PCI: Tolerate hierarchies with no Root Port
[linux-2.6-block.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
c59ede7b 16#include <linux/capability.h>
1da177e4 17#include <linux/kernel_stat.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
53253383 27#include <linux/backing-dev.h>
1da177e4
LT
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
44110fe3 31#include <linux/cpuset.h>
2f718ffc 32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 33#include <linux/hugetlb.h>
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
c8c06efa 64 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
c8c06efa 70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
c8c06efa 73 * ->i_mmap_rwsem
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
c8c06efa 87 * ->i_mmap_rwsem
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
c8c06efa 108 * ->i_mmap_rwsem
9a3c531d 109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
91b0abe3
JW
112static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114{
449dd698
JW
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
91b0abe3 120
449dd698
JW
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
91b0abe3
JW
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
449dd698 134 }
91b0abe3 135 mapping->nrpages--;
449dd698
JW
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
91b0abe3
JW
173}
174
1da177e4 175/*
e64a782f 176 * Delete a page from the page cache and free it. Caller has to make
1da177e4 177 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
178 * is safe. The caller must hold the mapping's tree_lock and
179 * mem_cgroup_begin_page_stat().
1da177e4 180 */
c4843a75
GT
181void __delete_from_page_cache(struct page *page, void *shadow,
182 struct mem_cgroup *memcg)
1da177e4
LT
183{
184 struct address_space *mapping = page->mapping;
185
fe0bfaaf 186 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
3167760f 195 cleancache_invalidate_page(mapping, page);
c515e1fd 196
91b0abe3
JW
197 page_cache_tree_delete(mapping, page, shadow);
198
1da177e4 199 page->mapping = NULL;
b85e0eff 200 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 201
4165b9b4
MH
202 /* hugetlb pages do not participate in page cache accounting. */
203 if (!PageHuge(page))
204 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
205 if (PageSwapBacked(page))
206 __dec_zone_page_state(page, NR_SHMEM);
45426812 207 BUG_ON(page_mapped(page));
3a692790
LT
208
209 /*
b9ea2515
KK
210 * At this point page must be either written or cleaned by truncate.
211 * Dirty page here signals a bug and loss of unwritten data.
3a692790 212 *
b9ea2515
KK
213 * This fixes dirty accounting after removing the page entirely but
214 * leaves PageDirty set: it has no effect for truncated page and
215 * anyway will be cleared before returning page into buddy allocator.
3a692790 216 */
b9ea2515 217 if (WARN_ON_ONCE(PageDirty(page)))
682aa8e1
TH
218 account_page_cleaned(page, mapping, memcg,
219 inode_to_wb(mapping->host));
1da177e4
LT
220}
221
702cfbf9
MK
222/**
223 * delete_from_page_cache - delete page from page cache
224 * @page: the page which the kernel is trying to remove from page cache
225 *
226 * This must be called only on pages that have been verified to be in the page
227 * cache and locked. It will never put the page into the free list, the caller
228 * has a reference on the page.
229 */
230void delete_from_page_cache(struct page *page)
1da177e4
LT
231{
232 struct address_space *mapping = page->mapping;
c4843a75
GT
233 struct mem_cgroup *memcg;
234 unsigned long flags;
235
6072d13c 236 void (*freepage)(struct page *);
1da177e4 237
cd7619d6 238 BUG_ON(!PageLocked(page));
1da177e4 239
6072d13c 240 freepage = mapping->a_ops->freepage;
c4843a75
GT
241
242 memcg = mem_cgroup_begin_page_stat(page);
243 spin_lock_irqsave(&mapping->tree_lock, flags);
244 __delete_from_page_cache(page, NULL, memcg);
245 spin_unlock_irqrestore(&mapping->tree_lock, flags);
246 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
247
248 if (freepage)
249 freepage(page);
97cecb5a
MK
250 page_cache_release(page);
251}
252EXPORT_SYMBOL(delete_from_page_cache);
253
865ffef3
DM
254static int filemap_check_errors(struct address_space *mapping)
255{
256 int ret = 0;
257 /* Check for outstanding write errors */
7fcbbaf1
JA
258 if (test_bit(AS_ENOSPC, &mapping->flags) &&
259 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 260 ret = -ENOSPC;
7fcbbaf1
JA
261 if (test_bit(AS_EIO, &mapping->flags) &&
262 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
263 ret = -EIO;
264 return ret;
265}
266
1da177e4 267/**
485bb99b 268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
269 * @mapping: address space structure to write
270 * @start: offset in bytes where the range starts
469eb4d0 271 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 272 * @sync_mode: enable synchronous operation
1da177e4 273 *
485bb99b
RD
274 * Start writeback against all of a mapping's dirty pages that lie
275 * within the byte offsets <start, end> inclusive.
276 *
1da177e4 277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 278 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
279 * these two operations is that if a dirty page/buffer is encountered, it must
280 * be waited upon, and not just skipped over.
281 */
ebcf28e1
AM
282int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 loff_t end, int sync_mode)
1da177e4
LT
284{
285 int ret;
286 struct writeback_control wbc = {
287 .sync_mode = sync_mode,
05fe478d 288 .nr_to_write = LONG_MAX,
111ebb6e
OH
289 .range_start = start,
290 .range_end = end,
1da177e4
LT
291 };
292
293 if (!mapping_cap_writeback_dirty(mapping))
294 return 0;
295
b16b1deb 296 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 297 ret = do_writepages(mapping, &wbc);
b16b1deb 298 wbc_detach_inode(&wbc);
1da177e4
LT
299 return ret;
300}
301
302static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304{
111ebb6e 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
306}
307
308int filemap_fdatawrite(struct address_space *mapping)
309{
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311}
312EXPORT_SYMBOL(filemap_fdatawrite);
313
f4c0a0fd 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 315 loff_t end)
1da177e4
LT
316{
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318}
f4c0a0fd 319EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 320
485bb99b
RD
321/**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
1da177e4
LT
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328int filemap_flush(struct address_space *mapping)
329{
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331}
332EXPORT_SYMBOL(filemap_flush);
333
485bb99b 334/**
94004ed7
CH
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 339 *
94004ed7
CH
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
1da177e4 342 */
94004ed7
CH
343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
1da177e4 345{
94004ed7
CH
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
348 struct pagevec pvec;
349 int nr_pages;
865ffef3 350 int ret2, ret = 0;
1da177e4 351
94004ed7 352 if (end_byte < start_byte)
865ffef3 353 goto out;
1da177e4
LT
354
355 pagevec_init(&pvec, 0);
1da177e4
LT
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
212260aa 370 if (TestClearPageError(page))
1da177e4
LT
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
865ffef3
DM
376out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
1da177e4
LT
380
381 return ret;
382}
d3bccb6f
JK
383EXPORT_SYMBOL(filemap_fdatawait_range);
384
1da177e4 385/**
485bb99b 386 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 387 * @mapping: address space structure to wait for
485bb99b
RD
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
1da177e4
LT
391 */
392int filemap_fdatawait(struct address_space *mapping)
393{
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
94004ed7 399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
400}
401EXPORT_SYMBOL(filemap_fdatawait);
402
403int filemap_write_and_wait(struct address_space *mapping)
404{
28fd1298 405 int err = 0;
1da177e4
LT
406
407 if (mapping->nrpages) {
28fd1298
OH
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
865ffef3
DM
420 } else {
421 err = filemap_check_errors(mapping);
1da177e4 422 }
28fd1298 423 return err;
1da177e4 424}
28fd1298 425EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 426
485bb99b
RD
427/**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
469eb4d0
AM
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
1da177e4
LT
438int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440{
28fd1298 441 int err = 0;
1da177e4
LT
442
443 if (mapping->nrpages) {
28fd1298
OH
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
94004ed7
CH
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
28fd1298
OH
450 if (!err)
451 err = err2;
452 }
865ffef3
DM
453 } else {
454 err = filemap_check_errors(mapping);
1da177e4 455 }
28fd1298 456 return err;
1da177e4 457}
f6995585 458EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 459
ef6a3c63
MS
460/**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476{
477 int error;
ef6a3c63 478
309381fe
SL
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 482
ef6a3c63
MS
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
c4843a75
GT
487 struct mem_cgroup *memcg;
488 unsigned long flags;
ef6a3c63
MS
489
490 pgoff_t offset = old->index;
491 freepage = mapping->a_ops->freepage;
492
493 page_cache_get(new);
494 new->mapping = mapping;
495 new->index = offset;
496
c4843a75
GT
497 memcg = mem_cgroup_begin_page_stat(old);
498 spin_lock_irqsave(&mapping->tree_lock, flags);
499 __delete_from_page_cache(old, NULL, memcg);
ef6a3c63
MS
500 error = radix_tree_insert(&mapping->page_tree, offset, new);
501 BUG_ON(error);
502 mapping->nrpages++;
4165b9b4
MH
503
504 /*
505 * hugetlb pages do not participate in page cache accounting.
506 */
507 if (!PageHuge(new))
508 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
509 if (PageSwapBacked(new))
510 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
511 spin_unlock_irqrestore(&mapping->tree_lock, flags);
512 mem_cgroup_end_page_stat(memcg);
0a31bc97 513 mem_cgroup_migrate(old, new, true);
ef6a3c63
MS
514 radix_tree_preload_end();
515 if (freepage)
516 freepage(old);
517 page_cache_release(old);
ef6a3c63
MS
518 }
519
520 return error;
521}
522EXPORT_SYMBOL_GPL(replace_page_cache_page);
523
0cd6144a 524static int page_cache_tree_insert(struct address_space *mapping,
a528910e 525 struct page *page, void **shadowp)
0cd6144a 526{
449dd698 527 struct radix_tree_node *node;
0cd6144a
JW
528 void **slot;
529 int error;
530
449dd698
JW
531 error = __radix_tree_create(&mapping->page_tree, page->index,
532 &node, &slot);
533 if (error)
534 return error;
535 if (*slot) {
0cd6144a
JW
536 void *p;
537
538 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
539 if (!radix_tree_exceptional_entry(p))
540 return -EEXIST;
a528910e
JW
541 if (shadowp)
542 *shadowp = p;
449dd698
JW
543 mapping->nrshadows--;
544 if (node)
545 workingset_node_shadows_dec(node);
0cd6144a 546 }
449dd698
JW
547 radix_tree_replace_slot(slot, page);
548 mapping->nrpages++;
549 if (node) {
550 workingset_node_pages_inc(node);
551 /*
552 * Don't track node that contains actual pages.
553 *
554 * Avoid acquiring the list_lru lock if already
555 * untracked. The list_empty() test is safe as
556 * node->private_list is protected by
557 * mapping->tree_lock.
558 */
559 if (!list_empty(&node->private_list))
560 list_lru_del(&workingset_shadow_nodes,
561 &node->private_list);
562 }
563 return 0;
0cd6144a
JW
564}
565
a528910e
JW
566static int __add_to_page_cache_locked(struct page *page,
567 struct address_space *mapping,
568 pgoff_t offset, gfp_t gfp_mask,
569 void **shadowp)
1da177e4 570{
00501b53
JW
571 int huge = PageHuge(page);
572 struct mem_cgroup *memcg;
e286781d
NP
573 int error;
574
309381fe
SL
575 VM_BUG_ON_PAGE(!PageLocked(page), page);
576 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 577
00501b53
JW
578 if (!huge) {
579 error = mem_cgroup_try_charge(page, current->mm,
580 gfp_mask, &memcg);
581 if (error)
582 return error;
583 }
1da177e4 584
5e4c0d97 585 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 586 if (error) {
00501b53
JW
587 if (!huge)
588 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
589 return error;
590 }
591
592 page_cache_get(page);
593 page->mapping = mapping;
594 page->index = offset;
595
596 spin_lock_irq(&mapping->tree_lock);
a528910e 597 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
598 radix_tree_preload_end();
599 if (unlikely(error))
600 goto err_insert;
4165b9b4
MH
601
602 /* hugetlb pages do not participate in page cache accounting. */
603 if (!huge)
604 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 605 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
606 if (!huge)
607 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
608 trace_mm_filemap_add_to_page_cache(page);
609 return 0;
610err_insert:
611 page->mapping = NULL;
612 /* Leave page->index set: truncation relies upon it */
613 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
614 if (!huge)
615 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 616 page_cache_release(page);
1da177e4
LT
617 return error;
618}
a528910e
JW
619
620/**
621 * add_to_page_cache_locked - add a locked page to the pagecache
622 * @page: page to add
623 * @mapping: the page's address_space
624 * @offset: page index
625 * @gfp_mask: page allocation mode
626 *
627 * This function is used to add a page to the pagecache. It must be locked.
628 * This function does not add the page to the LRU. The caller must do that.
629 */
630int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
631 pgoff_t offset, gfp_t gfp_mask)
632{
633 return __add_to_page_cache_locked(page, mapping, offset,
634 gfp_mask, NULL);
635}
e286781d 636EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
637
638int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 639 pgoff_t offset, gfp_t gfp_mask)
1da177e4 640{
a528910e 641 void *shadow = NULL;
4f98a2fe
RR
642 int ret;
643
a528910e
JW
644 __set_page_locked(page);
645 ret = __add_to_page_cache_locked(page, mapping, offset,
646 gfp_mask, &shadow);
647 if (unlikely(ret))
648 __clear_page_locked(page);
649 else {
650 /*
651 * The page might have been evicted from cache only
652 * recently, in which case it should be activated like
653 * any other repeatedly accessed page.
654 */
655 if (shadow && workingset_refault(shadow)) {
656 SetPageActive(page);
657 workingset_activation(page);
658 } else
659 ClearPageActive(page);
660 lru_cache_add(page);
661 }
1da177e4
LT
662 return ret;
663}
18bc0bbd 664EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 665
44110fe3 666#ifdef CONFIG_NUMA
2ae88149 667struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 668{
c0ff7453
MX
669 int n;
670 struct page *page;
671
44110fe3 672 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
673 unsigned int cpuset_mems_cookie;
674 do {
d26914d1 675 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
676 n = cpuset_mem_spread_node();
677 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 678 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 679
c0ff7453 680 return page;
44110fe3 681 }
2ae88149 682 return alloc_pages(gfp, 0);
44110fe3 683}
2ae88149 684EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
685#endif
686
1da177e4
LT
687/*
688 * In order to wait for pages to become available there must be
689 * waitqueues associated with pages. By using a hash table of
690 * waitqueues where the bucket discipline is to maintain all
691 * waiters on the same queue and wake all when any of the pages
692 * become available, and for the woken contexts to check to be
693 * sure the appropriate page became available, this saves space
694 * at a cost of "thundering herd" phenomena during rare hash
695 * collisions.
696 */
a4796e37 697wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
698{
699 const struct zone *zone = page_zone(page);
700
701 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
702}
a4796e37 703EXPORT_SYMBOL(page_waitqueue);
1da177e4 704
920c7a5d 705void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
706{
707 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
708
709 if (test_bit(bit_nr, &page->flags))
74316201 710 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
711 TASK_UNINTERRUPTIBLE);
712}
713EXPORT_SYMBOL(wait_on_page_bit);
714
f62e00cc
KM
715int wait_on_page_bit_killable(struct page *page, int bit_nr)
716{
717 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
718
719 if (!test_bit(bit_nr, &page->flags))
720 return 0;
721
722 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 723 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
724}
725
cbbce822
N
726int wait_on_page_bit_killable_timeout(struct page *page,
727 int bit_nr, unsigned long timeout)
728{
729 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
730
731 wait.key.timeout = jiffies + timeout;
732 if (!test_bit(bit_nr, &page->flags))
733 return 0;
734 return __wait_on_bit(page_waitqueue(page), &wait,
735 bit_wait_io_timeout, TASK_KILLABLE);
736}
737EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
738
385e1ca5
DH
739/**
740 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
741 * @page: Page defining the wait queue of interest
742 * @waiter: Waiter to add to the queue
385e1ca5
DH
743 *
744 * Add an arbitrary @waiter to the wait queue for the nominated @page.
745 */
746void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
747{
748 wait_queue_head_t *q = page_waitqueue(page);
749 unsigned long flags;
750
751 spin_lock_irqsave(&q->lock, flags);
752 __add_wait_queue(q, waiter);
753 spin_unlock_irqrestore(&q->lock, flags);
754}
755EXPORT_SYMBOL_GPL(add_page_wait_queue);
756
1da177e4 757/**
485bb99b 758 * unlock_page - unlock a locked page
1da177e4
LT
759 * @page: the page
760 *
761 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
762 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 763 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
764 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
765 *
8413ac9d
NP
766 * The mb is necessary to enforce ordering between the clear_bit and the read
767 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 768 */
920c7a5d 769void unlock_page(struct page *page)
1da177e4 770{
309381fe 771 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 772 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 773 smp_mb__after_atomic();
1da177e4
LT
774 wake_up_page(page, PG_locked);
775}
776EXPORT_SYMBOL(unlock_page);
777
485bb99b
RD
778/**
779 * end_page_writeback - end writeback against a page
780 * @page: the page
1da177e4
LT
781 */
782void end_page_writeback(struct page *page)
783{
888cf2db
MG
784 /*
785 * TestClearPageReclaim could be used here but it is an atomic
786 * operation and overkill in this particular case. Failing to
787 * shuffle a page marked for immediate reclaim is too mild to
788 * justify taking an atomic operation penalty at the end of
789 * ever page writeback.
790 */
791 if (PageReclaim(page)) {
792 ClearPageReclaim(page);
ac6aadb2 793 rotate_reclaimable_page(page);
888cf2db 794 }
ac6aadb2
MS
795
796 if (!test_clear_page_writeback(page))
797 BUG();
798
4e857c58 799 smp_mb__after_atomic();
1da177e4
LT
800 wake_up_page(page, PG_writeback);
801}
802EXPORT_SYMBOL(end_page_writeback);
803
57d99845
MW
804/*
805 * After completing I/O on a page, call this routine to update the page
806 * flags appropriately
807 */
808void page_endio(struct page *page, int rw, int err)
809{
810 if (rw == READ) {
811 if (!err) {
812 SetPageUptodate(page);
813 } else {
814 ClearPageUptodate(page);
815 SetPageError(page);
816 }
817 unlock_page(page);
818 } else { /* rw == WRITE */
819 if (err) {
820 SetPageError(page);
821 if (page->mapping)
822 mapping_set_error(page->mapping, err);
823 }
824 end_page_writeback(page);
825 }
826}
827EXPORT_SYMBOL_GPL(page_endio);
828
485bb99b
RD
829/**
830 * __lock_page - get a lock on the page, assuming we need to sleep to get it
831 * @page: the page to lock
1da177e4 832 */
920c7a5d 833void __lock_page(struct page *page)
1da177e4
LT
834{
835 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
836
74316201 837 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
838 TASK_UNINTERRUPTIBLE);
839}
840EXPORT_SYMBOL(__lock_page);
841
b5606c2d 842int __lock_page_killable(struct page *page)
2687a356
MW
843{
844 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
845
846 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 847 bit_wait_io, TASK_KILLABLE);
2687a356 848}
18bc0bbd 849EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 850
9a95f3cf
PC
851/*
852 * Return values:
853 * 1 - page is locked; mmap_sem is still held.
854 * 0 - page is not locked.
855 * mmap_sem has been released (up_read()), unless flags had both
856 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
857 * which case mmap_sem is still held.
858 *
859 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
860 * with the page locked and the mmap_sem unperturbed.
861 */
d065bd81
ML
862int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
863 unsigned int flags)
864{
37b23e05
KM
865 if (flags & FAULT_FLAG_ALLOW_RETRY) {
866 /*
867 * CAUTION! In this case, mmap_sem is not released
868 * even though return 0.
869 */
870 if (flags & FAULT_FLAG_RETRY_NOWAIT)
871 return 0;
872
873 up_read(&mm->mmap_sem);
874 if (flags & FAULT_FLAG_KILLABLE)
875 wait_on_page_locked_killable(page);
876 else
318b275f 877 wait_on_page_locked(page);
d065bd81 878 return 0;
37b23e05
KM
879 } else {
880 if (flags & FAULT_FLAG_KILLABLE) {
881 int ret;
882
883 ret = __lock_page_killable(page);
884 if (ret) {
885 up_read(&mm->mmap_sem);
886 return 0;
887 }
888 } else
889 __lock_page(page);
890 return 1;
d065bd81
ML
891 }
892}
893
e7b563bb
JW
894/**
895 * page_cache_next_hole - find the next hole (not-present entry)
896 * @mapping: mapping
897 * @index: index
898 * @max_scan: maximum range to search
899 *
900 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
901 * lowest indexed hole.
902 *
903 * Returns: the index of the hole if found, otherwise returns an index
904 * outside of the set specified (in which case 'return - index >=
905 * max_scan' will be true). In rare cases of index wrap-around, 0 will
906 * be returned.
907 *
908 * page_cache_next_hole may be called under rcu_read_lock. However,
909 * like radix_tree_gang_lookup, this will not atomically search a
910 * snapshot of the tree at a single point in time. For example, if a
911 * hole is created at index 5, then subsequently a hole is created at
912 * index 10, page_cache_next_hole covering both indexes may return 10
913 * if called under rcu_read_lock.
914 */
915pgoff_t page_cache_next_hole(struct address_space *mapping,
916 pgoff_t index, unsigned long max_scan)
917{
918 unsigned long i;
919
920 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
921 struct page *page;
922
923 page = radix_tree_lookup(&mapping->page_tree, index);
924 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
925 break;
926 index++;
927 if (index == 0)
928 break;
929 }
930
931 return index;
932}
933EXPORT_SYMBOL(page_cache_next_hole);
934
935/**
936 * page_cache_prev_hole - find the prev hole (not-present entry)
937 * @mapping: mapping
938 * @index: index
939 * @max_scan: maximum range to search
940 *
941 * Search backwards in the range [max(index-max_scan+1, 0), index] for
942 * the first hole.
943 *
944 * Returns: the index of the hole if found, otherwise returns an index
945 * outside of the set specified (in which case 'index - return >=
946 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
947 * will be returned.
948 *
949 * page_cache_prev_hole may be called under rcu_read_lock. However,
950 * like radix_tree_gang_lookup, this will not atomically search a
951 * snapshot of the tree at a single point in time. For example, if a
952 * hole is created at index 10, then subsequently a hole is created at
953 * index 5, page_cache_prev_hole covering both indexes may return 5 if
954 * called under rcu_read_lock.
955 */
956pgoff_t page_cache_prev_hole(struct address_space *mapping,
957 pgoff_t index, unsigned long max_scan)
958{
959 unsigned long i;
960
961 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
962 struct page *page;
963
964 page = radix_tree_lookup(&mapping->page_tree, index);
965 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
966 break;
967 index--;
968 if (index == ULONG_MAX)
969 break;
970 }
971
972 return index;
973}
974EXPORT_SYMBOL(page_cache_prev_hole);
975
485bb99b 976/**
0cd6144a 977 * find_get_entry - find and get a page cache entry
485bb99b 978 * @mapping: the address_space to search
0cd6144a
JW
979 * @offset: the page cache index
980 *
981 * Looks up the page cache slot at @mapping & @offset. If there is a
982 * page cache page, it is returned with an increased refcount.
485bb99b 983 *
139b6a6f
JW
984 * If the slot holds a shadow entry of a previously evicted page, or a
985 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
986 *
987 * Otherwise, %NULL is returned.
1da177e4 988 */
0cd6144a 989struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 990{
a60637c8 991 void **pagep;
1da177e4
LT
992 struct page *page;
993
a60637c8
NP
994 rcu_read_lock();
995repeat:
996 page = NULL;
997 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
998 if (pagep) {
999 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1000 if (unlikely(!page))
1001 goto out;
a2c16d6c 1002 if (radix_tree_exception(page)) {
8079b1c8
HD
1003 if (radix_tree_deref_retry(page))
1004 goto repeat;
1005 /*
139b6a6f
JW
1006 * A shadow entry of a recently evicted page,
1007 * or a swap entry from shmem/tmpfs. Return
1008 * it without attempting to raise page count.
8079b1c8
HD
1009 */
1010 goto out;
a2c16d6c 1011 }
a60637c8
NP
1012 if (!page_cache_get_speculative(page))
1013 goto repeat;
1014
1015 /*
1016 * Has the page moved?
1017 * This is part of the lockless pagecache protocol. See
1018 * include/linux/pagemap.h for details.
1019 */
1020 if (unlikely(page != *pagep)) {
1021 page_cache_release(page);
1022 goto repeat;
1023 }
1024 }
27d20fdd 1025out:
a60637c8
NP
1026 rcu_read_unlock();
1027
1da177e4
LT
1028 return page;
1029}
0cd6144a 1030EXPORT_SYMBOL(find_get_entry);
1da177e4 1031
0cd6144a
JW
1032/**
1033 * find_lock_entry - locate, pin and lock a page cache entry
1034 * @mapping: the address_space to search
1035 * @offset: the page cache index
1036 *
1037 * Looks up the page cache slot at @mapping & @offset. If there is a
1038 * page cache page, it is returned locked and with an increased
1039 * refcount.
1040 *
139b6a6f
JW
1041 * If the slot holds a shadow entry of a previously evicted page, or a
1042 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1043 *
1044 * Otherwise, %NULL is returned.
1045 *
1046 * find_lock_entry() may sleep.
1047 */
1048struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1049{
1050 struct page *page;
1051
1da177e4 1052repeat:
0cd6144a 1053 page = find_get_entry(mapping, offset);
a2c16d6c 1054 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1055 lock_page(page);
1056 /* Has the page been truncated? */
1057 if (unlikely(page->mapping != mapping)) {
1058 unlock_page(page);
1059 page_cache_release(page);
1060 goto repeat;
1da177e4 1061 }
309381fe 1062 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1063 }
1da177e4
LT
1064 return page;
1065}
0cd6144a
JW
1066EXPORT_SYMBOL(find_lock_entry);
1067
1068/**
2457aec6 1069 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1070 * @mapping: the address_space to search
1071 * @offset: the page index
2457aec6 1072 * @fgp_flags: PCG flags
45f87de5 1073 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1074 *
2457aec6 1075 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1076 *
75325189 1077 * PCG flags modify how the page is returned.
0cd6144a 1078 *
2457aec6
MG
1079 * FGP_ACCESSED: the page will be marked accessed
1080 * FGP_LOCK: Page is return locked
1081 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1082 * @gfp_mask and added to the page cache and the VM's LRU
1083 * list. The page is returned locked and with an increased
1084 * refcount. Otherwise, %NULL is returned.
1da177e4 1085 *
2457aec6
MG
1086 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1087 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1088 *
2457aec6 1089 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1090 */
2457aec6 1091struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1092 int fgp_flags, gfp_t gfp_mask)
1da177e4 1093{
eb2be189 1094 struct page *page;
2457aec6 1095
1da177e4 1096repeat:
2457aec6
MG
1097 page = find_get_entry(mapping, offset);
1098 if (radix_tree_exceptional_entry(page))
1099 page = NULL;
1100 if (!page)
1101 goto no_page;
1102
1103 if (fgp_flags & FGP_LOCK) {
1104 if (fgp_flags & FGP_NOWAIT) {
1105 if (!trylock_page(page)) {
1106 page_cache_release(page);
1107 return NULL;
1108 }
1109 } else {
1110 lock_page(page);
1111 }
1112
1113 /* Has the page been truncated? */
1114 if (unlikely(page->mapping != mapping)) {
1115 unlock_page(page);
1116 page_cache_release(page);
1117 goto repeat;
1118 }
1119 VM_BUG_ON_PAGE(page->index != offset, page);
1120 }
1121
1122 if (page && (fgp_flags & FGP_ACCESSED))
1123 mark_page_accessed(page);
1124
1125no_page:
1126 if (!page && (fgp_flags & FGP_CREAT)) {
1127 int err;
1128 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1129 gfp_mask |= __GFP_WRITE;
1130 if (fgp_flags & FGP_NOFS)
1131 gfp_mask &= ~__GFP_FS;
2457aec6 1132
45f87de5 1133 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1134 if (!page)
1135 return NULL;
2457aec6
MG
1136
1137 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1138 fgp_flags |= FGP_LOCK;
1139
eb39d618 1140 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1141 if (fgp_flags & FGP_ACCESSED)
eb39d618 1142 __SetPageReferenced(page);
2457aec6 1143
45f87de5
MH
1144 err = add_to_page_cache_lru(page, mapping, offset,
1145 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1146 if (unlikely(err)) {
1147 page_cache_release(page);
1148 page = NULL;
1149 if (err == -EEXIST)
1150 goto repeat;
1da177e4 1151 }
1da177e4 1152 }
2457aec6 1153
1da177e4
LT
1154 return page;
1155}
2457aec6 1156EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1157
0cd6144a
JW
1158/**
1159 * find_get_entries - gang pagecache lookup
1160 * @mapping: The address_space to search
1161 * @start: The starting page cache index
1162 * @nr_entries: The maximum number of entries
1163 * @entries: Where the resulting entries are placed
1164 * @indices: The cache indices corresponding to the entries in @entries
1165 *
1166 * find_get_entries() will search for and return a group of up to
1167 * @nr_entries entries in the mapping. The entries are placed at
1168 * @entries. find_get_entries() takes a reference against any actual
1169 * pages it returns.
1170 *
1171 * The search returns a group of mapping-contiguous page cache entries
1172 * with ascending indexes. There may be holes in the indices due to
1173 * not-present pages.
1174 *
139b6a6f
JW
1175 * Any shadow entries of evicted pages, or swap entries from
1176 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1177 *
1178 * find_get_entries() returns the number of pages and shadow entries
1179 * which were found.
1180 */
1181unsigned find_get_entries(struct address_space *mapping,
1182 pgoff_t start, unsigned int nr_entries,
1183 struct page **entries, pgoff_t *indices)
1184{
1185 void **slot;
1186 unsigned int ret = 0;
1187 struct radix_tree_iter iter;
1188
1189 if (!nr_entries)
1190 return 0;
1191
1192 rcu_read_lock();
1193restart:
1194 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1195 struct page *page;
1196repeat:
1197 page = radix_tree_deref_slot(slot);
1198 if (unlikely(!page))
1199 continue;
1200 if (radix_tree_exception(page)) {
1201 if (radix_tree_deref_retry(page))
1202 goto restart;
1203 /*
139b6a6f
JW
1204 * A shadow entry of a recently evicted page,
1205 * or a swap entry from shmem/tmpfs. Return
1206 * it without attempting to raise page count.
0cd6144a
JW
1207 */
1208 goto export;
1209 }
1210 if (!page_cache_get_speculative(page))
1211 goto repeat;
1212
1213 /* Has the page moved? */
1214 if (unlikely(page != *slot)) {
1215 page_cache_release(page);
1216 goto repeat;
1217 }
1218export:
1219 indices[ret] = iter.index;
1220 entries[ret] = page;
1221 if (++ret == nr_entries)
1222 break;
1223 }
1224 rcu_read_unlock();
1225 return ret;
1226}
1227
1da177e4
LT
1228/**
1229 * find_get_pages - gang pagecache lookup
1230 * @mapping: The address_space to search
1231 * @start: The starting page index
1232 * @nr_pages: The maximum number of pages
1233 * @pages: Where the resulting pages are placed
1234 *
1235 * find_get_pages() will search for and return a group of up to
1236 * @nr_pages pages in the mapping. The pages are placed at @pages.
1237 * find_get_pages() takes a reference against the returned pages.
1238 *
1239 * The search returns a group of mapping-contiguous pages with ascending
1240 * indexes. There may be holes in the indices due to not-present pages.
1241 *
1242 * find_get_pages() returns the number of pages which were found.
1243 */
1244unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1245 unsigned int nr_pages, struct page **pages)
1246{
0fc9d104
KK
1247 struct radix_tree_iter iter;
1248 void **slot;
1249 unsigned ret = 0;
1250
1251 if (unlikely(!nr_pages))
1252 return 0;
a60637c8
NP
1253
1254 rcu_read_lock();
1255restart:
0fc9d104 1256 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1257 struct page *page;
1258repeat:
0fc9d104 1259 page = radix_tree_deref_slot(slot);
a60637c8
NP
1260 if (unlikely(!page))
1261 continue;
9d8aa4ea 1262
a2c16d6c 1263 if (radix_tree_exception(page)) {
8079b1c8
HD
1264 if (radix_tree_deref_retry(page)) {
1265 /*
1266 * Transient condition which can only trigger
1267 * when entry at index 0 moves out of or back
1268 * to root: none yet gotten, safe to restart.
1269 */
0fc9d104 1270 WARN_ON(iter.index);
8079b1c8
HD
1271 goto restart;
1272 }
a2c16d6c 1273 /*
139b6a6f
JW
1274 * A shadow entry of a recently evicted page,
1275 * or a swap entry from shmem/tmpfs. Skip
1276 * over it.
a2c16d6c 1277 */
8079b1c8 1278 continue;
27d20fdd 1279 }
a60637c8
NP
1280
1281 if (!page_cache_get_speculative(page))
1282 goto repeat;
1283
1284 /* Has the page moved? */
0fc9d104 1285 if (unlikely(page != *slot)) {
a60637c8
NP
1286 page_cache_release(page);
1287 goto repeat;
1288 }
1da177e4 1289
a60637c8 1290 pages[ret] = page;
0fc9d104
KK
1291 if (++ret == nr_pages)
1292 break;
a60637c8 1293 }
5b280c0c 1294
a60637c8 1295 rcu_read_unlock();
1da177e4
LT
1296 return ret;
1297}
1298
ebf43500
JA
1299/**
1300 * find_get_pages_contig - gang contiguous pagecache lookup
1301 * @mapping: The address_space to search
1302 * @index: The starting page index
1303 * @nr_pages: The maximum number of pages
1304 * @pages: Where the resulting pages are placed
1305 *
1306 * find_get_pages_contig() works exactly like find_get_pages(), except
1307 * that the returned number of pages are guaranteed to be contiguous.
1308 *
1309 * find_get_pages_contig() returns the number of pages which were found.
1310 */
1311unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1312 unsigned int nr_pages, struct page **pages)
1313{
0fc9d104
KK
1314 struct radix_tree_iter iter;
1315 void **slot;
1316 unsigned int ret = 0;
1317
1318 if (unlikely(!nr_pages))
1319 return 0;
a60637c8
NP
1320
1321 rcu_read_lock();
1322restart:
0fc9d104 1323 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1324 struct page *page;
1325repeat:
0fc9d104
KK
1326 page = radix_tree_deref_slot(slot);
1327 /* The hole, there no reason to continue */
a60637c8 1328 if (unlikely(!page))
0fc9d104 1329 break;
9d8aa4ea 1330
a2c16d6c 1331 if (radix_tree_exception(page)) {
8079b1c8
HD
1332 if (radix_tree_deref_retry(page)) {
1333 /*
1334 * Transient condition which can only trigger
1335 * when entry at index 0 moves out of or back
1336 * to root: none yet gotten, safe to restart.
1337 */
1338 goto restart;
1339 }
a2c16d6c 1340 /*
139b6a6f
JW
1341 * A shadow entry of a recently evicted page,
1342 * or a swap entry from shmem/tmpfs. Stop
1343 * looking for contiguous pages.
a2c16d6c 1344 */
8079b1c8 1345 break;
a2c16d6c 1346 }
ebf43500 1347
a60637c8
NP
1348 if (!page_cache_get_speculative(page))
1349 goto repeat;
1350
1351 /* Has the page moved? */
0fc9d104 1352 if (unlikely(page != *slot)) {
a60637c8
NP
1353 page_cache_release(page);
1354 goto repeat;
1355 }
1356
9cbb4cb2
NP
1357 /*
1358 * must check mapping and index after taking the ref.
1359 * otherwise we can get both false positives and false
1360 * negatives, which is just confusing to the caller.
1361 */
0fc9d104 1362 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1363 page_cache_release(page);
1364 break;
1365 }
1366
a60637c8 1367 pages[ret] = page;
0fc9d104
KK
1368 if (++ret == nr_pages)
1369 break;
ebf43500 1370 }
a60637c8
NP
1371 rcu_read_unlock();
1372 return ret;
ebf43500 1373}
ef71c15c 1374EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1375
485bb99b
RD
1376/**
1377 * find_get_pages_tag - find and return pages that match @tag
1378 * @mapping: the address_space to search
1379 * @index: the starting page index
1380 * @tag: the tag index
1381 * @nr_pages: the maximum number of pages
1382 * @pages: where the resulting pages are placed
1383 *
1da177e4 1384 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1385 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1386 */
1387unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1388 int tag, unsigned int nr_pages, struct page **pages)
1389{
0fc9d104
KK
1390 struct radix_tree_iter iter;
1391 void **slot;
1392 unsigned ret = 0;
1393
1394 if (unlikely(!nr_pages))
1395 return 0;
a60637c8
NP
1396
1397 rcu_read_lock();
1398restart:
0fc9d104
KK
1399 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1400 &iter, *index, tag) {
a60637c8
NP
1401 struct page *page;
1402repeat:
0fc9d104 1403 page = radix_tree_deref_slot(slot);
a60637c8
NP
1404 if (unlikely(!page))
1405 continue;
9d8aa4ea 1406
a2c16d6c 1407 if (radix_tree_exception(page)) {
8079b1c8
HD
1408 if (radix_tree_deref_retry(page)) {
1409 /*
1410 * Transient condition which can only trigger
1411 * when entry at index 0 moves out of or back
1412 * to root: none yet gotten, safe to restart.
1413 */
1414 goto restart;
1415 }
a2c16d6c 1416 /*
139b6a6f
JW
1417 * A shadow entry of a recently evicted page.
1418 *
1419 * Those entries should never be tagged, but
1420 * this tree walk is lockless and the tags are
1421 * looked up in bulk, one radix tree node at a
1422 * time, so there is a sizable window for page
1423 * reclaim to evict a page we saw tagged.
1424 *
1425 * Skip over it.
a2c16d6c 1426 */
139b6a6f 1427 continue;
a2c16d6c 1428 }
a60637c8
NP
1429
1430 if (!page_cache_get_speculative(page))
1431 goto repeat;
1432
1433 /* Has the page moved? */
0fc9d104 1434 if (unlikely(page != *slot)) {
a60637c8
NP
1435 page_cache_release(page);
1436 goto repeat;
1437 }
1438
1439 pages[ret] = page;
0fc9d104
KK
1440 if (++ret == nr_pages)
1441 break;
a60637c8 1442 }
5b280c0c 1443
a60637c8 1444 rcu_read_unlock();
1da177e4 1445
1da177e4
LT
1446 if (ret)
1447 *index = pages[ret - 1]->index + 1;
a60637c8 1448
1da177e4
LT
1449 return ret;
1450}
ef71c15c 1451EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1452
76d42bd9
WF
1453/*
1454 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1455 * a _large_ part of the i/o request. Imagine the worst scenario:
1456 *
1457 * ---R__________________________________________B__________
1458 * ^ reading here ^ bad block(assume 4k)
1459 *
1460 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1461 * => failing the whole request => read(R) => read(R+1) =>
1462 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1463 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1464 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1465 *
1466 * It is going insane. Fix it by quickly scaling down the readahead size.
1467 */
1468static void shrink_readahead_size_eio(struct file *filp,
1469 struct file_ra_state *ra)
1470{
76d42bd9 1471 ra->ra_pages /= 4;
76d42bd9
WF
1472}
1473
485bb99b 1474/**
36e78914 1475 * do_generic_file_read - generic file read routine
485bb99b
RD
1476 * @filp: the file to read
1477 * @ppos: current file position
6e58e79d
AV
1478 * @iter: data destination
1479 * @written: already copied
485bb99b 1480 *
1da177e4 1481 * This is a generic file read routine, and uses the
485bb99b 1482 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1483 *
1484 * This is really ugly. But the goto's actually try to clarify some
1485 * of the logic when it comes to error handling etc.
1da177e4 1486 */
6e58e79d
AV
1487static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1488 struct iov_iter *iter, ssize_t written)
1da177e4 1489{
36e78914 1490 struct address_space *mapping = filp->f_mapping;
1da177e4 1491 struct inode *inode = mapping->host;
36e78914 1492 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1493 pgoff_t index;
1494 pgoff_t last_index;
1495 pgoff_t prev_index;
1496 unsigned long offset; /* offset into pagecache page */
ec0f1637 1497 unsigned int prev_offset;
6e58e79d 1498 int error = 0;
1da177e4 1499
1da177e4 1500 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1501 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1502 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1503 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1504 offset = *ppos & ~PAGE_CACHE_MASK;
1505
1da177e4
LT
1506 for (;;) {
1507 struct page *page;
57f6b96c 1508 pgoff_t end_index;
a32ea1e1 1509 loff_t isize;
1da177e4
LT
1510 unsigned long nr, ret;
1511
1da177e4 1512 cond_resched();
1da177e4
LT
1513find_page:
1514 page = find_get_page(mapping, index);
3ea89ee8 1515 if (!page) {
cf914a7d 1516 page_cache_sync_readahead(mapping,
7ff81078 1517 ra, filp,
3ea89ee8
FW
1518 index, last_index - index);
1519 page = find_get_page(mapping, index);
1520 if (unlikely(page == NULL))
1521 goto no_cached_page;
1522 }
1523 if (PageReadahead(page)) {
cf914a7d 1524 page_cache_async_readahead(mapping,
7ff81078 1525 ra, filp, page,
3ea89ee8 1526 index, last_index - index);
1da177e4 1527 }
8ab22b9a
HH
1528 if (!PageUptodate(page)) {
1529 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1530 !mapping->a_ops->is_partially_uptodate)
1531 goto page_not_up_to_date;
529ae9aa 1532 if (!trylock_page(page))
8ab22b9a 1533 goto page_not_up_to_date;
8d056cb9
DH
1534 /* Did it get truncated before we got the lock? */
1535 if (!page->mapping)
1536 goto page_not_up_to_date_locked;
8ab22b9a 1537 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1538 offset, iter->count))
8ab22b9a
HH
1539 goto page_not_up_to_date_locked;
1540 unlock_page(page);
1541 }
1da177e4 1542page_ok:
a32ea1e1
N
1543 /*
1544 * i_size must be checked after we know the page is Uptodate.
1545 *
1546 * Checking i_size after the check allows us to calculate
1547 * the correct value for "nr", which means the zero-filled
1548 * part of the page is not copied back to userspace (unless
1549 * another truncate extends the file - this is desired though).
1550 */
1551
1552 isize = i_size_read(inode);
1553 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1554 if (unlikely(!isize || index > end_index)) {
1555 page_cache_release(page);
1556 goto out;
1557 }
1558
1559 /* nr is the maximum number of bytes to copy from this page */
1560 nr = PAGE_CACHE_SIZE;
1561 if (index == end_index) {
1562 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1563 if (nr <= offset) {
1564 page_cache_release(page);
1565 goto out;
1566 }
1567 }
1568 nr = nr - offset;
1da177e4
LT
1569
1570 /* If users can be writing to this page using arbitrary
1571 * virtual addresses, take care about potential aliasing
1572 * before reading the page on the kernel side.
1573 */
1574 if (mapping_writably_mapped(mapping))
1575 flush_dcache_page(page);
1576
1577 /*
ec0f1637
JK
1578 * When a sequential read accesses a page several times,
1579 * only mark it as accessed the first time.
1da177e4 1580 */
ec0f1637 1581 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1582 mark_page_accessed(page);
1583 prev_index = index;
1584
1585 /*
1586 * Ok, we have the page, and it's up-to-date, so
1587 * now we can copy it to user space...
1da177e4 1588 */
6e58e79d
AV
1589
1590 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1591 offset += ret;
1592 index += offset >> PAGE_CACHE_SHIFT;
1593 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1594 prev_offset = offset;
1da177e4
LT
1595
1596 page_cache_release(page);
6e58e79d
AV
1597 written += ret;
1598 if (!iov_iter_count(iter))
1599 goto out;
1600 if (ret < nr) {
1601 error = -EFAULT;
1602 goto out;
1603 }
1604 continue;
1da177e4
LT
1605
1606page_not_up_to_date:
1607 /* Get exclusive access to the page ... */
85462323
ON
1608 error = lock_page_killable(page);
1609 if (unlikely(error))
1610 goto readpage_error;
1da177e4 1611
8ab22b9a 1612page_not_up_to_date_locked:
da6052f7 1613 /* Did it get truncated before we got the lock? */
1da177e4
LT
1614 if (!page->mapping) {
1615 unlock_page(page);
1616 page_cache_release(page);
1617 continue;
1618 }
1619
1620 /* Did somebody else fill it already? */
1621 if (PageUptodate(page)) {
1622 unlock_page(page);
1623 goto page_ok;
1624 }
1625
1626readpage:
91803b49
JM
1627 /*
1628 * A previous I/O error may have been due to temporary
1629 * failures, eg. multipath errors.
1630 * PG_error will be set again if readpage fails.
1631 */
1632 ClearPageError(page);
1da177e4
LT
1633 /* Start the actual read. The read will unlock the page. */
1634 error = mapping->a_ops->readpage(filp, page);
1635
994fc28c
ZB
1636 if (unlikely(error)) {
1637 if (error == AOP_TRUNCATED_PAGE) {
1638 page_cache_release(page);
6e58e79d 1639 error = 0;
994fc28c
ZB
1640 goto find_page;
1641 }
1da177e4 1642 goto readpage_error;
994fc28c 1643 }
1da177e4
LT
1644
1645 if (!PageUptodate(page)) {
85462323
ON
1646 error = lock_page_killable(page);
1647 if (unlikely(error))
1648 goto readpage_error;
1da177e4
LT
1649 if (!PageUptodate(page)) {
1650 if (page->mapping == NULL) {
1651 /*
2ecdc82e 1652 * invalidate_mapping_pages got it
1da177e4
LT
1653 */
1654 unlock_page(page);
1655 page_cache_release(page);
1656 goto find_page;
1657 }
1658 unlock_page(page);
7ff81078 1659 shrink_readahead_size_eio(filp, ra);
85462323
ON
1660 error = -EIO;
1661 goto readpage_error;
1da177e4
LT
1662 }
1663 unlock_page(page);
1664 }
1665
1da177e4
LT
1666 goto page_ok;
1667
1668readpage_error:
1669 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1670 page_cache_release(page);
1671 goto out;
1672
1673no_cached_page:
1674 /*
1675 * Ok, it wasn't cached, so we need to create a new
1676 * page..
1677 */
eb2be189
NP
1678 page = page_cache_alloc_cold(mapping);
1679 if (!page) {
6e58e79d 1680 error = -ENOMEM;
eb2be189 1681 goto out;
1da177e4 1682 }
6afdb859
MH
1683 error = add_to_page_cache_lru(page, mapping, index,
1684 GFP_KERNEL & mapping_gfp_mask(mapping));
1da177e4 1685 if (error) {
eb2be189 1686 page_cache_release(page);
6e58e79d
AV
1687 if (error == -EEXIST) {
1688 error = 0;
1da177e4 1689 goto find_page;
6e58e79d 1690 }
1da177e4
LT
1691 goto out;
1692 }
1da177e4
LT
1693 goto readpage;
1694 }
1695
1696out:
7ff81078
FW
1697 ra->prev_pos = prev_index;
1698 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1699 ra->prev_pos |= prev_offset;
1da177e4 1700
f4e6b498 1701 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1702 file_accessed(filp);
6e58e79d 1703 return written ? written : error;
1da177e4
LT
1704}
1705
485bb99b 1706/**
6abd2322 1707 * generic_file_read_iter - generic filesystem read routine
485bb99b 1708 * @iocb: kernel I/O control block
6abd2322 1709 * @iter: destination for the data read
485bb99b 1710 *
6abd2322 1711 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1712 * that can use the page cache directly.
1713 */
1714ssize_t
ed978a81 1715generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1716{
ed978a81 1717 struct file *file = iocb->ki_filp;
cb66a7a1 1718 ssize_t retval = 0;
543ade1f 1719 loff_t *ppos = &iocb->ki_pos;
ed978a81 1720 loff_t pos = *ppos;
1da177e4 1721
2ba48ce5 1722 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1723 struct address_space *mapping = file->f_mapping;
1724 struct inode *inode = mapping->host;
1725 size_t count = iov_iter_count(iter);
543ade1f 1726 loff_t size;
1da177e4 1727
1da177e4
LT
1728 if (!count)
1729 goto out; /* skip atime */
1730 size = i_size_read(inode);
9fe55eea 1731 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1732 pos + count - 1);
9fe55eea 1733 if (!retval) {
ed978a81 1734 struct iov_iter data = *iter;
22c6186e 1735 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1736 }
d8d3d94b 1737
9fe55eea
SW
1738 if (retval > 0) {
1739 *ppos = pos + retval;
ed978a81 1740 iov_iter_advance(iter, retval);
9fe55eea 1741 }
66f998f6 1742
9fe55eea
SW
1743 /*
1744 * Btrfs can have a short DIO read if we encounter
1745 * compressed extents, so if there was an error, or if
1746 * we've already read everything we wanted to, or if
1747 * there was a short read because we hit EOF, go ahead
1748 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1749 * the rest of the read. Buffered reads will not work for
1750 * DAX files, so don't bother trying.
9fe55eea 1751 */
fbbbad4b
MW
1752 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1753 IS_DAX(inode)) {
ed978a81 1754 file_accessed(file);
9fe55eea 1755 goto out;
0e0bcae3 1756 }
1da177e4
LT
1757 }
1758
ed978a81 1759 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1760out:
1761 return retval;
1762}
ed978a81 1763EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1764
1da177e4 1765#ifdef CONFIG_MMU
485bb99b
RD
1766/**
1767 * page_cache_read - adds requested page to the page cache if not already there
1768 * @file: file to read
1769 * @offset: page index
1770 *
1da177e4
LT
1771 * This adds the requested page to the page cache if it isn't already there,
1772 * and schedules an I/O to read in its contents from disk.
1773 */
920c7a5d 1774static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1775{
1776 struct address_space *mapping = file->f_mapping;
99dadfdd 1777 struct page *page;
994fc28c 1778 int ret;
1da177e4 1779
994fc28c
ZB
1780 do {
1781 page = page_cache_alloc_cold(mapping);
1782 if (!page)
1783 return -ENOMEM;
1784
6afdb859
MH
1785 ret = add_to_page_cache_lru(page, mapping, offset,
1786 GFP_KERNEL & mapping_gfp_mask(mapping));
994fc28c
ZB
1787 if (ret == 0)
1788 ret = mapping->a_ops->readpage(file, page);
1789 else if (ret == -EEXIST)
1790 ret = 0; /* losing race to add is OK */
1da177e4 1791
1da177e4 1792 page_cache_release(page);
1da177e4 1793
994fc28c 1794 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1795
994fc28c 1796 return ret;
1da177e4
LT
1797}
1798
1799#define MMAP_LOTSAMISS (100)
1800
ef00e08e
LT
1801/*
1802 * Synchronous readahead happens when we don't even find
1803 * a page in the page cache at all.
1804 */
1805static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1806 struct file_ra_state *ra,
1807 struct file *file,
1808 pgoff_t offset)
1809{
1810 unsigned long ra_pages;
1811 struct address_space *mapping = file->f_mapping;
1812
1813 /* If we don't want any read-ahead, don't bother */
64363aad 1814 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1815 return;
275b12bf
WF
1816 if (!ra->ra_pages)
1817 return;
ef00e08e 1818
64363aad 1819 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1820 page_cache_sync_readahead(mapping, ra, file, offset,
1821 ra->ra_pages);
ef00e08e
LT
1822 return;
1823 }
1824
207d04ba
AK
1825 /* Avoid banging the cache line if not needed */
1826 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1827 ra->mmap_miss++;
1828
1829 /*
1830 * Do we miss much more than hit in this file? If so,
1831 * stop bothering with read-ahead. It will only hurt.
1832 */
1833 if (ra->mmap_miss > MMAP_LOTSAMISS)
1834 return;
1835
d30a1100
WF
1836 /*
1837 * mmap read-around
1838 */
ef00e08e 1839 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1840 ra->start = max_t(long, 0, offset - ra_pages / 2);
1841 ra->size = ra_pages;
2cbea1d3 1842 ra->async_size = ra_pages / 4;
275b12bf 1843 ra_submit(ra, mapping, file);
ef00e08e
LT
1844}
1845
1846/*
1847 * Asynchronous readahead happens when we find the page and PG_readahead,
1848 * so we want to possibly extend the readahead further..
1849 */
1850static void do_async_mmap_readahead(struct vm_area_struct *vma,
1851 struct file_ra_state *ra,
1852 struct file *file,
1853 struct page *page,
1854 pgoff_t offset)
1855{
1856 struct address_space *mapping = file->f_mapping;
1857
1858 /* If we don't want any read-ahead, don't bother */
64363aad 1859 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1860 return;
1861 if (ra->mmap_miss > 0)
1862 ra->mmap_miss--;
1863 if (PageReadahead(page))
2fad6f5d
WF
1864 page_cache_async_readahead(mapping, ra, file,
1865 page, offset, ra->ra_pages);
ef00e08e
LT
1866}
1867
485bb99b 1868/**
54cb8821 1869 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1870 * @vma: vma in which the fault was taken
1871 * @vmf: struct vm_fault containing details of the fault
485bb99b 1872 *
54cb8821 1873 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1874 * mapped memory region to read in file data during a page fault.
1875 *
1876 * The goto's are kind of ugly, but this streamlines the normal case of having
1877 * it in the page cache, and handles the special cases reasonably without
1878 * having a lot of duplicated code.
9a95f3cf
PC
1879 *
1880 * vma->vm_mm->mmap_sem must be held on entry.
1881 *
1882 * If our return value has VM_FAULT_RETRY set, it's because
1883 * lock_page_or_retry() returned 0.
1884 * The mmap_sem has usually been released in this case.
1885 * See __lock_page_or_retry() for the exception.
1886 *
1887 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1888 * has not been released.
1889 *
1890 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1891 */
d0217ac0 1892int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1893{
1894 int error;
54cb8821 1895 struct file *file = vma->vm_file;
1da177e4
LT
1896 struct address_space *mapping = file->f_mapping;
1897 struct file_ra_state *ra = &file->f_ra;
1898 struct inode *inode = mapping->host;
ef00e08e 1899 pgoff_t offset = vmf->pgoff;
1da177e4 1900 struct page *page;
99e3e53f 1901 loff_t size;
83c54070 1902 int ret = 0;
1da177e4 1903
99e3e53f
KS
1904 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1905 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1906 return VM_FAULT_SIGBUS;
1da177e4 1907
1da177e4 1908 /*
49426420 1909 * Do we have something in the page cache already?
1da177e4 1910 */
ef00e08e 1911 page = find_get_page(mapping, offset);
45cac65b 1912 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1913 /*
ef00e08e
LT
1914 * We found the page, so try async readahead before
1915 * waiting for the lock.
1da177e4 1916 */
ef00e08e 1917 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1918 } else if (!page) {
ef00e08e
LT
1919 /* No page in the page cache at all */
1920 do_sync_mmap_readahead(vma, ra, file, offset);
1921 count_vm_event(PGMAJFAULT);
456f998e 1922 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1923 ret = VM_FAULT_MAJOR;
1924retry_find:
b522c94d 1925 page = find_get_page(mapping, offset);
1da177e4
LT
1926 if (!page)
1927 goto no_cached_page;
1928 }
1929
d88c0922
ML
1930 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1931 page_cache_release(page);
d065bd81 1932 return ret | VM_FAULT_RETRY;
d88c0922 1933 }
b522c94d
ML
1934
1935 /* Did it get truncated? */
1936 if (unlikely(page->mapping != mapping)) {
1937 unlock_page(page);
1938 put_page(page);
1939 goto retry_find;
1940 }
309381fe 1941 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1942
1da177e4 1943 /*
d00806b1
NP
1944 * We have a locked page in the page cache, now we need to check
1945 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1946 */
d00806b1 1947 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1948 goto page_not_uptodate;
1949
ef00e08e
LT
1950 /*
1951 * Found the page and have a reference on it.
1952 * We must recheck i_size under page lock.
1953 */
99e3e53f
KS
1954 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1955 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1956 unlock_page(page);
745ad48e 1957 page_cache_release(page);
5307cc1a 1958 return VM_FAULT_SIGBUS;
d00806b1
NP
1959 }
1960
d0217ac0 1961 vmf->page = page;
83c54070 1962 return ret | VM_FAULT_LOCKED;
1da177e4 1963
1da177e4
LT
1964no_cached_page:
1965 /*
1966 * We're only likely to ever get here if MADV_RANDOM is in
1967 * effect.
1968 */
ef00e08e 1969 error = page_cache_read(file, offset);
1da177e4
LT
1970
1971 /*
1972 * The page we want has now been added to the page cache.
1973 * In the unlikely event that someone removed it in the
1974 * meantime, we'll just come back here and read it again.
1975 */
1976 if (error >= 0)
1977 goto retry_find;
1978
1979 /*
1980 * An error return from page_cache_read can result if the
1981 * system is low on memory, or a problem occurs while trying
1982 * to schedule I/O.
1983 */
1984 if (error == -ENOMEM)
d0217ac0
NP
1985 return VM_FAULT_OOM;
1986 return VM_FAULT_SIGBUS;
1da177e4
LT
1987
1988page_not_uptodate:
1da177e4
LT
1989 /*
1990 * Umm, take care of errors if the page isn't up-to-date.
1991 * Try to re-read it _once_. We do this synchronously,
1992 * because there really aren't any performance issues here
1993 * and we need to check for errors.
1994 */
1da177e4 1995 ClearPageError(page);
994fc28c 1996 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1997 if (!error) {
1998 wait_on_page_locked(page);
1999 if (!PageUptodate(page))
2000 error = -EIO;
2001 }
d00806b1
NP
2002 page_cache_release(page);
2003
2004 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2005 goto retry_find;
1da177e4 2006
d00806b1 2007 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2008 shrink_readahead_size_eio(file, ra);
d0217ac0 2009 return VM_FAULT_SIGBUS;
54cb8821
NP
2010}
2011EXPORT_SYMBOL(filemap_fault);
2012
f1820361
KS
2013void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015 struct radix_tree_iter iter;
2016 void **slot;
2017 struct file *file = vma->vm_file;
2018 struct address_space *mapping = file->f_mapping;
2019 loff_t size;
2020 struct page *page;
2021 unsigned long address = (unsigned long) vmf->virtual_address;
2022 unsigned long addr;
2023 pte_t *pte;
2024
2025 rcu_read_lock();
2026 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2027 if (iter.index > vmf->max_pgoff)
2028 break;
2029repeat:
2030 page = radix_tree_deref_slot(slot);
2031 if (unlikely(!page))
2032 goto next;
2033 if (radix_tree_exception(page)) {
2034 if (radix_tree_deref_retry(page))
2035 break;
2036 else
2037 goto next;
2038 }
2039
2040 if (!page_cache_get_speculative(page))
2041 goto repeat;
2042
2043 /* Has the page moved? */
2044 if (unlikely(page != *slot)) {
2045 page_cache_release(page);
2046 goto repeat;
2047 }
2048
2049 if (!PageUptodate(page) ||
2050 PageReadahead(page) ||
2051 PageHWPoison(page))
2052 goto skip;
2053 if (!trylock_page(page))
2054 goto skip;
2055
2056 if (page->mapping != mapping || !PageUptodate(page))
2057 goto unlock;
2058
99e3e53f
KS
2059 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2060 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2061 goto unlock;
2062
2063 pte = vmf->pte + page->index - vmf->pgoff;
2064 if (!pte_none(*pte))
2065 goto unlock;
2066
2067 if (file->f_ra.mmap_miss > 0)
2068 file->f_ra.mmap_miss--;
2069 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2070 do_set_pte(vma, addr, page, pte, false, false);
2071 unlock_page(page);
2072 goto next;
2073unlock:
2074 unlock_page(page);
2075skip:
2076 page_cache_release(page);
2077next:
2078 if (iter.index == vmf->max_pgoff)
2079 break;
2080 }
2081 rcu_read_unlock();
2082}
2083EXPORT_SYMBOL(filemap_map_pages);
2084
4fcf1c62
JK
2085int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2086{
2087 struct page *page = vmf->page;
496ad9aa 2088 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2089 int ret = VM_FAULT_LOCKED;
2090
14da9200 2091 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2092 file_update_time(vma->vm_file);
2093 lock_page(page);
2094 if (page->mapping != inode->i_mapping) {
2095 unlock_page(page);
2096 ret = VM_FAULT_NOPAGE;
2097 goto out;
2098 }
14da9200
JK
2099 /*
2100 * We mark the page dirty already here so that when freeze is in
2101 * progress, we are guaranteed that writeback during freezing will
2102 * see the dirty page and writeprotect it again.
2103 */
2104 set_page_dirty(page);
1d1d1a76 2105 wait_for_stable_page(page);
4fcf1c62 2106out:
14da9200 2107 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2108 return ret;
2109}
2110EXPORT_SYMBOL(filemap_page_mkwrite);
2111
f0f37e2f 2112const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2113 .fault = filemap_fault,
f1820361 2114 .map_pages = filemap_map_pages,
4fcf1c62 2115 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2116};
2117
2118/* This is used for a general mmap of a disk file */
2119
2120int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2121{
2122 struct address_space *mapping = file->f_mapping;
2123
2124 if (!mapping->a_ops->readpage)
2125 return -ENOEXEC;
2126 file_accessed(file);
2127 vma->vm_ops = &generic_file_vm_ops;
2128 return 0;
2129}
1da177e4
LT
2130
2131/*
2132 * This is for filesystems which do not implement ->writepage.
2133 */
2134int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2135{
2136 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2137 return -EINVAL;
2138 return generic_file_mmap(file, vma);
2139}
2140#else
2141int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2142{
2143 return -ENOSYS;
2144}
2145int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2146{
2147 return -ENOSYS;
2148}
2149#endif /* CONFIG_MMU */
2150
2151EXPORT_SYMBOL(generic_file_mmap);
2152EXPORT_SYMBOL(generic_file_readonly_mmap);
2153
67f9fd91
SL
2154static struct page *wait_on_page_read(struct page *page)
2155{
2156 if (!IS_ERR(page)) {
2157 wait_on_page_locked(page);
2158 if (!PageUptodate(page)) {
2159 page_cache_release(page);
2160 page = ERR_PTR(-EIO);
2161 }
2162 }
2163 return page;
2164}
2165
6fe6900e 2166static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2167 pgoff_t index,
5e5358e7 2168 int (*filler)(void *, struct page *),
0531b2aa
LT
2169 void *data,
2170 gfp_t gfp)
1da177e4 2171{
eb2be189 2172 struct page *page;
1da177e4
LT
2173 int err;
2174repeat:
2175 page = find_get_page(mapping, index);
2176 if (!page) {
0531b2aa 2177 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2178 if (!page)
2179 return ERR_PTR(-ENOMEM);
e6f67b8c 2180 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2181 if (unlikely(err)) {
2182 page_cache_release(page);
2183 if (err == -EEXIST)
2184 goto repeat;
1da177e4 2185 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2186 return ERR_PTR(err);
2187 }
1da177e4
LT
2188 err = filler(data, page);
2189 if (err < 0) {
2190 page_cache_release(page);
2191 page = ERR_PTR(err);
67f9fd91
SL
2192 } else {
2193 page = wait_on_page_read(page);
1da177e4
LT
2194 }
2195 }
1da177e4
LT
2196 return page;
2197}
2198
0531b2aa 2199static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2200 pgoff_t index,
5e5358e7 2201 int (*filler)(void *, struct page *),
0531b2aa
LT
2202 void *data,
2203 gfp_t gfp)
2204
1da177e4
LT
2205{
2206 struct page *page;
2207 int err;
2208
2209retry:
0531b2aa 2210 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2211 if (IS_ERR(page))
c855ff37 2212 return page;
1da177e4
LT
2213 if (PageUptodate(page))
2214 goto out;
2215
2216 lock_page(page);
2217 if (!page->mapping) {
2218 unlock_page(page);
2219 page_cache_release(page);
2220 goto retry;
2221 }
2222 if (PageUptodate(page)) {
2223 unlock_page(page);
2224 goto out;
2225 }
2226 err = filler(data, page);
2227 if (err < 0) {
2228 page_cache_release(page);
c855ff37 2229 return ERR_PTR(err);
67f9fd91
SL
2230 } else {
2231 page = wait_on_page_read(page);
2232 if (IS_ERR(page))
2233 return page;
1da177e4 2234 }
c855ff37 2235out:
6fe6900e
NP
2236 mark_page_accessed(page);
2237 return page;
2238}
0531b2aa
LT
2239
2240/**
67f9fd91 2241 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2242 * @mapping: the page's address_space
2243 * @index: the page index
2244 * @filler: function to perform the read
5e5358e7 2245 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2246 *
0531b2aa 2247 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2248 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2249 *
2250 * If the page does not get brought uptodate, return -EIO.
2251 */
67f9fd91 2252struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2253 pgoff_t index,
5e5358e7 2254 int (*filler)(void *, struct page *),
0531b2aa
LT
2255 void *data)
2256{
2257 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2258}
67f9fd91 2259EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2260
2261/**
2262 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2263 * @mapping: the page's address_space
2264 * @index: the page index
2265 * @gfp: the page allocator flags to use if allocating
2266 *
2267 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2268 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2269 *
2270 * If the page does not get brought uptodate, return -EIO.
2271 */
2272struct page *read_cache_page_gfp(struct address_space *mapping,
2273 pgoff_t index,
2274 gfp_t gfp)
2275{
2276 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2277
67f9fd91 2278 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2279}
2280EXPORT_SYMBOL(read_cache_page_gfp);
2281
1da177e4
LT
2282/*
2283 * Performs necessary checks before doing a write
2284 *
485bb99b 2285 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2286 * Returns appropriate error code that caller should return or
2287 * zero in case that write should be allowed.
2288 */
3309dd04 2289inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2290{
3309dd04 2291 struct file *file = iocb->ki_filp;
1da177e4 2292 struct inode *inode = file->f_mapping->host;
59e99e5b 2293 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2294 loff_t pos;
1da177e4 2295
3309dd04
AV
2296 if (!iov_iter_count(from))
2297 return 0;
1da177e4 2298
0fa6b005 2299 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2300 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2301 iocb->ki_pos = i_size_read(inode);
1da177e4 2302
3309dd04 2303 pos = iocb->ki_pos;
1da177e4 2304
0fa6b005 2305 if (limit != RLIM_INFINITY) {
3309dd04 2306 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2307 send_sig(SIGXFSZ, current, 0);
2308 return -EFBIG;
1da177e4 2309 }
3309dd04 2310 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2311 }
2312
2313 /*
2314 * LFS rule
2315 */
3309dd04 2316 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2317 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2318 if (pos >= MAX_NON_LFS)
1da177e4 2319 return -EFBIG;
3309dd04 2320 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2321 }
2322
2323 /*
2324 * Are we about to exceed the fs block limit ?
2325 *
2326 * If we have written data it becomes a short write. If we have
2327 * exceeded without writing data we send a signal and return EFBIG.
2328 * Linus frestrict idea will clean these up nicely..
2329 */
3309dd04
AV
2330 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2331 return -EFBIG;
1da177e4 2332
3309dd04
AV
2333 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2334 return iov_iter_count(from);
1da177e4
LT
2335}
2336EXPORT_SYMBOL(generic_write_checks);
2337
afddba49
NP
2338int pagecache_write_begin(struct file *file, struct address_space *mapping,
2339 loff_t pos, unsigned len, unsigned flags,
2340 struct page **pagep, void **fsdata)
2341{
2342 const struct address_space_operations *aops = mapping->a_ops;
2343
4e02ed4b 2344 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2345 pagep, fsdata);
afddba49
NP
2346}
2347EXPORT_SYMBOL(pagecache_write_begin);
2348
2349int pagecache_write_end(struct file *file, struct address_space *mapping,
2350 loff_t pos, unsigned len, unsigned copied,
2351 struct page *page, void *fsdata)
2352{
2353 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2354
4e02ed4b 2355 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2356}
2357EXPORT_SYMBOL(pagecache_write_end);
2358
1da177e4 2359ssize_t
0c949334 2360generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2361{
2362 struct file *file = iocb->ki_filp;
2363 struct address_space *mapping = file->f_mapping;
2364 struct inode *inode = mapping->host;
2365 ssize_t written;
a969e903
CH
2366 size_t write_len;
2367 pgoff_t end;
26978b8b 2368 struct iov_iter data;
1da177e4 2369
0c949334 2370 write_len = iov_iter_count(from);
a969e903 2371 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2372
48b47c56 2373 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2374 if (written)
2375 goto out;
2376
2377 /*
2378 * After a write we want buffered reads to be sure to go to disk to get
2379 * the new data. We invalidate clean cached page from the region we're
2380 * about to write. We do this *before* the write so that we can return
6ccfa806 2381 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2382 */
2383 if (mapping->nrpages) {
2384 written = invalidate_inode_pages2_range(mapping,
2385 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2386 /*
2387 * If a page can not be invalidated, return 0 to fall back
2388 * to buffered write.
2389 */
2390 if (written) {
2391 if (written == -EBUSY)
2392 return 0;
a969e903 2393 goto out;
6ccfa806 2394 }
a969e903
CH
2395 }
2396
26978b8b 2397 data = *from;
22c6186e 2398 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2399
2400 /*
2401 * Finally, try again to invalidate clean pages which might have been
2402 * cached by non-direct readahead, or faulted in by get_user_pages()
2403 * if the source of the write was an mmap'ed region of the file
2404 * we're writing. Either one is a pretty crazy thing to do,
2405 * so we don't support it 100%. If this invalidation
2406 * fails, tough, the write still worked...
2407 */
2408 if (mapping->nrpages) {
2409 invalidate_inode_pages2_range(mapping,
2410 pos >> PAGE_CACHE_SHIFT, end);
2411 }
2412
1da177e4 2413 if (written > 0) {
0116651c 2414 pos += written;
f8579f86 2415 iov_iter_advance(from, written);
0116651c
NK
2416 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2417 i_size_write(inode, pos);
1da177e4
LT
2418 mark_inode_dirty(inode);
2419 }
5cb6c6c7 2420 iocb->ki_pos = pos;
1da177e4 2421 }
a969e903 2422out:
1da177e4
LT
2423 return written;
2424}
2425EXPORT_SYMBOL(generic_file_direct_write);
2426
eb2be189
NP
2427/*
2428 * Find or create a page at the given pagecache position. Return the locked
2429 * page. This function is specifically for buffered writes.
2430 */
54566b2c
NP
2431struct page *grab_cache_page_write_begin(struct address_space *mapping,
2432 pgoff_t index, unsigned flags)
eb2be189 2433{
eb2be189 2434 struct page *page;
2457aec6 2435 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2436
54566b2c 2437 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2438 fgp_flags |= FGP_NOFS;
2439
2440 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2441 mapping_gfp_mask(mapping));
c585a267 2442 if (page)
2457aec6 2443 wait_for_stable_page(page);
eb2be189 2444
eb2be189
NP
2445 return page;
2446}
54566b2c 2447EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2448
3b93f911 2449ssize_t generic_perform_write(struct file *file,
afddba49
NP
2450 struct iov_iter *i, loff_t pos)
2451{
2452 struct address_space *mapping = file->f_mapping;
2453 const struct address_space_operations *a_ops = mapping->a_ops;
2454 long status = 0;
2455 ssize_t written = 0;
674b892e
NP
2456 unsigned int flags = 0;
2457
2458 /*
2459 * Copies from kernel address space cannot fail (NFSD is a big user).
2460 */
777eda2c 2461 if (!iter_is_iovec(i))
674b892e 2462 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2463
2464 do {
2465 struct page *page;
afddba49
NP
2466 unsigned long offset; /* Offset into pagecache page */
2467 unsigned long bytes; /* Bytes to write to page */
2468 size_t copied; /* Bytes copied from user */
2469 void *fsdata;
2470
2471 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2472 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2473 iov_iter_count(i));
2474
2475again:
afddba49
NP
2476 /*
2477 * Bring in the user page that we will copy from _first_.
2478 * Otherwise there's a nasty deadlock on copying from the
2479 * same page as we're writing to, without it being marked
2480 * up-to-date.
2481 *
2482 * Not only is this an optimisation, but it is also required
2483 * to check that the address is actually valid, when atomic
2484 * usercopies are used, below.
2485 */
2486 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2487 status = -EFAULT;
2488 break;
2489 }
2490
674b892e 2491 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2492 &page, &fsdata);
2457aec6 2493 if (unlikely(status < 0))
afddba49
NP
2494 break;
2495
931e80e4 2496 if (mapping_writably_mapped(mapping))
2497 flush_dcache_page(page);
2498
afddba49 2499 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2500 flush_dcache_page(page);
2501
2502 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2503 page, fsdata);
2504 if (unlikely(status < 0))
2505 break;
2506 copied = status;
2507
2508 cond_resched();
2509
124d3b70 2510 iov_iter_advance(i, copied);
afddba49
NP
2511 if (unlikely(copied == 0)) {
2512 /*
2513 * If we were unable to copy any data at all, we must
2514 * fall back to a single segment length write.
2515 *
2516 * If we didn't fallback here, we could livelock
2517 * because not all segments in the iov can be copied at
2518 * once without a pagefault.
2519 */
2520 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2521 iov_iter_single_seg_count(i));
2522 goto again;
2523 }
afddba49
NP
2524 pos += copied;
2525 written += copied;
2526
2527 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2528 if (fatal_signal_pending(current)) {
2529 status = -EINTR;
2530 break;
2531 }
afddba49
NP
2532 } while (iov_iter_count(i));
2533
2534 return written ? written : status;
2535}
3b93f911 2536EXPORT_SYMBOL(generic_perform_write);
1da177e4 2537
e4dd9de3 2538/**
8174202b 2539 * __generic_file_write_iter - write data to a file
e4dd9de3 2540 * @iocb: IO state structure (file, offset, etc.)
8174202b 2541 * @from: iov_iter with data to write
e4dd9de3
JK
2542 *
2543 * This function does all the work needed for actually writing data to a
2544 * file. It does all basic checks, removes SUID from the file, updates
2545 * modification times and calls proper subroutines depending on whether we
2546 * do direct IO or a standard buffered write.
2547 *
2548 * It expects i_mutex to be grabbed unless we work on a block device or similar
2549 * object which does not need locking at all.
2550 *
2551 * This function does *not* take care of syncing data in case of O_SYNC write.
2552 * A caller has to handle it. This is mainly due to the fact that we want to
2553 * avoid syncing under i_mutex.
2554 */
8174202b 2555ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2556{
2557 struct file *file = iocb->ki_filp;
fb5527e6 2558 struct address_space * mapping = file->f_mapping;
1da177e4 2559 struct inode *inode = mapping->host;
3b93f911 2560 ssize_t written = 0;
1da177e4 2561 ssize_t err;
3b93f911 2562 ssize_t status;
1da177e4 2563
1da177e4 2564 /* We can write back this queue in page reclaim */
de1414a6 2565 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2566 err = file_remove_privs(file);
1da177e4
LT
2567 if (err)
2568 goto out;
2569
c3b2da31
JB
2570 err = file_update_time(file);
2571 if (err)
2572 goto out;
1da177e4 2573
2ba48ce5 2574 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2575 loff_t pos, endbyte;
fb5527e6 2576
0b8def9d 2577 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2578 /*
fbbbad4b
MW
2579 * If the write stopped short of completing, fall back to
2580 * buffered writes. Some filesystems do this for writes to
2581 * holes, for example. For DAX files, a buffered write will
2582 * not succeed (even if it did, DAX does not handle dirty
2583 * page-cache pages correctly).
1da177e4 2584 */
0b8def9d 2585 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2586 goto out;
2587
0b8def9d 2588 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2589 /*
3b93f911 2590 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2591 * then we want to return the number of bytes which were
2592 * direct-written, or the error code if that was zero. Note
2593 * that this differs from normal direct-io semantics, which
2594 * will return -EFOO even if some bytes were written.
2595 */
60bb4529 2596 if (unlikely(status < 0)) {
3b93f911 2597 err = status;
fb5527e6
JM
2598 goto out;
2599 }
fb5527e6
JM
2600 /*
2601 * We need to ensure that the page cache pages are written to
2602 * disk and invalidated to preserve the expected O_DIRECT
2603 * semantics.
2604 */
3b93f911 2605 endbyte = pos + status - 1;
0b8def9d 2606 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2607 if (err == 0) {
0b8def9d 2608 iocb->ki_pos = endbyte + 1;
3b93f911 2609 written += status;
fb5527e6
JM
2610 invalidate_mapping_pages(mapping,
2611 pos >> PAGE_CACHE_SHIFT,
2612 endbyte >> PAGE_CACHE_SHIFT);
2613 } else {
2614 /*
2615 * We don't know how much we wrote, so just return
2616 * the number of bytes which were direct-written
2617 */
2618 }
2619 } else {
0b8def9d
AV
2620 written = generic_perform_write(file, from, iocb->ki_pos);
2621 if (likely(written > 0))
2622 iocb->ki_pos += written;
fb5527e6 2623 }
1da177e4
LT
2624out:
2625 current->backing_dev_info = NULL;
2626 return written ? written : err;
2627}
8174202b 2628EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2629
e4dd9de3 2630/**
8174202b 2631 * generic_file_write_iter - write data to a file
e4dd9de3 2632 * @iocb: IO state structure
8174202b 2633 * @from: iov_iter with data to write
e4dd9de3 2634 *
8174202b 2635 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2636 * filesystems. It takes care of syncing the file in case of O_SYNC file
2637 * and acquires i_mutex as needed.
2638 */
8174202b 2639ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2640{
2641 struct file *file = iocb->ki_filp;
148f948b 2642 struct inode *inode = file->f_mapping->host;
1da177e4 2643 ssize_t ret;
1da177e4 2644
1b1dcc1b 2645 mutex_lock(&inode->i_mutex);
3309dd04
AV
2646 ret = generic_write_checks(iocb, from);
2647 if (ret > 0)
5f380c7f 2648 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2649 mutex_unlock(&inode->i_mutex);
1da177e4 2650
02afc27f 2651 if (ret > 0) {
1da177e4
LT
2652 ssize_t err;
2653
d311d79d
AV
2654 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655 if (err < 0)
1da177e4
LT
2656 ret = err;
2657 }
2658 return ret;
2659}
8174202b 2660EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2661
cf9a2ae8
DH
2662/**
2663 * try_to_release_page() - release old fs-specific metadata on a page
2664 *
2665 * @page: the page which the kernel is trying to free
2666 * @gfp_mask: memory allocation flags (and I/O mode)
2667 *
2668 * The address_space is to try to release any data against the page
2669 * (presumably at page->private). If the release was successful, return `1'.
2670 * Otherwise return zero.
2671 *
266cf658
DH
2672 * This may also be called if PG_fscache is set on a page, indicating that the
2673 * page is known to the local caching routines.
2674 *
cf9a2ae8 2675 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2676 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2677 *
cf9a2ae8
DH
2678 */
2679int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680{
2681 struct address_space * const mapping = page->mapping;
2682
2683 BUG_ON(!PageLocked(page));
2684 if (PageWriteback(page))
2685 return 0;
2686
2687 if (mapping && mapping->a_ops->releasepage)
2688 return mapping->a_ops->releasepage(page, gfp_mask);
2689 return try_to_free_buffers(page);
2690}
2691
2692EXPORT_SYMBOL(try_to_release_page);