Merge branch 'proc-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/adobriyan...
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
e17036da 286 if (!cfs_rq->curr)
1af5f730
PZ
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta /= w
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_fair(unsigned long delta, struct sched_entity *se)
393{
f9c0b095
PZ
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
396
397 return delta;
398}
399
647e7cac
IM
400/*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
4d78e7b6
PZ
408static u64 __sched_period(unsigned long nr_running)
409{
410 u64 period = sysctl_sched_latency;
b2be5e96 411 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
412
413 if (unlikely(nr_running > nr_latency)) {
4bf0b771 414 period = sysctl_sched_min_granularity;
4d78e7b6 415 period *= nr_running;
4d78e7b6
PZ
416 }
417
418 return period;
419}
420
647e7cac
IM
421/*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
f9c0b095 425 * s = p*P[w/rw]
647e7cac 426 */
6d0f0ebd 427static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 428{
0a582440 429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 430
0a582440 431 for_each_sched_entity(se) {
6272d68c
LM
432 struct load_weight *load;
433
434 cfs_rq = cfs_rq_of(se);
435 load = &cfs_rq->load;
f9c0b095 436
0a582440
MG
437 if (unlikely(!se->on_rq)) {
438 struct load_weight lw = cfs_rq->load;
439
440 update_load_add(&lw, se->load.weight);
441 load = &lw;
442 }
443 slice = calc_delta_mine(slice, se->load.weight, load);
444 }
445 return slice;
bf0f6f24
IM
446}
447
647e7cac 448/*
ac884dec 449 * We calculate the vruntime slice of a to be inserted task
647e7cac 450 *
f9c0b095 451 * vs = s/w
647e7cac 452 */
f9c0b095 453static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 454{
f9c0b095 455 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
456}
457
bf0f6f24
IM
458/*
459 * Update the current task's runtime statistics. Skip current tasks that
460 * are not in our scheduling class.
461 */
462static inline void
8ebc91d9
IM
463__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
464 unsigned long delta_exec)
bf0f6f24 465{
bbdba7c0 466 unsigned long delta_exec_weighted;
bf0f6f24 467
8179ca23 468 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
469
470 curr->sum_exec_runtime += delta_exec;
7a62eabc 471 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 472 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 473 curr->vruntime += delta_exec_weighted;
1af5f730 474 update_min_vruntime(cfs_rq);
bf0f6f24
IM
475}
476
b7cc0896 477static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 478{
429d43bc 479 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 480 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
481 unsigned long delta_exec;
482
483 if (unlikely(!curr))
484 return;
485
486 /*
487 * Get the amount of time the current task was running
488 * since the last time we changed load (this cannot
489 * overflow on 32 bits):
490 */
8ebc91d9 491 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
492 if (!delta_exec)
493 return;
bf0f6f24 494
8ebc91d9
IM
495 __update_curr(cfs_rq, curr, delta_exec);
496 curr->exec_start = now;
d842de87
SV
497
498 if (entity_is_task(curr)) {
499 struct task_struct *curtask = task_of(curr);
500
501 cpuacct_charge(curtask, delta_exec);
f06febc9 502 account_group_exec_runtime(curtask, delta_exec);
d842de87 503 }
bf0f6f24
IM
504}
505
506static inline void
5870db5b 507update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 508{
d281918d 509 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
510}
511
bf0f6f24
IM
512/*
513 * Task is being enqueued - update stats:
514 */
d2417e5a 515static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 516{
bf0f6f24
IM
517 /*
518 * Are we enqueueing a waiting task? (for current tasks
519 * a dequeue/enqueue event is a NOP)
520 */
429d43bc 521 if (se != cfs_rq->curr)
5870db5b 522 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
523}
524
bf0f6f24 525static void
9ef0a961 526update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
bbdba7c0
IM
528 schedstat_set(se->wait_max, max(se->wait_max,
529 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
530 schedstat_set(se->wait_count, se->wait_count + 1);
531 schedstat_set(se->wait_sum, se->wait_sum +
532 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 533 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
534}
535
536static inline void
19b6a2e3 537update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 538{
bf0f6f24
IM
539 /*
540 * Mark the end of the wait period if dequeueing a
541 * waiting task:
542 */
429d43bc 543 if (se != cfs_rq->curr)
9ef0a961 544 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
545}
546
547/*
548 * We are picking a new current task - update its stats:
549 */
550static inline void
79303e9e 551update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
552{
553 /*
554 * We are starting a new run period:
555 */
d281918d 556 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
557}
558
bf0f6f24
IM
559/**************************************************
560 * Scheduling class queueing methods:
561 */
562
c09595f6
PZ
563#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
564static void
565add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
566{
567 cfs_rq->task_weight += weight;
568}
569#else
570static inline void
571add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
572{
573}
574#endif
575
30cfdcfc
DA
576static void
577account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
578{
579 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
580 if (!parent_entity(se))
581 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 582 if (entity_is_task(se)) {
c09595f6 583 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
584 list_add(&se->group_node, &cfs_rq->tasks);
585 }
30cfdcfc
DA
586 cfs_rq->nr_running++;
587 se->on_rq = 1;
588}
589
590static void
591account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
592{
593 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
594 if (!parent_entity(se))
595 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 596 if (entity_is_task(se)) {
c09595f6 597 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
598 list_del_init(&se->group_node);
599 }
30cfdcfc
DA
600 cfs_rq->nr_running--;
601 se->on_rq = 0;
602}
603
2396af69 604static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 605{
bf0f6f24
IM
606#ifdef CONFIG_SCHEDSTATS
607 if (se->sleep_start) {
d281918d 608 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 609 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
610
611 if ((s64)delta < 0)
612 delta = 0;
613
614 if (unlikely(delta > se->sleep_max))
615 se->sleep_max = delta;
616
617 se->sleep_start = 0;
618 se->sum_sleep_runtime += delta;
9745512c
AV
619
620 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
621 }
622 if (se->block_start) {
d281918d 623 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 624 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
625
626 if ((s64)delta < 0)
627 delta = 0;
628
629 if (unlikely(delta > se->block_max))
630 se->block_max = delta;
631
632 se->block_start = 0;
633 se->sum_sleep_runtime += delta;
30084fbd
IM
634
635 /*
636 * Blocking time is in units of nanosecs, so shift by 20 to
637 * get a milliseconds-range estimation of the amount of
638 * time that the task spent sleeping:
639 */
640 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 641
30084fbd
IM
642 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
643 delta >> 20);
644 }
9745512c 645 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
646 }
647#endif
648}
649
ddc97297
PZ
650static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
651{
652#ifdef CONFIG_SCHED_DEBUG
653 s64 d = se->vruntime - cfs_rq->min_vruntime;
654
655 if (d < 0)
656 d = -d;
657
658 if (d > 3*sysctl_sched_latency)
659 schedstat_inc(cfs_rq, nr_spread_over);
660#endif
661}
662
aeb73b04
PZ
663static void
664place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
665{
1af5f730 666 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 667
2cb8600e
PZ
668 /*
669 * The 'current' period is already promised to the current tasks,
670 * however the extra weight of the new task will slow them down a
671 * little, place the new task so that it fits in the slot that
672 * stays open at the end.
673 */
94dfb5e7 674 if (initial && sched_feat(START_DEBIT))
f9c0b095 675 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 676
8465e792 677 if (!initial) {
2cb8600e 678 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
679 if (sched_feat(NEW_FAIR_SLEEPERS)) {
680 unsigned long thresh = sysctl_sched_latency;
681
682 /*
6bc912b7
PZ
683 * Convert the sleeper threshold into virtual time.
684 * SCHED_IDLE is a special sub-class. We care about
685 * fairness only relative to other SCHED_IDLE tasks,
686 * all of which have the same weight.
a7be37ac 687 */
6bc912b7
PZ
688 if (sched_feat(NORMALIZED_SLEEPER) &&
689 task_of(se)->policy != SCHED_IDLE)
a7be37ac
PZ
690 thresh = calc_delta_fair(thresh, se);
691
692 vruntime -= thresh;
693 }
94359f05 694
2cb8600e
PZ
695 /* ensure we never gain time by being placed backwards. */
696 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
697 }
698
67e9fb2a 699 se->vruntime = vruntime;
aeb73b04
PZ
700}
701
bf0f6f24 702static void
83b699ed 703enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
704{
705 /*
a2a2d680 706 * Update run-time statistics of the 'current'.
bf0f6f24 707 */
b7cc0896 708 update_curr(cfs_rq);
a992241d 709 account_entity_enqueue(cfs_rq, se);
bf0f6f24 710
e9acbff6 711 if (wakeup) {
aeb73b04 712 place_entity(cfs_rq, se, 0);
2396af69 713 enqueue_sleeper(cfs_rq, se);
e9acbff6 714 }
bf0f6f24 715
d2417e5a 716 update_stats_enqueue(cfs_rq, se);
ddc97297 717 check_spread(cfs_rq, se);
83b699ed
SV
718 if (se != cfs_rq->curr)
719 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
720}
721
a571bbea 722static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
723{
724 if (cfs_rq->last == se)
725 cfs_rq->last = NULL;
726
727 if (cfs_rq->next == se)
728 cfs_rq->next = NULL;
729}
730
a571bbea
PZ
731static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
732{
733 for_each_sched_entity(se)
734 __clear_buddies(cfs_rq_of(se), se);
735}
736
bf0f6f24 737static void
525c2716 738dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 739{
a2a2d680
DA
740 /*
741 * Update run-time statistics of the 'current'.
742 */
743 update_curr(cfs_rq);
744
19b6a2e3 745 update_stats_dequeue(cfs_rq, se);
db36cc7d 746 if (sleep) {
67e9fb2a 747#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
748 if (entity_is_task(se)) {
749 struct task_struct *tsk = task_of(se);
750
751 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 752 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 753 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 754 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 755 }
db36cc7d 756#endif
67e9fb2a
PZ
757 }
758
2002c695 759 clear_buddies(cfs_rq, se);
4793241b 760
83b699ed 761 if (se != cfs_rq->curr)
30cfdcfc
DA
762 __dequeue_entity(cfs_rq, se);
763 account_entity_dequeue(cfs_rq, se);
1af5f730 764 update_min_vruntime(cfs_rq);
bf0f6f24
IM
765}
766
767/*
768 * Preempt the current task with a newly woken task if needed:
769 */
7c92e54f 770static void
2e09bf55 771check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 772{
11697830
PZ
773 unsigned long ideal_runtime, delta_exec;
774
6d0f0ebd 775 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 776 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 777 if (delta_exec > ideal_runtime) {
bf0f6f24 778 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
779 /*
780 * The current task ran long enough, ensure it doesn't get
781 * re-elected due to buddy favours.
782 */
783 clear_buddies(cfs_rq, curr);
784 }
bf0f6f24
IM
785}
786
83b699ed 787static void
8494f412 788set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 789{
83b699ed
SV
790 /* 'current' is not kept within the tree. */
791 if (se->on_rq) {
792 /*
793 * Any task has to be enqueued before it get to execute on
794 * a CPU. So account for the time it spent waiting on the
795 * runqueue.
796 */
797 update_stats_wait_end(cfs_rq, se);
798 __dequeue_entity(cfs_rq, se);
799 }
800
79303e9e 801 update_stats_curr_start(cfs_rq, se);
429d43bc 802 cfs_rq->curr = se;
eba1ed4b
IM
803#ifdef CONFIG_SCHEDSTATS
804 /*
805 * Track our maximum slice length, if the CPU's load is at
806 * least twice that of our own weight (i.e. dont track it
807 * when there are only lesser-weight tasks around):
808 */
495eca49 809 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
810 se->slice_max = max(se->slice_max,
811 se->sum_exec_runtime - se->prev_sum_exec_runtime);
812 }
813#endif
4a55b450 814 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
815}
816
3f3a4904
PZ
817static int
818wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
819
f4b6755f 820static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 821{
f4b6755f
PZ
822 struct sched_entity *se = __pick_next_entity(cfs_rq);
823
4793241b
PZ
824 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
825 return cfs_rq->next;
aa2ac252 826
4793241b
PZ
827 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
828 return cfs_rq->last;
829
830 return se;
aa2ac252
PZ
831}
832
ab6cde26 833static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
834{
835 /*
836 * If still on the runqueue then deactivate_task()
837 * was not called and update_curr() has to be done:
838 */
839 if (prev->on_rq)
b7cc0896 840 update_curr(cfs_rq);
bf0f6f24 841
ddc97297 842 check_spread(cfs_rq, prev);
30cfdcfc 843 if (prev->on_rq) {
5870db5b 844 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
845 /* Put 'current' back into the tree. */
846 __enqueue_entity(cfs_rq, prev);
847 }
429d43bc 848 cfs_rq->curr = NULL;
bf0f6f24
IM
849}
850
8f4d37ec
PZ
851static void
852entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 853{
bf0f6f24 854 /*
30cfdcfc 855 * Update run-time statistics of the 'current'.
bf0f6f24 856 */
30cfdcfc 857 update_curr(cfs_rq);
bf0f6f24 858
8f4d37ec
PZ
859#ifdef CONFIG_SCHED_HRTICK
860 /*
861 * queued ticks are scheduled to match the slice, so don't bother
862 * validating it and just reschedule.
863 */
983ed7a6
HH
864 if (queued) {
865 resched_task(rq_of(cfs_rq)->curr);
866 return;
867 }
8f4d37ec
PZ
868 /*
869 * don't let the period tick interfere with the hrtick preemption
870 */
871 if (!sched_feat(DOUBLE_TICK) &&
872 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
873 return;
874#endif
875
ce6c1311 876 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 877 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
878}
879
880/**************************************************
881 * CFS operations on tasks:
882 */
883
8f4d37ec
PZ
884#ifdef CONFIG_SCHED_HRTICK
885static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
886{
8f4d37ec
PZ
887 struct sched_entity *se = &p->se;
888 struct cfs_rq *cfs_rq = cfs_rq_of(se);
889
890 WARN_ON(task_rq(p) != rq);
891
892 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
893 u64 slice = sched_slice(cfs_rq, se);
894 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
895 s64 delta = slice - ran;
896
897 if (delta < 0) {
898 if (rq->curr == p)
899 resched_task(p);
900 return;
901 }
902
903 /*
904 * Don't schedule slices shorter than 10000ns, that just
905 * doesn't make sense. Rely on vruntime for fairness.
906 */
31656519 907 if (rq->curr != p)
157124c1 908 delta = max_t(s64, 10000LL, delta);
8f4d37ec 909
31656519 910 hrtick_start(rq, delta);
8f4d37ec
PZ
911 }
912}
a4c2f00f
PZ
913
914/*
915 * called from enqueue/dequeue and updates the hrtick when the
916 * current task is from our class and nr_running is low enough
917 * to matter.
918 */
919static void hrtick_update(struct rq *rq)
920{
921 struct task_struct *curr = rq->curr;
922
923 if (curr->sched_class != &fair_sched_class)
924 return;
925
926 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
927 hrtick_start_fair(rq, curr);
928}
55e12e5e 929#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
930static inline void
931hrtick_start_fair(struct rq *rq, struct task_struct *p)
932{
933}
a4c2f00f
PZ
934
935static inline void hrtick_update(struct rq *rq)
936{
937}
8f4d37ec
PZ
938#endif
939
bf0f6f24
IM
940/*
941 * The enqueue_task method is called before nr_running is
942 * increased. Here we update the fair scheduling stats and
943 * then put the task into the rbtree:
944 */
fd390f6a 945static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
946{
947 struct cfs_rq *cfs_rq;
62fb1851 948 struct sched_entity *se = &p->se;
bf0f6f24
IM
949
950 for_each_sched_entity(se) {
62fb1851 951 if (se->on_rq)
bf0f6f24
IM
952 break;
953 cfs_rq = cfs_rq_of(se);
83b699ed 954 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 955 wakeup = 1;
bf0f6f24 956 }
8f4d37ec 957
a4c2f00f 958 hrtick_update(rq);
bf0f6f24
IM
959}
960
961/*
962 * The dequeue_task method is called before nr_running is
963 * decreased. We remove the task from the rbtree and
964 * update the fair scheduling stats:
965 */
f02231e5 966static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
967{
968 struct cfs_rq *cfs_rq;
62fb1851 969 struct sched_entity *se = &p->se;
bf0f6f24
IM
970
971 for_each_sched_entity(se) {
972 cfs_rq = cfs_rq_of(se);
525c2716 973 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 974 /* Don't dequeue parent if it has other entities besides us */
62fb1851 975 if (cfs_rq->load.weight)
bf0f6f24 976 break;
b9fa3df3 977 sleep = 1;
bf0f6f24 978 }
8f4d37ec 979
a4c2f00f 980 hrtick_update(rq);
bf0f6f24
IM
981}
982
983/*
1799e35d
IM
984 * sched_yield() support is very simple - we dequeue and enqueue.
985 *
986 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 987 */
4530d7ab 988static void yield_task_fair(struct rq *rq)
bf0f6f24 989{
db292ca3
IM
990 struct task_struct *curr = rq->curr;
991 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
992 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
993
994 /*
1799e35d
IM
995 * Are we the only task in the tree?
996 */
997 if (unlikely(cfs_rq->nr_running == 1))
998 return;
999
2002c695
PZ
1000 clear_buddies(cfs_rq, se);
1001
db292ca3 1002 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1003 update_rq_clock(rq);
1799e35d 1004 /*
a2a2d680 1005 * Update run-time statistics of the 'current'.
1799e35d 1006 */
2b1e315d 1007 update_curr(cfs_rq);
1799e35d
IM
1008
1009 return;
1010 }
1011 /*
1012 * Find the rightmost entry in the rbtree:
bf0f6f24 1013 */
2b1e315d 1014 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1015 /*
1016 * Already in the rightmost position?
1017 */
79b3feff 1018 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1019 return;
1020
1021 /*
1022 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1023 * Upon rescheduling, sched_class::put_prev_task() will place
1024 * 'current' within the tree based on its new key value.
1799e35d 1025 */
30cfdcfc 1026 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1027}
1028
e7693a36
GH
1029/*
1030 * wake_idle() will wake a task on an idle cpu if task->cpu is
1031 * not idle and an idle cpu is available. The span of cpus to
1032 * search starts with cpus closest then further out as needed,
1033 * so we always favor a closer, idle cpu.
e761b772 1034 * Domains may include CPUs that are not usable for migration,
96f874e2 1035 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1036 *
1037 * Returns the CPU we should wake onto.
1038 */
1039#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1040static int wake_idle(int cpu, struct task_struct *p)
1041{
e7693a36
GH
1042 struct sched_domain *sd;
1043 int i;
7eb52dfa
VS
1044 unsigned int chosen_wakeup_cpu;
1045 int this_cpu;
1046
1047 /*
1048 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1049 * are idle and this is not a kernel thread and this task's affinity
1050 * allows it to be moved to preferred cpu, then just move!
1051 */
1052
1053 this_cpu = smp_processor_id();
1054 chosen_wakeup_cpu =
1055 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1056
1057 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1058 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1059 p->mm && !(p->flags & PF_KTHREAD) &&
1060 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1061 return chosen_wakeup_cpu;
e7693a36
GH
1062
1063 /*
1064 * If it is idle, then it is the best cpu to run this task.
1065 *
1066 * This cpu is also the best, if it has more than one task already.
1067 * Siblings must be also busy(in most cases) as they didn't already
1068 * pickup the extra load from this cpu and hence we need not check
1069 * sibling runqueue info. This will avoid the checks and cache miss
1070 * penalities associated with that.
1071 */
104f6454 1072 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1073 return cpu;
1074
1075 for_each_domain(cpu, sd) {
1d3504fc
HS
1076 if ((sd->flags & SD_WAKE_IDLE)
1077 || ((sd->flags & SD_WAKE_IDLE_FAR)
1078 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1079 for_each_cpu_and(i, sched_domain_span(sd),
1080 &p->cpus_allowed) {
1081 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1082 if (i != task_cpu(p)) {
1083 schedstat_inc(p,
1084 se.nr_wakeups_idle);
1085 }
1086 return i;
1087 }
1088 }
1089 } else {
1090 break;
1091 }
1092 }
1093 return cpu;
1094}
55e12e5e 1095#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1096static inline int wake_idle(int cpu, struct task_struct *p)
1097{
1098 return cpu;
1099}
1100#endif
1101
1102#ifdef CONFIG_SMP
098fb9db 1103
bb3469ac 1104#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1105/*
1106 * effective_load() calculates the load change as seen from the root_task_group
1107 *
1108 * Adding load to a group doesn't make a group heavier, but can cause movement
1109 * of group shares between cpus. Assuming the shares were perfectly aligned one
1110 * can calculate the shift in shares.
1111 *
1112 * The problem is that perfectly aligning the shares is rather expensive, hence
1113 * we try to avoid doing that too often - see update_shares(), which ratelimits
1114 * this change.
1115 *
1116 * We compensate this by not only taking the current delta into account, but
1117 * also considering the delta between when the shares were last adjusted and
1118 * now.
1119 *
1120 * We still saw a performance dip, some tracing learned us that between
1121 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1122 * significantly. Therefore try to bias the error in direction of failing
1123 * the affine wakeup.
1124 *
1125 */
f1d239f7
PZ
1126static long effective_load(struct task_group *tg, int cpu,
1127 long wl, long wg)
bb3469ac 1128{
4be9daaa 1129 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1130
1131 if (!tg->parent)
1132 return wl;
1133
f5bfb7d9
PZ
1134 /*
1135 * By not taking the decrease of shares on the other cpu into
1136 * account our error leans towards reducing the affine wakeups.
1137 */
1138 if (!wl && sched_feat(ASYM_EFF_LOAD))
1139 return wl;
1140
4be9daaa 1141 for_each_sched_entity(se) {
cb5ef42a 1142 long S, rw, s, a, b;
940959e9
PZ
1143 long more_w;
1144
1145 /*
1146 * Instead of using this increment, also add the difference
1147 * between when the shares were last updated and now.
1148 */
1149 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1150 wl += more_w;
1151 wg += more_w;
4be9daaa
PZ
1152
1153 S = se->my_q->tg->shares;
1154 s = se->my_q->shares;
f1d239f7 1155 rw = se->my_q->rq_weight;
bb3469ac 1156
cb5ef42a
PZ
1157 a = S*(rw + wl);
1158 b = S*rw + s*wg;
4be9daaa 1159
940959e9
PZ
1160 wl = s*(a-b);
1161
1162 if (likely(b))
1163 wl /= b;
1164
83378269
PZ
1165 /*
1166 * Assume the group is already running and will
1167 * thus already be accounted for in the weight.
1168 *
1169 * That is, moving shares between CPUs, does not
1170 * alter the group weight.
1171 */
4be9daaa 1172 wg = 0;
4be9daaa 1173 }
bb3469ac 1174
4be9daaa 1175 return wl;
bb3469ac 1176}
4be9daaa 1177
bb3469ac 1178#else
4be9daaa 1179
83378269
PZ
1180static inline unsigned long effective_load(struct task_group *tg, int cpu,
1181 unsigned long wl, unsigned long wg)
4be9daaa 1182{
83378269 1183 return wl;
bb3469ac 1184}
4be9daaa 1185
bb3469ac
PZ
1186#endif
1187
098fb9db 1188static int
64b9e029 1189wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1190 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1191 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1192 unsigned int imbalance)
1193{
fc631c82
PZ
1194 struct task_struct *curr = this_rq->curr;
1195 struct task_group *tg;
098fb9db
IM
1196 unsigned long tl = this_load;
1197 unsigned long tl_per_task;
83378269 1198 unsigned long weight;
b3137bc8 1199 int balanced;
098fb9db 1200
b3137bc8 1201 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1202 return 0;
1203
fc631c82
PZ
1204 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1205 p->se.avg_overlap > sysctl_sched_migration_cost))
1206 sync = 0;
1207
b3137bc8
MG
1208 /*
1209 * If sync wakeup then subtract the (maximum possible)
1210 * effect of the currently running task from the load
1211 * of the current CPU:
1212 */
83378269
PZ
1213 if (sync) {
1214 tg = task_group(current);
1215 weight = current->se.load.weight;
1216
1217 tl += effective_load(tg, this_cpu, -weight, -weight);
1218 load += effective_load(tg, prev_cpu, 0, -weight);
1219 }
b3137bc8 1220
83378269
PZ
1221 tg = task_group(p);
1222 weight = p->se.load.weight;
b3137bc8 1223
83378269
PZ
1224 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1225 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1226
098fb9db 1227 /*
4ae7d5ce
IM
1228 * If the currently running task will sleep within
1229 * a reasonable amount of time then attract this newly
1230 * woken task:
098fb9db 1231 */
2fb7635c
PZ
1232 if (sync && balanced)
1233 return 1;
098fb9db
IM
1234
1235 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1236 tl_per_task = cpu_avg_load_per_task(this_cpu);
1237
64b9e029
AA
1238 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1239 tl_per_task)) {
098fb9db
IM
1240 /*
1241 * This domain has SD_WAKE_AFFINE and
1242 * p is cache cold in this domain, and
1243 * there is no bad imbalance.
1244 */
1245 schedstat_inc(this_sd, ttwu_move_affine);
1246 schedstat_inc(p, se.nr_wakeups_affine);
1247
1248 return 1;
1249 }
1250 return 0;
1251}
1252
e7693a36
GH
1253static int select_task_rq_fair(struct task_struct *p, int sync)
1254{
e7693a36 1255 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1256 int prev_cpu, this_cpu, new_cpu;
098fb9db 1257 unsigned long load, this_load;
64b9e029 1258 struct rq *this_rq;
098fb9db 1259 unsigned int imbalance;
098fb9db 1260 int idx;
e7693a36 1261
ac192d39 1262 prev_cpu = task_cpu(p);
ac192d39 1263 this_cpu = smp_processor_id();
4ae7d5ce 1264 this_rq = cpu_rq(this_cpu);
ac192d39 1265 new_cpu = prev_cpu;
e7693a36 1266
64b9e029
AA
1267 if (prev_cpu == this_cpu)
1268 goto out;
ac192d39
IM
1269 /*
1270 * 'this_sd' is the first domain that both
1271 * this_cpu and prev_cpu are present in:
1272 */
e7693a36 1273 for_each_domain(this_cpu, sd) {
758b2cdc 1274 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1275 this_sd = sd;
1276 break;
1277 }
1278 }
1279
96f874e2 1280 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1281 goto out;
e7693a36
GH
1282
1283 /*
1284 * Check for affine wakeup and passive balancing possibilities.
1285 */
098fb9db 1286 if (!this_sd)
f4827386 1287 goto out;
e7693a36 1288
098fb9db
IM
1289 idx = this_sd->wake_idx;
1290
1291 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1292
ac192d39 1293 load = source_load(prev_cpu, idx);
098fb9db
IM
1294 this_load = target_load(this_cpu, idx);
1295
64b9e029 1296 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1297 load, this_load, imbalance))
1298 return this_cpu;
1299
098fb9db
IM
1300 /*
1301 * Start passive balancing when half the imbalance_pct
1302 * limit is reached.
1303 */
1304 if (this_sd->flags & SD_WAKE_BALANCE) {
1305 if (imbalance*this_load <= 100*load) {
1306 schedstat_inc(this_sd, ttwu_move_balance);
1307 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1308 return this_cpu;
e7693a36
GH
1309 }
1310 }
1311
f4827386 1312out:
e7693a36
GH
1313 return wake_idle(new_cpu, p);
1314}
1315#endif /* CONFIG_SMP */
1316
0bbd3336
PZ
1317static unsigned long wakeup_gran(struct sched_entity *se)
1318{
1319 unsigned long gran = sysctl_sched_wakeup_granularity;
1320
1321 /*
a7be37ac
PZ
1322 * More easily preempt - nice tasks, while not making it harder for
1323 * + nice tasks.
0bbd3336 1324 */
464b7527
PZ
1325 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1326 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1327
1328 return gran;
1329}
1330
464b7527
PZ
1331/*
1332 * Should 'se' preempt 'curr'.
1333 *
1334 * |s1
1335 * |s2
1336 * |s3
1337 * g
1338 * |<--->|c
1339 *
1340 * w(c, s1) = -1
1341 * w(c, s2) = 0
1342 * w(c, s3) = 1
1343 *
1344 */
1345static int
1346wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1347{
1348 s64 gran, vdiff = curr->vruntime - se->vruntime;
1349
1350 if (vdiff <= 0)
1351 return -1;
1352
1353 gran = wakeup_gran(curr);
1354 if (vdiff > gran)
1355 return 1;
1356
1357 return 0;
1358}
1359
02479099
PZ
1360static void set_last_buddy(struct sched_entity *se)
1361{
6bc912b7
PZ
1362 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1363 for_each_sched_entity(se)
1364 cfs_rq_of(se)->last = se;
1365 }
02479099
PZ
1366}
1367
1368static void set_next_buddy(struct sched_entity *se)
1369{
6bc912b7
PZ
1370 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1371 for_each_sched_entity(se)
1372 cfs_rq_of(se)->next = se;
1373 }
02479099
PZ
1374}
1375
bf0f6f24
IM
1376/*
1377 * Preempt the current task with a newly woken task if needed:
1378 */
15afe09b 1379static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1380{
1381 struct task_struct *curr = rq->curr;
8651a86c 1382 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1383 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1384
03e89e45 1385 update_curr(cfs_rq);
4793241b 1386
03e89e45 1387 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1388 resched_task(curr);
1389 return;
1390 }
aa2ac252 1391
d95f98d0
PZ
1392 if (unlikely(p->sched_class != &fair_sched_class))
1393 return;
1394
4ae7d5ce
IM
1395 if (unlikely(se == pse))
1396 return;
1397
4793241b
PZ
1398 /*
1399 * Only set the backward buddy when the current task is still on the
1400 * rq. This can happen when a wakeup gets interleaved with schedule on
1401 * the ->pre_schedule() or idle_balance() point, either of which can
1402 * drop the rq lock.
1403 *
1404 * Also, during early boot the idle thread is in the fair class, for
1405 * obvious reasons its a bad idea to schedule back to the idle thread.
1406 */
1407 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1408 set_last_buddy(se);
1409 set_next_buddy(pse);
57fdc26d 1410
aec0a514
BR
1411 /*
1412 * We can come here with TIF_NEED_RESCHED already set from new task
1413 * wake up path.
1414 */
1415 if (test_tsk_need_resched(curr))
1416 return;
1417
91c234b4 1418 /*
6bc912b7 1419 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1420 * the tick):
1421 */
6bc912b7 1422 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1423 return;
bf0f6f24 1424
6bc912b7
PZ
1425 /* Idle tasks are by definition preempted by everybody. */
1426 if (unlikely(curr->policy == SCHED_IDLE)) {
1427 resched_task(curr);
1428 return;
1429 }
1430
77d9cc44
IM
1431 if (!sched_feat(WAKEUP_PREEMPT))
1432 return;
8651a86c 1433
fc631c82
PZ
1434 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1435 (se->avg_overlap < sysctl_sched_migration_cost &&
1436 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1437 resched_task(curr);
1438 return;
1439 }
1440
464b7527
PZ
1441 find_matching_se(&se, &pse);
1442
1443 while (se) {
1444 BUG_ON(!pse);
1445
1446 if (wakeup_preempt_entity(se, pse) == 1) {
1447 resched_task(curr);
1448 break;
1449 }
1450
1451 se = parent_entity(se);
1452 pse = parent_entity(pse);
1453 }
bf0f6f24
IM
1454}
1455
fb8d4724 1456static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1457{
8f4d37ec 1458 struct task_struct *p;
bf0f6f24
IM
1459 struct cfs_rq *cfs_rq = &rq->cfs;
1460 struct sched_entity *se;
1461
1462 if (unlikely(!cfs_rq->nr_running))
1463 return NULL;
1464
1465 do {
9948f4b2 1466 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1467 /*
1468 * If se was a buddy, clear it so that it will have to earn
1469 * the favour again.
1470 */
a571bbea 1471 __clear_buddies(cfs_rq, se);
f4b6755f 1472 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1473 cfs_rq = group_cfs_rq(se);
1474 } while (cfs_rq);
1475
8f4d37ec
PZ
1476 p = task_of(se);
1477 hrtick_start_fair(rq, p);
1478
1479 return p;
bf0f6f24
IM
1480}
1481
1482/*
1483 * Account for a descheduled task:
1484 */
31ee529c 1485static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1486{
1487 struct sched_entity *se = &prev->se;
1488 struct cfs_rq *cfs_rq;
1489
1490 for_each_sched_entity(se) {
1491 cfs_rq = cfs_rq_of(se);
ab6cde26 1492 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1493 }
1494}
1495
681f3e68 1496#ifdef CONFIG_SMP
bf0f6f24
IM
1497/**************************************************
1498 * Fair scheduling class load-balancing methods:
1499 */
1500
1501/*
1502 * Load-balancing iterator. Note: while the runqueue stays locked
1503 * during the whole iteration, the current task might be
1504 * dequeued so the iterator has to be dequeue-safe. Here we
1505 * achieve that by always pre-iterating before returning
1506 * the current task:
1507 */
a9957449 1508static struct task_struct *
4a55bd5e 1509__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1510{
354d60c2
DG
1511 struct task_struct *p = NULL;
1512 struct sched_entity *se;
bf0f6f24 1513
77ae6513
MG
1514 if (next == &cfs_rq->tasks)
1515 return NULL;
1516
b87f1724
BR
1517 se = list_entry(next, struct sched_entity, group_node);
1518 p = task_of(se);
1519 cfs_rq->balance_iterator = next->next;
77ae6513 1520
bf0f6f24
IM
1521 return p;
1522}
1523
1524static struct task_struct *load_balance_start_fair(void *arg)
1525{
1526 struct cfs_rq *cfs_rq = arg;
1527
4a55bd5e 1528 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1529}
1530
1531static struct task_struct *load_balance_next_fair(void *arg)
1532{
1533 struct cfs_rq *cfs_rq = arg;
1534
4a55bd5e 1535 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1536}
1537
c09595f6
PZ
1538static unsigned long
1539__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1540 unsigned long max_load_move, struct sched_domain *sd,
1541 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1542 struct cfs_rq *cfs_rq)
62fb1851 1543{
c09595f6 1544 struct rq_iterator cfs_rq_iterator;
62fb1851 1545
c09595f6
PZ
1546 cfs_rq_iterator.start = load_balance_start_fair;
1547 cfs_rq_iterator.next = load_balance_next_fair;
1548 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1549
c09595f6
PZ
1550 return balance_tasks(this_rq, this_cpu, busiest,
1551 max_load_move, sd, idle, all_pinned,
1552 this_best_prio, &cfs_rq_iterator);
62fb1851 1553}
62fb1851 1554
c09595f6 1555#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1556static unsigned long
bf0f6f24 1557load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1558 unsigned long max_load_move,
a4ac01c3
PW
1559 struct sched_domain *sd, enum cpu_idle_type idle,
1560 int *all_pinned, int *this_best_prio)
bf0f6f24 1561{
bf0f6f24 1562 long rem_load_move = max_load_move;
c09595f6
PZ
1563 int busiest_cpu = cpu_of(busiest);
1564 struct task_group *tg;
18d95a28 1565
c09595f6 1566 rcu_read_lock();
c8cba857 1567 update_h_load(busiest_cpu);
18d95a28 1568
caea8a03 1569 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1570 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1571 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1572 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1573 u64 rem_load, moved_load;
18d95a28 1574
c09595f6
PZ
1575 /*
1576 * empty group
1577 */
c8cba857 1578 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1579 continue;
1580
243e0e7b
SV
1581 rem_load = (u64)rem_load_move * busiest_weight;
1582 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1583
c09595f6 1584 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1585 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1586 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1587
c09595f6 1588 if (!moved_load)
bf0f6f24
IM
1589 continue;
1590
42a3ac7d 1591 moved_load *= busiest_h_load;
243e0e7b 1592 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1593
c09595f6
PZ
1594 rem_load_move -= moved_load;
1595 if (rem_load_move < 0)
bf0f6f24
IM
1596 break;
1597 }
c09595f6 1598 rcu_read_unlock();
bf0f6f24 1599
43010659 1600 return max_load_move - rem_load_move;
bf0f6f24 1601}
c09595f6
PZ
1602#else
1603static unsigned long
1604load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1605 unsigned long max_load_move,
1606 struct sched_domain *sd, enum cpu_idle_type idle,
1607 int *all_pinned, int *this_best_prio)
1608{
1609 return __load_balance_fair(this_rq, this_cpu, busiest,
1610 max_load_move, sd, idle, all_pinned,
1611 this_best_prio, &busiest->cfs);
1612}
1613#endif
bf0f6f24 1614
e1d1484f
PW
1615static int
1616move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1617 struct sched_domain *sd, enum cpu_idle_type idle)
1618{
1619 struct cfs_rq *busy_cfs_rq;
1620 struct rq_iterator cfs_rq_iterator;
1621
1622 cfs_rq_iterator.start = load_balance_start_fair;
1623 cfs_rq_iterator.next = load_balance_next_fair;
1624
1625 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1626 /*
1627 * pass busy_cfs_rq argument into
1628 * load_balance_[start|next]_fair iterators
1629 */
1630 cfs_rq_iterator.arg = busy_cfs_rq;
1631 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1632 &cfs_rq_iterator))
1633 return 1;
1634 }
1635
1636 return 0;
1637}
55e12e5e 1638#endif /* CONFIG_SMP */
e1d1484f 1639
bf0f6f24
IM
1640/*
1641 * scheduler tick hitting a task of our scheduling class:
1642 */
8f4d37ec 1643static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1644{
1645 struct cfs_rq *cfs_rq;
1646 struct sched_entity *se = &curr->se;
1647
1648 for_each_sched_entity(se) {
1649 cfs_rq = cfs_rq_of(se);
8f4d37ec 1650 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1651 }
1652}
1653
1654/*
1655 * Share the fairness runtime between parent and child, thus the
1656 * total amount of pressure for CPU stays equal - new tasks
1657 * get a chance to run but frequent forkers are not allowed to
1658 * monopolize the CPU. Note: the parent runqueue is locked,
1659 * the child is not running yet.
1660 */
ee0827d8 1661static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1662{
1663 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1664 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1665 int this_cpu = smp_processor_id();
bf0f6f24
IM
1666
1667 sched_info_queued(p);
1668
7109c442 1669 update_curr(cfs_rq);
aeb73b04 1670 place_entity(cfs_rq, se, 1);
4d78e7b6 1671
3c90e6e9 1672 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1673 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1674 curr && curr->vruntime < se->vruntime) {
87fefa38 1675 /*
edcb60a3
IM
1676 * Upon rescheduling, sched_class::put_prev_task() will place
1677 * 'current' within the tree based on its new key value.
1678 */
4d78e7b6 1679 swap(curr->vruntime, se->vruntime);
aec0a514 1680 resched_task(rq->curr);
4d78e7b6 1681 }
bf0f6f24 1682
b9dca1e0 1683 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1684}
1685
cb469845
SR
1686/*
1687 * Priority of the task has changed. Check to see if we preempt
1688 * the current task.
1689 */
1690static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1691 int oldprio, int running)
1692{
1693 /*
1694 * Reschedule if we are currently running on this runqueue and
1695 * our priority decreased, or if we are not currently running on
1696 * this runqueue and our priority is higher than the current's
1697 */
1698 if (running) {
1699 if (p->prio > oldprio)
1700 resched_task(rq->curr);
1701 } else
15afe09b 1702 check_preempt_curr(rq, p, 0);
cb469845
SR
1703}
1704
1705/*
1706 * We switched to the sched_fair class.
1707 */
1708static void switched_to_fair(struct rq *rq, struct task_struct *p,
1709 int running)
1710{
1711 /*
1712 * We were most likely switched from sched_rt, so
1713 * kick off the schedule if running, otherwise just see
1714 * if we can still preempt the current task.
1715 */
1716 if (running)
1717 resched_task(rq->curr);
1718 else
15afe09b 1719 check_preempt_curr(rq, p, 0);
cb469845
SR
1720}
1721
83b699ed
SV
1722/* Account for a task changing its policy or group.
1723 *
1724 * This routine is mostly called to set cfs_rq->curr field when a task
1725 * migrates between groups/classes.
1726 */
1727static void set_curr_task_fair(struct rq *rq)
1728{
1729 struct sched_entity *se = &rq->curr->se;
1730
1731 for_each_sched_entity(se)
1732 set_next_entity(cfs_rq_of(se), se);
1733}
1734
810b3817
PZ
1735#ifdef CONFIG_FAIR_GROUP_SCHED
1736static void moved_group_fair(struct task_struct *p)
1737{
1738 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1739
1740 update_curr(cfs_rq);
1741 place_entity(cfs_rq, &p->se, 1);
1742}
1743#endif
1744
bf0f6f24
IM
1745/*
1746 * All the scheduling class methods:
1747 */
5522d5d5
IM
1748static const struct sched_class fair_sched_class = {
1749 .next = &idle_sched_class,
bf0f6f24
IM
1750 .enqueue_task = enqueue_task_fair,
1751 .dequeue_task = dequeue_task_fair,
1752 .yield_task = yield_task_fair,
1753
2e09bf55 1754 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1755
1756 .pick_next_task = pick_next_task_fair,
1757 .put_prev_task = put_prev_task_fair,
1758
681f3e68 1759#ifdef CONFIG_SMP
4ce72a2c
LZ
1760 .select_task_rq = select_task_rq_fair,
1761
bf0f6f24 1762 .load_balance = load_balance_fair,
e1d1484f 1763 .move_one_task = move_one_task_fair,
681f3e68 1764#endif
bf0f6f24 1765
83b699ed 1766 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1767 .task_tick = task_tick_fair,
1768 .task_new = task_new_fair,
cb469845
SR
1769
1770 .prio_changed = prio_changed_fair,
1771 .switched_to = switched_to_fair,
810b3817
PZ
1772
1773#ifdef CONFIG_FAIR_GROUP_SCHED
1774 .moved_group = moved_group_fair,
1775#endif
bf0f6f24
IM
1776};
1777
1778#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1779static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1780{
bf0f6f24
IM
1781 struct cfs_rq *cfs_rq;
1782
5973e5b9 1783 rcu_read_lock();
c3b64f1e 1784 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1785 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1786 rcu_read_unlock();
bf0f6f24
IM
1787}
1788#endif