dt-binding: net: sfp binding documentation
[linux-2.6-block.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
84be456f 32#include <linux/scatterlist.h>
c7753208 33#include <linux/mem_encrypt.h>
1da177e4
LT
34
35#include <asm/io.h>
1da177e4
LT
36#include <asm/dma.h>
37
38#include <linux/init.h>
39#include <linux/bootmem.h>
a8522509 40#include <linux/iommu-helper.h>
1da177e4 41
ce5be5a1 42#define CREATE_TRACE_POINTS
2b2b614d
ZK
43#include <trace/events/swiotlb.h>
44
1da177e4
LT
45#define OFFSET(val,align) ((unsigned long) \
46 ( (val) & ( (align) - 1)))
47
0b9afede
AW
48#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
49
50/*
51 * Minimum IO TLB size to bother booting with. Systems with mainly
52 * 64bit capable cards will only lightly use the swiotlb. If we can't
53 * allocate a contiguous 1MB, we're probably in trouble anyway.
54 */
55#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56
ae7871be 57enum swiotlb_force swiotlb_force;
1da177e4
LT
58
59/*
bfc5501f
KRW
60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
62 * API.
63 */
ff7204a7 64static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
65
66/*
b595076a 67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
68 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
69 */
70static unsigned long io_tlb_nslabs;
71
72/*
73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
74 */
75static unsigned long io_tlb_overflow = 32*1024;
76
ee3f6ba8 77static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
78
79/*
80 * This is a free list describing the number of free entries available from
81 * each index
82 */
83static unsigned int *io_tlb_list;
84static unsigned int io_tlb_index;
85
7453c549
KRW
86/*
87 * Max segment that we can provide which (if pages are contingous) will
88 * not be bounced (unless SWIOTLB_FORCE is set).
89 */
90unsigned int max_segment;
91
1da177e4
LT
92/*
93 * We need to save away the original address corresponding to a mapped entry
94 * for the sync operations.
95 */
8e0629c1 96#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 97static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
98
99/*
100 * Protect the above data structures in the map and unmap calls
101 */
102static DEFINE_SPINLOCK(io_tlb_lock);
103
5740afdb
FT
104static int late_alloc;
105
1da177e4
LT
106static int __init
107setup_io_tlb_npages(char *str)
108{
109 if (isdigit(*str)) {
e8579e72 110 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
111 /* avoid tail segment of size < IO_TLB_SEGSIZE */
112 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
113 }
114 if (*str == ',')
115 ++str;
fff5d992 116 if (!strcmp(str, "force")) {
ae7871be 117 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
118 } else if (!strcmp(str, "noforce")) {
119 swiotlb_force = SWIOTLB_NO_FORCE;
120 io_tlb_nslabs = 1;
121 }
b18485e7 122
c729de8f 123 return 0;
1da177e4 124}
c729de8f 125early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
126/* make io_tlb_overflow tunable too? */
127
f21ffe9f 128unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
129{
130 return io_tlb_nslabs;
131}
f21ffe9f 132EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f 133
7453c549
KRW
134unsigned int swiotlb_max_segment(void)
135{
136 return max_segment;
137}
138EXPORT_SYMBOL_GPL(swiotlb_max_segment);
139
140void swiotlb_set_max_segment(unsigned int val)
141{
142 if (swiotlb_force == SWIOTLB_FORCE)
143 max_segment = 1;
144 else
145 max_segment = rounddown(val, PAGE_SIZE);
146}
147
c729de8f
YL
148/* default to 64MB */
149#define IO_TLB_DEFAULT_SIZE (64UL<<20)
150unsigned long swiotlb_size_or_default(void)
151{
152 unsigned long size;
153
154 size = io_tlb_nslabs << IO_TLB_SHIFT;
155
156 return size ? size : (IO_TLB_DEFAULT_SIZE);
157}
158
c7753208
TL
159void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
160
161/* For swiotlb, clear memory encryption mask from dma addresses */
162static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
163 phys_addr_t address)
164{
165 return __sme_clr(phys_to_dma(hwdev, address));
166}
167
02ca646e 168/* Note that this doesn't work with highmem page */
70a7d3cc
JF
169static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
170 volatile void *address)
e08e1f7a 171{
862d196b 172 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
173}
174
ac2cbab2
YL
175static bool no_iotlb_memory;
176
ad32e8cb 177void swiotlb_print_info(void)
2e5b2b86 178{
ad32e8cb 179 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 180 unsigned char *vstart, *vend;
2e5b2b86 181
ac2cbab2
YL
182 if (no_iotlb_memory) {
183 pr_warn("software IO TLB: No low mem\n");
184 return;
185 }
186
ff7204a7 187 vstart = phys_to_virt(io_tlb_start);
c40dba06 188 vend = phys_to_virt(io_tlb_end);
2e5b2b86 189
3af684c7 190 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 191 (unsigned long long)io_tlb_start,
c40dba06 192 (unsigned long long)io_tlb_end,
ff7204a7 193 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
194}
195
c7753208
TL
196/*
197 * Early SWIOTLB allocation may be too early to allow an architecture to
198 * perform the desired operations. This function allows the architecture to
199 * call SWIOTLB when the operations are possible. It needs to be called
200 * before the SWIOTLB memory is used.
201 */
202void __init swiotlb_update_mem_attributes(void)
203{
204 void *vaddr;
205 unsigned long bytes;
206
207 if (no_iotlb_memory || late_alloc)
208 return;
209
210 vaddr = phys_to_virt(io_tlb_start);
211 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
212 swiotlb_set_mem_attributes(vaddr, bytes);
213 memset(vaddr, 0, bytes);
214
215 vaddr = phys_to_virt(io_tlb_overflow_buffer);
216 bytes = PAGE_ALIGN(io_tlb_overflow);
217 swiotlb_set_mem_attributes(vaddr, bytes);
218 memset(vaddr, 0, bytes);
219}
220
ac2cbab2 221int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 222{
ee3f6ba8 223 void *v_overflow_buffer;
563aaf06 224 unsigned long i, bytes;
1da177e4 225
abbceff7 226 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 227
abbceff7 228 io_tlb_nslabs = nslabs;
ff7204a7
AD
229 io_tlb_start = __pa(tlb);
230 io_tlb_end = io_tlb_start + bytes;
1da177e4 231
ee3f6ba8
AD
232 /*
233 * Get the overflow emergency buffer
234 */
ad6492b8 235 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
236 PAGE_ALIGN(io_tlb_overflow),
237 PAGE_SIZE);
ee3f6ba8 238 if (!v_overflow_buffer)
ac2cbab2 239 return -ENOMEM;
ee3f6ba8
AD
240
241 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
242
1da177e4
LT
243 /*
244 * Allocate and initialize the free list array. This array is used
245 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
246 * between io_tlb_start and io_tlb_end.
247 */
457ff1de
SS
248 io_tlb_list = memblock_virt_alloc(
249 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
250 PAGE_SIZE);
457ff1de
SS
251 io_tlb_orig_addr = memblock_virt_alloc(
252 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
253 PAGE_SIZE);
8e0629c1
JB
254 for (i = 0; i < io_tlb_nslabs; i++) {
255 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
257 }
258 io_tlb_index = 0;
1da177e4 259
ad32e8cb
FT
260 if (verbose)
261 swiotlb_print_info();
ac2cbab2 262
7453c549 263 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
ac2cbab2 264 return 0;
1da177e4
LT
265}
266
abbceff7
FT
267/*
268 * Statically reserve bounce buffer space and initialize bounce buffer data
269 * structures for the software IO TLB used to implement the DMA API.
270 */
ac2cbab2
YL
271void __init
272swiotlb_init(int verbose)
abbceff7 273{
c729de8f 274 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 275 unsigned char *vstart;
abbceff7
FT
276 unsigned long bytes;
277
278 if (!io_tlb_nslabs) {
279 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
280 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
281 }
282
283 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
284
ac2cbab2 285 /* Get IO TLB memory from the low pages */
ad6492b8 286 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
287 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
288 return;
abbceff7 289
ac2cbab2 290 if (io_tlb_start)
457ff1de
SS
291 memblock_free_early(io_tlb_start,
292 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
ac2cbab2
YL
293 pr_warn("Cannot allocate SWIOTLB buffer");
294 no_iotlb_memory = true;
1da177e4
LT
295}
296
0b9afede
AW
297/*
298 * Systems with larger DMA zones (those that don't support ISA) can
299 * initialize the swiotlb later using the slab allocator if needed.
300 * This should be just like above, but with some error catching.
301 */
302int
563aaf06 303swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 304{
74838b75 305 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 306 unsigned char *vstart = NULL;
0b9afede 307 unsigned int order;
74838b75 308 int rc = 0;
0b9afede
AW
309
310 if (!io_tlb_nslabs) {
311 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
312 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
313 }
314
315 /*
316 * Get IO TLB memory from the low pages
317 */
563aaf06 318 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 319 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 320 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
321
322 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
323 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
324 order);
325 if (vstart)
0b9afede
AW
326 break;
327 order--;
328 }
329
ff7204a7 330 if (!vstart) {
74838b75
KRW
331 io_tlb_nslabs = req_nslabs;
332 return -ENOMEM;
333 }
563aaf06 334 if (order != get_order(bytes)) {
0b9afede
AW
335 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
336 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
337 io_tlb_nslabs = SLABS_PER_PAGE << order;
338 }
ff7204a7 339 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 340 if (rc)
ff7204a7 341 free_pages((unsigned long)vstart, order);
7453c549 342
74838b75
KRW
343 return rc;
344}
345
346int
347swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
348{
349 unsigned long i, bytes;
ee3f6ba8 350 unsigned char *v_overflow_buffer;
74838b75
KRW
351
352 bytes = nslabs << IO_TLB_SHIFT;
353
354 io_tlb_nslabs = nslabs;
ff7204a7
AD
355 io_tlb_start = virt_to_phys(tlb);
356 io_tlb_end = io_tlb_start + bytes;
74838b75 357
c7753208 358 swiotlb_set_mem_attributes(tlb, bytes);
ff7204a7 359 memset(tlb, 0, bytes);
0b9afede 360
ee3f6ba8
AD
361 /*
362 * Get the overflow emergency buffer
363 */
364 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
365 get_order(io_tlb_overflow));
366 if (!v_overflow_buffer)
367 goto cleanup2;
368
c7753208
TL
369 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
370 memset(v_overflow_buffer, 0, io_tlb_overflow);
ee3f6ba8
AD
371 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
372
0b9afede
AW
373 /*
374 * Allocate and initialize the free list array. This array is used
375 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
376 * between io_tlb_start and io_tlb_end.
377 */
378 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
379 get_order(io_tlb_nslabs * sizeof(int)));
380 if (!io_tlb_list)
ee3f6ba8 381 goto cleanup3;
0b9afede 382
bc40ac66
BB
383 io_tlb_orig_addr = (phys_addr_t *)
384 __get_free_pages(GFP_KERNEL,
385 get_order(io_tlb_nslabs *
386 sizeof(phys_addr_t)));
0b9afede 387 if (!io_tlb_orig_addr)
ee3f6ba8 388 goto cleanup4;
0b9afede 389
8e0629c1
JB
390 for (i = 0; i < io_tlb_nslabs; i++) {
391 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
392 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
393 }
394 io_tlb_index = 0;
0b9afede 395
ad32e8cb 396 swiotlb_print_info();
0b9afede 397
5740afdb
FT
398 late_alloc = 1;
399
7453c549
KRW
400 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
401
0b9afede
AW
402 return 0;
403
404cleanup4:
25667d67
TL
405 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
406 sizeof(int)));
0b9afede 407 io_tlb_list = NULL;
ee3f6ba8
AD
408cleanup3:
409 free_pages((unsigned long)v_overflow_buffer,
410 get_order(io_tlb_overflow));
411 io_tlb_overflow_buffer = 0;
0b9afede 412cleanup2:
c40dba06 413 io_tlb_end = 0;
ff7204a7 414 io_tlb_start = 0;
74838b75 415 io_tlb_nslabs = 0;
7453c549 416 max_segment = 0;
0b9afede
AW
417 return -ENOMEM;
418}
419
5740afdb
FT
420void __init swiotlb_free(void)
421{
ee3f6ba8 422 if (!io_tlb_orig_addr)
5740afdb
FT
423 return;
424
425 if (late_alloc) {
ee3f6ba8 426 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
427 get_order(io_tlb_overflow));
428 free_pages((unsigned long)io_tlb_orig_addr,
429 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
430 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
431 sizeof(int)));
ff7204a7 432 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
433 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
434 } else {
457ff1de
SS
435 memblock_free_late(io_tlb_overflow_buffer,
436 PAGE_ALIGN(io_tlb_overflow));
437 memblock_free_late(__pa(io_tlb_orig_addr),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
439 memblock_free_late(__pa(io_tlb_list),
440 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
441 memblock_free_late(io_tlb_start,
442 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 443 }
f21ffe9f 444 io_tlb_nslabs = 0;
7453c549 445 max_segment = 0;
5740afdb
FT
446}
447
9c5a3621 448int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 449{
ff7204a7 450 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
451}
452
fb05a379
BB
453/*
454 * Bounce: copy the swiotlb buffer back to the original dma location
455 */
af51a9f1
AD
456static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
457 size_t size, enum dma_data_direction dir)
fb05a379 458{
af51a9f1
AD
459 unsigned long pfn = PFN_DOWN(orig_addr);
460 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
461
462 if (PageHighMem(pfn_to_page(pfn))) {
463 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 464 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
465 char *buffer;
466 unsigned int sz = 0;
467 unsigned long flags;
468
469 while (size) {
67131ad0 470 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
471
472 local_irq_save(flags);
c3eede8e 473 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 474 if (dir == DMA_TO_DEVICE)
af51a9f1 475 memcpy(vaddr, buffer + offset, sz);
ef9b1893 476 else
af51a9f1 477 memcpy(buffer + offset, vaddr, sz);
c3eede8e 478 kunmap_atomic(buffer);
ef9b1893 479 local_irq_restore(flags);
fb05a379
BB
480
481 size -= sz;
482 pfn++;
af51a9f1 483 vaddr += sz;
fb05a379 484 offset = 0;
ef9b1893 485 }
af51a9f1
AD
486 } else if (dir == DMA_TO_DEVICE) {
487 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 488 } else {
af51a9f1 489 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 490 }
1b548f66
JF
491}
492
e05ed4d1
AD
493phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
494 dma_addr_t tbl_dma_addr,
495 phys_addr_t orig_addr, size_t size,
0443fa00
AD
496 enum dma_data_direction dir,
497 unsigned long attrs)
1da177e4
LT
498{
499 unsigned long flags;
e05ed4d1 500 phys_addr_t tlb_addr;
1da177e4
LT
501 unsigned int nslots, stride, index, wrap;
502 int i;
681cc5cd
FT
503 unsigned long mask;
504 unsigned long offset_slots;
505 unsigned long max_slots;
506
ac2cbab2
YL
507 if (no_iotlb_memory)
508 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
509
648babb7
TL
510 if (sme_active())
511 pr_warn_once("SME is active and system is using DMA bounce buffers\n");
512
681cc5cd 513 mask = dma_get_seg_boundary(hwdev);
681cc5cd 514
eb605a57
FT
515 tbl_dma_addr &= mask;
516
517 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
518
519 /*
520 * Carefully handle integer overflow which can occur when mask == ~0UL.
521 */
b15a3891
JB
522 max_slots = mask + 1
523 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
524 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
525
526 /*
602d9858
NY
527 * For mappings greater than or equal to a page, we limit the stride
528 * (and hence alignment) to a page size.
1da177e4
LT
529 */
530 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
602d9858 531 if (size >= PAGE_SIZE)
1da177e4
LT
532 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
533 else
534 stride = 1;
535
34814545 536 BUG_ON(!nslots);
1da177e4
LT
537
538 /*
539 * Find suitable number of IO TLB entries size that will fit this
540 * request and allocate a buffer from that IO TLB pool.
541 */
542 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
543 index = ALIGN(io_tlb_index, stride);
544 if (index >= io_tlb_nslabs)
545 index = 0;
546 wrap = index;
547
548 do {
a8522509
FT
549 while (iommu_is_span_boundary(index, nslots, offset_slots,
550 max_slots)) {
b15a3891
JB
551 index += stride;
552 if (index >= io_tlb_nslabs)
553 index = 0;
a7133a15
AM
554 if (index == wrap)
555 goto not_found;
556 }
557
558 /*
559 * If we find a slot that indicates we have 'nslots' number of
560 * contiguous buffers, we allocate the buffers from that slot
561 * and mark the entries as '0' indicating unavailable.
562 */
563 if (io_tlb_list[index] >= nslots) {
564 int count = 0;
565
566 for (i = index; i < (int) (index + nslots); i++)
567 io_tlb_list[i] = 0;
568 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
569 io_tlb_list[i] = ++count;
e05ed4d1 570 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 571
a7133a15
AM
572 /*
573 * Update the indices to avoid searching in the next
574 * round.
575 */
576 io_tlb_index = ((index + nslots) < io_tlb_nslabs
577 ? (index + nslots) : 0);
578
579 goto found;
580 }
581 index += stride;
582 if (index >= io_tlb_nslabs)
583 index = 0;
584 } while (index != wrap);
585
586not_found:
587 spin_unlock_irqrestore(&io_tlb_lock, flags);
0cb637bf
KRW
588 if (printk_ratelimit())
589 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 590 return SWIOTLB_MAP_ERROR;
a7133a15 591found:
1da177e4
LT
592 spin_unlock_irqrestore(&io_tlb_lock, flags);
593
594 /*
595 * Save away the mapping from the original address to the DMA address.
596 * This is needed when we sync the memory. Then we sync the buffer if
597 * needed.
598 */
bc40ac66 599 for (i = 0; i < nslots; i++)
e05ed4d1 600 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
601 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
602 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 603 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 604
e05ed4d1 605 return tlb_addr;
1da177e4 606}
d7ef1533 607EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 608
eb605a57
FT
609/*
610 * Allocates bounce buffer and returns its kernel virtual address.
611 */
612
023600f1
AC
613static phys_addr_t
614map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 615 enum dma_data_direction dir, unsigned long attrs)
eb605a57 616{
fff5d992
GU
617 dma_addr_t start_dma_addr;
618
619 if (swiotlb_force == SWIOTLB_NO_FORCE) {
620 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
621 &phys);
622 return SWIOTLB_MAP_ERROR;
623 }
eb605a57 624
c7753208 625 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
626 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
627 dir, attrs);
eb605a57
FT
628}
629
1da177e4
LT
630/*
631 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
632 */
61ca08c3 633void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
634 size_t size, enum dma_data_direction dir,
635 unsigned long attrs)
1da177e4
LT
636{
637 unsigned long flags;
638 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
639 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
640 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
641
642 /*
643 * First, sync the memory before unmapping the entry
644 */
8e0629c1 645 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 646 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 647 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 648 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
649
650 /*
651 * Return the buffer to the free list by setting the corresponding
af901ca1 652 * entries to indicate the number of contiguous entries available.
1da177e4
LT
653 * While returning the entries to the free list, we merge the entries
654 * with slots below and above the pool being returned.
655 */
656 spin_lock_irqsave(&io_tlb_lock, flags);
657 {
658 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
659 io_tlb_list[index + nslots] : 0);
660 /*
661 * Step 1: return the slots to the free list, merging the
662 * slots with superceeding slots
663 */
8e0629c1 664 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 665 io_tlb_list[i] = ++count;
8e0629c1
JB
666 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
667 }
1da177e4
LT
668 /*
669 * Step 2: merge the returned slots with the preceding slots,
670 * if available (non zero)
671 */
672 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
673 io_tlb_list[i] = ++count;
674 }
675 spin_unlock_irqrestore(&io_tlb_lock, flags);
676}
d7ef1533 677EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 678
fbfda893
AD
679void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
680 size_t size, enum dma_data_direction dir,
681 enum dma_sync_target target)
1da177e4 682{
fbfda893
AD
683 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
684 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 685
8e0629c1
JB
686 if (orig_addr == INVALID_PHYS_ADDR)
687 return;
fbfda893 688 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 689
de69e0f0
JL
690 switch (target) {
691 case SYNC_FOR_CPU:
692 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 693 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 694 size, DMA_FROM_DEVICE);
34814545
ES
695 else
696 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
697 break;
698 case SYNC_FOR_DEVICE:
699 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 700 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 701 size, DMA_TO_DEVICE);
34814545
ES
702 else
703 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
704 break;
705 default:
1da177e4 706 BUG();
de69e0f0 707 }
1da177e4 708}
d7ef1533 709EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
710
711void *
712swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 713 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 714{
563aaf06 715 dma_addr_t dev_addr;
1da177e4
LT
716 void *ret;
717 int order = get_order(size);
284901a9 718 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
719
720 if (hwdev && hwdev->coherent_dma_mask)
721 dma_mask = hwdev->coherent_dma_mask;
1da177e4 722
25667d67 723 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
724 if (ret) {
725 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
726 if (dev_addr + size - 1 > dma_mask) {
727 /*
728 * The allocated memory isn't reachable by the device.
729 */
730 free_pages((unsigned long) ret, order);
731 ret = NULL;
732 }
1da177e4
LT
733 }
734 if (!ret) {
735 /*
bfc5501f
KRW
736 * We are either out of memory or the device can't DMA to
737 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 738 * will grab memory from the lowest available address range.
1da177e4 739 */
0443fa00
AD
740 phys_addr_t paddr = map_single(hwdev, 0, size,
741 DMA_FROM_DEVICE, 0);
e05ed4d1 742 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 743 goto err_warn;
1da177e4 744
e05ed4d1 745 ret = phys_to_virt(paddr);
c7753208 746 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
1da177e4 747
61ca08c3
AD
748 /* Confirm address can be DMA'd by device */
749 if (dev_addr + size - 1 > dma_mask) {
750 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
751 (unsigned long long)dma_mask,
752 (unsigned long long)dev_addr);
a2b89b59 753
0443fa00
AD
754 /*
755 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
756 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
757 */
61ca08c3 758 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
759 size, DMA_TO_DEVICE,
760 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 761 goto err_warn;
61ca08c3 762 }
1da177e4 763 }
e05ed4d1 764
1da177e4 765 *dma_handle = dev_addr;
e05ed4d1
AD
766 memset(ret, 0, size);
767
1da177e4 768 return ret;
94cc81f9
JR
769
770err_warn:
771 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
772 dev_name(hwdev), size);
773 dump_stack();
774
775 return NULL;
1da177e4 776}
874d6a95 777EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
778
779void
780swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 781 dma_addr_t dev_addr)
1da177e4 782{
862d196b 783 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 784
aa24886e 785 WARN_ON(irqs_disabled());
02ca646e
FT
786 if (!is_swiotlb_buffer(paddr))
787 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 788 else
0443fa00
AD
789 /*
790 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
791 * DMA_ATTR_SKIP_CPU_SYNC is optional.
792 */
793 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
794 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 795}
874d6a95 796EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
797
798static void
22d48269
KRW
799swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
800 int do_panic)
1da177e4 801{
fff5d992
GU
802 if (swiotlb_force == SWIOTLB_NO_FORCE)
803 return;
804
1da177e4
LT
805 /*
806 * Ran out of IOMMU space for this operation. This is very bad.
807 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 808 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
809 * When the mapping is small enough return a static buffer to limit
810 * the damage, or panic when the transfer is too big.
811 */
0d2e1898
GU
812 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
813 size);
1da177e4 814
c7084b35
CD
815 if (size <= io_tlb_overflow || !do_panic)
816 return;
817
818 if (dir == DMA_BIDIRECTIONAL)
819 panic("DMA: Random memory could be DMA accessed\n");
820 if (dir == DMA_FROM_DEVICE)
821 panic("DMA: Random memory could be DMA written\n");
822 if (dir == DMA_TO_DEVICE)
823 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
824}
825
826/*
827 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 828 * physical address to use is returned.
1da177e4
LT
829 *
830 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 831 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 832 */
f98eee8e
FT
833dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
834 unsigned long offset, size_t size,
835 enum dma_data_direction dir,
00085f1e 836 unsigned long attrs)
1da177e4 837{
e05ed4d1 838 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 839 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 840
34814545 841 BUG_ON(dir == DMA_NONE);
1da177e4 842 /*
ceb5ac32 843 * If the address happens to be in the device's DMA window,
1da177e4
LT
844 * we can safely return the device addr and not worry about bounce
845 * buffering it.
846 */
ae7871be 847 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
848 return dev_addr;
849
2b2b614d
ZK
850 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
851
e05ed4d1 852 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 853 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 854 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 855 swiotlb_full(dev, size, dir, 1);
c7753208 856 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
857 }
858
c7753208 859 dev_addr = swiotlb_phys_to_dma(dev, map);
1da177e4 860
e05ed4d1 861 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
862 if (dma_capable(dev, dev_addr, size))
863 return dev_addr;
864
d29fa0cb
AD
865 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
866 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 867
c7753208 868 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 869}
f98eee8e 870EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 871
1da177e4
LT
872/*
873 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 874 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
875 * other usages are undefined.
876 *
877 * After this call, reads by the cpu to the buffer are guaranteed to see
878 * whatever the device wrote there.
879 */
7fcebbd2 880static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
881 size_t size, enum dma_data_direction dir,
882 unsigned long attrs)
1da177e4 883{
862d196b 884 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 885
34814545 886 BUG_ON(dir == DMA_NONE);
7fcebbd2 887
02ca646e 888 if (is_swiotlb_buffer(paddr)) {
0443fa00 889 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
890 return;
891 }
892
893 if (dir != DMA_FROM_DEVICE)
894 return;
895
02ca646e
FT
896 /*
897 * phys_to_virt doesn't work with hihgmem page but we could
898 * call dma_mark_clean() with hihgmem page here. However, we
899 * are fine since dma_mark_clean() is null on POWERPC. We can
900 * make dma_mark_clean() take a physical address if necessary.
901 */
902 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
903}
904
905void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
906 size_t size, enum dma_data_direction dir,
00085f1e 907 unsigned long attrs)
7fcebbd2 908{
0443fa00 909 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 910}
f98eee8e 911EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 912
1da177e4
LT
913/*
914 * Make physical memory consistent for a single streaming mode DMA translation
915 * after a transfer.
916 *
ceb5ac32 917 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
918 * using the cpu, yet do not wish to teardown the dma mapping, you must
919 * call this function before doing so. At the next point you give the dma
1da177e4
LT
920 * address back to the card, you must first perform a
921 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
922 */
be6b0267 923static void
8270f3f1 924swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
925 size_t size, enum dma_data_direction dir,
926 enum dma_sync_target target)
1da177e4 927{
862d196b 928 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 929
34814545 930 BUG_ON(dir == DMA_NONE);
380d6878 931
02ca646e 932 if (is_swiotlb_buffer(paddr)) {
fbfda893 933 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
934 return;
935 }
936
937 if (dir != DMA_FROM_DEVICE)
938 return;
939
02ca646e 940 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
941}
942
8270f3f1
JL
943void
944swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 945 size_t size, enum dma_data_direction dir)
8270f3f1 946{
de69e0f0 947 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 948}
874d6a95 949EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 950
1da177e4
LT
951void
952swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 953 size_t size, enum dma_data_direction dir)
1da177e4 954{
de69e0f0 955 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 956}
874d6a95 957EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
958
959/*
960 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 961 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
962 * interface. Here the scatter gather list elements are each tagged with the
963 * appropriate dma address and length. They are obtained via
964 * sg_dma_{address,length}(SG).
965 *
966 * NOTE: An implementation may be able to use a smaller number of
967 * DMA address/length pairs than there are SG table elements.
968 * (for example via virtual mapping capabilities)
969 * The routine returns the number of addr/length pairs actually
970 * used, at most nents.
971 *
ceb5ac32 972 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
973 * same here.
974 */
975int
309df0c5 976swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 977 enum dma_data_direction dir, unsigned long attrs)
1da177e4 978{
dbfd49fe 979 struct scatterlist *sg;
1da177e4
LT
980 int i;
981
34814545 982 BUG_ON(dir == DMA_NONE);
1da177e4 983
dbfd49fe 984 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 985 phys_addr_t paddr = sg_phys(sg);
862d196b 986 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 987
ae7871be 988 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 989 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 990 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 991 sg->length, dir, attrs);
e05ed4d1 992 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
993 /* Don't panic here, we expect map_sg users
994 to do proper error handling. */
995 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 996 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
997 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
998 attrs);
4d86ec7a 999 sg_dma_len(sgl) = 0;
1da177e4
LT
1000 return 0;
1001 }
c7753208 1002 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1da177e4
LT
1003 } else
1004 sg->dma_address = dev_addr;
4d86ec7a 1005 sg_dma_len(sg) = sg->length;
1da177e4
LT
1006 }
1007 return nelems;
1008}
309df0c5
AK
1009EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1010
1da177e4
LT
1011/*
1012 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 1013 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
1014 */
1015void
309df0c5 1016swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
1017 int nelems, enum dma_data_direction dir,
1018 unsigned long attrs)
1da177e4 1019{
dbfd49fe 1020 struct scatterlist *sg;
1da177e4
LT
1021 int i;
1022
34814545 1023 BUG_ON(dir == DMA_NONE);
1da177e4 1024
7fcebbd2 1025 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
1026 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1027 attrs);
1da177e4 1028}
309df0c5
AK
1029EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1030
1da177e4
LT
1031/*
1032 * Make physical memory consistent for a set of streaming mode DMA translations
1033 * after a transfer.
1034 *
1035 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1036 * and usage.
1037 */
be6b0267 1038static void
dbfd49fe 1039swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
1040 int nelems, enum dma_data_direction dir,
1041 enum dma_sync_target target)
1da177e4 1042{
dbfd49fe 1043 struct scatterlist *sg;
1da177e4
LT
1044 int i;
1045
380d6878
BB
1046 for_each_sg(sgl, sg, nelems, i)
1047 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 1048 sg_dma_len(sg), dir, target);
1da177e4
LT
1049}
1050
8270f3f1
JL
1051void
1052swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1053 int nelems, enum dma_data_direction dir)
8270f3f1 1054{
de69e0f0 1055 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 1056}
874d6a95 1057EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 1058
1da177e4
LT
1059void
1060swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1061 int nelems, enum dma_data_direction dir)
1da177e4 1062{
de69e0f0 1063 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 1064}
874d6a95 1065EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
1066
1067int
8d8bb39b 1068swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1069{
c7753208 1070 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1071}
874d6a95 1072EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1073
1074/*
17e5ad6c 1075 * Return whether the given device DMA address mask can be supported
1da177e4 1076 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1077 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1078 * this function.
1079 */
1080int
563aaf06 1081swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1082{
c7753208 1083 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1084}
1da177e4 1085EXPORT_SYMBOL(swiotlb_dma_supported);