drm/amd/powerplay: incorrectly use of the function return value
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce 322/* the per-cpu worker pools */
25528213 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 324
68e13a67 325static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 326
68e13a67 327/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
c5aa87bb 330/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
8a2b7538
TH
333/* I: attributes used when instantiating ordered pools on demand */
334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
d320c038 336struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 337EXPORT_SYMBOL(system_wq);
044c782c 338struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 339EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 340struct workqueue_struct *system_long_wq __read_mostly;
d320c038 341EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 342struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 343EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 344struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 345EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
346struct workqueue_struct *system_power_efficient_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 350
7d19c5ce 351static int worker_thread(void *__worker);
6ba94429 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 353
97bd2347
TH
354#define CREATE_TRACE_POINTS
355#include <trace/events/workqueue.h>
356
68e13a67 357#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
5bcab335 361
b09f4fd3 362#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
76af4d93 366
5b95e1af 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 372
f02ae73a
TH
373#define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 376 (pool)++)
4ce62e9e 377
17116969
TH
378/**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
611c92a0 381 * @pi: integer used for iteration
fa1b54e6 382 *
68e13a67
LJ
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
17116969 389 */
611c92a0
TH
390#define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 393 else
17116969 394
822d8405
TH
395/**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
822d8405
TH
398 * @pool: worker_pool to iterate workers of
399 *
92f9c5c4 400 * This must be called with @pool->attach_mutex.
822d8405
TH
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
da028469
LJ
405#define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
408 else
409
49e3cf44
TH
410/**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
76af4d93 414 *
b09f4fd3 415 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
49e3cf44
TH
421 */
422#define for_each_pwq(pwq, wq) \
76af4d93 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 425 else
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
b9fdac7f
DC
436static bool work_is_static_object(void *addr)
437{
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441}
442
dc186ad7
TG
443/*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
02a982a6 447static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
448{
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
02a982a6 455 return true;
dc186ad7 456 default:
02a982a6 457 return false;
dc186ad7
TG
458 }
459}
460
dc186ad7
TG
461/*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
02a982a6 465static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
466{
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
02a982a6 473 return true;
dc186ad7 474 default:
02a982a6 475 return false;
dc186ad7
TG
476 }
477}
478
479static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
99777288 481 .debug_hint = work_debug_hint,
b9fdac7f 482 .is_static_object = work_is_static_object,
dc186ad7 483 .fixup_init = work_fixup_init,
dc186ad7
TG
484 .fixup_free = work_fixup_free,
485};
486
487static inline void debug_work_activate(struct work_struct *work)
488{
489 debug_object_activate(work, &work_debug_descr);
490}
491
492static inline void debug_work_deactivate(struct work_struct *work)
493{
494 debug_object_deactivate(work, &work_debug_descr);
495}
496
497void __init_work(struct work_struct *work, int onstack)
498{
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503}
504EXPORT_SYMBOL_GPL(__init_work);
505
506void destroy_work_on_stack(struct work_struct *work)
507{
508 debug_object_free(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
ea2e64f2
TG
512void destroy_delayed_work_on_stack(struct delayed_work *work)
513{
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
dc186ad7
TG
519#else
520static inline void debug_work_activate(struct work_struct *work) { }
521static inline void debug_work_deactivate(struct work_struct *work) { }
522#endif
523
4e8b22bd
LB
524/**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
9daf9e67
TH
531static int worker_pool_assign_id(struct worker_pool *pool)
532{
533 int ret;
534
68e13a67 535 lockdep_assert_held(&wq_pool_mutex);
5bcab335 536
4e8b22bd
LB
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
229641a6 539 if (ret >= 0) {
e68035fb 540 pool->id = ret;
229641a6
TH
541 return 0;
542 }
fa1b54e6 543 return ret;
7c3eed5c
TH
544}
545
df2d5ae4
TH
546/**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
5b95e1af
LJ
551 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
552 * read locked.
df2d5ae4
TH
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
555 *
556 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
557 */
558static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560{
5b95e1af 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
df2d5ae4
TH
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573}
574
73f53c4a
TH
575static unsigned int work_color_to_flags(int color)
576{
577 return color << WORK_STRUCT_COLOR_SHIFT;
578}
579
580static int get_work_color(struct work_struct *work)
581{
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584}
585
586static int work_next_color(int color)
587{
588 return (color + 1) % WORK_NR_COLORS;
589}
1da177e4 590
14441960 591/*
112202d9
TH
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 594 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 595 *
112202d9
TH
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
7a22ad75 600 *
112202d9 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 602 * corresponding to a work. Pool is available once the work has been
112202d9 603 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 604 * available only while the work item is queued.
7a22ad75 605 *
bbb68dfa
TH
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
14441960 610 */
7a22ad75
TH
611static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
365970a1 613{
6183c009 614 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
615 atomic_long_set(&work->data, data | flags | work_static(work));
616}
365970a1 617
112202d9 618static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
619 unsigned long extra_flags)
620{
112202d9
TH
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
623}
624
4468a00f
LJ
625static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627{
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630}
631
7c3eed5c
TH
632static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
7a22ad75 634{
23657bb1
TH
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
7c3eed5c 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
647 * reordering can lead to a missed execution on attempt to qeueue
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
7a22ad75 672}
f756d5e2 673
7a22ad75 674static void clear_work_data(struct work_struct *work)
1da177e4 675{
7c3eed5c
TH
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
678}
679
112202d9 680static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 681{
e120153d 682 unsigned long data = atomic_long_read(&work->data);
7a22ad75 683
112202d9 684 if (data & WORK_STRUCT_PWQ)
e120153d
TH
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
4d707b9f
ON
688}
689
7c3eed5c
TH
690/**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
68e13a67
LJ
694 * Pools are created and destroyed under wq_pool_mutex, and allows read
695 * access under sched-RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
d185af30
YB
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
704 */
705static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 706{
e120153d 707 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 708 int pool_id;
7a22ad75 709
68e13a67 710 assert_rcu_or_pool_mutex();
fa1b54e6 711
112202d9
TH
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
7c3eed5c 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 715
7c3eed5c
TH
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
718 return NULL;
719
fa1b54e6 720 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
721}
722
723/**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
d185af30 727 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730static int get_work_pool_id(struct work_struct *work)
731{
54d5b7d0
LJ
732 unsigned long data = atomic_long_read(&work->data);
733
112202d9
TH
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
54d5b7d0 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 737
54d5b7d0 738 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
739}
740
bbb68dfa
TH
741static void mark_work_canceling(struct work_struct *work)
742{
7c3eed5c 743 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 744
7c3eed5c
TH
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
747}
748
749static bool work_is_canceling(struct work_struct *work)
750{
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
754}
755
e22bee78 756/*
3270476a
TH
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 759 * they're being called with pool->lock held.
e22bee78
TH
760 */
761
63d95a91 762static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 763{
e19e397a 764 return !atomic_read(&pool->nr_running);
a848e3b6
ON
765}
766
4594bf15 767/*
e22bee78
TH
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
974271c4
TH
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
706026c2 772 * function will always return %true for unbound pools as long as the
974271c4 773 * worklist isn't empty.
4594bf15 774 */
63d95a91 775static bool need_more_worker(struct worker_pool *pool)
365970a1 776{
63d95a91 777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 778}
4594bf15 779
e22bee78 780/* Can I start working? Called from busy but !running workers. */
63d95a91 781static bool may_start_working(struct worker_pool *pool)
e22bee78 782{
63d95a91 783 return pool->nr_idle;
e22bee78
TH
784}
785
786/* Do I need to keep working? Called from currently running workers. */
63d95a91 787static bool keep_working(struct worker_pool *pool)
e22bee78 788{
e19e397a
TH
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
791}
792
793/* Do we need a new worker? Called from manager. */
63d95a91 794static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 795{
63d95a91 796 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 797}
365970a1 798
e22bee78 799/* Do we have too many workers and should some go away? */
63d95a91 800static bool too_many_workers(struct worker_pool *pool)
e22bee78 801{
34a06bd6 802 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
807}
808
4d707b9f 809/*
e22bee78
TH
810 * Wake up functions.
811 */
812
1037de36
LJ
813/* Return the first idle worker. Safe with preemption disabled */
814static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 815{
63d95a91 816 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
817 return NULL;
818
63d95a91 819 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
820}
821
822/**
823 * wake_up_worker - wake up an idle worker
63d95a91 824 * @pool: worker pool to wake worker from
7e11629d 825 *
63d95a91 826 * Wake up the first idle worker of @pool.
7e11629d
TH
827 *
828 * CONTEXT:
d565ed63 829 * spin_lock_irq(pool->lock).
7e11629d 830 */
63d95a91 831static void wake_up_worker(struct worker_pool *pool)
7e11629d 832{
1037de36 833 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837}
838
d302f017 839/**
e22bee78
TH
840 * wq_worker_waking_up - a worker is waking up
841 * @task: task waking up
842 * @cpu: CPU @task is waking up to
843 *
844 * This function is called during try_to_wake_up() when a worker is
845 * being awoken.
846 *
847 * CONTEXT:
848 * spin_lock_irq(rq->lock)
849 */
d84ff051 850void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
851{
852 struct worker *worker = kthread_data(task);
853
36576000 854 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 855 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 856 atomic_inc(&worker->pool->nr_running);
36576000 857 }
e22bee78
TH
858}
859
860/**
861 * wq_worker_sleeping - a worker is going to sleep
862 * @task: task going to sleep
e22bee78
TH
863 *
864 * This function is called during schedule() when a busy worker is
865 * going to sleep. Worker on the same cpu can be woken up by
866 * returning pointer to its task.
867 *
868 * CONTEXT:
869 * spin_lock_irq(rq->lock)
870 *
d185af30 871 * Return:
e22bee78
TH
872 * Worker task on @cpu to wake up, %NULL if none.
873 */
9b7f6597 874struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
875{
876 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 877 struct worker_pool *pool;
e22bee78 878
111c225a
TH
879 /*
880 * Rescuers, which may not have all the fields set up like normal
881 * workers, also reach here, let's not access anything before
882 * checking NOT_RUNNING.
883 */
2d64672e 884 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
885 return NULL;
886
111c225a 887 pool = worker->pool;
111c225a 888
e22bee78 889 /* this can only happen on the local cpu */
9b7f6597 890 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 891 return NULL;
e22bee78
TH
892
893 /*
894 * The counterpart of the following dec_and_test, implied mb,
895 * worklist not empty test sequence is in insert_work().
896 * Please read comment there.
897 *
628c78e7
TH
898 * NOT_RUNNING is clear. This means that we're bound to and
899 * running on the local cpu w/ rq lock held and preemption
900 * disabled, which in turn means that none else could be
d565ed63 901 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 902 * lock is safe.
e22bee78 903 */
e19e397a
TH
904 if (atomic_dec_and_test(&pool->nr_running) &&
905 !list_empty(&pool->worklist))
1037de36 906 to_wakeup = first_idle_worker(pool);
e22bee78
TH
907 return to_wakeup ? to_wakeup->task : NULL;
908}
909
910/**
911 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 912 * @worker: self
d302f017 913 * @flags: flags to set
d302f017 914 *
228f1d00 915 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 916 *
cb444766 917 * CONTEXT:
d565ed63 918 * spin_lock_irq(pool->lock)
d302f017 919 */
228f1d00 920static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 921{
bd7bdd43 922 struct worker_pool *pool = worker->pool;
e22bee78 923
cb444766
TH
924 WARN_ON_ONCE(worker->task != current);
925
228f1d00 926 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
927 if ((flags & WORKER_NOT_RUNNING) &&
928 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 929 atomic_dec(&pool->nr_running);
e22bee78
TH
930 }
931
d302f017
TH
932 worker->flags |= flags;
933}
934
935/**
e22bee78 936 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 937 * @worker: self
d302f017
TH
938 * @flags: flags to clear
939 *
e22bee78 940 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 941 *
cb444766 942 * CONTEXT:
d565ed63 943 * spin_lock_irq(pool->lock)
d302f017
TH
944 */
945static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
946{
63d95a91 947 struct worker_pool *pool = worker->pool;
e22bee78
TH
948 unsigned int oflags = worker->flags;
949
cb444766
TH
950 WARN_ON_ONCE(worker->task != current);
951
d302f017 952 worker->flags &= ~flags;
e22bee78 953
42c025f3
TH
954 /*
955 * If transitioning out of NOT_RUNNING, increment nr_running. Note
956 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
957 * of multiple flags, not a single flag.
958 */
e22bee78
TH
959 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
960 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 961 atomic_inc(&pool->nr_running);
d302f017
TH
962}
963
8cca0eea
TH
964/**
965 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 966 * @pool: pool of interest
8cca0eea
TH
967 * @work: work to find worker for
968 *
c9e7cf27
TH
969 * Find a worker which is executing @work on @pool by searching
970 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
971 * to match, its current execution should match the address of @work and
972 * its work function. This is to avoid unwanted dependency between
973 * unrelated work executions through a work item being recycled while still
974 * being executed.
975 *
976 * This is a bit tricky. A work item may be freed once its execution
977 * starts and nothing prevents the freed area from being recycled for
978 * another work item. If the same work item address ends up being reused
979 * before the original execution finishes, workqueue will identify the
980 * recycled work item as currently executing and make it wait until the
981 * current execution finishes, introducing an unwanted dependency.
982 *
c5aa87bb
TH
983 * This function checks the work item address and work function to avoid
984 * false positives. Note that this isn't complete as one may construct a
985 * work function which can introduce dependency onto itself through a
986 * recycled work item. Well, if somebody wants to shoot oneself in the
987 * foot that badly, there's only so much we can do, and if such deadlock
988 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
8cca0eea 992 *
d185af30
YB
993 * Return:
994 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 995 * otherwise.
4d707b9f 996 */
c9e7cf27 997static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 998 struct work_struct *work)
4d707b9f 999{
42f8570f 1000 struct worker *worker;
42f8570f 1001
b67bfe0d 1002 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1003 (unsigned long)work)
1004 if (worker->current_work == work &&
1005 worker->current_func == work->func)
42f8570f
SL
1006 return worker;
1007
1008 return NULL;
4d707b9f
ON
1009}
1010
bf4ede01
TH
1011/**
1012 * move_linked_works - move linked works to a list
1013 * @work: start of series of works to be scheduled
1014 * @head: target list to append @work to
402dd89d 1015 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1016 *
1017 * Schedule linked works starting from @work to @head. Work series to
1018 * be scheduled starts at @work and includes any consecutive work with
1019 * WORK_STRUCT_LINKED set in its predecessor.
1020 *
1021 * If @nextp is not NULL, it's updated to point to the next work of
1022 * the last scheduled work. This allows move_linked_works() to be
1023 * nested inside outer list_for_each_entry_safe().
1024 *
1025 * CONTEXT:
d565ed63 1026 * spin_lock_irq(pool->lock).
bf4ede01
TH
1027 */
1028static void move_linked_works(struct work_struct *work, struct list_head *head,
1029 struct work_struct **nextp)
1030{
1031 struct work_struct *n;
1032
1033 /*
1034 * Linked worklist will always end before the end of the list,
1035 * use NULL for list head.
1036 */
1037 list_for_each_entry_safe_from(work, n, NULL, entry) {
1038 list_move_tail(&work->entry, head);
1039 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1040 break;
1041 }
1042
1043 /*
1044 * If we're already inside safe list traversal and have moved
1045 * multiple works to the scheduled queue, the next position
1046 * needs to be updated.
1047 */
1048 if (nextp)
1049 *nextp = n;
1050}
1051
8864b4e5
TH
1052/**
1053 * get_pwq - get an extra reference on the specified pool_workqueue
1054 * @pwq: pool_workqueue to get
1055 *
1056 * Obtain an extra reference on @pwq. The caller should guarantee that
1057 * @pwq has positive refcnt and be holding the matching pool->lock.
1058 */
1059static void get_pwq(struct pool_workqueue *pwq)
1060{
1061 lockdep_assert_held(&pwq->pool->lock);
1062 WARN_ON_ONCE(pwq->refcnt <= 0);
1063 pwq->refcnt++;
1064}
1065
1066/**
1067 * put_pwq - put a pool_workqueue reference
1068 * @pwq: pool_workqueue to put
1069 *
1070 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1071 * destruction. The caller should be holding the matching pool->lock.
1072 */
1073static void put_pwq(struct pool_workqueue *pwq)
1074{
1075 lockdep_assert_held(&pwq->pool->lock);
1076 if (likely(--pwq->refcnt))
1077 return;
1078 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1079 return;
1080 /*
1081 * @pwq can't be released under pool->lock, bounce to
1082 * pwq_unbound_release_workfn(). This never recurses on the same
1083 * pool->lock as this path is taken only for unbound workqueues and
1084 * the release work item is scheduled on a per-cpu workqueue. To
1085 * avoid lockdep warning, unbound pool->locks are given lockdep
1086 * subclass of 1 in get_unbound_pool().
1087 */
1088 schedule_work(&pwq->unbound_release_work);
1089}
1090
dce90d47
TH
1091/**
1092 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1093 * @pwq: pool_workqueue to put (can be %NULL)
1094 *
1095 * put_pwq() with locking. This function also allows %NULL @pwq.
1096 */
1097static void put_pwq_unlocked(struct pool_workqueue *pwq)
1098{
1099 if (pwq) {
1100 /*
1101 * As both pwqs and pools are sched-RCU protected, the
1102 * following lock operations are safe.
1103 */
1104 spin_lock_irq(&pwq->pool->lock);
1105 put_pwq(pwq);
1106 spin_unlock_irq(&pwq->pool->lock);
1107 }
1108}
1109
112202d9 1110static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1111{
112202d9 1112 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1113
1114 trace_workqueue_activate_work(work);
82607adc
TH
1115 if (list_empty(&pwq->pool->worklist))
1116 pwq->pool->watchdog_ts = jiffies;
112202d9 1117 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1118 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1119 pwq->nr_active++;
bf4ede01
TH
1120}
1121
112202d9 1122static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1123{
112202d9 1124 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1125 struct work_struct, entry);
1126
112202d9 1127 pwq_activate_delayed_work(work);
3aa62497
LJ
1128}
1129
bf4ede01 1130/**
112202d9
TH
1131 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1132 * @pwq: pwq of interest
bf4ede01 1133 * @color: color of work which left the queue
bf4ede01
TH
1134 *
1135 * A work either has completed or is removed from pending queue,
112202d9 1136 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1137 *
1138 * CONTEXT:
d565ed63 1139 * spin_lock_irq(pool->lock).
bf4ede01 1140 */
112202d9 1141static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1142{
8864b4e5 1143 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1144 if (color == WORK_NO_COLOR)
8864b4e5 1145 goto out_put;
bf4ede01 1146
112202d9 1147 pwq->nr_in_flight[color]--;
bf4ede01 1148
112202d9
TH
1149 pwq->nr_active--;
1150 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1151 /* one down, submit a delayed one */
112202d9
TH
1152 if (pwq->nr_active < pwq->max_active)
1153 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1154 }
1155
1156 /* is flush in progress and are we at the flushing tip? */
112202d9 1157 if (likely(pwq->flush_color != color))
8864b4e5 1158 goto out_put;
bf4ede01
TH
1159
1160 /* are there still in-flight works? */
112202d9 1161 if (pwq->nr_in_flight[color])
8864b4e5 1162 goto out_put;
bf4ede01 1163
112202d9
TH
1164 /* this pwq is done, clear flush_color */
1165 pwq->flush_color = -1;
bf4ede01
TH
1166
1167 /*
112202d9 1168 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1169 * will handle the rest.
1170 */
112202d9
TH
1171 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1172 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1173out_put:
1174 put_pwq(pwq);
bf4ede01
TH
1175}
1176
36e227d2 1177/**
bbb68dfa 1178 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1179 * @work: work item to steal
1180 * @is_dwork: @work is a delayed_work
bbb68dfa 1181 * @flags: place to store irq state
36e227d2
TH
1182 *
1183 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1184 * stable state - idle, on timer or on worklist.
36e227d2 1185 *
d185af30 1186 * Return:
36e227d2
TH
1187 * 1 if @work was pending and we successfully stole PENDING
1188 * 0 if @work was idle and we claimed PENDING
1189 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1190 * -ENOENT if someone else is canceling @work, this state may persist
1191 * for arbitrarily long
36e227d2 1192 *
d185af30 1193 * Note:
bbb68dfa 1194 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1195 * interrupted while holding PENDING and @work off queue, irq must be
1196 * disabled on entry. This, combined with delayed_work->timer being
1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1198 *
1199 * On successful return, >= 0, irq is disabled and the caller is
1200 * responsible for releasing it using local_irq_restore(*@flags).
1201 *
e0aecdd8 1202 * This function is safe to call from any context including IRQ handler.
bf4ede01 1203 */
bbb68dfa
TH
1204static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1205 unsigned long *flags)
bf4ede01 1206{
d565ed63 1207 struct worker_pool *pool;
112202d9 1208 struct pool_workqueue *pwq;
bf4ede01 1209
bbb68dfa
TH
1210 local_irq_save(*flags);
1211
36e227d2
TH
1212 /* try to steal the timer if it exists */
1213 if (is_dwork) {
1214 struct delayed_work *dwork = to_delayed_work(work);
1215
e0aecdd8
TH
1216 /*
1217 * dwork->timer is irqsafe. If del_timer() fails, it's
1218 * guaranteed that the timer is not queued anywhere and not
1219 * running on the local CPU.
1220 */
36e227d2
TH
1221 if (likely(del_timer(&dwork->timer)))
1222 return 1;
1223 }
1224
1225 /* try to claim PENDING the normal way */
bf4ede01
TH
1226 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1227 return 0;
1228
1229 /*
1230 * The queueing is in progress, or it is already queued. Try to
1231 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232 */
d565ed63
TH
1233 pool = get_work_pool(work);
1234 if (!pool)
bbb68dfa 1235 goto fail;
bf4ede01 1236
d565ed63 1237 spin_lock(&pool->lock);
0b3dae68 1238 /*
112202d9
TH
1239 * work->data is guaranteed to point to pwq only while the work
1240 * item is queued on pwq->wq, and both updating work->data to point
1241 * to pwq on queueing and to pool on dequeueing are done under
1242 * pwq->pool->lock. This in turn guarantees that, if work->data
1243 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1244 * item is currently queued on that pool.
1245 */
112202d9
TH
1246 pwq = get_work_pwq(work);
1247 if (pwq && pwq->pool == pool) {
16062836
TH
1248 debug_work_deactivate(work);
1249
1250 /*
1251 * A delayed work item cannot be grabbed directly because
1252 * it might have linked NO_COLOR work items which, if left
112202d9 1253 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1254 * management later on and cause stall. Make sure the work
1255 * item is activated before grabbing.
1256 */
1257 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1258 pwq_activate_delayed_work(work);
16062836
TH
1259
1260 list_del_init(&work->entry);
9c34a704 1261 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1262
112202d9 1263 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1264 set_work_pool_and_keep_pending(work, pool->id);
1265
1266 spin_unlock(&pool->lock);
1267 return 1;
bf4ede01 1268 }
d565ed63 1269 spin_unlock(&pool->lock);
bbb68dfa
TH
1270fail:
1271 local_irq_restore(*flags);
1272 if (work_is_canceling(work))
1273 return -ENOENT;
1274 cpu_relax();
36e227d2 1275 return -EAGAIN;
bf4ede01
TH
1276}
1277
4690c4ab 1278/**
706026c2 1279 * insert_work - insert a work into a pool
112202d9 1280 * @pwq: pwq @work belongs to
4690c4ab
TH
1281 * @work: work to insert
1282 * @head: insertion point
1283 * @extra_flags: extra WORK_STRUCT_* flags to set
1284 *
112202d9 1285 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1286 * work_struct flags.
4690c4ab
TH
1287 *
1288 * CONTEXT:
d565ed63 1289 * spin_lock_irq(pool->lock).
4690c4ab 1290 */
112202d9
TH
1291static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1292 struct list_head *head, unsigned int extra_flags)
b89deed3 1293{
112202d9 1294 struct worker_pool *pool = pwq->pool;
e22bee78 1295
4690c4ab 1296 /* we own @work, set data and link */
112202d9 1297 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1298 list_add_tail(&work->entry, head);
8864b4e5 1299 get_pwq(pwq);
e22bee78
TH
1300
1301 /*
c5aa87bb
TH
1302 * Ensure either wq_worker_sleeping() sees the above
1303 * list_add_tail() or we see zero nr_running to avoid workers lying
1304 * around lazily while there are works to be processed.
e22bee78
TH
1305 */
1306 smp_mb();
1307
63d95a91
TH
1308 if (__need_more_worker(pool))
1309 wake_up_worker(pool);
b89deed3
ON
1310}
1311
c8efcc25
TH
1312/*
1313 * Test whether @work is being queued from another work executing on the
8d03ecfe 1314 * same workqueue.
c8efcc25
TH
1315 */
1316static bool is_chained_work(struct workqueue_struct *wq)
1317{
8d03ecfe
TH
1318 struct worker *worker;
1319
1320 worker = current_wq_worker();
1321 /*
1322 * Return %true iff I'm a worker execuing a work item on @wq. If
1323 * I'm @worker, it's safe to dereference it without locking.
1324 */
112202d9 1325 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1326}
1327
ef557180
MG
1328/*
1329 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1330 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1331 * avoid perturbing sensitive tasks.
1332 */
1333static int wq_select_unbound_cpu(int cpu)
1334{
f303fccb 1335 static bool printed_dbg_warning;
ef557180
MG
1336 int new_cpu;
1337
f303fccb
TH
1338 if (likely(!wq_debug_force_rr_cpu)) {
1339 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1340 return cpu;
1341 } else if (!printed_dbg_warning) {
1342 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1343 printed_dbg_warning = true;
1344 }
1345
ef557180
MG
1346 if (cpumask_empty(wq_unbound_cpumask))
1347 return cpu;
1348
1349 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1350 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1351 if (unlikely(new_cpu >= nr_cpu_ids)) {
1352 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids))
1354 return cpu;
1355 }
1356 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1357
1358 return new_cpu;
1359}
1360
d84ff051 1361static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1362 struct work_struct *work)
1363{
112202d9 1364 struct pool_workqueue *pwq;
c9178087 1365 struct worker_pool *last_pool;
1e19ffc6 1366 struct list_head *worklist;
8a2e8e5d 1367 unsigned int work_flags;
b75cac93 1368 unsigned int req_cpu = cpu;
8930caba
TH
1369
1370 /*
1371 * While a work item is PENDING && off queue, a task trying to
1372 * steal the PENDING will busy-loop waiting for it to either get
1373 * queued or lose PENDING. Grabbing PENDING and queueing should
1374 * happen with IRQ disabled.
1375 */
1376 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1377
dc186ad7 1378 debug_work_activate(work);
1e19ffc6 1379
9ef28a73 1380 /* if draining, only works from the same workqueue are allowed */
618b01eb 1381 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1382 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1383 return;
9e8cd2f5 1384retry:
df2d5ae4 1385 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1386 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1387
c9178087 1388 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1389 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1390 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1391 else
1392 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1393
c9178087
TH
1394 /*
1395 * If @work was previously on a different pool, it might still be
1396 * running there, in which case the work needs to be queued on that
1397 * pool to guarantee non-reentrancy.
1398 */
1399 last_pool = get_work_pool(work);
1400 if (last_pool && last_pool != pwq->pool) {
1401 struct worker *worker;
18aa9eff 1402
c9178087 1403 spin_lock(&last_pool->lock);
18aa9eff 1404
c9178087 1405 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1406
c9178087
TH
1407 if (worker && worker->current_pwq->wq == wq) {
1408 pwq = worker->current_pwq;
8930caba 1409 } else {
c9178087
TH
1410 /* meh... not running there, queue here */
1411 spin_unlock(&last_pool->lock);
112202d9 1412 spin_lock(&pwq->pool->lock);
8930caba 1413 }
f3421797 1414 } else {
112202d9 1415 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1416 }
1417
9e8cd2f5
TH
1418 /*
1419 * pwq is determined and locked. For unbound pools, we could have
1420 * raced with pwq release and it could already be dead. If its
1421 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1422 * without another pwq replacing it in the numa_pwq_tbl or while
1423 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1424 * make forward-progress.
1425 */
1426 if (unlikely(!pwq->refcnt)) {
1427 if (wq->flags & WQ_UNBOUND) {
1428 spin_unlock(&pwq->pool->lock);
1429 cpu_relax();
1430 goto retry;
1431 }
1432 /* oops */
1433 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1434 wq->name, cpu);
1435 }
1436
112202d9
TH
1437 /* pwq determined, queue */
1438 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1439
f5b2552b 1440 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1441 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1442 return;
1443 }
1e19ffc6 1444
112202d9
TH
1445 pwq->nr_in_flight[pwq->work_color]++;
1446 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1447
112202d9 1448 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1449 trace_workqueue_activate_work(work);
112202d9
TH
1450 pwq->nr_active++;
1451 worklist = &pwq->pool->worklist;
82607adc
TH
1452 if (list_empty(worklist))
1453 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1454 } else {
1455 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1456 worklist = &pwq->delayed_works;
8a2e8e5d 1457 }
1e19ffc6 1458
112202d9 1459 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1460
112202d9 1461 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1462}
1463
0fcb78c2 1464/**
c1a220e7
ZR
1465 * queue_work_on - queue work on specific cpu
1466 * @cpu: CPU number to execute work on
0fcb78c2
REB
1467 * @wq: workqueue to use
1468 * @work: work to queue
1469 *
c1a220e7
ZR
1470 * We queue the work to a specific CPU, the caller must ensure it
1471 * can't go away.
d185af30
YB
1472 *
1473 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1474 */
d4283e93
TH
1475bool queue_work_on(int cpu, struct workqueue_struct *wq,
1476 struct work_struct *work)
1da177e4 1477{
d4283e93 1478 bool ret = false;
8930caba 1479 unsigned long flags;
ef1ca236 1480
8930caba 1481 local_irq_save(flags);
c1a220e7 1482
22df02bb 1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1484 __queue_work(cpu, wq, work);
d4283e93 1485 ret = true;
c1a220e7 1486 }
ef1ca236 1487
8930caba 1488 local_irq_restore(flags);
1da177e4
LT
1489 return ret;
1490}
ad7b1f84 1491EXPORT_SYMBOL(queue_work_on);
1da177e4 1492
d8e794df 1493void delayed_work_timer_fn(unsigned long __data)
1da177e4 1494{
52bad64d 1495 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1496
e0aecdd8 1497 /* should have been called from irqsafe timer with irq already off */
60c057bc 1498 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1499}
1438ade5 1500EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1501
7beb2edf
TH
1502static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1503 struct delayed_work *dwork, unsigned long delay)
1da177e4 1504{
7beb2edf
TH
1505 struct timer_list *timer = &dwork->timer;
1506 struct work_struct *work = &dwork->work;
7beb2edf
TH
1507
1508 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1509 timer->data != (unsigned long)dwork);
fc4b514f
TH
1510 WARN_ON_ONCE(timer_pending(timer));
1511 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1512
8852aac2
TH
1513 /*
1514 * If @delay is 0, queue @dwork->work immediately. This is for
1515 * both optimization and correctness. The earliest @timer can
1516 * expire is on the closest next tick and delayed_work users depend
1517 * on that there's no such delay when @delay is 0.
1518 */
1519 if (!delay) {
1520 __queue_work(cpu, wq, &dwork->work);
1521 return;
1522 }
1523
7beb2edf 1524 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1525
60c057bc 1526 dwork->wq = wq;
1265057f 1527 dwork->cpu = cpu;
7beb2edf
TH
1528 timer->expires = jiffies + delay;
1529
041bd12e
TH
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1da177e4
LT
1534}
1535
0fcb78c2
REB
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
af9997e4 1540 * @dwork: work to queue
0fcb78c2
REB
1541 * @delay: number of jiffies to wait before queueing
1542 *
d185af30 1543 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
0fcb78c2 1546 */
d4283e93
TH
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1549{
52bad64d 1550 struct work_struct *work = &dwork->work;
d4283e93 1551 bool ret = false;
8930caba 1552 unsigned long flags;
7a6bc1cd 1553
8930caba
TH
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
7a6bc1cd 1556
22df02bb 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1558 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1559 ret = true;
7a6bc1cd 1560 }
8a3e77cc 1561
8930caba 1562 local_irq_restore(flags);
7a6bc1cd
VP
1563 return ret;
1564}
ad7b1f84 1565EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1566
8376fe22
TH
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
d185af30 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1580 * pending and its timer was modified.
1581 *
e0aecdd8 1582 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587{
1588 unsigned long flags;
1589 int ret;
c7fc77f7 1590
8376fe22
TH
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
63bc0362 1594
8376fe22
TH
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
7a6bc1cd 1598 }
8376fe22
TH
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1601 return ret;
1602}
8376fe22
TH
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
c8e55f36
TH
1605/**
1606 * worker_enter_idle - enter idle state
1607 * @worker: worker which is entering idle state
1608 *
1609 * @worker is entering idle state. Update stats and idle timer if
1610 * necessary.
1611 *
1612 * LOCKING:
d565ed63 1613 * spin_lock_irq(pool->lock).
c8e55f36
TH
1614 */
1615static void worker_enter_idle(struct worker *worker)
1da177e4 1616{
bd7bdd43 1617 struct worker_pool *pool = worker->pool;
c8e55f36 1618
6183c009
TH
1619 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1620 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1621 (worker->hentry.next || worker->hentry.pprev)))
1622 return;
c8e55f36 1623
051e1850 1624 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1625 worker->flags |= WORKER_IDLE;
bd7bdd43 1626 pool->nr_idle++;
e22bee78 1627 worker->last_active = jiffies;
c8e55f36
TH
1628
1629 /* idle_list is LIFO */
bd7bdd43 1630 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1631
628c78e7
TH
1632 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1633 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1634
544ecf31 1635 /*
706026c2 1636 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1637 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1638 * nr_running, the warning may trigger spuriously. Check iff
1639 * unbind is not in progress.
544ecf31 1640 */
24647570 1641 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1642 pool->nr_workers == pool->nr_idle &&
e19e397a 1643 atomic_read(&pool->nr_running));
c8e55f36
TH
1644}
1645
1646/**
1647 * worker_leave_idle - leave idle state
1648 * @worker: worker which is leaving idle state
1649 *
1650 * @worker is leaving idle state. Update stats.
1651 *
1652 * LOCKING:
d565ed63 1653 * spin_lock_irq(pool->lock).
c8e55f36
TH
1654 */
1655static void worker_leave_idle(struct worker *worker)
1656{
bd7bdd43 1657 struct worker_pool *pool = worker->pool;
c8e55f36 1658
6183c009
TH
1659 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1660 return;
d302f017 1661 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1662 pool->nr_idle--;
c8e55f36
TH
1663 list_del_init(&worker->entry);
1664}
1665
f7537df5 1666static struct worker *alloc_worker(int node)
c34056a3
TH
1667{
1668 struct worker *worker;
1669
f7537df5 1670 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1671 if (worker) {
1672 INIT_LIST_HEAD(&worker->entry);
affee4b2 1673 INIT_LIST_HEAD(&worker->scheduled);
da028469 1674 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1675 /* on creation a worker is in !idle && prep state */
1676 worker->flags = WORKER_PREP;
c8e55f36 1677 }
c34056a3
TH
1678 return worker;
1679}
1680
4736cbf7
LJ
1681/**
1682 * worker_attach_to_pool() - attach a worker to a pool
1683 * @worker: worker to be attached
1684 * @pool: the target pool
1685 *
1686 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1687 * cpu-binding of @worker are kept coordinated with the pool across
1688 * cpu-[un]hotplugs.
1689 */
1690static void worker_attach_to_pool(struct worker *worker,
1691 struct worker_pool *pool)
1692{
1693 mutex_lock(&pool->attach_mutex);
1694
1695 /*
1696 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697 * online CPUs. It'll be re-applied when any of the CPUs come up.
1698 */
1699 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1700
1701 /*
1702 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703 * stable across this function. See the comments above the
1704 * flag definition for details.
1705 */
1706 if (pool->flags & POOL_DISASSOCIATED)
1707 worker->flags |= WORKER_UNBOUND;
1708
1709 list_add_tail(&worker->node, &pool->workers);
1710
1711 mutex_unlock(&pool->attach_mutex);
1712}
1713
60f5a4bc
LJ
1714/**
1715 * worker_detach_from_pool() - detach a worker from its pool
1716 * @worker: worker which is attached to its pool
1717 * @pool: the pool @worker is attached to
1718 *
4736cbf7
LJ
1719 * Undo the attaching which had been done in worker_attach_to_pool(). The
1720 * caller worker shouldn't access to the pool after detached except it has
1721 * other reference to the pool.
60f5a4bc
LJ
1722 */
1723static void worker_detach_from_pool(struct worker *worker,
1724 struct worker_pool *pool)
1725{
1726 struct completion *detach_completion = NULL;
1727
92f9c5c4 1728 mutex_lock(&pool->attach_mutex);
da028469
LJ
1729 list_del(&worker->node);
1730 if (list_empty(&pool->workers))
60f5a4bc 1731 detach_completion = pool->detach_completion;
92f9c5c4 1732 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1733
b62c0751
LJ
1734 /* clear leftover flags without pool->lock after it is detached */
1735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1736
60f5a4bc
LJ
1737 if (detach_completion)
1738 complete(detach_completion);
1739}
1740
c34056a3
TH
1741/**
1742 * create_worker - create a new workqueue worker
63d95a91 1743 * @pool: pool the new worker will belong to
c34056a3 1744 *
051e1850 1745 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1746 *
1747 * CONTEXT:
1748 * Might sleep. Does GFP_KERNEL allocations.
1749 *
d185af30 1750 * Return:
c34056a3
TH
1751 * Pointer to the newly created worker.
1752 */
bc2ae0f5 1753static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1754{
c34056a3 1755 struct worker *worker = NULL;
f3421797 1756 int id = -1;
e3c916a4 1757 char id_buf[16];
c34056a3 1758
7cda9aae
LJ
1759 /* ID is needed to determine kthread name */
1760 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1761 if (id < 0)
1762 goto fail;
c34056a3 1763
f7537df5 1764 worker = alloc_worker(pool->node);
c34056a3
TH
1765 if (!worker)
1766 goto fail;
1767
bd7bdd43 1768 worker->pool = pool;
c34056a3
TH
1769 worker->id = id;
1770
29c91e99 1771 if (pool->cpu >= 0)
e3c916a4
TH
1772 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1773 pool->attrs->nice < 0 ? "H" : "");
f3421797 1774 else
e3c916a4
TH
1775 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1776
f3f90ad4 1777 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1778 "kworker/%s", id_buf);
c34056a3
TH
1779 if (IS_ERR(worker->task))
1780 goto fail;
1781
91151228 1782 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1783 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1784
da028469 1785 /* successful, attach the worker to the pool */
4736cbf7 1786 worker_attach_to_pool(worker, pool);
822d8405 1787
051e1850
LJ
1788 /* start the newly created worker */
1789 spin_lock_irq(&pool->lock);
1790 worker->pool->nr_workers++;
1791 worker_enter_idle(worker);
1792 wake_up_process(worker->task);
1793 spin_unlock_irq(&pool->lock);
1794
c34056a3 1795 return worker;
822d8405 1796
c34056a3 1797fail:
9625ab17 1798 if (id >= 0)
7cda9aae 1799 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1800 kfree(worker);
1801 return NULL;
1802}
1803
c34056a3
TH
1804/**
1805 * destroy_worker - destroy a workqueue worker
1806 * @worker: worker to be destroyed
1807 *
73eb7fe7
LJ
1808 * Destroy @worker and adjust @pool stats accordingly. The worker should
1809 * be idle.
c8e55f36
TH
1810 *
1811 * CONTEXT:
60f5a4bc 1812 * spin_lock_irq(pool->lock).
c34056a3
TH
1813 */
1814static void destroy_worker(struct worker *worker)
1815{
bd7bdd43 1816 struct worker_pool *pool = worker->pool;
c34056a3 1817
cd549687
TH
1818 lockdep_assert_held(&pool->lock);
1819
c34056a3 1820 /* sanity check frenzy */
6183c009 1821 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1822 WARN_ON(!list_empty(&worker->scheduled)) ||
1823 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1824 return;
c34056a3 1825
73eb7fe7
LJ
1826 pool->nr_workers--;
1827 pool->nr_idle--;
5bdfff96 1828
c8e55f36 1829 list_del_init(&worker->entry);
cb444766 1830 worker->flags |= WORKER_DIE;
60f5a4bc 1831 wake_up_process(worker->task);
c34056a3
TH
1832}
1833
63d95a91 1834static void idle_worker_timeout(unsigned long __pool)
e22bee78 1835{
63d95a91 1836 struct worker_pool *pool = (void *)__pool;
e22bee78 1837
d565ed63 1838 spin_lock_irq(&pool->lock);
e22bee78 1839
3347fc9f 1840 while (too_many_workers(pool)) {
e22bee78
TH
1841 struct worker *worker;
1842 unsigned long expires;
1843
1844 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1845 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1846 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1847
3347fc9f 1848 if (time_before(jiffies, expires)) {
63d95a91 1849 mod_timer(&pool->idle_timer, expires);
3347fc9f 1850 break;
d5abe669 1851 }
3347fc9f
LJ
1852
1853 destroy_worker(worker);
e22bee78
TH
1854 }
1855
d565ed63 1856 spin_unlock_irq(&pool->lock);
e22bee78 1857}
d5abe669 1858
493a1724 1859static void send_mayday(struct work_struct *work)
e22bee78 1860{
112202d9
TH
1861 struct pool_workqueue *pwq = get_work_pwq(work);
1862 struct workqueue_struct *wq = pwq->wq;
493a1724 1863
2e109a28 1864 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1865
493008a8 1866 if (!wq->rescuer)
493a1724 1867 return;
e22bee78
TH
1868
1869 /* mayday mayday mayday */
493a1724 1870 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1871 /*
1872 * If @pwq is for an unbound wq, its base ref may be put at
1873 * any time due to an attribute change. Pin @pwq until the
1874 * rescuer is done with it.
1875 */
1876 get_pwq(pwq);
493a1724 1877 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1878 wake_up_process(wq->rescuer->task);
493a1724 1879 }
e22bee78
TH
1880}
1881
706026c2 1882static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1883{
63d95a91 1884 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1885 struct work_struct *work;
1886
b2d82909
TH
1887 spin_lock_irq(&pool->lock);
1888 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1889
63d95a91 1890 if (need_to_create_worker(pool)) {
e22bee78
TH
1891 /*
1892 * We've been trying to create a new worker but
1893 * haven't been successful. We might be hitting an
1894 * allocation deadlock. Send distress signals to
1895 * rescuers.
1896 */
63d95a91 1897 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1898 send_mayday(work);
1da177e4 1899 }
e22bee78 1900
b2d82909
TH
1901 spin_unlock(&wq_mayday_lock);
1902 spin_unlock_irq(&pool->lock);
e22bee78 1903
63d95a91 1904 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1905}
1906
e22bee78
TH
1907/**
1908 * maybe_create_worker - create a new worker if necessary
63d95a91 1909 * @pool: pool to create a new worker for
e22bee78 1910 *
63d95a91 1911 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1912 * have at least one idle worker on return from this function. If
1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1914 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1915 * possible allocation deadlock.
1916 *
c5aa87bb
TH
1917 * On return, need_to_create_worker() is guaranteed to be %false and
1918 * may_start_working() %true.
e22bee78
TH
1919 *
1920 * LOCKING:
d565ed63 1921 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1922 * multiple times. Does GFP_KERNEL allocations. Called only from
1923 * manager.
e22bee78 1924 */
29187a9e 1925static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1926__releases(&pool->lock)
1927__acquires(&pool->lock)
1da177e4 1928{
e22bee78 1929restart:
d565ed63 1930 spin_unlock_irq(&pool->lock);
9f9c2364 1931
e22bee78 1932 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1934
1935 while (true) {
051e1850 1936 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1937 break;
1da177e4 1938
e212f361 1939 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1940
63d95a91 1941 if (!need_to_create_worker(pool))
e22bee78
TH
1942 break;
1943 }
1944
63d95a91 1945 del_timer_sync(&pool->mayday_timer);
d565ed63 1946 spin_lock_irq(&pool->lock);
051e1850
LJ
1947 /*
1948 * This is necessary even after a new worker was just successfully
1949 * created as @pool->lock was dropped and the new worker might have
1950 * already become busy.
1951 */
63d95a91 1952 if (need_to_create_worker(pool))
e22bee78 1953 goto restart;
e22bee78
TH
1954}
1955
73f53c4a 1956/**
e22bee78
TH
1957 * manage_workers - manage worker pool
1958 * @worker: self
73f53c4a 1959 *
706026c2 1960 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1961 * to. At any given time, there can be only zero or one manager per
706026c2 1962 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1963 *
1964 * The caller can safely start processing works on false return. On
1965 * true return, it's guaranteed that need_to_create_worker() is false
1966 * and may_start_working() is true.
73f53c4a
TH
1967 *
1968 * CONTEXT:
d565ed63 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1970 * multiple times. Does GFP_KERNEL allocations.
1971 *
d185af30 1972 * Return:
29187a9e
TH
1973 * %false if the pool doesn't need management and the caller can safely
1974 * start processing works, %true if management function was performed and
1975 * the conditions that the caller verified before calling the function may
1976 * no longer be true.
73f53c4a 1977 */
e22bee78 1978static bool manage_workers(struct worker *worker)
73f53c4a 1979{
63d95a91 1980 struct worker_pool *pool = worker->pool;
73f53c4a 1981
bc3a1afc 1982 /*
bc3a1afc
TH
1983 * Anyone who successfully grabs manager_arb wins the arbitration
1984 * and becomes the manager. mutex_trylock() on pool->manager_arb
1985 * failure while holding pool->lock reliably indicates that someone
1986 * else is managing the pool and the worker which failed trylock
1987 * can proceed to executing work items. This means that anyone
1988 * grabbing manager_arb is responsible for actually performing
1989 * manager duties. If manager_arb is grabbed and released without
1990 * actual management, the pool may stall indefinitely.
bc3a1afc 1991 */
34a06bd6 1992 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1993 return false;
2607d7a6 1994 pool->manager = worker;
1e19ffc6 1995
29187a9e 1996 maybe_create_worker(pool);
e22bee78 1997
2607d7a6 1998 pool->manager = NULL;
34a06bd6 1999 mutex_unlock(&pool->manager_arb);
29187a9e 2000 return true;
73f53c4a
TH
2001}
2002
a62428c0
TH
2003/**
2004 * process_one_work - process single work
c34056a3 2005 * @worker: self
a62428c0
TH
2006 * @work: work to process
2007 *
2008 * Process @work. This function contains all the logics necessary to
2009 * process a single work including synchronization against and
2010 * interaction with other workers on the same cpu, queueing and
2011 * flushing. As long as context requirement is met, any worker can
2012 * call this function to process a work.
2013 *
2014 * CONTEXT:
d565ed63 2015 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2016 */
c34056a3 2017static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2018__releases(&pool->lock)
2019__acquires(&pool->lock)
a62428c0 2020{
112202d9 2021 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2022 struct worker_pool *pool = worker->pool;
112202d9 2023 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2024 int work_color;
7e11629d 2025 struct worker *collision;
a62428c0
TH
2026#ifdef CONFIG_LOCKDEP
2027 /*
2028 * It is permissible to free the struct work_struct from
2029 * inside the function that is called from it, this we need to
2030 * take into account for lockdep too. To avoid bogus "held
2031 * lock freed" warnings as well as problems when looking into
2032 * work->lockdep_map, make a copy and use that here.
2033 */
4d82a1de
PZ
2034 struct lockdep_map lockdep_map;
2035
2036 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2037#endif
807407c0 2038 /* ensure we're on the correct CPU */
85327af6 2039 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2040 raw_smp_processor_id() != pool->cpu);
25511a47 2041
7e11629d
TH
2042 /*
2043 * A single work shouldn't be executed concurrently by
2044 * multiple workers on a single cpu. Check whether anyone is
2045 * already processing the work. If so, defer the work to the
2046 * currently executing one.
2047 */
c9e7cf27 2048 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2049 if (unlikely(collision)) {
2050 move_linked_works(work, &collision->scheduled, NULL);
2051 return;
2052 }
2053
8930caba 2054 /* claim and dequeue */
a62428c0 2055 debug_work_deactivate(work);
c9e7cf27 2056 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2057 worker->current_work = work;
a2c1c57b 2058 worker->current_func = work->func;
112202d9 2059 worker->current_pwq = pwq;
73f53c4a 2060 work_color = get_work_color(work);
7a22ad75 2061
a62428c0
TH
2062 list_del_init(&work->entry);
2063
fb0e7beb 2064 /*
228f1d00
LJ
2065 * CPU intensive works don't participate in concurrency management.
2066 * They're the scheduler's responsibility. This takes @worker out
2067 * of concurrency management and the next code block will chain
2068 * execution of the pending work items.
fb0e7beb
TH
2069 */
2070 if (unlikely(cpu_intensive))
228f1d00 2071 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2072
974271c4 2073 /*
a489a03e
LJ
2074 * Wake up another worker if necessary. The condition is always
2075 * false for normal per-cpu workers since nr_running would always
2076 * be >= 1 at this point. This is used to chain execution of the
2077 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2078 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2079 */
a489a03e 2080 if (need_more_worker(pool))
63d95a91 2081 wake_up_worker(pool);
974271c4 2082
8930caba 2083 /*
7c3eed5c 2084 * Record the last pool and clear PENDING which should be the last
d565ed63 2085 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2086 * PENDING and queued state changes happen together while IRQ is
2087 * disabled.
8930caba 2088 */
7c3eed5c 2089 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2090
d565ed63 2091 spin_unlock_irq(&pool->lock);
a62428c0 2092
112202d9 2093 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2094 lock_map_acquire(&lockdep_map);
e36c886a 2095 trace_workqueue_execute_start(work);
a2c1c57b 2096 worker->current_func(work);
e36c886a
AV
2097 /*
2098 * While we must be careful to not use "work" after this, the trace
2099 * point will only record its address.
2100 */
2101 trace_workqueue_execute_end(work);
a62428c0 2102 lock_map_release(&lockdep_map);
112202d9 2103 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2104
2105 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2106 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2107 " last function: %pf\n",
a2c1c57b
TH
2108 current->comm, preempt_count(), task_pid_nr(current),
2109 worker->current_func);
a62428c0
TH
2110 debug_show_held_locks(current);
2111 dump_stack();
2112 }
2113
b22ce278
TH
2114 /*
2115 * The following prevents a kworker from hogging CPU on !PREEMPT
2116 * kernels, where a requeueing work item waiting for something to
2117 * happen could deadlock with stop_machine as such work item could
2118 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2119 * stop_machine. At the same time, report a quiescent RCU state so
2120 * the same condition doesn't freeze RCU.
b22ce278 2121 */
3e28e377 2122 cond_resched_rcu_qs();
b22ce278 2123
d565ed63 2124 spin_lock_irq(&pool->lock);
a62428c0 2125
fb0e7beb
TH
2126 /* clear cpu intensive status */
2127 if (unlikely(cpu_intensive))
2128 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2129
a62428c0 2130 /* we're done with it, release */
42f8570f 2131 hash_del(&worker->hentry);
c34056a3 2132 worker->current_work = NULL;
a2c1c57b 2133 worker->current_func = NULL;
112202d9 2134 worker->current_pwq = NULL;
3d1cb205 2135 worker->desc_valid = false;
112202d9 2136 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2137}
2138
affee4b2
TH
2139/**
2140 * process_scheduled_works - process scheduled works
2141 * @worker: self
2142 *
2143 * Process all scheduled works. Please note that the scheduled list
2144 * may change while processing a work, so this function repeatedly
2145 * fetches a work from the top and executes it.
2146 *
2147 * CONTEXT:
d565ed63 2148 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2149 * multiple times.
2150 */
2151static void process_scheduled_works(struct worker *worker)
1da177e4 2152{
affee4b2
TH
2153 while (!list_empty(&worker->scheduled)) {
2154 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2155 struct work_struct, entry);
c34056a3 2156 process_one_work(worker, work);
1da177e4 2157 }
1da177e4
LT
2158}
2159
4690c4ab
TH
2160/**
2161 * worker_thread - the worker thread function
c34056a3 2162 * @__worker: self
4690c4ab 2163 *
c5aa87bb
TH
2164 * The worker thread function. All workers belong to a worker_pool -
2165 * either a per-cpu one or dynamic unbound one. These workers process all
2166 * work items regardless of their specific target workqueue. The only
2167 * exception is work items which belong to workqueues with a rescuer which
2168 * will be explained in rescuer_thread().
d185af30
YB
2169 *
2170 * Return: 0
4690c4ab 2171 */
c34056a3 2172static int worker_thread(void *__worker)
1da177e4 2173{
c34056a3 2174 struct worker *worker = __worker;
bd7bdd43 2175 struct worker_pool *pool = worker->pool;
1da177e4 2176
e22bee78
TH
2177 /* tell the scheduler that this is a workqueue worker */
2178 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2179woke_up:
d565ed63 2180 spin_lock_irq(&pool->lock);
1da177e4 2181
a9ab775b
TH
2182 /* am I supposed to die? */
2183 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2184 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2185 WARN_ON_ONCE(!list_empty(&worker->entry));
2186 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2187
2188 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2189 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2190 worker_detach_from_pool(worker, pool);
2191 kfree(worker);
a9ab775b 2192 return 0;
c8e55f36 2193 }
affee4b2 2194
c8e55f36 2195 worker_leave_idle(worker);
db7bccf4 2196recheck:
e22bee78 2197 /* no more worker necessary? */
63d95a91 2198 if (!need_more_worker(pool))
e22bee78
TH
2199 goto sleep;
2200
2201 /* do we need to manage? */
63d95a91 2202 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2203 goto recheck;
2204
c8e55f36
TH
2205 /*
2206 * ->scheduled list can only be filled while a worker is
2207 * preparing to process a work or actually processing it.
2208 * Make sure nobody diddled with it while I was sleeping.
2209 */
6183c009 2210 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2211
e22bee78 2212 /*
a9ab775b
TH
2213 * Finish PREP stage. We're guaranteed to have at least one idle
2214 * worker or that someone else has already assumed the manager
2215 * role. This is where @worker starts participating in concurrency
2216 * management if applicable and concurrency management is restored
2217 * after being rebound. See rebind_workers() for details.
e22bee78 2218 */
a9ab775b 2219 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2220
2221 do {
c8e55f36 2222 struct work_struct *work =
bd7bdd43 2223 list_first_entry(&pool->worklist,
c8e55f36
TH
2224 struct work_struct, entry);
2225
82607adc
TH
2226 pool->watchdog_ts = jiffies;
2227
c8e55f36
TH
2228 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2229 /* optimization path, not strictly necessary */
2230 process_one_work(worker, work);
2231 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2232 process_scheduled_works(worker);
c8e55f36
TH
2233 } else {
2234 move_linked_works(work, &worker->scheduled, NULL);
2235 process_scheduled_works(worker);
affee4b2 2236 }
63d95a91 2237 } while (keep_working(pool));
e22bee78 2238
228f1d00 2239 worker_set_flags(worker, WORKER_PREP);
d313dd85 2240sleep:
c8e55f36 2241 /*
d565ed63
TH
2242 * pool->lock is held and there's no work to process and no need to
2243 * manage, sleep. Workers are woken up only while holding
2244 * pool->lock or from local cpu, so setting the current state
2245 * before releasing pool->lock is enough to prevent losing any
2246 * event.
c8e55f36
TH
2247 */
2248 worker_enter_idle(worker);
2249 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2250 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2251 schedule();
2252 goto woke_up;
1da177e4
LT
2253}
2254
e22bee78
TH
2255/**
2256 * rescuer_thread - the rescuer thread function
111c225a 2257 * @__rescuer: self
e22bee78
TH
2258 *
2259 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2260 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2261 *
706026c2 2262 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2263 * worker which uses GFP_KERNEL allocation which has slight chance of
2264 * developing into deadlock if some works currently on the same queue
2265 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2266 * the problem rescuer solves.
2267 *
706026c2
TH
2268 * When such condition is possible, the pool summons rescuers of all
2269 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2270 * those works so that forward progress can be guaranteed.
2271 *
2272 * This should happen rarely.
d185af30
YB
2273 *
2274 * Return: 0
e22bee78 2275 */
111c225a 2276static int rescuer_thread(void *__rescuer)
e22bee78 2277{
111c225a
TH
2278 struct worker *rescuer = __rescuer;
2279 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2280 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2281 bool should_stop;
e22bee78
TH
2282
2283 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2284
2285 /*
2286 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2287 * doesn't participate in concurrency management.
2288 */
2289 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2290repeat:
2291 set_current_state(TASK_INTERRUPTIBLE);
2292
4d595b86
LJ
2293 /*
2294 * By the time the rescuer is requested to stop, the workqueue
2295 * shouldn't have any work pending, but @wq->maydays may still have
2296 * pwq(s) queued. This can happen by non-rescuer workers consuming
2297 * all the work items before the rescuer got to them. Go through
2298 * @wq->maydays processing before acting on should_stop so that the
2299 * list is always empty on exit.
2300 */
2301 should_stop = kthread_should_stop();
e22bee78 2302
493a1724 2303 /* see whether any pwq is asking for help */
2e109a28 2304 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2305
2306 while (!list_empty(&wq->maydays)) {
2307 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2308 struct pool_workqueue, mayday_node);
112202d9 2309 struct worker_pool *pool = pwq->pool;
e22bee78 2310 struct work_struct *work, *n;
82607adc 2311 bool first = true;
e22bee78
TH
2312
2313 __set_current_state(TASK_RUNNING);
493a1724
TH
2314 list_del_init(&pwq->mayday_node);
2315
2e109a28 2316 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2317
51697d39
LJ
2318 worker_attach_to_pool(rescuer, pool);
2319
2320 spin_lock_irq(&pool->lock);
b3104104 2321 rescuer->pool = pool;
e22bee78
TH
2322
2323 /*
2324 * Slurp in all works issued via this workqueue and
2325 * process'em.
2326 */
0479c8c5 2327 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2328 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2329 if (get_work_pwq(work) == pwq) {
2330 if (first)
2331 pool->watchdog_ts = jiffies;
e22bee78 2332 move_linked_works(work, scheduled, &n);
82607adc
TH
2333 }
2334 first = false;
2335 }
e22bee78 2336
008847f6
N
2337 if (!list_empty(scheduled)) {
2338 process_scheduled_works(rescuer);
2339
2340 /*
2341 * The above execution of rescued work items could
2342 * have created more to rescue through
2343 * pwq_activate_first_delayed() or chained
2344 * queueing. Let's put @pwq back on mayday list so
2345 * that such back-to-back work items, which may be
2346 * being used to relieve memory pressure, don't
2347 * incur MAYDAY_INTERVAL delay inbetween.
2348 */
2349 if (need_to_create_worker(pool)) {
2350 spin_lock(&wq_mayday_lock);
2351 get_pwq(pwq);
2352 list_move_tail(&pwq->mayday_node, &wq->maydays);
2353 spin_unlock(&wq_mayday_lock);
2354 }
2355 }
7576958a 2356
77668c8b
LJ
2357 /*
2358 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2359 * go away while we're still attached to it.
77668c8b
LJ
2360 */
2361 put_pwq(pwq);
2362
7576958a 2363 /*
d8ca83e6 2364 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2365 * regular worker; otherwise, we end up with 0 concurrency
2366 * and stalling the execution.
2367 */
d8ca83e6 2368 if (need_more_worker(pool))
63d95a91 2369 wake_up_worker(pool);
7576958a 2370
b3104104 2371 rescuer->pool = NULL;
13b1d625
LJ
2372 spin_unlock_irq(&pool->lock);
2373
2374 worker_detach_from_pool(rescuer, pool);
2375
2376 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2377 }
2378
2e109a28 2379 spin_unlock_irq(&wq_mayday_lock);
493a1724 2380
4d595b86
LJ
2381 if (should_stop) {
2382 __set_current_state(TASK_RUNNING);
2383 rescuer->task->flags &= ~PF_WQ_WORKER;
2384 return 0;
2385 }
2386
111c225a
TH
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2389 schedule();
2390 goto repeat;
1da177e4
LT
2391}
2392
fca839c0
TH
2393/**
2394 * check_flush_dependency - check for flush dependency sanity
2395 * @target_wq: workqueue being flushed
2396 * @target_work: work item being flushed (NULL for workqueue flushes)
2397 *
2398 * %current is trying to flush the whole @target_wq or @target_work on it.
2399 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2400 * reclaiming memory or running on a workqueue which doesn't have
2401 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2402 * a deadlock.
2403 */
2404static void check_flush_dependency(struct workqueue_struct *target_wq,
2405 struct work_struct *target_work)
2406{
2407 work_func_t target_func = target_work ? target_work->func : NULL;
2408 struct worker *worker;
2409
2410 if (target_wq->flags & WQ_MEM_RECLAIM)
2411 return;
2412
2413 worker = current_wq_worker();
2414
2415 WARN_ONCE(current->flags & PF_MEMALLOC,
2416 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2417 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2418 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2419 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2420 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2421 worker->current_pwq->wq->name, worker->current_func,
2422 target_wq->name, target_func);
2423}
2424
fc2e4d70
ON
2425struct wq_barrier {
2426 struct work_struct work;
2427 struct completion done;
2607d7a6 2428 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2429};
2430
2431static void wq_barrier_func(struct work_struct *work)
2432{
2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 complete(&barr->done);
2435}
2436
4690c4ab
TH
2437/**
2438 * insert_wq_barrier - insert a barrier work
112202d9 2439 * @pwq: pwq to insert barrier into
4690c4ab 2440 * @barr: wq_barrier to insert
affee4b2
TH
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2443 *
affee4b2
TH
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
112202d9 2456 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2457 *
2458 * CONTEXT:
d565ed63 2459 * spin_lock_irq(pool->lock).
4690c4ab 2460 */
112202d9 2461static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2462 struct wq_barrier *barr,
2463 struct work_struct *target, struct worker *worker)
fc2e4d70 2464{
affee4b2
TH
2465 struct list_head *head;
2466 unsigned int linked = 0;
2467
dc186ad7 2468 /*
d565ed63 2469 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2472 * might deadlock.
2473 */
ca1cab37 2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2476 init_completion(&barr->done);
2607d7a6 2477 barr->task = current;
83c22520 2478
affee4b2
TH
2479 /*
2480 * If @target is currently being executed, schedule the
2481 * barrier to the worker; otherwise, put it after @target.
2482 */
2483 if (worker)
2484 head = worker->scheduled.next;
2485 else {
2486 unsigned long *bits = work_data_bits(target);
2487
2488 head = target->entry.next;
2489 /* there can already be other linked works, inherit and set */
2490 linked = *bits & WORK_STRUCT_LINKED;
2491 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2492 }
2493
dc186ad7 2494 debug_work_activate(&barr->work);
112202d9 2495 insert_work(pwq, &barr->work, head,
affee4b2 2496 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2497}
2498
73f53c4a 2499/**
112202d9 2500 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2501 * @wq: workqueue being flushed
2502 * @flush_color: new flush color, < 0 for no-op
2503 * @work_color: new work color, < 0 for no-op
2504 *
112202d9 2505 * Prepare pwqs for workqueue flushing.
73f53c4a 2506 *
112202d9
TH
2507 * If @flush_color is non-negative, flush_color on all pwqs should be
2508 * -1. If no pwq has in-flight commands at the specified color, all
2509 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2510 * has in flight commands, its pwq->flush_color is set to
2511 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2512 * wakeup logic is armed and %true is returned.
2513 *
2514 * The caller should have initialized @wq->first_flusher prior to
2515 * calling this function with non-negative @flush_color. If
2516 * @flush_color is negative, no flush color update is done and %false
2517 * is returned.
2518 *
112202d9 2519 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2520 * work_color which is previous to @work_color and all will be
2521 * advanced to @work_color.
2522 *
2523 * CONTEXT:
3c25a55d 2524 * mutex_lock(wq->mutex).
73f53c4a 2525 *
d185af30 2526 * Return:
73f53c4a
TH
2527 * %true if @flush_color >= 0 and there's something to flush. %false
2528 * otherwise.
2529 */
112202d9 2530static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2531 int flush_color, int work_color)
1da177e4 2532{
73f53c4a 2533 bool wait = false;
49e3cf44 2534 struct pool_workqueue *pwq;
1da177e4 2535
73f53c4a 2536 if (flush_color >= 0) {
6183c009 2537 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2538 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2539 }
2355b70f 2540
49e3cf44 2541 for_each_pwq(pwq, wq) {
112202d9 2542 struct worker_pool *pool = pwq->pool;
fc2e4d70 2543
b09f4fd3 2544 spin_lock_irq(&pool->lock);
83c22520 2545
73f53c4a 2546 if (flush_color >= 0) {
6183c009 2547 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2548
112202d9
TH
2549 if (pwq->nr_in_flight[flush_color]) {
2550 pwq->flush_color = flush_color;
2551 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2552 wait = true;
2553 }
2554 }
1da177e4 2555
73f53c4a 2556 if (work_color >= 0) {
6183c009 2557 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2558 pwq->work_color = work_color;
73f53c4a 2559 }
1da177e4 2560
b09f4fd3 2561 spin_unlock_irq(&pool->lock);
1da177e4 2562 }
2355b70f 2563
112202d9 2564 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2565 complete(&wq->first_flusher->done);
14441960 2566
73f53c4a 2567 return wait;
1da177e4
LT
2568}
2569
0fcb78c2 2570/**
1da177e4 2571 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2572 * @wq: workqueue to flush
1da177e4 2573 *
c5aa87bb
TH
2574 * This function sleeps until all work items which were queued on entry
2575 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2576 */
7ad5b3a5 2577void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2578{
73f53c4a
TH
2579 struct wq_flusher this_flusher = {
2580 .list = LIST_HEAD_INIT(this_flusher.list),
2581 .flush_color = -1,
2582 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2583 };
2584 int next_color;
1da177e4 2585
3295f0ef
IM
2586 lock_map_acquire(&wq->lockdep_map);
2587 lock_map_release(&wq->lockdep_map);
73f53c4a 2588
3c25a55d 2589 mutex_lock(&wq->mutex);
73f53c4a
TH
2590
2591 /*
2592 * Start-to-wait phase
2593 */
2594 next_color = work_next_color(wq->work_color);
2595
2596 if (next_color != wq->flush_color) {
2597 /*
2598 * Color space is not full. The current work_color
2599 * becomes our flush_color and work_color is advanced
2600 * by one.
2601 */
6183c009 2602 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2603 this_flusher.flush_color = wq->work_color;
2604 wq->work_color = next_color;
2605
2606 if (!wq->first_flusher) {
2607 /* no flush in progress, become the first flusher */
6183c009 2608 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2609
2610 wq->first_flusher = &this_flusher;
2611
112202d9 2612 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2613 wq->work_color)) {
2614 /* nothing to flush, done */
2615 wq->flush_color = next_color;
2616 wq->first_flusher = NULL;
2617 goto out_unlock;
2618 }
2619 } else {
2620 /* wait in queue */
6183c009 2621 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2622 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2623 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2624 }
2625 } else {
2626 /*
2627 * Oops, color space is full, wait on overflow queue.
2628 * The next flush completion will assign us
2629 * flush_color and transfer to flusher_queue.
2630 */
2631 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2632 }
2633
fca839c0
TH
2634 check_flush_dependency(wq, NULL);
2635
3c25a55d 2636 mutex_unlock(&wq->mutex);
73f53c4a
TH
2637
2638 wait_for_completion(&this_flusher.done);
2639
2640 /*
2641 * Wake-up-and-cascade phase
2642 *
2643 * First flushers are responsible for cascading flushes and
2644 * handling overflow. Non-first flushers can simply return.
2645 */
2646 if (wq->first_flusher != &this_flusher)
2647 return;
2648
3c25a55d 2649 mutex_lock(&wq->mutex);
73f53c4a 2650
4ce48b37
TH
2651 /* we might have raced, check again with mutex held */
2652 if (wq->first_flusher != &this_flusher)
2653 goto out_unlock;
2654
73f53c4a
TH
2655 wq->first_flusher = NULL;
2656
6183c009
TH
2657 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2659
2660 while (true) {
2661 struct wq_flusher *next, *tmp;
2662
2663 /* complete all the flushers sharing the current flush color */
2664 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665 if (next->flush_color != wq->flush_color)
2666 break;
2667 list_del_init(&next->list);
2668 complete(&next->done);
2669 }
2670
6183c009
TH
2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2673
2674 /* this flush_color is finished, advance by one */
2675 wq->flush_color = work_next_color(wq->flush_color);
2676
2677 /* one color has been freed, handle overflow queue */
2678 if (!list_empty(&wq->flusher_overflow)) {
2679 /*
2680 * Assign the same color to all overflowed
2681 * flushers, advance work_color and append to
2682 * flusher_queue. This is the start-to-wait
2683 * phase for these overflowed flushers.
2684 */
2685 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686 tmp->flush_color = wq->work_color;
2687
2688 wq->work_color = work_next_color(wq->work_color);
2689
2690 list_splice_tail_init(&wq->flusher_overflow,
2691 &wq->flusher_queue);
112202d9 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2693 }
2694
2695 if (list_empty(&wq->flusher_queue)) {
6183c009 2696 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2697 break;
2698 }
2699
2700 /*
2701 * Need to flush more colors. Make the next flusher
112202d9 2702 * the new first flusher and arm pwqs.
73f53c4a 2703 */
6183c009
TH
2704 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2706
2707 list_del_init(&next->list);
2708 wq->first_flusher = next;
2709
112202d9 2710 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2711 break;
2712
2713 /*
2714 * Meh... this color is already done, clear first
2715 * flusher and repeat cascading.
2716 */
2717 wq->first_flusher = NULL;
2718 }
2719
2720out_unlock:
3c25a55d 2721 mutex_unlock(&wq->mutex);
1da177e4 2722}
1dadafa8 2723EXPORT_SYMBOL(flush_workqueue);
1da177e4 2724
9c5a2ba7
TH
2725/**
2726 * drain_workqueue - drain a workqueue
2727 * @wq: workqueue to drain
2728 *
2729 * Wait until the workqueue becomes empty. While draining is in progress,
2730 * only chain queueing is allowed. IOW, only currently pending or running
2731 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2732 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2733 * by the depth of chaining and should be relatively short. Whine if it
2734 * takes too long.
2735 */
2736void drain_workqueue(struct workqueue_struct *wq)
2737{
2738 unsigned int flush_cnt = 0;
49e3cf44 2739 struct pool_workqueue *pwq;
9c5a2ba7
TH
2740
2741 /*
2742 * __queue_work() needs to test whether there are drainers, is much
2743 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2745 */
87fc741e 2746 mutex_lock(&wq->mutex);
9c5a2ba7 2747 if (!wq->nr_drainers++)
618b01eb 2748 wq->flags |= __WQ_DRAINING;
87fc741e 2749 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2750reflush:
2751 flush_workqueue(wq);
2752
b09f4fd3 2753 mutex_lock(&wq->mutex);
76af4d93 2754
49e3cf44 2755 for_each_pwq(pwq, wq) {
fa2563e4 2756 bool drained;
9c5a2ba7 2757
b09f4fd3 2758 spin_lock_irq(&pwq->pool->lock);
112202d9 2759 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2760 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2761
2762 if (drained)
9c5a2ba7
TH
2763 continue;
2764
2765 if (++flush_cnt == 10 ||
2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2768 wq->name, flush_cnt);
76af4d93 2769
b09f4fd3 2770 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2771 goto reflush;
2772 }
2773
9c5a2ba7 2774 if (!--wq->nr_drainers)
618b01eb 2775 wq->flags &= ~__WQ_DRAINING;
87fc741e 2776 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2777}
2778EXPORT_SYMBOL_GPL(drain_workqueue);
2779
606a5020 2780static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2781{
affee4b2 2782 struct worker *worker = NULL;
c9e7cf27 2783 struct worker_pool *pool;
112202d9 2784 struct pool_workqueue *pwq;
db700897
ON
2785
2786 might_sleep();
fa1b54e6
TH
2787
2788 local_irq_disable();
c9e7cf27 2789 pool = get_work_pool(work);
fa1b54e6
TH
2790 if (!pool) {
2791 local_irq_enable();
baf59022 2792 return false;
fa1b54e6 2793 }
db700897 2794
fa1b54e6 2795 spin_lock(&pool->lock);
0b3dae68 2796 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2797 pwq = get_work_pwq(work);
2798 if (pwq) {
2799 if (unlikely(pwq->pool != pool))
4690c4ab 2800 goto already_gone;
606a5020 2801 } else {
c9e7cf27 2802 worker = find_worker_executing_work(pool, work);
affee4b2 2803 if (!worker)
4690c4ab 2804 goto already_gone;
112202d9 2805 pwq = worker->current_pwq;
606a5020 2806 }
db700897 2807
fca839c0
TH
2808 check_flush_dependency(pwq->wq, work);
2809
112202d9 2810 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2811 spin_unlock_irq(&pool->lock);
7a22ad75 2812
e159489b
TH
2813 /*
2814 * If @max_active is 1 or rescuer is in use, flushing another work
2815 * item on the same workqueue may lead to deadlock. Make sure the
2816 * flusher is not running on the same workqueue by verifying write
2817 * access.
2818 */
493008a8 2819 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2820 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2821 else
112202d9
TH
2822 lock_map_acquire_read(&pwq->wq->lockdep_map);
2823 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2824
401a8d04 2825 return true;
4690c4ab 2826already_gone:
d565ed63 2827 spin_unlock_irq(&pool->lock);
401a8d04 2828 return false;
db700897 2829}
baf59022
TH
2830
2831/**
2832 * flush_work - wait for a work to finish executing the last queueing instance
2833 * @work: the work to flush
2834 *
606a5020
TH
2835 * Wait until @work has finished execution. @work is guaranteed to be idle
2836 * on return if it hasn't been requeued since flush started.
baf59022 2837 *
d185af30 2838 * Return:
baf59022
TH
2839 * %true if flush_work() waited for the work to finish execution,
2840 * %false if it was already idle.
2841 */
2842bool flush_work(struct work_struct *work)
2843{
12997d1a
BH
2844 struct wq_barrier barr;
2845
0976dfc1
SB
2846 lock_map_acquire(&work->lockdep_map);
2847 lock_map_release(&work->lockdep_map);
2848
12997d1a
BH
2849 if (start_flush_work(work, &barr)) {
2850 wait_for_completion(&barr.done);
2851 destroy_work_on_stack(&barr.work);
2852 return true;
2853 } else {
2854 return false;
2855 }
6e84d644 2856}
606a5020 2857EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2858
8603e1b3
TH
2859struct cwt_wait {
2860 wait_queue_t wait;
2861 struct work_struct *work;
2862};
2863
2864static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2865{
2866 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2867
2868 if (cwait->work != key)
2869 return 0;
2870 return autoremove_wake_function(wait, mode, sync, key);
2871}
2872
36e227d2 2873static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2874{
8603e1b3 2875 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2876 unsigned long flags;
1f1f642e
ON
2877 int ret;
2878
2879 do {
bbb68dfa
TH
2880 ret = try_to_grab_pending(work, is_dwork, &flags);
2881 /*
8603e1b3
TH
2882 * If someone else is already canceling, wait for it to
2883 * finish. flush_work() doesn't work for PREEMPT_NONE
2884 * because we may get scheduled between @work's completion
2885 * and the other canceling task resuming and clearing
2886 * CANCELING - flush_work() will return false immediately
2887 * as @work is no longer busy, try_to_grab_pending() will
2888 * return -ENOENT as @work is still being canceled and the
2889 * other canceling task won't be able to clear CANCELING as
2890 * we're hogging the CPU.
2891 *
2892 * Let's wait for completion using a waitqueue. As this
2893 * may lead to the thundering herd problem, use a custom
2894 * wake function which matches @work along with exclusive
2895 * wait and wakeup.
bbb68dfa 2896 */
8603e1b3
TH
2897 if (unlikely(ret == -ENOENT)) {
2898 struct cwt_wait cwait;
2899
2900 init_wait(&cwait.wait);
2901 cwait.wait.func = cwt_wakefn;
2902 cwait.work = work;
2903
2904 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2905 TASK_UNINTERRUPTIBLE);
2906 if (work_is_canceling(work))
2907 schedule();
2908 finish_wait(&cancel_waitq, &cwait.wait);
2909 }
1f1f642e
ON
2910 } while (unlikely(ret < 0));
2911
bbb68dfa
TH
2912 /* tell other tasks trying to grab @work to back off */
2913 mark_work_canceling(work);
2914 local_irq_restore(flags);
2915
606a5020 2916 flush_work(work);
7a22ad75 2917 clear_work_data(work);
8603e1b3
TH
2918
2919 /*
2920 * Paired with prepare_to_wait() above so that either
2921 * waitqueue_active() is visible here or !work_is_canceling() is
2922 * visible there.
2923 */
2924 smp_mb();
2925 if (waitqueue_active(&cancel_waitq))
2926 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2927
1f1f642e
ON
2928 return ret;
2929}
2930
6e84d644 2931/**
401a8d04
TH
2932 * cancel_work_sync - cancel a work and wait for it to finish
2933 * @work: the work to cancel
6e84d644 2934 *
401a8d04
TH
2935 * Cancel @work and wait for its execution to finish. This function
2936 * can be used even if the work re-queues itself or migrates to
2937 * another workqueue. On return from this function, @work is
2938 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2939 *
401a8d04
TH
2940 * cancel_work_sync(&delayed_work->work) must not be used for
2941 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2942 *
401a8d04 2943 * The caller must ensure that the workqueue on which @work was last
6e84d644 2944 * queued can't be destroyed before this function returns.
401a8d04 2945 *
d185af30 2946 * Return:
401a8d04 2947 * %true if @work was pending, %false otherwise.
6e84d644 2948 */
401a8d04 2949bool cancel_work_sync(struct work_struct *work)
6e84d644 2950{
36e227d2 2951 return __cancel_work_timer(work, false);
b89deed3 2952}
28e53bdd 2953EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2954
6e84d644 2955/**
401a8d04
TH
2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957 * @dwork: the delayed work to flush
6e84d644 2958 *
401a8d04
TH
2959 * Delayed timer is cancelled and the pending work is queued for
2960 * immediate execution. Like flush_work(), this function only
2961 * considers the last queueing instance of @dwork.
1f1f642e 2962 *
d185af30 2963 * Return:
401a8d04
TH
2964 * %true if flush_work() waited for the work to finish execution,
2965 * %false if it was already idle.
6e84d644 2966 */
401a8d04
TH
2967bool flush_delayed_work(struct delayed_work *dwork)
2968{
8930caba 2969 local_irq_disable();
401a8d04 2970 if (del_timer_sync(&dwork->timer))
60c057bc 2971 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2972 local_irq_enable();
401a8d04
TH
2973 return flush_work(&dwork->work);
2974}
2975EXPORT_SYMBOL(flush_delayed_work);
2976
09383498 2977/**
57b30ae7
TH
2978 * cancel_delayed_work - cancel a delayed work
2979 * @dwork: delayed_work to cancel
09383498 2980 *
d185af30
YB
2981 * Kill off a pending delayed_work.
2982 *
2983 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2984 * pending.
2985 *
2986 * Note:
2987 * The work callback function may still be running on return, unless
2988 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2989 * use cancel_delayed_work_sync() to wait on it.
09383498 2990 *
57b30ae7 2991 * This function is safe to call from any context including IRQ handler.
09383498 2992 */
57b30ae7 2993bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2994{
57b30ae7
TH
2995 unsigned long flags;
2996 int ret;
2997
2998 do {
2999 ret = try_to_grab_pending(&dwork->work, true, &flags);
3000 } while (unlikely(ret == -EAGAIN));
3001
3002 if (unlikely(ret < 0))
3003 return false;
3004
7c3eed5c
TH
3005 set_work_pool_and_clear_pending(&dwork->work,
3006 get_work_pool_id(&dwork->work));
57b30ae7 3007 local_irq_restore(flags);
c0158ca6 3008 return ret;
09383498 3009}
57b30ae7 3010EXPORT_SYMBOL(cancel_delayed_work);
09383498 3011
401a8d04
TH
3012/**
3013 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3014 * @dwork: the delayed work cancel
3015 *
3016 * This is cancel_work_sync() for delayed works.
3017 *
d185af30 3018 * Return:
401a8d04
TH
3019 * %true if @dwork was pending, %false otherwise.
3020 */
3021bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3022{
36e227d2 3023 return __cancel_work_timer(&dwork->work, true);
6e84d644 3024}
f5a421a4 3025EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3026
b6136773 3027/**
31ddd871 3028 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3029 * @func: the function to call
b6136773 3030 *
31ddd871
TH
3031 * schedule_on_each_cpu() executes @func on each online CPU using the
3032 * system workqueue and blocks until all CPUs have completed.
b6136773 3033 * schedule_on_each_cpu() is very slow.
31ddd871 3034 *
d185af30 3035 * Return:
31ddd871 3036 * 0 on success, -errno on failure.
b6136773 3037 */
65f27f38 3038int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3039{
3040 int cpu;
38f51568 3041 struct work_struct __percpu *works;
15316ba8 3042
b6136773
AM
3043 works = alloc_percpu(struct work_struct);
3044 if (!works)
15316ba8 3045 return -ENOMEM;
b6136773 3046
93981800
TH
3047 get_online_cpus();
3048
15316ba8 3049 for_each_online_cpu(cpu) {
9bfb1839
IM
3050 struct work_struct *work = per_cpu_ptr(works, cpu);
3051
3052 INIT_WORK(work, func);
b71ab8c2 3053 schedule_work_on(cpu, work);
65a64464 3054 }
93981800
TH
3055
3056 for_each_online_cpu(cpu)
3057 flush_work(per_cpu_ptr(works, cpu));
3058
95402b38 3059 put_online_cpus();
b6136773 3060 free_percpu(works);
15316ba8
CL
3061 return 0;
3062}
3063
1fa44eca
JB
3064/**
3065 * execute_in_process_context - reliably execute the routine with user context
3066 * @fn: the function to execute
1fa44eca
JB
3067 * @ew: guaranteed storage for the execute work structure (must
3068 * be available when the work executes)
3069 *
3070 * Executes the function immediately if process context is available,
3071 * otherwise schedules the function for delayed execution.
3072 *
d185af30 3073 * Return: 0 - function was executed
1fa44eca
JB
3074 * 1 - function was scheduled for execution
3075 */
65f27f38 3076int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3077{
3078 if (!in_interrupt()) {
65f27f38 3079 fn(&ew->work);
1fa44eca
JB
3080 return 0;
3081 }
3082
65f27f38 3083 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3084 schedule_work(&ew->work);
3085
3086 return 1;
3087}
3088EXPORT_SYMBOL_GPL(execute_in_process_context);
3089
6ba94429
FW
3090/**
3091 * free_workqueue_attrs - free a workqueue_attrs
3092 * @attrs: workqueue_attrs to free
226223ab 3093 *
6ba94429 3094 * Undo alloc_workqueue_attrs().
226223ab 3095 */
6ba94429 3096void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3097{
6ba94429
FW
3098 if (attrs) {
3099 free_cpumask_var(attrs->cpumask);
3100 kfree(attrs);
3101 }
226223ab
TH
3102}
3103
6ba94429
FW
3104/**
3105 * alloc_workqueue_attrs - allocate a workqueue_attrs
3106 * @gfp_mask: allocation mask to use
3107 *
3108 * Allocate a new workqueue_attrs, initialize with default settings and
3109 * return it.
3110 *
3111 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3112 */
3113struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3114{
6ba94429 3115 struct workqueue_attrs *attrs;
226223ab 3116
6ba94429
FW
3117 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3118 if (!attrs)
3119 goto fail;
3120 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3121 goto fail;
3122
3123 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3124 return attrs;
3125fail:
3126 free_workqueue_attrs(attrs);
3127 return NULL;
226223ab
TH
3128}
3129
6ba94429
FW
3130static void copy_workqueue_attrs(struct workqueue_attrs *to,
3131 const struct workqueue_attrs *from)
226223ab 3132{
6ba94429
FW
3133 to->nice = from->nice;
3134 cpumask_copy(to->cpumask, from->cpumask);
3135 /*
3136 * Unlike hash and equality test, this function doesn't ignore
3137 * ->no_numa as it is used for both pool and wq attrs. Instead,
3138 * get_unbound_pool() explicitly clears ->no_numa after copying.
3139 */
3140 to->no_numa = from->no_numa;
226223ab
TH
3141}
3142
6ba94429
FW
3143/* hash value of the content of @attr */
3144static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3145{
6ba94429 3146 u32 hash = 0;
226223ab 3147
6ba94429
FW
3148 hash = jhash_1word(attrs->nice, hash);
3149 hash = jhash(cpumask_bits(attrs->cpumask),
3150 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3151 return hash;
226223ab 3152}
226223ab 3153
6ba94429
FW
3154/* content equality test */
3155static bool wqattrs_equal(const struct workqueue_attrs *a,
3156 const struct workqueue_attrs *b)
226223ab 3157{
6ba94429
FW
3158 if (a->nice != b->nice)
3159 return false;
3160 if (!cpumask_equal(a->cpumask, b->cpumask))
3161 return false;
3162 return true;
226223ab
TH
3163}
3164
6ba94429
FW
3165/**
3166 * init_worker_pool - initialize a newly zalloc'd worker_pool
3167 * @pool: worker_pool to initialize
3168 *
402dd89d 3169 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3170 *
3171 * Return: 0 on success, -errno on failure. Even on failure, all fields
3172 * inside @pool proper are initialized and put_unbound_pool() can be called
3173 * on @pool safely to release it.
3174 */
3175static int init_worker_pool(struct worker_pool *pool)
226223ab 3176{
6ba94429
FW
3177 spin_lock_init(&pool->lock);
3178 pool->id = -1;
3179 pool->cpu = -1;
3180 pool->node = NUMA_NO_NODE;
3181 pool->flags |= POOL_DISASSOCIATED;
82607adc 3182 pool->watchdog_ts = jiffies;
6ba94429
FW
3183 INIT_LIST_HEAD(&pool->worklist);
3184 INIT_LIST_HEAD(&pool->idle_list);
3185 hash_init(pool->busy_hash);
226223ab 3186
6ba94429
FW
3187 init_timer_deferrable(&pool->idle_timer);
3188 pool->idle_timer.function = idle_worker_timeout;
3189 pool->idle_timer.data = (unsigned long)pool;
226223ab 3190
6ba94429
FW
3191 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3192 (unsigned long)pool);
226223ab 3193
6ba94429
FW
3194 mutex_init(&pool->manager_arb);
3195 mutex_init(&pool->attach_mutex);
3196 INIT_LIST_HEAD(&pool->workers);
226223ab 3197
6ba94429
FW
3198 ida_init(&pool->worker_ida);
3199 INIT_HLIST_NODE(&pool->hash_node);
3200 pool->refcnt = 1;
226223ab 3201
6ba94429
FW
3202 /* shouldn't fail above this point */
3203 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3204 if (!pool->attrs)
3205 return -ENOMEM;
3206 return 0;
226223ab
TH
3207}
3208
6ba94429 3209static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3210{
6ba94429
FW
3211 struct workqueue_struct *wq =
3212 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3213
6ba94429
FW
3214 if (!(wq->flags & WQ_UNBOUND))
3215 free_percpu(wq->cpu_pwqs);
226223ab 3216 else
6ba94429 3217 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3218
6ba94429
FW
3219 kfree(wq->rescuer);
3220 kfree(wq);
226223ab
TH
3221}
3222
6ba94429 3223static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3224{
6ba94429 3225 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3226
6ba94429
FW
3227 ida_destroy(&pool->worker_ida);
3228 free_workqueue_attrs(pool->attrs);
3229 kfree(pool);
226223ab
TH
3230}
3231
6ba94429
FW
3232/**
3233 * put_unbound_pool - put a worker_pool
3234 * @pool: worker_pool to put
3235 *
3236 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3237 * safe manner. get_unbound_pool() calls this function on its failure path
3238 * and this function should be able to release pools which went through,
3239 * successfully or not, init_worker_pool().
3240 *
3241 * Should be called with wq_pool_mutex held.
3242 */
3243static void put_unbound_pool(struct worker_pool *pool)
226223ab 3244{
6ba94429
FW
3245 DECLARE_COMPLETION_ONSTACK(detach_completion);
3246 struct worker *worker;
226223ab 3247
6ba94429 3248 lockdep_assert_held(&wq_pool_mutex);
226223ab 3249
6ba94429
FW
3250 if (--pool->refcnt)
3251 return;
226223ab 3252
6ba94429
FW
3253 /* sanity checks */
3254 if (WARN_ON(!(pool->cpu < 0)) ||
3255 WARN_ON(!list_empty(&pool->worklist)))
3256 return;
226223ab 3257
6ba94429
FW
3258 /* release id and unhash */
3259 if (pool->id >= 0)
3260 idr_remove(&worker_pool_idr, pool->id);
3261 hash_del(&pool->hash_node);
d55262c4 3262
6ba94429
FW
3263 /*
3264 * Become the manager and destroy all workers. Grabbing
3265 * manager_arb prevents @pool's workers from blocking on
3266 * attach_mutex.
3267 */
3268 mutex_lock(&pool->manager_arb);
d55262c4 3269
6ba94429
FW
3270 spin_lock_irq(&pool->lock);
3271 while ((worker = first_idle_worker(pool)))
3272 destroy_worker(worker);
3273 WARN_ON(pool->nr_workers || pool->nr_idle);
3274 spin_unlock_irq(&pool->lock);
d55262c4 3275
6ba94429
FW
3276 mutex_lock(&pool->attach_mutex);
3277 if (!list_empty(&pool->workers))
3278 pool->detach_completion = &detach_completion;
3279 mutex_unlock(&pool->attach_mutex);
226223ab 3280
6ba94429
FW
3281 if (pool->detach_completion)
3282 wait_for_completion(pool->detach_completion);
226223ab 3283
6ba94429 3284 mutex_unlock(&pool->manager_arb);
226223ab 3285
6ba94429
FW
3286 /* shut down the timers */
3287 del_timer_sync(&pool->idle_timer);
3288 del_timer_sync(&pool->mayday_timer);
226223ab 3289
6ba94429
FW
3290 /* sched-RCU protected to allow dereferences from get_work_pool() */
3291 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3292}
3293
3294/**
6ba94429
FW
3295 * get_unbound_pool - get a worker_pool with the specified attributes
3296 * @attrs: the attributes of the worker_pool to get
226223ab 3297 *
6ba94429
FW
3298 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3299 * reference count and return it. If there already is a matching
3300 * worker_pool, it will be used; otherwise, this function attempts to
3301 * create a new one.
226223ab 3302 *
6ba94429 3303 * Should be called with wq_pool_mutex held.
226223ab 3304 *
6ba94429
FW
3305 * Return: On success, a worker_pool with the same attributes as @attrs.
3306 * On failure, %NULL.
226223ab 3307 */
6ba94429 3308static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3309{
6ba94429
FW
3310 u32 hash = wqattrs_hash(attrs);
3311 struct worker_pool *pool;
3312 int node;
e2273584 3313 int target_node = NUMA_NO_NODE;
226223ab 3314
6ba94429 3315 lockdep_assert_held(&wq_pool_mutex);
226223ab 3316
6ba94429
FW
3317 /* do we already have a matching pool? */
3318 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3319 if (wqattrs_equal(pool->attrs, attrs)) {
3320 pool->refcnt++;
3321 return pool;
3322 }
3323 }
226223ab 3324
e2273584
XP
3325 /* if cpumask is contained inside a NUMA node, we belong to that node */
3326 if (wq_numa_enabled) {
3327 for_each_node(node) {
3328 if (cpumask_subset(attrs->cpumask,
3329 wq_numa_possible_cpumask[node])) {
3330 target_node = node;
3331 break;
3332 }
3333 }
3334 }
3335
6ba94429 3336 /* nope, create a new one */
e2273584 3337 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3338 if (!pool || init_worker_pool(pool) < 0)
3339 goto fail;
3340
3341 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3342 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3343 pool->node = target_node;
226223ab
TH
3344
3345 /*
6ba94429
FW
3346 * no_numa isn't a worker_pool attribute, always clear it. See
3347 * 'struct workqueue_attrs' comments for detail.
226223ab 3348 */
6ba94429 3349 pool->attrs->no_numa = false;
226223ab 3350
6ba94429
FW
3351 if (worker_pool_assign_id(pool) < 0)
3352 goto fail;
226223ab 3353
6ba94429
FW
3354 /* create and start the initial worker */
3355 if (!create_worker(pool))
3356 goto fail;
226223ab 3357
6ba94429
FW
3358 /* install */
3359 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3360
6ba94429
FW
3361 return pool;
3362fail:
3363 if (pool)
3364 put_unbound_pool(pool);
3365 return NULL;
226223ab 3366}
226223ab 3367
6ba94429 3368static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3369{
6ba94429
FW
3370 kmem_cache_free(pwq_cache,
3371 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3372}
3373
6ba94429
FW
3374/*
3375 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3376 * and needs to be destroyed.
7a4e344c 3377 */
6ba94429 3378static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3379{
6ba94429
FW
3380 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3381 unbound_release_work);
3382 struct workqueue_struct *wq = pwq->wq;
3383 struct worker_pool *pool = pwq->pool;
3384 bool is_last;
7a4e344c 3385
6ba94429
FW
3386 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3387 return;
7a4e344c 3388
6ba94429
FW
3389 mutex_lock(&wq->mutex);
3390 list_del_rcu(&pwq->pwqs_node);
3391 is_last = list_empty(&wq->pwqs);
3392 mutex_unlock(&wq->mutex);
3393
3394 mutex_lock(&wq_pool_mutex);
3395 put_unbound_pool(pool);
3396 mutex_unlock(&wq_pool_mutex);
3397
3398 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3399
2865a8fb 3400 /*
6ba94429
FW
3401 * If we're the last pwq going away, @wq is already dead and no one
3402 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3403 */
6ba94429
FW
3404 if (is_last)
3405 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3406}
3407
7a4e344c 3408/**
6ba94429
FW
3409 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3410 * @pwq: target pool_workqueue
d185af30 3411 *
6ba94429
FW
3412 * If @pwq isn't freezing, set @pwq->max_active to the associated
3413 * workqueue's saved_max_active and activate delayed work items
3414 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3415 */
6ba94429 3416static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3417{
6ba94429
FW
3418 struct workqueue_struct *wq = pwq->wq;
3419 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3420
6ba94429
FW
3421 /* for @wq->saved_max_active */
3422 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3423
6ba94429
FW
3424 /* fast exit for non-freezable wqs */
3425 if (!freezable && pwq->max_active == wq->saved_max_active)
3426 return;
7a4e344c 3427
6ba94429 3428 spin_lock_irq(&pwq->pool->lock);
29c91e99 3429
6ba94429
FW
3430 /*
3431 * During [un]freezing, the caller is responsible for ensuring that
3432 * this function is called at least once after @workqueue_freezing
3433 * is updated and visible.
3434 */
3435 if (!freezable || !workqueue_freezing) {
3436 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3437
6ba94429
FW
3438 while (!list_empty(&pwq->delayed_works) &&
3439 pwq->nr_active < pwq->max_active)
3440 pwq_activate_first_delayed(pwq);
e2dca7ad 3441
6ba94429
FW
3442 /*
3443 * Need to kick a worker after thawed or an unbound wq's
3444 * max_active is bumped. It's a slow path. Do it always.
3445 */
3446 wake_up_worker(pwq->pool);
3447 } else {
3448 pwq->max_active = 0;
3449 }
e2dca7ad 3450
6ba94429 3451 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3452}
3453
6ba94429
FW
3454/* initialize newly alloced @pwq which is associated with @wq and @pool */
3455static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3456 struct worker_pool *pool)
29c91e99 3457{
6ba94429 3458 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3459
6ba94429
FW
3460 memset(pwq, 0, sizeof(*pwq));
3461
3462 pwq->pool = pool;
3463 pwq->wq = wq;
3464 pwq->flush_color = -1;
3465 pwq->refcnt = 1;
3466 INIT_LIST_HEAD(&pwq->delayed_works);
3467 INIT_LIST_HEAD(&pwq->pwqs_node);
3468 INIT_LIST_HEAD(&pwq->mayday_node);
3469 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3470}
3471
6ba94429
FW
3472/* sync @pwq with the current state of its associated wq and link it */
3473static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3474{
6ba94429 3475 struct workqueue_struct *wq = pwq->wq;
29c91e99 3476
6ba94429 3477 lockdep_assert_held(&wq->mutex);
a892cacc 3478
6ba94429
FW
3479 /* may be called multiple times, ignore if already linked */
3480 if (!list_empty(&pwq->pwqs_node))
29c91e99 3481 return;
29c91e99 3482
6ba94429
FW
3483 /* set the matching work_color */
3484 pwq->work_color = wq->work_color;
29c91e99 3485
6ba94429
FW
3486 /* sync max_active to the current setting */
3487 pwq_adjust_max_active(pwq);
29c91e99 3488
6ba94429
FW
3489 /* link in @pwq */
3490 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3491}
29c91e99 3492
6ba94429
FW
3493/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3494static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3495 const struct workqueue_attrs *attrs)
3496{
3497 struct worker_pool *pool;
3498 struct pool_workqueue *pwq;
60f5a4bc 3499
6ba94429 3500 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3501
6ba94429
FW
3502 pool = get_unbound_pool(attrs);
3503 if (!pool)
3504 return NULL;
60f5a4bc 3505
6ba94429
FW
3506 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3507 if (!pwq) {
3508 put_unbound_pool(pool);
3509 return NULL;
3510 }
29c91e99 3511
6ba94429
FW
3512 init_pwq(pwq, wq, pool);
3513 return pwq;
3514}
29c91e99 3515
29c91e99 3516/**
30186c6f 3517 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3518 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3519 * @node: the target NUMA node
3520 * @cpu_going_down: if >= 0, the CPU to consider as offline
3521 * @cpumask: outarg, the resulting cpumask
29c91e99 3522 *
6ba94429
FW
3523 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3524 * @cpu_going_down is >= 0, that cpu is considered offline during
3525 * calculation. The result is stored in @cpumask.
a892cacc 3526 *
6ba94429
FW
3527 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3528 * enabled and @node has online CPUs requested by @attrs, the returned
3529 * cpumask is the intersection of the possible CPUs of @node and
3530 * @attrs->cpumask.
d185af30 3531 *
6ba94429
FW
3532 * The caller is responsible for ensuring that the cpumask of @node stays
3533 * stable.
3534 *
3535 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3536 * %false if equal.
29c91e99 3537 */
6ba94429
FW
3538static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3539 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3540{
6ba94429
FW
3541 if (!wq_numa_enabled || attrs->no_numa)
3542 goto use_dfl;
29c91e99 3543
6ba94429
FW
3544 /* does @node have any online CPUs @attrs wants? */
3545 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3546 if (cpu_going_down >= 0)
3547 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3548
6ba94429
FW
3549 if (cpumask_empty(cpumask))
3550 goto use_dfl;
4c16bd32
TH
3551
3552 /* yeap, return possible CPUs in @node that @attrs wants */
3553 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3554 return !cpumask_equal(cpumask, attrs->cpumask);
3555
3556use_dfl:
3557 cpumask_copy(cpumask, attrs->cpumask);
3558 return false;
3559}
3560
1befcf30
TH
3561/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3562static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3563 int node,
3564 struct pool_workqueue *pwq)
3565{
3566 struct pool_workqueue *old_pwq;
3567
5b95e1af 3568 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3569 lockdep_assert_held(&wq->mutex);
3570
3571 /* link_pwq() can handle duplicate calls */
3572 link_pwq(pwq);
3573
3574 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3575 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3576 return old_pwq;
3577}
3578
2d5f0764
LJ
3579/* context to store the prepared attrs & pwqs before applying */
3580struct apply_wqattrs_ctx {
3581 struct workqueue_struct *wq; /* target workqueue */
3582 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3583 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3584 struct pool_workqueue *dfl_pwq;
3585 struct pool_workqueue *pwq_tbl[];
3586};
3587
3588/* free the resources after success or abort */
3589static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3590{
3591 if (ctx) {
3592 int node;
3593
3594 for_each_node(node)
3595 put_pwq_unlocked(ctx->pwq_tbl[node]);
3596 put_pwq_unlocked(ctx->dfl_pwq);
3597
3598 free_workqueue_attrs(ctx->attrs);
3599
3600 kfree(ctx);
3601 }
3602}
3603
3604/* allocate the attrs and pwqs for later installation */
3605static struct apply_wqattrs_ctx *
3606apply_wqattrs_prepare(struct workqueue_struct *wq,
3607 const struct workqueue_attrs *attrs)
9e8cd2f5 3608{
2d5f0764 3609 struct apply_wqattrs_ctx *ctx;
4c16bd32 3610 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3611 int node;
9e8cd2f5 3612
2d5f0764 3613 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3614
2d5f0764
LJ
3615 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3616 GFP_KERNEL);
8719dcea 3617
13e2e556 3618 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3619 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3620 if (!ctx || !new_attrs || !tmp_attrs)
3621 goto out_free;
13e2e556 3622
042f7df1
LJ
3623 /*
3624 * Calculate the attrs of the default pwq.
3625 * If the user configured cpumask doesn't overlap with the
3626 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3627 */
13e2e556 3628 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3629 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3630 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3631 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3632
4c16bd32
TH
3633 /*
3634 * We may create multiple pwqs with differing cpumasks. Make a
3635 * copy of @new_attrs which will be modified and used to obtain
3636 * pools.
3637 */
3638 copy_workqueue_attrs(tmp_attrs, new_attrs);
3639
4c16bd32
TH
3640 /*
3641 * If something goes wrong during CPU up/down, we'll fall back to
3642 * the default pwq covering whole @attrs->cpumask. Always create
3643 * it even if we don't use it immediately.
3644 */
2d5f0764
LJ
3645 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3646 if (!ctx->dfl_pwq)
3647 goto out_free;
4c16bd32
TH
3648
3649 for_each_node(node) {
042f7df1 3650 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3651 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3652 if (!ctx->pwq_tbl[node])
3653 goto out_free;
4c16bd32 3654 } else {
2d5f0764
LJ
3655 ctx->dfl_pwq->refcnt++;
3656 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3657 }
3658 }
3659
042f7df1
LJ
3660 /* save the user configured attrs and sanitize it. */
3661 copy_workqueue_attrs(new_attrs, attrs);
3662 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3663 ctx->attrs = new_attrs;
042f7df1 3664
2d5f0764
LJ
3665 ctx->wq = wq;
3666 free_workqueue_attrs(tmp_attrs);
3667 return ctx;
3668
3669out_free:
3670 free_workqueue_attrs(tmp_attrs);
3671 free_workqueue_attrs(new_attrs);
3672 apply_wqattrs_cleanup(ctx);
3673 return NULL;
3674}
3675
3676/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3677static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3678{
3679 int node;
9e8cd2f5 3680
4c16bd32 3681 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3682 mutex_lock(&ctx->wq->mutex);
a892cacc 3683
2d5f0764 3684 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3685
3686 /* save the previous pwq and install the new one */
f147f29e 3687 for_each_node(node)
2d5f0764
LJ
3688 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3689 ctx->pwq_tbl[node]);
4c16bd32
TH
3690
3691 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3692 link_pwq(ctx->dfl_pwq);
3693 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3694
2d5f0764
LJ
3695 mutex_unlock(&ctx->wq->mutex);
3696}
9e8cd2f5 3697
a0111cf6
LJ
3698static void apply_wqattrs_lock(void)
3699{
3700 /* CPUs should stay stable across pwq creations and installations */
3701 get_online_cpus();
3702 mutex_lock(&wq_pool_mutex);
3703}
3704
3705static void apply_wqattrs_unlock(void)
3706{
3707 mutex_unlock(&wq_pool_mutex);
3708 put_online_cpus();
3709}
3710
3711static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3712 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3713{
3714 struct apply_wqattrs_ctx *ctx;
4c16bd32 3715
2d5f0764
LJ
3716 /* only unbound workqueues can change attributes */
3717 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3718 return -EINVAL;
13e2e556 3719
2d5f0764
LJ
3720 /* creating multiple pwqs breaks ordering guarantee */
3721 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3722 return -EINVAL;
3723
2d5f0764 3724 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3725 if (!ctx)
3726 return -ENOMEM;
2d5f0764
LJ
3727
3728 /* the ctx has been prepared successfully, let's commit it */
6201171e 3729 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3730 apply_wqattrs_cleanup(ctx);
3731
6201171e 3732 return 0;
9e8cd2f5
TH
3733}
3734
a0111cf6
LJ
3735/**
3736 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3737 * @wq: the target workqueue
3738 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3739 *
3740 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3741 * machines, this function maps a separate pwq to each NUMA node with
3742 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3743 * NUMA node it was issued on. Older pwqs are released as in-flight work
3744 * items finish. Note that a work item which repeatedly requeues itself
3745 * back-to-back will stay on its current pwq.
3746 *
3747 * Performs GFP_KERNEL allocations.
3748 *
3749 * Return: 0 on success and -errno on failure.
3750 */
3751int apply_workqueue_attrs(struct workqueue_struct *wq,
3752 const struct workqueue_attrs *attrs)
3753{
3754 int ret;
3755
3756 apply_wqattrs_lock();
3757 ret = apply_workqueue_attrs_locked(wq, attrs);
3758 apply_wqattrs_unlock();
3759
3760 return ret;
3761}
3762
4c16bd32
TH
3763/**
3764 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3765 * @wq: the target workqueue
3766 * @cpu: the CPU coming up or going down
3767 * @online: whether @cpu is coming up or going down
3768 *
3769 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3770 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3771 * @wq accordingly.
3772 *
3773 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3774 * falls back to @wq->dfl_pwq which may not be optimal but is always
3775 * correct.
3776 *
3777 * Note that when the last allowed CPU of a NUMA node goes offline for a
3778 * workqueue with a cpumask spanning multiple nodes, the workers which were
3779 * already executing the work items for the workqueue will lose their CPU
3780 * affinity and may execute on any CPU. This is similar to how per-cpu
3781 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3782 * affinity, it's the user's responsibility to flush the work item from
3783 * CPU_DOWN_PREPARE.
3784 */
3785static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3786 bool online)
3787{
3788 int node = cpu_to_node(cpu);
3789 int cpu_off = online ? -1 : cpu;
3790 struct pool_workqueue *old_pwq = NULL, *pwq;
3791 struct workqueue_attrs *target_attrs;
3792 cpumask_t *cpumask;
3793
3794 lockdep_assert_held(&wq_pool_mutex);
3795
f7142ed4
LJ
3796 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3797 wq->unbound_attrs->no_numa)
4c16bd32
TH
3798 return;
3799
3800 /*
3801 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3802 * Let's use a preallocated one. The following buf is protected by
3803 * CPU hotplug exclusion.
3804 */
3805 target_attrs = wq_update_unbound_numa_attrs_buf;
3806 cpumask = target_attrs->cpumask;
3807
4c16bd32
TH
3808 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3809 pwq = unbound_pwq_by_node(wq, node);
3810
3811 /*
3812 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3813 * different from the default pwq's, we need to compare it to @pwq's
3814 * and create a new one if they don't match. If the target cpumask
3815 * equals the default pwq's, the default pwq should be used.
4c16bd32 3816 */
042f7df1 3817 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3818 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3819 return;
4c16bd32 3820 } else {
534a3fbb 3821 goto use_dfl_pwq;
4c16bd32
TH
3822 }
3823
4c16bd32
TH
3824 /* create a new pwq */
3825 pwq = alloc_unbound_pwq(wq, target_attrs);
3826 if (!pwq) {
2d916033
FF
3827 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3828 wq->name);
77f300b1 3829 goto use_dfl_pwq;
4c16bd32
TH
3830 }
3831
f7142ed4 3832 /* Install the new pwq. */
4c16bd32
TH
3833 mutex_lock(&wq->mutex);
3834 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3835 goto out_unlock;
3836
3837use_dfl_pwq:
f7142ed4 3838 mutex_lock(&wq->mutex);
4c16bd32
TH
3839 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3840 get_pwq(wq->dfl_pwq);
3841 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3842 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3843out_unlock:
3844 mutex_unlock(&wq->mutex);
3845 put_pwq_unlocked(old_pwq);
3846}
3847
30cdf249 3848static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3849{
49e3cf44 3850 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3851 int cpu, ret;
30cdf249
TH
3852
3853 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3854 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3855 if (!wq->cpu_pwqs)
30cdf249
TH
3856 return -ENOMEM;
3857
3858 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3859 struct pool_workqueue *pwq =
3860 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3861 struct worker_pool *cpu_pools =
f02ae73a 3862 per_cpu(cpu_worker_pools, cpu);
f3421797 3863
f147f29e
TH
3864 init_pwq(pwq, wq, &cpu_pools[highpri]);
3865
3866 mutex_lock(&wq->mutex);
1befcf30 3867 link_pwq(pwq);
f147f29e 3868 mutex_unlock(&wq->mutex);
30cdf249 3869 }
9e8cd2f5 3870 return 0;
8a2b7538
TH
3871 } else if (wq->flags & __WQ_ORDERED) {
3872 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3873 /* there should only be single pwq for ordering guarantee */
3874 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3875 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3876 "ordering guarantee broken for workqueue %s\n", wq->name);
3877 return ret;
30cdf249 3878 } else {
9e8cd2f5 3879 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3880 }
0f900049
TH
3881}
3882
f3421797
TH
3883static int wq_clamp_max_active(int max_active, unsigned int flags,
3884 const char *name)
b71ab8c2 3885{
f3421797
TH
3886 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3887
3888 if (max_active < 1 || max_active > lim)
044c782c
VI
3889 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3890 max_active, name, 1, lim);
b71ab8c2 3891
f3421797 3892 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3893}
3894
b196be89 3895struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3896 unsigned int flags,
3897 int max_active,
3898 struct lock_class_key *key,
b196be89 3899 const char *lock_name, ...)
1da177e4 3900{
df2d5ae4 3901 size_t tbl_size = 0;
ecf6881f 3902 va_list args;
1da177e4 3903 struct workqueue_struct *wq;
49e3cf44 3904 struct pool_workqueue *pwq;
b196be89 3905
cee22a15
VK
3906 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3907 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3908 flags |= WQ_UNBOUND;
3909
ecf6881f 3910 /* allocate wq and format name */
df2d5ae4 3911 if (flags & WQ_UNBOUND)
ddcb57e2 3912 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3913
3914 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3915 if (!wq)
d2c1d404 3916 return NULL;
b196be89 3917
6029a918
TH
3918 if (flags & WQ_UNBOUND) {
3919 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3920 if (!wq->unbound_attrs)
3921 goto err_free_wq;
3922 }
3923
ecf6881f
TH
3924 va_start(args, lock_name);
3925 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3926 va_end(args);
1da177e4 3927
d320c038 3928 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3929 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3930
b196be89 3931 /* init wq */
97e37d7b 3932 wq->flags = flags;
a0a1a5fd 3933 wq->saved_max_active = max_active;
3c25a55d 3934 mutex_init(&wq->mutex);
112202d9 3935 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3936 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3937 INIT_LIST_HEAD(&wq->flusher_queue);
3938 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3939 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3940
eb13ba87 3941 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3942 INIT_LIST_HEAD(&wq->list);
3af24433 3943
30cdf249 3944 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3945 goto err_free_wq;
1537663f 3946
493008a8
TH
3947 /*
3948 * Workqueues which may be used during memory reclaim should
3949 * have a rescuer to guarantee forward progress.
3950 */
3951 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3952 struct worker *rescuer;
3953
f7537df5 3954 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3955 if (!rescuer)
d2c1d404 3956 goto err_destroy;
e22bee78 3957
111c225a
TH
3958 rescuer->rescue_wq = wq;
3959 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3960 wq->name);
d2c1d404
TH
3961 if (IS_ERR(rescuer->task)) {
3962 kfree(rescuer);
3963 goto err_destroy;
3964 }
e22bee78 3965
d2c1d404 3966 wq->rescuer = rescuer;
25834c73 3967 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3968 wake_up_process(rescuer->task);
3af24433
ON
3969 }
3970
226223ab
TH
3971 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3972 goto err_destroy;
3973
a0a1a5fd 3974 /*
68e13a67
LJ
3975 * wq_pool_mutex protects global freeze state and workqueues list.
3976 * Grab it, adjust max_active and add the new @wq to workqueues
3977 * list.
a0a1a5fd 3978 */
68e13a67 3979 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3980
a357fc03 3981 mutex_lock(&wq->mutex);
699ce097
TH
3982 for_each_pwq(pwq, wq)
3983 pwq_adjust_max_active(pwq);
a357fc03 3984 mutex_unlock(&wq->mutex);
a0a1a5fd 3985
e2dca7ad 3986 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3987
68e13a67 3988 mutex_unlock(&wq_pool_mutex);
1537663f 3989
3af24433 3990 return wq;
d2c1d404
TH
3991
3992err_free_wq:
6029a918 3993 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3994 kfree(wq);
3995 return NULL;
3996err_destroy:
3997 destroy_workqueue(wq);
4690c4ab 3998 return NULL;
3af24433 3999}
d320c038 4000EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4001
3af24433
ON
4002/**
4003 * destroy_workqueue - safely terminate a workqueue
4004 * @wq: target workqueue
4005 *
4006 * Safely destroy a workqueue. All work currently pending will be done first.
4007 */
4008void destroy_workqueue(struct workqueue_struct *wq)
4009{
49e3cf44 4010 struct pool_workqueue *pwq;
4c16bd32 4011 int node;
3af24433 4012
9c5a2ba7
TH
4013 /* drain it before proceeding with destruction */
4014 drain_workqueue(wq);
c8efcc25 4015
6183c009 4016 /* sanity checks */
b09f4fd3 4017 mutex_lock(&wq->mutex);
49e3cf44 4018 for_each_pwq(pwq, wq) {
6183c009
TH
4019 int i;
4020
76af4d93
TH
4021 for (i = 0; i < WORK_NR_COLORS; i++) {
4022 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4023 mutex_unlock(&wq->mutex);
6183c009 4024 return;
76af4d93
TH
4025 }
4026 }
4027
5c529597 4028 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4029 WARN_ON(pwq->nr_active) ||
76af4d93 4030 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4031 mutex_unlock(&wq->mutex);
6183c009 4032 return;
76af4d93 4033 }
6183c009 4034 }
b09f4fd3 4035 mutex_unlock(&wq->mutex);
6183c009 4036
a0a1a5fd
TH
4037 /*
4038 * wq list is used to freeze wq, remove from list after
4039 * flushing is complete in case freeze races us.
4040 */
68e13a67 4041 mutex_lock(&wq_pool_mutex);
e2dca7ad 4042 list_del_rcu(&wq->list);
68e13a67 4043 mutex_unlock(&wq_pool_mutex);
3af24433 4044
226223ab
TH
4045 workqueue_sysfs_unregister(wq);
4046
e2dca7ad 4047 if (wq->rescuer)
e22bee78 4048 kthread_stop(wq->rescuer->task);
e22bee78 4049
8864b4e5
TH
4050 if (!(wq->flags & WQ_UNBOUND)) {
4051 /*
4052 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4053 * schedule RCU free.
8864b4e5 4054 */
e2dca7ad 4055 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4056 } else {
4057 /*
4058 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4059 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4060 * @wq will be freed when the last pwq is released.
8864b4e5 4061 */
4c16bd32
TH
4062 for_each_node(node) {
4063 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4064 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4065 put_pwq_unlocked(pwq);
4066 }
4067
4068 /*
4069 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4070 * put. Don't access it afterwards.
4071 */
4072 pwq = wq->dfl_pwq;
4073 wq->dfl_pwq = NULL;
dce90d47 4074 put_pwq_unlocked(pwq);
29c91e99 4075 }
3af24433
ON
4076}
4077EXPORT_SYMBOL_GPL(destroy_workqueue);
4078
dcd989cb
TH
4079/**
4080 * workqueue_set_max_active - adjust max_active of a workqueue
4081 * @wq: target workqueue
4082 * @max_active: new max_active value.
4083 *
4084 * Set max_active of @wq to @max_active.
4085 *
4086 * CONTEXT:
4087 * Don't call from IRQ context.
4088 */
4089void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4090{
49e3cf44 4091 struct pool_workqueue *pwq;
dcd989cb 4092
8719dcea
TH
4093 /* disallow meddling with max_active for ordered workqueues */
4094 if (WARN_ON(wq->flags & __WQ_ORDERED))
4095 return;
4096
f3421797 4097 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4098
a357fc03 4099 mutex_lock(&wq->mutex);
dcd989cb
TH
4100
4101 wq->saved_max_active = max_active;
4102
699ce097
TH
4103 for_each_pwq(pwq, wq)
4104 pwq_adjust_max_active(pwq);
93981800 4105
a357fc03 4106 mutex_unlock(&wq->mutex);
15316ba8 4107}
dcd989cb 4108EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4109
e6267616
TH
4110/**
4111 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4112 *
4113 * Determine whether %current is a workqueue rescuer. Can be used from
4114 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4115 *
4116 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4117 */
4118bool current_is_workqueue_rescuer(void)
4119{
4120 struct worker *worker = current_wq_worker();
4121
6a092dfd 4122 return worker && worker->rescue_wq;
e6267616
TH
4123}
4124
eef6a7d5 4125/**
dcd989cb
TH
4126 * workqueue_congested - test whether a workqueue is congested
4127 * @cpu: CPU in question
4128 * @wq: target workqueue
eef6a7d5 4129 *
dcd989cb
TH
4130 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4131 * no synchronization around this function and the test result is
4132 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4133 *
d3251859
TH
4134 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4135 * Note that both per-cpu and unbound workqueues may be associated with
4136 * multiple pool_workqueues which have separate congested states. A
4137 * workqueue being congested on one CPU doesn't mean the workqueue is also
4138 * contested on other CPUs / NUMA nodes.
4139 *
d185af30 4140 * Return:
dcd989cb 4141 * %true if congested, %false otherwise.
eef6a7d5 4142 */
d84ff051 4143bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4144{
7fb98ea7 4145 struct pool_workqueue *pwq;
76af4d93
TH
4146 bool ret;
4147
88109453 4148 rcu_read_lock_sched();
7fb98ea7 4149
d3251859
TH
4150 if (cpu == WORK_CPU_UNBOUND)
4151 cpu = smp_processor_id();
4152
7fb98ea7
TH
4153 if (!(wq->flags & WQ_UNBOUND))
4154 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4155 else
df2d5ae4 4156 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4157
76af4d93 4158 ret = !list_empty(&pwq->delayed_works);
88109453 4159 rcu_read_unlock_sched();
76af4d93
TH
4160
4161 return ret;
1da177e4 4162}
dcd989cb 4163EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4164
dcd989cb
TH
4165/**
4166 * work_busy - test whether a work is currently pending or running
4167 * @work: the work to be tested
4168 *
4169 * Test whether @work is currently pending or running. There is no
4170 * synchronization around this function and the test result is
4171 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4172 *
d185af30 4173 * Return:
dcd989cb
TH
4174 * OR'd bitmask of WORK_BUSY_* bits.
4175 */
4176unsigned int work_busy(struct work_struct *work)
1da177e4 4177{
fa1b54e6 4178 struct worker_pool *pool;
dcd989cb
TH
4179 unsigned long flags;
4180 unsigned int ret = 0;
1da177e4 4181
dcd989cb
TH
4182 if (work_pending(work))
4183 ret |= WORK_BUSY_PENDING;
1da177e4 4184
fa1b54e6
TH
4185 local_irq_save(flags);
4186 pool = get_work_pool(work);
038366c5 4187 if (pool) {
fa1b54e6 4188 spin_lock(&pool->lock);
038366c5
LJ
4189 if (find_worker_executing_work(pool, work))
4190 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4191 spin_unlock(&pool->lock);
038366c5 4192 }
fa1b54e6 4193 local_irq_restore(flags);
1da177e4 4194
dcd989cb 4195 return ret;
1da177e4 4196}
dcd989cb 4197EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4198
3d1cb205
TH
4199/**
4200 * set_worker_desc - set description for the current work item
4201 * @fmt: printf-style format string
4202 * @...: arguments for the format string
4203 *
4204 * This function can be called by a running work function to describe what
4205 * the work item is about. If the worker task gets dumped, this
4206 * information will be printed out together to help debugging. The
4207 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4208 */
4209void set_worker_desc(const char *fmt, ...)
4210{
4211 struct worker *worker = current_wq_worker();
4212 va_list args;
4213
4214 if (worker) {
4215 va_start(args, fmt);
4216 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4217 va_end(args);
4218 worker->desc_valid = true;
4219 }
4220}
4221
4222/**
4223 * print_worker_info - print out worker information and description
4224 * @log_lvl: the log level to use when printing
4225 * @task: target task
4226 *
4227 * If @task is a worker and currently executing a work item, print out the
4228 * name of the workqueue being serviced and worker description set with
4229 * set_worker_desc() by the currently executing work item.
4230 *
4231 * This function can be safely called on any task as long as the
4232 * task_struct itself is accessible. While safe, this function isn't
4233 * synchronized and may print out mixups or garbages of limited length.
4234 */
4235void print_worker_info(const char *log_lvl, struct task_struct *task)
4236{
4237 work_func_t *fn = NULL;
4238 char name[WQ_NAME_LEN] = { };
4239 char desc[WORKER_DESC_LEN] = { };
4240 struct pool_workqueue *pwq = NULL;
4241 struct workqueue_struct *wq = NULL;
4242 bool desc_valid = false;
4243 struct worker *worker;
4244
4245 if (!(task->flags & PF_WQ_WORKER))
4246 return;
4247
4248 /*
4249 * This function is called without any synchronization and @task
4250 * could be in any state. Be careful with dereferences.
4251 */
4252 worker = probe_kthread_data(task);
4253
4254 /*
4255 * Carefully copy the associated workqueue's workfn and name. Keep
4256 * the original last '\0' in case the original contains garbage.
4257 */
4258 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4259 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4260 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4261 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4262
4263 /* copy worker description */
4264 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4265 if (desc_valid)
4266 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4267
4268 if (fn || name[0] || desc[0]) {
4269 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4270 if (desc[0])
4271 pr_cont(" (%s)", desc);
4272 pr_cont("\n");
4273 }
4274}
4275
3494fc30
TH
4276static void pr_cont_pool_info(struct worker_pool *pool)
4277{
4278 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4279 if (pool->node != NUMA_NO_NODE)
4280 pr_cont(" node=%d", pool->node);
4281 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4282}
4283
4284static void pr_cont_work(bool comma, struct work_struct *work)
4285{
4286 if (work->func == wq_barrier_func) {
4287 struct wq_barrier *barr;
4288
4289 barr = container_of(work, struct wq_barrier, work);
4290
4291 pr_cont("%s BAR(%d)", comma ? "," : "",
4292 task_pid_nr(barr->task));
4293 } else {
4294 pr_cont("%s %pf", comma ? "," : "", work->func);
4295 }
4296}
4297
4298static void show_pwq(struct pool_workqueue *pwq)
4299{
4300 struct worker_pool *pool = pwq->pool;
4301 struct work_struct *work;
4302 struct worker *worker;
4303 bool has_in_flight = false, has_pending = false;
4304 int bkt;
4305
4306 pr_info(" pwq %d:", pool->id);
4307 pr_cont_pool_info(pool);
4308
4309 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4310 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4311
4312 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4313 if (worker->current_pwq == pwq) {
4314 has_in_flight = true;
4315 break;
4316 }
4317 }
4318 if (has_in_flight) {
4319 bool comma = false;
4320
4321 pr_info(" in-flight:");
4322 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4323 if (worker->current_pwq != pwq)
4324 continue;
4325
4326 pr_cont("%s %d%s:%pf", comma ? "," : "",
4327 task_pid_nr(worker->task),
4328 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4329 worker->current_func);
4330 list_for_each_entry(work, &worker->scheduled, entry)
4331 pr_cont_work(false, work);
4332 comma = true;
4333 }
4334 pr_cont("\n");
4335 }
4336
4337 list_for_each_entry(work, &pool->worklist, entry) {
4338 if (get_work_pwq(work) == pwq) {
4339 has_pending = true;
4340 break;
4341 }
4342 }
4343 if (has_pending) {
4344 bool comma = false;
4345
4346 pr_info(" pending:");
4347 list_for_each_entry(work, &pool->worklist, entry) {
4348 if (get_work_pwq(work) != pwq)
4349 continue;
4350
4351 pr_cont_work(comma, work);
4352 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4353 }
4354 pr_cont("\n");
4355 }
4356
4357 if (!list_empty(&pwq->delayed_works)) {
4358 bool comma = false;
4359
4360 pr_info(" delayed:");
4361 list_for_each_entry(work, &pwq->delayed_works, entry) {
4362 pr_cont_work(comma, work);
4363 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4364 }
4365 pr_cont("\n");
4366 }
4367}
4368
4369/**
4370 * show_workqueue_state - dump workqueue state
4371 *
4372 * Called from a sysrq handler and prints out all busy workqueues and
4373 * pools.
4374 */
4375void show_workqueue_state(void)
4376{
4377 struct workqueue_struct *wq;
4378 struct worker_pool *pool;
4379 unsigned long flags;
4380 int pi;
4381
4382 rcu_read_lock_sched();
4383
4384 pr_info("Showing busy workqueues and worker pools:\n");
4385
4386 list_for_each_entry_rcu(wq, &workqueues, list) {
4387 struct pool_workqueue *pwq;
4388 bool idle = true;
4389
4390 for_each_pwq(pwq, wq) {
4391 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4392 idle = false;
4393 break;
4394 }
4395 }
4396 if (idle)
4397 continue;
4398
4399 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4400
4401 for_each_pwq(pwq, wq) {
4402 spin_lock_irqsave(&pwq->pool->lock, flags);
4403 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4404 show_pwq(pwq);
4405 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4406 }
4407 }
4408
4409 for_each_pool(pool, pi) {
4410 struct worker *worker;
4411 bool first = true;
4412
4413 spin_lock_irqsave(&pool->lock, flags);
4414 if (pool->nr_workers == pool->nr_idle)
4415 goto next_pool;
4416
4417 pr_info("pool %d:", pool->id);
4418 pr_cont_pool_info(pool);
82607adc
TH
4419 pr_cont(" hung=%us workers=%d",
4420 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4421 pool->nr_workers);
3494fc30
TH
4422 if (pool->manager)
4423 pr_cont(" manager: %d",
4424 task_pid_nr(pool->manager->task));
4425 list_for_each_entry(worker, &pool->idle_list, entry) {
4426 pr_cont(" %s%d", first ? "idle: " : "",
4427 task_pid_nr(worker->task));
4428 first = false;
4429 }
4430 pr_cont("\n");
4431 next_pool:
4432 spin_unlock_irqrestore(&pool->lock, flags);
4433 }
4434
4435 rcu_read_unlock_sched();
4436}
4437
db7bccf4
TH
4438/*
4439 * CPU hotplug.
4440 *
e22bee78 4441 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4442 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4443 * pool which make migrating pending and scheduled works very
e22bee78 4444 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4445 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4446 * blocked draining impractical.
4447 *
24647570 4448 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4449 * running as an unbound one and allowing it to be reattached later if the
4450 * cpu comes back online.
db7bccf4 4451 */
1da177e4 4452
706026c2 4453static void wq_unbind_fn(struct work_struct *work)
3af24433 4454{
38db41d9 4455 int cpu = smp_processor_id();
4ce62e9e 4456 struct worker_pool *pool;
db7bccf4 4457 struct worker *worker;
3af24433 4458
f02ae73a 4459 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4460 mutex_lock(&pool->attach_mutex);
94cf58bb 4461 spin_lock_irq(&pool->lock);
3af24433 4462
94cf58bb 4463 /*
92f9c5c4 4464 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4465 * unbound and set DISASSOCIATED. Before this, all workers
4466 * except for the ones which are still executing works from
4467 * before the last CPU down must be on the cpu. After
4468 * this, they may become diasporas.
4469 */
da028469 4470 for_each_pool_worker(worker, pool)
c9e7cf27 4471 worker->flags |= WORKER_UNBOUND;
06ba38a9 4472
24647570 4473 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4474
94cf58bb 4475 spin_unlock_irq(&pool->lock);
92f9c5c4 4476 mutex_unlock(&pool->attach_mutex);
628c78e7 4477
eb283428
LJ
4478 /*
4479 * Call schedule() so that we cross rq->lock and thus can
4480 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4481 * This is necessary as scheduler callbacks may be invoked
4482 * from other cpus.
4483 */
4484 schedule();
06ba38a9 4485
eb283428
LJ
4486 /*
4487 * Sched callbacks are disabled now. Zap nr_running.
4488 * After this, nr_running stays zero and need_more_worker()
4489 * and keep_working() are always true as long as the
4490 * worklist is not empty. This pool now behaves as an
4491 * unbound (in terms of concurrency management) pool which
4492 * are served by workers tied to the pool.
4493 */
e19e397a 4494 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4495
4496 /*
4497 * With concurrency management just turned off, a busy
4498 * worker blocking could lead to lengthy stalls. Kick off
4499 * unbound chain execution of currently pending work items.
4500 */
4501 spin_lock_irq(&pool->lock);
4502 wake_up_worker(pool);
4503 spin_unlock_irq(&pool->lock);
4504 }
3af24433 4505}
3af24433 4506
bd7c089e
TH
4507/**
4508 * rebind_workers - rebind all workers of a pool to the associated CPU
4509 * @pool: pool of interest
4510 *
a9ab775b 4511 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4512 */
4513static void rebind_workers(struct worker_pool *pool)
4514{
a9ab775b 4515 struct worker *worker;
bd7c089e 4516
92f9c5c4 4517 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4518
a9ab775b
TH
4519 /*
4520 * Restore CPU affinity of all workers. As all idle workers should
4521 * be on the run-queue of the associated CPU before any local
402dd89d 4522 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4523 * of all workers first and then clear UNBOUND. As we're called
4524 * from CPU_ONLINE, the following shouldn't fail.
4525 */
da028469 4526 for_each_pool_worker(worker, pool)
a9ab775b
TH
4527 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4528 pool->attrs->cpumask) < 0);
bd7c089e 4529
a9ab775b 4530 spin_lock_irq(&pool->lock);
f7c17d26
WL
4531
4532 /*
4533 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4534 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4535 * being reworked and this can go away in time.
4536 */
4537 if (!(pool->flags & POOL_DISASSOCIATED)) {
4538 spin_unlock_irq(&pool->lock);
4539 return;
4540 }
4541
3de5e884 4542 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4543
da028469 4544 for_each_pool_worker(worker, pool) {
a9ab775b 4545 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4546
4547 /*
a9ab775b
TH
4548 * A bound idle worker should actually be on the runqueue
4549 * of the associated CPU for local wake-ups targeting it to
4550 * work. Kick all idle workers so that they migrate to the
4551 * associated CPU. Doing this in the same loop as
4552 * replacing UNBOUND with REBOUND is safe as no worker will
4553 * be bound before @pool->lock is released.
bd7c089e 4554 */
a9ab775b
TH
4555 if (worker_flags & WORKER_IDLE)
4556 wake_up_process(worker->task);
bd7c089e 4557
a9ab775b
TH
4558 /*
4559 * We want to clear UNBOUND but can't directly call
4560 * worker_clr_flags() or adjust nr_running. Atomically
4561 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4562 * @worker will clear REBOUND using worker_clr_flags() when
4563 * it initiates the next execution cycle thus restoring
4564 * concurrency management. Note that when or whether
4565 * @worker clears REBOUND doesn't affect correctness.
4566 *
4567 * ACCESS_ONCE() is necessary because @worker->flags may be
4568 * tested without holding any lock in
4569 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4570 * fail incorrectly leading to premature concurrency
4571 * management operations.
4572 */
4573 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4574 worker_flags |= WORKER_REBOUND;
4575 worker_flags &= ~WORKER_UNBOUND;
4576 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4577 }
a9ab775b
TH
4578
4579 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4580}
4581
7dbc725e
TH
4582/**
4583 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4584 * @pool: unbound pool of interest
4585 * @cpu: the CPU which is coming up
4586 *
4587 * An unbound pool may end up with a cpumask which doesn't have any online
4588 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4589 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4590 * online CPU before, cpus_allowed of all its workers should be restored.
4591 */
4592static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4593{
4594 static cpumask_t cpumask;
4595 struct worker *worker;
7dbc725e 4596
92f9c5c4 4597 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4598
4599 /* is @cpu allowed for @pool? */
4600 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4601 return;
4602
4603 /* is @cpu the only online CPU? */
4604 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4605 if (cpumask_weight(&cpumask) != 1)
4606 return;
4607
4608 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4609 for_each_pool_worker(worker, pool)
7dbc725e
TH
4610 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4611 pool->attrs->cpumask) < 0);
4612}
4613
8db25e78
TH
4614/*
4615 * Workqueues should be brought up before normal priority CPU notifiers.
4616 * This will be registered high priority CPU notifier.
4617 */
0db0628d 4618static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4619 unsigned long action,
4620 void *hcpu)
3af24433 4621{
d84ff051 4622 int cpu = (unsigned long)hcpu;
4ce62e9e 4623 struct worker_pool *pool;
4c16bd32 4624 struct workqueue_struct *wq;
7dbc725e 4625 int pi;
3ce63377 4626
8db25e78 4627 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4628 case CPU_UP_PREPARE:
f02ae73a 4629 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4630 if (pool->nr_workers)
4631 continue;
051e1850 4632 if (!create_worker(pool))
3ce63377 4633 return NOTIFY_BAD;
3af24433 4634 }
8db25e78 4635 break;
3af24433 4636
db7bccf4
TH
4637 case CPU_DOWN_FAILED:
4638 case CPU_ONLINE:
68e13a67 4639 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4640
4641 for_each_pool(pool, pi) {
92f9c5c4 4642 mutex_lock(&pool->attach_mutex);
94cf58bb 4643
f05b558d 4644 if (pool->cpu == cpu)
7dbc725e 4645 rebind_workers(pool);
f05b558d 4646 else if (pool->cpu < 0)
7dbc725e 4647 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4648
6ba94429
FW
4649 mutex_unlock(&pool->attach_mutex);
4650 }
4651
4652 /* update NUMA affinity of unbound workqueues */
4653 list_for_each_entry(wq, &workqueues, list)
4654 wq_update_unbound_numa(wq, cpu, true);
4655
4656 mutex_unlock(&wq_pool_mutex);
4657 break;
4658 }
4659 return NOTIFY_OK;
4660}
4661
4662/*
4663 * Workqueues should be brought down after normal priority CPU notifiers.
4664 * This will be registered as low priority CPU notifier.
4665 */
4666static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4667 unsigned long action,
4668 void *hcpu)
4669{
4670 int cpu = (unsigned long)hcpu;
4671 struct work_struct unbind_work;
4672 struct workqueue_struct *wq;
4673
4674 switch (action & ~CPU_TASKS_FROZEN) {
4675 case CPU_DOWN_PREPARE:
4676 /* unbinding per-cpu workers should happen on the local CPU */
4677 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4678 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4679
4680 /* update NUMA affinity of unbound workqueues */
4681 mutex_lock(&wq_pool_mutex);
4682 list_for_each_entry(wq, &workqueues, list)
4683 wq_update_unbound_numa(wq, cpu, false);
4684 mutex_unlock(&wq_pool_mutex);
4685
4686 /* wait for per-cpu unbinding to finish */
4687 flush_work(&unbind_work);
4688 destroy_work_on_stack(&unbind_work);
4689 break;
4690 }
4691 return NOTIFY_OK;
4692}
4693
4694#ifdef CONFIG_SMP
4695
4696struct work_for_cpu {
4697 struct work_struct work;
4698 long (*fn)(void *);
4699 void *arg;
4700 long ret;
4701};
4702
4703static void work_for_cpu_fn(struct work_struct *work)
4704{
4705 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4706
4707 wfc->ret = wfc->fn(wfc->arg);
4708}
4709
4710/**
22aceb31 4711 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4712 * @cpu: the cpu to run on
4713 * @fn: the function to run
4714 * @arg: the function arg
4715 *
4716 * It is up to the caller to ensure that the cpu doesn't go offline.
4717 * The caller must not hold any locks which would prevent @fn from completing.
4718 *
4719 * Return: The value @fn returns.
4720 */
4721long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4722{
4723 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4724
4725 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4726 schedule_work_on(cpu, &wfc.work);
4727 flush_work(&wfc.work);
4728 destroy_work_on_stack(&wfc.work);
4729 return wfc.ret;
4730}
4731EXPORT_SYMBOL_GPL(work_on_cpu);
4732#endif /* CONFIG_SMP */
4733
4734#ifdef CONFIG_FREEZER
4735
4736/**
4737 * freeze_workqueues_begin - begin freezing workqueues
4738 *
4739 * Start freezing workqueues. After this function returns, all freezable
4740 * workqueues will queue new works to their delayed_works list instead of
4741 * pool->worklist.
4742 *
4743 * CONTEXT:
4744 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4745 */
4746void freeze_workqueues_begin(void)
4747{
4748 struct workqueue_struct *wq;
4749 struct pool_workqueue *pwq;
4750
4751 mutex_lock(&wq_pool_mutex);
4752
4753 WARN_ON_ONCE(workqueue_freezing);
4754 workqueue_freezing = true;
4755
4756 list_for_each_entry(wq, &workqueues, list) {
4757 mutex_lock(&wq->mutex);
4758 for_each_pwq(pwq, wq)
4759 pwq_adjust_max_active(pwq);
4760 mutex_unlock(&wq->mutex);
4761 }
4762
4763 mutex_unlock(&wq_pool_mutex);
4764}
4765
4766/**
4767 * freeze_workqueues_busy - are freezable workqueues still busy?
4768 *
4769 * Check whether freezing is complete. This function must be called
4770 * between freeze_workqueues_begin() and thaw_workqueues().
4771 *
4772 * CONTEXT:
4773 * Grabs and releases wq_pool_mutex.
4774 *
4775 * Return:
4776 * %true if some freezable workqueues are still busy. %false if freezing
4777 * is complete.
4778 */
4779bool freeze_workqueues_busy(void)
4780{
4781 bool busy = false;
4782 struct workqueue_struct *wq;
4783 struct pool_workqueue *pwq;
4784
4785 mutex_lock(&wq_pool_mutex);
4786
4787 WARN_ON_ONCE(!workqueue_freezing);
4788
4789 list_for_each_entry(wq, &workqueues, list) {
4790 if (!(wq->flags & WQ_FREEZABLE))
4791 continue;
4792 /*
4793 * nr_active is monotonically decreasing. It's safe
4794 * to peek without lock.
4795 */
4796 rcu_read_lock_sched();
4797 for_each_pwq(pwq, wq) {
4798 WARN_ON_ONCE(pwq->nr_active < 0);
4799 if (pwq->nr_active) {
4800 busy = true;
4801 rcu_read_unlock_sched();
4802 goto out_unlock;
4803 }
4804 }
4805 rcu_read_unlock_sched();
4806 }
4807out_unlock:
4808 mutex_unlock(&wq_pool_mutex);
4809 return busy;
4810}
4811
4812/**
4813 * thaw_workqueues - thaw workqueues
4814 *
4815 * Thaw workqueues. Normal queueing is restored and all collected
4816 * frozen works are transferred to their respective pool worklists.
4817 *
4818 * CONTEXT:
4819 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4820 */
4821void thaw_workqueues(void)
4822{
4823 struct workqueue_struct *wq;
4824 struct pool_workqueue *pwq;
4825
4826 mutex_lock(&wq_pool_mutex);
4827
4828 if (!workqueue_freezing)
4829 goto out_unlock;
4830
4831 workqueue_freezing = false;
4832
4833 /* restore max_active and repopulate worklist */
4834 list_for_each_entry(wq, &workqueues, list) {
4835 mutex_lock(&wq->mutex);
4836 for_each_pwq(pwq, wq)
4837 pwq_adjust_max_active(pwq);
4838 mutex_unlock(&wq->mutex);
4839 }
4840
4841out_unlock:
4842 mutex_unlock(&wq_pool_mutex);
4843}
4844#endif /* CONFIG_FREEZER */
4845
042f7df1
LJ
4846static int workqueue_apply_unbound_cpumask(void)
4847{
4848 LIST_HEAD(ctxs);
4849 int ret = 0;
4850 struct workqueue_struct *wq;
4851 struct apply_wqattrs_ctx *ctx, *n;
4852
4853 lockdep_assert_held(&wq_pool_mutex);
4854
4855 list_for_each_entry(wq, &workqueues, list) {
4856 if (!(wq->flags & WQ_UNBOUND))
4857 continue;
4858 /* creating multiple pwqs breaks ordering guarantee */
4859 if (wq->flags & __WQ_ORDERED)
4860 continue;
4861
4862 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4863 if (!ctx) {
4864 ret = -ENOMEM;
4865 break;
4866 }
4867
4868 list_add_tail(&ctx->list, &ctxs);
4869 }
4870
4871 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4872 if (!ret)
4873 apply_wqattrs_commit(ctx);
4874 apply_wqattrs_cleanup(ctx);
4875 }
4876
4877 return ret;
4878}
4879
4880/**
4881 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4882 * @cpumask: the cpumask to set
4883 *
4884 * The low-level workqueues cpumask is a global cpumask that limits
4885 * the affinity of all unbound workqueues. This function check the @cpumask
4886 * and apply it to all unbound workqueues and updates all pwqs of them.
4887 *
4888 * Retun: 0 - Success
4889 * -EINVAL - Invalid @cpumask
4890 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4891 */
4892int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4893{
4894 int ret = -EINVAL;
4895 cpumask_var_t saved_cpumask;
4896
4897 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4898 return -ENOMEM;
4899
042f7df1
LJ
4900 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4901 if (!cpumask_empty(cpumask)) {
a0111cf6 4902 apply_wqattrs_lock();
042f7df1
LJ
4903
4904 /* save the old wq_unbound_cpumask. */
4905 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4906
4907 /* update wq_unbound_cpumask at first and apply it to wqs. */
4908 cpumask_copy(wq_unbound_cpumask, cpumask);
4909 ret = workqueue_apply_unbound_cpumask();
4910
4911 /* restore the wq_unbound_cpumask when failed. */
4912 if (ret < 0)
4913 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4914
a0111cf6 4915 apply_wqattrs_unlock();
042f7df1 4916 }
042f7df1
LJ
4917
4918 free_cpumask_var(saved_cpumask);
4919 return ret;
4920}
4921
6ba94429
FW
4922#ifdef CONFIG_SYSFS
4923/*
4924 * Workqueues with WQ_SYSFS flag set is visible to userland via
4925 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4926 * following attributes.
4927 *
4928 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4929 * max_active RW int : maximum number of in-flight work items
4930 *
4931 * Unbound workqueues have the following extra attributes.
4932 *
4933 * id RO int : the associated pool ID
4934 * nice RW int : nice value of the workers
4935 * cpumask RW mask : bitmask of allowed CPUs for the workers
4936 */
4937struct wq_device {
4938 struct workqueue_struct *wq;
4939 struct device dev;
4940};
4941
4942static struct workqueue_struct *dev_to_wq(struct device *dev)
4943{
4944 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4945
4946 return wq_dev->wq;
4947}
4948
4949static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4950 char *buf)
4951{
4952 struct workqueue_struct *wq = dev_to_wq(dev);
4953
4954 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4955}
4956static DEVICE_ATTR_RO(per_cpu);
4957
4958static ssize_t max_active_show(struct device *dev,
4959 struct device_attribute *attr, char *buf)
4960{
4961 struct workqueue_struct *wq = dev_to_wq(dev);
4962
4963 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4964}
4965
4966static ssize_t max_active_store(struct device *dev,
4967 struct device_attribute *attr, const char *buf,
4968 size_t count)
4969{
4970 struct workqueue_struct *wq = dev_to_wq(dev);
4971 int val;
4972
4973 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4974 return -EINVAL;
4975
4976 workqueue_set_max_active(wq, val);
4977 return count;
4978}
4979static DEVICE_ATTR_RW(max_active);
4980
4981static struct attribute *wq_sysfs_attrs[] = {
4982 &dev_attr_per_cpu.attr,
4983 &dev_attr_max_active.attr,
4984 NULL,
4985};
4986ATTRIBUTE_GROUPS(wq_sysfs);
4987
4988static ssize_t wq_pool_ids_show(struct device *dev,
4989 struct device_attribute *attr, char *buf)
4990{
4991 struct workqueue_struct *wq = dev_to_wq(dev);
4992 const char *delim = "";
4993 int node, written = 0;
4994
4995 rcu_read_lock_sched();
4996 for_each_node(node) {
4997 written += scnprintf(buf + written, PAGE_SIZE - written,
4998 "%s%d:%d", delim, node,
4999 unbound_pwq_by_node(wq, node)->pool->id);
5000 delim = " ";
5001 }
5002 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5003 rcu_read_unlock_sched();
5004
5005 return written;
5006}
5007
5008static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5009 char *buf)
5010{
5011 struct workqueue_struct *wq = dev_to_wq(dev);
5012 int written;
5013
5014 mutex_lock(&wq->mutex);
5015 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5016 mutex_unlock(&wq->mutex);
5017
5018 return written;
5019}
5020
5021/* prepare workqueue_attrs for sysfs store operations */
5022static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5023{
5024 struct workqueue_attrs *attrs;
5025
899a94fe
LJ
5026 lockdep_assert_held(&wq_pool_mutex);
5027
6ba94429
FW
5028 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5029 if (!attrs)
5030 return NULL;
5031
6ba94429 5032 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5033 return attrs;
5034}
5035
5036static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5037 const char *buf, size_t count)
5038{
5039 struct workqueue_struct *wq = dev_to_wq(dev);
5040 struct workqueue_attrs *attrs;
d4d3e257
LJ
5041 int ret = -ENOMEM;
5042
5043 apply_wqattrs_lock();
6ba94429
FW
5044
5045 attrs = wq_sysfs_prep_attrs(wq);
5046 if (!attrs)
d4d3e257 5047 goto out_unlock;
6ba94429
FW
5048
5049 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5050 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5051 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5052 else
5053 ret = -EINVAL;
5054
d4d3e257
LJ
5055out_unlock:
5056 apply_wqattrs_unlock();
6ba94429
FW
5057 free_workqueue_attrs(attrs);
5058 return ret ?: count;
5059}
5060
5061static ssize_t wq_cpumask_show(struct device *dev,
5062 struct device_attribute *attr, char *buf)
5063{
5064 struct workqueue_struct *wq = dev_to_wq(dev);
5065 int written;
5066
5067 mutex_lock(&wq->mutex);
5068 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5069 cpumask_pr_args(wq->unbound_attrs->cpumask));
5070 mutex_unlock(&wq->mutex);
5071 return written;
5072}
5073
5074static ssize_t wq_cpumask_store(struct device *dev,
5075 struct device_attribute *attr,
5076 const char *buf, size_t count)
5077{
5078 struct workqueue_struct *wq = dev_to_wq(dev);
5079 struct workqueue_attrs *attrs;
d4d3e257
LJ
5080 int ret = -ENOMEM;
5081
5082 apply_wqattrs_lock();
6ba94429
FW
5083
5084 attrs = wq_sysfs_prep_attrs(wq);
5085 if (!attrs)
d4d3e257 5086 goto out_unlock;
6ba94429
FW
5087
5088 ret = cpumask_parse(buf, attrs->cpumask);
5089 if (!ret)
d4d3e257 5090 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5091
d4d3e257
LJ
5092out_unlock:
5093 apply_wqattrs_unlock();
6ba94429
FW
5094 free_workqueue_attrs(attrs);
5095 return ret ?: count;
5096}
5097
5098static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5099 char *buf)
5100{
5101 struct workqueue_struct *wq = dev_to_wq(dev);
5102 int written;
7dbc725e 5103
6ba94429
FW
5104 mutex_lock(&wq->mutex);
5105 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5106 !wq->unbound_attrs->no_numa);
5107 mutex_unlock(&wq->mutex);
4c16bd32 5108
6ba94429 5109 return written;
65758202
TH
5110}
5111
6ba94429
FW
5112static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5113 const char *buf, size_t count)
65758202 5114{
6ba94429
FW
5115 struct workqueue_struct *wq = dev_to_wq(dev);
5116 struct workqueue_attrs *attrs;
d4d3e257
LJ
5117 int v, ret = -ENOMEM;
5118
5119 apply_wqattrs_lock();
4c16bd32 5120
6ba94429
FW
5121 attrs = wq_sysfs_prep_attrs(wq);
5122 if (!attrs)
d4d3e257 5123 goto out_unlock;
4c16bd32 5124
6ba94429
FW
5125 ret = -EINVAL;
5126 if (sscanf(buf, "%d", &v) == 1) {
5127 attrs->no_numa = !v;
d4d3e257 5128 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5129 }
6ba94429 5130
d4d3e257
LJ
5131out_unlock:
5132 apply_wqattrs_unlock();
6ba94429
FW
5133 free_workqueue_attrs(attrs);
5134 return ret ?: count;
65758202
TH
5135}
5136
6ba94429
FW
5137static struct device_attribute wq_sysfs_unbound_attrs[] = {
5138 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5139 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5140 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5141 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5142 __ATTR_NULL,
5143};
8ccad40d 5144
6ba94429
FW
5145static struct bus_type wq_subsys = {
5146 .name = "workqueue",
5147 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5148};
5149
b05a7928
FW
5150static ssize_t wq_unbound_cpumask_show(struct device *dev,
5151 struct device_attribute *attr, char *buf)
5152{
5153 int written;
5154
042f7df1 5155 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5156 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5157 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5158 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5159
5160 return written;
5161}
5162
042f7df1
LJ
5163static ssize_t wq_unbound_cpumask_store(struct device *dev,
5164 struct device_attribute *attr, const char *buf, size_t count)
5165{
5166 cpumask_var_t cpumask;
5167 int ret;
5168
5169 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5170 return -ENOMEM;
5171
5172 ret = cpumask_parse(buf, cpumask);
5173 if (!ret)
5174 ret = workqueue_set_unbound_cpumask(cpumask);
5175
5176 free_cpumask_var(cpumask);
5177 return ret ? ret : count;
5178}
5179
b05a7928 5180static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5181 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5182 wq_unbound_cpumask_store);
b05a7928 5183
6ba94429 5184static int __init wq_sysfs_init(void)
2d3854a3 5185{
b05a7928
FW
5186 int err;
5187
5188 err = subsys_virtual_register(&wq_subsys, NULL);
5189 if (err)
5190 return err;
5191
5192 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5193}
6ba94429 5194core_initcall(wq_sysfs_init);
2d3854a3 5195
6ba94429 5196static void wq_device_release(struct device *dev)
2d3854a3 5197{
6ba94429 5198 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5199
6ba94429 5200 kfree(wq_dev);
2d3854a3 5201}
a0a1a5fd
TH
5202
5203/**
6ba94429
FW
5204 * workqueue_sysfs_register - make a workqueue visible in sysfs
5205 * @wq: the workqueue to register
a0a1a5fd 5206 *
6ba94429
FW
5207 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5208 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5209 * which is the preferred method.
a0a1a5fd 5210 *
6ba94429
FW
5211 * Workqueue user should use this function directly iff it wants to apply
5212 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5213 * apply_workqueue_attrs() may race against userland updating the
5214 * attributes.
5215 *
5216 * Return: 0 on success, -errno on failure.
a0a1a5fd 5217 */
6ba94429 5218int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5219{
6ba94429
FW
5220 struct wq_device *wq_dev;
5221 int ret;
a0a1a5fd 5222
6ba94429 5223 /*
402dd89d 5224 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5225 * attributes breaks ordering guarantee. Disallow exposing ordered
5226 * workqueues.
5227 */
5228 if (WARN_ON(wq->flags & __WQ_ORDERED))
5229 return -EINVAL;
a0a1a5fd 5230
6ba94429
FW
5231 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5232 if (!wq_dev)
5233 return -ENOMEM;
5bcab335 5234
6ba94429
FW
5235 wq_dev->wq = wq;
5236 wq_dev->dev.bus = &wq_subsys;
6ba94429 5237 wq_dev->dev.release = wq_device_release;
23217b44 5238 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5239
6ba94429
FW
5240 /*
5241 * unbound_attrs are created separately. Suppress uevent until
5242 * everything is ready.
5243 */
5244 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5245
6ba94429
FW
5246 ret = device_register(&wq_dev->dev);
5247 if (ret) {
5248 kfree(wq_dev);
5249 wq->wq_dev = NULL;
5250 return ret;
5251 }
a0a1a5fd 5252
6ba94429
FW
5253 if (wq->flags & WQ_UNBOUND) {
5254 struct device_attribute *attr;
a0a1a5fd 5255
6ba94429
FW
5256 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5257 ret = device_create_file(&wq_dev->dev, attr);
5258 if (ret) {
5259 device_unregister(&wq_dev->dev);
5260 wq->wq_dev = NULL;
5261 return ret;
a0a1a5fd
TH
5262 }
5263 }
5264 }
6ba94429
FW
5265
5266 dev_set_uevent_suppress(&wq_dev->dev, false);
5267 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5268 return 0;
a0a1a5fd
TH
5269}
5270
5271/**
6ba94429
FW
5272 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5273 * @wq: the workqueue to unregister
a0a1a5fd 5274 *
6ba94429 5275 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5276 */
6ba94429 5277static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5278{
6ba94429 5279 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5280
6ba94429
FW
5281 if (!wq->wq_dev)
5282 return;
a0a1a5fd 5283
6ba94429
FW
5284 wq->wq_dev = NULL;
5285 device_unregister(&wq_dev->dev);
a0a1a5fd 5286}
6ba94429
FW
5287#else /* CONFIG_SYSFS */
5288static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5289#endif /* CONFIG_SYSFS */
a0a1a5fd 5290
82607adc
TH
5291/*
5292 * Workqueue watchdog.
5293 *
5294 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5295 * flush dependency, a concurrency managed work item which stays RUNNING
5296 * indefinitely. Workqueue stalls can be very difficult to debug as the
5297 * usual warning mechanisms don't trigger and internal workqueue state is
5298 * largely opaque.
5299 *
5300 * Workqueue watchdog monitors all worker pools periodically and dumps
5301 * state if some pools failed to make forward progress for a while where
5302 * forward progress is defined as the first item on ->worklist changing.
5303 *
5304 * This mechanism is controlled through the kernel parameter
5305 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5306 * corresponding sysfs parameter file.
5307 */
5308#ifdef CONFIG_WQ_WATCHDOG
5309
5310static void wq_watchdog_timer_fn(unsigned long data);
5311
5312static unsigned long wq_watchdog_thresh = 30;
5313static struct timer_list wq_watchdog_timer =
5314 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5315
5316static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5317static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5318
5319static void wq_watchdog_reset_touched(void)
5320{
5321 int cpu;
5322
5323 wq_watchdog_touched = jiffies;
5324 for_each_possible_cpu(cpu)
5325 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5326}
5327
5328static void wq_watchdog_timer_fn(unsigned long data)
5329{
5330 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5331 bool lockup_detected = false;
5332 struct worker_pool *pool;
5333 int pi;
5334
5335 if (!thresh)
5336 return;
5337
5338 rcu_read_lock();
5339
5340 for_each_pool(pool, pi) {
5341 unsigned long pool_ts, touched, ts;
5342
5343 if (list_empty(&pool->worklist))
5344 continue;
5345
5346 /* get the latest of pool and touched timestamps */
5347 pool_ts = READ_ONCE(pool->watchdog_ts);
5348 touched = READ_ONCE(wq_watchdog_touched);
5349
5350 if (time_after(pool_ts, touched))
5351 ts = pool_ts;
5352 else
5353 ts = touched;
5354
5355 if (pool->cpu >= 0) {
5356 unsigned long cpu_touched =
5357 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5358 pool->cpu));
5359 if (time_after(cpu_touched, ts))
5360 ts = cpu_touched;
5361 }
5362
5363 /* did we stall? */
5364 if (time_after(jiffies, ts + thresh)) {
5365 lockup_detected = true;
5366 pr_emerg("BUG: workqueue lockup - pool");
5367 pr_cont_pool_info(pool);
5368 pr_cont(" stuck for %us!\n",
5369 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5370 }
5371 }
5372
5373 rcu_read_unlock();
5374
5375 if (lockup_detected)
5376 show_workqueue_state();
5377
5378 wq_watchdog_reset_touched();
5379 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5380}
5381
5382void wq_watchdog_touch(int cpu)
5383{
5384 if (cpu >= 0)
5385 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5386 else
5387 wq_watchdog_touched = jiffies;
5388}
5389
5390static void wq_watchdog_set_thresh(unsigned long thresh)
5391{
5392 wq_watchdog_thresh = 0;
5393 del_timer_sync(&wq_watchdog_timer);
5394
5395 if (thresh) {
5396 wq_watchdog_thresh = thresh;
5397 wq_watchdog_reset_touched();
5398 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5399 }
5400}
5401
5402static int wq_watchdog_param_set_thresh(const char *val,
5403 const struct kernel_param *kp)
5404{
5405 unsigned long thresh;
5406 int ret;
5407
5408 ret = kstrtoul(val, 0, &thresh);
5409 if (ret)
5410 return ret;
5411
5412 if (system_wq)
5413 wq_watchdog_set_thresh(thresh);
5414 else
5415 wq_watchdog_thresh = thresh;
5416
5417 return 0;
5418}
5419
5420static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5421 .set = wq_watchdog_param_set_thresh,
5422 .get = param_get_ulong,
5423};
5424
5425module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5426 0644);
5427
5428static void wq_watchdog_init(void)
5429{
5430 wq_watchdog_set_thresh(wq_watchdog_thresh);
5431}
5432
5433#else /* CONFIG_WQ_WATCHDOG */
5434
5435static inline void wq_watchdog_init(void) { }
5436
5437#endif /* CONFIG_WQ_WATCHDOG */
5438
bce90380
TH
5439static void __init wq_numa_init(void)
5440{
5441 cpumask_var_t *tbl;
5442 int node, cpu;
5443
bce90380
TH
5444 if (num_possible_nodes() <= 1)
5445 return;
5446
d55262c4
TH
5447 if (wq_disable_numa) {
5448 pr_info("workqueue: NUMA affinity support disabled\n");
5449 return;
5450 }
5451
4c16bd32
TH
5452 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5453 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5454
bce90380
TH
5455 /*
5456 * We want masks of possible CPUs of each node which isn't readily
5457 * available. Build one from cpu_to_node() which should have been
5458 * fully initialized by now.
5459 */
ddcb57e2 5460 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5461 BUG_ON(!tbl);
5462
5463 for_each_node(node)
5a6024f1 5464 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5465 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5466
5467 for_each_possible_cpu(cpu) {
5468 node = cpu_to_node(cpu);
5469 if (WARN_ON(node == NUMA_NO_NODE)) {
5470 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5471 /* happens iff arch is bonkers, let's just proceed */
5472 return;
5473 }
5474 cpumask_set_cpu(cpu, tbl[node]);
5475 }
5476
5477 wq_numa_possible_cpumask = tbl;
5478 wq_numa_enabled = true;
5479}
5480
6ee0578b 5481static int __init init_workqueues(void)
1da177e4 5482{
7a4e344c
TH
5483 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5484 int i, cpu;
c34056a3 5485
e904e6c2
TH
5486 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5487
b05a7928
FW
5488 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5489 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5490
e904e6c2
TH
5491 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5492
65758202 5493 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5494 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5495
bce90380
TH
5496 wq_numa_init();
5497
706026c2 5498 /* initialize CPU pools */
29c91e99 5499 for_each_possible_cpu(cpu) {
4ce62e9e 5500 struct worker_pool *pool;
8b03ae3c 5501
7a4e344c 5502 i = 0;
f02ae73a 5503 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5504 BUG_ON(init_worker_pool(pool));
ec22ca5e 5505 pool->cpu = cpu;
29c91e99 5506 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5507 pool->attrs->nice = std_nice[i++];
f3f90ad4 5508 pool->node = cpu_to_node(cpu);
7a4e344c 5509
9daf9e67 5510 /* alloc pool ID */
68e13a67 5511 mutex_lock(&wq_pool_mutex);
9daf9e67 5512 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5513 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5514 }
8b03ae3c
TH
5515 }
5516
e22bee78 5517 /* create the initial worker */
29c91e99 5518 for_each_online_cpu(cpu) {
4ce62e9e 5519 struct worker_pool *pool;
e22bee78 5520
f02ae73a 5521 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5522 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5523 BUG_ON(!create_worker(pool));
4ce62e9e 5524 }
e22bee78
TH
5525 }
5526
8a2b7538 5527 /* create default unbound and ordered wq attrs */
29c91e99
TH
5528 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5529 struct workqueue_attrs *attrs;
5530
5531 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5532 attrs->nice = std_nice[i];
29c91e99 5533 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5534
5535 /*
5536 * An ordered wq should have only one pwq as ordering is
5537 * guaranteed by max_active which is enforced by pwqs.
5538 * Turn off NUMA so that dfl_pwq is used for all nodes.
5539 */
5540 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5541 attrs->nice = std_nice[i];
5542 attrs->no_numa = true;
5543 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5544 }
5545
d320c038 5546 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5547 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5548 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5549 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5550 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5551 system_freezable_wq = alloc_workqueue("events_freezable",
5552 WQ_FREEZABLE, 0);
0668106c
VK
5553 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5554 WQ_POWER_EFFICIENT, 0);
5555 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5556 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5557 0);
1aabe902 5558 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5559 !system_unbound_wq || !system_freezable_wq ||
5560 !system_power_efficient_wq ||
5561 !system_freezable_power_efficient_wq);
82607adc
TH
5562
5563 wq_watchdog_init();
5564
6ee0578b 5565 return 0;
1da177e4 5566}
6ee0578b 5567early_initcall(init_workqueues);