298 485EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 486
485bb99b
RD
487/**
488 * filemap_write_and_wait_range - write out & wait on a file range
489 * @mapping: the address_space for the pages
490 * @lstart: offset in bytes where the range starts
491 * @lend: offset in bytes where the range ends (inclusive)
492 *
469eb4d0
AM
493 * Write out and wait upon file offsets lstart->lend, inclusive.
494 *
495 * Note that `lend' is inclusive (describes the last byte to be written) so
496 * that this function can be used to write to the very end-of-file (end = -1).
497 */
1da177e4
LT
498int filemap_write_and_wait_range(struct address_space *mapping,
499 loff_t lstart, loff_t lend)
500{
28fd1298 501 int err = 0;
1da177e4 502
7f6d5b52
RZ
503 if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
505 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 WB_SYNC_ALL);
507 /* See comment of filemap_write_and_wait() */
508 if (err != -EIO) {
94004ed7
CH
509 int err2 = filemap_fdatawait_range(mapping,
510 lstart, lend);
28fd1298
OH
511 if (!err)
512 err = err2;
513 }
865ffef3
DM
514 } else {
515 err = filemap_check_errors(mapping);
1da177e4 516 }
28fd1298 517 return err;
1da177e4 518}
f6995585 519EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 520
ef6a3c63
MS
521/**
522 * replace_page_cache_page - replace a pagecache page with a new one
523 * @old: page to be replaced
524 * @new: page to replace with
525 * @gfp_mask: allocation mode
526 *
527 * This function replaces a page in the pagecache with a new one. On
528 * success it acquires the pagecache reference for the new page and
529 * drops it for the old page. Both the old and new pages must be
530 * locked. This function does not add the new page to the LRU, the
531 * caller must do that.
532 *
533 * The remove + add is atomic. The only way this function can fail is
534 * memory allocation failure.
535 */
536int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537{
538 int error;
ef6a3c63 539
309381fe
SL
540 VM_BUG_ON_PAGE(!PageLocked(old), old);
541 VM_BUG_ON_PAGE(!PageLocked(new), new);
542 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 543
ef6a3c63
MS
544 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 if (!error) {
546 struct address_space *mapping = old->mapping;
547 void (*freepage)(struct page *);
c4843a75 548 unsigned long flags;
ef6a3c63
MS
549
550 pgoff_t offset = old->index;
551 freepage = mapping->a_ops->freepage;
552
553 page_cache_get(new);
554 new->mapping = mapping;
555 new->index = offset;
556
c4843a75 557 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 558 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
559 error = radix_tree_insert(&mapping->page_tree, offset, new);
560 BUG_ON(error);
561 mapping->nrpages++;
4165b9b4
MH
562
563 /*
564 * hugetlb pages do not participate in page cache accounting.
565 */
566 if (!PageHuge(new))
567 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
568 if (PageSwapBacked(new))
569 __inc_zone_page_state(new, NR_SHMEM);
c4843a75 570 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 571 mem_cgroup_migrate(old, new);
ef6a3c63
MS
572 radix_tree_preload_end();
573 if (freepage)
574 freepage(old);
575 page_cache_release(old);
ef6a3c63
MS
576 }
577
578 return error;
579}
580EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
0cd6144a 582static int page_cache_tree_insert(struct address_space *mapping,
a528910e 583 struct page *page, void **shadowp)
0cd6144a 584{
449dd698 585 struct radix_tree_node *node;
0cd6144a
JW
586 void **slot;
587 int error;
588
e6145236 589 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
449dd698
JW
590 &node, &slot);
591 if (error)
592 return error;
593 if (*slot) {
0cd6144a
JW
594 void *p;
595
596 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 if (!radix_tree_exceptional_entry(p))
598 return -EEXIST;
f9fe48be
RZ
599
600 if (WARN_ON(dax_mapping(mapping)))
601 return -EINVAL;
602
a528910e
JW
603 if (shadowp)
604 *shadowp = p;
f9fe48be 605 mapping->nrexceptional--;
449dd698
JW
606 if (node)
607 workingset_node_shadows_dec(node);
0cd6144a 608 }
449dd698
JW
609 radix_tree_replace_slot(slot, page);
610 mapping->nrpages++;
611 if (node) {
612 workingset_node_pages_inc(node);
613 /*
614 * Don't track node that contains actual pages.
615 *
616 * Avoid acquiring the list_lru lock if already
617 * untracked. The list_empty() test is safe as
618 * node->private_list is protected by
619 * mapping->tree_lock.
620 */
621 if (!list_empty(&node->private_list))
622 list_lru_del(&workingset_shadow_nodes,
623 &node->private_list);
624 }
625 return 0;
0cd6144a
JW
626}
627
a528910e
JW
628static int __add_to_page_cache_locked(struct page *page,
629 struct address_space *mapping,
630 pgoff_t offset, gfp_t gfp_mask,
631 void **shadowp)
1da177e4 632{
00501b53
JW
633 int huge = PageHuge(page);
634 struct mem_cgroup *memcg;
e286781d
NP
635 int error;
636
309381fe
SL
637 VM_BUG_ON_PAGE(!PageLocked(page), page);
638 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 639
00501b53
JW
640 if (!huge) {
641 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 642 gfp_mask, &memcg, false);
00501b53
JW
643 if (error)
644 return error;
645 }
1da177e4 646
5e4c0d97 647 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 648 if (error) {
00501b53 649 if (!huge)
f627c2f5 650 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
651 return error;
652 }
653
654 page_cache_get(page);
655 page->mapping = mapping;
656 page->index = offset;
657
658 spin_lock_irq(&mapping->tree_lock);
a528910e 659 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
660 radix_tree_preload_end();
661 if (unlikely(error))
662 goto err_insert;
4165b9b4
MH
663
664 /* hugetlb pages do not participate in page cache accounting. */
665 if (!huge)
666 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 667 spin_unlock_irq(&mapping->tree_lock);
00501b53 668 if (!huge)
f627c2f5 669 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
670 trace_mm_filemap_add_to_page_cache(page);
671 return 0;
672err_insert:
673 page->mapping = NULL;
674 /* Leave page->index set: truncation relies upon it */
675 spin_unlock_irq(&mapping->tree_lock);
00501b53 676 if (!huge)
f627c2f5 677 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee 678 page_cache_release(page);
1da177e4
LT
679 return error;
680}
a528910e
JW
681
682/**
683 * add_to_page_cache_locked - add a locked page to the pagecache
684 * @page: page to add
685 * @mapping: the page's address_space
686 * @offset: page index
687 * @gfp_mask: page allocation mode
688 *
689 * This function is used to add a page to the pagecache. It must be locked.
690 * This function does not add the page to the LRU. The caller must do that.
691 */
692int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 pgoff_t offset, gfp_t gfp_mask)
694{
695 return __add_to_page_cache_locked(page, mapping, offset,
696 gfp_mask, NULL);
697}
e286781d 698EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
699
700int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 701 pgoff_t offset, gfp_t gfp_mask)
1da177e4 702{
a528910e 703 void *shadow = NULL;
4f98a2fe
RR
704 int ret;
705
48c935ad 706 __SetPageLocked(page);
a528910e
JW
707 ret = __add_to_page_cache_locked(page, mapping, offset,
708 gfp_mask, &shadow);
709 if (unlikely(ret))
48c935ad 710 __ClearPageLocked(page);
a528910e
JW
711 else {
712 /*
713 * The page might have been evicted from cache only
714 * recently, in which case it should be activated like
715 * any other repeatedly accessed page.
716 */
717 if (shadow && workingset_refault(shadow)) {
718 SetPageActive(page);
719 workingset_activation(page);
720 } else
721 ClearPageActive(page);
722 lru_cache_add(page);
723 }
1da177e4
LT
724 return ret;
725}
18bc0bbd 726EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 727
44110fe3 728#ifdef CONFIG_NUMA
2ae88149 729struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 730{
c0ff7453
MX
731 int n;
732 struct page *page;
733
44110fe3 734 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
735 unsigned int cpuset_mems_cookie;
736 do {
d26914d1 737 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 738 n = cpuset_mem_spread_node();
96db800f 739 page = __alloc_pages_node(n, gfp, 0);
d26914d1 740 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 741
c0ff7453 742 return page;
44110fe3 743 }
2ae88149 744 return alloc_pages(gfp, 0);
44110fe3 745}
2ae88149 746EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
747#endif
748
1da177e4
LT
749/*
750 * In order to wait for pages to become available there must be
751 * waitqueues associated with pages. By using a hash table of
752 * waitqueues where the bucket discipline is to maintain all
753 * waiters on the same queue and wake all when any of the pages
754 * become available, and for the woken contexts to check to be
755 * sure the appropriate page became available, this saves space
756 * at a cost of "thundering herd" phenomena during rare hash
757 * collisions.
758 */
a4796e37 759wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
760{
761 const struct zone *zone = page_zone(page);
762
763 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764}
a4796e37 765EXPORT_SYMBOL(page_waitqueue);
1da177e4 766
920c7a5d 767void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
768{
769 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770
771 if (test_bit(bit_nr, &page->flags))
74316201 772 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
773 TASK_UNINTERRUPTIBLE);
774}
775EXPORT_SYMBOL(wait_on_page_bit);
776
f62e00cc
KM
777int wait_on_page_bit_killable(struct page *page, int bit_nr)
778{
779 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780
781 if (!test_bit(bit_nr, &page->flags))
782 return 0;
783
784 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 785 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
786}
787
cbbce822
N
788int wait_on_page_bit_killable_timeout(struct page *page,
789 int bit_nr, unsigned long timeout)
790{
791 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792
793 wait.key.timeout = jiffies + timeout;
794 if (!test_bit(bit_nr, &page->flags))
795 return 0;
796 return __wait_on_bit(page_waitqueue(page), &wait,
797 bit_wait_io_timeout, TASK_KILLABLE);
798}
799EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
800
385e1ca5
DH
801/**
802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
803 * @page: Page defining the wait queue of interest
804 * @waiter: Waiter to add to the queue
385e1ca5
DH
805 *
806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
807 */
808void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809{
810 wait_queue_head_t *q = page_waitqueue(page);
811 unsigned long flags;
812
813 spin_lock_irqsave(&q->lock, flags);
814 __add_wait_queue(q, waiter);
815 spin_unlock_irqrestore(&q->lock, flags);
816}
817EXPORT_SYMBOL_GPL(add_page_wait_queue);
818
1da177e4 819/**
485bb99b 820 * unlock_page - unlock a locked page
1da177e4
LT
821 * @page: the page
822 *
823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 825 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827 *
8413ac9d
NP
828 * The mb is necessary to enforce ordering between the clear_bit and the read
829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 830 */
920c7a5d 831void unlock_page(struct page *page)
1da177e4 832{
48c935ad 833 page = compound_head(page);
309381fe 834 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 835 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 836 smp_mb__after_atomic();
1da177e4
LT
837 wake_up_page(page, PG_locked);
838}
839EXPORT_SYMBOL(unlock_page);
840
485bb99b
RD
841/**
842 * end_page_writeback - end writeback against a page
843 * @page: the page
1da177e4
LT
844 */
845void end_page_writeback(struct page *page)
846{
888cf2db
MG
847 /*
848 * TestClearPageReclaim could be used here but it is an atomic
849 * operation and overkill in this particular case. Failing to
850 * shuffle a page marked for immediate reclaim is too mild to
851 * justify taking an atomic operation penalty at the end of
852 * ever page writeback.
853 */
854 if (PageReclaim(page)) {
855 ClearPageReclaim(page);
ac6aadb2 856 rotate_reclaimable_page(page);
888cf2db 857 }
ac6aadb2
MS
858
859 if (!test_clear_page_writeback(page))
860 BUG();
861
4e857c58 862 smp_mb__after_atomic();
1da177e4
LT
863 wake_up_page(page, PG_writeback);
864}
865EXPORT_SYMBOL(end_page_writeback);
866
57d99845
MW
867/*
868 * After completing I/O on a page, call this routine to update the page
869 * flags appropriately
870 */
871void page_endio(struct page *page, int rw, int err)
872{
873 if (rw == READ) {
874 if (!err) {
875 SetPageUptodate(page);
876 } else {
877 ClearPageUptodate(page);
878 SetPageError(page);
879 }
880 unlock_page(page);
881 } else { /* rw == WRITE */
882 if (err) {
883 SetPageError(page);
884 if (page->mapping)
885 mapping_set_error(page->mapping, err);
886 }
887 end_page_writeback(page);
888 }
889}
890EXPORT_SYMBOL_GPL(page_endio);
891
485bb99b
RD
892/**
893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
894 * @page: the page to lock
1da177e4 895 */
920c7a5d 896void __lock_page(struct page *page)
1da177e4 897{
48c935ad
KS
898 struct page *page_head = compound_head(page);
899 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 900
48c935ad 901 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
902 TASK_UNINTERRUPTIBLE);
903}
904EXPORT_SYMBOL(__lock_page);
905
b5606c2d 906int __lock_page_killable(struct page *page)
2687a356 907{
48c935ad
KS
908 struct page *page_head = compound_head(page);
909 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 910
48c935ad 911 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 912 bit_wait_io, TASK_KILLABLE);
2687a356 913}
18bc0bbd 914EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 915
9a95f3cf
PC
916/*
917 * Return values:
918 * 1 - page is locked; mmap_sem is still held.
919 * 0 - page is not locked.
920 * mmap_sem has been released (up_read()), unless flags had both
921 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
922 * which case mmap_sem is still held.
923 *
924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
925 * with the page locked and the mmap_sem unperturbed.
926 */
d065bd81
ML
927int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
928 unsigned int flags)
929{
37b23e05
KM
930 if (flags & FAULT_FLAG_ALLOW_RETRY) {
931 /*
932 * CAUTION! In this case, mmap_sem is not released
933 * even though return 0.
934 */
935 if (flags & FAULT_FLAG_RETRY_NOWAIT)
936 return 0;
937
938 up_read(&mm->mmap_sem);
939 if (flags & FAULT_FLAG_KILLABLE)
940 wait_on_page_locked_killable(page);
941 else
318b275f 942 wait_on_page_locked(page);
d065bd81 943 return 0;
37b23e05
KM
944 } else {
945 if (flags & FAULT_FLAG_KILLABLE) {
946 int ret;
947
948 ret = __lock_page_killable(page);
949 if (ret) {
950 up_read(&mm->mmap_sem);
951 return 0;
952 }
953 } else
954 __lock_page(page);
955 return 1;
d065bd81
ML
956 }
957}
958
e7b563bb
JW
959/**
960 * page_cache_next_hole - find the next hole (not-present entry)
961 * @mapping: mapping
962 * @index: index
963 * @max_scan: maximum range to search
964 *
965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
966 * lowest indexed hole.
967 *
968 * Returns: the index of the hole if found, otherwise returns an index
969 * outside of the set specified (in which case 'return - index >=
970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
971 * be returned.
972 *
973 * page_cache_next_hole may be called under rcu_read_lock. However,
974 * like radix_tree_gang_lookup, this will not atomically search a
975 * snapshot of the tree at a single point in time. For example, if a
976 * hole is created at index 5, then subsequently a hole is created at
977 * index 10, page_cache_next_hole covering both indexes may return 10
978 * if called under rcu_read_lock.
979 */
980pgoff_t page_cache_next_hole(struct address_space *mapping,
981 pgoff_t index, unsigned long max_scan)
982{
983 unsigned long i;
984
985 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
986 struct page *page;
987
988 page = radix_tree_lookup(&mapping->page_tree, index);
989 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
990 break;
991 index++;
992 if (index == 0)
993 break;
994 }
995
996 return index;
997}
998EXPORT_SYMBOL(page_cache_next_hole);
999
1000/**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022 pgoff_t index, unsigned long max_scan)
1023{
1024 unsigned long i;
1025
1026 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1027 struct page *page;
1028
1029 page = radix_tree_lookup(&mapping->page_tree, index);
1030 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1031 break;
1032 index--;
1033 if (index == ULONG_MAX)
1034 break;
1035 }
1036
1037 return index;
1038}
1039EXPORT_SYMBOL(page_cache_prev_hole);
1040
485bb99b 1041/**
0cd6144a 1042 * find_get_entry - find and get a page cache entry
485bb99b 1043 * @mapping: the address_space to search
0cd6144a
JW
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset. If there is a
1047 * page cache page, it is returned with an increased refcount.
485bb99b 1048 *
139b6a6f
JW
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1051 *
1052 * Otherwise, %NULL is returned.
1da177e4 1053 */
0cd6144a 1054struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1055{
a60637c8 1056 void **pagep;
1da177e4
LT
1057 struct page *page;
1058
a60637c8
NP
1059 rcu_read_lock();
1060repeat:
1061 page = NULL;
1062 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063 if (pagep) {
1064 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1065 if (unlikely(!page))
1066 goto out;
a2c16d6c 1067 if (radix_tree_exception(page)) {
8079b1c8
HD
1068 if (radix_tree_deref_retry(page))
1069 goto repeat;
1070 /*
139b6a6f
JW
1071 * A shadow entry of a recently evicted page,
1072 * or a swap entry from shmem/tmpfs. Return
1073 * it without attempting to raise page count.
8079b1c8
HD
1074 */
1075 goto out;
a2c16d6c 1076 }
a60637c8
NP
1077 if (!page_cache_get_speculative(page))
1078 goto repeat;
1079
1080 /*
1081 * Has the page moved?
1082 * This is part of the lockless pagecache protocol. See
1083 * include/linux/pagemap.h for details.
1084 */
1085 if (unlikely(page != *pagep)) {
1086 page_cache_release(page);
1087 goto repeat;
1088 }
1089 }
27d20fdd 1090out:
a60637c8
NP
1091 rcu_read_unlock();
1092
1da177e4
LT
1093 return page;
1094}
0cd6144a 1095EXPORT_SYMBOL(find_get_entry);
1da177e4 1096
0cd6144a
JW
1097/**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
1101 *
1102 * Looks up the page cache slot at @mapping & @offset. If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
139b6a6f
JW
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1114{
1115 struct page *page;
1116
1da177e4 1117repeat:
0cd6144a 1118 page = find_get_entry(mapping, offset);
a2c16d6c 1119 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1120 lock_page(page);
1121 /* Has the page been truncated? */
1122 if (unlikely(page->mapping != mapping)) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 goto repeat;
1da177e4 1126 }
309381fe 1127 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1128 }
1da177e4
LT
1129 return page;
1130}
0cd6144a
JW
1131EXPORT_SYMBOL(find_lock_entry);
1132
1133/**
2457aec6 1134 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1135 * @mapping: the address_space to search
1136 * @offset: the page index
2457aec6 1137 * @fgp_flags: PCG flags
45f87de5 1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1139 *
2457aec6 1140 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1141 *
75325189 1142 * PCG flags modify how the page is returned.
0cd6144a 1143 *
2457aec6
MG
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1147 * @gfp_mask and added to the page cache and the VM's LRU
1148 * list. The page is returned locked and with an increased
1149 * refcount. Otherwise, %NULL is returned.
1da177e4 1150 *
2457aec6
MG
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1153 *
2457aec6 1154 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1155 */
2457aec6 1156struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1157 int fgp_flags, gfp_t gfp_mask)
1da177e4 1158{
eb2be189 1159 struct page *page;
2457aec6 1160
1da177e4 1161repeat:
2457aec6
MG
1162 page = find_get_entry(mapping, offset);
1163 if (radix_tree_exceptional_entry(page))
1164 page = NULL;
1165 if (!page)
1166 goto no_page;
1167
1168 if (fgp_flags & FGP_LOCK) {
1169 if (fgp_flags & FGP_NOWAIT) {
1170 if (!trylock_page(page)) {
1171 page_cache_release(page);
1172 return NULL;
1173 }
1174 } else {
1175 lock_page(page);
1176 }
1177
1178 /* Has the page been truncated? */
1179 if (unlikely(page->mapping != mapping)) {
1180 unlock_page(page);
1181 page_cache_release(page);
1182 goto repeat;
1183 }
1184 VM_BUG_ON_PAGE(page->index != offset, page);
1185 }
1186
1187 if (page && (fgp_flags & FGP_ACCESSED))
1188 mark_page_accessed(page);
1189
1190no_page:
1191 if (!page && (fgp_flags & FGP_CREAT)) {
1192 int err;
1193 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1194 gfp_mask |= __GFP_WRITE;
1195 if (fgp_flags & FGP_NOFS)
1196 gfp_mask &= ~__GFP_FS;
2457aec6 1197
45f87de5 1198 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1199 if (!page)
1200 return NULL;
2457aec6
MG
1201
1202 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203 fgp_flags |= FGP_LOCK;
1204
eb39d618 1205 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1206 if (fgp_flags & FGP_ACCESSED)
eb39d618 1207 __SetPageReferenced(page);
2457aec6 1208
45f87de5
MH
1209 err = add_to_page_cache_lru(page, mapping, offset,
1210 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1211 if (unlikely(err)) {
1212 page_cache_release(page);
1213 page = NULL;
1214 if (err == -EEXIST)
1215 goto repeat;
1da177e4 1216 }
1da177e4 1217 }
2457aec6 1218
1da177e4
LT
1219 return page;
1220}
2457aec6 1221EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1222
0cd6144a
JW
1223/**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping: The address_space to search
1226 * @start: The starting page cache index
1227 * @nr_entries: The maximum number of entries
1228 * @entries: Where the resulting entries are placed
1229 * @indices: The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping. The entries are placed at
1233 * @entries. find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes. There may be holes in the indices due to
1238 * not-present pages.
1239 *
139b6a6f
JW
1240 * Any shadow entries of evicted pages, or swap entries from
1241 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246unsigned find_get_entries(struct address_space *mapping,
1247 pgoff_t start, unsigned int nr_entries,
1248 struct page **entries, pgoff_t *indices)
1249{
1250 void **slot;
1251 unsigned int ret = 0;
1252 struct radix_tree_iter iter;
1253
1254 if (!nr_entries)
1255 return 0;
1256
1257 rcu_read_lock();
0cd6144a
JW
1258 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259 struct page *page;
1260repeat:
1261 page = radix_tree_deref_slot(slot);
1262 if (unlikely(!page))
1263 continue;
1264 if (radix_tree_exception(page)) {
2cf938aa
MW
1265 if (radix_tree_deref_retry(page)) {
1266 slot = radix_tree_iter_retry(&iter);
1267 continue;
1268 }
0cd6144a 1269 /*
f9fe48be
RZ
1270 * A shadow entry of a recently evicted page, a swap
1271 * entry from shmem/tmpfs or a DAX entry. Return it
1272 * without attempting to raise page count.
0cd6144a
JW
1273 */
1274 goto export;
1275 }
1276 if (!page_cache_get_speculative(page))
1277 goto repeat;
1278
1279 /* Has the page moved? */
1280 if (unlikely(page != *slot)) {
1281 page_cache_release(page);
1282 goto repeat;
1283 }
1284export:
1285 indices[ret] = iter.index;
1286 entries[ret] = page;
1287 if (++ret == nr_entries)
1288 break;
1289 }
1290 rcu_read_unlock();
1291 return ret;
1292}
1293
1da177e4
LT
1294/**
1295 * find_get_pages - gang pagecache lookup
1296 * @mapping: The address_space to search
1297 * @start: The starting page index
1298 * @nr_pages: The maximum number of pages
1299 * @pages: Where the resulting pages are placed
1300 *
1301 * find_get_pages() will search for and return a group of up to
1302 * @nr_pages pages in the mapping. The pages are placed at @pages.
1303 * find_get_pages() takes a reference against the returned pages.
1304 *
1305 * The search returns a group of mapping-contiguous pages with ascending
1306 * indexes. There may be holes in the indices due to not-present pages.
1307 *
1308 * find_get_pages() returns the number of pages which were found.
1309 */
1310unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311 unsigned int nr_pages, struct page **pages)
1312{
0fc9d104
KK
1313 struct radix_tree_iter iter;
1314 void **slot;
1315 unsigned ret = 0;
1316
1317 if (unlikely(!nr_pages))
1318 return 0;
a60637c8
NP
1319
1320 rcu_read_lock();
0fc9d104 1321 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1322 struct page *page;
1323repeat:
0fc9d104 1324 page = radix_tree_deref_slot(slot);
a60637c8
NP
1325 if (unlikely(!page))
1326 continue;
9d8aa4ea 1327
a2c16d6c 1328 if (radix_tree_exception(page)) {
8079b1c8 1329 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1330 slot = radix_tree_iter_retry(&iter);
1331 continue;
8079b1c8 1332 }
a2c16d6c 1333 /*
139b6a6f
JW
1334 * A shadow entry of a recently evicted page,
1335 * or a swap entry from shmem/tmpfs. Skip
1336 * over it.
a2c16d6c 1337 */
8079b1c8 1338 continue;
27d20fdd 1339 }
a60637c8
NP
1340
1341 if (!page_cache_get_speculative(page))
1342 goto repeat;
1343
1344 /* Has the page moved? */
0fc9d104 1345 if (unlikely(page != *slot)) {
a60637c8
NP
1346 page_cache_release(page);
1347 goto repeat;
1348 }
1da177e4 1349
a60637c8 1350 pages[ret] = page;
0fc9d104
KK
1351 if (++ret == nr_pages)
1352 break;
a60637c8 1353 }
5b280c0c 1354
a60637c8 1355 rcu_read_unlock();
1da177e4
LT
1356 return ret;
1357}
1358
ebf43500
JA
1359/**
1360 * find_get_pages_contig - gang contiguous pagecache lookup
1361 * @mapping: The address_space to search
1362 * @index: The starting page index
1363 * @nr_pages: The maximum number of pages
1364 * @pages: Where the resulting pages are placed
1365 *
1366 * find_get_pages_contig() works exactly like find_get_pages(), except
1367 * that the returned number of pages are guaranteed to be contiguous.
1368 *
1369 * find_get_pages_contig() returns the number of pages which were found.
1370 */
1371unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372 unsigned int nr_pages, struct page **pages)
1373{
0fc9d104
KK
1374 struct radix_tree_iter iter;
1375 void **slot;
1376 unsigned int ret = 0;
1377
1378 if (unlikely(!nr_pages))
1379 return 0;
a60637c8
NP
1380
1381 rcu_read_lock();
0fc9d104 1382 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1383 struct page *page;
1384repeat:
0fc9d104
KK
1385 page = radix_tree_deref_slot(slot);
1386 /* The hole, there no reason to continue */
a60637c8 1387 if (unlikely(!page))
0fc9d104 1388 break;
9d8aa4ea 1389
a2c16d6c 1390 if (radix_tree_exception(page)) {
8079b1c8 1391 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1392 slot = radix_tree_iter_retry(&iter);
1393 continue;
8079b1c8 1394 }
a2c16d6c 1395 /*
139b6a6f
JW
1396 * A shadow entry of a recently evicted page,
1397 * or a swap entry from shmem/tmpfs. Stop
1398 * looking for contiguous pages.
a2c16d6c 1399 */
8079b1c8 1400 break;
a2c16d6c 1401 }
ebf43500 1402
a60637c8
NP
1403 if (!page_cache_get_speculative(page))
1404 goto repeat;
1405
1406 /* Has the page moved? */
0fc9d104 1407 if (unlikely(page != *slot)) {
a60637c8
NP
1408 page_cache_release(page);
1409 goto repeat;
1410 }
1411
9cbb4cb2
NP
1412 /*
1413 * must check mapping and index after taking the ref.
1414 * otherwise we can get both false positives and false
1415 * negatives, which is just confusing to the caller.
1416 */
0fc9d104 1417 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1418 page_cache_release(page);
1419 break;
1420 }
1421
a60637c8 1422 pages[ret] = page;
0fc9d104
KK
1423 if (++ret == nr_pages)
1424 break;
ebf43500 1425 }
a60637c8
NP
1426 rcu_read_unlock();
1427 return ret;
ebf43500 1428}
ef71c15c 1429EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1430
485bb99b
RD
1431/**
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping: the address_space to search
1434 * @index: the starting page index
1435 * @tag: the tag index
1436 * @nr_pages: the maximum number of pages
1437 * @pages: where the resulting pages are placed
1438 *
1da177e4 1439 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1440 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1441 */
1442unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443 int tag, unsigned int nr_pages, struct page **pages)
1444{
0fc9d104
KK
1445 struct radix_tree_iter iter;
1446 void **slot;
1447 unsigned ret = 0;
1448
1449 if (unlikely(!nr_pages))
1450 return 0;
a60637c8
NP
1451
1452 rcu_read_lock();
0fc9d104
KK
1453 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454 &iter, *index, tag) {
a60637c8
NP
1455 struct page *page;
1456repeat:
0fc9d104 1457 page = radix_tree_deref_slot(slot);
a60637c8
NP
1458 if (unlikely(!page))
1459 continue;
9d8aa4ea 1460
a2c16d6c 1461 if (radix_tree_exception(page)) {
8079b1c8 1462 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1463 slot = radix_tree_iter_retry(&iter);
1464 continue;
8079b1c8 1465 }
a2c16d6c 1466 /*
139b6a6f
JW
1467 * A shadow entry of a recently evicted page.
1468 *
1469 * Those entries should never be tagged, but
1470 * this tree walk is lockless and the tags are
1471 * looked up in bulk, one radix tree node at a
1472 * time, so there is a sizable window for page
1473 * reclaim to evict a page we saw tagged.
1474 *
1475 * Skip over it.
a2c16d6c 1476 */
139b6a6f 1477 continue;
a2c16d6c 1478 }
a60637c8
NP
1479
1480 if (!page_cache_get_speculative(page))
1481 goto repeat;
1482
1483 /* Has the page moved? */
0fc9d104 1484 if (unlikely(page != *slot)) {
a60637c8
NP
1485 page_cache_release(page);
1486 goto repeat;
1487 }
1488
1489 pages[ret] = page;
0fc9d104
KK
1490 if (++ret == nr_pages)
1491 break;
a60637c8 1492 }
5b280c0c 1493
a60637c8 1494 rcu_read_unlock();
1da177e4 1495
1da177e4
LT
1496 if (ret)
1497 *index = pages[ret - 1]->index + 1;
a60637c8 1498
1da177e4
LT
1499 return ret;
1500}
ef71c15c 1501EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1502
7e7f7749
RZ
1503/**
1504 * find_get_entries_tag - find and return entries that match @tag
1505 * @mapping: the address_space to search
1506 * @start: the starting page cache index
1507 * @tag: the tag index
1508 * @nr_entries: the maximum number of entries
1509 * @entries: where the resulting entries are placed
1510 * @indices: the cache indices corresponding to the entries in @entries
1511 *
1512 * Like find_get_entries, except we only return entries which are tagged with
1513 * @tag.
1514 */
1515unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516 int tag, unsigned int nr_entries,
1517 struct page **entries, pgoff_t *indices)
1518{
1519 void **slot;
1520 unsigned int ret = 0;
1521 struct radix_tree_iter iter;
1522
1523 if (!nr_entries)
1524 return 0;
1525
1526 rcu_read_lock();
7e7f7749
RZ
1527 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528 &iter, start, tag) {
1529 struct page *page;
1530repeat:
1531 page = radix_tree_deref_slot(slot);
1532 if (unlikely(!page))
1533 continue;
1534 if (radix_tree_exception(page)) {
1535 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1536 slot = radix_tree_iter_retry(&iter);
1537 continue;
7e7f7749
RZ
1538 }
1539
1540 /*
1541 * A shadow entry of a recently evicted page, a swap
1542 * entry from shmem/tmpfs or a DAX entry. Return it
1543 * without attempting to raise page count.
1544 */
1545 goto export;
1546 }
1547 if (!page_cache_get_speculative(page))
1548 goto repeat;
1549
1550 /* Has the page moved? */
1551 if (unlikely(page != *slot)) {
1552 page_cache_release(page);
1553 goto repeat;
1554 }
1555export:
1556 indices[ret] = iter.index;
1557 entries[ret] = page;
1558 if (++ret == nr_entries)
1559 break;
1560 }
1561 rcu_read_unlock();
1562 return ret;
1563}
1564EXPORT_SYMBOL(find_get_entries_tag);
1565
76d42bd9
WF
1566/*
1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 *
1570 * ---R__________________________________________B__________
1571 * ^ reading here ^ bad block(assume 4k)
1572 *
1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574 * => failing the whole request => read(R) => read(R+1) =>
1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 *
1579 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 */
1581static void shrink_readahead_size_eio(struct file *filp,
1582 struct file_ra_state *ra)
1583{
76d42bd9 1584 ra->ra_pages /= 4;
76d42bd9
WF
1585}
1586
485bb99b 1587/**
36e78914 1588 * do_generic_file_read - generic file read routine
485bb99b
RD
1589 * @filp: the file to read
1590 * @ppos: current file position
6e58e79d
AV
1591 * @iter: data destination
1592 * @written: already copied
485bb99b 1593 *
1da177e4 1594 * This is a generic file read routine, and uses the
485bb99b 1595 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1596 *
1597 * This is really ugly. But the goto's actually try to clarify some
1598 * of the logic when it comes to error handling etc.
1da177e4 1599 */
6e58e79d
AV
1600static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601 struct iov_iter *iter, ssize_t written)
1da177e4 1602{
36e78914 1603 struct address_space *mapping = filp->f_mapping;
1da177e4 1604 struct inode *inode = mapping->host;
36e78914 1605 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1606 pgoff_t index;
1607 pgoff_t last_index;
1608 pgoff_t prev_index;
1609 unsigned long offset; /* offset into pagecache page */
ec0f1637 1610 unsigned int prev_offset;
6e58e79d 1611 int error = 0;
1da177e4 1612
1da177e4 1613 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1614 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1615 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1616 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1617 offset = *ppos & ~PAGE_CACHE_MASK;
1618
1da177e4
LT
1619 for (;;) {
1620 struct page *page;
57f6b96c 1621 pgoff_t end_index;
a32ea1e1 1622 loff_t isize;
1da177e4
LT
1623 unsigned long nr, ret;
1624
1da177e4 1625 cond_resched();
1da177e4
LT
1626find_page:
1627 page = find_get_page(mapping, index);
3ea89ee8 1628 if (!page) {
cf914a7d 1629 page_cache_sync_readahead(mapping,
7ff81078 1630 ra, filp,
3ea89ee8
FW
1631 index, last_index - index);
1632 page = find_get_page(mapping, index);
1633 if (unlikely(page == NULL))
1634 goto no_cached_page;
1635 }
1636 if (PageReadahead(page)) {
cf914a7d 1637 page_cache_async_readahead(mapping,
7ff81078 1638 ra, filp, page,
3ea89ee8 1639 index, last_index - index);
1da177e4 1640 }
8ab22b9a 1641 if (!PageUptodate(page)) {
ebded027
MG
1642 /*
1643 * See comment in do_read_cache_page on why
1644 * wait_on_page_locked is used to avoid unnecessarily
1645 * serialisations and why it's safe.
1646 */
1647 wait_on_page_locked_killable(page);
1648 if (PageUptodate(page))
1649 goto page_ok;
1650
8ab22b9a
HH
1651 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1652 !mapping->a_ops->is_partially_uptodate)
1653 goto page_not_up_to_date;
529ae9aa 1654 if (!trylock_page(page))
8ab22b9a 1655 goto page_not_up_to_date;
8d056cb9
DH
1656 /* Did it get truncated before we got the lock? */
1657 if (!page->mapping)
1658 goto page_not_up_to_date_locked;
8ab22b9a 1659 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1660 offset, iter->count))
8ab22b9a
HH
1661 goto page_not_up_to_date_locked;
1662 unlock_page(page);
1663 }
1da177e4 1664page_ok:
a32ea1e1
N
1665 /*
1666 * i_size must be checked after we know the page is Uptodate.
1667 *
1668 * Checking i_size after the check allows us to calculate
1669 * the correct value for "nr", which means the zero-filled
1670 * part of the page is not copied back to userspace (unless
1671 * another truncate extends the file - this is desired though).
1672 */
1673
1674 isize = i_size_read(inode);
1675 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1676 if (unlikely(!isize || index > end_index)) {
1677 page_cache_release(page);
1678 goto out;
1679 }
1680
1681 /* nr is the maximum number of bytes to copy from this page */
1682 nr = PAGE_CACHE_SIZE;
1683 if (index == end_index) {
1684 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1685 if (nr <= offset) {
1686 page_cache_release(page);
1687 goto out;
1688 }
1689 }
1690 nr = nr - offset;
1da177e4
LT
1691
1692 /* If users can be writing to this page using arbitrary
1693 * virtual addresses, take care about potential aliasing
1694 * before reading the page on the kernel side.
1695 */
1696 if (mapping_writably_mapped(mapping))
1697 flush_dcache_page(page);
1698
1699 /*
ec0f1637
JK
1700 * When a sequential read accesses a page several times,
1701 * only mark it as accessed the first time.
1da177e4 1702 */
ec0f1637 1703 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1704 mark_page_accessed(page);
1705 prev_index = index;
1706
1707 /*
1708 * Ok, we have the page, and it's up-to-date, so
1709 * now we can copy it to user space...
1da177e4 1710 */
6e58e79d
AV
1711
1712 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1713 offset += ret;
1714 index += offset >> PAGE_CACHE_SHIFT;
1715 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1716 prev_offset = offset;
1da177e4
LT
1717
1718 page_cache_release(page);
6e58e79d
AV
1719 written += ret;
1720 if (!iov_iter_count(iter))
1721 goto out;
1722 if (ret < nr) {
1723 error = -EFAULT;
1724 goto out;
1725 }
1726 continue;
1da177e4
LT
1727
1728page_not_up_to_date:
1729 /* Get exclusive access to the page ... */
85462323
ON
1730 error = lock_page_killable(page);
1731 if (unlikely(error))
1732 goto readpage_error;
1da177e4 1733
8ab22b9a 1734page_not_up_to_date_locked:
da6052f7 1735 /* Did it get truncated before we got the lock? */
1da177e4
LT
1736 if (!page->mapping) {
1737 unlock_page(page);
1738 page_cache_release(page);
1739 continue;
1740 }
1741
1742 /* Did somebody else fill it already? */
1743 if (PageUptodate(page)) {
1744 unlock_page(page);
1745 goto page_ok;
1746 }
1747
1748readpage:
91803b49
JM
1749 /*
1750 * A previous I/O error may have been due to temporary
1751 * failures, eg. multipath errors.
1752 * PG_error will be set again if readpage fails.
1753 */
1754 ClearPageError(page);
1da177e4
LT
1755 /* Start the actual read. The read will unlock the page. */
1756 error = mapping->a_ops->readpage(filp, page);
1757
994fc28c
ZB
1758 if (unlikely(error)) {
1759 if (error == AOP_TRUNCATED_PAGE) {
1760 page_cache_release(page);
6e58e79d 1761 error = 0;
994fc28c
ZB
1762 goto find_page;
1763 }
1da177e4 1764 goto readpage_error;
994fc28c 1765 }
1da177e4
LT
1766
1767 if (!PageUptodate(page)) {
85462323
ON
1768 error = lock_page_killable(page);
1769 if (unlikely(error))
1770 goto readpage_error;
1da177e4
LT
1771 if (!PageUptodate(page)) {
1772 if (page->mapping == NULL) {
1773 /*
2ecdc82e 1774 * invalidate_mapping_pages got it
1da177e4
LT
1775 */
1776 unlock_page(page);
1777 page_cache_release(page);
1778 goto find_page;
1779 }
1780 unlock_page(page);
7ff81078 1781 shrink_readahead_size_eio(filp, ra);
85462323
ON
1782 error = -EIO;
1783 goto readpage_error;
1da177e4
LT
1784 }
1785 unlock_page(page);
1786 }
1787
1da177e4
LT
1788 goto page_ok;
1789
1790readpage_error:
1791 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1792 page_cache_release(page);
1793 goto out;
1794
1795no_cached_page:
1796 /*
1797 * Ok, it wasn't cached, so we need to create a new
1798 * page..
1799 */
eb2be189
NP
1800 page = page_cache_alloc_cold(mapping);
1801 if (!page) {
6e58e79d 1802 error = -ENOMEM;
eb2be189 1803 goto out;
1da177e4 1804 }
6afdb859 1805 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1806 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1807 if (error) {
eb2be189 1808 page_cache_release(page);
6e58e79d
AV
1809 if (error == -EEXIST) {
1810 error = 0;
1da177e4 1811 goto find_page;
6e58e79d 1812 }
1da177e4
LT
1813 goto out;
1814 }
1da177e4
LT
1815 goto readpage;
1816 }
1817
1818out:
7ff81078
FW
1819 ra->prev_pos = prev_index;
1820 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1821 ra->prev_pos |= prev_offset;
1da177e4 1822
f4e6b498 1823 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1824 file_accessed(filp);
6e58e79d 1825 return written ? written : error;
1da177e4
LT
1826}
1827
485bb99b 1828/**
6abd2322 1829 * generic_file_read_iter - generic filesystem read routine
485bb99b 1830 * @iocb: kernel I/O control block
6abd2322 1831 * @iter: destination for the data read
485bb99b 1832 *
6abd2322 1833 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1834 * that can use the page cache directly.
1835 */
1836ssize_t
ed978a81 1837generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1838{
ed978a81 1839 struct file *file = iocb->ki_filp;
cb66a7a1 1840 ssize_t retval = 0;
543ade1f 1841 loff_t *ppos = &iocb->ki_pos;
ed978a81 1842 loff_t pos = *ppos;
1da177e4 1843
2ba48ce5 1844 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1845 struct address_space *mapping = file->f_mapping;
1846 struct inode *inode = mapping->host;
1847 size_t count = iov_iter_count(iter);
543ade1f 1848 loff_t size;
1da177e4 1849
1da177e4
LT
1850 if (!count)
1851 goto out; /* skip atime */
1852 size = i_size_read(inode);
9fe55eea 1853 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1854 pos + count - 1);
9fe55eea 1855 if (!retval) {
ed978a81 1856 struct iov_iter data = *iter;
22c6186e 1857 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1858 }
d8d3d94b 1859
9fe55eea
SW
1860 if (retval > 0) {
1861 *ppos = pos + retval;
ed978a81 1862 iov_iter_advance(iter, retval);
9fe55eea 1863 }
66f998f6 1864
9fe55eea
SW
1865 /*
1866 * Btrfs can have a short DIO read if we encounter
1867 * compressed extents, so if there was an error, or if
1868 * we've already read everything we wanted to, or if
1869 * there was a short read because we hit EOF, go ahead
1870 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1871 * the rest of the read. Buffered reads will not work for
1872 * DAX files, so don't bother trying.
9fe55eea 1873 */
fbbbad4b
MW
1874 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1875 IS_DAX(inode)) {
ed978a81 1876 file_accessed(file);
9fe55eea 1877 goto out;
0e0bcae3 1878 }
1da177e4
LT
1879 }
1880
ed978a81 1881 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1882out:
1883 return retval;
1884}
ed978a81 1885EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1886
1da177e4 1887#ifdef CONFIG_MMU
485bb99b
RD
1888/**
1889 * page_cache_read - adds requested page to the page cache if not already there
1890 * @file: file to read
1891 * @offset: page index
62eb320a 1892 * @gfp_mask: memory allocation flags
485bb99b 1893 *
1da177e4
LT
1894 * This adds the requested page to the page cache if it isn't already there,
1895 * and schedules an I/O to read in its contents from disk.
1896 */
c20cd45e 1897static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1898{
1899 struct address_space *mapping = file->f_mapping;
99dadfdd 1900 struct page *page;
994fc28c 1901 int ret;
1da177e4 1902
994fc28c 1903 do {
c20cd45e 1904 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1905 if (!page)
1906 return -ENOMEM;
1907
c20cd45e 1908 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1909 if (ret == 0)
1910 ret = mapping->a_ops->readpage(file, page);
1911 else if (ret == -EEXIST)
1912 ret = 0; /* losing race to add is OK */
1da177e4 1913
1da177e4 1914 page_cache_release(page);
1da177e4 1915
994fc28c 1916 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1917
994fc28c 1918 return ret;
1da177e4
LT
1919}
1920
1921#define MMAP_LOTSAMISS (100)
1922
ef00e08e
LT
1923/*
1924 * Synchronous readahead happens when we don't even find
1925 * a page in the page cache at all.
1926 */
1927static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1928 struct file_ra_state *ra,
1929 struct file *file,
1930 pgoff_t offset)
1931{
ef00e08e
LT
1932 struct address_space *mapping = file->f_mapping;
1933
1934 /* If we don't want any read-ahead, don't bother */
64363aad 1935 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1936 return;
275b12bf
WF
1937 if (!ra->ra_pages)
1938 return;
ef00e08e 1939
64363aad 1940 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1941 page_cache_sync_readahead(mapping, ra, file, offset,
1942 ra->ra_pages);
ef00e08e
LT
1943 return;
1944 }
1945
207d04ba
AK
1946 /* Avoid banging the cache line if not needed */
1947 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1948 ra->mmap_miss++;
1949
1950 /*
1951 * Do we miss much more than hit in this file? If so,
1952 * stop bothering with read-ahead. It will only hurt.
1953 */
1954 if (ra->mmap_miss > MMAP_LOTSAMISS)
1955 return;
1956
d30a1100
WF
1957 /*
1958 * mmap read-around
1959 */
600e19af
RG
1960 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1961 ra->size = ra->ra_pages;
1962 ra->async_size = ra->ra_pages / 4;
275b12bf 1963 ra_submit(ra, mapping, file);
ef00e08e
LT
1964}
1965
1966/*
1967 * Asynchronous readahead happens when we find the page and PG_readahead,
1968 * so we want to possibly extend the readahead further..
1969 */
1970static void do_async_mmap_readahead(struct vm_area_struct *vma,
1971 struct file_ra_state *ra,
1972 struct file *file,
1973 struct page *page,
1974 pgoff_t offset)
1975{
1976 struct address_space *mapping = file->f_mapping;
1977
1978 /* If we don't want any read-ahead, don't bother */
64363aad 1979 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1980 return;
1981 if (ra->mmap_miss > 0)
1982 ra->mmap_miss--;
1983 if (PageReadahead(page))
2fad6f5d
WF
1984 page_cache_async_readahead(mapping, ra, file,
1985 page, offset, ra->ra_pages);
ef00e08e
LT
1986}
1987
485bb99b 1988/**
54cb8821 1989 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1990 * @vma: vma in which the fault was taken
1991 * @vmf: struct vm_fault containing details of the fault
485bb99b 1992 *
54cb8821 1993 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1994 * mapped memory region to read in file data during a page fault.
1995 *
1996 * The goto's are kind of ugly, but this streamlines the normal case of having
1997 * it in the page cache, and handles the special cases reasonably without
1998 * having a lot of duplicated code.
9a95f3cf
PC
1999 *
2000 * vma->vm_mm->mmap_sem must be held on entry.
2001 *
2002 * If our return value has VM_FAULT_RETRY set, it's because
2003 * lock_page_or_retry() returned 0.
2004 * The mmap_sem has usually been released in this case.
2005 * See __lock_page_or_retry() for the exception.
2006 *
2007 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2008 * has not been released.
2009 *
2010 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2011 */
d0217ac0 2012int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2013{
2014 int error;
54cb8821 2015 struct file *file = vma->vm_file;
1da177e4
LT
2016 struct address_space *mapping = file->f_mapping;
2017 struct file_ra_state *ra = &file->f_ra;
2018 struct inode *inode = mapping->host;
ef00e08e 2019 pgoff_t offset = vmf->pgoff;
1da177e4 2020 struct page *page;
99e3e53f 2021 loff_t size;
83c54070 2022 int ret = 0;
1da177e4 2023
99e3e53f
KS
2024 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2025 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 2026 return VM_FAULT_SIGBUS;
1da177e4 2027
1da177e4 2028 /*
49426420 2029 * Do we have something in the page cache already?
1da177e4 2030 */
ef00e08e 2031 page = find_get_page(mapping, offset);
45cac65b 2032 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2033 /*
ef00e08e
LT
2034 * We found the page, so try async readahead before
2035 * waiting for the lock.
1da177e4 2036 */
ef00e08e 2037 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2038 } else if (!page) {
ef00e08e
LT
2039 /* No page in the page cache at all */
2040 do_sync_mmap_readahead(vma, ra, file, offset);
2041 count_vm_event(PGMAJFAULT);
456f998e 2042 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2043 ret = VM_FAULT_MAJOR;
2044retry_find:
b522c94d 2045 page = find_get_page(mapping, offset);
1da177e4
LT
2046 if (!page)
2047 goto no_cached_page;
2048 }
2049
d88c0922
ML
2050 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2051 page_cache_release(page);
d065bd81 2052 return ret | VM_FAULT_RETRY;
d88c0922 2053 }
b522c94d
ML
2054
2055 /* Did it get truncated? */
2056 if (unlikely(page->mapping != mapping)) {
2057 unlock_page(page);
2058 put_page(page);
2059 goto retry_find;
2060 }
309381fe 2061 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2062
1da177e4 2063 /*
d00806b1
NP
2064 * We have a locked page in the page cache, now we need to check
2065 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2066 */
d00806b1 2067 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2068 goto page_not_uptodate;
2069
ef00e08e
LT
2070 /*
2071 * Found the page and have a reference on it.
2072 * We must recheck i_size under page lock.
2073 */
99e3e53f
KS
2074 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2075 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 2076 unlock_page(page);
745ad48e 2077 page_cache_release(page);
5307cc1a 2078 return VM_FAULT_SIGBUS;
d00806b1
NP
2079 }
2080
d0217ac0 2081 vmf->page = page;
83c54070 2082 return ret | VM_FAULT_LOCKED;
1da177e4 2083
1da177e4
LT
2084no_cached_page:
2085 /*
2086 * We're only likely to ever get here if MADV_RANDOM is in
2087 * effect.
2088 */
c20cd45e 2089 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2090
2091 /*
2092 * The page we want has now been added to the page cache.
2093 * In the unlikely event that someone removed it in the
2094 * meantime, we'll just come back here and read it again.
2095 */
2096 if (error >= 0)
2097 goto retry_find;
2098
2099 /*
2100 * An error return from page_cache_read can result if the
2101 * system is low on memory, or a problem occurs while trying
2102 * to schedule I/O.
2103 */
2104 if (error == -ENOMEM)
d0217ac0
NP
2105 return VM_FAULT_OOM;
2106 return VM_FAULT_SIGBUS;
1da177e4
LT
2107
2108page_not_uptodate:
1da177e4
LT
2109 /*
2110 * Umm, take care of errors if the page isn't up-to-date.
2111 * Try to re-read it _once_. We do this synchronously,
2112 * because there really aren't any performance issues here
2113 * and we need to check for errors.
2114 */
1da177e4 2115 ClearPageError(page);
994fc28c 2116 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2117 if (!error) {
2118 wait_on_page_locked(page);
2119 if (!PageUptodate(page))
2120 error = -EIO;
2121 }
d00806b1
NP
2122 page_cache_release(page);
2123
2124 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2125 goto retry_find;
1da177e4 2126
d00806b1 2127 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2128 shrink_readahead_size_eio(file, ra);
d0217ac0 2129 return VM_FAULT_SIGBUS;
54cb8821
NP
2130}
2131EXPORT_SYMBOL(filemap_fault);
2132
f1820361
KS
2133void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2134{
2135 struct radix_tree_iter iter;
2136 void **slot;
2137 struct file *file = vma->vm_file;
2138 struct address_space *mapping = file->f_mapping;
2139 loff_t size;
2140 struct page *page;
2141 unsigned long address = (unsigned long) vmf->virtual_address;
2142 unsigned long addr;
2143 pte_t *pte;
2144
2145 rcu_read_lock();
2146 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2147 if (iter.index > vmf->max_pgoff)
2148 break;
2149repeat:
2150 page = radix_tree_deref_slot(slot);
2151 if (unlikely(!page))
2152 goto next;
2153 if (radix_tree_exception(page)) {
2cf938aa
MW
2154 if (radix_tree_deref_retry(page)) {
2155 slot = radix_tree_iter_retry(&iter);
2156 continue;
2157 }
2158 goto next;
f1820361
KS
2159 }
2160
2161 if (!page_cache_get_speculative(page))
2162 goto repeat;
2163
2164 /* Has the page moved? */
2165 if (unlikely(page != *slot)) {
2166 page_cache_release(page);
2167 goto repeat;
2168 }
2169
2170 if (!PageUptodate(page) ||
2171 PageReadahead(page) ||
2172 PageHWPoison(page))
2173 goto skip;
2174 if (!trylock_page(page))
2175 goto skip;
2176
2177 if (page->mapping != mapping || !PageUptodate(page))
2178 goto unlock;
2179
99e3e53f
KS
2180 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2181 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2182 goto unlock;
2183
2184 pte = vmf->pte + page->index - vmf->pgoff;
2185 if (!pte_none(*pte))
2186 goto unlock;
2187
2188 if (file->f_ra.mmap_miss > 0)
2189 file->f_ra.mmap_miss--;
2190 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2191 do_set_pte(vma, addr, page, pte, false, false);
2192 unlock_page(page);
2193 goto next;
2194unlock:
2195 unlock_page(page);
2196skip:
2197 page_cache_release(page);
2198next:
2199 if (iter.index == vmf->max_pgoff)
2200 break;
2201 }
2202 rcu_read_unlock();
2203}
2204EXPORT_SYMBOL(filemap_map_pages);
2205
4fcf1c62
JK
2206int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2207{
2208 struct page *page = vmf->page;
496ad9aa 2209 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2210 int ret = VM_FAULT_LOCKED;
2211
14da9200 2212 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2213 file_update_time(vma->vm_file);
2214 lock_page(page);
2215 if (page->mapping != inode->i_mapping) {
2216 unlock_page(page);
2217 ret = VM_FAULT_NOPAGE;
2218 goto out;
2219 }
14da9200
JK
2220 /*
2221 * We mark the page dirty already here so that when freeze is in
2222 * progress, we are guaranteed that writeback during freezing will
2223 * see the dirty page and writeprotect it again.
2224 */
2225 set_page_dirty(page);
1d1d1a76 2226 wait_for_stable_page(page);
4fcf1c62 2227out:
14da9200 2228 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2229 return ret;
2230}
2231EXPORT_SYMBOL(filemap_page_mkwrite);
2232
f0f37e2f 2233const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2234 .fault = filemap_fault,
f1820361 2235 .map_pages = filemap_map_pages,
4fcf1c62 2236 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2237};
2238
2239/* This is used for a general mmap of a disk file */
2240
2241int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2242{
2243 struct address_space *mapping = file->f_mapping;
2244
2245 if (!mapping->a_ops->readpage)
2246 return -ENOEXEC;
2247 file_accessed(file);
2248 vma->vm_ops = &generic_file_vm_ops;
2249 return 0;
2250}
1da177e4
LT
2251
2252/*
2253 * This is for filesystems which do not implement ->writepage.
2254 */
2255int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2256{
2257 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2258 return -EINVAL;
2259 return generic_file_mmap(file, vma);
2260}
2261#else
2262int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2263{
2264 return -ENOSYS;
2265}
2266int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2267{
2268 return -ENOSYS;
2269}
2270#endif /* CONFIG_MMU */
2271
2272EXPORT_SYMBOL(generic_file_mmap);
2273EXPORT_SYMBOL(generic_file_readonly_mmap);
2274
67f9fd91
SL
2275static struct page *wait_on_page_read(struct page *page)
2276{
2277 if (!IS_ERR(page)) {
2278 wait_on_page_locked(page);
2279 if (!PageUptodate(page)) {
2280 page_cache_release(page);
2281 page = ERR_PTR(-EIO);
2282 }
2283 }
2284 return page;
2285}
2286
32b63529 2287static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2288 pgoff_t index,
5e5358e7 2289 int (*filler)(void *, struct page *),
0531b2aa
LT
2290 void *data,
2291 gfp_t gfp)
1da177e4 2292{
eb2be189 2293 struct page *page;
1da177e4
LT
2294 int err;
2295repeat:
2296 page = find_get_page(mapping, index);
2297 if (!page) {
0531b2aa 2298 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2299 if (!page)
2300 return ERR_PTR(-ENOMEM);
e6f67b8c 2301 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2302 if (unlikely(err)) {
2303 page_cache_release(page);
2304 if (err == -EEXIST)
2305 goto repeat;
1da177e4 2306 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2307 return ERR_PTR(err);
2308 }
32b63529
MG
2309
2310filler:
1da177e4
LT
2311 err = filler(data, page);
2312 if (err < 0) {
2313 page_cache_release(page);
32b63529 2314 return ERR_PTR(err);
1da177e4 2315 }
1da177e4 2316
32b63529
MG
2317 page = wait_on_page_read(page);
2318 if (IS_ERR(page))
2319 return page;
2320 goto out;
2321 }
1da177e4
LT
2322 if (PageUptodate(page))
2323 goto out;
2324
ebded027
MG
2325 /*
2326 * Page is not up to date and may be locked due one of the following
2327 * case a: Page is being filled and the page lock is held
2328 * case b: Read/write error clearing the page uptodate status
2329 * case c: Truncation in progress (page locked)
2330 * case d: Reclaim in progress
2331 *
2332 * Case a, the page will be up to date when the page is unlocked.
2333 * There is no need to serialise on the page lock here as the page
2334 * is pinned so the lock gives no additional protection. Even if the
2335 * the page is truncated, the data is still valid if PageUptodate as
2336 * it's a race vs truncate race.
2337 * Case b, the page will not be up to date
2338 * Case c, the page may be truncated but in itself, the data may still
2339 * be valid after IO completes as it's a read vs truncate race. The
2340 * operation must restart if the page is not uptodate on unlock but
2341 * otherwise serialising on page lock to stabilise the mapping gives
2342 * no additional guarantees to the caller as the page lock is
2343 * released before return.
2344 * Case d, similar to truncation. If reclaim holds the page lock, it
2345 * will be a race with remove_mapping that determines if the mapping
2346 * is valid on unlock but otherwise the data is valid and there is
2347 * no need to serialise with page lock.
2348 *
2349 * As the page lock gives no additional guarantee, we optimistically
2350 * wait on the page to be unlocked and check if it's up to date and
2351 * use the page if it is. Otherwise, the page lock is required to
2352 * distinguish between the different cases. The motivation is that we
2353 * avoid spurious serialisations and wakeups when multiple processes
2354 * wait on the same page for IO to complete.
2355 */
2356 wait_on_page_locked(page);
2357 if (PageUptodate(page))
2358 goto out;
2359
2360 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2361 lock_page(page);
ebded027
MG
2362
2363 /* Case c or d, restart the operation */
1da177e4
LT
2364 if (!page->mapping) {
2365 unlock_page(page);
2366 page_cache_release(page);
32b63529 2367 goto repeat;
1da177e4 2368 }
ebded027
MG
2369
2370 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2371 if (PageUptodate(page)) {
2372 unlock_page(page);
2373 goto out;
2374 }
32b63529
MG
2375 goto filler;
2376
c855ff37 2377out:
6fe6900e
NP
2378 mark_page_accessed(page);
2379 return page;
2380}
0531b2aa
LT
2381
2382/**
67f9fd91 2383 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2384 * @mapping: the page's address_space
2385 * @index: the page index
2386 * @filler: function to perform the read
5e5358e7 2387 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2388 *
0531b2aa 2389 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2390 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2391 *
2392 * If the page does not get brought uptodate, return -EIO.
2393 */
67f9fd91 2394struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2395 pgoff_t index,
5e5358e7 2396 int (*filler)(void *, struct page *),
0531b2aa
LT
2397 void *data)
2398{
2399 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2400}
67f9fd91 2401EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2402
2403/**
2404 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2405 * @mapping: the page's address_space
2406 * @index: the page index
2407 * @gfp: the page allocator flags to use if allocating
2408 *
2409 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2410 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2411 *
2412 * If the page does not get brought uptodate, return -EIO.
2413 */
2414struct page *read_cache_page_gfp(struct address_space *mapping,
2415 pgoff_t index,
2416 gfp_t gfp)
2417{
2418 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2419
67f9fd91 2420 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2421}
2422EXPORT_SYMBOL(read_cache_page_gfp);
2423
1da177e4
LT
2424/*
2425 * Performs necessary checks before doing a write
2426 *
485bb99b 2427 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2428 * Returns appropriate error code that caller should return or
2429 * zero in case that write should be allowed.
2430 */
3309dd04 2431inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2432{
3309dd04 2433 struct file *file = iocb->ki_filp;
1da177e4 2434 struct inode *inode = file->f_mapping->host;
59e99e5b 2435 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2436 loff_t pos;
1da177e4 2437
3309dd04
AV
2438 if (!iov_iter_count(from))
2439 return 0;
1da177e4 2440
0fa6b005 2441 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2442 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2443 iocb->ki_pos = i_size_read(inode);
1da177e4 2444
3309dd04 2445 pos = iocb->ki_pos;
1da177e4 2446
0fa6b005 2447 if (limit != RLIM_INFINITY) {
3309dd04 2448 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2449 send_sig(SIGXFSZ, current, 0);
2450 return -EFBIG;
1da177e4 2451 }
3309dd04 2452 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2453 }
2454
2455 /*
2456 * LFS rule
2457 */
3309dd04 2458 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2459 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2460 if (pos >= MAX_NON_LFS)
1da177e4 2461 return -EFBIG;
3309dd04 2462 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2463 }
2464
2465 /*
2466 * Are we about to exceed the fs block limit ?
2467 *
2468 * If we have written data it becomes a short write. If we have
2469 * exceeded without writing data we send a signal and return EFBIG.
2470 * Linus frestrict idea will clean these up nicely..
2471 */
3309dd04
AV
2472 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2473 return -EFBIG;
1da177e4 2474
3309dd04
AV
2475 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2476 return iov_iter_count(from);
1da177e4
LT
2477}
2478EXPORT_SYMBOL(generic_write_checks);
2479
afddba49
NP
2480int pagecache_write_begin(struct file *file, struct address_space *mapping,
2481 loff_t pos, unsigned len, unsigned flags,
2482 struct page **pagep, void **fsdata)
2483{
2484 const struct address_space_operations *aops = mapping->a_ops;
2485
4e02ed4b 2486 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2487 pagep, fsdata);
afddba49
NP
2488}
2489EXPORT_SYMBOL(pagecache_write_begin);
2490
2491int pagecache_write_end(struct file *file, struct address_space *mapping,
2492 loff_t pos, unsigned len, unsigned copied,
2493 struct page *page, void *fsdata)
2494{
2495 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2496
4e02ed4b 2497 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2498}
2499EXPORT_SYMBOL(pagecache_write_end);
2500
1da177e4 2501ssize_t
0c949334 2502generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2503{
2504 struct file *file = iocb->ki_filp;
2505 struct address_space *mapping = file->f_mapping;
2506 struct inode *inode = mapping->host;
2507 ssize_t written;
a969e903
CH
2508 size_t write_len;
2509 pgoff_t end;
26978b8b 2510 struct iov_iter data;
1da177e4 2511
0c949334 2512 write_len = iov_iter_count(from);
a969e903 2513 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2514
48b47c56 2515 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2516 if (written)
2517 goto out;
2518
2519 /*
2520 * After a write we want buffered reads to be sure to go to disk to get
2521 * the new data. We invalidate clean cached page from the region we're
2522 * about to write. We do this *before* the write so that we can return
6ccfa806 2523 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2524 */
2525 if (mapping->nrpages) {
2526 written = invalidate_inode_pages2_range(mapping,
2527 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2528 /*
2529 * If a page can not be invalidated, return 0 to fall back
2530 * to buffered write.
2531 */
2532 if (written) {
2533 if (written == -EBUSY)
2534 return 0;
a969e903 2535 goto out;
6ccfa806 2536 }
a969e903
CH
2537 }
2538
26978b8b 2539 data = *from;
22c6186e 2540 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2541
2542 /*
2543 * Finally, try again to invalidate clean pages which might have been
2544 * cached by non-direct readahead, or faulted in by get_user_pages()
2545 * if the source of the write was an mmap'ed region of the file
2546 * we're writing. Either one is a pretty crazy thing to do,
2547 * so we don't support it 100%. If this invalidation
2548 * fails, tough, the write still worked...
2549 */
2550 if (mapping->nrpages) {
2551 invalidate_inode_pages2_range(mapping,
2552 pos >> PAGE_CACHE_SHIFT, end);
2553 }
2554
1da177e4 2555 if (written > 0) {
0116651c 2556 pos += written;
f8579f86 2557 iov_iter_advance(from, written);
0116651c
NK
2558 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2559 i_size_write(inode, pos);
1da177e4
LT
2560 mark_inode_dirty(inode);
2561 }
5cb6c6c7 2562 iocb->ki_pos = pos;
1da177e4 2563 }
a969e903 2564out:
1da177e4
LT
2565 return written;
2566}
2567EXPORT_SYMBOL(generic_file_direct_write);
2568
eb2be189
NP
2569/*
2570 * Find or create a page at the given pagecache position. Return the locked
2571 * page. This function is specifically for buffered writes.
2572 */
54566b2c
NP
2573struct page *grab_cache_page_write_begin(struct address_space *mapping,
2574 pgoff_t index, unsigned flags)
eb2be189 2575{
eb2be189 2576 struct page *page;
2457aec6 2577 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2578
54566b2c 2579 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2580 fgp_flags |= FGP_NOFS;
2581
2582 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2583 mapping_gfp_mask(mapping));
c585a267 2584 if (page)
2457aec6 2585 wait_for_stable_page(page);
eb2be189 2586
eb2be189
NP
2587 return page;
2588}
54566b2c 2589EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2590
3b93f911 2591ssize_t generic_perform_write(struct file *file,
afddba49
NP
2592 struct iov_iter *i, loff_t pos)
2593{
2594 struct address_space *mapping = file->f_mapping;
2595 const struct address_space_operations *a_ops = mapping->a_ops;
2596 long status = 0;
2597 ssize_t written = 0;
674b892e
NP
2598 unsigned int flags = 0;
2599
2600 /*
2601 * Copies from kernel address space cannot fail (NFSD is a big user).
2602 */
777eda2c 2603 if (!iter_is_iovec(i))
674b892e 2604 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2605
2606 do {
2607 struct page *page;
afddba49
NP
2608 unsigned long offset; /* Offset into pagecache page */
2609 unsigned long bytes; /* Bytes to write to page */
2610 size_t copied; /* Bytes copied from user */
2611 void *fsdata;
2612
2613 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2614 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2615 iov_iter_count(i));
2616
2617again:
00a3d660
LT
2618 /*
2619 * Bring in the user page that we will copy from _first_.
2620 * Otherwise there's a nasty deadlock on copying from the
2621 * same page as we're writing to, without it being marked
2622 * up-to-date.
2623 *
2624 * Not only is this an optimisation, but it is also required
2625 * to check that the address is actually valid, when atomic
2626 * usercopies are used, below.
2627 */
2628 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2629 status = -EFAULT;
2630 break;
2631 }
2632
296291cd
JK
2633 if (fatal_signal_pending(current)) {
2634 status = -EINTR;
2635 break;
2636 }
2637
674b892e 2638 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2639 &page, &fsdata);
2457aec6 2640 if (unlikely(status < 0))
afddba49
NP
2641 break;
2642
931e80e4 2643 if (mapping_writably_mapped(mapping))
2644 flush_dcache_page(page);
00a3d660 2645
afddba49 2646 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2647 flush_dcache_page(page);
2648
2649 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2650 page, fsdata);
2651 if (unlikely(status < 0))
2652 break;
2653 copied = status;
2654
2655 cond_resched();
2656
124d3b70 2657 iov_iter_advance(i, copied);
afddba49
NP
2658 if (unlikely(copied == 0)) {
2659 /*
2660 * If we were unable to copy any data at all, we must
2661 * fall back to a single segment length write.
2662 *
2663 * If we didn't fallback here, we could livelock
2664 * because not all segments in the iov can be copied at
2665 * once without a pagefault.
2666 */
2667 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2668 iov_iter_single_seg_count(i));
2669 goto again;
2670 }
afddba49
NP
2671 pos += copied;
2672 written += copied;
2673
2674 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2675 } while (iov_iter_count(i));
2676
2677 return written ? written : status;
2678}
3b93f911 2679EXPORT_SYMBOL(generic_perform_write);
1da177e4 2680
e4dd9de3 2681/**
8174202b 2682 * __generic_file_write_iter - write data to a file
e4dd9de3 2683 * @iocb: IO state structure (file, offset, etc.)
8174202b 2684 * @from: iov_iter with data to write
e4dd9de3
JK
2685 *
2686 * This function does all the work needed for actually writing data to a
2687 * file. It does all basic checks, removes SUID from the file, updates
2688 * modification times and calls proper subroutines depending on whether we
2689 * do direct IO or a standard buffered write.
2690 *
2691 * It expects i_mutex to be grabbed unless we work on a block device or similar
2692 * object which does not need locking at all.
2693 *
2694 * This function does *not* take care of syncing data in case of O_SYNC write.
2695 * A caller has to handle it. This is mainly due to the fact that we want to
2696 * avoid syncing under i_mutex.
2697 */
8174202b 2698ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2699{
2700 struct file *file = iocb->ki_filp;
fb5527e6 2701 struct address_space * mapping = file->f_mapping;
1da177e4 2702 struct inode *inode = mapping->host;
3b93f911 2703 ssize_t written = 0;
1da177e4 2704 ssize_t err;
3b93f911 2705 ssize_t status;
1da177e4 2706
1da177e4 2707 /* We can write back this queue in page reclaim */
de1414a6 2708 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2709 err = file_remove_privs(file);
1da177e4
LT
2710 if (err)
2711 goto out;
2712
c3b2da31
JB
2713 err = file_update_time(file);
2714 if (err)
2715 goto out;
1da177e4 2716
2ba48ce5 2717 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2718 loff_t pos, endbyte;
fb5527e6 2719
0b8def9d 2720 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2721 /*
fbbbad4b
MW
2722 * If the write stopped short of completing, fall back to
2723 * buffered writes. Some filesystems do this for writes to
2724 * holes, for example. For DAX files, a buffered write will
2725 * not succeed (even if it did, DAX does not handle dirty
2726 * page-cache pages correctly).
1da177e4 2727 */
0b8def9d 2728 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2729 goto out;
2730
0b8def9d 2731 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2732 /*
3b93f911 2733 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2734 * then we want to return the number of bytes which were
2735 * direct-written, or the error code if that was zero. Note
2736 * that this differs from normal direct-io semantics, which
2737 * will return -EFOO even if some bytes were written.
2738 */
60bb4529 2739 if (unlikely(status < 0)) {
3b93f911 2740 err = status;
fb5527e6
JM
2741 goto out;
2742 }
fb5527e6
JM
2743 /*
2744 * We need to ensure that the page cache pages are written to
2745 * disk and invalidated to preserve the expected O_DIRECT
2746 * semantics.
2747 */
3b93f911 2748 endbyte = pos + status - 1;
0b8def9d 2749 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2750 if (err == 0) {
0b8def9d 2751 iocb->ki_pos = endbyte + 1;
3b93f911 2752 written += status;
fb5527e6
JM
2753 invalidate_mapping_pages(mapping,
2754 pos >> PAGE_CACHE_SHIFT,
2755 endbyte >> PAGE_CACHE_SHIFT);
2756 } else {
2757 /*
2758 * We don't know how much we wrote, so just return
2759 * the number of bytes which were direct-written
2760 */
2761 }
2762 } else {
0b8def9d
AV
2763 written = generic_perform_write(file, from, iocb->ki_pos);
2764 if (likely(written > 0))
2765 iocb->ki_pos += written;
fb5527e6 2766 }
1da177e4
LT
2767out:
2768 current->backing_dev_info = NULL;
2769 return written ? written : err;
2770}
8174202b 2771EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2772
e4dd9de3 2773/**
8174202b 2774 * generic_file_write_iter - write data to a file
e4dd9de3 2775 * @iocb: IO state structure
8174202b 2776 * @from: iov_iter with data to write
e4dd9de3 2777 *
8174202b 2778 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2779 * filesystems. It takes care of syncing the file in case of O_SYNC file
2780 * and acquires i_mutex as needed.
2781 */
8174202b 2782ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2783{
2784 struct file *file = iocb->ki_filp;
148f948b 2785 struct inode *inode = file->f_mapping->host;
1da177e4 2786 ssize_t ret;
1da177e4 2787
5955102c 2788 inode_lock(inode);
3309dd04
AV
2789 ret = generic_write_checks(iocb, from);
2790 if (ret > 0)
5f380c7f 2791 ret = __generic_file_write_iter(iocb, from);
5955102c 2792 inode_unlock(inode);
1da177e4 2793
02afc27f 2794 if (ret > 0) {
1da177e4
LT
2795 ssize_t err;
2796
d311d79d
AV
2797 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2798 if (err < 0)
1da177e4
LT
2799 ret = err;
2800 }
2801 return ret;
2802}
8174202b 2803EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2804
cf9a2ae8
DH
2805/**
2806 * try_to_release_page() - release old fs-specific metadata on a page
2807 *
2808 * @page: the page which the kernel is trying to free
2809 * @gfp_mask: memory allocation flags (and I/O mode)
2810 *
2811 * The address_space is to try to release any data against the page
2812 * (presumably at page->private). If the release was successful, return `1'.
2813 * Otherwise return zero.
2814 *
266cf658
DH
2815 * This may also be called if PG_fscache is set on a page, indicating that the
2816 * page is known to the local caching routines.
2817 *
cf9a2ae8 2818 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2819 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2820 *
cf9a2ae8
DH
2821 */
2822int try_to_release_page(struct page *page, gfp_t gfp_mask)
2823{
2824 struct address_space * const mapping = page->mapping;
2825
2826 BUG_ON(!PageLocked(page));
2827 if (PageWriteback(page))
2828 return 0;
2829
2830 if (mapping && mapping->a_ops->releasepage)
2831 return mapping->a_ops->releasepage(page, gfp_mask);
2832 return try_to_free_buffers(page);
2833}
2834
2835EXPORT_SYMBOL(try_to_release_page);