Merge tag 'v4.1-rockchip-socfixes1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
5aaba363
SH
15
16#include <asm/page.h>
1da177e4
LT
17#include <asm/uaccess.h>
18
19/*
20 * bitmaps provide an array of bits, implemented using an an
21 * array of unsigned longs. The number of valid bits in a
22 * given bitmap does _not_ need to be an exact multiple of
23 * BITS_PER_LONG.
24 *
25 * The possible unused bits in the last, partially used word
26 * of a bitmap are 'don't care'. The implementation makes
27 * no particular effort to keep them zero. It ensures that
28 * their value will not affect the results of any operation.
29 * The bitmap operations that return Boolean (bitmap_empty,
30 * for example) or scalar (bitmap_weight, for example) results
31 * carefully filter out these unused bits from impacting their
32 * results.
33 *
34 * These operations actually hold to a slightly stronger rule:
35 * if you don't input any bitmaps to these ops that have some
36 * unused bits set, then they won't output any set unused bits
37 * in output bitmaps.
38 *
39 * The byte ordering of bitmaps is more natural on little
40 * endian architectures. See the big-endian headers
41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42 * for the best explanations of this ordering.
43 */
44
1da177e4 45int __bitmap_equal(const unsigned long *bitmap1,
5e068069 46 const unsigned long *bitmap2, unsigned int bits)
1da177e4 47{
5e068069 48 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
49 for (k = 0; k < lim; ++k)
50 if (bitmap1[k] != bitmap2[k])
51 return 0;
52
53 if (bits % BITS_PER_LONG)
54 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
55 return 0;
56
57 return 1;
58}
59EXPORT_SYMBOL(__bitmap_equal);
60
3d6684f4 61void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 62{
3d6684f4 63 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
64 for (k = 0; k < lim; ++k)
65 dst[k] = ~src[k];
66
67 if (bits % BITS_PER_LONG)
65b4ee62 68 dst[k] = ~src[k];
1da177e4
LT
69}
70EXPORT_SYMBOL(__bitmap_complement);
71
72fd4a35 72/**
1da177e4 73 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
74 * @dst : destination bitmap
75 * @src : source bitmap
76 * @shift : shift by this many bits
2fbad299 77 * @nbits : bitmap size, in bits
1da177e4
LT
78 *
79 * Shifting right (dividing) means moving bits in the MS -> LS bit
80 * direction. Zeros are fed into the vacated MS positions and the
81 * LS bits shifted off the bottom are lost.
82 */
2fbad299
RV
83void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
84 unsigned shift, unsigned nbits)
1da177e4 85{
cfac1d08 86 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 87 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 88 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
89 for (k = 0; off + k < lim; ++k) {
90 unsigned long upper, lower;
91
92 /*
93 * If shift is not word aligned, take lower rem bits of
94 * word above and make them the top rem bits of result.
95 */
96 if (!rem || off + k + 1 >= lim)
97 upper = 0;
98 else {
99 upper = src[off + k + 1];
cfac1d08 100 if (off + k + 1 == lim - 1)
1da177e4 101 upper &= mask;
9d8a6b2a 102 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
103 }
104 lower = src[off + k];
cfac1d08 105 if (off + k == lim - 1)
1da177e4 106 lower &= mask;
9d8a6b2a
RV
107 lower >>= rem;
108 dst[k] = lower | upper;
1da177e4
LT
109 }
110 if (off)
111 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
112}
113EXPORT_SYMBOL(__bitmap_shift_right);
114
115
72fd4a35 116/**
1da177e4 117 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
118 * @dst : destination bitmap
119 * @src : source bitmap
120 * @shift : shift by this many bits
dba94c25 121 * @nbits : bitmap size, in bits
1da177e4
LT
122 *
123 * Shifting left (multiplying) means moving bits in the LS -> MS
124 * direction. Zeros are fed into the vacated LS bit positions
125 * and those MS bits shifted off the top are lost.
126 */
127
dba94c25
RV
128void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
129 unsigned int shift, unsigned int nbits)
1da177e4 130{
dba94c25 131 int k;
7f590657 132 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 133 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
134 for (k = lim - off - 1; k >= 0; --k) {
135 unsigned long upper, lower;
136
137 /*
138 * If shift is not word aligned, take upper rem bits of
139 * word below and make them the bottom rem bits of result.
140 */
141 if (rem && k > 0)
6d874eca 142 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
143 else
144 lower = 0;
7f590657 145 upper = src[k] << rem;
6d874eca 146 dst[k + off] = lower | upper;
1da177e4
LT
147 }
148 if (off)
149 memset(dst, 0, off*sizeof(unsigned long));
150}
151EXPORT_SYMBOL(__bitmap_shift_left);
152
f4b0373b 153int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 154 const unsigned long *bitmap2, unsigned int bits)
1da177e4 155{
2f9305eb 156 unsigned int k;
7e5f97d1 157 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 158 unsigned long result = 0;
1da177e4 159
7e5f97d1 160 for (k = 0; k < lim; k++)
f4b0373b 161 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
162 if (bits % BITS_PER_LONG)
163 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
164 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 165 return result != 0;
1da177e4
LT
166}
167EXPORT_SYMBOL(__bitmap_and);
168
169void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 170 const unsigned long *bitmap2, unsigned int bits)
1da177e4 171{
2f9305eb
RV
172 unsigned int k;
173 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
174
175 for (k = 0; k < nr; k++)
176 dst[k] = bitmap1[k] | bitmap2[k];
177}
178EXPORT_SYMBOL(__bitmap_or);
179
180void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 181 const unsigned long *bitmap2, unsigned int bits)
1da177e4 182{
2f9305eb
RV
183 unsigned int k;
184 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
185
186 for (k = 0; k < nr; k++)
187 dst[k] = bitmap1[k] ^ bitmap2[k];
188}
189EXPORT_SYMBOL(__bitmap_xor);
190
f4b0373b 191int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 192 const unsigned long *bitmap2, unsigned int bits)
1da177e4 193{
2f9305eb 194 unsigned int k;
74e76531 195 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 196 unsigned long result = 0;
1da177e4 197
74e76531 198 for (k = 0; k < lim; k++)
f4b0373b 199 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
200 if (bits % BITS_PER_LONG)
201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
202 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 203 return result != 0;
1da177e4
LT
204}
205EXPORT_SYMBOL(__bitmap_andnot);
206
207int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 208 const unsigned long *bitmap2, unsigned int bits)
1da177e4 209{
6dfe9799 210 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
211 for (k = 0; k < lim; ++k)
212 if (bitmap1[k] & bitmap2[k])
213 return 1;
214
215 if (bits % BITS_PER_LONG)
216 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
217 return 1;
218 return 0;
219}
220EXPORT_SYMBOL(__bitmap_intersects);
221
222int __bitmap_subset(const unsigned long *bitmap1,
5be20213 223 const unsigned long *bitmap2, unsigned int bits)
1da177e4 224{
5be20213 225 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
226 for (k = 0; k < lim; ++k)
227 if (bitmap1[k] & ~bitmap2[k])
228 return 0;
229
230 if (bits % BITS_PER_LONG)
231 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
232 return 0;
233 return 1;
234}
235EXPORT_SYMBOL(__bitmap_subset);
236
877d9f3b 237int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 238{
877d9f3b
RV
239 unsigned int k, lim = bits/BITS_PER_LONG;
240 int w = 0;
1da177e4
LT
241
242 for (k = 0; k < lim; k++)
37d54111 243 w += hweight_long(bitmap[k]);
1da177e4
LT
244
245 if (bits % BITS_PER_LONG)
37d54111 246 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
247
248 return w;
249}
1da177e4
LT
250EXPORT_SYMBOL(__bitmap_weight);
251
fb5ac542 252void bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
253{
254 unsigned long *p = map + BIT_WORD(start);
fb5ac542 255 const unsigned int size = start + len;
c1a2a962
AM
256 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
257 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
258
fb5ac542 259 while (len - bits_to_set >= 0) {
c1a2a962 260 *p |= mask_to_set;
fb5ac542 261 len -= bits_to_set;
c1a2a962
AM
262 bits_to_set = BITS_PER_LONG;
263 mask_to_set = ~0UL;
264 p++;
265 }
fb5ac542 266 if (len) {
c1a2a962
AM
267 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
268 *p |= mask_to_set;
269 }
270}
271EXPORT_SYMBOL(bitmap_set);
272
154f5e38 273void bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
274{
275 unsigned long *p = map + BIT_WORD(start);
154f5e38 276 const unsigned int size = start + len;
c1a2a962
AM
277 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
278 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
279
154f5e38 280 while (len - bits_to_clear >= 0) {
c1a2a962 281 *p &= ~mask_to_clear;
154f5e38 282 len -= bits_to_clear;
c1a2a962
AM
283 bits_to_clear = BITS_PER_LONG;
284 mask_to_clear = ~0UL;
285 p++;
286 }
154f5e38 287 if (len) {
c1a2a962
AM
288 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
289 *p &= ~mask_to_clear;
290 }
291}
292EXPORT_SYMBOL(bitmap_clear);
293
5e19b013
MN
294/**
295 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
296 * @map: The address to base the search on
297 * @size: The bitmap size in bits
298 * @start: The bitnumber to start searching at
299 * @nr: The number of zeroed bits we're looking for
300 * @align_mask: Alignment mask for zero area
5e19b013 301 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
302 *
303 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
304 * the bit offset of all zero areas this function finds plus @align_offset
305 * is multiple of that power of 2.
c1a2a962 306 */
5e19b013
MN
307unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
308 unsigned long size,
309 unsigned long start,
310 unsigned int nr,
311 unsigned long align_mask,
312 unsigned long align_offset)
c1a2a962
AM
313{
314 unsigned long index, end, i;
315again:
316 index = find_next_zero_bit(map, size, start);
317
318 /* Align allocation */
5e19b013 319 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
320
321 end = index + nr;
322 if (end > size)
323 return end;
324 i = find_next_bit(map, end, index);
325 if (i < end) {
326 start = i + 1;
327 goto again;
328 }
329 return index;
330}
5e19b013 331EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 332
1da177e4 333/*
6d49e352 334 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
335 * second version by Paul Jackson, third by Joe Korty.
336 */
337
338#define CHUNKSZ 32
339#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
340#define BASEDEC 10 /* fancier cpuset lists input in decimal */
341
1da177e4 342/**
01a3ee2b
RC
343 * __bitmap_parse - convert an ASCII hex string into a bitmap.
344 * @buf: pointer to buffer containing string.
345 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 346 * then it must be terminated with a \0.
01a3ee2b 347 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
348 * @maskp: pointer to bitmap array that will contain result.
349 * @nmaskbits: size of bitmap, in bits.
350 *
351 * Commas group hex digits into chunks. Each chunk defines exactly 32
352 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
353 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
354 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
355 * characters and for grouping errors such as "1,,5", ",44", "," and "".
356 * Leading and trailing whitespace accepted, but not embedded whitespace.
357 */
01a3ee2b
RC
358int __bitmap_parse(const char *buf, unsigned int buflen,
359 int is_user, unsigned long *maskp,
360 int nmaskbits)
1da177e4
LT
361{
362 int c, old_c, totaldigits, ndigits, nchunks, nbits;
363 u32 chunk;
b9c321fd 364 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
365
366 bitmap_zero(maskp, nmaskbits);
367
368 nchunks = nbits = totaldigits = c = 0;
369 do {
370 chunk = ndigits = 0;
371
372 /* Get the next chunk of the bitmap */
01a3ee2b 373 while (buflen) {
1da177e4 374 old_c = c;
01a3ee2b
RC
375 if (is_user) {
376 if (__get_user(c, ubuf++))
377 return -EFAULT;
378 }
379 else
380 c = *buf++;
381 buflen--;
1da177e4
LT
382 if (isspace(c))
383 continue;
384
385 /*
386 * If the last character was a space and the current
387 * character isn't '\0', we've got embedded whitespace.
388 * This is a no-no, so throw an error.
389 */
390 if (totaldigits && c && isspace(old_c))
391 return -EINVAL;
392
393 /* A '\0' or a ',' signal the end of the chunk */
394 if (c == '\0' || c == ',')
395 break;
396
397 if (!isxdigit(c))
398 return -EINVAL;
399
400 /*
401 * Make sure there are at least 4 free bits in 'chunk'.
402 * If not, this hexdigit will overflow 'chunk', so
403 * throw an error.
404 */
405 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
406 return -EOVERFLOW;
407
66f1991b 408 chunk = (chunk << 4) | hex_to_bin(c);
1da177e4
LT
409 ndigits++; totaldigits++;
410 }
411 if (ndigits == 0)
412 return -EINVAL;
413 if (nchunks == 0 && chunk == 0)
414 continue;
415
416 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
417 *maskp |= chunk;
418 nchunks++;
419 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
420 if (nbits > nmaskbits)
421 return -EOVERFLOW;
01a3ee2b 422 } while (buflen && c == ',');
1da177e4
LT
423
424 return 0;
425}
01a3ee2b
RC
426EXPORT_SYMBOL(__bitmap_parse);
427
428/**
9a86e2ba 429 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
430 *
431 * @ubuf: pointer to user buffer containing string.
432 * @ulen: buffer size in bytes. If string is smaller than this
433 * then it must be terminated with a \0.
434 * @maskp: pointer to bitmap array that will contain result.
435 * @nmaskbits: size of bitmap, in bits.
436 *
437 * Wrapper for __bitmap_parse(), providing it with user buffer.
438 *
439 * We cannot have this as an inline function in bitmap.h because it needs
440 * linux/uaccess.h to get the access_ok() declaration and this causes
441 * cyclic dependencies.
442 */
443int bitmap_parse_user(const char __user *ubuf,
444 unsigned int ulen, unsigned long *maskp,
445 int nmaskbits)
446{
447 if (!access_ok(VERIFY_READ, ubuf, ulen))
448 return -EFAULT;
b9c321fd
HS
449 return __bitmap_parse((const char __force *)ubuf,
450 ulen, 1, maskp, nmaskbits);
451
01a3ee2b
RC
452}
453EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 454
5aaba363
SH
455/**
456 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
457 * @list: indicates whether the bitmap must be list
458 * @buf: page aligned buffer into which string is placed
459 * @maskp: pointer to bitmap to convert
460 * @nmaskbits: size of bitmap, in bits
461 *
462 * Output format is a comma-separated list of decimal numbers and
463 * ranges if list is specified or hex digits grouped into comma-separated
464 * sets of 8 digits/set. Returns the number of characters written to buf.
465 */
466int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
467 int nmaskbits)
468{
469 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2;
470 int n = 0;
471
472 if (len > 1) {
4a0792b0
TH
473 n = list ? scnprintf(buf, len, "%*pbl", nmaskbits, maskp) :
474 scnprintf(buf, len, "%*pb", nmaskbits, maskp);
5aaba363
SH
475 buf[n++] = '\n';
476 buf[n] = '\0';
477 }
478 return n;
479}
480EXPORT_SYMBOL(bitmap_print_to_pagebuf);
481
1da177e4 482/**
4b060420 483 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 484 * @buf: read nul-terminated user string from this buffer
4b060420
MT
485 * @buflen: buffer size in bytes. If string is smaller than this
486 * then it must be terminated with a \0.
487 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 488 * @maskp: write resulting mask here
1da177e4
LT
489 * @nmaskbits: number of bits in mask to be written
490 *
491 * Input format is a comma-separated list of decimal numbers and
492 * ranges. Consecutively set bits are shown as two hyphen-separated
493 * decimal numbers, the smallest and largest bit numbers set in
494 * the range.
495 *
6e1907ff
RD
496 * Returns 0 on success, -errno on invalid input strings.
497 * Error values:
498 * %-EINVAL: second number in range smaller than first
499 * %-EINVAL: invalid character in string
500 * %-ERANGE: bit number specified too large for mask
1da177e4 501 */
4b060420
MT
502static int __bitmap_parselist(const char *buf, unsigned int buflen,
503 int is_user, unsigned long *maskp,
504 int nmaskbits)
1da177e4
LT
505{
506 unsigned a, b;
4b060420 507 int c, old_c, totaldigits;
b9c321fd 508 const char __user __force *ubuf = (const char __user __force *)buf;
4b060420 509 int exp_digit, in_range;
1da177e4 510
4b060420 511 totaldigits = c = 0;
1da177e4
LT
512 bitmap_zero(maskp, nmaskbits);
513 do {
4b060420
MT
514 exp_digit = 1;
515 in_range = 0;
516 a = b = 0;
517
518 /* Get the next cpu# or a range of cpu#'s */
519 while (buflen) {
520 old_c = c;
521 if (is_user) {
522 if (__get_user(c, ubuf++))
523 return -EFAULT;
524 } else
525 c = *buf++;
526 buflen--;
527 if (isspace(c))
528 continue;
529
530 /*
531 * If the last character was a space and the current
532 * character isn't '\0', we've got embedded whitespace.
533 * This is a no-no, so throw an error.
534 */
535 if (totaldigits && c && isspace(old_c))
536 return -EINVAL;
537
538 /* A '\0' or a ',' signal the end of a cpu# or range */
539 if (c == '\0' || c == ',')
540 break;
541
542 if (c == '-') {
543 if (exp_digit || in_range)
544 return -EINVAL;
545 b = 0;
546 in_range = 1;
547 exp_digit = 1;
548 continue;
549 }
550
551 if (!isdigit(c))
1da177e4 552 return -EINVAL;
4b060420
MT
553
554 b = b * 10 + (c - '0');
555 if (!in_range)
556 a = b;
557 exp_digit = 0;
558 totaldigits++;
1da177e4
LT
559 }
560 if (!(a <= b))
561 return -EINVAL;
562 if (b >= nmaskbits)
563 return -ERANGE;
564 while (a <= b) {
565 set_bit(a, maskp);
566 a++;
567 }
4b060420 568 } while (buflen && c == ',');
1da177e4
LT
569 return 0;
570}
4b060420
MT
571
572int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
573{
bc5be182
RV
574 char *nl = strchrnul(bp, '\n');
575 int len = nl - bp;
4b060420
MT
576
577 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
578}
1da177e4
LT
579EXPORT_SYMBOL(bitmap_parselist);
580
4b060420
MT
581
582/**
583 * bitmap_parselist_user()
584 *
585 * @ubuf: pointer to user buffer containing string.
586 * @ulen: buffer size in bytes. If string is smaller than this
587 * then it must be terminated with a \0.
588 * @maskp: pointer to bitmap array that will contain result.
589 * @nmaskbits: size of bitmap, in bits.
590 *
591 * Wrapper for bitmap_parselist(), providing it with user buffer.
592 *
593 * We cannot have this as an inline function in bitmap.h because it needs
594 * linux/uaccess.h to get the access_ok() declaration and this causes
595 * cyclic dependencies.
596 */
597int bitmap_parselist_user(const char __user *ubuf,
598 unsigned int ulen, unsigned long *maskp,
599 int nmaskbits)
600{
601 if (!access_ok(VERIFY_READ, ubuf, ulen))
602 return -EFAULT;
b9c321fd 603 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
604 ulen, 1, maskp, nmaskbits);
605}
606EXPORT_SYMBOL(bitmap_parselist_user);
607
608
72fd4a35 609/**
9a86e2ba 610 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 611 * @buf: pointer to a bitmap
df1d80a9
RV
612 * @pos: a bit position in @buf (0 <= @pos < @nbits)
613 * @nbits: number of valid bit positions in @buf
fb5eeeee 614 *
df1d80a9 615 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 616 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 617 * is not a valid bit position, map to -1.
fb5eeeee
PJ
618 *
619 * If for example, just bits 4 through 7 are set in @buf, then @pos
620 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 621 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
622 * gets mapped to (returns) @ord value 3 in this example, that means
623 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
624 *
625 * The bit positions 0 through @bits are valid positions in @buf.
626 */
df1d80a9 627static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 628{
df1d80a9 629 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 630 return -1;
fb5eeeee 631
df1d80a9 632 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
633}
634
635/**
9a86e2ba 636 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
637 * @buf: pointer to bitmap
638 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 639 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
640 *
641 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
642 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
643 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
644 *
645 * If for example, just bits 4 through 7 are set in @buf, then @ord
646 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 647 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
648 * gets mapped to (returns) @pos value 7 in this example, that means
649 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
650 *
f6a1f5db 651 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 652 */
f6a1f5db 653unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 654{
f6a1f5db 655 unsigned int pos;
fb5eeeee 656
f6a1f5db
RV
657 for (pos = find_first_bit(buf, nbits);
658 pos < nbits && ord;
659 pos = find_next_bit(buf, nbits, pos + 1))
660 ord--;
fb5eeeee
PJ
661
662 return pos;
663}
664
665/**
666 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 667 * @dst: remapped result
96b7f341 668 * @src: subset to be remapped
fb5eeeee
PJ
669 * @old: defines domain of map
670 * @new: defines range of map
9814ec13 671 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
672 *
673 * Let @old and @new define a mapping of bit positions, such that
674 * whatever position is held by the n-th set bit in @old is mapped
675 * to the n-th set bit in @new. In the more general case, allowing
676 * for the possibility that the weight 'w' of @new is less than the
677 * weight of @old, map the position of the n-th set bit in @old to
678 * the position of the m-th set bit in @new, where m == n % w.
679 *
96b7f341
PJ
680 * If either of the @old and @new bitmaps are empty, or if @src and
681 * @dst point to the same location, then this routine copies @src
682 * to @dst.
fb5eeeee 683 *
96b7f341
PJ
684 * The positions of unset bits in @old are mapped to themselves
685 * (the identify map).
fb5eeeee
PJ
686 *
687 * Apply the above specified mapping to @src, placing the result in
688 * @dst, clearing any bits previously set in @dst.
689 *
fb5eeeee
PJ
690 * For example, lets say that @old has bits 4 through 7 set, and
691 * @new has bits 12 through 15 set. This defines the mapping of bit
692 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
693 * bit positions unchanged. So if say @src comes into this routine
694 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
695 * 13 and 15 set.
fb5eeeee
PJ
696 */
697void bitmap_remap(unsigned long *dst, const unsigned long *src,
698 const unsigned long *old, const unsigned long *new,
9814ec13 699 unsigned int nbits)
fb5eeeee 700{
9814ec13 701 unsigned int oldbit, w;
fb5eeeee 702
fb5eeeee
PJ
703 if (dst == src) /* following doesn't handle inplace remaps */
704 return;
9814ec13 705 bitmap_zero(dst, nbits);
96b7f341 706
9814ec13
RV
707 w = bitmap_weight(new, nbits);
708 for_each_set_bit(oldbit, src, nbits) {
709 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 710
96b7f341
PJ
711 if (n < 0 || w == 0)
712 set_bit(oldbit, dst); /* identity map */
713 else
9814ec13 714 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
715 }
716}
717EXPORT_SYMBOL(bitmap_remap);
718
719/**
720 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
721 * @oldbit: bit position to be mapped
722 * @old: defines domain of map
723 * @new: defines range of map
724 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
725 *
726 * Let @old and @new define a mapping of bit positions, such that
727 * whatever position is held by the n-th set bit in @old is mapped
728 * to the n-th set bit in @new. In the more general case, allowing
729 * for the possibility that the weight 'w' of @new is less than the
730 * weight of @old, map the position of the n-th set bit in @old to
731 * the position of the m-th set bit in @new, where m == n % w.
732 *
96b7f341
PJ
733 * The positions of unset bits in @old are mapped to themselves
734 * (the identify map).
fb5eeeee
PJ
735 *
736 * Apply the above specified mapping to bit position @oldbit, returning
737 * the new bit position.
738 *
739 * For example, lets say that @old has bits 4 through 7 set, and
740 * @new has bits 12 through 15 set. This defines the mapping of bit
741 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
742 * bit positions unchanged. So if say @oldbit is 5, then this routine
743 * returns 13.
fb5eeeee
PJ
744 */
745int bitmap_bitremap(int oldbit, const unsigned long *old,
746 const unsigned long *new, int bits)
747{
96b7f341
PJ
748 int w = bitmap_weight(new, bits);
749 int n = bitmap_pos_to_ord(old, oldbit, bits);
750 if (n < 0 || w == 0)
751 return oldbit;
752 else
753 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
754}
755EXPORT_SYMBOL(bitmap_bitremap);
756
7ea931c9
PJ
757/**
758 * bitmap_onto - translate one bitmap relative to another
759 * @dst: resulting translated bitmap
760 * @orig: original untranslated bitmap
761 * @relmap: bitmap relative to which translated
762 * @bits: number of bits in each of these bitmaps
763 *
764 * Set the n-th bit of @dst iff there exists some m such that the
765 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
766 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
767 * (If you understood the previous sentence the first time your
768 * read it, you're overqualified for your current job.)
769 *
770 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 771 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
772 * m-th set bit of @relmap }.
773 *
774 * Any set bits in @orig above bit number W, where W is the
775 * weight of (number of set bits in) @relmap are mapped nowhere.
776 * In particular, if for all bits m set in @orig, m >= W, then
777 * @dst will end up empty. In situations where the possibility
778 * of such an empty result is not desired, one way to avoid it is
779 * to use the bitmap_fold() operator, below, to first fold the
780 * @orig bitmap over itself so that all its set bits x are in the
781 * range 0 <= x < W. The bitmap_fold() operator does this by
782 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
783 *
784 * Example [1] for bitmap_onto():
785 * Let's say @relmap has bits 30-39 set, and @orig has bits
786 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
787 * @dst will have bits 31, 33, 35, 37 and 39 set.
788 *
789 * When bit 0 is set in @orig, it means turn on the bit in
790 * @dst corresponding to whatever is the first bit (if any)
791 * that is turned on in @relmap. Since bit 0 was off in the
792 * above example, we leave off that bit (bit 30) in @dst.
793 *
794 * When bit 1 is set in @orig (as in the above example), it
795 * means turn on the bit in @dst corresponding to whatever
796 * is the second bit that is turned on in @relmap. The second
797 * bit in @relmap that was turned on in the above example was
798 * bit 31, so we turned on bit 31 in @dst.
799 *
800 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
801 * because they were the 4th, 6th, 8th and 10th set bits
802 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
803 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
804 *
805 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 806 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
807 * turned on in @relmap. In the above example, there were
808 * only ten bits turned on in @relmap (30..39), so that bit
809 * 11 was set in @orig had no affect on @dst.
810 *
811 * Example [2] for bitmap_fold() + bitmap_onto():
812 * Let's say @relmap has these ten bits set:
813 * 40 41 42 43 45 48 53 61 74 95
814 * (for the curious, that's 40 plus the first ten terms of the
815 * Fibonacci sequence.)
816 *
817 * Further lets say we use the following code, invoking
818 * bitmap_fold() then bitmap_onto, as suggested above to
da3dae54 819 * avoid the possibility of an empty @dst result:
7ea931c9
PJ
820 *
821 * unsigned long *tmp; // a temporary bitmap's bits
822 *
823 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
824 * bitmap_onto(dst, tmp, relmap, bits);
825 *
826 * Then this table shows what various values of @dst would be, for
827 * various @orig's. I list the zero-based positions of each set bit.
828 * The tmp column shows the intermediate result, as computed by
829 * using bitmap_fold() to fold the @orig bitmap modulo ten
830 * (the weight of @relmap).
831 *
832 * @orig tmp @dst
833 * 0 0 40
834 * 1 1 41
835 * 9 9 95
836 * 10 0 40 (*)
837 * 1 3 5 7 1 3 5 7 41 43 48 61
838 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
839 * 0 9 18 27 0 9 8 7 40 61 74 95
840 * 0 10 20 30 0 40
841 * 0 11 22 33 0 1 2 3 40 41 42 43
842 * 0 12 24 36 0 2 4 6 40 42 45 53
843 * 78 102 211 1 2 8 41 42 74 (*)
844 *
845 * (*) For these marked lines, if we hadn't first done bitmap_fold()
846 * into tmp, then the @dst result would have been empty.
847 *
848 * If either of @orig or @relmap is empty (no set bits), then @dst
849 * will be returned empty.
850 *
851 * If (as explained above) the only set bits in @orig are in positions
852 * m where m >= W, (where W is the weight of @relmap) then @dst will
853 * once again be returned empty.
854 *
855 * All bits in @dst not set by the above rule are cleared.
856 */
857void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 858 const unsigned long *relmap, unsigned int bits)
7ea931c9 859{
eb569883 860 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
861
862 if (dst == orig) /* following doesn't handle inplace mappings */
863 return;
864 bitmap_zero(dst, bits);
865
866 /*
867 * The following code is a more efficient, but less
868 * obvious, equivalent to the loop:
869 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
870 * n = bitmap_ord_to_pos(orig, m, bits);
871 * if (test_bit(m, orig))
872 * set_bit(n, dst);
873 * }
874 */
875
876 m = 0;
08564fb7 877 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
878 /* m == bitmap_pos_to_ord(relmap, n, bits) */
879 if (test_bit(m, orig))
880 set_bit(n, dst);
881 m++;
882 }
883}
884EXPORT_SYMBOL(bitmap_onto);
885
886/**
887 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
888 * @dst: resulting smaller bitmap
889 * @orig: original larger bitmap
890 * @sz: specified size
b26ad583 891 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
892 *
893 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
894 * Clear all other bits in @dst. See further the comment and
895 * Example [2] for bitmap_onto() for why and how to use this.
896 */
897void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 898 unsigned int sz, unsigned int nbits)
7ea931c9 899{
b26ad583 900 unsigned int oldbit;
7ea931c9
PJ
901
902 if (dst == orig) /* following doesn't handle inplace mappings */
903 return;
b26ad583 904 bitmap_zero(dst, nbits);
7ea931c9 905
b26ad583 906 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
907 set_bit(oldbit % sz, dst);
908}
909EXPORT_SYMBOL(bitmap_fold);
910
3cf64b93
PJ
911/*
912 * Common code for bitmap_*_region() routines.
913 * bitmap: array of unsigned longs corresponding to the bitmap
914 * pos: the beginning of the region
915 * order: region size (log base 2 of number of bits)
916 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 917 *
3cf64b93
PJ
918 * Can set, verify and/or release a region of bits in a bitmap,
919 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 920 *
3cf64b93
PJ
921 * A region of a bitmap is a sequence of bits in the bitmap, of
922 * some size '1 << order' (a power of two), aligned to that same
923 * '1 << order' power of two.
924 *
925 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
926 * Returns 0 in all other cases and reg_ops.
1da177e4 927 */
3cf64b93
PJ
928
929enum {
930 REG_OP_ISFREE, /* true if region is all zero bits */
931 REG_OP_ALLOC, /* set all bits in region */
932 REG_OP_RELEASE, /* clear all bits in region */
933};
934
9279d328 935static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 936{
3cf64b93
PJ
937 int nbits_reg; /* number of bits in region */
938 int index; /* index first long of region in bitmap */
939 int offset; /* bit offset region in bitmap[index] */
940 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 941 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 942 unsigned long mask; /* bitmask for one long of region */
74373c6a 943 int i; /* scans bitmap by longs */
3cf64b93 944 int ret = 0; /* return value */
74373c6a 945
3cf64b93
PJ
946 /*
947 * Either nlongs_reg == 1 (for small orders that fit in one long)
948 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
949 */
950 nbits_reg = 1 << order;
951 index = pos / BITS_PER_LONG;
952 offset = pos - (index * BITS_PER_LONG);
953 nlongs_reg = BITS_TO_LONGS(nbits_reg);
954 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 955
3cf64b93
PJ
956 /*
957 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
958 * overflows if nbitsinlong == BITS_PER_LONG.
959 */
74373c6a 960 mask = (1UL << (nbitsinlong - 1));
1da177e4 961 mask += mask - 1;
3cf64b93 962 mask <<= offset;
1da177e4 963
3cf64b93
PJ
964 switch (reg_op) {
965 case REG_OP_ISFREE:
966 for (i = 0; i < nlongs_reg; i++) {
967 if (bitmap[index + i] & mask)
968 goto done;
969 }
970 ret = 1; /* all bits in region free (zero) */
971 break;
972
973 case REG_OP_ALLOC:
974 for (i = 0; i < nlongs_reg; i++)
975 bitmap[index + i] |= mask;
976 break;
977
978 case REG_OP_RELEASE:
979 for (i = 0; i < nlongs_reg; i++)
980 bitmap[index + i] &= ~mask;
981 break;
1da177e4 982 }
3cf64b93
PJ
983done:
984 return ret;
985}
986
987/**
988 * bitmap_find_free_region - find a contiguous aligned mem region
989 * @bitmap: array of unsigned longs corresponding to the bitmap
990 * @bits: number of bits in the bitmap
991 * @order: region size (log base 2 of number of bits) to find
992 *
993 * Find a region of free (zero) bits in a @bitmap of @bits bits and
994 * allocate them (set them to one). Only consider regions of length
995 * a power (@order) of two, aligned to that power of two, which
996 * makes the search algorithm much faster.
997 *
998 * Return the bit offset in bitmap of the allocated region,
999 * or -errno on failure.
1000 */
9279d328 1001int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1002{
9279d328 1003 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1004
9279d328 1005 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1006 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1007 continue;
1008 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1009 return pos;
1010 }
1011 return -ENOMEM;
1da177e4
LT
1012}
1013EXPORT_SYMBOL(bitmap_find_free_region);
1014
1015/**
87e24802 1016 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1017 * @bitmap: array of unsigned longs corresponding to the bitmap
1018 * @pos: beginning of bit region to release
1019 * @order: region size (log base 2 of number of bits) to release
1da177e4 1020 *
72fd4a35 1021 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1022 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1023 *
1024 * No return value.
1da177e4 1025 */
9279d328 1026void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1027{
3cf64b93 1028 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1029}
1030EXPORT_SYMBOL(bitmap_release_region);
1031
87e24802
PJ
1032/**
1033 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1034 * @bitmap: array of unsigned longs corresponding to the bitmap
1035 * @pos: beginning of bit region to allocate
1036 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1037 *
1038 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1039 *
6e1907ff 1040 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1041 * free (not all bits were zero).
1042 */
9279d328 1043int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1044{
3cf64b93
PJ
1045 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1046 return -EBUSY;
2ac521d3 1047 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1048}
1049EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1050
1051/**
1052 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1053 * @dst: destination buffer
1054 * @src: bitmap to copy
1055 * @nbits: number of bits in the bitmap
1056 *
1057 * Require nbits % BITS_PER_LONG == 0.
1058 */
e8f24278 1059#ifdef __BIG_ENDIAN
9b6c2d2e 1060void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1061{
9b6c2d2e 1062 unsigned int i;
ccbe329b
DV
1063
1064 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1065 if (BITS_PER_LONG == 64)
9b6c2d2e 1066 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1067 else
9b6c2d2e 1068 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1069 }
1070}
1071EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1072#endif