Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce 322/* the per-cpu worker pools */
25528213 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 324
68e13a67 325static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 326
68e13a67 327/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
c5aa87bb 330/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
8a2b7538
TH
333/* I: attributes used when instantiating ordered pools on demand */
334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
d320c038 336struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 337EXPORT_SYMBOL(system_wq);
044c782c 338struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 339EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 340struct workqueue_struct *system_long_wq __read_mostly;
d320c038 341EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 342struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 343EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 344struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 345EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
346struct workqueue_struct *system_power_efficient_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 350
7d19c5ce 351static int worker_thread(void *__worker);
6ba94429 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 353
97bd2347
TH
354#define CREATE_TRACE_POINTS
355#include <trace/events/workqueue.h>
356
68e13a67 357#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
5bcab335 361
b09f4fd3 362#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
76af4d93 366
5b95e1af 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 372
f02ae73a
TH
373#define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 376 (pool)++)
4ce62e9e 377
17116969
TH
378/**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
611c92a0 381 * @pi: integer used for iteration
fa1b54e6 382 *
68e13a67
LJ
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
17116969 389 */
611c92a0
TH
390#define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 393 else
17116969 394
822d8405
TH
395/**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
822d8405
TH
398 * @pool: worker_pool to iterate workers of
399 *
92f9c5c4 400 * This must be called with @pool->attach_mutex.
822d8405
TH
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
da028469
LJ
405#define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
408 else
409
49e3cf44
TH
410/**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
76af4d93 414 *
b09f4fd3 415 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
49e3cf44
TH
421 */
422#define for_each_pwq(pwq, wq) \
76af4d93 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 425 else
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
dc186ad7
TG
436/*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440static int work_fixup_init(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459static int work_fixup_activate(void *addr, enum debug_obj_state state)
460{
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
22df02bb 471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485}
486
487/*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491static int work_fixup_free(void *addr, enum debug_obj_state state)
492{
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503}
504
505static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
99777288 507 .debug_hint = work_debug_hint,
dc186ad7
TG
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511};
512
513static inline void debug_work_activate(struct work_struct *work)
514{
515 debug_object_activate(work, &work_debug_descr);
516}
517
518static inline void debug_work_deactivate(struct work_struct *work)
519{
520 debug_object_deactivate(work, &work_debug_descr);
521}
522
523void __init_work(struct work_struct *work, int onstack)
524{
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529}
530EXPORT_SYMBOL_GPL(__init_work);
531
532void destroy_work_on_stack(struct work_struct *work)
533{
534 debug_object_free(work, &work_debug_descr);
535}
536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
ea2e64f2
TG
538void destroy_delayed_work_on_stack(struct delayed_work *work)
539{
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542}
543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
dc186ad7
TG
545#else
546static inline void debug_work_activate(struct work_struct *work) { }
547static inline void debug_work_deactivate(struct work_struct *work) { }
548#endif
549
4e8b22bd
LB
550/**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
9daf9e67
TH
557static int worker_pool_assign_id(struct worker_pool *pool)
558{
559 int ret;
560
68e13a67 561 lockdep_assert_held(&wq_pool_mutex);
5bcab335 562
4e8b22bd
LB
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
229641a6 565 if (ret >= 0) {
e68035fb 566 pool->id = ret;
229641a6
TH
567 return 0;
568 }
fa1b54e6 569 return ret;
7c3eed5c
TH
570}
571
df2d5ae4
TH
572/**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
5b95e1af
LJ
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
df2d5ae4
TH
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
581 *
582 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
583 */
584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586{
5b95e1af 587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
df2d5ae4
TH
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599}
600
73f53c4a
TH
601static unsigned int work_color_to_flags(int color)
602{
603 return color << WORK_STRUCT_COLOR_SHIFT;
604}
605
606static int get_work_color(struct work_struct *work)
607{
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610}
611
612static int work_next_color(int color)
613{
614 return (color + 1) % WORK_NR_COLORS;
615}
1da177e4 616
14441960 617/*
112202d9
TH
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 620 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 621 *
112202d9
TH
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
7a22ad75 626 *
112202d9 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 628 * corresponding to a work. Pool is available once the work has been
112202d9 629 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 630 * available only while the work item is queued.
7a22ad75 631 *
bbb68dfa
TH
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
14441960 636 */
7a22ad75
TH
637static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
365970a1 639{
6183c009 640 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
641 atomic_long_set(&work->data, data | flags | work_static(work));
642}
365970a1 643
112202d9 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
645 unsigned long extra_flags)
646{
112202d9
TH
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
649}
650
4468a00f
LJ
651static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653{
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656}
657
7c3eed5c
TH
658static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
7a22ad75 660{
23657bb1
TH
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
7c3eed5c 668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
669 /*
670 * The following mb guarantees that previous clear of a PENDING bit
671 * will not be reordered with any speculative LOADS or STORES from
672 * work->current_func, which is executed afterwards. This possible
673 * reordering can lead to a missed execution on attempt to qeueue
674 * the same @work. E.g. consider this case:
675 *
676 * CPU#0 CPU#1
677 * ---------------------------- --------------------------------
678 *
679 * 1 STORE event_indicated
680 * 2 queue_work_on() {
681 * 3 test_and_set_bit(PENDING)
682 * 4 } set_..._and_clear_pending() {
683 * 5 set_work_data() # clear bit
684 * 6 smp_mb()
685 * 7 work->current_func() {
686 * 8 LOAD event_indicated
687 * }
688 *
689 * Without an explicit full barrier speculative LOAD on line 8 can
690 * be executed before CPU#0 does STORE on line 1. If that happens,
691 * CPU#0 observes the PENDING bit is still set and new execution of
692 * a @work is not queued in a hope, that CPU#1 will eventually
693 * finish the queued @work. Meanwhile CPU#1 does not see
694 * event_indicated is set, because speculative LOAD was executed
695 * before actual STORE.
696 */
697 smp_mb();
7a22ad75 698}
f756d5e2 699
7a22ad75 700static void clear_work_data(struct work_struct *work)
1da177e4 701{
7c3eed5c
TH
702 smp_wmb(); /* see set_work_pool_and_clear_pending() */
703 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
704}
705
112202d9 706static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 707{
e120153d 708 unsigned long data = atomic_long_read(&work->data);
7a22ad75 709
112202d9 710 if (data & WORK_STRUCT_PWQ)
e120153d
TH
711 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
712 else
713 return NULL;
4d707b9f
ON
714}
715
7c3eed5c
TH
716/**
717 * get_work_pool - return the worker_pool a given work was associated with
718 * @work: the work item of interest
719 *
68e13a67
LJ
720 * Pools are created and destroyed under wq_pool_mutex, and allows read
721 * access under sched-RCU read lock. As such, this function should be
722 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
723 *
724 * All fields of the returned pool are accessible as long as the above
725 * mentioned locking is in effect. If the returned pool needs to be used
726 * beyond the critical section, the caller is responsible for ensuring the
727 * returned pool is and stays online.
d185af30
YB
728 *
729 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
730 */
731static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 732{
e120153d 733 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 734 int pool_id;
7a22ad75 735
68e13a67 736 assert_rcu_or_pool_mutex();
fa1b54e6 737
112202d9
TH
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
7c3eed5c 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 741
7c3eed5c
TH
742 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
743 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
744 return NULL;
745
fa1b54e6 746 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
747}
748
749/**
750 * get_work_pool_id - return the worker pool ID a given work is associated with
751 * @work: the work item of interest
752 *
d185af30 753 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
754 * %WORK_OFFQ_POOL_NONE if none.
755 */
756static int get_work_pool_id(struct work_struct *work)
757{
54d5b7d0
LJ
758 unsigned long data = atomic_long_read(&work->data);
759
112202d9
TH
760 if (data & WORK_STRUCT_PWQ)
761 return ((struct pool_workqueue *)
54d5b7d0 762 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 763
54d5b7d0 764 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
765}
766
bbb68dfa
TH
767static void mark_work_canceling(struct work_struct *work)
768{
7c3eed5c 769 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 770
7c3eed5c
TH
771 pool_id <<= WORK_OFFQ_POOL_SHIFT;
772 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
773}
774
775static bool work_is_canceling(struct work_struct *work)
776{
777 unsigned long data = atomic_long_read(&work->data);
778
112202d9 779 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
780}
781
e22bee78 782/*
3270476a
TH
783 * Policy functions. These define the policies on how the global worker
784 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 785 * they're being called with pool->lock held.
e22bee78
TH
786 */
787
63d95a91 788static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 789{
e19e397a 790 return !atomic_read(&pool->nr_running);
a848e3b6
ON
791}
792
4594bf15 793/*
e22bee78
TH
794 * Need to wake up a worker? Called from anything but currently
795 * running workers.
974271c4
TH
796 *
797 * Note that, because unbound workers never contribute to nr_running, this
706026c2 798 * function will always return %true for unbound pools as long as the
974271c4 799 * worklist isn't empty.
4594bf15 800 */
63d95a91 801static bool need_more_worker(struct worker_pool *pool)
365970a1 802{
63d95a91 803 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 804}
4594bf15 805
e22bee78 806/* Can I start working? Called from busy but !running workers. */
63d95a91 807static bool may_start_working(struct worker_pool *pool)
e22bee78 808{
63d95a91 809 return pool->nr_idle;
e22bee78
TH
810}
811
812/* Do I need to keep working? Called from currently running workers. */
63d95a91 813static bool keep_working(struct worker_pool *pool)
e22bee78 814{
e19e397a
TH
815 return !list_empty(&pool->worklist) &&
816 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
817}
818
819/* Do we need a new worker? Called from manager. */
63d95a91 820static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 821{
63d95a91 822 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 823}
365970a1 824
e22bee78 825/* Do we have too many workers and should some go away? */
63d95a91 826static bool too_many_workers(struct worker_pool *pool)
e22bee78 827{
34a06bd6 828 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
829 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
830 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
831
832 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
833}
834
4d707b9f 835/*
e22bee78
TH
836 * Wake up functions.
837 */
838
1037de36
LJ
839/* Return the first idle worker. Safe with preemption disabled */
840static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 841{
63d95a91 842 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
843 return NULL;
844
63d95a91 845 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
846}
847
848/**
849 * wake_up_worker - wake up an idle worker
63d95a91 850 * @pool: worker pool to wake worker from
7e11629d 851 *
63d95a91 852 * Wake up the first idle worker of @pool.
7e11629d
TH
853 *
854 * CONTEXT:
d565ed63 855 * spin_lock_irq(pool->lock).
7e11629d 856 */
63d95a91 857static void wake_up_worker(struct worker_pool *pool)
7e11629d 858{
1037de36 859 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
860
861 if (likely(worker))
862 wake_up_process(worker->task);
863}
864
d302f017 865/**
e22bee78
TH
866 * wq_worker_waking_up - a worker is waking up
867 * @task: task waking up
868 * @cpu: CPU @task is waking up to
869 *
870 * This function is called during try_to_wake_up() when a worker is
871 * being awoken.
872 *
873 * CONTEXT:
874 * spin_lock_irq(rq->lock)
875 */
d84ff051 876void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task);
879
36576000 880 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 881 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 882 atomic_inc(&worker->pool->nr_running);
36576000 883 }
e22bee78
TH
884}
885
886/**
887 * wq_worker_sleeping - a worker is going to sleep
888 * @task: task going to sleep
e22bee78
TH
889 *
890 * This function is called during schedule() when a busy worker is
891 * going to sleep. Worker on the same cpu can be woken up by
892 * returning pointer to its task.
893 *
894 * CONTEXT:
895 * spin_lock_irq(rq->lock)
896 *
d185af30 897 * Return:
e22bee78
TH
898 * Worker task on @cpu to wake up, %NULL if none.
899 */
9b7f6597 900struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
901{
902 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 903 struct worker_pool *pool;
e22bee78 904
111c225a
TH
905 /*
906 * Rescuers, which may not have all the fields set up like normal
907 * workers, also reach here, let's not access anything before
908 * checking NOT_RUNNING.
909 */
2d64672e 910 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
911 return NULL;
912
111c225a 913 pool = worker->pool;
111c225a 914
e22bee78 915 /* this can only happen on the local cpu */
9b7f6597 916 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 917 return NULL;
e22bee78
TH
918
919 /*
920 * The counterpart of the following dec_and_test, implied mb,
921 * worklist not empty test sequence is in insert_work().
922 * Please read comment there.
923 *
628c78e7
TH
924 * NOT_RUNNING is clear. This means that we're bound to and
925 * running on the local cpu w/ rq lock held and preemption
926 * disabled, which in turn means that none else could be
d565ed63 927 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 928 * lock is safe.
e22bee78 929 */
e19e397a
TH
930 if (atomic_dec_and_test(&pool->nr_running) &&
931 !list_empty(&pool->worklist))
1037de36 932 to_wakeup = first_idle_worker(pool);
e22bee78
TH
933 return to_wakeup ? to_wakeup->task : NULL;
934}
935
936/**
937 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 938 * @worker: self
d302f017 939 * @flags: flags to set
d302f017 940 *
228f1d00 941 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 942 *
cb444766 943 * CONTEXT:
d565ed63 944 * spin_lock_irq(pool->lock)
d302f017 945 */
228f1d00 946static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 947{
bd7bdd43 948 struct worker_pool *pool = worker->pool;
e22bee78 949
cb444766
TH
950 WARN_ON_ONCE(worker->task != current);
951
228f1d00 952 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
953 if ((flags & WORKER_NOT_RUNNING) &&
954 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 955 atomic_dec(&pool->nr_running);
e22bee78
TH
956 }
957
d302f017
TH
958 worker->flags |= flags;
959}
960
961/**
e22bee78 962 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 963 * @worker: self
d302f017
TH
964 * @flags: flags to clear
965 *
e22bee78 966 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 967 *
cb444766 968 * CONTEXT:
d565ed63 969 * spin_lock_irq(pool->lock)
d302f017
TH
970 */
971static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
972{
63d95a91 973 struct worker_pool *pool = worker->pool;
e22bee78
TH
974 unsigned int oflags = worker->flags;
975
cb444766
TH
976 WARN_ON_ONCE(worker->task != current);
977
d302f017 978 worker->flags &= ~flags;
e22bee78 979
42c025f3
TH
980 /*
981 * If transitioning out of NOT_RUNNING, increment nr_running. Note
982 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
983 * of multiple flags, not a single flag.
984 */
e22bee78
TH
985 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
986 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 987 atomic_inc(&pool->nr_running);
d302f017
TH
988}
989
8cca0eea
TH
990/**
991 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 992 * @pool: pool of interest
8cca0eea
TH
993 * @work: work to find worker for
994 *
c9e7cf27
TH
995 * Find a worker which is executing @work on @pool by searching
996 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
997 * to match, its current execution should match the address of @work and
998 * its work function. This is to avoid unwanted dependency between
999 * unrelated work executions through a work item being recycled while still
1000 * being executed.
1001 *
1002 * This is a bit tricky. A work item may be freed once its execution
1003 * starts and nothing prevents the freed area from being recycled for
1004 * another work item. If the same work item address ends up being reused
1005 * before the original execution finishes, workqueue will identify the
1006 * recycled work item as currently executing and make it wait until the
1007 * current execution finishes, introducing an unwanted dependency.
1008 *
c5aa87bb
TH
1009 * This function checks the work item address and work function to avoid
1010 * false positives. Note that this isn't complete as one may construct a
1011 * work function which can introduce dependency onto itself through a
1012 * recycled work item. Well, if somebody wants to shoot oneself in the
1013 * foot that badly, there's only so much we can do, and if such deadlock
1014 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1015 *
1016 * CONTEXT:
d565ed63 1017 * spin_lock_irq(pool->lock).
8cca0eea 1018 *
d185af30
YB
1019 * Return:
1020 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1021 * otherwise.
4d707b9f 1022 */
c9e7cf27 1023static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1024 struct work_struct *work)
4d707b9f 1025{
42f8570f 1026 struct worker *worker;
42f8570f 1027
b67bfe0d 1028 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1029 (unsigned long)work)
1030 if (worker->current_work == work &&
1031 worker->current_func == work->func)
42f8570f
SL
1032 return worker;
1033
1034 return NULL;
4d707b9f
ON
1035}
1036
bf4ede01
TH
1037/**
1038 * move_linked_works - move linked works to a list
1039 * @work: start of series of works to be scheduled
1040 * @head: target list to append @work to
402dd89d 1041 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1042 *
1043 * Schedule linked works starting from @work to @head. Work series to
1044 * be scheduled starts at @work and includes any consecutive work with
1045 * WORK_STRUCT_LINKED set in its predecessor.
1046 *
1047 * If @nextp is not NULL, it's updated to point to the next work of
1048 * the last scheduled work. This allows move_linked_works() to be
1049 * nested inside outer list_for_each_entry_safe().
1050 *
1051 * CONTEXT:
d565ed63 1052 * spin_lock_irq(pool->lock).
bf4ede01
TH
1053 */
1054static void move_linked_works(struct work_struct *work, struct list_head *head,
1055 struct work_struct **nextp)
1056{
1057 struct work_struct *n;
1058
1059 /*
1060 * Linked worklist will always end before the end of the list,
1061 * use NULL for list head.
1062 */
1063 list_for_each_entry_safe_from(work, n, NULL, entry) {
1064 list_move_tail(&work->entry, head);
1065 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066 break;
1067 }
1068
1069 /*
1070 * If we're already inside safe list traversal and have moved
1071 * multiple works to the scheduled queue, the next position
1072 * needs to be updated.
1073 */
1074 if (nextp)
1075 *nextp = n;
1076}
1077
8864b4e5
TH
1078/**
1079 * get_pwq - get an extra reference on the specified pool_workqueue
1080 * @pwq: pool_workqueue to get
1081 *
1082 * Obtain an extra reference on @pwq. The caller should guarantee that
1083 * @pwq has positive refcnt and be holding the matching pool->lock.
1084 */
1085static void get_pwq(struct pool_workqueue *pwq)
1086{
1087 lockdep_assert_held(&pwq->pool->lock);
1088 WARN_ON_ONCE(pwq->refcnt <= 0);
1089 pwq->refcnt++;
1090}
1091
1092/**
1093 * put_pwq - put a pool_workqueue reference
1094 * @pwq: pool_workqueue to put
1095 *
1096 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1097 * destruction. The caller should be holding the matching pool->lock.
1098 */
1099static void put_pwq(struct pool_workqueue *pwq)
1100{
1101 lockdep_assert_held(&pwq->pool->lock);
1102 if (likely(--pwq->refcnt))
1103 return;
1104 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105 return;
1106 /*
1107 * @pwq can't be released under pool->lock, bounce to
1108 * pwq_unbound_release_workfn(). This never recurses on the same
1109 * pool->lock as this path is taken only for unbound workqueues and
1110 * the release work item is scheduled on a per-cpu workqueue. To
1111 * avoid lockdep warning, unbound pool->locks are given lockdep
1112 * subclass of 1 in get_unbound_pool().
1113 */
1114 schedule_work(&pwq->unbound_release_work);
1115}
1116
dce90d47
TH
1117/**
1118 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119 * @pwq: pool_workqueue to put (can be %NULL)
1120 *
1121 * put_pwq() with locking. This function also allows %NULL @pwq.
1122 */
1123static void put_pwq_unlocked(struct pool_workqueue *pwq)
1124{
1125 if (pwq) {
1126 /*
1127 * As both pwqs and pools are sched-RCU protected, the
1128 * following lock operations are safe.
1129 */
1130 spin_lock_irq(&pwq->pool->lock);
1131 put_pwq(pwq);
1132 spin_unlock_irq(&pwq->pool->lock);
1133 }
1134}
1135
112202d9 1136static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1137{
112202d9 1138 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1139
1140 trace_workqueue_activate_work(work);
82607adc
TH
1141 if (list_empty(&pwq->pool->worklist))
1142 pwq->pool->watchdog_ts = jiffies;
112202d9 1143 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1144 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1145 pwq->nr_active++;
bf4ede01
TH
1146}
1147
112202d9 1148static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1149{
112202d9 1150 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1151 struct work_struct, entry);
1152
112202d9 1153 pwq_activate_delayed_work(work);
3aa62497
LJ
1154}
1155
bf4ede01 1156/**
112202d9
TH
1157 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158 * @pwq: pwq of interest
bf4ede01 1159 * @color: color of work which left the queue
bf4ede01
TH
1160 *
1161 * A work either has completed or is removed from pending queue,
112202d9 1162 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1163 *
1164 * CONTEXT:
d565ed63 1165 * spin_lock_irq(pool->lock).
bf4ede01 1166 */
112202d9 1167static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1168{
8864b4e5 1169 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1170 if (color == WORK_NO_COLOR)
8864b4e5 1171 goto out_put;
bf4ede01 1172
112202d9 1173 pwq->nr_in_flight[color]--;
bf4ede01 1174
112202d9
TH
1175 pwq->nr_active--;
1176 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1177 /* one down, submit a delayed one */
112202d9
TH
1178 if (pwq->nr_active < pwq->max_active)
1179 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1180 }
1181
1182 /* is flush in progress and are we at the flushing tip? */
112202d9 1183 if (likely(pwq->flush_color != color))
8864b4e5 1184 goto out_put;
bf4ede01
TH
1185
1186 /* are there still in-flight works? */
112202d9 1187 if (pwq->nr_in_flight[color])
8864b4e5 1188 goto out_put;
bf4ede01 1189
112202d9
TH
1190 /* this pwq is done, clear flush_color */
1191 pwq->flush_color = -1;
bf4ede01
TH
1192
1193 /*
112202d9 1194 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1195 * will handle the rest.
1196 */
112202d9
TH
1197 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1199out_put:
1200 put_pwq(pwq);
bf4ede01
TH
1201}
1202
36e227d2 1203/**
bbb68dfa 1204 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1205 * @work: work item to steal
1206 * @is_dwork: @work is a delayed_work
bbb68dfa 1207 * @flags: place to store irq state
36e227d2
TH
1208 *
1209 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1210 * stable state - idle, on timer or on worklist.
36e227d2 1211 *
d185af30 1212 * Return:
36e227d2
TH
1213 * 1 if @work was pending and we successfully stole PENDING
1214 * 0 if @work was idle and we claimed PENDING
1215 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1216 * -ENOENT if someone else is canceling @work, this state may persist
1217 * for arbitrarily long
36e227d2 1218 *
d185af30 1219 * Note:
bbb68dfa 1220 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1221 * interrupted while holding PENDING and @work off queue, irq must be
1222 * disabled on entry. This, combined with delayed_work->timer being
1223 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1224 *
1225 * On successful return, >= 0, irq is disabled and the caller is
1226 * responsible for releasing it using local_irq_restore(*@flags).
1227 *
e0aecdd8 1228 * This function is safe to call from any context including IRQ handler.
bf4ede01 1229 */
bbb68dfa
TH
1230static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231 unsigned long *flags)
bf4ede01 1232{
d565ed63 1233 struct worker_pool *pool;
112202d9 1234 struct pool_workqueue *pwq;
bf4ede01 1235
bbb68dfa
TH
1236 local_irq_save(*flags);
1237
36e227d2
TH
1238 /* try to steal the timer if it exists */
1239 if (is_dwork) {
1240 struct delayed_work *dwork = to_delayed_work(work);
1241
e0aecdd8
TH
1242 /*
1243 * dwork->timer is irqsafe. If del_timer() fails, it's
1244 * guaranteed that the timer is not queued anywhere and not
1245 * running on the local CPU.
1246 */
36e227d2
TH
1247 if (likely(del_timer(&dwork->timer)))
1248 return 1;
1249 }
1250
1251 /* try to claim PENDING the normal way */
bf4ede01
TH
1252 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253 return 0;
1254
1255 /*
1256 * The queueing is in progress, or it is already queued. Try to
1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 */
d565ed63
TH
1259 pool = get_work_pool(work);
1260 if (!pool)
bbb68dfa 1261 goto fail;
bf4ede01 1262
d565ed63 1263 spin_lock(&pool->lock);
0b3dae68 1264 /*
112202d9
TH
1265 * work->data is guaranteed to point to pwq only while the work
1266 * item is queued on pwq->wq, and both updating work->data to point
1267 * to pwq on queueing and to pool on dequeueing are done under
1268 * pwq->pool->lock. This in turn guarantees that, if work->data
1269 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1270 * item is currently queued on that pool.
1271 */
112202d9
TH
1272 pwq = get_work_pwq(work);
1273 if (pwq && pwq->pool == pool) {
16062836
TH
1274 debug_work_deactivate(work);
1275
1276 /*
1277 * A delayed work item cannot be grabbed directly because
1278 * it might have linked NO_COLOR work items which, if left
112202d9 1279 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1280 * management later on and cause stall. Make sure the work
1281 * item is activated before grabbing.
1282 */
1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1284 pwq_activate_delayed_work(work);
16062836
TH
1285
1286 list_del_init(&work->entry);
9c34a704 1287 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1288
112202d9 1289 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1290 set_work_pool_and_keep_pending(work, pool->id);
1291
1292 spin_unlock(&pool->lock);
1293 return 1;
bf4ede01 1294 }
d565ed63 1295 spin_unlock(&pool->lock);
bbb68dfa
TH
1296fail:
1297 local_irq_restore(*flags);
1298 if (work_is_canceling(work))
1299 return -ENOENT;
1300 cpu_relax();
36e227d2 1301 return -EAGAIN;
bf4ede01
TH
1302}
1303
4690c4ab 1304/**
706026c2 1305 * insert_work - insert a work into a pool
112202d9 1306 * @pwq: pwq @work belongs to
4690c4ab
TH
1307 * @work: work to insert
1308 * @head: insertion point
1309 * @extra_flags: extra WORK_STRUCT_* flags to set
1310 *
112202d9 1311 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1312 * work_struct flags.
4690c4ab
TH
1313 *
1314 * CONTEXT:
d565ed63 1315 * spin_lock_irq(pool->lock).
4690c4ab 1316 */
112202d9
TH
1317static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318 struct list_head *head, unsigned int extra_flags)
b89deed3 1319{
112202d9 1320 struct worker_pool *pool = pwq->pool;
e22bee78 1321
4690c4ab 1322 /* we own @work, set data and link */
112202d9 1323 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1324 list_add_tail(&work->entry, head);
8864b4e5 1325 get_pwq(pwq);
e22bee78
TH
1326
1327 /*
c5aa87bb
TH
1328 * Ensure either wq_worker_sleeping() sees the above
1329 * list_add_tail() or we see zero nr_running to avoid workers lying
1330 * around lazily while there are works to be processed.
e22bee78
TH
1331 */
1332 smp_mb();
1333
63d95a91
TH
1334 if (__need_more_worker(pool))
1335 wake_up_worker(pool);
b89deed3
ON
1336}
1337
c8efcc25
TH
1338/*
1339 * Test whether @work is being queued from another work executing on the
8d03ecfe 1340 * same workqueue.
c8efcc25
TH
1341 */
1342static bool is_chained_work(struct workqueue_struct *wq)
1343{
8d03ecfe
TH
1344 struct worker *worker;
1345
1346 worker = current_wq_worker();
1347 /*
1348 * Return %true iff I'm a worker execuing a work item on @wq. If
1349 * I'm @worker, it's safe to dereference it without locking.
1350 */
112202d9 1351 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1352}
1353
ef557180
MG
1354/*
1355 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1357 * avoid perturbing sensitive tasks.
1358 */
1359static int wq_select_unbound_cpu(int cpu)
1360{
f303fccb 1361 static bool printed_dbg_warning;
ef557180
MG
1362 int new_cpu;
1363
f303fccb
TH
1364 if (likely(!wq_debug_force_rr_cpu)) {
1365 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366 return cpu;
1367 } else if (!printed_dbg_warning) {
1368 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369 printed_dbg_warning = true;
1370 }
1371
ef557180
MG
1372 if (cpumask_empty(wq_unbound_cpumask))
1373 return cpu;
1374
1375 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377 if (unlikely(new_cpu >= nr_cpu_ids)) {
1378 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379 if (unlikely(new_cpu >= nr_cpu_ids))
1380 return cpu;
1381 }
1382 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1383
1384 return new_cpu;
1385}
1386
d84ff051 1387static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1388 struct work_struct *work)
1389{
112202d9 1390 struct pool_workqueue *pwq;
c9178087 1391 struct worker_pool *last_pool;
1e19ffc6 1392 struct list_head *worklist;
8a2e8e5d 1393 unsigned int work_flags;
b75cac93 1394 unsigned int req_cpu = cpu;
8930caba
TH
1395
1396 /*
1397 * While a work item is PENDING && off queue, a task trying to
1398 * steal the PENDING will busy-loop waiting for it to either get
1399 * queued or lose PENDING. Grabbing PENDING and queueing should
1400 * happen with IRQ disabled.
1401 */
1402 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1403
dc186ad7 1404 debug_work_activate(work);
1e19ffc6 1405
9ef28a73 1406 /* if draining, only works from the same workqueue are allowed */
618b01eb 1407 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1408 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1409 return;
9e8cd2f5 1410retry:
df2d5ae4 1411 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1412 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1413
c9178087 1414 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1415 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1416 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1417 else
1418 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1419
c9178087
TH
1420 /*
1421 * If @work was previously on a different pool, it might still be
1422 * running there, in which case the work needs to be queued on that
1423 * pool to guarantee non-reentrancy.
1424 */
1425 last_pool = get_work_pool(work);
1426 if (last_pool && last_pool != pwq->pool) {
1427 struct worker *worker;
18aa9eff 1428
c9178087 1429 spin_lock(&last_pool->lock);
18aa9eff 1430
c9178087 1431 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1432
c9178087
TH
1433 if (worker && worker->current_pwq->wq == wq) {
1434 pwq = worker->current_pwq;
8930caba 1435 } else {
c9178087
TH
1436 /* meh... not running there, queue here */
1437 spin_unlock(&last_pool->lock);
112202d9 1438 spin_lock(&pwq->pool->lock);
8930caba 1439 }
f3421797 1440 } else {
112202d9 1441 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1442 }
1443
9e8cd2f5
TH
1444 /*
1445 * pwq is determined and locked. For unbound pools, we could have
1446 * raced with pwq release and it could already be dead. If its
1447 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1448 * without another pwq replacing it in the numa_pwq_tbl or while
1449 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1450 * make forward-progress.
1451 */
1452 if (unlikely(!pwq->refcnt)) {
1453 if (wq->flags & WQ_UNBOUND) {
1454 spin_unlock(&pwq->pool->lock);
1455 cpu_relax();
1456 goto retry;
1457 }
1458 /* oops */
1459 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460 wq->name, cpu);
1461 }
1462
112202d9
TH
1463 /* pwq determined, queue */
1464 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1465
f5b2552b 1466 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1467 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1468 return;
1469 }
1e19ffc6 1470
112202d9
TH
1471 pwq->nr_in_flight[pwq->work_color]++;
1472 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1473
112202d9 1474 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1475 trace_workqueue_activate_work(work);
112202d9
TH
1476 pwq->nr_active++;
1477 worklist = &pwq->pool->worklist;
82607adc
TH
1478 if (list_empty(worklist))
1479 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1480 } else {
1481 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1482 worklist = &pwq->delayed_works;
8a2e8e5d 1483 }
1e19ffc6 1484
112202d9 1485 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1486
112202d9 1487 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1488}
1489
0fcb78c2 1490/**
c1a220e7
ZR
1491 * queue_work_on - queue work on specific cpu
1492 * @cpu: CPU number to execute work on
0fcb78c2
REB
1493 * @wq: workqueue to use
1494 * @work: work to queue
1495 *
c1a220e7
ZR
1496 * We queue the work to a specific CPU, the caller must ensure it
1497 * can't go away.
d185af30
YB
1498 *
1499 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1500 */
d4283e93
TH
1501bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502 struct work_struct *work)
1da177e4 1503{
d4283e93 1504 bool ret = false;
8930caba 1505 unsigned long flags;
ef1ca236 1506
8930caba 1507 local_irq_save(flags);
c1a220e7 1508
22df02bb 1509 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1510 __queue_work(cpu, wq, work);
d4283e93 1511 ret = true;
c1a220e7 1512 }
ef1ca236 1513
8930caba 1514 local_irq_restore(flags);
1da177e4
LT
1515 return ret;
1516}
ad7b1f84 1517EXPORT_SYMBOL(queue_work_on);
1da177e4 1518
d8e794df 1519void delayed_work_timer_fn(unsigned long __data)
1da177e4 1520{
52bad64d 1521 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1522
e0aecdd8 1523 /* should have been called from irqsafe timer with irq already off */
60c057bc 1524 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1525}
1438ade5 1526EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1527
7beb2edf
TH
1528static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529 struct delayed_work *dwork, unsigned long delay)
1da177e4 1530{
7beb2edf
TH
1531 struct timer_list *timer = &dwork->timer;
1532 struct work_struct *work = &dwork->work;
7beb2edf
TH
1533
1534 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535 timer->data != (unsigned long)dwork);
fc4b514f
TH
1536 WARN_ON_ONCE(timer_pending(timer));
1537 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1538
8852aac2
TH
1539 /*
1540 * If @delay is 0, queue @dwork->work immediately. This is for
1541 * both optimization and correctness. The earliest @timer can
1542 * expire is on the closest next tick and delayed_work users depend
1543 * on that there's no such delay when @delay is 0.
1544 */
1545 if (!delay) {
1546 __queue_work(cpu, wq, &dwork->work);
1547 return;
1548 }
1549
7beb2edf 1550 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1551
60c057bc 1552 dwork->wq = wq;
1265057f 1553 dwork->cpu = cpu;
7beb2edf
TH
1554 timer->expires = jiffies + delay;
1555
041bd12e
TH
1556 if (unlikely(cpu != WORK_CPU_UNBOUND))
1557 add_timer_on(timer, cpu);
1558 else
1559 add_timer(timer);
1da177e4
LT
1560}
1561
0fcb78c2
REB
1562/**
1563 * queue_delayed_work_on - queue work on specific CPU after delay
1564 * @cpu: CPU number to execute work on
1565 * @wq: workqueue to use
af9997e4 1566 * @dwork: work to queue
0fcb78c2
REB
1567 * @delay: number of jiffies to wait before queueing
1568 *
d185af30 1569 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1570 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571 * execution.
0fcb78c2 1572 */
d4283e93
TH
1573bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1575{
52bad64d 1576 struct work_struct *work = &dwork->work;
d4283e93 1577 bool ret = false;
8930caba 1578 unsigned long flags;
7a6bc1cd 1579
8930caba
TH
1580 /* read the comment in __queue_work() */
1581 local_irq_save(flags);
7a6bc1cd 1582
22df02bb 1583 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1584 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1585 ret = true;
7a6bc1cd 1586 }
8a3e77cc 1587
8930caba 1588 local_irq_restore(flags);
7a6bc1cd
VP
1589 return ret;
1590}
ad7b1f84 1591EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1592
8376fe22
TH
1593/**
1594 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595 * @cpu: CPU number to execute work on
1596 * @wq: workqueue to use
1597 * @dwork: work to queue
1598 * @delay: number of jiffies to wait before queueing
1599 *
1600 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601 * modify @dwork's timer so that it expires after @delay. If @delay is
1602 * zero, @work is guaranteed to be scheduled immediately regardless of its
1603 * current state.
1604 *
d185af30 1605 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1606 * pending and its timer was modified.
1607 *
e0aecdd8 1608 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1609 * See try_to_grab_pending() for details.
1610 */
1611bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612 struct delayed_work *dwork, unsigned long delay)
1613{
1614 unsigned long flags;
1615 int ret;
c7fc77f7 1616
8376fe22
TH
1617 do {
1618 ret = try_to_grab_pending(&dwork->work, true, &flags);
1619 } while (unlikely(ret == -EAGAIN));
63bc0362 1620
8376fe22
TH
1621 if (likely(ret >= 0)) {
1622 __queue_delayed_work(cpu, wq, dwork, delay);
1623 local_irq_restore(flags);
7a6bc1cd 1624 }
8376fe22
TH
1625
1626 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1627 return ret;
1628}
8376fe22
TH
1629EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1630
c8e55f36
TH
1631/**
1632 * worker_enter_idle - enter idle state
1633 * @worker: worker which is entering idle state
1634 *
1635 * @worker is entering idle state. Update stats and idle timer if
1636 * necessary.
1637 *
1638 * LOCKING:
d565ed63 1639 * spin_lock_irq(pool->lock).
c8e55f36
TH
1640 */
1641static void worker_enter_idle(struct worker *worker)
1da177e4 1642{
bd7bdd43 1643 struct worker_pool *pool = worker->pool;
c8e55f36 1644
6183c009
TH
1645 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647 (worker->hentry.next || worker->hentry.pprev)))
1648 return;
c8e55f36 1649
051e1850 1650 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1651 worker->flags |= WORKER_IDLE;
bd7bdd43 1652 pool->nr_idle++;
e22bee78 1653 worker->last_active = jiffies;
c8e55f36
TH
1654
1655 /* idle_list is LIFO */
bd7bdd43 1656 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1657
628c78e7
TH
1658 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1660
544ecf31 1661 /*
706026c2 1662 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1663 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1664 * nr_running, the warning may trigger spuriously. Check iff
1665 * unbind is not in progress.
544ecf31 1666 */
24647570 1667 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1668 pool->nr_workers == pool->nr_idle &&
e19e397a 1669 atomic_read(&pool->nr_running));
c8e55f36
TH
1670}
1671
1672/**
1673 * worker_leave_idle - leave idle state
1674 * @worker: worker which is leaving idle state
1675 *
1676 * @worker is leaving idle state. Update stats.
1677 *
1678 * LOCKING:
d565ed63 1679 * spin_lock_irq(pool->lock).
c8e55f36
TH
1680 */
1681static void worker_leave_idle(struct worker *worker)
1682{
bd7bdd43 1683 struct worker_pool *pool = worker->pool;
c8e55f36 1684
6183c009
TH
1685 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686 return;
d302f017 1687 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1688 pool->nr_idle--;
c8e55f36
TH
1689 list_del_init(&worker->entry);
1690}
1691
f7537df5 1692static struct worker *alloc_worker(int node)
c34056a3
TH
1693{
1694 struct worker *worker;
1695
f7537df5 1696 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1697 if (worker) {
1698 INIT_LIST_HEAD(&worker->entry);
affee4b2 1699 INIT_LIST_HEAD(&worker->scheduled);
da028469 1700 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1701 /* on creation a worker is in !idle && prep state */
1702 worker->flags = WORKER_PREP;
c8e55f36 1703 }
c34056a3
TH
1704 return worker;
1705}
1706
4736cbf7
LJ
1707/**
1708 * worker_attach_to_pool() - attach a worker to a pool
1709 * @worker: worker to be attached
1710 * @pool: the target pool
1711 *
1712 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1713 * cpu-binding of @worker are kept coordinated with the pool across
1714 * cpu-[un]hotplugs.
1715 */
1716static void worker_attach_to_pool(struct worker *worker,
1717 struct worker_pool *pool)
1718{
1719 mutex_lock(&pool->attach_mutex);
1720
1721 /*
1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 * online CPUs. It'll be re-applied when any of the CPUs come up.
1724 */
1725 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726
1727 /*
1728 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729 * stable across this function. See the comments above the
1730 * flag definition for details.
1731 */
1732 if (pool->flags & POOL_DISASSOCIATED)
1733 worker->flags |= WORKER_UNBOUND;
1734
1735 list_add_tail(&worker->node, &pool->workers);
1736
1737 mutex_unlock(&pool->attach_mutex);
1738}
1739
60f5a4bc
LJ
1740/**
1741 * worker_detach_from_pool() - detach a worker from its pool
1742 * @worker: worker which is attached to its pool
1743 * @pool: the pool @worker is attached to
1744 *
4736cbf7
LJ
1745 * Undo the attaching which had been done in worker_attach_to_pool(). The
1746 * caller worker shouldn't access to the pool after detached except it has
1747 * other reference to the pool.
60f5a4bc
LJ
1748 */
1749static void worker_detach_from_pool(struct worker *worker,
1750 struct worker_pool *pool)
1751{
1752 struct completion *detach_completion = NULL;
1753
92f9c5c4 1754 mutex_lock(&pool->attach_mutex);
da028469
LJ
1755 list_del(&worker->node);
1756 if (list_empty(&pool->workers))
60f5a4bc 1757 detach_completion = pool->detach_completion;
92f9c5c4 1758 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1759
b62c0751
LJ
1760 /* clear leftover flags without pool->lock after it is detached */
1761 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1762
60f5a4bc
LJ
1763 if (detach_completion)
1764 complete(detach_completion);
1765}
1766
c34056a3
TH
1767/**
1768 * create_worker - create a new workqueue worker
63d95a91 1769 * @pool: pool the new worker will belong to
c34056a3 1770 *
051e1850 1771 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1772 *
1773 * CONTEXT:
1774 * Might sleep. Does GFP_KERNEL allocations.
1775 *
d185af30 1776 * Return:
c34056a3
TH
1777 * Pointer to the newly created worker.
1778 */
bc2ae0f5 1779static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1780{
c34056a3 1781 struct worker *worker = NULL;
f3421797 1782 int id = -1;
e3c916a4 1783 char id_buf[16];
c34056a3 1784
7cda9aae
LJ
1785 /* ID is needed to determine kthread name */
1786 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1787 if (id < 0)
1788 goto fail;
c34056a3 1789
f7537df5 1790 worker = alloc_worker(pool->node);
c34056a3
TH
1791 if (!worker)
1792 goto fail;
1793
bd7bdd43 1794 worker->pool = pool;
c34056a3
TH
1795 worker->id = id;
1796
29c91e99 1797 if (pool->cpu >= 0)
e3c916a4
TH
1798 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799 pool->attrs->nice < 0 ? "H" : "");
f3421797 1800 else
e3c916a4
TH
1801 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1802
f3f90ad4 1803 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1804 "kworker/%s", id_buf);
c34056a3
TH
1805 if (IS_ERR(worker->task))
1806 goto fail;
1807
91151228 1808 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1809 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1810
da028469 1811 /* successful, attach the worker to the pool */
4736cbf7 1812 worker_attach_to_pool(worker, pool);
822d8405 1813
051e1850
LJ
1814 /* start the newly created worker */
1815 spin_lock_irq(&pool->lock);
1816 worker->pool->nr_workers++;
1817 worker_enter_idle(worker);
1818 wake_up_process(worker->task);
1819 spin_unlock_irq(&pool->lock);
1820
c34056a3 1821 return worker;
822d8405 1822
c34056a3 1823fail:
9625ab17 1824 if (id >= 0)
7cda9aae 1825 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1826 kfree(worker);
1827 return NULL;
1828}
1829
c34056a3
TH
1830/**
1831 * destroy_worker - destroy a workqueue worker
1832 * @worker: worker to be destroyed
1833 *
73eb7fe7
LJ
1834 * Destroy @worker and adjust @pool stats accordingly. The worker should
1835 * be idle.
c8e55f36
TH
1836 *
1837 * CONTEXT:
60f5a4bc 1838 * spin_lock_irq(pool->lock).
c34056a3
TH
1839 */
1840static void destroy_worker(struct worker *worker)
1841{
bd7bdd43 1842 struct worker_pool *pool = worker->pool;
c34056a3 1843
cd549687
TH
1844 lockdep_assert_held(&pool->lock);
1845
c34056a3 1846 /* sanity check frenzy */
6183c009 1847 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1848 WARN_ON(!list_empty(&worker->scheduled)) ||
1849 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1850 return;
c34056a3 1851
73eb7fe7
LJ
1852 pool->nr_workers--;
1853 pool->nr_idle--;
5bdfff96 1854
c8e55f36 1855 list_del_init(&worker->entry);
cb444766 1856 worker->flags |= WORKER_DIE;
60f5a4bc 1857 wake_up_process(worker->task);
c34056a3
TH
1858}
1859
63d95a91 1860static void idle_worker_timeout(unsigned long __pool)
e22bee78 1861{
63d95a91 1862 struct worker_pool *pool = (void *)__pool;
e22bee78 1863
d565ed63 1864 spin_lock_irq(&pool->lock);
e22bee78 1865
3347fc9f 1866 while (too_many_workers(pool)) {
e22bee78
TH
1867 struct worker *worker;
1868 unsigned long expires;
1869
1870 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1871 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1872 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
3347fc9f 1874 if (time_before(jiffies, expires)) {
63d95a91 1875 mod_timer(&pool->idle_timer, expires);
3347fc9f 1876 break;
d5abe669 1877 }
3347fc9f
LJ
1878
1879 destroy_worker(worker);
e22bee78
TH
1880 }
1881
d565ed63 1882 spin_unlock_irq(&pool->lock);
e22bee78 1883}
d5abe669 1884
493a1724 1885static void send_mayday(struct work_struct *work)
e22bee78 1886{
112202d9
TH
1887 struct pool_workqueue *pwq = get_work_pwq(work);
1888 struct workqueue_struct *wq = pwq->wq;
493a1724 1889
2e109a28 1890 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1891
493008a8 1892 if (!wq->rescuer)
493a1724 1893 return;
e22bee78
TH
1894
1895 /* mayday mayday mayday */
493a1724 1896 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1897 /*
1898 * If @pwq is for an unbound wq, its base ref may be put at
1899 * any time due to an attribute change. Pin @pwq until the
1900 * rescuer is done with it.
1901 */
1902 get_pwq(pwq);
493a1724 1903 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1904 wake_up_process(wq->rescuer->task);
493a1724 1905 }
e22bee78
TH
1906}
1907
706026c2 1908static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1909{
63d95a91 1910 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1911 struct work_struct *work;
1912
b2d82909
TH
1913 spin_lock_irq(&pool->lock);
1914 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1915
63d95a91 1916 if (need_to_create_worker(pool)) {
e22bee78
TH
1917 /*
1918 * We've been trying to create a new worker but
1919 * haven't been successful. We might be hitting an
1920 * allocation deadlock. Send distress signals to
1921 * rescuers.
1922 */
63d95a91 1923 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1924 send_mayday(work);
1da177e4 1925 }
e22bee78 1926
b2d82909
TH
1927 spin_unlock(&wq_mayday_lock);
1928 spin_unlock_irq(&pool->lock);
e22bee78 1929
63d95a91 1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1931}
1932
e22bee78
TH
1933/**
1934 * maybe_create_worker - create a new worker if necessary
63d95a91 1935 * @pool: pool to create a new worker for
e22bee78 1936 *
63d95a91 1937 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1938 * have at least one idle worker on return from this function. If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1940 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1941 * possible allocation deadlock.
1942 *
c5aa87bb
TH
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
e22bee78
TH
1945 *
1946 * LOCKING:
d565ed63 1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1948 * multiple times. Does GFP_KERNEL allocations. Called only from
1949 * manager.
e22bee78 1950 */
29187a9e 1951static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1952__releases(&pool->lock)
1953__acquires(&pool->lock)
1da177e4 1954{
e22bee78 1955restart:
d565ed63 1956 spin_unlock_irq(&pool->lock);
9f9c2364 1957
e22bee78 1958 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1959 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1960
1961 while (true) {
051e1850 1962 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1963 break;
1da177e4 1964
e212f361 1965 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1966
63d95a91 1967 if (!need_to_create_worker(pool))
e22bee78
TH
1968 break;
1969 }
1970
63d95a91 1971 del_timer_sync(&pool->mayday_timer);
d565ed63 1972 spin_lock_irq(&pool->lock);
051e1850
LJ
1973 /*
1974 * This is necessary even after a new worker was just successfully
1975 * created as @pool->lock was dropped and the new worker might have
1976 * already become busy.
1977 */
63d95a91 1978 if (need_to_create_worker(pool))
e22bee78 1979 goto restart;
e22bee78
TH
1980}
1981
73f53c4a 1982/**
e22bee78
TH
1983 * manage_workers - manage worker pool
1984 * @worker: self
73f53c4a 1985 *
706026c2 1986 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1987 * to. At any given time, there can be only zero or one manager per
706026c2 1988 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1989 *
1990 * The caller can safely start processing works on false return. On
1991 * true return, it's guaranteed that need_to_create_worker() is false
1992 * and may_start_working() is true.
73f53c4a
TH
1993 *
1994 * CONTEXT:
d565ed63 1995 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1996 * multiple times. Does GFP_KERNEL allocations.
1997 *
d185af30 1998 * Return:
29187a9e
TH
1999 * %false if the pool doesn't need management and the caller can safely
2000 * start processing works, %true if management function was performed and
2001 * the conditions that the caller verified before calling the function may
2002 * no longer be true.
73f53c4a 2003 */
e22bee78 2004static bool manage_workers(struct worker *worker)
73f53c4a 2005{
63d95a91 2006 struct worker_pool *pool = worker->pool;
73f53c4a 2007
bc3a1afc 2008 /*
bc3a1afc
TH
2009 * Anyone who successfully grabs manager_arb wins the arbitration
2010 * and becomes the manager. mutex_trylock() on pool->manager_arb
2011 * failure while holding pool->lock reliably indicates that someone
2012 * else is managing the pool and the worker which failed trylock
2013 * can proceed to executing work items. This means that anyone
2014 * grabbing manager_arb is responsible for actually performing
2015 * manager duties. If manager_arb is grabbed and released without
2016 * actual management, the pool may stall indefinitely.
bc3a1afc 2017 */
34a06bd6 2018 if (!mutex_trylock(&pool->manager_arb))
29187a9e 2019 return false;
2607d7a6 2020 pool->manager = worker;
1e19ffc6 2021
29187a9e 2022 maybe_create_worker(pool);
e22bee78 2023
2607d7a6 2024 pool->manager = NULL;
34a06bd6 2025 mutex_unlock(&pool->manager_arb);
29187a9e 2026 return true;
73f53c4a
TH
2027}
2028
a62428c0
TH
2029/**
2030 * process_one_work - process single work
c34056a3 2031 * @worker: self
a62428c0
TH
2032 * @work: work to process
2033 *
2034 * Process @work. This function contains all the logics necessary to
2035 * process a single work including synchronization against and
2036 * interaction with other workers on the same cpu, queueing and
2037 * flushing. As long as context requirement is met, any worker can
2038 * call this function to process a work.
2039 *
2040 * CONTEXT:
d565ed63 2041 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2042 */
c34056a3 2043static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2044__releases(&pool->lock)
2045__acquires(&pool->lock)
a62428c0 2046{
112202d9 2047 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2048 struct worker_pool *pool = worker->pool;
112202d9 2049 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2050 int work_color;
7e11629d 2051 struct worker *collision;
a62428c0
TH
2052#ifdef CONFIG_LOCKDEP
2053 /*
2054 * It is permissible to free the struct work_struct from
2055 * inside the function that is called from it, this we need to
2056 * take into account for lockdep too. To avoid bogus "held
2057 * lock freed" warnings as well as problems when looking into
2058 * work->lockdep_map, make a copy and use that here.
2059 */
4d82a1de
PZ
2060 struct lockdep_map lockdep_map;
2061
2062 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2063#endif
807407c0 2064 /* ensure we're on the correct CPU */
85327af6 2065 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2066 raw_smp_processor_id() != pool->cpu);
25511a47 2067
7e11629d
TH
2068 /*
2069 * A single work shouldn't be executed concurrently by
2070 * multiple workers on a single cpu. Check whether anyone is
2071 * already processing the work. If so, defer the work to the
2072 * currently executing one.
2073 */
c9e7cf27 2074 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2075 if (unlikely(collision)) {
2076 move_linked_works(work, &collision->scheduled, NULL);
2077 return;
2078 }
2079
8930caba 2080 /* claim and dequeue */
a62428c0 2081 debug_work_deactivate(work);
c9e7cf27 2082 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2083 worker->current_work = work;
a2c1c57b 2084 worker->current_func = work->func;
112202d9 2085 worker->current_pwq = pwq;
73f53c4a 2086 work_color = get_work_color(work);
7a22ad75 2087
a62428c0
TH
2088 list_del_init(&work->entry);
2089
fb0e7beb 2090 /*
228f1d00
LJ
2091 * CPU intensive works don't participate in concurrency management.
2092 * They're the scheduler's responsibility. This takes @worker out
2093 * of concurrency management and the next code block will chain
2094 * execution of the pending work items.
fb0e7beb
TH
2095 */
2096 if (unlikely(cpu_intensive))
228f1d00 2097 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2098
974271c4 2099 /*
a489a03e
LJ
2100 * Wake up another worker if necessary. The condition is always
2101 * false for normal per-cpu workers since nr_running would always
2102 * be >= 1 at this point. This is used to chain execution of the
2103 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2104 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2105 */
a489a03e 2106 if (need_more_worker(pool))
63d95a91 2107 wake_up_worker(pool);
974271c4 2108
8930caba 2109 /*
7c3eed5c 2110 * Record the last pool and clear PENDING which should be the last
d565ed63 2111 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2112 * PENDING and queued state changes happen together while IRQ is
2113 * disabled.
8930caba 2114 */
7c3eed5c 2115 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2116
d565ed63 2117 spin_unlock_irq(&pool->lock);
a62428c0 2118
112202d9 2119 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2120 lock_map_acquire(&lockdep_map);
e36c886a 2121 trace_workqueue_execute_start(work);
a2c1c57b 2122 worker->current_func(work);
e36c886a
AV
2123 /*
2124 * While we must be careful to not use "work" after this, the trace
2125 * point will only record its address.
2126 */
2127 trace_workqueue_execute_end(work);
a62428c0 2128 lock_map_release(&lockdep_map);
112202d9 2129 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2130
2131 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2132 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133 " last function: %pf\n",
a2c1c57b
TH
2134 current->comm, preempt_count(), task_pid_nr(current),
2135 worker->current_func);
a62428c0
TH
2136 debug_show_held_locks(current);
2137 dump_stack();
2138 }
2139
b22ce278
TH
2140 /*
2141 * The following prevents a kworker from hogging CPU on !PREEMPT
2142 * kernels, where a requeueing work item waiting for something to
2143 * happen could deadlock with stop_machine as such work item could
2144 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2145 * stop_machine. At the same time, report a quiescent RCU state so
2146 * the same condition doesn't freeze RCU.
b22ce278 2147 */
3e28e377 2148 cond_resched_rcu_qs();
b22ce278 2149
d565ed63 2150 spin_lock_irq(&pool->lock);
a62428c0 2151
fb0e7beb
TH
2152 /* clear cpu intensive status */
2153 if (unlikely(cpu_intensive))
2154 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2155
a62428c0 2156 /* we're done with it, release */
42f8570f 2157 hash_del(&worker->hentry);
c34056a3 2158 worker->current_work = NULL;
a2c1c57b 2159 worker->current_func = NULL;
112202d9 2160 worker->current_pwq = NULL;
3d1cb205 2161 worker->desc_valid = false;
112202d9 2162 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2163}
2164
affee4b2
TH
2165/**
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2168 *
2169 * Process all scheduled works. Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2172 *
2173 * CONTEXT:
d565ed63 2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2175 * multiple times.
2176 */
2177static void process_scheduled_works(struct worker *worker)
1da177e4 2178{
affee4b2
TH
2179 while (!list_empty(&worker->scheduled)) {
2180 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2181 struct work_struct, entry);
c34056a3 2182 process_one_work(worker, work);
1da177e4 2183 }
1da177e4
LT
2184}
2185
4690c4ab
TH
2186/**
2187 * worker_thread - the worker thread function
c34056a3 2188 * @__worker: self
4690c4ab 2189 *
c5aa87bb
TH
2190 * The worker thread function. All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one. These workers process all
2192 * work items regardless of their specific target workqueue. The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
d185af30
YB
2195 *
2196 * Return: 0
4690c4ab 2197 */
c34056a3 2198static int worker_thread(void *__worker)
1da177e4 2199{
c34056a3 2200 struct worker *worker = __worker;
bd7bdd43 2201 struct worker_pool *pool = worker->pool;
1da177e4 2202
e22bee78
TH
2203 /* tell the scheduler that this is a workqueue worker */
2204 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2205woke_up:
d565ed63 2206 spin_lock_irq(&pool->lock);
1da177e4 2207
a9ab775b
TH
2208 /* am I supposed to die? */
2209 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2210 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2211 WARN_ON_ONCE(!list_empty(&worker->entry));
2212 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2213
2214 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2215 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2216 worker_detach_from_pool(worker, pool);
2217 kfree(worker);
a9ab775b 2218 return 0;
c8e55f36 2219 }
affee4b2 2220
c8e55f36 2221 worker_leave_idle(worker);
db7bccf4 2222recheck:
e22bee78 2223 /* no more worker necessary? */
63d95a91 2224 if (!need_more_worker(pool))
e22bee78
TH
2225 goto sleep;
2226
2227 /* do we need to manage? */
63d95a91 2228 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2229 goto recheck;
2230
c8e55f36
TH
2231 /*
2232 * ->scheduled list can only be filled while a worker is
2233 * preparing to process a work or actually processing it.
2234 * Make sure nobody diddled with it while I was sleeping.
2235 */
6183c009 2236 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2237
e22bee78 2238 /*
a9ab775b
TH
2239 * Finish PREP stage. We're guaranteed to have at least one idle
2240 * worker or that someone else has already assumed the manager
2241 * role. This is where @worker starts participating in concurrency
2242 * management if applicable and concurrency management is restored
2243 * after being rebound. See rebind_workers() for details.
e22bee78 2244 */
a9ab775b 2245 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2246
2247 do {
c8e55f36 2248 struct work_struct *work =
bd7bdd43 2249 list_first_entry(&pool->worklist,
c8e55f36
TH
2250 struct work_struct, entry);
2251
82607adc
TH
2252 pool->watchdog_ts = jiffies;
2253
c8e55f36
TH
2254 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255 /* optimization path, not strictly necessary */
2256 process_one_work(worker, work);
2257 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2258 process_scheduled_works(worker);
c8e55f36
TH
2259 } else {
2260 move_linked_works(work, &worker->scheduled, NULL);
2261 process_scheduled_works(worker);
affee4b2 2262 }
63d95a91 2263 } while (keep_working(pool));
e22bee78 2264
228f1d00 2265 worker_set_flags(worker, WORKER_PREP);
d313dd85 2266sleep:
c8e55f36 2267 /*
d565ed63
TH
2268 * pool->lock is held and there's no work to process and no need to
2269 * manage, sleep. Workers are woken up only while holding
2270 * pool->lock or from local cpu, so setting the current state
2271 * before releasing pool->lock is enough to prevent losing any
2272 * event.
c8e55f36
TH
2273 */
2274 worker_enter_idle(worker);
2275 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2276 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2277 schedule();
2278 goto woke_up;
1da177e4
LT
2279}
2280
e22bee78
TH
2281/**
2282 * rescuer_thread - the rescuer thread function
111c225a 2283 * @__rescuer: self
e22bee78
TH
2284 *
2285 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2286 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2287 *
706026c2 2288 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2289 * worker which uses GFP_KERNEL allocation which has slight chance of
2290 * developing into deadlock if some works currently on the same queue
2291 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2292 * the problem rescuer solves.
2293 *
706026c2
TH
2294 * When such condition is possible, the pool summons rescuers of all
2295 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2296 * those works so that forward progress can be guaranteed.
2297 *
2298 * This should happen rarely.
d185af30
YB
2299 *
2300 * Return: 0
e22bee78 2301 */
111c225a 2302static int rescuer_thread(void *__rescuer)
e22bee78 2303{
111c225a
TH
2304 struct worker *rescuer = __rescuer;
2305 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2306 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2307 bool should_stop;
e22bee78
TH
2308
2309 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2310
2311 /*
2312 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2313 * doesn't participate in concurrency management.
2314 */
2315 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2316repeat:
2317 set_current_state(TASK_INTERRUPTIBLE);
2318
4d595b86
LJ
2319 /*
2320 * By the time the rescuer is requested to stop, the workqueue
2321 * shouldn't have any work pending, but @wq->maydays may still have
2322 * pwq(s) queued. This can happen by non-rescuer workers consuming
2323 * all the work items before the rescuer got to them. Go through
2324 * @wq->maydays processing before acting on should_stop so that the
2325 * list is always empty on exit.
2326 */
2327 should_stop = kthread_should_stop();
e22bee78 2328
493a1724 2329 /* see whether any pwq is asking for help */
2e109a28 2330 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2331
2332 while (!list_empty(&wq->maydays)) {
2333 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334 struct pool_workqueue, mayday_node);
112202d9 2335 struct worker_pool *pool = pwq->pool;
e22bee78 2336 struct work_struct *work, *n;
82607adc 2337 bool first = true;
e22bee78
TH
2338
2339 __set_current_state(TASK_RUNNING);
493a1724
TH
2340 list_del_init(&pwq->mayday_node);
2341
2e109a28 2342 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2343
51697d39
LJ
2344 worker_attach_to_pool(rescuer, pool);
2345
2346 spin_lock_irq(&pool->lock);
b3104104 2347 rescuer->pool = pool;
e22bee78
TH
2348
2349 /*
2350 * Slurp in all works issued via this workqueue and
2351 * process'em.
2352 */
0479c8c5 2353 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2354 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355 if (get_work_pwq(work) == pwq) {
2356 if (first)
2357 pool->watchdog_ts = jiffies;
e22bee78 2358 move_linked_works(work, scheduled, &n);
82607adc
TH
2359 }
2360 first = false;
2361 }
e22bee78 2362
008847f6
N
2363 if (!list_empty(scheduled)) {
2364 process_scheduled_works(rescuer);
2365
2366 /*
2367 * The above execution of rescued work items could
2368 * have created more to rescue through
2369 * pwq_activate_first_delayed() or chained
2370 * queueing. Let's put @pwq back on mayday list so
2371 * that such back-to-back work items, which may be
2372 * being used to relieve memory pressure, don't
2373 * incur MAYDAY_INTERVAL delay inbetween.
2374 */
2375 if (need_to_create_worker(pool)) {
2376 spin_lock(&wq_mayday_lock);
2377 get_pwq(pwq);
2378 list_move_tail(&pwq->mayday_node, &wq->maydays);
2379 spin_unlock(&wq_mayday_lock);
2380 }
2381 }
7576958a 2382
77668c8b
LJ
2383 /*
2384 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2385 * go away while we're still attached to it.
77668c8b
LJ
2386 */
2387 put_pwq(pwq);
2388
7576958a 2389 /*
d8ca83e6 2390 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2391 * regular worker; otherwise, we end up with 0 concurrency
2392 * and stalling the execution.
2393 */
d8ca83e6 2394 if (need_more_worker(pool))
63d95a91 2395 wake_up_worker(pool);
7576958a 2396
b3104104 2397 rescuer->pool = NULL;
13b1d625
LJ
2398 spin_unlock_irq(&pool->lock);
2399
2400 worker_detach_from_pool(rescuer, pool);
2401
2402 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2403 }
2404
2e109a28 2405 spin_unlock_irq(&wq_mayday_lock);
493a1724 2406
4d595b86
LJ
2407 if (should_stop) {
2408 __set_current_state(TASK_RUNNING);
2409 rescuer->task->flags &= ~PF_WQ_WORKER;
2410 return 0;
2411 }
2412
111c225a
TH
2413 /* rescuers should never participate in concurrency management */
2414 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2415 schedule();
2416 goto repeat;
1da177e4
LT
2417}
2418
fca839c0
TH
2419/**
2420 * check_flush_dependency - check for flush dependency sanity
2421 * @target_wq: workqueue being flushed
2422 * @target_work: work item being flushed (NULL for workqueue flushes)
2423 *
2424 * %current is trying to flush the whole @target_wq or @target_work on it.
2425 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426 * reclaiming memory or running on a workqueue which doesn't have
2427 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428 * a deadlock.
2429 */
2430static void check_flush_dependency(struct workqueue_struct *target_wq,
2431 struct work_struct *target_work)
2432{
2433 work_func_t target_func = target_work ? target_work->func : NULL;
2434 struct worker *worker;
2435
2436 if (target_wq->flags & WQ_MEM_RECLAIM)
2437 return;
2438
2439 worker = current_wq_worker();
2440
2441 WARN_ONCE(current->flags & PF_MEMALLOC,
2442 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2444 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2446 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447 worker->current_pwq->wq->name, worker->current_func,
2448 target_wq->name, target_func);
2449}
2450
fc2e4d70
ON
2451struct wq_barrier {
2452 struct work_struct work;
2453 struct completion done;
2607d7a6 2454 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
4690c4ab
TH
2463/**
2464 * insert_wq_barrier - insert a barrier work
112202d9 2465 * @pwq: pwq to insert barrier into
4690c4ab 2466 * @barr: wq_barrier to insert
affee4b2
TH
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2469 *
affee4b2
TH
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
112202d9 2482 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2483 *
2484 * CONTEXT:
d565ed63 2485 * spin_lock_irq(pool->lock).
4690c4ab 2486 */
112202d9 2487static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
fc2e4d70 2490{
affee4b2
TH
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
dc186ad7 2494 /*
d565ed63 2495 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
ca1cab37 2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2502 init_completion(&barr->done);
2607d7a6 2503 barr->task = current;
83c22520 2504
affee4b2
TH
2505 /*
2506 * If @target is currently being executed, schedule the
2507 * barrier to the worker; otherwise, put it after @target.
2508 */
2509 if (worker)
2510 head = worker->scheduled.next;
2511 else {
2512 unsigned long *bits = work_data_bits(target);
2513
2514 head = target->entry.next;
2515 /* there can already be other linked works, inherit and set */
2516 linked = *bits & WORK_STRUCT_LINKED;
2517 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518 }
2519
dc186ad7 2520 debug_work_activate(&barr->work);
112202d9 2521 insert_work(pwq, &barr->work, head,
affee4b2 2522 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2523}
2524
73f53c4a 2525/**
112202d9 2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
112202d9 2531 * Prepare pwqs for workqueue flushing.
73f53c4a 2532 *
112202d9
TH
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1. If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color. If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
112202d9 2545 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
3c25a55d 2550 * mutex_lock(wq->mutex).
73f53c4a 2551 *
d185af30 2552 * Return:
73f53c4a
TH
2553 * %true if @flush_color >= 0 and there's something to flush. %false
2554 * otherwise.
2555 */
112202d9 2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2557 int flush_color, int work_color)
1da177e4 2558{
73f53c4a 2559 bool wait = false;
49e3cf44 2560 struct pool_workqueue *pwq;
1da177e4 2561
73f53c4a 2562 if (flush_color >= 0) {
6183c009 2563 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2564 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2565 }
2355b70f 2566
49e3cf44 2567 for_each_pwq(pwq, wq) {
112202d9 2568 struct worker_pool *pool = pwq->pool;
fc2e4d70 2569
b09f4fd3 2570 spin_lock_irq(&pool->lock);
83c22520 2571
73f53c4a 2572 if (flush_color >= 0) {
6183c009 2573 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2574
112202d9
TH
2575 if (pwq->nr_in_flight[flush_color]) {
2576 pwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2578 wait = true;
2579 }
2580 }
1da177e4 2581
73f53c4a 2582 if (work_color >= 0) {
6183c009 2583 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2584 pwq->work_color = work_color;
73f53c4a 2585 }
1da177e4 2586
b09f4fd3 2587 spin_unlock_irq(&pool->lock);
1da177e4 2588 }
2355b70f 2589
112202d9 2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2591 complete(&wq->first_flusher->done);
14441960 2592
73f53c4a 2593 return wait;
1da177e4
LT
2594}
2595
0fcb78c2 2596/**
1da177e4 2597 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2598 * @wq: workqueue to flush
1da177e4 2599 *
c5aa87bb
TH
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2602 */
7ad5b3a5 2603void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2604{
73f53c4a
TH
2605 struct wq_flusher this_flusher = {
2606 .list = LIST_HEAD_INIT(this_flusher.list),
2607 .flush_color = -1,
2608 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609 };
2610 int next_color;
1da177e4 2611
3295f0ef
IM
2612 lock_map_acquire(&wq->lockdep_map);
2613 lock_map_release(&wq->lockdep_map);
73f53c4a 2614
3c25a55d 2615 mutex_lock(&wq->mutex);
73f53c4a
TH
2616
2617 /*
2618 * Start-to-wait phase
2619 */
2620 next_color = work_next_color(wq->work_color);
2621
2622 if (next_color != wq->flush_color) {
2623 /*
2624 * Color space is not full. The current work_color
2625 * becomes our flush_color and work_color is advanced
2626 * by one.
2627 */
6183c009 2628 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2629 this_flusher.flush_color = wq->work_color;
2630 wq->work_color = next_color;
2631
2632 if (!wq->first_flusher) {
2633 /* no flush in progress, become the first flusher */
6183c009 2634 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2635
2636 wq->first_flusher = &this_flusher;
2637
112202d9 2638 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2639 wq->work_color)) {
2640 /* nothing to flush, done */
2641 wq->flush_color = next_color;
2642 wq->first_flusher = NULL;
2643 goto out_unlock;
2644 }
2645 } else {
2646 /* wait in queue */
6183c009 2647 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2648 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2649 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2650 }
2651 } else {
2652 /*
2653 * Oops, color space is full, wait on overflow queue.
2654 * The next flush completion will assign us
2655 * flush_color and transfer to flusher_queue.
2656 */
2657 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2658 }
2659
fca839c0
TH
2660 check_flush_dependency(wq, NULL);
2661
3c25a55d 2662 mutex_unlock(&wq->mutex);
73f53c4a
TH
2663
2664 wait_for_completion(&this_flusher.done);
2665
2666 /*
2667 * Wake-up-and-cascade phase
2668 *
2669 * First flushers are responsible for cascading flushes and
2670 * handling overflow. Non-first flushers can simply return.
2671 */
2672 if (wq->first_flusher != &this_flusher)
2673 return;
2674
3c25a55d 2675 mutex_lock(&wq->mutex);
73f53c4a 2676
4ce48b37
TH
2677 /* we might have raced, check again with mutex held */
2678 if (wq->first_flusher != &this_flusher)
2679 goto out_unlock;
2680
73f53c4a
TH
2681 wq->first_flusher = NULL;
2682
6183c009
TH
2683 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2685
2686 while (true) {
2687 struct wq_flusher *next, *tmp;
2688
2689 /* complete all the flushers sharing the current flush color */
2690 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691 if (next->flush_color != wq->flush_color)
2692 break;
2693 list_del_init(&next->list);
2694 complete(&next->done);
2695 }
2696
6183c009
TH
2697 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2699
2700 /* this flush_color is finished, advance by one */
2701 wq->flush_color = work_next_color(wq->flush_color);
2702
2703 /* one color has been freed, handle overflow queue */
2704 if (!list_empty(&wq->flusher_overflow)) {
2705 /*
2706 * Assign the same color to all overflowed
2707 * flushers, advance work_color and append to
2708 * flusher_queue. This is the start-to-wait
2709 * phase for these overflowed flushers.
2710 */
2711 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712 tmp->flush_color = wq->work_color;
2713
2714 wq->work_color = work_next_color(wq->work_color);
2715
2716 list_splice_tail_init(&wq->flusher_overflow,
2717 &wq->flusher_queue);
112202d9 2718 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2719 }
2720
2721 if (list_empty(&wq->flusher_queue)) {
6183c009 2722 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2723 break;
2724 }
2725
2726 /*
2727 * Need to flush more colors. Make the next flusher
112202d9 2728 * the new first flusher and arm pwqs.
73f53c4a 2729 */
6183c009
TH
2730 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2732
2733 list_del_init(&next->list);
2734 wq->first_flusher = next;
2735
112202d9 2736 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2737 break;
2738
2739 /*
2740 * Meh... this color is already done, clear first
2741 * flusher and repeat cascading.
2742 */
2743 wq->first_flusher = NULL;
2744 }
2745
2746out_unlock:
3c25a55d 2747 mutex_unlock(&wq->mutex);
1da177e4 2748}
1dadafa8 2749EXPORT_SYMBOL(flush_workqueue);
1da177e4 2750
9c5a2ba7
TH
2751/**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty. While draining is in progress,
2756 * only chain queueing is allowed. IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2758 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2759 * by the depth of chaining and should be relatively short. Whine if it
2760 * takes too long.
2761 */
2762void drain_workqueue(struct workqueue_struct *wq)
2763{
2764 unsigned int flush_cnt = 0;
49e3cf44 2765 struct pool_workqueue *pwq;
9c5a2ba7
TH
2766
2767 /*
2768 * __queue_work() needs to test whether there are drainers, is much
2769 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2770 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2771 */
87fc741e 2772 mutex_lock(&wq->mutex);
9c5a2ba7 2773 if (!wq->nr_drainers++)
618b01eb 2774 wq->flags |= __WQ_DRAINING;
87fc741e 2775 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2776reflush:
2777 flush_workqueue(wq);
2778
b09f4fd3 2779 mutex_lock(&wq->mutex);
76af4d93 2780
49e3cf44 2781 for_each_pwq(pwq, wq) {
fa2563e4 2782 bool drained;
9c5a2ba7 2783
b09f4fd3 2784 spin_lock_irq(&pwq->pool->lock);
112202d9 2785 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2786 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2787
2788 if (drained)
9c5a2ba7
TH
2789 continue;
2790
2791 if (++flush_cnt == 10 ||
2792 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2793 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2794 wq->name, flush_cnt);
76af4d93 2795
b09f4fd3 2796 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2797 goto reflush;
2798 }
2799
9c5a2ba7 2800 if (!--wq->nr_drainers)
618b01eb 2801 wq->flags &= ~__WQ_DRAINING;
87fc741e 2802 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2803}
2804EXPORT_SYMBOL_GPL(drain_workqueue);
2805
606a5020 2806static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2807{
affee4b2 2808 struct worker *worker = NULL;
c9e7cf27 2809 struct worker_pool *pool;
112202d9 2810 struct pool_workqueue *pwq;
db700897
ON
2811
2812 might_sleep();
fa1b54e6
TH
2813
2814 local_irq_disable();
c9e7cf27 2815 pool = get_work_pool(work);
fa1b54e6
TH
2816 if (!pool) {
2817 local_irq_enable();
baf59022 2818 return false;
fa1b54e6 2819 }
db700897 2820
fa1b54e6 2821 spin_lock(&pool->lock);
0b3dae68 2822 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2823 pwq = get_work_pwq(work);
2824 if (pwq) {
2825 if (unlikely(pwq->pool != pool))
4690c4ab 2826 goto already_gone;
606a5020 2827 } else {
c9e7cf27 2828 worker = find_worker_executing_work(pool, work);
affee4b2 2829 if (!worker)
4690c4ab 2830 goto already_gone;
112202d9 2831 pwq = worker->current_pwq;
606a5020 2832 }
db700897 2833
fca839c0
TH
2834 check_flush_dependency(pwq->wq, work);
2835
112202d9 2836 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2837 spin_unlock_irq(&pool->lock);
7a22ad75 2838
e159489b
TH
2839 /*
2840 * If @max_active is 1 or rescuer is in use, flushing another work
2841 * item on the same workqueue may lead to deadlock. Make sure the
2842 * flusher is not running on the same workqueue by verifying write
2843 * access.
2844 */
493008a8 2845 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2846 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2847 else
112202d9
TH
2848 lock_map_acquire_read(&pwq->wq->lockdep_map);
2849 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2850
401a8d04 2851 return true;
4690c4ab 2852already_gone:
d565ed63 2853 spin_unlock_irq(&pool->lock);
401a8d04 2854 return false;
db700897 2855}
baf59022
TH
2856
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
606a5020
TH
2861 * Wait until @work has finished execution. @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
baf59022 2863 *
d185af30 2864 * Return:
baf59022
TH
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868bool flush_work(struct work_struct *work)
2869{
12997d1a
BH
2870 struct wq_barrier barr;
2871
0976dfc1
SB
2872 lock_map_acquire(&work->lockdep_map);
2873 lock_map_release(&work->lockdep_map);
2874
12997d1a
BH
2875 if (start_flush_work(work, &barr)) {
2876 wait_for_completion(&barr.done);
2877 destroy_work_on_stack(&barr.work);
2878 return true;
2879 } else {
2880 return false;
2881 }
6e84d644 2882}
606a5020 2883EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2884
8603e1b3
TH
2885struct cwt_wait {
2886 wait_queue_t wait;
2887 struct work_struct *work;
2888};
2889
2890static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2891{
2892 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2893
2894 if (cwait->work != key)
2895 return 0;
2896 return autoremove_wake_function(wait, mode, sync, key);
2897}
2898
36e227d2 2899static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2900{
8603e1b3 2901 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2902 unsigned long flags;
1f1f642e
ON
2903 int ret;
2904
2905 do {
bbb68dfa
TH
2906 ret = try_to_grab_pending(work, is_dwork, &flags);
2907 /*
8603e1b3
TH
2908 * If someone else is already canceling, wait for it to
2909 * finish. flush_work() doesn't work for PREEMPT_NONE
2910 * because we may get scheduled between @work's completion
2911 * and the other canceling task resuming and clearing
2912 * CANCELING - flush_work() will return false immediately
2913 * as @work is no longer busy, try_to_grab_pending() will
2914 * return -ENOENT as @work is still being canceled and the
2915 * other canceling task won't be able to clear CANCELING as
2916 * we're hogging the CPU.
2917 *
2918 * Let's wait for completion using a waitqueue. As this
2919 * may lead to the thundering herd problem, use a custom
2920 * wake function which matches @work along with exclusive
2921 * wait and wakeup.
bbb68dfa 2922 */
8603e1b3
TH
2923 if (unlikely(ret == -ENOENT)) {
2924 struct cwt_wait cwait;
2925
2926 init_wait(&cwait.wait);
2927 cwait.wait.func = cwt_wakefn;
2928 cwait.work = work;
2929
2930 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931 TASK_UNINTERRUPTIBLE);
2932 if (work_is_canceling(work))
2933 schedule();
2934 finish_wait(&cancel_waitq, &cwait.wait);
2935 }
1f1f642e
ON
2936 } while (unlikely(ret < 0));
2937
bbb68dfa
TH
2938 /* tell other tasks trying to grab @work to back off */
2939 mark_work_canceling(work);
2940 local_irq_restore(flags);
2941
606a5020 2942 flush_work(work);
7a22ad75 2943 clear_work_data(work);
8603e1b3
TH
2944
2945 /*
2946 * Paired with prepare_to_wait() above so that either
2947 * waitqueue_active() is visible here or !work_is_canceling() is
2948 * visible there.
2949 */
2950 smp_mb();
2951 if (waitqueue_active(&cancel_waitq))
2952 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
1f1f642e
ON
2954 return ret;
2955}
2956
6e84d644 2957/**
401a8d04
TH
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
6e84d644 2960 *
401a8d04
TH
2961 * Cancel @work and wait for its execution to finish. This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue. On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2965 *
401a8d04
TH
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2968 *
401a8d04 2969 * The caller must ensure that the workqueue on which @work was last
6e84d644 2970 * queued can't be destroyed before this function returns.
401a8d04 2971 *
d185af30 2972 * Return:
401a8d04 2973 * %true if @work was pending, %false otherwise.
6e84d644 2974 */
401a8d04 2975bool cancel_work_sync(struct work_struct *work)
6e84d644 2976{
36e227d2 2977 return __cancel_work_timer(work, false);
b89deed3 2978}
28e53bdd 2979EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2980
6e84d644 2981/**
401a8d04
TH
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
6e84d644 2984 *
401a8d04
TH
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution. Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
1f1f642e 2988 *
d185af30 2989 * Return:
401a8d04
TH
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
6e84d644 2992 */
401a8d04
TH
2993bool flush_delayed_work(struct delayed_work *dwork)
2994{
8930caba 2995 local_irq_disable();
401a8d04 2996 if (del_timer_sync(&dwork->timer))
60c057bc 2997 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2998 local_irq_enable();
401a8d04
TH
2999 return flush_work(&dwork->work);
3000}
3001EXPORT_SYMBOL(flush_delayed_work);
3002
09383498 3003/**
57b30ae7
TH
3004 * cancel_delayed_work - cancel a delayed work
3005 * @dwork: delayed_work to cancel
09383498 3006 *
d185af30
YB
3007 * Kill off a pending delayed_work.
3008 *
3009 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010 * pending.
3011 *
3012 * Note:
3013 * The work callback function may still be running on return, unless
3014 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3015 * use cancel_delayed_work_sync() to wait on it.
09383498 3016 *
57b30ae7 3017 * This function is safe to call from any context including IRQ handler.
09383498 3018 */
57b30ae7 3019bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3020{
57b30ae7
TH
3021 unsigned long flags;
3022 int ret;
3023
3024 do {
3025 ret = try_to_grab_pending(&dwork->work, true, &flags);
3026 } while (unlikely(ret == -EAGAIN));
3027
3028 if (unlikely(ret < 0))
3029 return false;
3030
7c3eed5c
TH
3031 set_work_pool_and_clear_pending(&dwork->work,
3032 get_work_pool_id(&dwork->work));
57b30ae7 3033 local_irq_restore(flags);
c0158ca6 3034 return ret;
09383498 3035}
57b30ae7 3036EXPORT_SYMBOL(cancel_delayed_work);
09383498 3037
401a8d04
TH
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
d185af30 3044 * Return:
401a8d04
TH
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3048{
36e227d2 3049 return __cancel_work_timer(&dwork->work, true);
6e84d644 3050}
f5a421a4 3051EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3052
b6136773 3053/**
31ddd871 3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3055 * @func: the function to call
b6136773 3056 *
31ddd871
TH
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
b6136773 3059 * schedule_on_each_cpu() is very slow.
31ddd871 3060 *
d185af30 3061 * Return:
31ddd871 3062 * 0 on success, -errno on failure.
b6136773 3063 */
65f27f38 3064int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3065{
3066 int cpu;
38f51568 3067 struct work_struct __percpu *works;
15316ba8 3068
b6136773
AM
3069 works = alloc_percpu(struct work_struct);
3070 if (!works)
15316ba8 3071 return -ENOMEM;
b6136773 3072
93981800
TH
3073 get_online_cpus();
3074
15316ba8 3075 for_each_online_cpu(cpu) {
9bfb1839
IM
3076 struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078 INIT_WORK(work, func);
b71ab8c2 3079 schedule_work_on(cpu, work);
65a64464 3080 }
93981800
TH
3081
3082 for_each_online_cpu(cpu)
3083 flush_work(per_cpu_ptr(works, cpu));
3084
95402b38 3085 put_online_cpus();
b6136773 3086 free_percpu(works);
15316ba8
CL
3087 return 0;
3088}
3089
1fa44eca
JB
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn: the function to execute
1fa44eca
JB
3093 * @ew: guaranteed storage for the execute work structure (must
3094 * be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
d185af30 3099 * Return: 0 - function was executed
1fa44eca
JB
3100 * 1 - function was scheduled for execution
3101 */
65f27f38 3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3103{
3104 if (!in_interrupt()) {
65f27f38 3105 fn(&ew->work);
1fa44eca
JB
3106 return 0;
3107 }
3108
65f27f38 3109 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3110 schedule_work(&ew->work);
3111
3112 return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
6ba94429
FW
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
226223ab 3119 *
6ba94429 3120 * Undo alloc_workqueue_attrs().
226223ab 3121 */
6ba94429 3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3123{
6ba94429
FW
3124 if (attrs) {
3125 free_cpumask_var(attrs->cpumask);
3126 kfree(attrs);
3127 }
226223ab
TH
3128}
3129
6ba94429
FW
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3140{
6ba94429 3141 struct workqueue_attrs *attrs;
226223ab 3142
6ba94429
FW
3143 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144 if (!attrs)
3145 goto fail;
3146 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147 goto fail;
3148
3149 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150 return attrs;
3151fail:
3152 free_workqueue_attrs(attrs);
3153 return NULL;
226223ab
TH
3154}
3155
6ba94429
FW
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157 const struct workqueue_attrs *from)
226223ab 3158{
6ba94429
FW
3159 to->nice = from->nice;
3160 cpumask_copy(to->cpumask, from->cpumask);
3161 /*
3162 * Unlike hash and equality test, this function doesn't ignore
3163 * ->no_numa as it is used for both pool and wq attrs. Instead,
3164 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165 */
3166 to->no_numa = from->no_numa;
226223ab
TH
3167}
3168
6ba94429
FW
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3171{
6ba94429 3172 u32 hash = 0;
226223ab 3173
6ba94429
FW
3174 hash = jhash_1word(attrs->nice, hash);
3175 hash = jhash(cpumask_bits(attrs->cpumask),
3176 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177 return hash;
226223ab 3178}
226223ab 3179
6ba94429
FW
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182 const struct workqueue_attrs *b)
226223ab 3183{
6ba94429
FW
3184 if (a->nice != b->nice)
3185 return false;
3186 if (!cpumask_equal(a->cpumask, b->cpumask))
3187 return false;
3188 return true;
226223ab
TH
3189}
3190
6ba94429
FW
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
402dd89d 3195 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3196 *
3197 * Return: 0 on success, -errno on failure. Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
226223ab 3202{
6ba94429
FW
3203 spin_lock_init(&pool->lock);
3204 pool->id = -1;
3205 pool->cpu = -1;
3206 pool->node = NUMA_NO_NODE;
3207 pool->flags |= POOL_DISASSOCIATED;
82607adc 3208 pool->watchdog_ts = jiffies;
6ba94429
FW
3209 INIT_LIST_HEAD(&pool->worklist);
3210 INIT_LIST_HEAD(&pool->idle_list);
3211 hash_init(pool->busy_hash);
226223ab 3212
6ba94429
FW
3213 init_timer_deferrable(&pool->idle_timer);
3214 pool->idle_timer.function = idle_worker_timeout;
3215 pool->idle_timer.data = (unsigned long)pool;
226223ab 3216
6ba94429
FW
3217 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218 (unsigned long)pool);
226223ab 3219
6ba94429
FW
3220 mutex_init(&pool->manager_arb);
3221 mutex_init(&pool->attach_mutex);
3222 INIT_LIST_HEAD(&pool->workers);
226223ab 3223
6ba94429
FW
3224 ida_init(&pool->worker_ida);
3225 INIT_HLIST_NODE(&pool->hash_node);
3226 pool->refcnt = 1;
226223ab 3227
6ba94429
FW
3228 /* shouldn't fail above this point */
3229 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230 if (!pool->attrs)
3231 return -ENOMEM;
3232 return 0;
226223ab
TH
3233}
3234
6ba94429 3235static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3236{
6ba94429
FW
3237 struct workqueue_struct *wq =
3238 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3239
6ba94429
FW
3240 if (!(wq->flags & WQ_UNBOUND))
3241 free_percpu(wq->cpu_pwqs);
226223ab 3242 else
6ba94429 3243 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3244
6ba94429
FW
3245 kfree(wq->rescuer);
3246 kfree(wq);
226223ab
TH
3247}
3248
6ba94429 3249static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3250{
6ba94429 3251 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3252
6ba94429
FW
3253 ida_destroy(&pool->worker_ida);
3254 free_workqueue_attrs(pool->attrs);
3255 kfree(pool);
226223ab
TH
3256}
3257
6ba94429
FW
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner. get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
226223ab 3270{
6ba94429
FW
3271 DECLARE_COMPLETION_ONSTACK(detach_completion);
3272 struct worker *worker;
226223ab 3273
6ba94429 3274 lockdep_assert_held(&wq_pool_mutex);
226223ab 3275
6ba94429
FW
3276 if (--pool->refcnt)
3277 return;
226223ab 3278
6ba94429
FW
3279 /* sanity checks */
3280 if (WARN_ON(!(pool->cpu < 0)) ||
3281 WARN_ON(!list_empty(&pool->worklist)))
3282 return;
226223ab 3283
6ba94429
FW
3284 /* release id and unhash */
3285 if (pool->id >= 0)
3286 idr_remove(&worker_pool_idr, pool->id);
3287 hash_del(&pool->hash_node);
d55262c4 3288
6ba94429
FW
3289 /*
3290 * Become the manager and destroy all workers. Grabbing
3291 * manager_arb prevents @pool's workers from blocking on
3292 * attach_mutex.
3293 */
3294 mutex_lock(&pool->manager_arb);
d55262c4 3295
6ba94429
FW
3296 spin_lock_irq(&pool->lock);
3297 while ((worker = first_idle_worker(pool)))
3298 destroy_worker(worker);
3299 WARN_ON(pool->nr_workers || pool->nr_idle);
3300 spin_unlock_irq(&pool->lock);
d55262c4 3301
6ba94429
FW
3302 mutex_lock(&pool->attach_mutex);
3303 if (!list_empty(&pool->workers))
3304 pool->detach_completion = &detach_completion;
3305 mutex_unlock(&pool->attach_mutex);
226223ab 3306
6ba94429
FW
3307 if (pool->detach_completion)
3308 wait_for_completion(pool->detach_completion);
226223ab 3309
6ba94429 3310 mutex_unlock(&pool->manager_arb);
226223ab 3311
6ba94429
FW
3312 /* shut down the timers */
3313 del_timer_sync(&pool->idle_timer);
3314 del_timer_sync(&pool->mayday_timer);
226223ab 3315
6ba94429
FW
3316 /* sched-RCU protected to allow dereferences from get_work_pool() */
3317 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3318}
3319
3320/**
6ba94429
FW
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
226223ab 3323 *
6ba94429
FW
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it. If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
226223ab 3328 *
6ba94429 3329 * Should be called with wq_pool_mutex held.
226223ab 3330 *
6ba94429
FW
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
226223ab 3333 */
6ba94429 3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3335{
6ba94429
FW
3336 u32 hash = wqattrs_hash(attrs);
3337 struct worker_pool *pool;
3338 int node;
e2273584 3339 int target_node = NUMA_NO_NODE;
226223ab 3340
6ba94429 3341 lockdep_assert_held(&wq_pool_mutex);
226223ab 3342
6ba94429
FW
3343 /* do we already have a matching pool? */
3344 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345 if (wqattrs_equal(pool->attrs, attrs)) {
3346 pool->refcnt++;
3347 return pool;
3348 }
3349 }
226223ab 3350
e2273584
XP
3351 /* if cpumask is contained inside a NUMA node, we belong to that node */
3352 if (wq_numa_enabled) {
3353 for_each_node(node) {
3354 if (cpumask_subset(attrs->cpumask,
3355 wq_numa_possible_cpumask[node])) {
3356 target_node = node;
3357 break;
3358 }
3359 }
3360 }
3361
6ba94429 3362 /* nope, create a new one */
e2273584 3363 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3364 if (!pool || init_worker_pool(pool) < 0)
3365 goto fail;
3366
3367 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3368 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3369 pool->node = target_node;
226223ab
TH
3370
3371 /*
6ba94429
FW
3372 * no_numa isn't a worker_pool attribute, always clear it. See
3373 * 'struct workqueue_attrs' comments for detail.
226223ab 3374 */
6ba94429 3375 pool->attrs->no_numa = false;
226223ab 3376
6ba94429
FW
3377 if (worker_pool_assign_id(pool) < 0)
3378 goto fail;
226223ab 3379
6ba94429
FW
3380 /* create and start the initial worker */
3381 if (!create_worker(pool))
3382 goto fail;
226223ab 3383
6ba94429
FW
3384 /* install */
3385 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3386
6ba94429
FW
3387 return pool;
3388fail:
3389 if (pool)
3390 put_unbound_pool(pool);
3391 return NULL;
226223ab 3392}
226223ab 3393
6ba94429 3394static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3395{
6ba94429
FW
3396 kmem_cache_free(pwq_cache,
3397 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3398}
3399
6ba94429
FW
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
7a4e344c 3403 */
6ba94429 3404static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3405{
6ba94429
FW
3406 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407 unbound_release_work);
3408 struct workqueue_struct *wq = pwq->wq;
3409 struct worker_pool *pool = pwq->pool;
3410 bool is_last;
7a4e344c 3411
6ba94429
FW
3412 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413 return;
7a4e344c 3414
6ba94429
FW
3415 mutex_lock(&wq->mutex);
3416 list_del_rcu(&pwq->pwqs_node);
3417 is_last = list_empty(&wq->pwqs);
3418 mutex_unlock(&wq->mutex);
3419
3420 mutex_lock(&wq_pool_mutex);
3421 put_unbound_pool(pool);
3422 mutex_unlock(&wq_pool_mutex);
3423
3424 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3425
2865a8fb 3426 /*
6ba94429
FW
3427 * If we're the last pwq going away, @wq is already dead and no one
3428 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3429 */
6ba94429
FW
3430 if (is_last)
3431 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3432}
3433
7a4e344c 3434/**
6ba94429
FW
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
d185af30 3437 *
6ba94429
FW
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3441 */
6ba94429 3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3443{
6ba94429
FW
3444 struct workqueue_struct *wq = pwq->wq;
3445 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3446
6ba94429
FW
3447 /* for @wq->saved_max_active */
3448 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3449
6ba94429
FW
3450 /* fast exit for non-freezable wqs */
3451 if (!freezable && pwq->max_active == wq->saved_max_active)
3452 return;
7a4e344c 3453
6ba94429 3454 spin_lock_irq(&pwq->pool->lock);
29c91e99 3455
6ba94429
FW
3456 /*
3457 * During [un]freezing, the caller is responsible for ensuring that
3458 * this function is called at least once after @workqueue_freezing
3459 * is updated and visible.
3460 */
3461 if (!freezable || !workqueue_freezing) {
3462 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3463
6ba94429
FW
3464 while (!list_empty(&pwq->delayed_works) &&
3465 pwq->nr_active < pwq->max_active)
3466 pwq_activate_first_delayed(pwq);
e2dca7ad 3467
6ba94429
FW
3468 /*
3469 * Need to kick a worker after thawed or an unbound wq's
3470 * max_active is bumped. It's a slow path. Do it always.
3471 */
3472 wake_up_worker(pwq->pool);
3473 } else {
3474 pwq->max_active = 0;
3475 }
e2dca7ad 3476
6ba94429 3477 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3478}
3479
6ba94429
FW
3480/* initialize newly alloced @pwq which is associated with @wq and @pool */
3481static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482 struct worker_pool *pool)
29c91e99 3483{
6ba94429 3484 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3485
6ba94429
FW
3486 memset(pwq, 0, sizeof(*pwq));
3487
3488 pwq->pool = pool;
3489 pwq->wq = wq;
3490 pwq->flush_color = -1;
3491 pwq->refcnt = 1;
3492 INIT_LIST_HEAD(&pwq->delayed_works);
3493 INIT_LIST_HEAD(&pwq->pwqs_node);
3494 INIT_LIST_HEAD(&pwq->mayday_node);
3495 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3496}
3497
6ba94429
FW
3498/* sync @pwq with the current state of its associated wq and link it */
3499static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3500{
6ba94429 3501 struct workqueue_struct *wq = pwq->wq;
29c91e99 3502
6ba94429 3503 lockdep_assert_held(&wq->mutex);
a892cacc 3504
6ba94429
FW
3505 /* may be called multiple times, ignore if already linked */
3506 if (!list_empty(&pwq->pwqs_node))
29c91e99 3507 return;
29c91e99 3508
6ba94429
FW
3509 /* set the matching work_color */
3510 pwq->work_color = wq->work_color;
29c91e99 3511
6ba94429
FW
3512 /* sync max_active to the current setting */
3513 pwq_adjust_max_active(pwq);
29c91e99 3514
6ba94429
FW
3515 /* link in @pwq */
3516 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517}
29c91e99 3518
6ba94429
FW
3519/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521 const struct workqueue_attrs *attrs)
3522{
3523 struct worker_pool *pool;
3524 struct pool_workqueue *pwq;
60f5a4bc 3525
6ba94429 3526 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3527
6ba94429
FW
3528 pool = get_unbound_pool(attrs);
3529 if (!pool)
3530 return NULL;
60f5a4bc 3531
6ba94429
FW
3532 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533 if (!pwq) {
3534 put_unbound_pool(pool);
3535 return NULL;
3536 }
29c91e99 3537
6ba94429
FW
3538 init_pwq(pwq, wq, pool);
3539 return pwq;
3540}
29c91e99 3541
29c91e99 3542/**
30186c6f 3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
29c91e99 3548 *
6ba94429
FW
3549 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation. The result is stored in @cpumask.
a892cacc 3552 *
6ba94429
FW
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
d185af30 3557 *
6ba94429
FW
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3560 *
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
29c91e99 3563 */
6ba94429
FW
3564static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3566{
6ba94429
FW
3567 if (!wq_numa_enabled || attrs->no_numa)
3568 goto use_dfl;
29c91e99 3569
6ba94429
FW
3570 /* does @node have any online CPUs @attrs wants? */
3571 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572 if (cpu_going_down >= 0)
3573 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3574
6ba94429
FW
3575 if (cpumask_empty(cpumask))
3576 goto use_dfl;
4c16bd32
TH
3577
3578 /* yeap, return possible CPUs in @node that @attrs wants */
3579 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580 return !cpumask_equal(cpumask, attrs->cpumask);
3581
3582use_dfl:
3583 cpumask_copy(cpumask, attrs->cpumask);
3584 return false;
3585}
3586
1befcf30
TH
3587/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589 int node,
3590 struct pool_workqueue *pwq)
3591{
3592 struct pool_workqueue *old_pwq;
3593
5b95e1af 3594 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3595 lockdep_assert_held(&wq->mutex);
3596
3597 /* link_pwq() can handle duplicate calls */
3598 link_pwq(pwq);
3599
3600 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602 return old_pwq;
3603}
3604
2d5f0764
LJ
3605/* context to store the prepared attrs & pwqs before applying */
3606struct apply_wqattrs_ctx {
3607 struct workqueue_struct *wq; /* target workqueue */
3608 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3609 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3610 struct pool_workqueue *dfl_pwq;
3611 struct pool_workqueue *pwq_tbl[];
3612};
3613
3614/* free the resources after success or abort */
3615static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616{
3617 if (ctx) {
3618 int node;
3619
3620 for_each_node(node)
3621 put_pwq_unlocked(ctx->pwq_tbl[node]);
3622 put_pwq_unlocked(ctx->dfl_pwq);
3623
3624 free_workqueue_attrs(ctx->attrs);
3625
3626 kfree(ctx);
3627 }
3628}
3629
3630/* allocate the attrs and pwqs for later installation */
3631static struct apply_wqattrs_ctx *
3632apply_wqattrs_prepare(struct workqueue_struct *wq,
3633 const struct workqueue_attrs *attrs)
9e8cd2f5 3634{
2d5f0764 3635 struct apply_wqattrs_ctx *ctx;
4c16bd32 3636 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3637 int node;
9e8cd2f5 3638
2d5f0764 3639 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3640
2d5f0764
LJ
3641 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642 GFP_KERNEL);
8719dcea 3643
13e2e556 3644 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3645 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3646 if (!ctx || !new_attrs || !tmp_attrs)
3647 goto out_free;
13e2e556 3648
042f7df1
LJ
3649 /*
3650 * Calculate the attrs of the default pwq.
3651 * If the user configured cpumask doesn't overlap with the
3652 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653 */
13e2e556 3654 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3655 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3656 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3658
4c16bd32
TH
3659 /*
3660 * We may create multiple pwqs with differing cpumasks. Make a
3661 * copy of @new_attrs which will be modified and used to obtain
3662 * pools.
3663 */
3664 copy_workqueue_attrs(tmp_attrs, new_attrs);
3665
4c16bd32
TH
3666 /*
3667 * If something goes wrong during CPU up/down, we'll fall back to
3668 * the default pwq covering whole @attrs->cpumask. Always create
3669 * it even if we don't use it immediately.
3670 */
2d5f0764
LJ
3671 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672 if (!ctx->dfl_pwq)
3673 goto out_free;
4c16bd32
TH
3674
3675 for_each_node(node) {
042f7df1 3676 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3677 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678 if (!ctx->pwq_tbl[node])
3679 goto out_free;
4c16bd32 3680 } else {
2d5f0764
LJ
3681 ctx->dfl_pwq->refcnt++;
3682 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3683 }
3684 }
3685
042f7df1
LJ
3686 /* save the user configured attrs and sanitize it. */
3687 copy_workqueue_attrs(new_attrs, attrs);
3688 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3689 ctx->attrs = new_attrs;
042f7df1 3690
2d5f0764
LJ
3691 ctx->wq = wq;
3692 free_workqueue_attrs(tmp_attrs);
3693 return ctx;
3694
3695out_free:
3696 free_workqueue_attrs(tmp_attrs);
3697 free_workqueue_attrs(new_attrs);
3698 apply_wqattrs_cleanup(ctx);
3699 return NULL;
3700}
3701
3702/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704{
3705 int node;
9e8cd2f5 3706
4c16bd32 3707 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3708 mutex_lock(&ctx->wq->mutex);
a892cacc 3709
2d5f0764 3710 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3711
3712 /* save the previous pwq and install the new one */
f147f29e 3713 for_each_node(node)
2d5f0764
LJ
3714 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715 ctx->pwq_tbl[node]);
4c16bd32
TH
3716
3717 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3718 link_pwq(ctx->dfl_pwq);
3719 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3720
2d5f0764
LJ
3721 mutex_unlock(&ctx->wq->mutex);
3722}
9e8cd2f5 3723
a0111cf6
LJ
3724static void apply_wqattrs_lock(void)
3725{
3726 /* CPUs should stay stable across pwq creations and installations */
3727 get_online_cpus();
3728 mutex_lock(&wq_pool_mutex);
3729}
3730
3731static void apply_wqattrs_unlock(void)
3732{
3733 mutex_unlock(&wq_pool_mutex);
3734 put_online_cpus();
3735}
3736
3737static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3739{
3740 struct apply_wqattrs_ctx *ctx;
4c16bd32 3741
2d5f0764
LJ
3742 /* only unbound workqueues can change attributes */
3743 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744 return -EINVAL;
13e2e556 3745
2d5f0764
LJ
3746 /* creating multiple pwqs breaks ordering guarantee */
3747 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748 return -EINVAL;
3749
2d5f0764 3750 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3751 if (!ctx)
3752 return -ENOMEM;
2d5f0764
LJ
3753
3754 /* the ctx has been prepared successfully, let's commit it */
6201171e 3755 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3756 apply_wqattrs_cleanup(ctx);
3757
6201171e 3758 return 0;
9e8cd2f5
TH
3759}
3760
a0111cf6
LJ
3761/**
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765 *
3766 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on. Older pwqs are released as in-flight work
3770 * items finish. Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3772 *
3773 * Performs GFP_KERNEL allocations.
3774 *
3775 * Return: 0 on success and -errno on failure.
3776 */
3777int apply_workqueue_attrs(struct workqueue_struct *wq,
3778 const struct workqueue_attrs *attrs)
3779{
3780 int ret;
3781
3782 apply_wqattrs_lock();
3783 ret = apply_workqueue_attrs_locked(wq, attrs);
3784 apply_wqattrs_unlock();
3785
3786 return ret;
3787}
3788
4c16bd32
TH
3789/**
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3794 *
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3798 *
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3802 *
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU. This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3810 */
3811static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812 bool online)
3813{
3814 int node = cpu_to_node(cpu);
3815 int cpu_off = online ? -1 : cpu;
3816 struct pool_workqueue *old_pwq = NULL, *pwq;
3817 struct workqueue_attrs *target_attrs;
3818 cpumask_t *cpumask;
3819
3820 lockdep_assert_held(&wq_pool_mutex);
3821
f7142ed4
LJ
3822 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823 wq->unbound_attrs->no_numa)
4c16bd32
TH
3824 return;
3825
3826 /*
3827 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828 * Let's use a preallocated one. The following buf is protected by
3829 * CPU hotplug exclusion.
3830 */
3831 target_attrs = wq_update_unbound_numa_attrs_buf;
3832 cpumask = target_attrs->cpumask;
3833
4c16bd32
TH
3834 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835 pwq = unbound_pwq_by_node(wq, node);
3836
3837 /*
3838 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3839 * different from the default pwq's, we need to compare it to @pwq's
3840 * and create a new one if they don't match. If the target cpumask
3841 * equals the default pwq's, the default pwq should be used.
4c16bd32 3842 */
042f7df1 3843 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3844 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3845 return;
4c16bd32 3846 } else {
534a3fbb 3847 goto use_dfl_pwq;
4c16bd32
TH
3848 }
3849
4c16bd32
TH
3850 /* create a new pwq */
3851 pwq = alloc_unbound_pwq(wq, target_attrs);
3852 if (!pwq) {
2d916033
FF
3853 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854 wq->name);
77f300b1 3855 goto use_dfl_pwq;
4c16bd32
TH
3856 }
3857
f7142ed4 3858 /* Install the new pwq. */
4c16bd32
TH
3859 mutex_lock(&wq->mutex);
3860 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861 goto out_unlock;
3862
3863use_dfl_pwq:
f7142ed4 3864 mutex_lock(&wq->mutex);
4c16bd32
TH
3865 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866 get_pwq(wq->dfl_pwq);
3867 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869out_unlock:
3870 mutex_unlock(&wq->mutex);
3871 put_pwq_unlocked(old_pwq);
3872}
3873
30cdf249 3874static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3875{
49e3cf44 3876 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3877 int cpu, ret;
30cdf249
TH
3878
3879 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3880 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881 if (!wq->cpu_pwqs)
30cdf249
TH
3882 return -ENOMEM;
3883
3884 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3885 struct pool_workqueue *pwq =
3886 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3887 struct worker_pool *cpu_pools =
f02ae73a 3888 per_cpu(cpu_worker_pools, cpu);
f3421797 3889
f147f29e
TH
3890 init_pwq(pwq, wq, &cpu_pools[highpri]);
3891
3892 mutex_lock(&wq->mutex);
1befcf30 3893 link_pwq(pwq);
f147f29e 3894 mutex_unlock(&wq->mutex);
30cdf249 3895 }
9e8cd2f5 3896 return 0;
8a2b7538
TH
3897 } else if (wq->flags & __WQ_ORDERED) {
3898 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899 /* there should only be single pwq for ordering guarantee */
3900 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902 "ordering guarantee broken for workqueue %s\n", wq->name);
3903 return ret;
30cdf249 3904 } else {
9e8cd2f5 3905 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3906 }
0f900049
TH
3907}
3908
f3421797
TH
3909static int wq_clamp_max_active(int max_active, unsigned int flags,
3910 const char *name)
b71ab8c2 3911{
f3421797
TH
3912 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913
3914 if (max_active < 1 || max_active > lim)
044c782c
VI
3915 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916 max_active, name, 1, lim);
b71ab8c2 3917
f3421797 3918 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3919}
3920
b196be89 3921struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3922 unsigned int flags,
3923 int max_active,
3924 struct lock_class_key *key,
b196be89 3925 const char *lock_name, ...)
1da177e4 3926{
df2d5ae4 3927 size_t tbl_size = 0;
ecf6881f 3928 va_list args;
1da177e4 3929 struct workqueue_struct *wq;
49e3cf44 3930 struct pool_workqueue *pwq;
b196be89 3931
cee22a15
VK
3932 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3933 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934 flags |= WQ_UNBOUND;
3935
ecf6881f 3936 /* allocate wq and format name */
df2d5ae4 3937 if (flags & WQ_UNBOUND)
ddcb57e2 3938 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3939
3940 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3941 if (!wq)
d2c1d404 3942 return NULL;
b196be89 3943
6029a918
TH
3944 if (flags & WQ_UNBOUND) {
3945 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946 if (!wq->unbound_attrs)
3947 goto err_free_wq;
3948 }
3949
ecf6881f
TH
3950 va_start(args, lock_name);
3951 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3952 va_end(args);
1da177e4 3953
d320c038 3954 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3955 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3956
b196be89 3957 /* init wq */
97e37d7b 3958 wq->flags = flags;
a0a1a5fd 3959 wq->saved_max_active = max_active;
3c25a55d 3960 mutex_init(&wq->mutex);
112202d9 3961 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3962 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3963 INIT_LIST_HEAD(&wq->flusher_queue);
3964 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3965 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3966
eb13ba87 3967 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3968 INIT_LIST_HEAD(&wq->list);
3af24433 3969
30cdf249 3970 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3971 goto err_free_wq;
1537663f 3972
493008a8
TH
3973 /*
3974 * Workqueues which may be used during memory reclaim should
3975 * have a rescuer to guarantee forward progress.
3976 */
3977 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3978 struct worker *rescuer;
3979
f7537df5 3980 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3981 if (!rescuer)
d2c1d404 3982 goto err_destroy;
e22bee78 3983
111c225a
TH
3984 rescuer->rescue_wq = wq;
3985 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3986 wq->name);
d2c1d404
TH
3987 if (IS_ERR(rescuer->task)) {
3988 kfree(rescuer);
3989 goto err_destroy;
3990 }
e22bee78 3991
d2c1d404 3992 wq->rescuer = rescuer;
25834c73 3993 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3994 wake_up_process(rescuer->task);
3af24433
ON
3995 }
3996
226223ab
TH
3997 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998 goto err_destroy;
3999
a0a1a5fd 4000 /*
68e13a67
LJ
4001 * wq_pool_mutex protects global freeze state and workqueues list.
4002 * Grab it, adjust max_active and add the new @wq to workqueues
4003 * list.
a0a1a5fd 4004 */
68e13a67 4005 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4006
a357fc03 4007 mutex_lock(&wq->mutex);
699ce097
TH
4008 for_each_pwq(pwq, wq)
4009 pwq_adjust_max_active(pwq);
a357fc03 4010 mutex_unlock(&wq->mutex);
a0a1a5fd 4011
e2dca7ad 4012 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4013
68e13a67 4014 mutex_unlock(&wq_pool_mutex);
1537663f 4015
3af24433 4016 return wq;
d2c1d404
TH
4017
4018err_free_wq:
6029a918 4019 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4020 kfree(wq);
4021 return NULL;
4022err_destroy:
4023 destroy_workqueue(wq);
4690c4ab 4024 return NULL;
3af24433 4025}
d320c038 4026EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4027
3af24433
ON
4028/**
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4031 *
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4033 */
4034void destroy_workqueue(struct workqueue_struct *wq)
4035{
49e3cf44 4036 struct pool_workqueue *pwq;
4c16bd32 4037 int node;
3af24433 4038
9c5a2ba7
TH
4039 /* drain it before proceeding with destruction */
4040 drain_workqueue(wq);
c8efcc25 4041
6183c009 4042 /* sanity checks */
b09f4fd3 4043 mutex_lock(&wq->mutex);
49e3cf44 4044 for_each_pwq(pwq, wq) {
6183c009
TH
4045 int i;
4046
76af4d93
TH
4047 for (i = 0; i < WORK_NR_COLORS; i++) {
4048 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4049 mutex_unlock(&wq->mutex);
6183c009 4050 return;
76af4d93
TH
4051 }
4052 }
4053
5c529597 4054 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4055 WARN_ON(pwq->nr_active) ||
76af4d93 4056 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4057 mutex_unlock(&wq->mutex);
6183c009 4058 return;
76af4d93 4059 }
6183c009 4060 }
b09f4fd3 4061 mutex_unlock(&wq->mutex);
6183c009 4062
a0a1a5fd
TH
4063 /*
4064 * wq list is used to freeze wq, remove from list after
4065 * flushing is complete in case freeze races us.
4066 */
68e13a67 4067 mutex_lock(&wq_pool_mutex);
e2dca7ad 4068 list_del_rcu(&wq->list);
68e13a67 4069 mutex_unlock(&wq_pool_mutex);
3af24433 4070
226223ab
TH
4071 workqueue_sysfs_unregister(wq);
4072
e2dca7ad 4073 if (wq->rescuer)
e22bee78 4074 kthread_stop(wq->rescuer->task);
e22bee78 4075
8864b4e5
TH
4076 if (!(wq->flags & WQ_UNBOUND)) {
4077 /*
4078 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4079 * schedule RCU free.
8864b4e5 4080 */
e2dca7ad 4081 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4082 } else {
4083 /*
4084 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4085 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086 * @wq will be freed when the last pwq is released.
8864b4e5 4087 */
4c16bd32
TH
4088 for_each_node(node) {
4089 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091 put_pwq_unlocked(pwq);
4092 }
4093
4094 /*
4095 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4096 * put. Don't access it afterwards.
4097 */
4098 pwq = wq->dfl_pwq;
4099 wq->dfl_pwq = NULL;
dce90d47 4100 put_pwq_unlocked(pwq);
29c91e99 4101 }
3af24433
ON
4102}
4103EXPORT_SYMBOL_GPL(destroy_workqueue);
4104
dcd989cb
TH
4105/**
4106 * workqueue_set_max_active - adjust max_active of a workqueue
4107 * @wq: target workqueue
4108 * @max_active: new max_active value.
4109 *
4110 * Set max_active of @wq to @max_active.
4111 *
4112 * CONTEXT:
4113 * Don't call from IRQ context.
4114 */
4115void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4116{
49e3cf44 4117 struct pool_workqueue *pwq;
dcd989cb 4118
8719dcea
TH
4119 /* disallow meddling with max_active for ordered workqueues */
4120 if (WARN_ON(wq->flags & __WQ_ORDERED))
4121 return;
4122
f3421797 4123 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4124
a357fc03 4125 mutex_lock(&wq->mutex);
dcd989cb
TH
4126
4127 wq->saved_max_active = max_active;
4128
699ce097
TH
4129 for_each_pwq(pwq, wq)
4130 pwq_adjust_max_active(pwq);
93981800 4131
a357fc03 4132 mutex_unlock(&wq->mutex);
15316ba8 4133}
dcd989cb 4134EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4135
e6267616
TH
4136/**
4137 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4138 *
4139 * Determine whether %current is a workqueue rescuer. Can be used from
4140 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4141 *
4142 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4143 */
4144bool current_is_workqueue_rescuer(void)
4145{
4146 struct worker *worker = current_wq_worker();
4147
6a092dfd 4148 return worker && worker->rescue_wq;
e6267616
TH
4149}
4150
eef6a7d5 4151/**
dcd989cb
TH
4152 * workqueue_congested - test whether a workqueue is congested
4153 * @cpu: CPU in question
4154 * @wq: target workqueue
eef6a7d5 4155 *
dcd989cb
TH
4156 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4157 * no synchronization around this function and the test result is
4158 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4159 *
d3251859
TH
4160 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161 * Note that both per-cpu and unbound workqueues may be associated with
4162 * multiple pool_workqueues which have separate congested states. A
4163 * workqueue being congested on one CPU doesn't mean the workqueue is also
4164 * contested on other CPUs / NUMA nodes.
4165 *
d185af30 4166 * Return:
dcd989cb 4167 * %true if congested, %false otherwise.
eef6a7d5 4168 */
d84ff051 4169bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4170{
7fb98ea7 4171 struct pool_workqueue *pwq;
76af4d93
TH
4172 bool ret;
4173
88109453 4174 rcu_read_lock_sched();
7fb98ea7 4175
d3251859
TH
4176 if (cpu == WORK_CPU_UNBOUND)
4177 cpu = smp_processor_id();
4178
7fb98ea7
TH
4179 if (!(wq->flags & WQ_UNBOUND))
4180 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181 else
df2d5ae4 4182 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4183
76af4d93 4184 ret = !list_empty(&pwq->delayed_works);
88109453 4185 rcu_read_unlock_sched();
76af4d93
TH
4186
4187 return ret;
1da177e4 4188}
dcd989cb 4189EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4190
dcd989cb
TH
4191/**
4192 * work_busy - test whether a work is currently pending or running
4193 * @work: the work to be tested
4194 *
4195 * Test whether @work is currently pending or running. There is no
4196 * synchronization around this function and the test result is
4197 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4198 *
d185af30 4199 * Return:
dcd989cb
TH
4200 * OR'd bitmask of WORK_BUSY_* bits.
4201 */
4202unsigned int work_busy(struct work_struct *work)
1da177e4 4203{
fa1b54e6 4204 struct worker_pool *pool;
dcd989cb
TH
4205 unsigned long flags;
4206 unsigned int ret = 0;
1da177e4 4207
dcd989cb
TH
4208 if (work_pending(work))
4209 ret |= WORK_BUSY_PENDING;
1da177e4 4210
fa1b54e6
TH
4211 local_irq_save(flags);
4212 pool = get_work_pool(work);
038366c5 4213 if (pool) {
fa1b54e6 4214 spin_lock(&pool->lock);
038366c5
LJ
4215 if (find_worker_executing_work(pool, work))
4216 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4217 spin_unlock(&pool->lock);
038366c5 4218 }
fa1b54e6 4219 local_irq_restore(flags);
1da177e4 4220
dcd989cb 4221 return ret;
1da177e4 4222}
dcd989cb 4223EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4224
3d1cb205
TH
4225/**
4226 * set_worker_desc - set description for the current work item
4227 * @fmt: printf-style format string
4228 * @...: arguments for the format string
4229 *
4230 * This function can be called by a running work function to describe what
4231 * the work item is about. If the worker task gets dumped, this
4232 * information will be printed out together to help debugging. The
4233 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4234 */
4235void set_worker_desc(const char *fmt, ...)
4236{
4237 struct worker *worker = current_wq_worker();
4238 va_list args;
4239
4240 if (worker) {
4241 va_start(args, fmt);
4242 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243 va_end(args);
4244 worker->desc_valid = true;
4245 }
4246}
4247
4248/**
4249 * print_worker_info - print out worker information and description
4250 * @log_lvl: the log level to use when printing
4251 * @task: target task
4252 *
4253 * If @task is a worker and currently executing a work item, print out the
4254 * name of the workqueue being serviced and worker description set with
4255 * set_worker_desc() by the currently executing work item.
4256 *
4257 * This function can be safely called on any task as long as the
4258 * task_struct itself is accessible. While safe, this function isn't
4259 * synchronized and may print out mixups or garbages of limited length.
4260 */
4261void print_worker_info(const char *log_lvl, struct task_struct *task)
4262{
4263 work_func_t *fn = NULL;
4264 char name[WQ_NAME_LEN] = { };
4265 char desc[WORKER_DESC_LEN] = { };
4266 struct pool_workqueue *pwq = NULL;
4267 struct workqueue_struct *wq = NULL;
4268 bool desc_valid = false;
4269 struct worker *worker;
4270
4271 if (!(task->flags & PF_WQ_WORKER))
4272 return;
4273
4274 /*
4275 * This function is called without any synchronization and @task
4276 * could be in any state. Be careful with dereferences.
4277 */
4278 worker = probe_kthread_data(task);
4279
4280 /*
4281 * Carefully copy the associated workqueue's workfn and name. Keep
4282 * the original last '\0' in case the original contains garbage.
4283 */
4284 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4288
4289 /* copy worker description */
4290 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291 if (desc_valid)
4292 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4293
4294 if (fn || name[0] || desc[0]) {
4295 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296 if (desc[0])
4297 pr_cont(" (%s)", desc);
4298 pr_cont("\n");
4299 }
4300}
4301
3494fc30
TH
4302static void pr_cont_pool_info(struct worker_pool *pool)
4303{
4304 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305 if (pool->node != NUMA_NO_NODE)
4306 pr_cont(" node=%d", pool->node);
4307 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4308}
4309
4310static void pr_cont_work(bool comma, struct work_struct *work)
4311{
4312 if (work->func == wq_barrier_func) {
4313 struct wq_barrier *barr;
4314
4315 barr = container_of(work, struct wq_barrier, work);
4316
4317 pr_cont("%s BAR(%d)", comma ? "," : "",
4318 task_pid_nr(barr->task));
4319 } else {
4320 pr_cont("%s %pf", comma ? "," : "", work->func);
4321 }
4322}
4323
4324static void show_pwq(struct pool_workqueue *pwq)
4325{
4326 struct worker_pool *pool = pwq->pool;
4327 struct work_struct *work;
4328 struct worker *worker;
4329 bool has_in_flight = false, has_pending = false;
4330 int bkt;
4331
4332 pr_info(" pwq %d:", pool->id);
4333 pr_cont_pool_info(pool);
4334
4335 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4336 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4337
4338 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339 if (worker->current_pwq == pwq) {
4340 has_in_flight = true;
4341 break;
4342 }
4343 }
4344 if (has_in_flight) {
4345 bool comma = false;
4346
4347 pr_info(" in-flight:");
4348 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349 if (worker->current_pwq != pwq)
4350 continue;
4351
4352 pr_cont("%s %d%s:%pf", comma ? "," : "",
4353 task_pid_nr(worker->task),
4354 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355 worker->current_func);
4356 list_for_each_entry(work, &worker->scheduled, entry)
4357 pr_cont_work(false, work);
4358 comma = true;
4359 }
4360 pr_cont("\n");
4361 }
4362
4363 list_for_each_entry(work, &pool->worklist, entry) {
4364 if (get_work_pwq(work) == pwq) {
4365 has_pending = true;
4366 break;
4367 }
4368 }
4369 if (has_pending) {
4370 bool comma = false;
4371
4372 pr_info(" pending:");
4373 list_for_each_entry(work, &pool->worklist, entry) {
4374 if (get_work_pwq(work) != pwq)
4375 continue;
4376
4377 pr_cont_work(comma, work);
4378 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4379 }
4380 pr_cont("\n");
4381 }
4382
4383 if (!list_empty(&pwq->delayed_works)) {
4384 bool comma = false;
4385
4386 pr_info(" delayed:");
4387 list_for_each_entry(work, &pwq->delayed_works, entry) {
4388 pr_cont_work(comma, work);
4389 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4390 }
4391 pr_cont("\n");
4392 }
4393}
4394
4395/**
4396 * show_workqueue_state - dump workqueue state
4397 *
4398 * Called from a sysrq handler and prints out all busy workqueues and
4399 * pools.
4400 */
4401void show_workqueue_state(void)
4402{
4403 struct workqueue_struct *wq;
4404 struct worker_pool *pool;
4405 unsigned long flags;
4406 int pi;
4407
4408 rcu_read_lock_sched();
4409
4410 pr_info("Showing busy workqueues and worker pools:\n");
4411
4412 list_for_each_entry_rcu(wq, &workqueues, list) {
4413 struct pool_workqueue *pwq;
4414 bool idle = true;
4415
4416 for_each_pwq(pwq, wq) {
4417 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418 idle = false;
4419 break;
4420 }
4421 }
4422 if (idle)
4423 continue;
4424
4425 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4426
4427 for_each_pwq(pwq, wq) {
4428 spin_lock_irqsave(&pwq->pool->lock, flags);
4429 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430 show_pwq(pwq);
4431 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4432 }
4433 }
4434
4435 for_each_pool(pool, pi) {
4436 struct worker *worker;
4437 bool first = true;
4438
4439 spin_lock_irqsave(&pool->lock, flags);
4440 if (pool->nr_workers == pool->nr_idle)
4441 goto next_pool;
4442
4443 pr_info("pool %d:", pool->id);
4444 pr_cont_pool_info(pool);
82607adc
TH
4445 pr_cont(" hung=%us workers=%d",
4446 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447 pool->nr_workers);
3494fc30
TH
4448 if (pool->manager)
4449 pr_cont(" manager: %d",
4450 task_pid_nr(pool->manager->task));
4451 list_for_each_entry(worker, &pool->idle_list, entry) {
4452 pr_cont(" %s%d", first ? "idle: " : "",
4453 task_pid_nr(worker->task));
4454 first = false;
4455 }
4456 pr_cont("\n");
4457 next_pool:
4458 spin_unlock_irqrestore(&pool->lock, flags);
4459 }
4460
4461 rcu_read_unlock_sched();
4462}
4463
db7bccf4
TH
4464/*
4465 * CPU hotplug.
4466 *
e22bee78 4467 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4468 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4469 * pool which make migrating pending and scheduled works very
e22bee78 4470 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4471 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4472 * blocked draining impractical.
4473 *
24647570 4474 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4475 * running as an unbound one and allowing it to be reattached later if the
4476 * cpu comes back online.
db7bccf4 4477 */
1da177e4 4478
706026c2 4479static void wq_unbind_fn(struct work_struct *work)
3af24433 4480{
38db41d9 4481 int cpu = smp_processor_id();
4ce62e9e 4482 struct worker_pool *pool;
db7bccf4 4483 struct worker *worker;
3af24433 4484
f02ae73a 4485 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4486 mutex_lock(&pool->attach_mutex);
94cf58bb 4487 spin_lock_irq(&pool->lock);
3af24433 4488
94cf58bb 4489 /*
92f9c5c4 4490 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4491 * unbound and set DISASSOCIATED. Before this, all workers
4492 * except for the ones which are still executing works from
4493 * before the last CPU down must be on the cpu. After
4494 * this, they may become diasporas.
4495 */
da028469 4496 for_each_pool_worker(worker, pool)
c9e7cf27 4497 worker->flags |= WORKER_UNBOUND;
06ba38a9 4498
24647570 4499 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4500
94cf58bb 4501 spin_unlock_irq(&pool->lock);
92f9c5c4 4502 mutex_unlock(&pool->attach_mutex);
628c78e7 4503
eb283428
LJ
4504 /*
4505 * Call schedule() so that we cross rq->lock and thus can
4506 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507 * This is necessary as scheduler callbacks may be invoked
4508 * from other cpus.
4509 */
4510 schedule();
06ba38a9 4511
eb283428
LJ
4512 /*
4513 * Sched callbacks are disabled now. Zap nr_running.
4514 * After this, nr_running stays zero and need_more_worker()
4515 * and keep_working() are always true as long as the
4516 * worklist is not empty. This pool now behaves as an
4517 * unbound (in terms of concurrency management) pool which
4518 * are served by workers tied to the pool.
4519 */
e19e397a 4520 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4521
4522 /*
4523 * With concurrency management just turned off, a busy
4524 * worker blocking could lead to lengthy stalls. Kick off
4525 * unbound chain execution of currently pending work items.
4526 */
4527 spin_lock_irq(&pool->lock);
4528 wake_up_worker(pool);
4529 spin_unlock_irq(&pool->lock);
4530 }
3af24433 4531}
3af24433 4532
bd7c089e
TH
4533/**
4534 * rebind_workers - rebind all workers of a pool to the associated CPU
4535 * @pool: pool of interest
4536 *
a9ab775b 4537 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4538 */
4539static void rebind_workers(struct worker_pool *pool)
4540{
a9ab775b 4541 struct worker *worker;
bd7c089e 4542
92f9c5c4 4543 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4544
a9ab775b
TH
4545 /*
4546 * Restore CPU affinity of all workers. As all idle workers should
4547 * be on the run-queue of the associated CPU before any local
402dd89d 4548 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4549 * of all workers first and then clear UNBOUND. As we're called
4550 * from CPU_ONLINE, the following shouldn't fail.
4551 */
da028469 4552 for_each_pool_worker(worker, pool)
a9ab775b
TH
4553 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554 pool->attrs->cpumask) < 0);
bd7c089e 4555
a9ab775b 4556 spin_lock_irq(&pool->lock);
f7c17d26
WL
4557
4558 /*
4559 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4560 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4561 * being reworked and this can go away in time.
4562 */
4563 if (!(pool->flags & POOL_DISASSOCIATED)) {
4564 spin_unlock_irq(&pool->lock);
4565 return;
4566 }
4567
3de5e884 4568 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4569
da028469 4570 for_each_pool_worker(worker, pool) {
a9ab775b 4571 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4572
4573 /*
a9ab775b
TH
4574 * A bound idle worker should actually be on the runqueue
4575 * of the associated CPU for local wake-ups targeting it to
4576 * work. Kick all idle workers so that they migrate to the
4577 * associated CPU. Doing this in the same loop as
4578 * replacing UNBOUND with REBOUND is safe as no worker will
4579 * be bound before @pool->lock is released.
bd7c089e 4580 */
a9ab775b
TH
4581 if (worker_flags & WORKER_IDLE)
4582 wake_up_process(worker->task);
bd7c089e 4583
a9ab775b
TH
4584 /*
4585 * We want to clear UNBOUND but can't directly call
4586 * worker_clr_flags() or adjust nr_running. Atomically
4587 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4588 * @worker will clear REBOUND using worker_clr_flags() when
4589 * it initiates the next execution cycle thus restoring
4590 * concurrency management. Note that when or whether
4591 * @worker clears REBOUND doesn't affect correctness.
4592 *
4593 * ACCESS_ONCE() is necessary because @worker->flags may be
4594 * tested without holding any lock in
4595 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4596 * fail incorrectly leading to premature concurrency
4597 * management operations.
4598 */
4599 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4600 worker_flags |= WORKER_REBOUND;
4601 worker_flags &= ~WORKER_UNBOUND;
4602 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4603 }
a9ab775b
TH
4604
4605 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4606}
4607
7dbc725e
TH
4608/**
4609 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4610 * @pool: unbound pool of interest
4611 * @cpu: the CPU which is coming up
4612 *
4613 * An unbound pool may end up with a cpumask which doesn't have any online
4614 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4615 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4616 * online CPU before, cpus_allowed of all its workers should be restored.
4617 */
4618static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4619{
4620 static cpumask_t cpumask;
4621 struct worker *worker;
7dbc725e 4622
92f9c5c4 4623 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4624
4625 /* is @cpu allowed for @pool? */
4626 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4627 return;
4628
4629 /* is @cpu the only online CPU? */
4630 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4631 if (cpumask_weight(&cpumask) != 1)
4632 return;
4633
4634 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4635 for_each_pool_worker(worker, pool)
7dbc725e
TH
4636 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4637 pool->attrs->cpumask) < 0);
4638}
4639
8db25e78
TH
4640/*
4641 * Workqueues should be brought up before normal priority CPU notifiers.
4642 * This will be registered high priority CPU notifier.
4643 */
0db0628d 4644static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4645 unsigned long action,
4646 void *hcpu)
3af24433 4647{
d84ff051 4648 int cpu = (unsigned long)hcpu;
4ce62e9e 4649 struct worker_pool *pool;
4c16bd32 4650 struct workqueue_struct *wq;
7dbc725e 4651 int pi;
3ce63377 4652
8db25e78 4653 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4654 case CPU_UP_PREPARE:
f02ae73a 4655 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4656 if (pool->nr_workers)
4657 continue;
051e1850 4658 if (!create_worker(pool))
3ce63377 4659 return NOTIFY_BAD;
3af24433 4660 }
8db25e78 4661 break;
3af24433 4662
db7bccf4
TH
4663 case CPU_DOWN_FAILED:
4664 case CPU_ONLINE:
68e13a67 4665 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4666
4667 for_each_pool(pool, pi) {
92f9c5c4 4668 mutex_lock(&pool->attach_mutex);
94cf58bb 4669
f05b558d 4670 if (pool->cpu == cpu)
7dbc725e 4671 rebind_workers(pool);
f05b558d 4672 else if (pool->cpu < 0)
7dbc725e 4673 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4674
6ba94429
FW
4675 mutex_unlock(&pool->attach_mutex);
4676 }
4677
4678 /* update NUMA affinity of unbound workqueues */
4679 list_for_each_entry(wq, &workqueues, list)
4680 wq_update_unbound_numa(wq, cpu, true);
4681
4682 mutex_unlock(&wq_pool_mutex);
4683 break;
4684 }
4685 return NOTIFY_OK;
4686}
4687
4688/*
4689 * Workqueues should be brought down after normal priority CPU notifiers.
4690 * This will be registered as low priority CPU notifier.
4691 */
4692static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4693 unsigned long action,
4694 void *hcpu)
4695{
4696 int cpu = (unsigned long)hcpu;
4697 struct work_struct unbind_work;
4698 struct workqueue_struct *wq;
4699
4700 switch (action & ~CPU_TASKS_FROZEN) {
4701 case CPU_DOWN_PREPARE:
4702 /* unbinding per-cpu workers should happen on the local CPU */
4703 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4704 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4705
4706 /* update NUMA affinity of unbound workqueues */
4707 mutex_lock(&wq_pool_mutex);
4708 list_for_each_entry(wq, &workqueues, list)
4709 wq_update_unbound_numa(wq, cpu, false);
4710 mutex_unlock(&wq_pool_mutex);
4711
4712 /* wait for per-cpu unbinding to finish */
4713 flush_work(&unbind_work);
4714 destroy_work_on_stack(&unbind_work);
4715 break;
4716 }
4717 return NOTIFY_OK;
4718}
4719
4720#ifdef CONFIG_SMP
4721
4722struct work_for_cpu {
4723 struct work_struct work;
4724 long (*fn)(void *);
4725 void *arg;
4726 long ret;
4727};
4728
4729static void work_for_cpu_fn(struct work_struct *work)
4730{
4731 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4732
4733 wfc->ret = wfc->fn(wfc->arg);
4734}
4735
4736/**
22aceb31 4737 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4738 * @cpu: the cpu to run on
4739 * @fn: the function to run
4740 * @arg: the function arg
4741 *
4742 * It is up to the caller to ensure that the cpu doesn't go offline.
4743 * The caller must not hold any locks which would prevent @fn from completing.
4744 *
4745 * Return: The value @fn returns.
4746 */
4747long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4748{
4749 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4750
4751 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4752 schedule_work_on(cpu, &wfc.work);
4753 flush_work(&wfc.work);
4754 destroy_work_on_stack(&wfc.work);
4755 return wfc.ret;
4756}
4757EXPORT_SYMBOL_GPL(work_on_cpu);
4758#endif /* CONFIG_SMP */
4759
4760#ifdef CONFIG_FREEZER
4761
4762/**
4763 * freeze_workqueues_begin - begin freezing workqueues
4764 *
4765 * Start freezing workqueues. After this function returns, all freezable
4766 * workqueues will queue new works to their delayed_works list instead of
4767 * pool->worklist.
4768 *
4769 * CONTEXT:
4770 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4771 */
4772void freeze_workqueues_begin(void)
4773{
4774 struct workqueue_struct *wq;
4775 struct pool_workqueue *pwq;
4776
4777 mutex_lock(&wq_pool_mutex);
4778
4779 WARN_ON_ONCE(workqueue_freezing);
4780 workqueue_freezing = true;
4781
4782 list_for_each_entry(wq, &workqueues, list) {
4783 mutex_lock(&wq->mutex);
4784 for_each_pwq(pwq, wq)
4785 pwq_adjust_max_active(pwq);
4786 mutex_unlock(&wq->mutex);
4787 }
4788
4789 mutex_unlock(&wq_pool_mutex);
4790}
4791
4792/**
4793 * freeze_workqueues_busy - are freezable workqueues still busy?
4794 *
4795 * Check whether freezing is complete. This function must be called
4796 * between freeze_workqueues_begin() and thaw_workqueues().
4797 *
4798 * CONTEXT:
4799 * Grabs and releases wq_pool_mutex.
4800 *
4801 * Return:
4802 * %true if some freezable workqueues are still busy. %false if freezing
4803 * is complete.
4804 */
4805bool freeze_workqueues_busy(void)
4806{
4807 bool busy = false;
4808 struct workqueue_struct *wq;
4809 struct pool_workqueue *pwq;
4810
4811 mutex_lock(&wq_pool_mutex);
4812
4813 WARN_ON_ONCE(!workqueue_freezing);
4814
4815 list_for_each_entry(wq, &workqueues, list) {
4816 if (!(wq->flags & WQ_FREEZABLE))
4817 continue;
4818 /*
4819 * nr_active is monotonically decreasing. It's safe
4820 * to peek without lock.
4821 */
4822 rcu_read_lock_sched();
4823 for_each_pwq(pwq, wq) {
4824 WARN_ON_ONCE(pwq->nr_active < 0);
4825 if (pwq->nr_active) {
4826 busy = true;
4827 rcu_read_unlock_sched();
4828 goto out_unlock;
4829 }
4830 }
4831 rcu_read_unlock_sched();
4832 }
4833out_unlock:
4834 mutex_unlock(&wq_pool_mutex);
4835 return busy;
4836}
4837
4838/**
4839 * thaw_workqueues - thaw workqueues
4840 *
4841 * Thaw workqueues. Normal queueing is restored and all collected
4842 * frozen works are transferred to their respective pool worklists.
4843 *
4844 * CONTEXT:
4845 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4846 */
4847void thaw_workqueues(void)
4848{
4849 struct workqueue_struct *wq;
4850 struct pool_workqueue *pwq;
4851
4852 mutex_lock(&wq_pool_mutex);
4853
4854 if (!workqueue_freezing)
4855 goto out_unlock;
4856
4857 workqueue_freezing = false;
4858
4859 /* restore max_active and repopulate worklist */
4860 list_for_each_entry(wq, &workqueues, list) {
4861 mutex_lock(&wq->mutex);
4862 for_each_pwq(pwq, wq)
4863 pwq_adjust_max_active(pwq);
4864 mutex_unlock(&wq->mutex);
4865 }
4866
4867out_unlock:
4868 mutex_unlock(&wq_pool_mutex);
4869}
4870#endif /* CONFIG_FREEZER */
4871
042f7df1
LJ
4872static int workqueue_apply_unbound_cpumask(void)
4873{
4874 LIST_HEAD(ctxs);
4875 int ret = 0;
4876 struct workqueue_struct *wq;
4877 struct apply_wqattrs_ctx *ctx, *n;
4878
4879 lockdep_assert_held(&wq_pool_mutex);
4880
4881 list_for_each_entry(wq, &workqueues, list) {
4882 if (!(wq->flags & WQ_UNBOUND))
4883 continue;
4884 /* creating multiple pwqs breaks ordering guarantee */
4885 if (wq->flags & __WQ_ORDERED)
4886 continue;
4887
4888 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4889 if (!ctx) {
4890 ret = -ENOMEM;
4891 break;
4892 }
4893
4894 list_add_tail(&ctx->list, &ctxs);
4895 }
4896
4897 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4898 if (!ret)
4899 apply_wqattrs_commit(ctx);
4900 apply_wqattrs_cleanup(ctx);
4901 }
4902
4903 return ret;
4904}
4905
4906/**
4907 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4908 * @cpumask: the cpumask to set
4909 *
4910 * The low-level workqueues cpumask is a global cpumask that limits
4911 * the affinity of all unbound workqueues. This function check the @cpumask
4912 * and apply it to all unbound workqueues and updates all pwqs of them.
4913 *
4914 * Retun: 0 - Success
4915 * -EINVAL - Invalid @cpumask
4916 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4917 */
4918int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4919{
4920 int ret = -EINVAL;
4921 cpumask_var_t saved_cpumask;
4922
4923 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4924 return -ENOMEM;
4925
042f7df1
LJ
4926 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4927 if (!cpumask_empty(cpumask)) {
a0111cf6 4928 apply_wqattrs_lock();
042f7df1
LJ
4929
4930 /* save the old wq_unbound_cpumask. */
4931 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4932
4933 /* update wq_unbound_cpumask at first and apply it to wqs. */
4934 cpumask_copy(wq_unbound_cpumask, cpumask);
4935 ret = workqueue_apply_unbound_cpumask();
4936
4937 /* restore the wq_unbound_cpumask when failed. */
4938 if (ret < 0)
4939 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4940
a0111cf6 4941 apply_wqattrs_unlock();
042f7df1 4942 }
042f7df1
LJ
4943
4944 free_cpumask_var(saved_cpumask);
4945 return ret;
4946}
4947
6ba94429
FW
4948#ifdef CONFIG_SYSFS
4949/*
4950 * Workqueues with WQ_SYSFS flag set is visible to userland via
4951 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4952 * following attributes.
4953 *
4954 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4955 * max_active RW int : maximum number of in-flight work items
4956 *
4957 * Unbound workqueues have the following extra attributes.
4958 *
4959 * id RO int : the associated pool ID
4960 * nice RW int : nice value of the workers
4961 * cpumask RW mask : bitmask of allowed CPUs for the workers
4962 */
4963struct wq_device {
4964 struct workqueue_struct *wq;
4965 struct device dev;
4966};
4967
4968static struct workqueue_struct *dev_to_wq(struct device *dev)
4969{
4970 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4971
4972 return wq_dev->wq;
4973}
4974
4975static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4976 char *buf)
4977{
4978 struct workqueue_struct *wq = dev_to_wq(dev);
4979
4980 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4981}
4982static DEVICE_ATTR_RO(per_cpu);
4983
4984static ssize_t max_active_show(struct device *dev,
4985 struct device_attribute *attr, char *buf)
4986{
4987 struct workqueue_struct *wq = dev_to_wq(dev);
4988
4989 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4990}
4991
4992static ssize_t max_active_store(struct device *dev,
4993 struct device_attribute *attr, const char *buf,
4994 size_t count)
4995{
4996 struct workqueue_struct *wq = dev_to_wq(dev);
4997 int val;
4998
4999 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5000 return -EINVAL;
5001
5002 workqueue_set_max_active(wq, val);
5003 return count;
5004}
5005static DEVICE_ATTR_RW(max_active);
5006
5007static struct attribute *wq_sysfs_attrs[] = {
5008 &dev_attr_per_cpu.attr,
5009 &dev_attr_max_active.attr,
5010 NULL,
5011};
5012ATTRIBUTE_GROUPS(wq_sysfs);
5013
5014static ssize_t wq_pool_ids_show(struct device *dev,
5015 struct device_attribute *attr, char *buf)
5016{
5017 struct workqueue_struct *wq = dev_to_wq(dev);
5018 const char *delim = "";
5019 int node, written = 0;
5020
5021 rcu_read_lock_sched();
5022 for_each_node(node) {
5023 written += scnprintf(buf + written, PAGE_SIZE - written,
5024 "%s%d:%d", delim, node,
5025 unbound_pwq_by_node(wq, node)->pool->id);
5026 delim = " ";
5027 }
5028 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5029 rcu_read_unlock_sched();
5030
5031 return written;
5032}
5033
5034static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5035 char *buf)
5036{
5037 struct workqueue_struct *wq = dev_to_wq(dev);
5038 int written;
5039
5040 mutex_lock(&wq->mutex);
5041 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5042 mutex_unlock(&wq->mutex);
5043
5044 return written;
5045}
5046
5047/* prepare workqueue_attrs for sysfs store operations */
5048static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5049{
5050 struct workqueue_attrs *attrs;
5051
899a94fe
LJ
5052 lockdep_assert_held(&wq_pool_mutex);
5053
6ba94429
FW
5054 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5055 if (!attrs)
5056 return NULL;
5057
6ba94429 5058 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5059 return attrs;
5060}
5061
5062static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5063 const char *buf, size_t count)
5064{
5065 struct workqueue_struct *wq = dev_to_wq(dev);
5066 struct workqueue_attrs *attrs;
d4d3e257
LJ
5067 int ret = -ENOMEM;
5068
5069 apply_wqattrs_lock();
6ba94429
FW
5070
5071 attrs = wq_sysfs_prep_attrs(wq);
5072 if (!attrs)
d4d3e257 5073 goto out_unlock;
6ba94429
FW
5074
5075 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5076 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5077 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5078 else
5079 ret = -EINVAL;
5080
d4d3e257
LJ
5081out_unlock:
5082 apply_wqattrs_unlock();
6ba94429
FW
5083 free_workqueue_attrs(attrs);
5084 return ret ?: count;
5085}
5086
5087static ssize_t wq_cpumask_show(struct device *dev,
5088 struct device_attribute *attr, char *buf)
5089{
5090 struct workqueue_struct *wq = dev_to_wq(dev);
5091 int written;
5092
5093 mutex_lock(&wq->mutex);
5094 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5095 cpumask_pr_args(wq->unbound_attrs->cpumask));
5096 mutex_unlock(&wq->mutex);
5097 return written;
5098}
5099
5100static ssize_t wq_cpumask_store(struct device *dev,
5101 struct device_attribute *attr,
5102 const char *buf, size_t count)
5103{
5104 struct workqueue_struct *wq = dev_to_wq(dev);
5105 struct workqueue_attrs *attrs;
d4d3e257
LJ
5106 int ret = -ENOMEM;
5107
5108 apply_wqattrs_lock();
6ba94429
FW
5109
5110 attrs = wq_sysfs_prep_attrs(wq);
5111 if (!attrs)
d4d3e257 5112 goto out_unlock;
6ba94429
FW
5113
5114 ret = cpumask_parse(buf, attrs->cpumask);
5115 if (!ret)
d4d3e257 5116 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5117
d4d3e257
LJ
5118out_unlock:
5119 apply_wqattrs_unlock();
6ba94429
FW
5120 free_workqueue_attrs(attrs);
5121 return ret ?: count;
5122}
5123
5124static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5125 char *buf)
5126{
5127 struct workqueue_struct *wq = dev_to_wq(dev);
5128 int written;
7dbc725e 5129
6ba94429
FW
5130 mutex_lock(&wq->mutex);
5131 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5132 !wq->unbound_attrs->no_numa);
5133 mutex_unlock(&wq->mutex);
4c16bd32 5134
6ba94429 5135 return written;
65758202
TH
5136}
5137
6ba94429
FW
5138static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5139 const char *buf, size_t count)
65758202 5140{
6ba94429
FW
5141 struct workqueue_struct *wq = dev_to_wq(dev);
5142 struct workqueue_attrs *attrs;
d4d3e257
LJ
5143 int v, ret = -ENOMEM;
5144
5145 apply_wqattrs_lock();
4c16bd32 5146
6ba94429
FW
5147 attrs = wq_sysfs_prep_attrs(wq);
5148 if (!attrs)
d4d3e257 5149 goto out_unlock;
4c16bd32 5150
6ba94429
FW
5151 ret = -EINVAL;
5152 if (sscanf(buf, "%d", &v) == 1) {
5153 attrs->no_numa = !v;
d4d3e257 5154 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5155 }
6ba94429 5156
d4d3e257
LJ
5157out_unlock:
5158 apply_wqattrs_unlock();
6ba94429
FW
5159 free_workqueue_attrs(attrs);
5160 return ret ?: count;
65758202
TH
5161}
5162
6ba94429
FW
5163static struct device_attribute wq_sysfs_unbound_attrs[] = {
5164 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5165 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5166 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5167 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5168 __ATTR_NULL,
5169};
8ccad40d 5170
6ba94429
FW
5171static struct bus_type wq_subsys = {
5172 .name = "workqueue",
5173 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5174};
5175
b05a7928
FW
5176static ssize_t wq_unbound_cpumask_show(struct device *dev,
5177 struct device_attribute *attr, char *buf)
5178{
5179 int written;
5180
042f7df1 5181 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5182 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5183 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5184 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5185
5186 return written;
5187}
5188
042f7df1
LJ
5189static ssize_t wq_unbound_cpumask_store(struct device *dev,
5190 struct device_attribute *attr, const char *buf, size_t count)
5191{
5192 cpumask_var_t cpumask;
5193 int ret;
5194
5195 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5196 return -ENOMEM;
5197
5198 ret = cpumask_parse(buf, cpumask);
5199 if (!ret)
5200 ret = workqueue_set_unbound_cpumask(cpumask);
5201
5202 free_cpumask_var(cpumask);
5203 return ret ? ret : count;
5204}
5205
b05a7928 5206static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5207 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5208 wq_unbound_cpumask_store);
b05a7928 5209
6ba94429 5210static int __init wq_sysfs_init(void)
2d3854a3 5211{
b05a7928
FW
5212 int err;
5213
5214 err = subsys_virtual_register(&wq_subsys, NULL);
5215 if (err)
5216 return err;
5217
5218 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5219}
6ba94429 5220core_initcall(wq_sysfs_init);
2d3854a3 5221
6ba94429 5222static void wq_device_release(struct device *dev)
2d3854a3 5223{
6ba94429 5224 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5225
6ba94429 5226 kfree(wq_dev);
2d3854a3 5227}
a0a1a5fd
TH
5228
5229/**
6ba94429
FW
5230 * workqueue_sysfs_register - make a workqueue visible in sysfs
5231 * @wq: the workqueue to register
a0a1a5fd 5232 *
6ba94429
FW
5233 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5234 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5235 * which is the preferred method.
a0a1a5fd 5236 *
6ba94429
FW
5237 * Workqueue user should use this function directly iff it wants to apply
5238 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5239 * apply_workqueue_attrs() may race against userland updating the
5240 * attributes.
5241 *
5242 * Return: 0 on success, -errno on failure.
a0a1a5fd 5243 */
6ba94429 5244int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5245{
6ba94429
FW
5246 struct wq_device *wq_dev;
5247 int ret;
a0a1a5fd 5248
6ba94429 5249 /*
402dd89d 5250 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5251 * attributes breaks ordering guarantee. Disallow exposing ordered
5252 * workqueues.
5253 */
5254 if (WARN_ON(wq->flags & __WQ_ORDERED))
5255 return -EINVAL;
a0a1a5fd 5256
6ba94429
FW
5257 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5258 if (!wq_dev)
5259 return -ENOMEM;
5bcab335 5260
6ba94429
FW
5261 wq_dev->wq = wq;
5262 wq_dev->dev.bus = &wq_subsys;
6ba94429 5263 wq_dev->dev.release = wq_device_release;
23217b44 5264 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5265
6ba94429
FW
5266 /*
5267 * unbound_attrs are created separately. Suppress uevent until
5268 * everything is ready.
5269 */
5270 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5271
6ba94429
FW
5272 ret = device_register(&wq_dev->dev);
5273 if (ret) {
5274 kfree(wq_dev);
5275 wq->wq_dev = NULL;
5276 return ret;
5277 }
a0a1a5fd 5278
6ba94429
FW
5279 if (wq->flags & WQ_UNBOUND) {
5280 struct device_attribute *attr;
a0a1a5fd 5281
6ba94429
FW
5282 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5283 ret = device_create_file(&wq_dev->dev, attr);
5284 if (ret) {
5285 device_unregister(&wq_dev->dev);
5286 wq->wq_dev = NULL;
5287 return ret;
a0a1a5fd
TH
5288 }
5289 }
5290 }
6ba94429
FW
5291
5292 dev_set_uevent_suppress(&wq_dev->dev, false);
5293 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5294 return 0;
a0a1a5fd
TH
5295}
5296
5297/**
6ba94429
FW
5298 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5299 * @wq: the workqueue to unregister
a0a1a5fd 5300 *
6ba94429 5301 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5302 */
6ba94429 5303static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5304{
6ba94429 5305 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5306
6ba94429
FW
5307 if (!wq->wq_dev)
5308 return;
a0a1a5fd 5309
6ba94429
FW
5310 wq->wq_dev = NULL;
5311 device_unregister(&wq_dev->dev);
a0a1a5fd 5312}
6ba94429
FW
5313#else /* CONFIG_SYSFS */
5314static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5315#endif /* CONFIG_SYSFS */
a0a1a5fd 5316
82607adc
TH
5317/*
5318 * Workqueue watchdog.
5319 *
5320 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5321 * flush dependency, a concurrency managed work item which stays RUNNING
5322 * indefinitely. Workqueue stalls can be very difficult to debug as the
5323 * usual warning mechanisms don't trigger and internal workqueue state is
5324 * largely opaque.
5325 *
5326 * Workqueue watchdog monitors all worker pools periodically and dumps
5327 * state if some pools failed to make forward progress for a while where
5328 * forward progress is defined as the first item on ->worklist changing.
5329 *
5330 * This mechanism is controlled through the kernel parameter
5331 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5332 * corresponding sysfs parameter file.
5333 */
5334#ifdef CONFIG_WQ_WATCHDOG
5335
5336static void wq_watchdog_timer_fn(unsigned long data);
5337
5338static unsigned long wq_watchdog_thresh = 30;
5339static struct timer_list wq_watchdog_timer =
5340 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5341
5342static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5343static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5344
5345static void wq_watchdog_reset_touched(void)
5346{
5347 int cpu;
5348
5349 wq_watchdog_touched = jiffies;
5350 for_each_possible_cpu(cpu)
5351 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5352}
5353
5354static void wq_watchdog_timer_fn(unsigned long data)
5355{
5356 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5357 bool lockup_detected = false;
5358 struct worker_pool *pool;
5359 int pi;
5360
5361 if (!thresh)
5362 return;
5363
5364 rcu_read_lock();
5365
5366 for_each_pool(pool, pi) {
5367 unsigned long pool_ts, touched, ts;
5368
5369 if (list_empty(&pool->worklist))
5370 continue;
5371
5372 /* get the latest of pool and touched timestamps */
5373 pool_ts = READ_ONCE(pool->watchdog_ts);
5374 touched = READ_ONCE(wq_watchdog_touched);
5375
5376 if (time_after(pool_ts, touched))
5377 ts = pool_ts;
5378 else
5379 ts = touched;
5380
5381 if (pool->cpu >= 0) {
5382 unsigned long cpu_touched =
5383 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5384 pool->cpu));
5385 if (time_after(cpu_touched, ts))
5386 ts = cpu_touched;
5387 }
5388
5389 /* did we stall? */
5390 if (time_after(jiffies, ts + thresh)) {
5391 lockup_detected = true;
5392 pr_emerg("BUG: workqueue lockup - pool");
5393 pr_cont_pool_info(pool);
5394 pr_cont(" stuck for %us!\n",
5395 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5396 }
5397 }
5398
5399 rcu_read_unlock();
5400
5401 if (lockup_detected)
5402 show_workqueue_state();
5403
5404 wq_watchdog_reset_touched();
5405 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5406}
5407
5408void wq_watchdog_touch(int cpu)
5409{
5410 if (cpu >= 0)
5411 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5412 else
5413 wq_watchdog_touched = jiffies;
5414}
5415
5416static void wq_watchdog_set_thresh(unsigned long thresh)
5417{
5418 wq_watchdog_thresh = 0;
5419 del_timer_sync(&wq_watchdog_timer);
5420
5421 if (thresh) {
5422 wq_watchdog_thresh = thresh;
5423 wq_watchdog_reset_touched();
5424 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5425 }
5426}
5427
5428static int wq_watchdog_param_set_thresh(const char *val,
5429 const struct kernel_param *kp)
5430{
5431 unsigned long thresh;
5432 int ret;
5433
5434 ret = kstrtoul(val, 0, &thresh);
5435 if (ret)
5436 return ret;
5437
5438 if (system_wq)
5439 wq_watchdog_set_thresh(thresh);
5440 else
5441 wq_watchdog_thresh = thresh;
5442
5443 return 0;
5444}
5445
5446static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5447 .set = wq_watchdog_param_set_thresh,
5448 .get = param_get_ulong,
5449};
5450
5451module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5452 0644);
5453
5454static void wq_watchdog_init(void)
5455{
5456 wq_watchdog_set_thresh(wq_watchdog_thresh);
5457}
5458
5459#else /* CONFIG_WQ_WATCHDOG */
5460
5461static inline void wq_watchdog_init(void) { }
5462
5463#endif /* CONFIG_WQ_WATCHDOG */
5464
bce90380
TH
5465static void __init wq_numa_init(void)
5466{
5467 cpumask_var_t *tbl;
5468 int node, cpu;
5469
bce90380
TH
5470 if (num_possible_nodes() <= 1)
5471 return;
5472
d55262c4
TH
5473 if (wq_disable_numa) {
5474 pr_info("workqueue: NUMA affinity support disabled\n");
5475 return;
5476 }
5477
4c16bd32
TH
5478 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5479 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5480
bce90380
TH
5481 /*
5482 * We want masks of possible CPUs of each node which isn't readily
5483 * available. Build one from cpu_to_node() which should have been
5484 * fully initialized by now.
5485 */
ddcb57e2 5486 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5487 BUG_ON(!tbl);
5488
5489 for_each_node(node)
5a6024f1 5490 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5491 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5492
5493 for_each_possible_cpu(cpu) {
5494 node = cpu_to_node(cpu);
5495 if (WARN_ON(node == NUMA_NO_NODE)) {
5496 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5497 /* happens iff arch is bonkers, let's just proceed */
5498 return;
5499 }
5500 cpumask_set_cpu(cpu, tbl[node]);
5501 }
5502
5503 wq_numa_possible_cpumask = tbl;
5504 wq_numa_enabled = true;
5505}
5506
6ee0578b 5507static int __init init_workqueues(void)
1da177e4 5508{
7a4e344c
TH
5509 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5510 int i, cpu;
c34056a3 5511
e904e6c2
TH
5512 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5513
b05a7928
FW
5514 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5515 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5516
e904e6c2
TH
5517 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5518
65758202 5519 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5520 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5521
bce90380
TH
5522 wq_numa_init();
5523
706026c2 5524 /* initialize CPU pools */
29c91e99 5525 for_each_possible_cpu(cpu) {
4ce62e9e 5526 struct worker_pool *pool;
8b03ae3c 5527
7a4e344c 5528 i = 0;
f02ae73a 5529 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5530 BUG_ON(init_worker_pool(pool));
ec22ca5e 5531 pool->cpu = cpu;
29c91e99 5532 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5533 pool->attrs->nice = std_nice[i++];
f3f90ad4 5534 pool->node = cpu_to_node(cpu);
7a4e344c 5535
9daf9e67 5536 /* alloc pool ID */
68e13a67 5537 mutex_lock(&wq_pool_mutex);
9daf9e67 5538 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5539 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5540 }
8b03ae3c
TH
5541 }
5542
e22bee78 5543 /* create the initial worker */
29c91e99 5544 for_each_online_cpu(cpu) {
4ce62e9e 5545 struct worker_pool *pool;
e22bee78 5546
f02ae73a 5547 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5548 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5549 BUG_ON(!create_worker(pool));
4ce62e9e 5550 }
e22bee78
TH
5551 }
5552
8a2b7538 5553 /* create default unbound and ordered wq attrs */
29c91e99
TH
5554 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5555 struct workqueue_attrs *attrs;
5556
5557 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5558 attrs->nice = std_nice[i];
29c91e99 5559 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5560
5561 /*
5562 * An ordered wq should have only one pwq as ordering is
5563 * guaranteed by max_active which is enforced by pwqs.
5564 * Turn off NUMA so that dfl_pwq is used for all nodes.
5565 */
5566 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5567 attrs->nice = std_nice[i];
5568 attrs->no_numa = true;
5569 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5570 }
5571
d320c038 5572 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5573 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5574 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5575 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5576 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5577 system_freezable_wq = alloc_workqueue("events_freezable",
5578 WQ_FREEZABLE, 0);
0668106c
VK
5579 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5580 WQ_POWER_EFFICIENT, 0);
5581 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5582 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5583 0);
1aabe902 5584 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5585 !system_unbound_wq || !system_freezable_wq ||
5586 !system_power_efficient_wq ||
5587 !system_freezable_power_efficient_wq);
82607adc
TH
5588
5589 wq_watchdog_init();
5590
6ee0578b 5591 return 0;
1da177e4 5592}
6ee0578b 5593early_initcall(init_workqueues);