ARM: Merge for-2635/samsung-hwmon
[linux-2.6-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
95 */
96#define TBASE_DEFERRABLE_FLAG (0x1)
97
98/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 99static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 100{
e9910846 101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
102}
103
a6fa8e5a 104static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 105{
a6fa8e5a 106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void timer_set_deferrable(struct timer_list *timer)
110{
a6fa8e5a 111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 112 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
113}
114
115static inline void
a6fa8e5a 116timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 117{
a6fa8e5a 118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 119 tbase_get_deferrable(timer->base));
6e453a67
VP
120}
121
9c133c46
AS
122static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
4c36a5de
AV
124{
125 int rem;
126 unsigned long original = j;
127
128 /*
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
135 */
136 j += cpu * 3;
137
138 rem = j % HZ;
139
140 /*
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 145 * But never round down if @force_up is set.
4c36a5de 146 */
9c133c46 147 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
151
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
154
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
158}
9c133c46
AS
159
160/**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180unsigned long __round_jiffies(unsigned long j, int cpu)
181{
182 return round_jiffies_common(j, cpu, false);
183}
4c36a5de
AV
184EXPORT_SYMBOL_GPL(__round_jiffies);
185
186/**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
72fd4a35 191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
72fd4a35 204 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
205 */
206unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207{
9c133c46
AS
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
212}
213EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215/**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
72fd4a35 219 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
72fd4a35 228 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
229 */
230unsigned long round_jiffies(unsigned long j)
231{
9c133c46 232 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
233}
234EXPORT_SYMBOL_GPL(round_jiffies);
235
236/**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
72fd4a35 240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
72fd4a35 249 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
250 */
251unsigned long round_jiffies_relative(unsigned long j)
252{
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254}
255EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
9c133c46
AS
257/**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267unsigned long __round_jiffies_up(unsigned long j, int cpu)
268{
269 return round_jiffies_common(j, cpu, true);
270}
271EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273/**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284{
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289}
290EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292/**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301unsigned long round_jiffies_up(unsigned long j)
302{
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304}
305EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307/**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316unsigned long round_jiffies_up_relative(unsigned long j)
317{
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319}
320EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
4c36a5de 322
a6fa8e5a 323static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
324 struct timer_list *timer)
325{
326#ifdef CONFIG_SMP
3691c519 327 base->running_timer = timer;
1da177e4
LT
328#endif
329}
330
a6fa8e5a 331static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
332{
333 unsigned long expires = timer->expires;
334 unsigned long idx = expires - base->timer_jiffies;
335 struct list_head *vec;
336
337 if (idx < TVR_SIZE) {
338 int i = expires & TVR_MASK;
339 vec = base->tv1.vec + i;
340 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
341 int i = (expires >> TVR_BITS) & TVN_MASK;
342 vec = base->tv2.vec + i;
343 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
344 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
345 vec = base->tv3.vec + i;
346 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
347 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
348 vec = base->tv4.vec + i;
349 } else if ((signed long) idx < 0) {
350 /*
351 * Can happen if you add a timer with expires == jiffies,
352 * or you set a timer to go off in the past
353 */
354 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
355 } else {
356 int i;
357 /* If the timeout is larger than 0xffffffff on 64-bit
358 * architectures then we use the maximum timeout:
359 */
360 if (idx > 0xffffffffUL) {
361 idx = 0xffffffffUL;
362 expires = idx + base->timer_jiffies;
363 }
364 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
365 vec = base->tv5.vec + i;
366 }
367 /*
368 * Timers are FIFO:
369 */
370 list_add_tail(&timer->entry, vec);
371}
372
82f67cd9
IM
373#ifdef CONFIG_TIMER_STATS
374void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
375{
376 if (timer->start_site)
377 return;
378
379 timer->start_site = addr;
380 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
381 timer->start_pid = current->pid;
382}
c5c061b8
VP
383
384static void timer_stats_account_timer(struct timer_list *timer)
385{
386 unsigned int flag = 0;
387
507e1231
HC
388 if (likely(!timer->start_site))
389 return;
c5c061b8
VP
390 if (unlikely(tbase_get_deferrable(timer->base)))
391 flag |= TIMER_STATS_FLAG_DEFERRABLE;
392
393 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
394 timer->function, timer->start_comm, flag);
395}
396
397#else
398static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
399#endif
400
c6f3a97f
TG
401#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
402
403static struct debug_obj_descr timer_debug_descr;
404
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
55c888d6 408 */
c6f3a97f
TG
409static int timer_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct timer_list *timer = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 del_timer_sync(timer);
416 debug_object_init(timer, &timer_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int timer_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct timer_list *timer = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The timer was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
440 if (timer->entry.next == NULL &&
441 timer->entry.prev == TIMER_ENTRY_STATIC) {
442 debug_object_init(timer, &timer_debug_descr);
443 debug_object_activate(timer, &timer_debug_descr);
444 return 0;
445 } else {
446 WARN_ON_ONCE(1);
447 }
448 return 0;
449
450 case ODEBUG_STATE_ACTIVE:
451 WARN_ON(1);
452
453 default:
454 return 0;
455 }
456}
457
458/*
459 * fixup_free is called when:
460 * - an active object is freed
461 */
462static int timer_fixup_free(void *addr, enum debug_obj_state state)
463{
464 struct timer_list *timer = addr;
465
466 switch (state) {
467 case ODEBUG_STATE_ACTIVE:
468 del_timer_sync(timer);
469 debug_object_free(timer, &timer_debug_descr);
470 return 1;
471 default:
472 return 0;
473 }
474}
475
476static struct debug_obj_descr timer_debug_descr = {
477 .name = "timer_list",
478 .fixup_init = timer_fixup_init,
479 .fixup_activate = timer_fixup_activate,
480 .fixup_free = timer_fixup_free,
481};
482
483static inline void debug_timer_init(struct timer_list *timer)
484{
485 debug_object_init(timer, &timer_debug_descr);
486}
487
488static inline void debug_timer_activate(struct timer_list *timer)
489{
490 debug_object_activate(timer, &timer_debug_descr);
491}
492
493static inline void debug_timer_deactivate(struct timer_list *timer)
494{
495 debug_object_deactivate(timer, &timer_debug_descr);
496}
497
498static inline void debug_timer_free(struct timer_list *timer)
499{
500 debug_object_free(timer, &timer_debug_descr);
501}
502
6f2b9b9a
JB
503static void __init_timer(struct timer_list *timer,
504 const char *name,
505 struct lock_class_key *key);
c6f3a97f 506
6f2b9b9a
JB
507void init_timer_on_stack_key(struct timer_list *timer,
508 const char *name,
509 struct lock_class_key *key)
c6f3a97f
TG
510{
511 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 512 __init_timer(timer, name, key);
c6f3a97f 513}
6f2b9b9a 514EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
515
516void destroy_timer_on_stack(struct timer_list *timer)
517{
518 debug_object_free(timer, &timer_debug_descr);
519}
520EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
521
522#else
523static inline void debug_timer_init(struct timer_list *timer) { }
524static inline void debug_timer_activate(struct timer_list *timer) { }
525static inline void debug_timer_deactivate(struct timer_list *timer) { }
526#endif
527
2b022e3d
XG
528static inline void debug_init(struct timer_list *timer)
529{
530 debug_timer_init(timer);
531 trace_timer_init(timer);
532}
533
534static inline void
535debug_activate(struct timer_list *timer, unsigned long expires)
536{
537 debug_timer_activate(timer);
538 trace_timer_start(timer, expires);
539}
540
541static inline void debug_deactivate(struct timer_list *timer)
542{
543 debug_timer_deactivate(timer);
544 trace_timer_cancel(timer);
545}
546
6f2b9b9a
JB
547static void __init_timer(struct timer_list *timer,
548 const char *name,
549 struct lock_class_key *key)
55c888d6
ON
550{
551 timer->entry.next = NULL;
bfe5d834 552 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
553#ifdef CONFIG_TIMER_STATS
554 timer->start_site = NULL;
555 timer->start_pid = -1;
556 memset(timer->start_comm, 0, TASK_COMM_LEN);
557#endif
6f2b9b9a 558 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 559}
c6f3a97f
TG
560
561/**
633fe795 562 * init_timer_key - initialize a timer
c6f3a97f 563 * @timer: the timer to be initialized
633fe795
RD
564 * @name: name of the timer
565 * @key: lockdep class key of the fake lock used for tracking timer
566 * sync lock dependencies
c6f3a97f 567 *
633fe795 568 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
569 * other timer functions.
570 */
6f2b9b9a
JB
571void init_timer_key(struct timer_list *timer,
572 const char *name,
573 struct lock_class_key *key)
c6f3a97f 574{
2b022e3d 575 debug_init(timer);
6f2b9b9a 576 __init_timer(timer, name, key);
c6f3a97f 577}
6f2b9b9a 578EXPORT_SYMBOL(init_timer_key);
55c888d6 579
6f2b9b9a
JB
580void init_timer_deferrable_key(struct timer_list *timer,
581 const char *name,
582 struct lock_class_key *key)
6e453a67 583{
6f2b9b9a 584 init_timer_key(timer, name, key);
6e453a67
VP
585 timer_set_deferrable(timer);
586}
6f2b9b9a 587EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 588
55c888d6 589static inline void detach_timer(struct timer_list *timer,
82f67cd9 590 int clear_pending)
55c888d6
ON
591{
592 struct list_head *entry = &timer->entry;
593
2b022e3d 594 debug_deactivate(timer);
c6f3a97f 595
55c888d6
ON
596 __list_del(entry->prev, entry->next);
597 if (clear_pending)
598 entry->next = NULL;
599 entry->prev = LIST_POISON2;
600}
601
602/*
3691c519 603 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
604 * means that all timers which are tied to this base via timer->base are
605 * locked, and the base itself is locked too.
606 *
607 * So __run_timers/migrate_timers can safely modify all timers which could
608 * be found on ->tvX lists.
609 *
610 * When the timer's base is locked, and the timer removed from list, it is
611 * possible to set timer->base = NULL and drop the lock: the timer remains
612 * locked.
613 */
a6fa8e5a 614static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 615 unsigned long *flags)
89e7e374 616 __acquires(timer->base->lock)
55c888d6 617{
a6fa8e5a 618 struct tvec_base *base;
55c888d6
ON
619
620 for (;;) {
a6fa8e5a 621 struct tvec_base *prelock_base = timer->base;
6e453a67 622 base = tbase_get_base(prelock_base);
55c888d6
ON
623 if (likely(base != NULL)) {
624 spin_lock_irqsave(&base->lock, *flags);
6e453a67 625 if (likely(prelock_base == timer->base))
55c888d6
ON
626 return base;
627 /* The timer has migrated to another CPU */
628 spin_unlock_irqrestore(&base->lock, *flags);
629 }
630 cpu_relax();
631 }
632}
633
74019224 634static inline int
597d0275
AB
635__mod_timer(struct timer_list *timer, unsigned long expires,
636 bool pending_only, int pinned)
1da177e4 637{
a6fa8e5a 638 struct tvec_base *base, *new_base;
1da177e4 639 unsigned long flags;
eea08f32 640 int ret = 0 , cpu;
1da177e4 641
82f67cd9 642 timer_stats_timer_set_start_info(timer);
1da177e4 643 BUG_ON(!timer->function);
1da177e4 644
55c888d6
ON
645 base = lock_timer_base(timer, &flags);
646
647 if (timer_pending(timer)) {
648 detach_timer(timer, 0);
97fd9ed4
MS
649 if (timer->expires == base->next_timer &&
650 !tbase_get_deferrable(timer->base))
651 base->next_timer = base->timer_jiffies;
55c888d6 652 ret = 1;
74019224
IM
653 } else {
654 if (pending_only)
655 goto out_unlock;
55c888d6
ON
656 }
657
2b022e3d 658 debug_activate(timer, expires);
c6f3a97f 659
eea08f32
AB
660 cpu = smp_processor_id();
661
662#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
663 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
664 int preferred_cpu = get_nohz_load_balancer();
665
666 if (preferred_cpu >= 0)
667 cpu = preferred_cpu;
668 }
669#endif
670 new_base = per_cpu(tvec_bases, cpu);
671
3691c519 672 if (base != new_base) {
1da177e4 673 /*
55c888d6
ON
674 * We are trying to schedule the timer on the local CPU.
675 * However we can't change timer's base while it is running,
676 * otherwise del_timer_sync() can't detect that the timer's
677 * handler yet has not finished. This also guarantees that
678 * the timer is serialized wrt itself.
1da177e4 679 */
a2c348fe 680 if (likely(base->running_timer != timer)) {
55c888d6 681 /* See the comment in lock_timer_base() */
6e453a67 682 timer_set_base(timer, NULL);
55c888d6 683 spin_unlock(&base->lock);
a2c348fe
ON
684 base = new_base;
685 spin_lock(&base->lock);
6e453a67 686 timer_set_base(timer, base);
1da177e4
LT
687 }
688 }
689
1da177e4 690 timer->expires = expires;
97fd9ed4
MS
691 if (time_before(timer->expires, base->next_timer) &&
692 !tbase_get_deferrable(timer->base))
693 base->next_timer = timer->expires;
a2c348fe 694 internal_add_timer(base, timer);
74019224
IM
695
696out_unlock:
a2c348fe 697 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
698
699 return ret;
700}
701
2aae4a10 702/**
74019224
IM
703 * mod_timer_pending - modify a pending timer's timeout
704 * @timer: the pending timer to be modified
705 * @expires: new timeout in jiffies
1da177e4 706 *
74019224
IM
707 * mod_timer_pending() is the same for pending timers as mod_timer(),
708 * but will not re-activate and modify already deleted timers.
709 *
710 * It is useful for unserialized use of timers.
1da177e4 711 */
74019224 712int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 713{
597d0275 714 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 715}
74019224 716EXPORT_SYMBOL(mod_timer_pending);
1da177e4 717
2aae4a10 718/**
1da177e4
LT
719 * mod_timer - modify a timer's timeout
720 * @timer: the timer to be modified
2aae4a10 721 * @expires: new timeout in jiffies
1da177e4 722 *
72fd4a35 723 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
724 * active timer (if the timer is inactive it will be activated)
725 *
726 * mod_timer(timer, expires) is equivalent to:
727 *
728 * del_timer(timer); timer->expires = expires; add_timer(timer);
729 *
730 * Note that if there are multiple unserialized concurrent users of the
731 * same timer, then mod_timer() is the only safe way to modify the timeout,
732 * since add_timer() cannot modify an already running timer.
733 *
734 * The function returns whether it has modified a pending timer or not.
735 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
736 * active timer returns 1.)
737 */
738int mod_timer(struct timer_list *timer, unsigned long expires)
739{
1da177e4
LT
740 /*
741 * This is a common optimization triggered by the
742 * networking code - if the timer is re-modified
743 * to be the same thing then just return:
744 */
4841158b 745 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
746 return 1;
747
597d0275 748 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 749}
1da177e4
LT
750EXPORT_SYMBOL(mod_timer);
751
597d0275
AB
752/**
753 * mod_timer_pinned - modify a timer's timeout
754 * @timer: the timer to be modified
755 * @expires: new timeout in jiffies
756 *
757 * mod_timer_pinned() is a way to update the expire field of an
758 * active timer (if the timer is inactive it will be activated)
759 * and not allow the timer to be migrated to a different CPU.
760 *
761 * mod_timer_pinned(timer, expires) is equivalent to:
762 *
763 * del_timer(timer); timer->expires = expires; add_timer(timer);
764 */
765int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
766{
767 if (timer->expires == expires && timer_pending(timer))
768 return 1;
769
770 return __mod_timer(timer, expires, false, TIMER_PINNED);
771}
772EXPORT_SYMBOL(mod_timer_pinned);
773
74019224
IM
774/**
775 * add_timer - start a timer
776 * @timer: the timer to be added
777 *
778 * The kernel will do a ->function(->data) callback from the
779 * timer interrupt at the ->expires point in the future. The
780 * current time is 'jiffies'.
781 *
782 * The timer's ->expires, ->function (and if the handler uses it, ->data)
783 * fields must be set prior calling this function.
784 *
785 * Timers with an ->expires field in the past will be executed in the next
786 * timer tick.
787 */
788void add_timer(struct timer_list *timer)
789{
790 BUG_ON(timer_pending(timer));
791 mod_timer(timer, timer->expires);
792}
793EXPORT_SYMBOL(add_timer);
794
795/**
796 * add_timer_on - start a timer on a particular CPU
797 * @timer: the timer to be added
798 * @cpu: the CPU to start it on
799 *
800 * This is not very scalable on SMP. Double adds are not possible.
801 */
802void add_timer_on(struct timer_list *timer, int cpu)
803{
804 struct tvec_base *base = per_cpu(tvec_bases, cpu);
805 unsigned long flags;
806
807 timer_stats_timer_set_start_info(timer);
808 BUG_ON(timer_pending(timer) || !timer->function);
809 spin_lock_irqsave(&base->lock, flags);
810 timer_set_base(timer, base);
2b022e3d 811 debug_activate(timer, timer->expires);
97fd9ed4
MS
812 if (time_before(timer->expires, base->next_timer) &&
813 !tbase_get_deferrable(timer->base))
814 base->next_timer = timer->expires;
74019224
IM
815 internal_add_timer(base, timer);
816 /*
817 * Check whether the other CPU is idle and needs to be
818 * triggered to reevaluate the timer wheel when nohz is
819 * active. We are protected against the other CPU fiddling
820 * with the timer by holding the timer base lock. This also
821 * makes sure that a CPU on the way to idle can not evaluate
822 * the timer wheel.
823 */
824 wake_up_idle_cpu(cpu);
825 spin_unlock_irqrestore(&base->lock, flags);
826}
a9862e05 827EXPORT_SYMBOL_GPL(add_timer_on);
74019224 828
2aae4a10 829/**
1da177e4
LT
830 * del_timer - deactive a timer.
831 * @timer: the timer to be deactivated
832 *
833 * del_timer() deactivates a timer - this works on both active and inactive
834 * timers.
835 *
836 * The function returns whether it has deactivated a pending timer or not.
837 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
838 * active timer returns 1.)
839 */
840int del_timer(struct timer_list *timer)
841{
a6fa8e5a 842 struct tvec_base *base;
1da177e4 843 unsigned long flags;
55c888d6 844 int ret = 0;
1da177e4 845
82f67cd9 846 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
847 if (timer_pending(timer)) {
848 base = lock_timer_base(timer, &flags);
849 if (timer_pending(timer)) {
850 detach_timer(timer, 1);
97fd9ed4
MS
851 if (timer->expires == base->next_timer &&
852 !tbase_get_deferrable(timer->base))
853 base->next_timer = base->timer_jiffies;
55c888d6
ON
854 ret = 1;
855 }
1da177e4 856 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 857 }
1da177e4 858
55c888d6 859 return ret;
1da177e4 860}
1da177e4
LT
861EXPORT_SYMBOL(del_timer);
862
863#ifdef CONFIG_SMP
2aae4a10
REB
864/**
865 * try_to_del_timer_sync - Try to deactivate a timer
866 * @timer: timer do del
867 *
fd450b73
ON
868 * This function tries to deactivate a timer. Upon successful (ret >= 0)
869 * exit the timer is not queued and the handler is not running on any CPU.
870 *
871 * It must not be called from interrupt contexts.
872 */
873int try_to_del_timer_sync(struct timer_list *timer)
874{
a6fa8e5a 875 struct tvec_base *base;
fd450b73
ON
876 unsigned long flags;
877 int ret = -1;
878
879 base = lock_timer_base(timer, &flags);
880
881 if (base->running_timer == timer)
882 goto out;
883
829b6c1e 884 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
885 ret = 0;
886 if (timer_pending(timer)) {
887 detach_timer(timer, 1);
97fd9ed4
MS
888 if (timer->expires == base->next_timer &&
889 !tbase_get_deferrable(timer->base))
890 base->next_timer = base->timer_jiffies;
fd450b73
ON
891 ret = 1;
892 }
893out:
894 spin_unlock_irqrestore(&base->lock, flags);
895
896 return ret;
897}
e19dff1f
DH
898EXPORT_SYMBOL(try_to_del_timer_sync);
899
2aae4a10 900/**
1da177e4
LT
901 * del_timer_sync - deactivate a timer and wait for the handler to finish.
902 * @timer: the timer to be deactivated
903 *
904 * This function only differs from del_timer() on SMP: besides deactivating
905 * the timer it also makes sure the handler has finished executing on other
906 * CPUs.
907 *
72fd4a35 908 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
909 * otherwise this function is meaningless. It must not be called from
910 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
911 * completion of the timer's handler. The timer's handler must not call
912 * add_timer_on(). Upon exit the timer is not queued and the handler is
913 * not running on any CPU.
1da177e4
LT
914 *
915 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
916 */
917int del_timer_sync(struct timer_list *timer)
918{
6f2b9b9a
JB
919#ifdef CONFIG_LOCKDEP
920 unsigned long flags;
921
922 local_irq_save(flags);
923 lock_map_acquire(&timer->lockdep_map);
924 lock_map_release(&timer->lockdep_map);
925 local_irq_restore(flags);
926#endif
927
fd450b73
ON
928 for (;;) {
929 int ret = try_to_del_timer_sync(timer);
930 if (ret >= 0)
931 return ret;
a0009652 932 cpu_relax();
fd450b73 933 }
1da177e4 934}
55c888d6 935EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
936#endif
937
a6fa8e5a 938static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
939{
940 /* cascade all the timers from tv up one level */
3439dd86
P
941 struct timer_list *timer, *tmp;
942 struct list_head tv_list;
943
944 list_replace_init(tv->vec + index, &tv_list);
1da177e4 945
1da177e4 946 /*
3439dd86
P
947 * We are removing _all_ timers from the list, so we
948 * don't have to detach them individually.
1da177e4 949 */
3439dd86 950 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 951 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 952 internal_add_timer(base, timer);
1da177e4 953 }
1da177e4
LT
954
955 return index;
956}
957
2aae4a10
REB
958#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
959
960/**
1da177e4
LT
961 * __run_timers - run all expired timers (if any) on this CPU.
962 * @base: the timer vector to be processed.
963 *
964 * This function cascades all vectors and executes all expired timer
965 * vectors.
966 */
a6fa8e5a 967static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
968{
969 struct timer_list *timer;
970
3691c519 971 spin_lock_irq(&base->lock);
1da177e4 972 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 973 struct list_head work_list;
1da177e4 974 struct list_head *head = &work_list;
6819457d 975 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 976
1da177e4
LT
977 /*
978 * Cascade timers:
979 */
980 if (!index &&
981 (!cascade(base, &base->tv2, INDEX(0))) &&
982 (!cascade(base, &base->tv3, INDEX(1))) &&
983 !cascade(base, &base->tv4, INDEX(2)))
984 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
985 ++base->timer_jiffies;
986 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 987 while (!list_empty(head)) {
1da177e4
LT
988 void (*fn)(unsigned long);
989 unsigned long data;
990
b5e61818 991 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
992 fn = timer->function;
993 data = timer->data;
1da177e4 994
82f67cd9
IM
995 timer_stats_account_timer(timer);
996
1da177e4 997 set_running_timer(base, timer);
55c888d6 998 detach_timer(timer, 1);
6f2b9b9a 999
3691c519 1000 spin_unlock_irq(&base->lock);
1da177e4 1001 {
be5b4fbd 1002 int preempt_count = preempt_count();
6f2b9b9a
JB
1003
1004#ifdef CONFIG_LOCKDEP
1005 /*
1006 * It is permissible to free the timer from
1007 * inside the function that is called from
1008 * it, this we need to take into account for
1009 * lockdep too. To avoid bogus "held lock
1010 * freed" warnings as well as problems when
1011 * looking into timer->lockdep_map, make a
1012 * copy and use that here.
1013 */
1014 struct lockdep_map lockdep_map =
1015 timer->lockdep_map;
1016#endif
1017 /*
1018 * Couple the lock chain with the lock chain at
1019 * del_timer_sync() by acquiring the lock_map
1020 * around the fn() call here and in
1021 * del_timer_sync().
1022 */
1023 lock_map_acquire(&lockdep_map);
1024
2b022e3d 1025 trace_timer_expire_entry(timer);
1da177e4 1026 fn(data);
2b022e3d 1027 trace_timer_expire_exit(timer);
6f2b9b9a
JB
1028
1029 lock_map_release(&lockdep_map);
1030
1da177e4 1031 if (preempt_count != preempt_count()) {
4c9dc641 1032 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
1033 "with preempt_count %08x, exited"
1034 " with %08x?\n",
1035 fn, preempt_count,
1036 preempt_count());
1da177e4
LT
1037 BUG();
1038 }
1039 }
3691c519 1040 spin_lock_irq(&base->lock);
1da177e4
LT
1041 }
1042 }
1043 set_running_timer(base, NULL);
3691c519 1044 spin_unlock_irq(&base->lock);
1da177e4
LT
1045}
1046
ee9c5785 1047#ifdef CONFIG_NO_HZ
1da177e4
LT
1048/*
1049 * Find out when the next timer event is due to happen. This
90cba64a
RD
1050 * is used on S/390 to stop all activity when a CPU is idle.
1051 * This function needs to be called with interrupts disabled.
1da177e4 1052 */
a6fa8e5a 1053static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1054{
1cfd6849 1055 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1056 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1057 int index, slot, array, found = 0;
1da177e4 1058 struct timer_list *nte;
a6fa8e5a 1059 struct tvec *varray[4];
1da177e4
LT
1060
1061 /* Look for timer events in tv1. */
1cfd6849 1062 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1063 do {
1cfd6849 1064 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1065 if (tbase_get_deferrable(nte->base))
1066 continue;
6e453a67 1067
1cfd6849 1068 found = 1;
1da177e4 1069 expires = nte->expires;
1cfd6849
TG
1070 /* Look at the cascade bucket(s)? */
1071 if (!index || slot < index)
1072 goto cascade;
1073 return expires;
1da177e4 1074 }
1cfd6849
TG
1075 slot = (slot + 1) & TVR_MASK;
1076 } while (slot != index);
1077
1078cascade:
1079 /* Calculate the next cascade event */
1080 if (index)
1081 timer_jiffies += TVR_SIZE - index;
1082 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1083
1084 /* Check tv2-tv5. */
1085 varray[0] = &base->tv2;
1086 varray[1] = &base->tv3;
1087 varray[2] = &base->tv4;
1088 varray[3] = &base->tv5;
1cfd6849
TG
1089
1090 for (array = 0; array < 4; array++) {
a6fa8e5a 1091 struct tvec *varp = varray[array];
1cfd6849
TG
1092
1093 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1094 do {
1cfd6849 1095 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1096 if (tbase_get_deferrable(nte->base))
1097 continue;
1098
1cfd6849 1099 found = 1;
1da177e4
LT
1100 if (time_before(nte->expires, expires))
1101 expires = nte->expires;
1cfd6849
TG
1102 }
1103 /*
1104 * Do we still search for the first timer or are
1105 * we looking up the cascade buckets ?
1106 */
1107 if (found) {
1108 /* Look at the cascade bucket(s)? */
1109 if (!index || slot < index)
1110 break;
1111 return expires;
1112 }
1113 slot = (slot + 1) & TVN_MASK;
1114 } while (slot != index);
1115
1116 if (index)
1117 timer_jiffies += TVN_SIZE - index;
1118 timer_jiffies >>= TVN_BITS;
1da177e4 1119 }
1cfd6849
TG
1120 return expires;
1121}
69239749 1122
1cfd6849
TG
1123/*
1124 * Check, if the next hrtimer event is before the next timer wheel
1125 * event:
1126 */
1127static unsigned long cmp_next_hrtimer_event(unsigned long now,
1128 unsigned long expires)
1129{
1130 ktime_t hr_delta = hrtimer_get_next_event();
1131 struct timespec tsdelta;
9501b6cf 1132 unsigned long delta;
1cfd6849
TG
1133
1134 if (hr_delta.tv64 == KTIME_MAX)
1135 return expires;
0662b713 1136
9501b6cf
TG
1137 /*
1138 * Expired timer available, let it expire in the next tick
1139 */
1140 if (hr_delta.tv64 <= 0)
1141 return now + 1;
69239749 1142
1cfd6849 1143 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1144 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1145
1146 /*
1147 * Limit the delta to the max value, which is checked in
1148 * tick_nohz_stop_sched_tick():
1149 */
1150 if (delta > NEXT_TIMER_MAX_DELTA)
1151 delta = NEXT_TIMER_MAX_DELTA;
1152
9501b6cf
TG
1153 /*
1154 * Take rounding errors in to account and make sure, that it
1155 * expires in the next tick. Otherwise we go into an endless
1156 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1157 * the timer softirq
1158 */
1159 if (delta < 1)
1160 delta = 1;
1161 now += delta;
1cfd6849
TG
1162 if (time_before(now, expires))
1163 return now;
1da177e4
LT
1164 return expires;
1165}
1cfd6849
TG
1166
1167/**
8dce39c2 1168 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1169 * @now: current time (in jiffies)
1cfd6849 1170 */
fd064b9b 1171unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1172{
a6fa8e5a 1173 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1174 unsigned long expires;
1cfd6849
TG
1175
1176 spin_lock(&base->lock);
97fd9ed4
MS
1177 if (time_before_eq(base->next_timer, base->timer_jiffies))
1178 base->next_timer = __next_timer_interrupt(base);
1179 expires = base->next_timer;
1cfd6849
TG
1180 spin_unlock(&base->lock);
1181
1182 if (time_before_eq(expires, now))
1183 return now;
1184
1185 return cmp_next_hrtimer_event(now, expires);
1186}
1da177e4
LT
1187#endif
1188
1da177e4 1189/*
5b4db0c2 1190 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1191 * process. user_tick is 1 if the tick is user time, 0 for system.
1192 */
1193void update_process_times(int user_tick)
1194{
1195 struct task_struct *p = current;
1196 int cpu = smp_processor_id();
1197
1198 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1199 account_process_tick(p, user_tick);
1da177e4 1200 run_local_timers();
a157229c 1201 rcu_check_callbacks(cpu, user_tick);
b845b517 1202 printk_tick();
fe432200 1203 perf_event_do_pending();
1da177e4 1204 scheduler_tick();
6819457d 1205 run_posix_cpu_timers(p);
1da177e4
LT
1206}
1207
1da177e4
LT
1208/*
1209 * This function runs timers and the timer-tq in bottom half context.
1210 */
1211static void run_timer_softirq(struct softirq_action *h)
1212{
a6fa8e5a 1213 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1214
d3d74453 1215 hrtimer_run_pending();
82f67cd9 1216
1da177e4
LT
1217 if (time_after_eq(jiffies, base->timer_jiffies))
1218 __run_timers(base);
1219}
1220
1221/*
1222 * Called by the local, per-CPU timer interrupt on SMP.
1223 */
1224void run_local_timers(void)
1225{
d3d74453 1226 hrtimer_run_queues();
1da177e4 1227 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1228 softlockup_tick();
1da177e4
LT
1229}
1230
1da177e4
LT
1231/*
1232 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1233 * without sampling the sequence number in xtime_lock.
1234 * jiffies is defined in the linker script...
1235 */
1236
3171a030 1237void do_timer(unsigned long ticks)
1da177e4 1238{
3171a030 1239 jiffies_64 += ticks;
dce48a84
TG
1240 update_wall_time();
1241 calc_global_load();
1da177e4
LT
1242}
1243
1244#ifdef __ARCH_WANT_SYS_ALARM
1245
1246/*
1247 * For backwards compatibility? This can be done in libc so Alpha
1248 * and all newer ports shouldn't need it.
1249 */
58fd3aa2 1250SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1251{
c08b8a49 1252 return alarm_setitimer(seconds);
1da177e4
LT
1253}
1254
1255#endif
1256
1257#ifndef __alpha__
1258
1259/*
1260 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1261 * should be moved into arch/i386 instead?
1262 */
1263
1264/**
1265 * sys_getpid - return the thread group id of the current process
1266 *
1267 * Note, despite the name, this returns the tgid not the pid. The tgid and
1268 * the pid are identical unless CLONE_THREAD was specified on clone() in
1269 * which case the tgid is the same in all threads of the same group.
1270 *
1271 * This is SMP safe as current->tgid does not change.
1272 */
58fd3aa2 1273SYSCALL_DEFINE0(getpid)
1da177e4 1274{
b488893a 1275 return task_tgid_vnr(current);
1da177e4
LT
1276}
1277
1278/*
6997a6fa
KK
1279 * Accessing ->real_parent is not SMP-safe, it could
1280 * change from under us. However, we can use a stale
1281 * value of ->real_parent under rcu_read_lock(), see
1282 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1283 */
dbf040d9 1284SYSCALL_DEFINE0(getppid)
1da177e4
LT
1285{
1286 int pid;
1da177e4 1287
6997a6fa 1288 rcu_read_lock();
6c5f3e7b 1289 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1290 rcu_read_unlock();
1da177e4 1291
1da177e4
LT
1292 return pid;
1293}
1294
dbf040d9 1295SYSCALL_DEFINE0(getuid)
1da177e4
LT
1296{
1297 /* Only we change this so SMP safe */
76aac0e9 1298 return current_uid();
1da177e4
LT
1299}
1300
dbf040d9 1301SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1302{
1303 /* Only we change this so SMP safe */
76aac0e9 1304 return current_euid();
1da177e4
LT
1305}
1306
dbf040d9 1307SYSCALL_DEFINE0(getgid)
1da177e4
LT
1308{
1309 /* Only we change this so SMP safe */
76aac0e9 1310 return current_gid();
1da177e4
LT
1311}
1312
dbf040d9 1313SYSCALL_DEFINE0(getegid)
1da177e4
LT
1314{
1315 /* Only we change this so SMP safe */
76aac0e9 1316 return current_egid();
1da177e4
LT
1317}
1318
1319#endif
1320
1321static void process_timeout(unsigned long __data)
1322{
36c8b586 1323 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1324}
1325
1326/**
1327 * schedule_timeout - sleep until timeout
1328 * @timeout: timeout value in jiffies
1329 *
1330 * Make the current task sleep until @timeout jiffies have
1331 * elapsed. The routine will return immediately unless
1332 * the current task state has been set (see set_current_state()).
1333 *
1334 * You can set the task state as follows -
1335 *
1336 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1337 * pass before the routine returns. The routine will return 0
1338 *
1339 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1340 * delivered to the current task. In this case the remaining time
1341 * in jiffies will be returned, or 0 if the timer expired in time
1342 *
1343 * The current task state is guaranteed to be TASK_RUNNING when this
1344 * routine returns.
1345 *
1346 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1347 * the CPU away without a bound on the timeout. In this case the return
1348 * value will be %MAX_SCHEDULE_TIMEOUT.
1349 *
1350 * In all cases the return value is guaranteed to be non-negative.
1351 */
7ad5b3a5 1352signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1353{
1354 struct timer_list timer;
1355 unsigned long expire;
1356
1357 switch (timeout)
1358 {
1359 case MAX_SCHEDULE_TIMEOUT:
1360 /*
1361 * These two special cases are useful to be comfortable
1362 * in the caller. Nothing more. We could take
1363 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1364 * but I' d like to return a valid offset (>=0) to allow
1365 * the caller to do everything it want with the retval.
1366 */
1367 schedule();
1368 goto out;
1369 default:
1370 /*
1371 * Another bit of PARANOID. Note that the retval will be
1372 * 0 since no piece of kernel is supposed to do a check
1373 * for a negative retval of schedule_timeout() (since it
1374 * should never happens anyway). You just have the printk()
1375 * that will tell you if something is gone wrong and where.
1376 */
5b149bcc 1377 if (timeout < 0) {
1da177e4 1378 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1379 "value %lx\n", timeout);
1380 dump_stack();
1da177e4
LT
1381 current->state = TASK_RUNNING;
1382 goto out;
1383 }
1384 }
1385
1386 expire = timeout + jiffies;
1387
c6f3a97f 1388 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1389 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1390 schedule();
1391 del_singleshot_timer_sync(&timer);
1392
c6f3a97f
TG
1393 /* Remove the timer from the object tracker */
1394 destroy_timer_on_stack(&timer);
1395
1da177e4
LT
1396 timeout = expire - jiffies;
1397
1398 out:
1399 return timeout < 0 ? 0 : timeout;
1400}
1da177e4
LT
1401EXPORT_SYMBOL(schedule_timeout);
1402
8a1c1757
AM
1403/*
1404 * We can use __set_current_state() here because schedule_timeout() calls
1405 * schedule() unconditionally.
1406 */
64ed93a2
NA
1407signed long __sched schedule_timeout_interruptible(signed long timeout)
1408{
a5a0d52c
AM
1409 __set_current_state(TASK_INTERRUPTIBLE);
1410 return schedule_timeout(timeout);
64ed93a2
NA
1411}
1412EXPORT_SYMBOL(schedule_timeout_interruptible);
1413
294d5cc2
MW
1414signed long __sched schedule_timeout_killable(signed long timeout)
1415{
1416 __set_current_state(TASK_KILLABLE);
1417 return schedule_timeout(timeout);
1418}
1419EXPORT_SYMBOL(schedule_timeout_killable);
1420
64ed93a2
NA
1421signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1422{
a5a0d52c
AM
1423 __set_current_state(TASK_UNINTERRUPTIBLE);
1424 return schedule_timeout(timeout);
64ed93a2
NA
1425}
1426EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1427
1da177e4 1428/* Thread ID - the internal kernel "pid" */
58fd3aa2 1429SYSCALL_DEFINE0(gettid)
1da177e4 1430{
b488893a 1431 return task_pid_vnr(current);
1da177e4
LT
1432}
1433
2aae4a10 1434/**
d4d23add 1435 * do_sysinfo - fill in sysinfo struct
2aae4a10 1436 * @info: pointer to buffer to fill
6819457d 1437 */
d4d23add 1438int do_sysinfo(struct sysinfo *info)
1da177e4 1439{
1da177e4
LT
1440 unsigned long mem_total, sav_total;
1441 unsigned int mem_unit, bitcount;
2d02494f 1442 struct timespec tp;
1da177e4 1443
d4d23add 1444 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1445
2d02494f
TG
1446 ktime_get_ts(&tp);
1447 monotonic_to_bootbased(&tp);
1448 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1449
2d02494f 1450 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1451
2d02494f 1452 info->procs = nr_threads;
1da177e4 1453
d4d23add
KM
1454 si_meminfo(info);
1455 si_swapinfo(info);
1da177e4
LT
1456
1457 /*
1458 * If the sum of all the available memory (i.e. ram + swap)
1459 * is less than can be stored in a 32 bit unsigned long then
1460 * we can be binary compatible with 2.2.x kernels. If not,
1461 * well, in that case 2.2.x was broken anyways...
1462 *
1463 * -Erik Andersen <andersee@debian.org>
1464 */
1465
d4d23add
KM
1466 mem_total = info->totalram + info->totalswap;
1467 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1468 goto out;
1469 bitcount = 0;
d4d23add 1470 mem_unit = info->mem_unit;
1da177e4
LT
1471 while (mem_unit > 1) {
1472 bitcount++;
1473 mem_unit >>= 1;
1474 sav_total = mem_total;
1475 mem_total <<= 1;
1476 if (mem_total < sav_total)
1477 goto out;
1478 }
1479
1480 /*
1481 * If mem_total did not overflow, multiply all memory values by
d4d23add 1482 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1483 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1484 * kernels...
1485 */
1486
d4d23add
KM
1487 info->mem_unit = 1;
1488 info->totalram <<= bitcount;
1489 info->freeram <<= bitcount;
1490 info->sharedram <<= bitcount;
1491 info->bufferram <<= bitcount;
1492 info->totalswap <<= bitcount;
1493 info->freeswap <<= bitcount;
1494 info->totalhigh <<= bitcount;
1495 info->freehigh <<= bitcount;
1496
1497out:
1498 return 0;
1499}
1500
1e7bfb21 1501SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1502{
1503 struct sysinfo val;
1504
1505 do_sysinfo(&val);
1da177e4 1506
1da177e4
LT
1507 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1508 return -EFAULT;
1509
1510 return 0;
1511}
1512
b4be6258 1513static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1514{
1515 int j;
a6fa8e5a 1516 struct tvec_base *base;
b4be6258 1517 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1518
ba6edfcd 1519 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1520 static char boot_done;
1521
a4a6198b 1522 if (boot_done) {
ba6edfcd
AM
1523 /*
1524 * The APs use this path later in boot
1525 */
94f6030c
CL
1526 base = kmalloc_node(sizeof(*base),
1527 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1528 cpu_to_node(cpu));
1529 if (!base)
1530 return -ENOMEM;
6e453a67
VP
1531
1532 /* Make sure that tvec_base is 2 byte aligned */
1533 if (tbase_get_deferrable(base)) {
1534 WARN_ON(1);
1535 kfree(base);
1536 return -ENOMEM;
1537 }
ba6edfcd 1538 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1539 } else {
ba6edfcd
AM
1540 /*
1541 * This is for the boot CPU - we use compile-time
1542 * static initialisation because per-cpu memory isn't
1543 * ready yet and because the memory allocators are not
1544 * initialised either.
1545 */
a4a6198b 1546 boot_done = 1;
ba6edfcd 1547 base = &boot_tvec_bases;
a4a6198b 1548 }
ba6edfcd
AM
1549 tvec_base_done[cpu] = 1;
1550 } else {
1551 base = per_cpu(tvec_bases, cpu);
a4a6198b 1552 }
ba6edfcd 1553
3691c519 1554 spin_lock_init(&base->lock);
d730e882 1555
1da177e4
LT
1556 for (j = 0; j < TVN_SIZE; j++) {
1557 INIT_LIST_HEAD(base->tv5.vec + j);
1558 INIT_LIST_HEAD(base->tv4.vec + j);
1559 INIT_LIST_HEAD(base->tv3.vec + j);
1560 INIT_LIST_HEAD(base->tv2.vec + j);
1561 }
1562 for (j = 0; j < TVR_SIZE; j++)
1563 INIT_LIST_HEAD(base->tv1.vec + j);
1564
1565 base->timer_jiffies = jiffies;
97fd9ed4 1566 base->next_timer = base->timer_jiffies;
a4a6198b 1567 return 0;
1da177e4
LT
1568}
1569
1570#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1571static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1572{
1573 struct timer_list *timer;
1574
1575 while (!list_empty(head)) {
b5e61818 1576 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1577 detach_timer(timer, 0);
6e453a67 1578 timer_set_base(timer, new_base);
97fd9ed4
MS
1579 if (time_before(timer->expires, new_base->next_timer) &&
1580 !tbase_get_deferrable(timer->base))
1581 new_base->next_timer = timer->expires;
1da177e4 1582 internal_add_timer(new_base, timer);
1da177e4 1583 }
1da177e4
LT
1584}
1585
48ccf3da 1586static void __cpuinit migrate_timers(int cpu)
1da177e4 1587{
a6fa8e5a
PM
1588 struct tvec_base *old_base;
1589 struct tvec_base *new_base;
1da177e4
LT
1590 int i;
1591
1592 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1593 old_base = per_cpu(tvec_bases, cpu);
1594 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1595 /*
1596 * The caller is globally serialized and nobody else
1597 * takes two locks at once, deadlock is not possible.
1598 */
1599 spin_lock_irq(&new_base->lock);
0d180406 1600 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1601
1602 BUG_ON(old_base->running_timer);
1da177e4 1603
1da177e4 1604 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1605 migrate_timer_list(new_base, old_base->tv1.vec + i);
1606 for (i = 0; i < TVN_SIZE; i++) {
1607 migrate_timer_list(new_base, old_base->tv2.vec + i);
1608 migrate_timer_list(new_base, old_base->tv3.vec + i);
1609 migrate_timer_list(new_base, old_base->tv4.vec + i);
1610 migrate_timer_list(new_base, old_base->tv5.vec + i);
1611 }
1612
0d180406 1613 spin_unlock(&old_base->lock);
d82f0b0f 1614 spin_unlock_irq(&new_base->lock);
1da177e4 1615 put_cpu_var(tvec_bases);
1da177e4
LT
1616}
1617#endif /* CONFIG_HOTPLUG_CPU */
1618
8c78f307 1619static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1620 unsigned long action, void *hcpu)
1621{
1622 long cpu = (long)hcpu;
1623 switch(action) {
1624 case CPU_UP_PREPARE:
8bb78442 1625 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1626 if (init_timers_cpu(cpu) < 0)
1627 return NOTIFY_BAD;
1da177e4
LT
1628 break;
1629#ifdef CONFIG_HOTPLUG_CPU
1630 case CPU_DEAD:
8bb78442 1631 case CPU_DEAD_FROZEN:
1da177e4
LT
1632 migrate_timers(cpu);
1633 break;
1634#endif
1635 default:
1636 break;
1637 }
1638 return NOTIFY_OK;
1639}
1640
8c78f307 1641static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1642 .notifier_call = timer_cpu_notify,
1643};
1644
1645
1646void __init init_timers(void)
1647{
07dccf33 1648 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1649 (void *)(long)smp_processor_id());
07dccf33 1650
82f67cd9
IM
1651 init_timer_stats();
1652
07dccf33 1653 BUG_ON(err == NOTIFY_BAD);
1da177e4 1654 register_cpu_notifier(&timers_nb);
962cf36c 1655 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1656}
1657
1da177e4
LT
1658/**
1659 * msleep - sleep safely even with waitqueue interruptions
1660 * @msecs: Time in milliseconds to sleep for
1661 */
1662void msleep(unsigned int msecs)
1663{
1664 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1665
75bcc8c5
NA
1666 while (timeout)
1667 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1668}
1669
1670EXPORT_SYMBOL(msleep);
1671
1672/**
96ec3efd 1673 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1674 * @msecs: Time in milliseconds to sleep for
1675 */
1676unsigned long msleep_interruptible(unsigned int msecs)
1677{
1678 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1679
75bcc8c5
NA
1680 while (timeout && !signal_pending(current))
1681 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1682 return jiffies_to_msecs(timeout);
1683}
1684
1685EXPORT_SYMBOL(msleep_interruptible);