ARM: S5PC100: gpio.h cleanup
[linux-2.6-block.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
1da177e4 23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/module.h>
33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
37
e18b890b 38static struct kmem_cache *idr_layer_cache;
1da177e4 39
4ae53789 40static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
41{
42 struct idr_layer *p;
c259cc28 43 unsigned long flags;
1da177e4 44
c259cc28 45 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
50 }
c259cc28 51 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
52 return(p);
53}
54
cf481c20
ND
55static void idr_layer_rcu_free(struct rcu_head *head)
56{
57 struct idr_layer *layer;
58
59 layer = container_of(head, struct idr_layer, rcu_head);
60 kmem_cache_free(idr_layer_cache, layer);
61}
62
63static inline void free_layer(struct idr_layer *p)
64{
65 call_rcu(&p->rcu_head, idr_layer_rcu_free);
66}
67
1eec0056 68/* only called when idp->lock is held */
4ae53789 69static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
70{
71 p->ary[0] = idp->id_free;
72 idp->id_free = p;
73 idp->id_free_cnt++;
74}
75
4ae53789 76static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 77{
c259cc28
RD
78 unsigned long flags;
79
1da177e4
LT
80 /*
81 * Depends on the return element being zeroed.
82 */
c259cc28 83 spin_lock_irqsave(&idp->lock, flags);
4ae53789 84 __move_to_free_list(idp, p);
c259cc28 85 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
86}
87
e33ac8bd
TH
88static void idr_mark_full(struct idr_layer **pa, int id)
89{
90 struct idr_layer *p = pa[0];
91 int l = 0;
92
93 __set_bit(id & IDR_MASK, &p->bitmap);
94 /*
95 * If this layer is full mark the bit in the layer above to
96 * show that this part of the radix tree is full. This may
97 * complete the layer above and require walking up the radix
98 * tree.
99 */
100 while (p->bitmap == IDR_FULL) {
101 if (!(p = pa[++l]))
102 break;
103 id = id >> IDR_BITS;
104 __set_bit((id & IDR_MASK), &p->bitmap);
105 }
106}
107
1da177e4
LT
108/**
109 * idr_pre_get - reserver resources for idr allocation
110 * @idp: idr handle
111 * @gfp_mask: memory allocation flags
112 *
113 * This function should be called prior to locking and calling the
3219b3b7 114 * idr_get_new* functions. It preallocates enough memory to satisfy
1da177e4
LT
115 * the worst possible allocation.
116 *
117 * If the system is REALLY out of memory this function returns 0,
118 * otherwise 1.
119 */
fd4f2df2 120int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4
LT
121{
122 while (idp->id_free_cnt < IDR_FREE_MAX) {
123 struct idr_layer *new;
5b019e99 124 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
e15ae2dd 125 if (new == NULL)
1da177e4 126 return (0);
4ae53789 127 move_to_free_list(idp, new);
1da177e4
LT
128 }
129 return 1;
130}
131EXPORT_SYMBOL(idr_pre_get);
132
e33ac8bd 133static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
1da177e4
LT
134{
135 int n, m, sh;
136 struct idr_layer *p, *new;
7aae6dd8 137 int l, id, oid;
5ba25331 138 unsigned long bm;
1da177e4
LT
139
140 id = *starting_id;
7aae6dd8 141 restart:
1da177e4 142 p = idp->top;
6f14a668
TH
143 l = idp->layers;
144 pa[l--] = NULL;
1da177e4
LT
145 while (1) {
146 /*
147 * We run around this while until we reach the leaf node...
148 */
149 n = (id >> (IDR_BITS*l)) & IDR_MASK;
150 bm = ~p->bitmap;
151 m = find_next_bit(&bm, IDR_SIZE, n);
152 if (m == IDR_SIZE) {
153 /* no space available go back to previous layer. */
154 l++;
7aae6dd8 155 oid = id;
e15ae2dd 156 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8 157
6f14a668 158 /* if already at the top layer, we need to grow */
d2e7276b 159 if (id >= 1 << (idp->layers * IDR_BITS)) {
1da177e4 160 *starting_id = id;
944ca05c 161 return IDR_NEED_TO_GROW;
1da177e4 162 }
d2e7276b
TH
163 p = pa[l];
164 BUG_ON(!p);
7aae6dd8
TH
165
166 /* If we need to go up one layer, continue the
167 * loop; otherwise, restart from the top.
168 */
169 sh = IDR_BITS * (l + 1);
170 if (oid >> sh == id >> sh)
171 continue;
172 else
173 goto restart;
1da177e4
LT
174 }
175 if (m != n) {
176 sh = IDR_BITS*l;
177 id = ((id >> sh) ^ n ^ m) << sh;
178 }
179 if ((id >= MAX_ID_BIT) || (id < 0))
944ca05c 180 return IDR_NOMORE_SPACE;
1da177e4
LT
181 if (l == 0)
182 break;
183 /*
184 * Create the layer below if it is missing.
185 */
186 if (!p->ary[m]) {
4ae53789
ND
187 new = get_from_free_list(idp);
188 if (!new)
1da177e4 189 return -1;
6ff2d39b 190 new->layer = l-1;
3219b3b7 191 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
192 p->count++;
193 }
194 pa[l--] = p;
195 p = p->ary[m];
196 }
e33ac8bd
TH
197
198 pa[l] = p;
199 return id;
1da177e4
LT
200}
201
e33ac8bd
TH
202static int idr_get_empty_slot(struct idr *idp, int starting_id,
203 struct idr_layer **pa)
1da177e4
LT
204{
205 struct idr_layer *p, *new;
206 int layers, v, id;
c259cc28 207 unsigned long flags;
e15ae2dd 208
1da177e4
LT
209 id = starting_id;
210build_up:
211 p = idp->top;
212 layers = idp->layers;
213 if (unlikely(!p)) {
4ae53789 214 if (!(p = get_from_free_list(idp)))
1da177e4 215 return -1;
6ff2d39b 216 p->layer = 0;
1da177e4
LT
217 layers = 1;
218 }
219 /*
220 * Add a new layer to the top of the tree if the requested
221 * id is larger than the currently allocated space.
222 */
589777ea 223 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
1da177e4 224 layers++;
711a49a0
MS
225 if (!p->count) {
226 /* special case: if the tree is currently empty,
227 * then we grow the tree by moving the top node
228 * upwards.
229 */
230 p->layer++;
1da177e4 231 continue;
711a49a0 232 }
4ae53789 233 if (!(new = get_from_free_list(idp))) {
1da177e4
LT
234 /*
235 * The allocation failed. If we built part of
236 * the structure tear it down.
237 */
c259cc28 238 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
239 for (new = p; p && p != idp->top; new = p) {
240 p = p->ary[0];
241 new->ary[0] = NULL;
242 new->bitmap = new->count = 0;
4ae53789 243 __move_to_free_list(idp, new);
1da177e4 244 }
c259cc28 245 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
246 return -1;
247 }
248 new->ary[0] = p;
249 new->count = 1;
6ff2d39b 250 new->layer = layers-1;
1da177e4
LT
251 if (p->bitmap == IDR_FULL)
252 __set_bit(0, &new->bitmap);
253 p = new;
254 }
3219b3b7 255 rcu_assign_pointer(idp->top, p);
1da177e4 256 idp->layers = layers;
e33ac8bd 257 v = sub_alloc(idp, &id, pa);
944ca05c 258 if (v == IDR_NEED_TO_GROW)
1da177e4
LT
259 goto build_up;
260 return(v);
261}
262
e33ac8bd
TH
263static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
264{
265 struct idr_layer *pa[MAX_LEVEL];
266 int id;
267
268 id = idr_get_empty_slot(idp, starting_id, pa);
269 if (id >= 0) {
270 /*
271 * Successfully found an empty slot. Install the user
272 * pointer and mark the slot full.
273 */
3219b3b7
ND
274 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
275 (struct idr_layer *)ptr);
e33ac8bd
TH
276 pa[0]->count++;
277 idr_mark_full(pa, id);
278 }
279
280 return id;
281}
282
1da177e4 283/**
7c657f2f 284 * idr_get_new_above - allocate new idr entry above or equal to a start id
1da177e4 285 * @idp: idr handle
94e2bd68 286 * @ptr: pointer you want associated with the id
1da177e4
LT
287 * @start_id: id to start search at
288 * @id: pointer to the allocated handle
289 *
290 * This is the allocate id function. It should be called with any
291 * required locks.
292 *
293 * If memory is required, it will return -EAGAIN, you should unlock
294 * and go back to the idr_pre_get() call. If the idr is full, it will
295 * return -ENOSPC.
296 *
b098161b 297 * @id returns a value in the range @starting_id ... 0x7fffffff
1da177e4
LT
298 */
299int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
300{
301 int rv;
e15ae2dd 302
1da177e4
LT
303 rv = idr_get_new_above_int(idp, ptr, starting_id);
304 /*
305 * This is a cheap hack until the IDR code can be fixed to
306 * return proper error values.
307 */
944ca05c
ND
308 if (rv < 0)
309 return _idr_rc_to_errno(rv);
1da177e4
LT
310 *id = rv;
311 return 0;
312}
313EXPORT_SYMBOL(idr_get_new_above);
314
315/**
316 * idr_get_new - allocate new idr entry
317 * @idp: idr handle
94e2bd68 318 * @ptr: pointer you want associated with the id
1da177e4
LT
319 * @id: pointer to the allocated handle
320 *
321 * This is the allocate id function. It should be called with any
322 * required locks.
323 *
324 * If memory is required, it will return -EAGAIN, you should unlock
325 * and go back to the idr_pre_get() call. If the idr is full, it will
326 * return -ENOSPC.
327 *
328 * @id returns a value in the range 0 ... 0x7fffffff
329 */
330int idr_get_new(struct idr *idp, void *ptr, int *id)
331{
332 int rv;
e15ae2dd 333
1da177e4
LT
334 rv = idr_get_new_above_int(idp, ptr, 0);
335 /*
336 * This is a cheap hack until the IDR code can be fixed to
337 * return proper error values.
338 */
944ca05c
ND
339 if (rv < 0)
340 return _idr_rc_to_errno(rv);
1da177e4
LT
341 *id = rv;
342 return 0;
343}
344EXPORT_SYMBOL(idr_get_new);
345
346static void idr_remove_warning(int id)
347{
f098ad65
ND
348 printk(KERN_WARNING
349 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
350 dump_stack();
351}
352
353static void sub_remove(struct idr *idp, int shift, int id)
354{
355 struct idr_layer *p = idp->top;
356 struct idr_layer **pa[MAX_LEVEL];
357 struct idr_layer ***paa = &pa[0];
cf481c20 358 struct idr_layer *to_free;
1da177e4
LT
359 int n;
360
361 *paa = NULL;
362 *++paa = &idp->top;
363
364 while ((shift > 0) && p) {
365 n = (id >> shift) & IDR_MASK;
366 __clear_bit(n, &p->bitmap);
367 *++paa = &p->ary[n];
368 p = p->ary[n];
369 shift -= IDR_BITS;
370 }
371 n = id & IDR_MASK;
372 if (likely(p != NULL && test_bit(n, &p->bitmap))){
373 __clear_bit(n, &p->bitmap);
cf481c20
ND
374 rcu_assign_pointer(p->ary[n], NULL);
375 to_free = NULL;
1da177e4 376 while(*paa && ! --((**paa)->count)){
cf481c20
ND
377 if (to_free)
378 free_layer(to_free);
379 to_free = **paa;
1da177e4
LT
380 **paa-- = NULL;
381 }
e15ae2dd 382 if (!*paa)
1da177e4 383 idp->layers = 0;
cf481c20
ND
384 if (to_free)
385 free_layer(to_free);
e15ae2dd 386 } else
1da177e4 387 idr_remove_warning(id);
1da177e4
LT
388}
389
390/**
391 * idr_remove - remove the given id and free it's slot
72fd4a35
RD
392 * @idp: idr handle
393 * @id: unique key
1da177e4
LT
394 */
395void idr_remove(struct idr *idp, int id)
396{
397 struct idr_layer *p;
cf481c20 398 struct idr_layer *to_free;
1da177e4
LT
399
400 /* Mask off upper bits we don't use for the search. */
401 id &= MAX_ID_MASK;
402
403 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 404 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
405 idp->top->ary[0]) {
406 /*
407 * Single child at leftmost slot: we can shrink the tree.
408 * This level is not needed anymore since when layers are
409 * inserted, they are inserted at the top of the existing
410 * tree.
411 */
412 to_free = idp->top;
1da177e4 413 p = idp->top->ary[0];
cf481c20 414 rcu_assign_pointer(idp->top, p);
1da177e4 415 --idp->layers;
cf481c20
ND
416 to_free->bitmap = to_free->count = 0;
417 free_layer(to_free);
1da177e4
LT
418 }
419 while (idp->id_free_cnt >= IDR_FREE_MAX) {
4ae53789 420 p = get_from_free_list(idp);
cf481c20
ND
421 /*
422 * Note: we don't call the rcu callback here, since the only
423 * layers that fall into the freelist are those that have been
424 * preallocated.
425 */
1da177e4 426 kmem_cache_free(idr_layer_cache, p);
1da177e4 427 }
af8e2a4c 428 return;
1da177e4
LT
429}
430EXPORT_SYMBOL(idr_remove);
431
23936cc0
KH
432/**
433 * idr_remove_all - remove all ids from the given idr tree
434 * @idp: idr handle
435 *
436 * idr_destroy() only frees up unused, cached idp_layers, but this
437 * function will remove all id mappings and leave all idp_layers
438 * unused.
439 *
440 * A typical clean-up sequence for objects stored in an idr tree, will
441 * use idr_for_each() to free all objects, if necessay, then
442 * idr_remove_all() to remove all ids, and idr_destroy() to free
443 * up the cached idr_layers.
444 */
445void idr_remove_all(struct idr *idp)
446{
6ace06dc 447 int n, id, max;
23936cc0
KH
448 struct idr_layer *p;
449 struct idr_layer *pa[MAX_LEVEL];
450 struct idr_layer **paa = &pa[0];
451
452 n = idp->layers * IDR_BITS;
453 p = idp->top;
1b23336a 454 rcu_assign_pointer(idp->top, NULL);
23936cc0
KH
455 max = 1 << n;
456
457 id = 0;
6ace06dc 458 while (id < max) {
23936cc0
KH
459 while (n > IDR_BITS && p) {
460 n -= IDR_BITS;
461 *paa++ = p;
462 p = p->ary[(id >> n) & IDR_MASK];
463 }
464
465 id += 1 << n;
466 while (n < fls(id)) {
cf481c20
ND
467 if (p)
468 free_layer(p);
23936cc0
KH
469 n += IDR_BITS;
470 p = *--paa;
471 }
472 }
23936cc0
KH
473 idp->layers = 0;
474}
475EXPORT_SYMBOL(idr_remove_all);
476
8d3b3591
AM
477/**
478 * idr_destroy - release all cached layers within an idr tree
479 * idp: idr handle
480 */
481void idr_destroy(struct idr *idp)
482{
483 while (idp->id_free_cnt) {
4ae53789 484 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
485 kmem_cache_free(idr_layer_cache, p);
486 }
487}
488EXPORT_SYMBOL(idr_destroy);
489
1da177e4
LT
490/**
491 * idr_find - return pointer for given id
492 * @idp: idr handle
493 * @id: lookup key
494 *
495 * Return the pointer given the id it has been registered with. A %NULL
496 * return indicates that @id is not valid or you passed %NULL in
497 * idr_get_new().
498 *
f9c46d6e
ND
499 * This function can be called under rcu_read_lock(), given that the leaf
500 * pointers lifetimes are correctly managed.
1da177e4
LT
501 */
502void *idr_find(struct idr *idp, int id)
503{
504 int n;
505 struct idr_layer *p;
506
96be753a 507 p = rcu_dereference_raw(idp->top);
6ff2d39b
MS
508 if (!p)
509 return NULL;
510 n = (p->layer+1) * IDR_BITS;
1da177e4
LT
511
512 /* Mask off upper bits we don't use for the search. */
513 id &= MAX_ID_MASK;
514
515 if (id >= (1 << n))
516 return NULL;
6ff2d39b 517 BUG_ON(n == 0);
1da177e4
LT
518
519 while (n > 0 && p) {
520 n -= IDR_BITS;
6ff2d39b 521 BUG_ON(n != p->layer*IDR_BITS);
96be753a 522 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
523 }
524 return((void *)p);
525}
526EXPORT_SYMBOL(idr_find);
527
96d7fa42
KH
528/**
529 * idr_for_each - iterate through all stored pointers
530 * @idp: idr handle
531 * @fn: function to be called for each pointer
532 * @data: data passed back to callback function
533 *
534 * Iterate over the pointers registered with the given idr. The
535 * callback function will be called for each pointer currently
536 * registered, passing the id, the pointer and the data pointer passed
537 * to this function. It is not safe to modify the idr tree while in
538 * the callback, so functions such as idr_get_new and idr_remove are
539 * not allowed.
540 *
541 * We check the return of @fn each time. If it returns anything other
542 * than 0, we break out and return that value.
543 *
544 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
545 */
546int idr_for_each(struct idr *idp,
547 int (*fn)(int id, void *p, void *data), void *data)
548{
549 int n, id, max, error = 0;
550 struct idr_layer *p;
551 struct idr_layer *pa[MAX_LEVEL];
552 struct idr_layer **paa = &pa[0];
553
554 n = idp->layers * IDR_BITS;
96be753a 555 p = rcu_dereference_raw(idp->top);
96d7fa42
KH
556 max = 1 << n;
557
558 id = 0;
559 while (id < max) {
560 while (n > 0 && p) {
561 n -= IDR_BITS;
562 *paa++ = p;
96be753a 563 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
564 }
565
566 if (p) {
567 error = fn(id, (void *)p, data);
568 if (error)
569 break;
570 }
571
572 id += 1 << n;
573 while (n < fls(id)) {
574 n += IDR_BITS;
575 p = *--paa;
576 }
577 }
578
579 return error;
580}
581EXPORT_SYMBOL(idr_for_each);
582
38460b48
KH
583/**
584 * idr_get_next - lookup next object of id to given id.
585 * @idp: idr handle
586 * @id: pointer to lookup key
587 *
588 * Returns pointer to registered object with id, which is next number to
589 * given id.
590 */
591
592void *idr_get_next(struct idr *idp, int *nextidp)
593{
594 struct idr_layer *p, *pa[MAX_LEVEL];
595 struct idr_layer **paa = &pa[0];
596 int id = *nextidp;
597 int n, max;
598
599 /* find first ent */
600 n = idp->layers * IDR_BITS;
601 max = 1 << n;
602 p = rcu_dereference(idp->top);
603 if (!p)
604 return NULL;
605
606 while (id < max) {
607 while (n > 0 && p) {
608 n -= IDR_BITS;
609 *paa++ = p;
610 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
611 }
612
613 if (p) {
614 *nextidp = id;
615 return p;
616 }
617
618 id += 1 << n;
619 while (n < fls(id)) {
620 n += IDR_BITS;
621 p = *--paa;
622 }
623 }
624 return NULL;
625}
626
627
628
5806f07c
JM
629/**
630 * idr_replace - replace pointer for given id
631 * @idp: idr handle
632 * @ptr: pointer you want associated with the id
633 * @id: lookup key
634 *
635 * Replace the pointer registered with an id and return the old value.
636 * A -ENOENT return indicates that @id was not found.
637 * A -EINVAL return indicates that @id was not within valid constraints.
638 *
cf481c20 639 * The caller must serialize with writers.
5806f07c
JM
640 */
641void *idr_replace(struct idr *idp, void *ptr, int id)
642{
643 int n;
644 struct idr_layer *p, *old_p;
645
5806f07c 646 p = idp->top;
6ff2d39b
MS
647 if (!p)
648 return ERR_PTR(-EINVAL);
649
650 n = (p->layer+1) * IDR_BITS;
5806f07c
JM
651
652 id &= MAX_ID_MASK;
653
654 if (id >= (1 << n))
655 return ERR_PTR(-EINVAL);
656
657 n -= IDR_BITS;
658 while ((n > 0) && p) {
659 p = p->ary[(id >> n) & IDR_MASK];
660 n -= IDR_BITS;
661 }
662
663 n = id & IDR_MASK;
664 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
665 return ERR_PTR(-ENOENT);
666
667 old_p = p->ary[n];
cf481c20 668 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
669
670 return old_p;
671}
672EXPORT_SYMBOL(idr_replace);
673
199f0ca5 674void __init idr_init_cache(void)
1da177e4 675{
199f0ca5 676 idr_layer_cache = kmem_cache_create("idr_layer_cache",
5b019e99 677 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
1da177e4
LT
678}
679
680/**
681 * idr_init - initialize idr handle
682 * @idp: idr handle
683 *
684 * This function is use to set up the handle (@idp) that you will pass
685 * to the rest of the functions.
686 */
687void idr_init(struct idr *idp)
688{
1da177e4
LT
689 memset(idp, 0, sizeof(struct idr));
690 spin_lock_init(&idp->lock);
691}
692EXPORT_SYMBOL(idr_init);
72dba584
TH
693
694
695/*
696 * IDA - IDR based ID allocator
697 *
698 * this is id allocator without id -> pointer translation. Memory
699 * usage is much lower than full blown idr because each id only
700 * occupies a bit. ida uses a custom leaf node which contains
701 * IDA_BITMAP_BITS slots.
702 *
703 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
704 */
705
706static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
707{
708 unsigned long flags;
709
710 if (!ida->free_bitmap) {
711 spin_lock_irqsave(&ida->idr.lock, flags);
712 if (!ida->free_bitmap) {
713 ida->free_bitmap = bitmap;
714 bitmap = NULL;
715 }
716 spin_unlock_irqrestore(&ida->idr.lock, flags);
717 }
718
719 kfree(bitmap);
720}
721
722/**
723 * ida_pre_get - reserve resources for ida allocation
724 * @ida: ida handle
725 * @gfp_mask: memory allocation flag
726 *
727 * This function should be called prior to locking and calling the
728 * following function. It preallocates enough memory to satisfy the
729 * worst possible allocation.
730 *
731 * If the system is REALLY out of memory this function returns 0,
732 * otherwise 1.
733 */
734int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
735{
736 /* allocate idr_layers */
737 if (!idr_pre_get(&ida->idr, gfp_mask))
738 return 0;
739
740 /* allocate free_bitmap */
741 if (!ida->free_bitmap) {
742 struct ida_bitmap *bitmap;
743
744 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
745 if (!bitmap)
746 return 0;
747
748 free_bitmap(ida, bitmap);
749 }
750
751 return 1;
752}
753EXPORT_SYMBOL(ida_pre_get);
754
755/**
756 * ida_get_new_above - allocate new ID above or equal to a start id
757 * @ida: ida handle
758 * @staring_id: id to start search at
759 * @p_id: pointer to the allocated handle
760 *
761 * Allocate new ID above or equal to @ida. It should be called with
762 * any required locks.
763 *
764 * If memory is required, it will return -EAGAIN, you should unlock
765 * and go back to the ida_pre_get() call. If the ida is full, it will
766 * return -ENOSPC.
767 *
b098161b 768 * @p_id returns a value in the range @starting_id ... 0x7fffffff.
72dba584
TH
769 */
770int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
771{
772 struct idr_layer *pa[MAX_LEVEL];
773 struct ida_bitmap *bitmap;
774 unsigned long flags;
775 int idr_id = starting_id / IDA_BITMAP_BITS;
776 int offset = starting_id % IDA_BITMAP_BITS;
777 int t, id;
778
779 restart:
780 /* get vacant slot */
781 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
944ca05c
ND
782 if (t < 0)
783 return _idr_rc_to_errno(t);
72dba584
TH
784
785 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
786 return -ENOSPC;
787
788 if (t != idr_id)
789 offset = 0;
790 idr_id = t;
791
792 /* if bitmap isn't there, create a new one */
793 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
794 if (!bitmap) {
795 spin_lock_irqsave(&ida->idr.lock, flags);
796 bitmap = ida->free_bitmap;
797 ida->free_bitmap = NULL;
798 spin_unlock_irqrestore(&ida->idr.lock, flags);
799
800 if (!bitmap)
801 return -EAGAIN;
802
803 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
804 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
805 (void *)bitmap);
72dba584
TH
806 pa[0]->count++;
807 }
808
809 /* lookup for empty slot */
810 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
811 if (t == IDA_BITMAP_BITS) {
812 /* no empty slot after offset, continue to the next chunk */
813 idr_id++;
814 offset = 0;
815 goto restart;
816 }
817
818 id = idr_id * IDA_BITMAP_BITS + t;
819 if (id >= MAX_ID_BIT)
820 return -ENOSPC;
821
822 __set_bit(t, bitmap->bitmap);
823 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
824 idr_mark_full(pa, idr_id);
825
826 *p_id = id;
827
828 /* Each leaf node can handle nearly a thousand slots and the
829 * whole idea of ida is to have small memory foot print.
830 * Throw away extra resources one by one after each successful
831 * allocation.
832 */
833 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 834 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
835 if (p)
836 kmem_cache_free(idr_layer_cache, p);
837 }
838
839 return 0;
840}
841EXPORT_SYMBOL(ida_get_new_above);
842
843/**
844 * ida_get_new - allocate new ID
845 * @ida: idr handle
846 * @p_id: pointer to the allocated handle
847 *
848 * Allocate new ID. It should be called with any required locks.
849 *
850 * If memory is required, it will return -EAGAIN, you should unlock
851 * and go back to the idr_pre_get() call. If the idr is full, it will
852 * return -ENOSPC.
853 *
854 * @id returns a value in the range 0 ... 0x7fffffff.
855 */
856int ida_get_new(struct ida *ida, int *p_id)
857{
858 return ida_get_new_above(ida, 0, p_id);
859}
860EXPORT_SYMBOL(ida_get_new);
861
862/**
863 * ida_remove - remove the given ID
864 * @ida: ida handle
865 * @id: ID to free
866 */
867void ida_remove(struct ida *ida, int id)
868{
869 struct idr_layer *p = ida->idr.top;
870 int shift = (ida->idr.layers - 1) * IDR_BITS;
871 int idr_id = id / IDA_BITMAP_BITS;
872 int offset = id % IDA_BITMAP_BITS;
873 int n;
874 struct ida_bitmap *bitmap;
875
876 /* clear full bits while looking up the leaf idr_layer */
877 while ((shift > 0) && p) {
878 n = (idr_id >> shift) & IDR_MASK;
879 __clear_bit(n, &p->bitmap);
880 p = p->ary[n];
881 shift -= IDR_BITS;
882 }
883
884 if (p == NULL)
885 goto err;
886
887 n = idr_id & IDR_MASK;
888 __clear_bit(n, &p->bitmap);
889
890 bitmap = (void *)p->ary[n];
891 if (!test_bit(offset, bitmap->bitmap))
892 goto err;
893
894 /* update bitmap and remove it if empty */
895 __clear_bit(offset, bitmap->bitmap);
896 if (--bitmap->nr_busy == 0) {
897 __set_bit(n, &p->bitmap); /* to please idr_remove() */
898 idr_remove(&ida->idr, idr_id);
899 free_bitmap(ida, bitmap);
900 }
901
902 return;
903
904 err:
905 printk(KERN_WARNING
906 "ida_remove called for id=%d which is not allocated.\n", id);
907}
908EXPORT_SYMBOL(ida_remove);
909
910/**
911 * ida_destroy - release all cached layers within an ida tree
912 * ida: ida handle
913 */
914void ida_destroy(struct ida *ida)
915{
916 idr_destroy(&ida->idr);
917 kfree(ida->free_bitmap);
918}
919EXPORT_SYMBOL(ida_destroy);
920
921/**
922 * ida_init - initialize ida handle
923 * @ida: ida handle
924 *
925 * This function is use to set up the handle (@ida) that you will pass
926 * to the rest of the functions.
927 */
928void ida_init(struct ida *ida)
929{
930 memset(ida, 0, sizeof(struct ida));
931 idr_init(&ida->idr);
932
933}
934EXPORT_SYMBOL(ida_init);