sched/fair: Fix incorrect task group ->load_avg
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
9148a3a1 265 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
266 return container_of(se, struct task_struct, se);
267}
268
b758149c
PZ
269/* Walk up scheduling entities hierarchy */
270#define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274{
275 return p->se.cfs_rq;
276}
277
278/* runqueue on which this entity is (to be) queued */
279static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280{
281 return se->cfs_rq;
282}
283
284/* runqueue "owned" by this group */
285static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286{
287 return grp->my_q;
288}
289
3d4b47b4
PZ
290static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292 if (!cfs_rq->on_list) {
67e86250
PT
293 /*
294 * Ensure we either appear before our parent (if already
295 * enqueued) or force our parent to appear after us when it is
296 * enqueued. The fact that we always enqueue bottom-up
297 * reduces this to two cases.
298 */
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
301 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
302 &rq_of(cfs_rq)->leaf_cfs_rq_list);
303 } else {
304 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 305 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 306 }
3d4b47b4
PZ
307
308 cfs_rq->on_list = 1;
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
b60205c7
PZ
463 struct sched_entity *curr = cfs_rq->curr;
464
1af5f730
PZ
465 u64 vruntime = cfs_rq->min_vruntime;
466
b60205c7
PZ
467 if (curr) {
468 if (curr->on_rq)
469 vruntime = curr->vruntime;
470 else
471 curr = NULL;
472 }
1af5f730
PZ
473
474 if (cfs_rq->rb_leftmost) {
475 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
476 struct sched_entity,
477 run_node);
478
b60205c7 479 if (!curr)
1af5f730
PZ
480 vruntime = se->vruntime;
481 else
482 vruntime = min_vruntime(vruntime, se->vruntime);
483 }
484
1bf08230 485 /* ensure we never gain time by being placed backwards. */
1af5f730 486 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
487#ifndef CONFIG_64BIT
488 smp_wmb();
489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
490#endif
1af5f730
PZ
491}
492
bf0f6f24
IM
493/*
494 * Enqueue an entity into the rb-tree:
495 */
0702e3eb 496static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
497{
498 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
499 struct rb_node *parent = NULL;
500 struct sched_entity *entry;
bf0f6f24
IM
501 int leftmost = 1;
502
503 /*
504 * Find the right place in the rbtree:
505 */
506 while (*link) {
507 parent = *link;
508 entry = rb_entry(parent, struct sched_entity, run_node);
509 /*
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
512 */
2bd2d6f2 513 if (entity_before(se, entry)) {
bf0f6f24
IM
514 link = &parent->rb_left;
515 } else {
516 link = &parent->rb_right;
517 leftmost = 0;
518 }
519 }
520
521 /*
522 * Maintain a cache of leftmost tree entries (it is frequently
523 * used):
524 */
1af5f730 525 if (leftmost)
57cb499d 526 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
527
528 rb_link_node(&se->run_node, parent, link);
529 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
530}
531
0702e3eb 532static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 533{
3fe69747
PZ
534 if (cfs_rq->rb_leftmost == &se->run_node) {
535 struct rb_node *next_node;
3fe69747
PZ
536
537 next_node = rb_next(&se->run_node);
538 cfs_rq->rb_leftmost = next_node;
3fe69747 539 }
e9acbff6 540
bf0f6f24 541 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
542}
543
029632fb 544struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 545{
f4b6755f
PZ
546 struct rb_node *left = cfs_rq->rb_leftmost;
547
548 if (!left)
549 return NULL;
550
551 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
552}
553
ac53db59
RR
554static struct sched_entity *__pick_next_entity(struct sched_entity *se)
555{
556 struct rb_node *next = rb_next(&se->run_node);
557
558 if (!next)
559 return NULL;
560
561 return rb_entry(next, struct sched_entity, run_node);
562}
563
564#ifdef CONFIG_SCHED_DEBUG
029632fb 565struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 566{
7eee3e67 567 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 568
70eee74b
BS
569 if (!last)
570 return NULL;
7eee3e67
IM
571
572 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
573}
574
bf0f6f24
IM
575/**************************************************************
576 * Scheduling class statistics methods:
577 */
578
acb4a848 579int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 580 void __user *buffer, size_t *lenp,
b2be5e96
PZ
581 loff_t *ppos)
582{
8d65af78 583 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 584 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
585
586 if (ret || !write)
587 return ret;
588
589 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
590 sysctl_sched_min_granularity);
591
acb4a848
CE
592#define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity);
595 WRT_SYSCTL(sched_latency);
596 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
597#undef WRT_SYSCTL
598
b2be5e96
PZ
599 return 0;
600}
601#endif
647e7cac 602
a7be37ac 603/*
f9c0b095 604 * delta /= w
a7be37ac 605 */
9dbdb155 606static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 607{
f9c0b095 608 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 609 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
610
611 return delta;
612}
613
647e7cac
IM
614/*
615 * The idea is to set a period in which each task runs once.
616 *
532b1858 617 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
618 * this period because otherwise the slices get too small.
619 *
620 * p = (nr <= nl) ? l : l*nr/nl
621 */
4d78e7b6
PZ
622static u64 __sched_period(unsigned long nr_running)
623{
8e2b0bf3
BF
624 if (unlikely(nr_running > sched_nr_latency))
625 return nr_running * sysctl_sched_min_granularity;
626 else
627 return sysctl_sched_latency;
4d78e7b6
PZ
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
772bd008 669static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
9d89c257
YD
672/*
673 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
674 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
675 * dependent on this value.
9d89c257
YD
676 */
677#define LOAD_AVG_PERIOD 32
678#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 679#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 680
540247fb
YD
681/* Give new sched_entity start runnable values to heavy its load in infant time */
682void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 683{
540247fb 684 struct sched_avg *sa = &se->avg;
a75cdaa9 685
9d89c257
YD
686 sa->last_update_time = 0;
687 /*
688 * sched_avg's period_contrib should be strictly less then 1024, so
689 * we give it 1023 to make sure it is almost a period (1024us), and
690 * will definitely be update (after enqueue).
691 */
692 sa->period_contrib = 1023;
b5a9b340
VG
693 /*
694 * Tasks are intialized with full load to be seen as heavy tasks until
695 * they get a chance to stabilize to their real load level.
696 * Group entities are intialized with zero load to reflect the fact that
697 * nothing has been attached to the task group yet.
698 */
699 if (entity_is_task(se))
700 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 701 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
702 /*
703 * At this point, util_avg won't be used in select_task_rq_fair anyway
704 */
705 sa->util_avg = 0;
706 sa->util_sum = 0;
9d89c257 707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 708}
7ea241af 709
7dc603c9
PZ
710static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
711static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 712static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
713static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
714
2b8c41da
YD
715/*
716 * With new tasks being created, their initial util_avgs are extrapolated
717 * based on the cfs_rq's current util_avg:
718 *
719 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
720 *
721 * However, in many cases, the above util_avg does not give a desired
722 * value. Moreover, the sum of the util_avgs may be divergent, such
723 * as when the series is a harmonic series.
724 *
725 * To solve this problem, we also cap the util_avg of successive tasks to
726 * only 1/2 of the left utilization budget:
727 *
728 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
729 *
730 * where n denotes the nth task.
731 *
732 * For example, a simplest series from the beginning would be like:
733 *
734 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
735 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
736 *
737 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
738 * if util_avg > util_avg_cap.
739 */
740void post_init_entity_util_avg(struct sched_entity *se)
741{
742 struct cfs_rq *cfs_rq = cfs_rq_of(se);
743 struct sched_avg *sa = &se->avg;
172895e6 744 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 745 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
746
747 if (cap > 0) {
748 if (cfs_rq->avg.util_avg != 0) {
749 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
750 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
751
752 if (sa->util_avg > cap)
753 sa->util_avg = cap;
754 } else {
755 sa->util_avg = cap;
756 }
757 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
758 }
7dc603c9
PZ
759
760 if (entity_is_task(se)) {
761 struct task_struct *p = task_of(se);
762 if (p->sched_class != &fair_sched_class) {
763 /*
764 * For !fair tasks do:
765 *
766 update_cfs_rq_load_avg(now, cfs_rq, false);
767 attach_entity_load_avg(cfs_rq, se);
768 switched_from_fair(rq, p);
769 *
770 * such that the next switched_to_fair() has the
771 * expected state.
772 */
773 se->avg.last_update_time = now;
774 return;
775 }
776 }
777
7c3edd2c 778 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 779 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 780 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
781}
782
7dc603c9 783#else /* !CONFIG_SMP */
540247fb 784void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
785{
786}
2b8c41da
YD
787void post_init_entity_util_avg(struct sched_entity *se)
788{
789}
3d30544f
PZ
790static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
791{
792}
7dc603c9 793#endif /* CONFIG_SMP */
a75cdaa9 794
bf0f6f24 795/*
9dbdb155 796 * Update the current task's runtime statistics.
bf0f6f24 797 */
b7cc0896 798static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 799{
429d43bc 800 struct sched_entity *curr = cfs_rq->curr;
78becc27 801 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 802 u64 delta_exec;
bf0f6f24
IM
803
804 if (unlikely(!curr))
805 return;
806
9dbdb155
PZ
807 delta_exec = now - curr->exec_start;
808 if (unlikely((s64)delta_exec <= 0))
34f28ecd 809 return;
bf0f6f24 810
8ebc91d9 811 curr->exec_start = now;
d842de87 812
9dbdb155
PZ
813 schedstat_set(curr->statistics.exec_max,
814 max(delta_exec, curr->statistics.exec_max));
815
816 curr->sum_exec_runtime += delta_exec;
ae92882e 817 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
818
819 curr->vruntime += calc_delta_fair(delta_exec, curr);
820 update_min_vruntime(cfs_rq);
821
d842de87
SV
822 if (entity_is_task(curr)) {
823 struct task_struct *curtask = task_of(curr);
824
f977bb49 825 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 826 cpuacct_charge(curtask, delta_exec);
f06febc9 827 account_group_exec_runtime(curtask, delta_exec);
d842de87 828 }
ec12cb7f
PT
829
830 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
831}
832
6e998916
SG
833static void update_curr_fair(struct rq *rq)
834{
835 update_curr(cfs_rq_of(&rq->curr->se));
836}
837
bf0f6f24 838static inline void
5870db5b 839update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 840{
4fa8d299
JP
841 u64 wait_start, prev_wait_start;
842
843 if (!schedstat_enabled())
844 return;
845
846 wait_start = rq_clock(rq_of(cfs_rq));
847 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
848
849 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
850 likely(wait_start > prev_wait_start))
851 wait_start -= prev_wait_start;
3ea94de1 852
4fa8d299 853 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
854}
855
4fa8d299 856static inline void
3ea94de1
JP
857update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
858{
859 struct task_struct *p;
cb251765
MG
860 u64 delta;
861
4fa8d299
JP
862 if (!schedstat_enabled())
863 return;
864
865 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
866
867 if (entity_is_task(se)) {
868 p = task_of(se);
869 if (task_on_rq_migrating(p)) {
870 /*
871 * Preserve migrating task's wait time so wait_start
872 * time stamp can be adjusted to accumulate wait time
873 * prior to migration.
874 */
4fa8d299 875 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
876 return;
877 }
878 trace_sched_stat_wait(p, delta);
879 }
880
4fa8d299
JP
881 schedstat_set(se->statistics.wait_max,
882 max(schedstat_val(se->statistics.wait_max), delta));
883 schedstat_inc(se->statistics.wait_count);
884 schedstat_add(se->statistics.wait_sum, delta);
885 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 886}
3ea94de1 887
4fa8d299 888static inline void
1a3d027c
JP
889update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
890{
891 struct task_struct *tsk = NULL;
4fa8d299
JP
892 u64 sleep_start, block_start;
893
894 if (!schedstat_enabled())
895 return;
896
897 sleep_start = schedstat_val(se->statistics.sleep_start);
898 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
899
900 if (entity_is_task(se))
901 tsk = task_of(se);
902
4fa8d299
JP
903 if (sleep_start) {
904 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
905
906 if ((s64)delta < 0)
907 delta = 0;
908
4fa8d299
JP
909 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
910 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 911
4fa8d299
JP
912 schedstat_set(se->statistics.sleep_start, 0);
913 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
914
915 if (tsk) {
916 account_scheduler_latency(tsk, delta >> 10, 1);
917 trace_sched_stat_sleep(tsk, delta);
918 }
919 }
4fa8d299
JP
920 if (block_start) {
921 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
922
923 if ((s64)delta < 0)
924 delta = 0;
925
4fa8d299
JP
926 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
927 schedstat_set(se->statistics.block_max, delta);
1a3d027c 928
4fa8d299
JP
929 schedstat_set(se->statistics.block_start, 0);
930 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
931
932 if (tsk) {
933 if (tsk->in_iowait) {
4fa8d299
JP
934 schedstat_add(se->statistics.iowait_sum, delta);
935 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
936 trace_sched_stat_iowait(tsk, delta);
937 }
938
939 trace_sched_stat_blocked(tsk, delta);
940
941 /*
942 * Blocking time is in units of nanosecs, so shift by
943 * 20 to get a milliseconds-range estimation of the
944 * amount of time that the task spent sleeping:
945 */
946 if (unlikely(prof_on == SLEEP_PROFILING)) {
947 profile_hits(SLEEP_PROFILING,
948 (void *)get_wchan(tsk),
949 delta >> 20);
950 }
951 account_scheduler_latency(tsk, delta >> 10, 0);
952 }
953 }
3ea94de1 954}
3ea94de1 955
bf0f6f24
IM
956/*
957 * Task is being enqueued - update stats:
958 */
cb251765 959static inline void
1a3d027c 960update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 961{
4fa8d299
JP
962 if (!schedstat_enabled())
963 return;
964
bf0f6f24
IM
965 /*
966 * Are we enqueueing a waiting task? (for current tasks
967 * a dequeue/enqueue event is a NOP)
968 */
429d43bc 969 if (se != cfs_rq->curr)
5870db5b 970 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
971
972 if (flags & ENQUEUE_WAKEUP)
973 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
974}
975
bf0f6f24 976static inline void
cb251765 977update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 978{
4fa8d299
JP
979
980 if (!schedstat_enabled())
981 return;
982
bf0f6f24
IM
983 /*
984 * Mark the end of the wait period if dequeueing a
985 * waiting task:
986 */
429d43bc 987 if (se != cfs_rq->curr)
9ef0a961 988 update_stats_wait_end(cfs_rq, se);
cb251765 989
4fa8d299
JP
990 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
991 struct task_struct *tsk = task_of(se);
cb251765 992
4fa8d299
JP
993 if (tsk->state & TASK_INTERRUPTIBLE)
994 schedstat_set(se->statistics.sleep_start,
995 rq_clock(rq_of(cfs_rq)));
996 if (tsk->state & TASK_UNINTERRUPTIBLE)
997 schedstat_set(se->statistics.block_start,
998 rq_clock(rq_of(cfs_rq)));
cb251765 999 }
cb251765
MG
1000}
1001
bf0f6f24
IM
1002/*
1003 * We are picking a new current task - update its stats:
1004 */
1005static inline void
79303e9e 1006update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1007{
1008 /*
1009 * We are starting a new run period:
1010 */
78becc27 1011 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1012}
1013
bf0f6f24
IM
1014/**************************************************
1015 * Scheduling class queueing methods:
1016 */
1017
cbee9f88
PZ
1018#ifdef CONFIG_NUMA_BALANCING
1019/*
598f0ec0
MG
1020 * Approximate time to scan a full NUMA task in ms. The task scan period is
1021 * calculated based on the tasks virtual memory size and
1022 * numa_balancing_scan_size.
cbee9f88 1023 */
598f0ec0
MG
1024unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1025unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1026
1027/* Portion of address space to scan in MB */
1028unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1029
4b96a29b
PZ
1030/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1031unsigned int sysctl_numa_balancing_scan_delay = 1000;
1032
598f0ec0
MG
1033static unsigned int task_nr_scan_windows(struct task_struct *p)
1034{
1035 unsigned long rss = 0;
1036 unsigned long nr_scan_pages;
1037
1038 /*
1039 * Calculations based on RSS as non-present and empty pages are skipped
1040 * by the PTE scanner and NUMA hinting faults should be trapped based
1041 * on resident pages
1042 */
1043 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1044 rss = get_mm_rss(p->mm);
1045 if (!rss)
1046 rss = nr_scan_pages;
1047
1048 rss = round_up(rss, nr_scan_pages);
1049 return rss / nr_scan_pages;
1050}
1051
1052/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1053#define MAX_SCAN_WINDOW 2560
1054
1055static unsigned int task_scan_min(struct task_struct *p)
1056{
316c1608 1057 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1058 unsigned int scan, floor;
1059 unsigned int windows = 1;
1060
64192658
KT
1061 if (scan_size < MAX_SCAN_WINDOW)
1062 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1063 floor = 1000 / windows;
1064
1065 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1066 return max_t(unsigned int, floor, scan);
1067}
1068
1069static unsigned int task_scan_max(struct task_struct *p)
1070{
1071 unsigned int smin = task_scan_min(p);
1072 unsigned int smax;
1073
1074 /* Watch for min being lower than max due to floor calculations */
1075 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1076 return max(smin, smax);
1077}
1078
0ec8aa00
PZ
1079static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1080{
1081 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1082 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1083}
1084
1085static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1086{
1087 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1088 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1089}
1090
8c8a743c
PZ
1091struct numa_group {
1092 atomic_t refcount;
1093
1094 spinlock_t lock; /* nr_tasks, tasks */
1095 int nr_tasks;
e29cf08b 1096 pid_t gid;
4142c3eb 1097 int active_nodes;
8c8a743c
PZ
1098
1099 struct rcu_head rcu;
989348b5 1100 unsigned long total_faults;
4142c3eb 1101 unsigned long max_faults_cpu;
7e2703e6
RR
1102 /*
1103 * Faults_cpu is used to decide whether memory should move
1104 * towards the CPU. As a consequence, these stats are weighted
1105 * more by CPU use than by memory faults.
1106 */
50ec8a40 1107 unsigned long *faults_cpu;
989348b5 1108 unsigned long faults[0];
8c8a743c
PZ
1109};
1110
be1e4e76
RR
1111/* Shared or private faults. */
1112#define NR_NUMA_HINT_FAULT_TYPES 2
1113
1114/* Memory and CPU locality */
1115#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1116
1117/* Averaged statistics, and temporary buffers. */
1118#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1119
e29cf08b
MG
1120pid_t task_numa_group_id(struct task_struct *p)
1121{
1122 return p->numa_group ? p->numa_group->gid : 0;
1123}
1124
44dba3d5
IM
1125/*
1126 * The averaged statistics, shared & private, memory & cpu,
1127 * occupy the first half of the array. The second half of the
1128 * array is for current counters, which are averaged into the
1129 * first set by task_numa_placement.
1130 */
1131static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1132{
44dba3d5 1133 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1134}
1135
1136static inline unsigned long task_faults(struct task_struct *p, int nid)
1137{
44dba3d5 1138 if (!p->numa_faults)
ac8e895b
MG
1139 return 0;
1140
44dba3d5
IM
1141 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1142 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1143}
1144
83e1d2cd
MG
1145static inline unsigned long group_faults(struct task_struct *p, int nid)
1146{
1147 if (!p->numa_group)
1148 return 0;
1149
44dba3d5
IM
1150 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1151 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1152}
1153
20e07dea
RR
1154static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1155{
44dba3d5
IM
1156 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1157 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1158}
1159
4142c3eb
RR
1160/*
1161 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1162 * considered part of a numa group's pseudo-interleaving set. Migrations
1163 * between these nodes are slowed down, to allow things to settle down.
1164 */
1165#define ACTIVE_NODE_FRACTION 3
1166
1167static bool numa_is_active_node(int nid, struct numa_group *ng)
1168{
1169 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1170}
1171
6c6b1193
RR
1172/* Handle placement on systems where not all nodes are directly connected. */
1173static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1174 int maxdist, bool task)
1175{
1176 unsigned long score = 0;
1177 int node;
1178
1179 /*
1180 * All nodes are directly connected, and the same distance
1181 * from each other. No need for fancy placement algorithms.
1182 */
1183 if (sched_numa_topology_type == NUMA_DIRECT)
1184 return 0;
1185
1186 /*
1187 * This code is called for each node, introducing N^2 complexity,
1188 * which should be ok given the number of nodes rarely exceeds 8.
1189 */
1190 for_each_online_node(node) {
1191 unsigned long faults;
1192 int dist = node_distance(nid, node);
1193
1194 /*
1195 * The furthest away nodes in the system are not interesting
1196 * for placement; nid was already counted.
1197 */
1198 if (dist == sched_max_numa_distance || node == nid)
1199 continue;
1200
1201 /*
1202 * On systems with a backplane NUMA topology, compare groups
1203 * of nodes, and move tasks towards the group with the most
1204 * memory accesses. When comparing two nodes at distance
1205 * "hoplimit", only nodes closer by than "hoplimit" are part
1206 * of each group. Skip other nodes.
1207 */
1208 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1209 dist > maxdist)
1210 continue;
1211
1212 /* Add up the faults from nearby nodes. */
1213 if (task)
1214 faults = task_faults(p, node);
1215 else
1216 faults = group_faults(p, node);
1217
1218 /*
1219 * On systems with a glueless mesh NUMA topology, there are
1220 * no fixed "groups of nodes". Instead, nodes that are not
1221 * directly connected bounce traffic through intermediate
1222 * nodes; a numa_group can occupy any set of nodes.
1223 * The further away a node is, the less the faults count.
1224 * This seems to result in good task placement.
1225 */
1226 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1227 faults *= (sched_max_numa_distance - dist);
1228 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1229 }
1230
1231 score += faults;
1232 }
1233
1234 return score;
1235}
1236
83e1d2cd
MG
1237/*
1238 * These return the fraction of accesses done by a particular task, or
1239 * task group, on a particular numa node. The group weight is given a
1240 * larger multiplier, in order to group tasks together that are almost
1241 * evenly spread out between numa nodes.
1242 */
7bd95320
RR
1243static inline unsigned long task_weight(struct task_struct *p, int nid,
1244 int dist)
83e1d2cd 1245{
7bd95320 1246 unsigned long faults, total_faults;
83e1d2cd 1247
44dba3d5 1248 if (!p->numa_faults)
83e1d2cd
MG
1249 return 0;
1250
1251 total_faults = p->total_numa_faults;
1252
1253 if (!total_faults)
1254 return 0;
1255
7bd95320 1256 faults = task_faults(p, nid);
6c6b1193
RR
1257 faults += score_nearby_nodes(p, nid, dist, true);
1258
7bd95320 1259 return 1000 * faults / total_faults;
83e1d2cd
MG
1260}
1261
7bd95320
RR
1262static inline unsigned long group_weight(struct task_struct *p, int nid,
1263 int dist)
83e1d2cd 1264{
7bd95320
RR
1265 unsigned long faults, total_faults;
1266
1267 if (!p->numa_group)
1268 return 0;
1269
1270 total_faults = p->numa_group->total_faults;
1271
1272 if (!total_faults)
83e1d2cd
MG
1273 return 0;
1274
7bd95320 1275 faults = group_faults(p, nid);
6c6b1193
RR
1276 faults += score_nearby_nodes(p, nid, dist, false);
1277
7bd95320 1278 return 1000 * faults / total_faults;
83e1d2cd
MG
1279}
1280
10f39042
RR
1281bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1282 int src_nid, int dst_cpu)
1283{
1284 struct numa_group *ng = p->numa_group;
1285 int dst_nid = cpu_to_node(dst_cpu);
1286 int last_cpupid, this_cpupid;
1287
1288 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1289
1290 /*
1291 * Multi-stage node selection is used in conjunction with a periodic
1292 * migration fault to build a temporal task<->page relation. By using
1293 * a two-stage filter we remove short/unlikely relations.
1294 *
1295 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1296 * a task's usage of a particular page (n_p) per total usage of this
1297 * page (n_t) (in a given time-span) to a probability.
1298 *
1299 * Our periodic faults will sample this probability and getting the
1300 * same result twice in a row, given these samples are fully
1301 * independent, is then given by P(n)^2, provided our sample period
1302 * is sufficiently short compared to the usage pattern.
1303 *
1304 * This quadric squishes small probabilities, making it less likely we
1305 * act on an unlikely task<->page relation.
1306 */
1307 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1308 if (!cpupid_pid_unset(last_cpupid) &&
1309 cpupid_to_nid(last_cpupid) != dst_nid)
1310 return false;
1311
1312 /* Always allow migrate on private faults */
1313 if (cpupid_match_pid(p, last_cpupid))
1314 return true;
1315
1316 /* A shared fault, but p->numa_group has not been set up yet. */
1317 if (!ng)
1318 return true;
1319
1320 /*
4142c3eb
RR
1321 * Destination node is much more heavily used than the source
1322 * node? Allow migration.
10f39042 1323 */
4142c3eb
RR
1324 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1325 ACTIVE_NODE_FRACTION)
10f39042
RR
1326 return true;
1327
1328 /*
4142c3eb
RR
1329 * Distribute memory according to CPU & memory use on each node,
1330 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1331 *
1332 * faults_cpu(dst) 3 faults_cpu(src)
1333 * --------------- * - > ---------------
1334 * faults_mem(dst) 4 faults_mem(src)
10f39042 1335 */
4142c3eb
RR
1336 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1337 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1338}
1339
e6628d5b 1340static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1341static unsigned long source_load(int cpu, int type);
1342static unsigned long target_load(int cpu, int type);
ced549fa 1343static unsigned long capacity_of(int cpu);
58d081b5
MG
1344static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1345
fb13c7ee 1346/* Cached statistics for all CPUs within a node */
58d081b5 1347struct numa_stats {
fb13c7ee 1348 unsigned long nr_running;
58d081b5 1349 unsigned long load;
fb13c7ee
MG
1350
1351 /* Total compute capacity of CPUs on a node */
5ef20ca1 1352 unsigned long compute_capacity;
fb13c7ee
MG
1353
1354 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1355 unsigned long task_capacity;
1b6a7495 1356 int has_free_capacity;
58d081b5 1357};
e6628d5b 1358
fb13c7ee
MG
1359/*
1360 * XXX borrowed from update_sg_lb_stats
1361 */
1362static void update_numa_stats(struct numa_stats *ns, int nid)
1363{
83d7f242
RR
1364 int smt, cpu, cpus = 0;
1365 unsigned long capacity;
fb13c7ee
MG
1366
1367 memset(ns, 0, sizeof(*ns));
1368 for_each_cpu(cpu, cpumask_of_node(nid)) {
1369 struct rq *rq = cpu_rq(cpu);
1370
1371 ns->nr_running += rq->nr_running;
1372 ns->load += weighted_cpuload(cpu);
ced549fa 1373 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1374
1375 cpus++;
fb13c7ee
MG
1376 }
1377
5eca82a9
PZ
1378 /*
1379 * If we raced with hotplug and there are no CPUs left in our mask
1380 * the @ns structure is NULL'ed and task_numa_compare() will
1381 * not find this node attractive.
1382 *
1b6a7495
NP
1383 * We'll either bail at !has_free_capacity, or we'll detect a huge
1384 * imbalance and bail there.
5eca82a9
PZ
1385 */
1386 if (!cpus)
1387 return;
1388
83d7f242
RR
1389 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1390 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1391 capacity = cpus / smt; /* cores */
1392
1393 ns->task_capacity = min_t(unsigned, capacity,
1394 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1395 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1396}
1397
58d081b5
MG
1398struct task_numa_env {
1399 struct task_struct *p;
e6628d5b 1400
58d081b5
MG
1401 int src_cpu, src_nid;
1402 int dst_cpu, dst_nid;
e6628d5b 1403
58d081b5 1404 struct numa_stats src_stats, dst_stats;
e6628d5b 1405
40ea2b42 1406 int imbalance_pct;
7bd95320 1407 int dist;
fb13c7ee
MG
1408
1409 struct task_struct *best_task;
1410 long best_imp;
58d081b5
MG
1411 int best_cpu;
1412};
1413
fb13c7ee
MG
1414static void task_numa_assign(struct task_numa_env *env,
1415 struct task_struct *p, long imp)
1416{
1417 if (env->best_task)
1418 put_task_struct(env->best_task);
bac78573
ON
1419 if (p)
1420 get_task_struct(p);
fb13c7ee
MG
1421
1422 env->best_task = p;
1423 env->best_imp = imp;
1424 env->best_cpu = env->dst_cpu;
1425}
1426
28a21745 1427static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1428 struct task_numa_env *env)
1429{
e4991b24
RR
1430 long imb, old_imb;
1431 long orig_src_load, orig_dst_load;
28a21745
RR
1432 long src_capacity, dst_capacity;
1433
1434 /*
1435 * The load is corrected for the CPU capacity available on each node.
1436 *
1437 * src_load dst_load
1438 * ------------ vs ---------
1439 * src_capacity dst_capacity
1440 */
1441 src_capacity = env->src_stats.compute_capacity;
1442 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1443
1444 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1445 if (dst_load < src_load)
1446 swap(dst_load, src_load);
e63da036
RR
1447
1448 /* Is the difference below the threshold? */
e4991b24
RR
1449 imb = dst_load * src_capacity * 100 -
1450 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1451 if (imb <= 0)
1452 return false;
1453
1454 /*
1455 * The imbalance is above the allowed threshold.
e4991b24 1456 * Compare it with the old imbalance.
e63da036 1457 */
28a21745 1458 orig_src_load = env->src_stats.load;
e4991b24 1459 orig_dst_load = env->dst_stats.load;
28a21745 1460
e4991b24
RR
1461 if (orig_dst_load < orig_src_load)
1462 swap(orig_dst_load, orig_src_load);
e63da036 1463
e4991b24
RR
1464 old_imb = orig_dst_load * src_capacity * 100 -
1465 orig_src_load * dst_capacity * env->imbalance_pct;
1466
1467 /* Would this change make things worse? */
1468 return (imb > old_imb);
e63da036
RR
1469}
1470
fb13c7ee
MG
1471/*
1472 * This checks if the overall compute and NUMA accesses of the system would
1473 * be improved if the source tasks was migrated to the target dst_cpu taking
1474 * into account that it might be best if task running on the dst_cpu should
1475 * be exchanged with the source task
1476 */
887c290e
RR
1477static void task_numa_compare(struct task_numa_env *env,
1478 long taskimp, long groupimp)
fb13c7ee
MG
1479{
1480 struct rq *src_rq = cpu_rq(env->src_cpu);
1481 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1482 struct task_struct *cur;
28a21745 1483 long src_load, dst_load;
fb13c7ee 1484 long load;
1c5d3eb3 1485 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1486 long moveimp = imp;
7bd95320 1487 int dist = env->dist;
fb13c7ee
MG
1488
1489 rcu_read_lock();
bac78573
ON
1490 cur = task_rcu_dereference(&dst_rq->curr);
1491 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1492 cur = NULL;
1493
7af68335
PZ
1494 /*
1495 * Because we have preemption enabled we can get migrated around and
1496 * end try selecting ourselves (current == env->p) as a swap candidate.
1497 */
1498 if (cur == env->p)
1499 goto unlock;
1500
fb13c7ee
MG
1501 /*
1502 * "imp" is the fault differential for the source task between the
1503 * source and destination node. Calculate the total differential for
1504 * the source task and potential destination task. The more negative
1505 * the value is, the more rmeote accesses that would be expected to
1506 * be incurred if the tasks were swapped.
1507 */
1508 if (cur) {
1509 /* Skip this swap candidate if cannot move to the source cpu */
1510 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1511 goto unlock;
1512
887c290e
RR
1513 /*
1514 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1515 * in any group then look only at task weights.
887c290e 1516 */
ca28aa53 1517 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1518 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1519 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1520 /*
1521 * Add some hysteresis to prevent swapping the
1522 * tasks within a group over tiny differences.
1523 */
1524 if (cur->numa_group)
1525 imp -= imp/16;
887c290e 1526 } else {
ca28aa53
RR
1527 /*
1528 * Compare the group weights. If a task is all by
1529 * itself (not part of a group), use the task weight
1530 * instead.
1531 */
ca28aa53 1532 if (cur->numa_group)
7bd95320
RR
1533 imp += group_weight(cur, env->src_nid, dist) -
1534 group_weight(cur, env->dst_nid, dist);
ca28aa53 1535 else
7bd95320
RR
1536 imp += task_weight(cur, env->src_nid, dist) -
1537 task_weight(cur, env->dst_nid, dist);
887c290e 1538 }
fb13c7ee
MG
1539 }
1540
0132c3e1 1541 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1542 goto unlock;
1543
1544 if (!cur) {
1545 /* Is there capacity at our destination? */
b932c03c 1546 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1547 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1548 goto unlock;
1549
1550 goto balance;
1551 }
1552
1553 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1554 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1555 dst_rq->nr_running == 1)
fb13c7ee
MG
1556 goto assign;
1557
1558 /*
1559 * In the overloaded case, try and keep the load balanced.
1560 */
1561balance:
e720fff6
PZ
1562 load = task_h_load(env->p);
1563 dst_load = env->dst_stats.load + load;
1564 src_load = env->src_stats.load - load;
fb13c7ee 1565
0132c3e1
RR
1566 if (moveimp > imp && moveimp > env->best_imp) {
1567 /*
1568 * If the improvement from just moving env->p direction is
1569 * better than swapping tasks around, check if a move is
1570 * possible. Store a slightly smaller score than moveimp,
1571 * so an actually idle CPU will win.
1572 */
1573 if (!load_too_imbalanced(src_load, dst_load, env)) {
1574 imp = moveimp - 1;
1575 cur = NULL;
1576 goto assign;
1577 }
1578 }
1579
1580 if (imp <= env->best_imp)
1581 goto unlock;
1582
fb13c7ee 1583 if (cur) {
e720fff6
PZ
1584 load = task_h_load(cur);
1585 dst_load -= load;
1586 src_load += load;
fb13c7ee
MG
1587 }
1588
28a21745 1589 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1590 goto unlock;
1591
ba7e5a27
RR
1592 /*
1593 * One idle CPU per node is evaluated for a task numa move.
1594 * Call select_idle_sibling to maybe find a better one.
1595 */
10e2f1ac
PZ
1596 if (!cur) {
1597 /*
1598 * select_idle_siblings() uses an per-cpu cpumask that
1599 * can be used from IRQ context.
1600 */
1601 local_irq_disable();
772bd008
MR
1602 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1603 env->dst_cpu);
10e2f1ac
PZ
1604 local_irq_enable();
1605 }
ba7e5a27 1606
fb13c7ee
MG
1607assign:
1608 task_numa_assign(env, cur, imp);
1609unlock:
1610 rcu_read_unlock();
1611}
1612
887c290e
RR
1613static void task_numa_find_cpu(struct task_numa_env *env,
1614 long taskimp, long groupimp)
2c8a50aa
MG
1615{
1616 int cpu;
1617
1618 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1619 /* Skip this CPU if the source task cannot migrate */
1620 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1621 continue;
1622
1623 env->dst_cpu = cpu;
887c290e 1624 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1625 }
1626}
1627
6f9aad0b
RR
1628/* Only move tasks to a NUMA node less busy than the current node. */
1629static bool numa_has_capacity(struct task_numa_env *env)
1630{
1631 struct numa_stats *src = &env->src_stats;
1632 struct numa_stats *dst = &env->dst_stats;
1633
1634 if (src->has_free_capacity && !dst->has_free_capacity)
1635 return false;
1636
1637 /*
1638 * Only consider a task move if the source has a higher load
1639 * than the destination, corrected for CPU capacity on each node.
1640 *
1641 * src->load dst->load
1642 * --------------------- vs ---------------------
1643 * src->compute_capacity dst->compute_capacity
1644 */
44dcb04f
SD
1645 if (src->load * dst->compute_capacity * env->imbalance_pct >
1646
1647 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1648 return true;
1649
1650 return false;
1651}
1652
58d081b5
MG
1653static int task_numa_migrate(struct task_struct *p)
1654{
58d081b5
MG
1655 struct task_numa_env env = {
1656 .p = p,
fb13c7ee 1657
58d081b5 1658 .src_cpu = task_cpu(p),
b32e86b4 1659 .src_nid = task_node(p),
fb13c7ee
MG
1660
1661 .imbalance_pct = 112,
1662
1663 .best_task = NULL,
1664 .best_imp = 0,
4142c3eb 1665 .best_cpu = -1,
58d081b5
MG
1666 };
1667 struct sched_domain *sd;
887c290e 1668 unsigned long taskweight, groupweight;
7bd95320 1669 int nid, ret, dist;
887c290e 1670 long taskimp, groupimp;
e6628d5b 1671
58d081b5 1672 /*
fb13c7ee
MG
1673 * Pick the lowest SD_NUMA domain, as that would have the smallest
1674 * imbalance and would be the first to start moving tasks about.
1675 *
1676 * And we want to avoid any moving of tasks about, as that would create
1677 * random movement of tasks -- counter the numa conditions we're trying
1678 * to satisfy here.
58d081b5
MG
1679 */
1680 rcu_read_lock();
fb13c7ee 1681 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1682 if (sd)
1683 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1684 rcu_read_unlock();
1685
46a73e8a
RR
1686 /*
1687 * Cpusets can break the scheduler domain tree into smaller
1688 * balance domains, some of which do not cross NUMA boundaries.
1689 * Tasks that are "trapped" in such domains cannot be migrated
1690 * elsewhere, so there is no point in (re)trying.
1691 */
1692 if (unlikely(!sd)) {
de1b301a 1693 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1694 return -EINVAL;
1695 }
1696
2c8a50aa 1697 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1698 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1699 taskweight = task_weight(p, env.src_nid, dist);
1700 groupweight = group_weight(p, env.src_nid, dist);
1701 update_numa_stats(&env.src_stats, env.src_nid);
1702 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1703 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1704 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1705
a43455a1 1706 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1707 if (numa_has_capacity(&env))
1708 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1709
9de05d48
RR
1710 /*
1711 * Look at other nodes in these cases:
1712 * - there is no space available on the preferred_nid
1713 * - the task is part of a numa_group that is interleaved across
1714 * multiple NUMA nodes; in order to better consolidate the group,
1715 * we need to check other locations.
1716 */
4142c3eb 1717 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1718 for_each_online_node(nid) {
1719 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1720 continue;
58d081b5 1721
7bd95320 1722 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1723 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1724 dist != env.dist) {
1725 taskweight = task_weight(p, env.src_nid, dist);
1726 groupweight = group_weight(p, env.src_nid, dist);
1727 }
7bd95320 1728
83e1d2cd 1729 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1730 taskimp = task_weight(p, nid, dist) - taskweight;
1731 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1732 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1733 continue;
1734
7bd95320 1735 env.dist = dist;
2c8a50aa
MG
1736 env.dst_nid = nid;
1737 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1738 if (numa_has_capacity(&env))
1739 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1740 }
1741 }
1742
68d1b02a
RR
1743 /*
1744 * If the task is part of a workload that spans multiple NUMA nodes,
1745 * and is migrating into one of the workload's active nodes, remember
1746 * this node as the task's preferred numa node, so the workload can
1747 * settle down.
1748 * A task that migrated to a second choice node will be better off
1749 * trying for a better one later. Do not set the preferred node here.
1750 */
db015dae 1751 if (p->numa_group) {
4142c3eb
RR
1752 struct numa_group *ng = p->numa_group;
1753
db015dae
RR
1754 if (env.best_cpu == -1)
1755 nid = env.src_nid;
1756 else
1757 nid = env.dst_nid;
1758
4142c3eb 1759 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1760 sched_setnuma(p, env.dst_nid);
1761 }
1762
1763 /* No better CPU than the current one was found. */
1764 if (env.best_cpu == -1)
1765 return -EAGAIN;
0ec8aa00 1766
04bb2f94
RR
1767 /*
1768 * Reset the scan period if the task is being rescheduled on an
1769 * alternative node to recheck if the tasks is now properly placed.
1770 */
1771 p->numa_scan_period = task_scan_min(p);
1772
fb13c7ee 1773 if (env.best_task == NULL) {
286549dc
MG
1774 ret = migrate_task_to(p, env.best_cpu);
1775 if (ret != 0)
1776 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1777 return ret;
1778 }
1779
1780 ret = migrate_swap(p, env.best_task);
286549dc
MG
1781 if (ret != 0)
1782 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1783 put_task_struct(env.best_task);
1784 return ret;
e6628d5b
MG
1785}
1786
6b9a7460
MG
1787/* Attempt to migrate a task to a CPU on the preferred node. */
1788static void numa_migrate_preferred(struct task_struct *p)
1789{
5085e2a3
RR
1790 unsigned long interval = HZ;
1791
2739d3ee 1792 /* This task has no NUMA fault statistics yet */
44dba3d5 1793 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1794 return;
1795
2739d3ee 1796 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1797 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1798 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1799
1800 /* Success if task is already running on preferred CPU */
de1b301a 1801 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1802 return;
1803
1804 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1805 task_numa_migrate(p);
6b9a7460
MG
1806}
1807
20e07dea 1808/*
4142c3eb 1809 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1810 * tracking the nodes from which NUMA hinting faults are triggered. This can
1811 * be different from the set of nodes where the workload's memory is currently
1812 * located.
20e07dea 1813 */
4142c3eb 1814static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1815{
1816 unsigned long faults, max_faults = 0;
4142c3eb 1817 int nid, active_nodes = 0;
20e07dea
RR
1818
1819 for_each_online_node(nid) {
1820 faults = group_faults_cpu(numa_group, nid);
1821 if (faults > max_faults)
1822 max_faults = faults;
1823 }
1824
1825 for_each_online_node(nid) {
1826 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1827 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1828 active_nodes++;
20e07dea 1829 }
4142c3eb
RR
1830
1831 numa_group->max_faults_cpu = max_faults;
1832 numa_group->active_nodes = active_nodes;
20e07dea
RR
1833}
1834
04bb2f94
RR
1835/*
1836 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1837 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1838 * period will be for the next scan window. If local/(local+remote) ratio is
1839 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1840 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1841 */
1842#define NUMA_PERIOD_SLOTS 10
a22b4b01 1843#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1844
1845/*
1846 * Increase the scan period (slow down scanning) if the majority of
1847 * our memory is already on our local node, or if the majority of
1848 * the page accesses are shared with other processes.
1849 * Otherwise, decrease the scan period.
1850 */
1851static void update_task_scan_period(struct task_struct *p,
1852 unsigned long shared, unsigned long private)
1853{
1854 unsigned int period_slot;
1855 int ratio;
1856 int diff;
1857
1858 unsigned long remote = p->numa_faults_locality[0];
1859 unsigned long local = p->numa_faults_locality[1];
1860
1861 /*
1862 * If there were no record hinting faults then either the task is
1863 * completely idle or all activity is areas that are not of interest
074c2381
MG
1864 * to automatic numa balancing. Related to that, if there were failed
1865 * migration then it implies we are migrating too quickly or the local
1866 * node is overloaded. In either case, scan slower
04bb2f94 1867 */
074c2381 1868 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1869 p->numa_scan_period = min(p->numa_scan_period_max,
1870 p->numa_scan_period << 1);
1871
1872 p->mm->numa_next_scan = jiffies +
1873 msecs_to_jiffies(p->numa_scan_period);
1874
1875 return;
1876 }
1877
1878 /*
1879 * Prepare to scale scan period relative to the current period.
1880 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1881 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1882 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1883 */
1884 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1885 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1886 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1887 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1888 if (!slot)
1889 slot = 1;
1890 diff = slot * period_slot;
1891 } else {
1892 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1893
1894 /*
1895 * Scale scan rate increases based on sharing. There is an
1896 * inverse relationship between the degree of sharing and
1897 * the adjustment made to the scanning period. Broadly
1898 * speaking the intent is that there is little point
1899 * scanning faster if shared accesses dominate as it may
1900 * simply bounce migrations uselessly
1901 */
2847c90e 1902 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1903 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1904 }
1905
1906 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1907 task_scan_min(p), task_scan_max(p));
1908 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1909}
1910
7e2703e6
RR
1911/*
1912 * Get the fraction of time the task has been running since the last
1913 * NUMA placement cycle. The scheduler keeps similar statistics, but
1914 * decays those on a 32ms period, which is orders of magnitude off
1915 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1916 * stats only if the task is so new there are no NUMA statistics yet.
1917 */
1918static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1919{
1920 u64 runtime, delta, now;
1921 /* Use the start of this time slice to avoid calculations. */
1922 now = p->se.exec_start;
1923 runtime = p->se.sum_exec_runtime;
1924
1925 if (p->last_task_numa_placement) {
1926 delta = runtime - p->last_sum_exec_runtime;
1927 *period = now - p->last_task_numa_placement;
1928 } else {
9d89c257
YD
1929 delta = p->se.avg.load_sum / p->se.load.weight;
1930 *period = LOAD_AVG_MAX;
7e2703e6
RR
1931 }
1932
1933 p->last_sum_exec_runtime = runtime;
1934 p->last_task_numa_placement = now;
1935
1936 return delta;
1937}
1938
54009416
RR
1939/*
1940 * Determine the preferred nid for a task in a numa_group. This needs to
1941 * be done in a way that produces consistent results with group_weight,
1942 * otherwise workloads might not converge.
1943 */
1944static int preferred_group_nid(struct task_struct *p, int nid)
1945{
1946 nodemask_t nodes;
1947 int dist;
1948
1949 /* Direct connections between all NUMA nodes. */
1950 if (sched_numa_topology_type == NUMA_DIRECT)
1951 return nid;
1952
1953 /*
1954 * On a system with glueless mesh NUMA topology, group_weight
1955 * scores nodes according to the number of NUMA hinting faults on
1956 * both the node itself, and on nearby nodes.
1957 */
1958 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1959 unsigned long score, max_score = 0;
1960 int node, max_node = nid;
1961
1962 dist = sched_max_numa_distance;
1963
1964 for_each_online_node(node) {
1965 score = group_weight(p, node, dist);
1966 if (score > max_score) {
1967 max_score = score;
1968 max_node = node;
1969 }
1970 }
1971 return max_node;
1972 }
1973
1974 /*
1975 * Finding the preferred nid in a system with NUMA backplane
1976 * interconnect topology is more involved. The goal is to locate
1977 * tasks from numa_groups near each other in the system, and
1978 * untangle workloads from different sides of the system. This requires
1979 * searching down the hierarchy of node groups, recursively searching
1980 * inside the highest scoring group of nodes. The nodemask tricks
1981 * keep the complexity of the search down.
1982 */
1983 nodes = node_online_map;
1984 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1985 unsigned long max_faults = 0;
81907478 1986 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1987 int a, b;
1988
1989 /* Are there nodes at this distance from each other? */
1990 if (!find_numa_distance(dist))
1991 continue;
1992
1993 for_each_node_mask(a, nodes) {
1994 unsigned long faults = 0;
1995 nodemask_t this_group;
1996 nodes_clear(this_group);
1997
1998 /* Sum group's NUMA faults; includes a==b case. */
1999 for_each_node_mask(b, nodes) {
2000 if (node_distance(a, b) < dist) {
2001 faults += group_faults(p, b);
2002 node_set(b, this_group);
2003 node_clear(b, nodes);
2004 }
2005 }
2006
2007 /* Remember the top group. */
2008 if (faults > max_faults) {
2009 max_faults = faults;
2010 max_group = this_group;
2011 /*
2012 * subtle: at the smallest distance there is
2013 * just one node left in each "group", the
2014 * winner is the preferred nid.
2015 */
2016 nid = a;
2017 }
2018 }
2019 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2020 if (!max_faults)
2021 break;
54009416
RR
2022 nodes = max_group;
2023 }
2024 return nid;
2025}
2026
cbee9f88
PZ
2027static void task_numa_placement(struct task_struct *p)
2028{
83e1d2cd
MG
2029 int seq, nid, max_nid = -1, max_group_nid = -1;
2030 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2031 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2032 unsigned long total_faults;
2033 u64 runtime, period;
7dbd13ed 2034 spinlock_t *group_lock = NULL;
cbee9f88 2035
7e5a2c17
JL
2036 /*
2037 * The p->mm->numa_scan_seq field gets updated without
2038 * exclusive access. Use READ_ONCE() here to ensure
2039 * that the field is read in a single access:
2040 */
316c1608 2041 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2042 if (p->numa_scan_seq == seq)
2043 return;
2044 p->numa_scan_seq = seq;
598f0ec0 2045 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2046
7e2703e6
RR
2047 total_faults = p->numa_faults_locality[0] +
2048 p->numa_faults_locality[1];
2049 runtime = numa_get_avg_runtime(p, &period);
2050
7dbd13ed
MG
2051 /* If the task is part of a group prevent parallel updates to group stats */
2052 if (p->numa_group) {
2053 group_lock = &p->numa_group->lock;
60e69eed 2054 spin_lock_irq(group_lock);
7dbd13ed
MG
2055 }
2056
688b7585
MG
2057 /* Find the node with the highest number of faults */
2058 for_each_online_node(nid) {
44dba3d5
IM
2059 /* Keep track of the offsets in numa_faults array */
2060 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2061 unsigned long faults = 0, group_faults = 0;
44dba3d5 2062 int priv;
745d6147 2063
be1e4e76 2064 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2065 long diff, f_diff, f_weight;
8c8a743c 2066
44dba3d5
IM
2067 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2068 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2069 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2070 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2071
ac8e895b 2072 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2073 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2074 fault_types[priv] += p->numa_faults[membuf_idx];
2075 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2076
7e2703e6
RR
2077 /*
2078 * Normalize the faults_from, so all tasks in a group
2079 * count according to CPU use, instead of by the raw
2080 * number of faults. Tasks with little runtime have
2081 * little over-all impact on throughput, and thus their
2082 * faults are less important.
2083 */
2084 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2085 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2086 (total_faults + 1);
44dba3d5
IM
2087 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2088 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2089
44dba3d5
IM
2090 p->numa_faults[mem_idx] += diff;
2091 p->numa_faults[cpu_idx] += f_diff;
2092 faults += p->numa_faults[mem_idx];
83e1d2cd 2093 p->total_numa_faults += diff;
8c8a743c 2094 if (p->numa_group) {
44dba3d5
IM
2095 /*
2096 * safe because we can only change our own group
2097 *
2098 * mem_idx represents the offset for a given
2099 * nid and priv in a specific region because it
2100 * is at the beginning of the numa_faults array.
2101 */
2102 p->numa_group->faults[mem_idx] += diff;
2103 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2104 p->numa_group->total_faults += diff;
44dba3d5 2105 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2106 }
ac8e895b
MG
2107 }
2108
688b7585
MG
2109 if (faults > max_faults) {
2110 max_faults = faults;
2111 max_nid = nid;
2112 }
83e1d2cd
MG
2113
2114 if (group_faults > max_group_faults) {
2115 max_group_faults = group_faults;
2116 max_group_nid = nid;
2117 }
2118 }
2119
04bb2f94
RR
2120 update_task_scan_period(p, fault_types[0], fault_types[1]);
2121
7dbd13ed 2122 if (p->numa_group) {
4142c3eb 2123 numa_group_count_active_nodes(p->numa_group);
60e69eed 2124 spin_unlock_irq(group_lock);
54009416 2125 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2126 }
2127
bb97fc31
RR
2128 if (max_faults) {
2129 /* Set the new preferred node */
2130 if (max_nid != p->numa_preferred_nid)
2131 sched_setnuma(p, max_nid);
2132
2133 if (task_node(p) != p->numa_preferred_nid)
2134 numa_migrate_preferred(p);
3a7053b3 2135 }
cbee9f88
PZ
2136}
2137
8c8a743c
PZ
2138static inline int get_numa_group(struct numa_group *grp)
2139{
2140 return atomic_inc_not_zero(&grp->refcount);
2141}
2142
2143static inline void put_numa_group(struct numa_group *grp)
2144{
2145 if (atomic_dec_and_test(&grp->refcount))
2146 kfree_rcu(grp, rcu);
2147}
2148
3e6a9418
MG
2149static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2150 int *priv)
8c8a743c
PZ
2151{
2152 struct numa_group *grp, *my_grp;
2153 struct task_struct *tsk;
2154 bool join = false;
2155 int cpu = cpupid_to_cpu(cpupid);
2156 int i;
2157
2158 if (unlikely(!p->numa_group)) {
2159 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2160 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2161
2162 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2163 if (!grp)
2164 return;
2165
2166 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2167 grp->active_nodes = 1;
2168 grp->max_faults_cpu = 0;
8c8a743c 2169 spin_lock_init(&grp->lock);
e29cf08b 2170 grp->gid = p->pid;
50ec8a40 2171 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2172 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2173 nr_node_ids;
8c8a743c 2174
be1e4e76 2175 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2176 grp->faults[i] = p->numa_faults[i];
8c8a743c 2177
989348b5 2178 grp->total_faults = p->total_numa_faults;
83e1d2cd 2179
8c8a743c
PZ
2180 grp->nr_tasks++;
2181 rcu_assign_pointer(p->numa_group, grp);
2182 }
2183
2184 rcu_read_lock();
316c1608 2185 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2186
2187 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2188 goto no_join;
8c8a743c
PZ
2189
2190 grp = rcu_dereference(tsk->numa_group);
2191 if (!grp)
3354781a 2192 goto no_join;
8c8a743c
PZ
2193
2194 my_grp = p->numa_group;
2195 if (grp == my_grp)
3354781a 2196 goto no_join;
8c8a743c
PZ
2197
2198 /*
2199 * Only join the other group if its bigger; if we're the bigger group,
2200 * the other task will join us.
2201 */
2202 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2203 goto no_join;
8c8a743c
PZ
2204
2205 /*
2206 * Tie-break on the grp address.
2207 */
2208 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2209 goto no_join;
8c8a743c 2210
dabe1d99
RR
2211 /* Always join threads in the same process. */
2212 if (tsk->mm == current->mm)
2213 join = true;
2214
2215 /* Simple filter to avoid false positives due to PID collisions */
2216 if (flags & TNF_SHARED)
2217 join = true;
8c8a743c 2218
3e6a9418
MG
2219 /* Update priv based on whether false sharing was detected */
2220 *priv = !join;
2221
dabe1d99 2222 if (join && !get_numa_group(grp))
3354781a 2223 goto no_join;
8c8a743c 2224
8c8a743c
PZ
2225 rcu_read_unlock();
2226
2227 if (!join)
2228 return;
2229
60e69eed
MG
2230 BUG_ON(irqs_disabled());
2231 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2232
be1e4e76 2233 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2234 my_grp->faults[i] -= p->numa_faults[i];
2235 grp->faults[i] += p->numa_faults[i];
8c8a743c 2236 }
989348b5
MG
2237 my_grp->total_faults -= p->total_numa_faults;
2238 grp->total_faults += p->total_numa_faults;
8c8a743c 2239
8c8a743c
PZ
2240 my_grp->nr_tasks--;
2241 grp->nr_tasks++;
2242
2243 spin_unlock(&my_grp->lock);
60e69eed 2244 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2245
2246 rcu_assign_pointer(p->numa_group, grp);
2247
2248 put_numa_group(my_grp);
3354781a
PZ
2249 return;
2250
2251no_join:
2252 rcu_read_unlock();
2253 return;
8c8a743c
PZ
2254}
2255
2256void task_numa_free(struct task_struct *p)
2257{
2258 struct numa_group *grp = p->numa_group;
44dba3d5 2259 void *numa_faults = p->numa_faults;
e9dd685c
SR
2260 unsigned long flags;
2261 int i;
8c8a743c
PZ
2262
2263 if (grp) {
e9dd685c 2264 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2265 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2266 grp->faults[i] -= p->numa_faults[i];
989348b5 2267 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2268
8c8a743c 2269 grp->nr_tasks--;
e9dd685c 2270 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2271 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2272 put_numa_group(grp);
2273 }
2274
44dba3d5 2275 p->numa_faults = NULL;
82727018 2276 kfree(numa_faults);
8c8a743c
PZ
2277}
2278
cbee9f88
PZ
2279/*
2280 * Got a PROT_NONE fault for a page on @node.
2281 */
58b46da3 2282void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2283{
2284 struct task_struct *p = current;
6688cc05 2285 bool migrated = flags & TNF_MIGRATED;
58b46da3 2286 int cpu_node = task_node(current);
792568ec 2287 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2288 struct numa_group *ng;
ac8e895b 2289 int priv;
cbee9f88 2290
2a595721 2291 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2292 return;
2293
9ff1d9ff
MG
2294 /* for example, ksmd faulting in a user's mm */
2295 if (!p->mm)
2296 return;
2297
f809ca9a 2298 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2299 if (unlikely(!p->numa_faults)) {
2300 int size = sizeof(*p->numa_faults) *
be1e4e76 2301 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2302
44dba3d5
IM
2303 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2304 if (!p->numa_faults)
f809ca9a 2305 return;
745d6147 2306
83e1d2cd 2307 p->total_numa_faults = 0;
04bb2f94 2308 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2309 }
cbee9f88 2310
8c8a743c
PZ
2311 /*
2312 * First accesses are treated as private, otherwise consider accesses
2313 * to be private if the accessing pid has not changed
2314 */
2315 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2316 priv = 1;
2317 } else {
2318 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2319 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2320 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2321 }
2322
792568ec
RR
2323 /*
2324 * If a workload spans multiple NUMA nodes, a shared fault that
2325 * occurs wholly within the set of nodes that the workload is
2326 * actively using should be counted as local. This allows the
2327 * scan rate to slow down when a workload has settled down.
2328 */
4142c3eb
RR
2329 ng = p->numa_group;
2330 if (!priv && !local && ng && ng->active_nodes > 1 &&
2331 numa_is_active_node(cpu_node, ng) &&
2332 numa_is_active_node(mem_node, ng))
792568ec
RR
2333 local = 1;
2334
cbee9f88 2335 task_numa_placement(p);
f809ca9a 2336
2739d3ee
RR
2337 /*
2338 * Retry task to preferred node migration periodically, in case it
2339 * case it previously failed, or the scheduler moved us.
2340 */
2341 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2342 numa_migrate_preferred(p);
2343
b32e86b4
IM
2344 if (migrated)
2345 p->numa_pages_migrated += pages;
074c2381
MG
2346 if (flags & TNF_MIGRATE_FAIL)
2347 p->numa_faults_locality[2] += pages;
b32e86b4 2348
44dba3d5
IM
2349 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2350 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2351 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2352}
2353
6e5fb223
PZ
2354static void reset_ptenuma_scan(struct task_struct *p)
2355{
7e5a2c17
JL
2356 /*
2357 * We only did a read acquisition of the mmap sem, so
2358 * p->mm->numa_scan_seq is written to without exclusive access
2359 * and the update is not guaranteed to be atomic. That's not
2360 * much of an issue though, since this is just used for
2361 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2362 * expensive, to avoid any form of compiler optimizations:
2363 */
316c1608 2364 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2365 p->mm->numa_scan_offset = 0;
2366}
2367
cbee9f88
PZ
2368/*
2369 * The expensive part of numa migration is done from task_work context.
2370 * Triggered from task_tick_numa().
2371 */
2372void task_numa_work(struct callback_head *work)
2373{
2374 unsigned long migrate, next_scan, now = jiffies;
2375 struct task_struct *p = current;
2376 struct mm_struct *mm = p->mm;
51170840 2377 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2378 struct vm_area_struct *vma;
9f40604c 2379 unsigned long start, end;
598f0ec0 2380 unsigned long nr_pte_updates = 0;
4620f8c1 2381 long pages, virtpages;
cbee9f88 2382
9148a3a1 2383 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2384
2385 work->next = work; /* protect against double add */
2386 /*
2387 * Who cares about NUMA placement when they're dying.
2388 *
2389 * NOTE: make sure not to dereference p->mm before this check,
2390 * exit_task_work() happens _after_ exit_mm() so we could be called
2391 * without p->mm even though we still had it when we enqueued this
2392 * work.
2393 */
2394 if (p->flags & PF_EXITING)
2395 return;
2396
930aa174 2397 if (!mm->numa_next_scan) {
7e8d16b6
MG
2398 mm->numa_next_scan = now +
2399 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2400 }
2401
cbee9f88
PZ
2402 /*
2403 * Enforce maximal scan/migration frequency..
2404 */
2405 migrate = mm->numa_next_scan;
2406 if (time_before(now, migrate))
2407 return;
2408
598f0ec0
MG
2409 if (p->numa_scan_period == 0) {
2410 p->numa_scan_period_max = task_scan_max(p);
2411 p->numa_scan_period = task_scan_min(p);
2412 }
cbee9f88 2413
fb003b80 2414 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2415 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2416 return;
2417
19a78d11
PZ
2418 /*
2419 * Delay this task enough that another task of this mm will likely win
2420 * the next time around.
2421 */
2422 p->node_stamp += 2 * TICK_NSEC;
2423
9f40604c
MG
2424 start = mm->numa_scan_offset;
2425 pages = sysctl_numa_balancing_scan_size;
2426 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2427 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2428 if (!pages)
2429 return;
cbee9f88 2430
4620f8c1 2431
6e5fb223 2432 down_read(&mm->mmap_sem);
9f40604c 2433 vma = find_vma(mm, start);
6e5fb223
PZ
2434 if (!vma) {
2435 reset_ptenuma_scan(p);
9f40604c 2436 start = 0;
6e5fb223
PZ
2437 vma = mm->mmap;
2438 }
9f40604c 2439 for (; vma; vma = vma->vm_next) {
6b79c57b 2440 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2441 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2442 continue;
6b79c57b 2443 }
6e5fb223 2444
4591ce4f
MG
2445 /*
2446 * Shared library pages mapped by multiple processes are not
2447 * migrated as it is expected they are cache replicated. Avoid
2448 * hinting faults in read-only file-backed mappings or the vdso
2449 * as migrating the pages will be of marginal benefit.
2450 */
2451 if (!vma->vm_mm ||
2452 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2453 continue;
2454
3c67f474
MG
2455 /*
2456 * Skip inaccessible VMAs to avoid any confusion between
2457 * PROT_NONE and NUMA hinting ptes
2458 */
2459 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2460 continue;
4591ce4f 2461
9f40604c
MG
2462 do {
2463 start = max(start, vma->vm_start);
2464 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2465 end = min(end, vma->vm_end);
4620f8c1 2466 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2467
2468 /*
4620f8c1
RR
2469 * Try to scan sysctl_numa_balancing_size worth of
2470 * hpages that have at least one present PTE that
2471 * is not already pte-numa. If the VMA contains
2472 * areas that are unused or already full of prot_numa
2473 * PTEs, scan up to virtpages, to skip through those
2474 * areas faster.
598f0ec0
MG
2475 */
2476 if (nr_pte_updates)
2477 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2478 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2479
9f40604c 2480 start = end;
4620f8c1 2481 if (pages <= 0 || virtpages <= 0)
9f40604c 2482 goto out;
3cf1962c
RR
2483
2484 cond_resched();
9f40604c 2485 } while (end != vma->vm_end);
cbee9f88 2486 }
6e5fb223 2487
9f40604c 2488out:
6e5fb223 2489 /*
c69307d5
PZ
2490 * It is possible to reach the end of the VMA list but the last few
2491 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2492 * would find the !migratable VMA on the next scan but not reset the
2493 * scanner to the start so check it now.
6e5fb223
PZ
2494 */
2495 if (vma)
9f40604c 2496 mm->numa_scan_offset = start;
6e5fb223
PZ
2497 else
2498 reset_ptenuma_scan(p);
2499 up_read(&mm->mmap_sem);
51170840
RR
2500
2501 /*
2502 * Make sure tasks use at least 32x as much time to run other code
2503 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2504 * Usually update_task_scan_period slows down scanning enough; on an
2505 * overloaded system we need to limit overhead on a per task basis.
2506 */
2507 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2508 u64 diff = p->se.sum_exec_runtime - runtime;
2509 p->node_stamp += 32 * diff;
2510 }
cbee9f88
PZ
2511}
2512
2513/*
2514 * Drive the periodic memory faults..
2515 */
2516void task_tick_numa(struct rq *rq, struct task_struct *curr)
2517{
2518 struct callback_head *work = &curr->numa_work;
2519 u64 period, now;
2520
2521 /*
2522 * We don't care about NUMA placement if we don't have memory.
2523 */
2524 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2525 return;
2526
2527 /*
2528 * Using runtime rather than walltime has the dual advantage that
2529 * we (mostly) drive the selection from busy threads and that the
2530 * task needs to have done some actual work before we bother with
2531 * NUMA placement.
2532 */
2533 now = curr->se.sum_exec_runtime;
2534 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2535
25b3e5a3 2536 if (now > curr->node_stamp + period) {
4b96a29b 2537 if (!curr->node_stamp)
598f0ec0 2538 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2539 curr->node_stamp += period;
cbee9f88
PZ
2540
2541 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2542 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2543 task_work_add(curr, work, true);
2544 }
2545 }
2546}
2547#else
2548static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2549{
2550}
0ec8aa00
PZ
2551
2552static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2553{
2554}
2555
2556static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2557{
2558}
cbee9f88
PZ
2559#endif /* CONFIG_NUMA_BALANCING */
2560
30cfdcfc
DA
2561static void
2562account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2563{
2564 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2565 if (!parent_entity(se))
029632fb 2566 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2567#ifdef CONFIG_SMP
0ec8aa00
PZ
2568 if (entity_is_task(se)) {
2569 struct rq *rq = rq_of(cfs_rq);
2570
2571 account_numa_enqueue(rq, task_of(se));
2572 list_add(&se->group_node, &rq->cfs_tasks);
2573 }
367456c7 2574#endif
30cfdcfc 2575 cfs_rq->nr_running++;
30cfdcfc
DA
2576}
2577
2578static void
2579account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2580{
2581 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2582 if (!parent_entity(se))
029632fb 2583 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2584#ifdef CONFIG_SMP
0ec8aa00
PZ
2585 if (entity_is_task(se)) {
2586 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2587 list_del_init(&se->group_node);
0ec8aa00 2588 }
bfdb198c 2589#endif
30cfdcfc 2590 cfs_rq->nr_running--;
30cfdcfc
DA
2591}
2592
3ff6dcac
YZ
2593#ifdef CONFIG_FAIR_GROUP_SCHED
2594# ifdef CONFIG_SMP
ea1dc6fc 2595static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2596{
ea1dc6fc 2597 long tg_weight, load, shares;
cf5f0acf
PZ
2598
2599 /*
ea1dc6fc
PZ
2600 * This really should be: cfs_rq->avg.load_avg, but instead we use
2601 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2602 * the shares for small weight interactive tasks.
cf5f0acf 2603 */
ea1dc6fc 2604 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2605
ea1dc6fc 2606 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2607
ea1dc6fc
PZ
2608 /* Ensure tg_weight >= load */
2609 tg_weight -= cfs_rq->tg_load_avg_contrib;
2610 tg_weight += load;
3ff6dcac 2611
3ff6dcac 2612 shares = (tg->shares * load);
cf5f0acf
PZ
2613 if (tg_weight)
2614 shares /= tg_weight;
3ff6dcac
YZ
2615
2616 if (shares < MIN_SHARES)
2617 shares = MIN_SHARES;
2618 if (shares > tg->shares)
2619 shares = tg->shares;
2620
2621 return shares;
2622}
3ff6dcac 2623# else /* CONFIG_SMP */
6d5ab293 2624static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2625{
2626 return tg->shares;
2627}
3ff6dcac 2628# endif /* CONFIG_SMP */
ea1dc6fc 2629
2069dd75
PZ
2630static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2631 unsigned long weight)
2632{
19e5eebb
PT
2633 if (se->on_rq) {
2634 /* commit outstanding execution time */
2635 if (cfs_rq->curr == se)
2636 update_curr(cfs_rq);
2069dd75 2637 account_entity_dequeue(cfs_rq, se);
19e5eebb 2638 }
2069dd75
PZ
2639
2640 update_load_set(&se->load, weight);
2641
2642 if (se->on_rq)
2643 account_entity_enqueue(cfs_rq, se);
2644}
2645
82958366
PT
2646static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2647
6d5ab293 2648static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2649{
2650 struct task_group *tg;
2651 struct sched_entity *se;
3ff6dcac 2652 long shares;
2069dd75 2653
2069dd75
PZ
2654 tg = cfs_rq->tg;
2655 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2656 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2657 return;
3ff6dcac
YZ
2658#ifndef CONFIG_SMP
2659 if (likely(se->load.weight == tg->shares))
2660 return;
2661#endif
6d5ab293 2662 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2663
2664 reweight_entity(cfs_rq_of(se), se, shares);
2665}
2666#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2667static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2668{
2669}
2670#endif /* CONFIG_FAIR_GROUP_SCHED */
2671
141965c7 2672#ifdef CONFIG_SMP
5b51f2f8
PT
2673/* Precomputed fixed inverse multiplies for multiplication by y^n */
2674static const u32 runnable_avg_yN_inv[] = {
2675 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2676 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2677 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2678 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2679 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2680 0x85aac367, 0x82cd8698,
2681};
2682
2683/*
2684 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2685 * over-estimates when re-combining.
2686 */
2687static const u32 runnable_avg_yN_sum[] = {
2688 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2689 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2690 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2691};
2692
7b20b916
YD
2693/*
2694 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2695 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2696 * were generated:
2697 */
2698static const u32 __accumulated_sum_N32[] = {
2699 0, 23371, 35056, 40899, 43820, 45281,
2700 46011, 46376, 46559, 46650, 46696, 46719,
2701};
2702
9d85f21c
PT
2703/*
2704 * Approximate:
2705 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2706 */
2707static __always_inline u64 decay_load(u64 val, u64 n)
2708{
5b51f2f8
PT
2709 unsigned int local_n;
2710
2711 if (!n)
2712 return val;
2713 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2714 return 0;
2715
2716 /* after bounds checking we can collapse to 32-bit */
2717 local_n = n;
2718
2719 /*
2720 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2721 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2722 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2723 *
2724 * To achieve constant time decay_load.
2725 */
2726 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2727 val >>= local_n / LOAD_AVG_PERIOD;
2728 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2729 }
2730
9d89c257
YD
2731 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2732 return val;
5b51f2f8
PT
2733}
2734
2735/*
2736 * For updates fully spanning n periods, the contribution to runnable
2737 * average will be: \Sum 1024*y^n
2738 *
2739 * We can compute this reasonably efficiently by combining:
2740 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2741 */
2742static u32 __compute_runnable_contrib(u64 n)
2743{
2744 u32 contrib = 0;
2745
2746 if (likely(n <= LOAD_AVG_PERIOD))
2747 return runnable_avg_yN_sum[n];
2748 else if (unlikely(n >= LOAD_AVG_MAX_N))
2749 return LOAD_AVG_MAX;
2750
7b20b916
YD
2751 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2752 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2753 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2754 contrib = decay_load(contrib, n);
2755 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2756}
2757
54a21385 2758#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2759
9d85f21c
PT
2760/*
2761 * We can represent the historical contribution to runnable average as the
2762 * coefficients of a geometric series. To do this we sub-divide our runnable
2763 * history into segments of approximately 1ms (1024us); label the segment that
2764 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2765 *
2766 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2767 * p0 p1 p2
2768 * (now) (~1ms ago) (~2ms ago)
2769 *
2770 * Let u_i denote the fraction of p_i that the entity was runnable.
2771 *
2772 * We then designate the fractions u_i as our co-efficients, yielding the
2773 * following representation of historical load:
2774 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2775 *
2776 * We choose y based on the with of a reasonably scheduling period, fixing:
2777 * y^32 = 0.5
2778 *
2779 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2780 * approximately half as much as the contribution to load within the last ms
2781 * (u_0).
2782 *
2783 * When a period "rolls over" and we have new u_0`, multiplying the previous
2784 * sum again by y is sufficient to update:
2785 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2786 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2787 */
9d89c257
YD
2788static __always_inline int
2789__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2790 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2791{
e0f5f3af 2792 u64 delta, scaled_delta, periods;
9d89c257 2793 u32 contrib;
6115c793 2794 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2795 unsigned long scale_freq, scale_cpu;
9d85f21c 2796
9d89c257 2797 delta = now - sa->last_update_time;
9d85f21c
PT
2798 /*
2799 * This should only happen when time goes backwards, which it
2800 * unfortunately does during sched clock init when we swap over to TSC.
2801 */
2802 if ((s64)delta < 0) {
9d89c257 2803 sa->last_update_time = now;
9d85f21c
PT
2804 return 0;
2805 }
2806
2807 /*
2808 * Use 1024ns as the unit of measurement since it's a reasonable
2809 * approximation of 1us and fast to compute.
2810 */
2811 delta >>= 10;
2812 if (!delta)
2813 return 0;
9d89c257 2814 sa->last_update_time = now;
9d85f21c 2815
6f2b0452
DE
2816 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2817 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2818
9d85f21c 2819 /* delta_w is the amount already accumulated against our next period */
9d89c257 2820 delta_w = sa->period_contrib;
9d85f21c 2821 if (delta + delta_w >= 1024) {
9d85f21c
PT
2822 decayed = 1;
2823
9d89c257
YD
2824 /* how much left for next period will start over, we don't know yet */
2825 sa->period_contrib = 0;
2826
9d85f21c
PT
2827 /*
2828 * Now that we know we're crossing a period boundary, figure
2829 * out how much from delta we need to complete the current
2830 * period and accrue it.
2831 */
2832 delta_w = 1024 - delta_w;
54a21385 2833 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2834 if (weight) {
e0f5f3af
DE
2835 sa->load_sum += weight * scaled_delta_w;
2836 if (cfs_rq) {
2837 cfs_rq->runnable_load_sum +=
2838 weight * scaled_delta_w;
2839 }
13962234 2840 }
36ee28e4 2841 if (running)
006cdf02 2842 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2843
2844 delta -= delta_w;
2845
2846 /* Figure out how many additional periods this update spans */
2847 periods = delta / 1024;
2848 delta %= 1024;
2849
9d89c257 2850 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2851 if (cfs_rq) {
2852 cfs_rq->runnable_load_sum =
2853 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2854 }
9d89c257 2855 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2856
2857 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2858 contrib = __compute_runnable_contrib(periods);
54a21385 2859 contrib = cap_scale(contrib, scale_freq);
13962234 2860 if (weight) {
9d89c257 2861 sa->load_sum += weight * contrib;
13962234
YD
2862 if (cfs_rq)
2863 cfs_rq->runnable_load_sum += weight * contrib;
2864 }
36ee28e4 2865 if (running)
006cdf02 2866 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2867 }
2868
2869 /* Remainder of delta accrued against u_0` */
54a21385 2870 scaled_delta = cap_scale(delta, scale_freq);
13962234 2871 if (weight) {
e0f5f3af 2872 sa->load_sum += weight * scaled_delta;
13962234 2873 if (cfs_rq)
e0f5f3af 2874 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2875 }
36ee28e4 2876 if (running)
006cdf02 2877 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2878
9d89c257 2879 sa->period_contrib += delta;
9ee474f5 2880
9d89c257
YD
2881 if (decayed) {
2882 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2883 if (cfs_rq) {
2884 cfs_rq->runnable_load_avg =
2885 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2886 }
006cdf02 2887 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2888 }
aff3e498 2889
9d89c257 2890 return decayed;
9ee474f5
PT
2891}
2892
c566e8e9 2893#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2894/**
2895 * update_tg_load_avg - update the tg's load avg
2896 * @cfs_rq: the cfs_rq whose avg changed
2897 * @force: update regardless of how small the difference
2898 *
2899 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2900 * However, because tg->load_avg is a global value there are performance
2901 * considerations.
2902 *
2903 * In order to avoid having to look at the other cfs_rq's, we use a
2904 * differential update where we store the last value we propagated. This in
2905 * turn allows skipping updates if the differential is 'small'.
2906 *
2907 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2908 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2909 */
9d89c257 2910static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2911{
9d89c257 2912 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2913
aa0b7ae0
WL
2914 /*
2915 * No need to update load_avg for root_task_group as it is not used.
2916 */
2917 if (cfs_rq->tg == &root_task_group)
2918 return;
2919
9d89c257
YD
2920 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2921 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2922 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2923 }
8165e145 2924}
f5f9739d 2925
ad936d86
BP
2926/*
2927 * Called within set_task_rq() right before setting a task's cpu. The
2928 * caller only guarantees p->pi_lock is held; no other assumptions,
2929 * including the state of rq->lock, should be made.
2930 */
2931void set_task_rq_fair(struct sched_entity *se,
2932 struct cfs_rq *prev, struct cfs_rq *next)
2933{
2934 if (!sched_feat(ATTACH_AGE_LOAD))
2935 return;
2936
2937 /*
2938 * We are supposed to update the task to "current" time, then its up to
2939 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2940 * getting what current time is, so simply throw away the out-of-date
2941 * time. This will result in the wakee task is less decayed, but giving
2942 * the wakee more load sounds not bad.
2943 */
2944 if (se->avg.last_update_time && prev) {
2945 u64 p_last_update_time;
2946 u64 n_last_update_time;
2947
2948#ifndef CONFIG_64BIT
2949 u64 p_last_update_time_copy;
2950 u64 n_last_update_time_copy;
2951
2952 do {
2953 p_last_update_time_copy = prev->load_last_update_time_copy;
2954 n_last_update_time_copy = next->load_last_update_time_copy;
2955
2956 smp_rmb();
2957
2958 p_last_update_time = prev->avg.last_update_time;
2959 n_last_update_time = next->avg.last_update_time;
2960
2961 } while (p_last_update_time != p_last_update_time_copy ||
2962 n_last_update_time != n_last_update_time_copy);
2963#else
2964 p_last_update_time = prev->avg.last_update_time;
2965 n_last_update_time = next->avg.last_update_time;
2966#endif
2967 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2968 &se->avg, 0, 0, NULL);
2969 se->avg.last_update_time = n_last_update_time;
2970 }
2971}
6e83125c 2972#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2973static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2974#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2975
a2c6c91f
SM
2976static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2977{
58919e83 2978 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
2979 /*
2980 * There are a few boundary cases this might miss but it should
2981 * get called often enough that that should (hopefully) not be
2982 * a real problem -- added to that it only calls on the local
2983 * CPU, so if we enqueue remotely we'll miss an update, but
2984 * the next tick/schedule should update.
2985 *
2986 * It will not get called when we go idle, because the idle
2987 * thread is a different class (!fair), nor will the utilization
2988 * number include things like RT tasks.
2989 *
2990 * As is, the util number is not freq-invariant (we'd have to
2991 * implement arch_scale_freq_capacity() for that).
2992 *
2993 * See cpu_util().
2994 */
12bde33d 2995 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
2996 }
2997}
2998
89741892
PZ
2999/*
3000 * Unsigned subtract and clamp on underflow.
3001 *
3002 * Explicitly do a load-store to ensure the intermediate value never hits
3003 * memory. This allows lockless observations without ever seeing the negative
3004 * values.
3005 */
3006#define sub_positive(_ptr, _val) do { \
3007 typeof(_ptr) ptr = (_ptr); \
3008 typeof(*ptr) val = (_val); \
3009 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3010 res = var - val; \
3011 if (res > var) \
3012 res = 0; \
3013 WRITE_ONCE(*ptr, res); \
3014} while (0)
3015
3d30544f
PZ
3016/**
3017 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3018 * @now: current time, as per cfs_rq_clock_task()
3019 * @cfs_rq: cfs_rq to update
3020 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3021 *
3022 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3023 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3024 * post_init_entity_util_avg().
3025 *
3026 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3027 *
7c3edd2c
PZ
3028 * Returns true if the load decayed or we removed load.
3029 *
3030 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3031 * call update_tg_load_avg() when this function returns true.
3d30544f 3032 */
a2c6c91f
SM
3033static inline int
3034update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3035{
9d89c257 3036 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3037 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3038
9d89c257 3039 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3040 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3041 sub_positive(&sa->load_avg, r);
3042 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3043 removed_load = 1;
8165e145 3044 }
2dac754e 3045
9d89c257
YD
3046 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3047 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3048 sub_positive(&sa->util_avg, r);
3049 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3050 removed_util = 1;
9d89c257 3051 }
36ee28e4 3052
a2c6c91f 3053 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3054 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3055
9d89c257
YD
3056#ifndef CONFIG_64BIT
3057 smp_wmb();
3058 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3059#endif
36ee28e4 3060
a2c6c91f
SM
3061 if (update_freq && (decayed || removed_util))
3062 cfs_rq_util_change(cfs_rq);
21e96f88 3063
41e0d37f 3064 return decayed || removed_load;
21e96f88
SM
3065}
3066
3067/* Update task and its cfs_rq load average */
3068static inline void update_load_avg(struct sched_entity *se, int update_tg)
3069{
3070 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3071 u64 now = cfs_rq_clock_task(cfs_rq);
3072 struct rq *rq = rq_of(cfs_rq);
3073 int cpu = cpu_of(rq);
3074
3075 /*
3076 * Track task load average for carrying it to new CPU after migrated, and
3077 * track group sched_entity load average for task_h_load calc in migration
3078 */
3079 __update_load_avg(now, cpu, &se->avg,
3080 se->on_rq * scale_load_down(se->load.weight),
3081 cfs_rq->curr == se, NULL);
3082
a2c6c91f 3083 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3084 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3085}
3086
3d30544f
PZ
3087/**
3088 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3089 * @cfs_rq: cfs_rq to attach to
3090 * @se: sched_entity to attach
3091 *
3092 * Must call update_cfs_rq_load_avg() before this, since we rely on
3093 * cfs_rq->avg.last_update_time being current.
3094 */
a05e8c51
BP
3095static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3096{
a9280514
PZ
3097 if (!sched_feat(ATTACH_AGE_LOAD))
3098 goto skip_aging;
3099
6efdb105
BP
3100 /*
3101 * If we got migrated (either between CPUs or between cgroups) we'll
3102 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3103 *
3104 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3105 */
3106 if (se->avg.last_update_time) {
3107 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3108 &se->avg, 0, 0, NULL);
3109
3110 /*
3111 * XXX: we could have just aged the entire load away if we've been
3112 * absent from the fair class for too long.
3113 */
3114 }
3115
a9280514 3116skip_aging:
a05e8c51
BP
3117 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3118 cfs_rq->avg.load_avg += se->avg.load_avg;
3119 cfs_rq->avg.load_sum += se->avg.load_sum;
3120 cfs_rq->avg.util_avg += se->avg.util_avg;
3121 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3122
3123 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3124}
3125
3d30544f
PZ
3126/**
3127 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3128 * @cfs_rq: cfs_rq to detach from
3129 * @se: sched_entity to detach
3130 *
3131 * Must call update_cfs_rq_load_avg() before this, since we rely on
3132 * cfs_rq->avg.last_update_time being current.
3133 */
a05e8c51
BP
3134static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3135{
3136 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3137 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3138 cfs_rq->curr == se, NULL);
3139
89741892
PZ
3140 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3141 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3142 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3143 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3144
3145 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3146}
3147
9d89c257
YD
3148/* Add the load generated by se into cfs_rq's load average */
3149static inline void
3150enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3151{
9d89c257
YD
3152 struct sched_avg *sa = &se->avg;
3153 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3154 int migrated, decayed;
9ee474f5 3155
a05e8c51
BP
3156 migrated = !sa->last_update_time;
3157 if (!migrated) {
9d89c257 3158 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3159 se->on_rq * scale_load_down(se->load.weight),
3160 cfs_rq->curr == se, NULL);
aff3e498 3161 }
c566e8e9 3162
a2c6c91f 3163 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3164
13962234
YD
3165 cfs_rq->runnable_load_avg += sa->load_avg;
3166 cfs_rq->runnable_load_sum += sa->load_sum;
3167
a05e8c51
BP
3168 if (migrated)
3169 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3170
9d89c257
YD
3171 if (decayed || migrated)
3172 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3173}
3174
13962234
YD
3175/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3176static inline void
3177dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3178{
3179 update_load_avg(se, 1);
3180
3181 cfs_rq->runnable_load_avg =
3182 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3183 cfs_rq->runnable_load_sum =
a05e8c51 3184 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3185}
3186
9d89c257 3187#ifndef CONFIG_64BIT
0905f04e
YD
3188static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3189{
9d89c257 3190 u64 last_update_time_copy;
0905f04e 3191 u64 last_update_time;
9ee474f5 3192
9d89c257
YD
3193 do {
3194 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3195 smp_rmb();
3196 last_update_time = cfs_rq->avg.last_update_time;
3197 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3198
3199 return last_update_time;
3200}
9d89c257 3201#else
0905f04e
YD
3202static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3203{
3204 return cfs_rq->avg.last_update_time;
3205}
9d89c257
YD
3206#endif
3207
0905f04e
YD
3208/*
3209 * Task first catches up with cfs_rq, and then subtract
3210 * itself from the cfs_rq (task must be off the queue now).
3211 */
3212void remove_entity_load_avg(struct sched_entity *se)
3213{
3214 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3215 u64 last_update_time;
3216
3217 /*
7dc603c9
PZ
3218 * tasks cannot exit without having gone through wake_up_new_task() ->
3219 * post_init_entity_util_avg() which will have added things to the
3220 * cfs_rq, so we can remove unconditionally.
3221 *
3222 * Similarly for groups, they will have passed through
3223 * post_init_entity_util_avg() before unregister_sched_fair_group()
3224 * calls this.
0905f04e 3225 */
0905f04e
YD
3226
3227 last_update_time = cfs_rq_last_update_time(cfs_rq);
3228
13962234 3229 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3230 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3231 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3232}
642dbc39 3233
7ea241af
YD
3234static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3235{
3236 return cfs_rq->runnable_load_avg;
3237}
3238
3239static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3240{
3241 return cfs_rq->avg.load_avg;
3242}
3243
6e83125c
PZ
3244static int idle_balance(struct rq *this_rq);
3245
38033c37
PZ
3246#else /* CONFIG_SMP */
3247
01011473
PZ
3248static inline int
3249update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3250{
3251 return 0;
3252}
3253
536bd00c
RW
3254static inline void update_load_avg(struct sched_entity *se, int not_used)
3255{
12bde33d 3256 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3257}
3258
9d89c257
YD
3259static inline void
3260enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3261static inline void
3262dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3263static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3264
a05e8c51
BP
3265static inline void
3266attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3267static inline void
3268detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3269
6e83125c
PZ
3270static inline int idle_balance(struct rq *rq)
3271{
3272 return 0;
3273}
3274
38033c37 3275#endif /* CONFIG_SMP */
9d85f21c 3276
ddc97297
PZ
3277static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3278{
3279#ifdef CONFIG_SCHED_DEBUG
3280 s64 d = se->vruntime - cfs_rq->min_vruntime;
3281
3282 if (d < 0)
3283 d = -d;
3284
3285 if (d > 3*sysctl_sched_latency)
ae92882e 3286 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3287#endif
3288}
3289
aeb73b04
PZ
3290static void
3291place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3292{
1af5f730 3293 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3294
2cb8600e
PZ
3295 /*
3296 * The 'current' period is already promised to the current tasks,
3297 * however the extra weight of the new task will slow them down a
3298 * little, place the new task so that it fits in the slot that
3299 * stays open at the end.
3300 */
94dfb5e7 3301 if (initial && sched_feat(START_DEBIT))
f9c0b095 3302 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3303
a2e7a7eb 3304 /* sleeps up to a single latency don't count. */
5ca9880c 3305 if (!initial) {
a2e7a7eb 3306 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3307
a2e7a7eb
MG
3308 /*
3309 * Halve their sleep time's effect, to allow
3310 * for a gentler effect of sleepers:
3311 */
3312 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3313 thresh >>= 1;
51e0304c 3314
a2e7a7eb 3315 vruntime -= thresh;
aeb73b04
PZ
3316 }
3317
b5d9d734 3318 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3319 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3320}
3321
d3d9dc33
PT
3322static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3323
cb251765
MG
3324static inline void check_schedstat_required(void)
3325{
3326#ifdef CONFIG_SCHEDSTATS
3327 if (schedstat_enabled())
3328 return;
3329
3330 /* Force schedstat enabled if a dependent tracepoint is active */
3331 if (trace_sched_stat_wait_enabled() ||
3332 trace_sched_stat_sleep_enabled() ||
3333 trace_sched_stat_iowait_enabled() ||
3334 trace_sched_stat_blocked_enabled() ||
3335 trace_sched_stat_runtime_enabled()) {
eda8dca5 3336 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3337 "stat_blocked and stat_runtime require the "
3338 "kernel parameter schedstats=enabled or "
3339 "kernel.sched_schedstats=1\n");
3340 }
3341#endif
3342}
3343
b5179ac7
PZ
3344
3345/*
3346 * MIGRATION
3347 *
3348 * dequeue
3349 * update_curr()
3350 * update_min_vruntime()
3351 * vruntime -= min_vruntime
3352 *
3353 * enqueue
3354 * update_curr()
3355 * update_min_vruntime()
3356 * vruntime += min_vruntime
3357 *
3358 * this way the vruntime transition between RQs is done when both
3359 * min_vruntime are up-to-date.
3360 *
3361 * WAKEUP (remote)
3362 *
59efa0ba 3363 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3364 * vruntime -= min_vruntime
3365 *
3366 * enqueue
3367 * update_curr()
3368 * update_min_vruntime()
3369 * vruntime += min_vruntime
3370 *
3371 * this way we don't have the most up-to-date min_vruntime on the originating
3372 * CPU and an up-to-date min_vruntime on the destination CPU.
3373 */
3374
bf0f6f24 3375static void
88ec22d3 3376enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3377{
2f950354
PZ
3378 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3379 bool curr = cfs_rq->curr == se;
3380
88ec22d3 3381 /*
2f950354
PZ
3382 * If we're the current task, we must renormalise before calling
3383 * update_curr().
88ec22d3 3384 */
2f950354 3385 if (renorm && curr)
88ec22d3
PZ
3386 se->vruntime += cfs_rq->min_vruntime;
3387
2f950354
PZ
3388 update_curr(cfs_rq);
3389
bf0f6f24 3390 /*
2f950354
PZ
3391 * Otherwise, renormalise after, such that we're placed at the current
3392 * moment in time, instead of some random moment in the past. Being
3393 * placed in the past could significantly boost this task to the
3394 * fairness detriment of existing tasks.
bf0f6f24 3395 */
2f950354
PZ
3396 if (renorm && !curr)
3397 se->vruntime += cfs_rq->min_vruntime;
3398
9d89c257 3399 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3400 account_entity_enqueue(cfs_rq, se);
3401 update_cfs_shares(cfs_rq);
bf0f6f24 3402
1a3d027c 3403 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3404 place_entity(cfs_rq, se, 0);
bf0f6f24 3405
cb251765 3406 check_schedstat_required();
4fa8d299
JP
3407 update_stats_enqueue(cfs_rq, se, flags);
3408 check_spread(cfs_rq, se);
2f950354 3409 if (!curr)
83b699ed 3410 __enqueue_entity(cfs_rq, se);
2069dd75 3411 se->on_rq = 1;
3d4b47b4 3412
d3d9dc33 3413 if (cfs_rq->nr_running == 1) {
3d4b47b4 3414 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3415 check_enqueue_throttle(cfs_rq);
3416 }
bf0f6f24
IM
3417}
3418
2c13c919 3419static void __clear_buddies_last(struct sched_entity *se)
2002c695 3420{
2c13c919
RR
3421 for_each_sched_entity(se) {
3422 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3423 if (cfs_rq->last != se)
2c13c919 3424 break;
f1044799
PZ
3425
3426 cfs_rq->last = NULL;
2c13c919
RR
3427 }
3428}
2002c695 3429
2c13c919
RR
3430static void __clear_buddies_next(struct sched_entity *se)
3431{
3432 for_each_sched_entity(se) {
3433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3434 if (cfs_rq->next != se)
2c13c919 3435 break;
f1044799
PZ
3436
3437 cfs_rq->next = NULL;
2c13c919 3438 }
2002c695
PZ
3439}
3440
ac53db59
RR
3441static void __clear_buddies_skip(struct sched_entity *se)
3442{
3443 for_each_sched_entity(se) {
3444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3445 if (cfs_rq->skip != se)
ac53db59 3446 break;
f1044799
PZ
3447
3448 cfs_rq->skip = NULL;
ac53db59
RR
3449 }
3450}
3451
a571bbea
PZ
3452static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3453{
2c13c919
RR
3454 if (cfs_rq->last == se)
3455 __clear_buddies_last(se);
3456
3457 if (cfs_rq->next == se)
3458 __clear_buddies_next(se);
ac53db59
RR
3459
3460 if (cfs_rq->skip == se)
3461 __clear_buddies_skip(se);
a571bbea
PZ
3462}
3463
6c16a6dc 3464static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3465
bf0f6f24 3466static void
371fd7e7 3467dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3468{
a2a2d680
DA
3469 /*
3470 * Update run-time statistics of the 'current'.
3471 */
3472 update_curr(cfs_rq);
13962234 3473 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3474
4fa8d299 3475 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3476
2002c695 3477 clear_buddies(cfs_rq, se);
4793241b 3478
83b699ed 3479 if (se != cfs_rq->curr)
30cfdcfc 3480 __dequeue_entity(cfs_rq, se);
17bc14b7 3481 se->on_rq = 0;
30cfdcfc 3482 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3483
3484 /*
b60205c7
PZ
3485 * Normalize after update_curr(); which will also have moved
3486 * min_vruntime if @se is the one holding it back. But before doing
3487 * update_min_vruntime() again, which will discount @se's position and
3488 * can move min_vruntime forward still more.
88ec22d3 3489 */
371fd7e7 3490 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3491 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3492
d8b4986d
PT
3493 /* return excess runtime on last dequeue */
3494 return_cfs_rq_runtime(cfs_rq);
3495
17bc14b7 3496 update_cfs_shares(cfs_rq);
b60205c7
PZ
3497
3498 /*
3499 * Now advance min_vruntime if @se was the entity holding it back,
3500 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3501 * put back on, and if we advance min_vruntime, we'll be placed back
3502 * further than we started -- ie. we'll be penalized.
3503 */
3504 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3505 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3506}
3507
3508/*
3509 * Preempt the current task with a newly woken task if needed:
3510 */
7c92e54f 3511static void
2e09bf55 3512check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3513{
11697830 3514 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3515 struct sched_entity *se;
3516 s64 delta;
11697830 3517
6d0f0ebd 3518 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3519 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3520 if (delta_exec > ideal_runtime) {
8875125e 3521 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3522 /*
3523 * The current task ran long enough, ensure it doesn't get
3524 * re-elected due to buddy favours.
3525 */
3526 clear_buddies(cfs_rq, curr);
f685ceac
MG
3527 return;
3528 }
3529
3530 /*
3531 * Ensure that a task that missed wakeup preemption by a
3532 * narrow margin doesn't have to wait for a full slice.
3533 * This also mitigates buddy induced latencies under load.
3534 */
f685ceac
MG
3535 if (delta_exec < sysctl_sched_min_granularity)
3536 return;
3537
f4cfb33e
WX
3538 se = __pick_first_entity(cfs_rq);
3539 delta = curr->vruntime - se->vruntime;
f685ceac 3540
f4cfb33e
WX
3541 if (delta < 0)
3542 return;
d7d82944 3543
f4cfb33e 3544 if (delta > ideal_runtime)
8875125e 3545 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3546}
3547
83b699ed 3548static void
8494f412 3549set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3550{
83b699ed
SV
3551 /* 'current' is not kept within the tree. */
3552 if (se->on_rq) {
3553 /*
3554 * Any task has to be enqueued before it get to execute on
3555 * a CPU. So account for the time it spent waiting on the
3556 * runqueue.
3557 */
4fa8d299 3558 update_stats_wait_end(cfs_rq, se);
83b699ed 3559 __dequeue_entity(cfs_rq, se);
9d89c257 3560 update_load_avg(se, 1);
83b699ed
SV
3561 }
3562
79303e9e 3563 update_stats_curr_start(cfs_rq, se);
429d43bc 3564 cfs_rq->curr = se;
4fa8d299 3565
eba1ed4b
IM
3566 /*
3567 * Track our maximum slice length, if the CPU's load is at
3568 * least twice that of our own weight (i.e. dont track it
3569 * when there are only lesser-weight tasks around):
3570 */
cb251765 3571 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3572 schedstat_set(se->statistics.slice_max,
3573 max((u64)schedstat_val(se->statistics.slice_max),
3574 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3575 }
4fa8d299 3576
4a55b450 3577 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3578}
3579
3f3a4904
PZ
3580static int
3581wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3582
ac53db59
RR
3583/*
3584 * Pick the next process, keeping these things in mind, in this order:
3585 * 1) keep things fair between processes/task groups
3586 * 2) pick the "next" process, since someone really wants that to run
3587 * 3) pick the "last" process, for cache locality
3588 * 4) do not run the "skip" process, if something else is available
3589 */
678d5718
PZ
3590static struct sched_entity *
3591pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3592{
678d5718
PZ
3593 struct sched_entity *left = __pick_first_entity(cfs_rq);
3594 struct sched_entity *se;
3595
3596 /*
3597 * If curr is set we have to see if its left of the leftmost entity
3598 * still in the tree, provided there was anything in the tree at all.
3599 */
3600 if (!left || (curr && entity_before(curr, left)))
3601 left = curr;
3602
3603 se = left; /* ideally we run the leftmost entity */
f4b6755f 3604
ac53db59
RR
3605 /*
3606 * Avoid running the skip buddy, if running something else can
3607 * be done without getting too unfair.
3608 */
3609 if (cfs_rq->skip == se) {
678d5718
PZ
3610 struct sched_entity *second;
3611
3612 if (se == curr) {
3613 second = __pick_first_entity(cfs_rq);
3614 } else {
3615 second = __pick_next_entity(se);
3616 if (!second || (curr && entity_before(curr, second)))
3617 second = curr;
3618 }
3619
ac53db59
RR
3620 if (second && wakeup_preempt_entity(second, left) < 1)
3621 se = second;
3622 }
aa2ac252 3623
f685ceac
MG
3624 /*
3625 * Prefer last buddy, try to return the CPU to a preempted task.
3626 */
3627 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3628 se = cfs_rq->last;
3629
ac53db59
RR
3630 /*
3631 * Someone really wants this to run. If it's not unfair, run it.
3632 */
3633 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3634 se = cfs_rq->next;
3635
f685ceac 3636 clear_buddies(cfs_rq, se);
4793241b
PZ
3637
3638 return se;
aa2ac252
PZ
3639}
3640
678d5718 3641static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3642
ab6cde26 3643static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3644{
3645 /*
3646 * If still on the runqueue then deactivate_task()
3647 * was not called and update_curr() has to be done:
3648 */
3649 if (prev->on_rq)
b7cc0896 3650 update_curr(cfs_rq);
bf0f6f24 3651
d3d9dc33
PT
3652 /* throttle cfs_rqs exceeding runtime */
3653 check_cfs_rq_runtime(cfs_rq);
3654
4fa8d299 3655 check_spread(cfs_rq, prev);
cb251765 3656
30cfdcfc 3657 if (prev->on_rq) {
4fa8d299 3658 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3659 /* Put 'current' back into the tree. */
3660 __enqueue_entity(cfs_rq, prev);
9d85f21c 3661 /* in !on_rq case, update occurred at dequeue */
9d89c257 3662 update_load_avg(prev, 0);
30cfdcfc 3663 }
429d43bc 3664 cfs_rq->curr = NULL;
bf0f6f24
IM
3665}
3666
8f4d37ec
PZ
3667static void
3668entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3669{
bf0f6f24 3670 /*
30cfdcfc 3671 * Update run-time statistics of the 'current'.
bf0f6f24 3672 */
30cfdcfc 3673 update_curr(cfs_rq);
bf0f6f24 3674
9d85f21c
PT
3675 /*
3676 * Ensure that runnable average is periodically updated.
3677 */
9d89c257 3678 update_load_avg(curr, 1);
bf0bd948 3679 update_cfs_shares(cfs_rq);
9d85f21c 3680
8f4d37ec
PZ
3681#ifdef CONFIG_SCHED_HRTICK
3682 /*
3683 * queued ticks are scheduled to match the slice, so don't bother
3684 * validating it and just reschedule.
3685 */
983ed7a6 3686 if (queued) {
8875125e 3687 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3688 return;
3689 }
8f4d37ec
PZ
3690 /*
3691 * don't let the period tick interfere with the hrtick preemption
3692 */
3693 if (!sched_feat(DOUBLE_TICK) &&
3694 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3695 return;
3696#endif
3697
2c2efaed 3698 if (cfs_rq->nr_running > 1)
2e09bf55 3699 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3700}
3701
ab84d31e
PT
3702
3703/**************************************************
3704 * CFS bandwidth control machinery
3705 */
3706
3707#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3708
3709#ifdef HAVE_JUMP_LABEL
c5905afb 3710static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3711
3712static inline bool cfs_bandwidth_used(void)
3713{
c5905afb 3714 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3715}
3716
1ee14e6c 3717void cfs_bandwidth_usage_inc(void)
029632fb 3718{
1ee14e6c
BS
3719 static_key_slow_inc(&__cfs_bandwidth_used);
3720}
3721
3722void cfs_bandwidth_usage_dec(void)
3723{
3724 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3725}
3726#else /* HAVE_JUMP_LABEL */
3727static bool cfs_bandwidth_used(void)
3728{
3729 return true;
3730}
3731
1ee14e6c
BS
3732void cfs_bandwidth_usage_inc(void) {}
3733void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3734#endif /* HAVE_JUMP_LABEL */
3735
ab84d31e
PT
3736/*
3737 * default period for cfs group bandwidth.
3738 * default: 0.1s, units: nanoseconds
3739 */
3740static inline u64 default_cfs_period(void)
3741{
3742 return 100000000ULL;
3743}
ec12cb7f
PT
3744
3745static inline u64 sched_cfs_bandwidth_slice(void)
3746{
3747 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3748}
3749
a9cf55b2
PT
3750/*
3751 * Replenish runtime according to assigned quota and update expiration time.
3752 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3753 * additional synchronization around rq->lock.
3754 *
3755 * requires cfs_b->lock
3756 */
029632fb 3757void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3758{
3759 u64 now;
3760
3761 if (cfs_b->quota == RUNTIME_INF)
3762 return;
3763
3764 now = sched_clock_cpu(smp_processor_id());
3765 cfs_b->runtime = cfs_b->quota;
3766 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3767}
3768
029632fb
PZ
3769static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3770{
3771 return &tg->cfs_bandwidth;
3772}
3773
f1b17280
PT
3774/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3775static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3776{
3777 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3778 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3779
78becc27 3780 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3781}
3782
85dac906
PT
3783/* returns 0 on failure to allocate runtime */
3784static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3785{
3786 struct task_group *tg = cfs_rq->tg;
3787 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3788 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3789
3790 /* note: this is a positive sum as runtime_remaining <= 0 */
3791 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3792
3793 raw_spin_lock(&cfs_b->lock);
3794 if (cfs_b->quota == RUNTIME_INF)
3795 amount = min_amount;
58088ad0 3796 else {
77a4d1a1 3797 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3798
3799 if (cfs_b->runtime > 0) {
3800 amount = min(cfs_b->runtime, min_amount);
3801 cfs_b->runtime -= amount;
3802 cfs_b->idle = 0;
3803 }
ec12cb7f 3804 }
a9cf55b2 3805 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3806 raw_spin_unlock(&cfs_b->lock);
3807
3808 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3809 /*
3810 * we may have advanced our local expiration to account for allowed
3811 * spread between our sched_clock and the one on which runtime was
3812 * issued.
3813 */
3814 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3815 cfs_rq->runtime_expires = expires;
85dac906
PT
3816
3817 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3818}
3819
a9cf55b2
PT
3820/*
3821 * Note: This depends on the synchronization provided by sched_clock and the
3822 * fact that rq->clock snapshots this value.
3823 */
3824static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3825{
a9cf55b2 3826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3827
3828 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3829 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3830 return;
3831
a9cf55b2
PT
3832 if (cfs_rq->runtime_remaining < 0)
3833 return;
3834
3835 /*
3836 * If the local deadline has passed we have to consider the
3837 * possibility that our sched_clock is 'fast' and the global deadline
3838 * has not truly expired.
3839 *
3840 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3841 * whether the global deadline has advanced. It is valid to compare
3842 * cfs_b->runtime_expires without any locks since we only care about
3843 * exact equality, so a partial write will still work.
a9cf55b2
PT
3844 */
3845
51f2176d 3846 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3847 /* extend local deadline, drift is bounded above by 2 ticks */
3848 cfs_rq->runtime_expires += TICK_NSEC;
3849 } else {
3850 /* global deadline is ahead, expiration has passed */
3851 cfs_rq->runtime_remaining = 0;
3852 }
3853}
3854
9dbdb155 3855static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3856{
3857 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3858 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3859 expire_cfs_rq_runtime(cfs_rq);
3860
3861 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3862 return;
3863
85dac906
PT
3864 /*
3865 * if we're unable to extend our runtime we resched so that the active
3866 * hierarchy can be throttled
3867 */
3868 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3869 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3870}
3871
6c16a6dc 3872static __always_inline
9dbdb155 3873void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3874{
56f570e5 3875 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3876 return;
3877
3878 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3879}
3880
85dac906
PT
3881static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3882{
56f570e5 3883 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3884}
3885
64660c86
PT
3886/* check whether cfs_rq, or any parent, is throttled */
3887static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3888{
56f570e5 3889 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3890}
3891
3892/*
3893 * Ensure that neither of the group entities corresponding to src_cpu or
3894 * dest_cpu are members of a throttled hierarchy when performing group
3895 * load-balance operations.
3896 */
3897static inline int throttled_lb_pair(struct task_group *tg,
3898 int src_cpu, int dest_cpu)
3899{
3900 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3901
3902 src_cfs_rq = tg->cfs_rq[src_cpu];
3903 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3904
3905 return throttled_hierarchy(src_cfs_rq) ||
3906 throttled_hierarchy(dest_cfs_rq);
3907}
3908
3909/* updated child weight may affect parent so we have to do this bottom up */
3910static int tg_unthrottle_up(struct task_group *tg, void *data)
3911{
3912 struct rq *rq = data;
3913 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3914
3915 cfs_rq->throttle_count--;
64660c86 3916 if (!cfs_rq->throttle_count) {
f1b17280 3917 /* adjust cfs_rq_clock_task() */
78becc27 3918 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3919 cfs_rq->throttled_clock_task;
64660c86 3920 }
64660c86
PT
3921
3922 return 0;
3923}
3924
3925static int tg_throttle_down(struct task_group *tg, void *data)
3926{
3927 struct rq *rq = data;
3928 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3929
82958366
PT
3930 /* group is entering throttled state, stop time */
3931 if (!cfs_rq->throttle_count)
78becc27 3932 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3933 cfs_rq->throttle_count++;
3934
3935 return 0;
3936}
3937
d3d9dc33 3938static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3939{
3940 struct rq *rq = rq_of(cfs_rq);
3941 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3942 struct sched_entity *se;
3943 long task_delta, dequeue = 1;
77a4d1a1 3944 bool empty;
85dac906
PT
3945
3946 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3947
f1b17280 3948 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3949 rcu_read_lock();
3950 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3951 rcu_read_unlock();
85dac906
PT
3952
3953 task_delta = cfs_rq->h_nr_running;
3954 for_each_sched_entity(se) {
3955 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3956 /* throttled entity or throttle-on-deactivate */
3957 if (!se->on_rq)
3958 break;
3959
3960 if (dequeue)
3961 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3962 qcfs_rq->h_nr_running -= task_delta;
3963
3964 if (qcfs_rq->load.weight)
3965 dequeue = 0;
3966 }
3967
3968 if (!se)
72465447 3969 sub_nr_running(rq, task_delta);
85dac906
PT
3970
3971 cfs_rq->throttled = 1;
78becc27 3972 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3973 raw_spin_lock(&cfs_b->lock);
d49db342 3974 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3975
c06f04c7
BS
3976 /*
3977 * Add to the _head_ of the list, so that an already-started
3978 * distribute_cfs_runtime will not see us
3979 */
3980 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3981
3982 /*
3983 * If we're the first throttled task, make sure the bandwidth
3984 * timer is running.
3985 */
3986 if (empty)
3987 start_cfs_bandwidth(cfs_b);
3988
85dac906
PT
3989 raw_spin_unlock(&cfs_b->lock);
3990}
3991
029632fb 3992void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3993{
3994 struct rq *rq = rq_of(cfs_rq);
3995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3996 struct sched_entity *se;
3997 int enqueue = 1;
3998 long task_delta;
3999
22b958d8 4000 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4001
4002 cfs_rq->throttled = 0;
1a55af2e
FW
4003
4004 update_rq_clock(rq);
4005
671fd9da 4006 raw_spin_lock(&cfs_b->lock);
78becc27 4007 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4008 list_del_rcu(&cfs_rq->throttled_list);
4009 raw_spin_unlock(&cfs_b->lock);
4010
64660c86
PT
4011 /* update hierarchical throttle state */
4012 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4013
671fd9da
PT
4014 if (!cfs_rq->load.weight)
4015 return;
4016
4017 task_delta = cfs_rq->h_nr_running;
4018 for_each_sched_entity(se) {
4019 if (se->on_rq)
4020 enqueue = 0;
4021
4022 cfs_rq = cfs_rq_of(se);
4023 if (enqueue)
4024 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4025 cfs_rq->h_nr_running += task_delta;
4026
4027 if (cfs_rq_throttled(cfs_rq))
4028 break;
4029 }
4030
4031 if (!se)
72465447 4032 add_nr_running(rq, task_delta);
671fd9da
PT
4033
4034 /* determine whether we need to wake up potentially idle cpu */
4035 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4036 resched_curr(rq);
671fd9da
PT
4037}
4038
4039static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4040 u64 remaining, u64 expires)
4041{
4042 struct cfs_rq *cfs_rq;
c06f04c7
BS
4043 u64 runtime;
4044 u64 starting_runtime = remaining;
671fd9da
PT
4045
4046 rcu_read_lock();
4047 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4048 throttled_list) {
4049 struct rq *rq = rq_of(cfs_rq);
4050
4051 raw_spin_lock(&rq->lock);
4052 if (!cfs_rq_throttled(cfs_rq))
4053 goto next;
4054
4055 runtime = -cfs_rq->runtime_remaining + 1;
4056 if (runtime > remaining)
4057 runtime = remaining;
4058 remaining -= runtime;
4059
4060 cfs_rq->runtime_remaining += runtime;
4061 cfs_rq->runtime_expires = expires;
4062
4063 /* we check whether we're throttled above */
4064 if (cfs_rq->runtime_remaining > 0)
4065 unthrottle_cfs_rq(cfs_rq);
4066
4067next:
4068 raw_spin_unlock(&rq->lock);
4069
4070 if (!remaining)
4071 break;
4072 }
4073 rcu_read_unlock();
4074
c06f04c7 4075 return starting_runtime - remaining;
671fd9da
PT
4076}
4077
58088ad0
PT
4078/*
4079 * Responsible for refilling a task_group's bandwidth and unthrottling its
4080 * cfs_rqs as appropriate. If there has been no activity within the last
4081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4082 * used to track this state.
4083 */
4084static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4085{
671fd9da 4086 u64 runtime, runtime_expires;
51f2176d 4087 int throttled;
58088ad0 4088
58088ad0
PT
4089 /* no need to continue the timer with no bandwidth constraint */
4090 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4091 goto out_deactivate;
58088ad0 4092
671fd9da 4093 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4094 cfs_b->nr_periods += overrun;
671fd9da 4095
51f2176d
BS
4096 /*
4097 * idle depends on !throttled (for the case of a large deficit), and if
4098 * we're going inactive then everything else can be deferred
4099 */
4100 if (cfs_b->idle && !throttled)
4101 goto out_deactivate;
a9cf55b2
PT
4102
4103 __refill_cfs_bandwidth_runtime(cfs_b);
4104
671fd9da
PT
4105 if (!throttled) {
4106 /* mark as potentially idle for the upcoming period */
4107 cfs_b->idle = 1;
51f2176d 4108 return 0;
671fd9da
PT
4109 }
4110
e8da1b18
NR
4111 /* account preceding periods in which throttling occurred */
4112 cfs_b->nr_throttled += overrun;
4113
671fd9da 4114 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4115
4116 /*
c06f04c7
BS
4117 * This check is repeated as we are holding onto the new bandwidth while
4118 * we unthrottle. This can potentially race with an unthrottled group
4119 * trying to acquire new bandwidth from the global pool. This can result
4120 * in us over-using our runtime if it is all used during this loop, but
4121 * only by limited amounts in that extreme case.
671fd9da 4122 */
c06f04c7
BS
4123 while (throttled && cfs_b->runtime > 0) {
4124 runtime = cfs_b->runtime;
671fd9da
PT
4125 raw_spin_unlock(&cfs_b->lock);
4126 /* we can't nest cfs_b->lock while distributing bandwidth */
4127 runtime = distribute_cfs_runtime(cfs_b, runtime,
4128 runtime_expires);
4129 raw_spin_lock(&cfs_b->lock);
4130
4131 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4132
4133 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4134 }
58088ad0 4135
671fd9da
PT
4136 /*
4137 * While we are ensured activity in the period following an
4138 * unthrottle, this also covers the case in which the new bandwidth is
4139 * insufficient to cover the existing bandwidth deficit. (Forcing the
4140 * timer to remain active while there are any throttled entities.)
4141 */
4142 cfs_b->idle = 0;
58088ad0 4143
51f2176d
BS
4144 return 0;
4145
4146out_deactivate:
51f2176d 4147 return 1;
58088ad0 4148}
d3d9dc33 4149
d8b4986d
PT
4150/* a cfs_rq won't donate quota below this amount */
4151static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4152/* minimum remaining period time to redistribute slack quota */
4153static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4154/* how long we wait to gather additional slack before distributing */
4155static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4156
db06e78c
BS
4157/*
4158 * Are we near the end of the current quota period?
4159 *
4160 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4161 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4162 * migrate_hrtimers, base is never cleared, so we are fine.
4163 */
d8b4986d
PT
4164static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4165{
4166 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4167 u64 remaining;
4168
4169 /* if the call-back is running a quota refresh is already occurring */
4170 if (hrtimer_callback_running(refresh_timer))
4171 return 1;
4172
4173 /* is a quota refresh about to occur? */
4174 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4175 if (remaining < min_expire)
4176 return 1;
4177
4178 return 0;
4179}
4180
4181static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4182{
4183 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4184
4185 /* if there's a quota refresh soon don't bother with slack */
4186 if (runtime_refresh_within(cfs_b, min_left))
4187 return;
4188
4cfafd30
PZ
4189 hrtimer_start(&cfs_b->slack_timer,
4190 ns_to_ktime(cfs_bandwidth_slack_period),
4191 HRTIMER_MODE_REL);
d8b4986d
PT
4192}
4193
4194/* we know any runtime found here is valid as update_curr() precedes return */
4195static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4196{
4197 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4198 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4199
4200 if (slack_runtime <= 0)
4201 return;
4202
4203 raw_spin_lock(&cfs_b->lock);
4204 if (cfs_b->quota != RUNTIME_INF &&
4205 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4206 cfs_b->runtime += slack_runtime;
4207
4208 /* we are under rq->lock, defer unthrottling using a timer */
4209 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4210 !list_empty(&cfs_b->throttled_cfs_rq))
4211 start_cfs_slack_bandwidth(cfs_b);
4212 }
4213 raw_spin_unlock(&cfs_b->lock);
4214
4215 /* even if it's not valid for return we don't want to try again */
4216 cfs_rq->runtime_remaining -= slack_runtime;
4217}
4218
4219static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4220{
56f570e5
PT
4221 if (!cfs_bandwidth_used())
4222 return;
4223
fccfdc6f 4224 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4225 return;
4226
4227 __return_cfs_rq_runtime(cfs_rq);
4228}
4229
4230/*
4231 * This is done with a timer (instead of inline with bandwidth return) since
4232 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4233 */
4234static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4235{
4236 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4237 u64 expires;
4238
4239 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4240 raw_spin_lock(&cfs_b->lock);
4241 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4242 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4243 return;
db06e78c 4244 }
d8b4986d 4245
c06f04c7 4246 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4247 runtime = cfs_b->runtime;
c06f04c7 4248
d8b4986d
PT
4249 expires = cfs_b->runtime_expires;
4250 raw_spin_unlock(&cfs_b->lock);
4251
4252 if (!runtime)
4253 return;
4254
4255 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4256
4257 raw_spin_lock(&cfs_b->lock);
4258 if (expires == cfs_b->runtime_expires)
c06f04c7 4259 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4260 raw_spin_unlock(&cfs_b->lock);
4261}
4262
d3d9dc33
PT
4263/*
4264 * When a group wakes up we want to make sure that its quota is not already
4265 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4266 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4267 */
4268static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4269{
56f570e5
PT
4270 if (!cfs_bandwidth_used())
4271 return;
4272
d3d9dc33
PT
4273 /* an active group must be handled by the update_curr()->put() path */
4274 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4275 return;
4276
4277 /* ensure the group is not already throttled */
4278 if (cfs_rq_throttled(cfs_rq))
4279 return;
4280
4281 /* update runtime allocation */
4282 account_cfs_rq_runtime(cfs_rq, 0);
4283 if (cfs_rq->runtime_remaining <= 0)
4284 throttle_cfs_rq(cfs_rq);
4285}
4286
55e16d30
PZ
4287static void sync_throttle(struct task_group *tg, int cpu)
4288{
4289 struct cfs_rq *pcfs_rq, *cfs_rq;
4290
4291 if (!cfs_bandwidth_used())
4292 return;
4293
4294 if (!tg->parent)
4295 return;
4296
4297 cfs_rq = tg->cfs_rq[cpu];
4298 pcfs_rq = tg->parent->cfs_rq[cpu];
4299
4300 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4301 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4302}
4303
d3d9dc33 4304/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4305static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4306{
56f570e5 4307 if (!cfs_bandwidth_used())
678d5718 4308 return false;
56f570e5 4309
d3d9dc33 4310 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4311 return false;
d3d9dc33
PT
4312
4313 /*
4314 * it's possible for a throttled entity to be forced into a running
4315 * state (e.g. set_curr_task), in this case we're finished.
4316 */
4317 if (cfs_rq_throttled(cfs_rq))
678d5718 4318 return true;
d3d9dc33
PT
4319
4320 throttle_cfs_rq(cfs_rq);
678d5718 4321 return true;
d3d9dc33 4322}
029632fb 4323
029632fb
PZ
4324static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4325{
4326 struct cfs_bandwidth *cfs_b =
4327 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4328
029632fb
PZ
4329 do_sched_cfs_slack_timer(cfs_b);
4330
4331 return HRTIMER_NORESTART;
4332}
4333
4334static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4335{
4336 struct cfs_bandwidth *cfs_b =
4337 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4338 int overrun;
4339 int idle = 0;
4340
51f2176d 4341 raw_spin_lock(&cfs_b->lock);
029632fb 4342 for (;;) {
77a4d1a1 4343 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4344 if (!overrun)
4345 break;
4346
4347 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4348 }
4cfafd30
PZ
4349 if (idle)
4350 cfs_b->period_active = 0;
51f2176d 4351 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4352
4353 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4354}
4355
4356void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4357{
4358 raw_spin_lock_init(&cfs_b->lock);
4359 cfs_b->runtime = 0;
4360 cfs_b->quota = RUNTIME_INF;
4361 cfs_b->period = ns_to_ktime(default_cfs_period());
4362
4363 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4364 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4365 cfs_b->period_timer.function = sched_cfs_period_timer;
4366 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4367 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4368}
4369
4370static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4371{
4372 cfs_rq->runtime_enabled = 0;
4373 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4374}
4375
77a4d1a1 4376void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4377{
4cfafd30 4378 lockdep_assert_held(&cfs_b->lock);
029632fb 4379
4cfafd30
PZ
4380 if (!cfs_b->period_active) {
4381 cfs_b->period_active = 1;
4382 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4383 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4384 }
029632fb
PZ
4385}
4386
4387static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4388{
7f1a169b
TH
4389 /* init_cfs_bandwidth() was not called */
4390 if (!cfs_b->throttled_cfs_rq.next)
4391 return;
4392
029632fb
PZ
4393 hrtimer_cancel(&cfs_b->period_timer);
4394 hrtimer_cancel(&cfs_b->slack_timer);
4395}
4396
0e59bdae
KT
4397static void __maybe_unused update_runtime_enabled(struct rq *rq)
4398{
4399 struct cfs_rq *cfs_rq;
4400
4401 for_each_leaf_cfs_rq(rq, cfs_rq) {
4402 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4403
4404 raw_spin_lock(&cfs_b->lock);
4405 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4406 raw_spin_unlock(&cfs_b->lock);
4407 }
4408}
4409
38dc3348 4410static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4411{
4412 struct cfs_rq *cfs_rq;
4413
4414 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4415 if (!cfs_rq->runtime_enabled)
4416 continue;
4417
4418 /*
4419 * clock_task is not advancing so we just need to make sure
4420 * there's some valid quota amount
4421 */
51f2176d 4422 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4423 /*
4424 * Offline rq is schedulable till cpu is completely disabled
4425 * in take_cpu_down(), so we prevent new cfs throttling here.
4426 */
4427 cfs_rq->runtime_enabled = 0;
4428
029632fb
PZ
4429 if (cfs_rq_throttled(cfs_rq))
4430 unthrottle_cfs_rq(cfs_rq);
4431 }
4432}
4433
4434#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4435static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4436{
78becc27 4437 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4438}
4439
9dbdb155 4440static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4441static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4442static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4443static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4444static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4445
4446static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4447{
4448 return 0;
4449}
64660c86
PT
4450
4451static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4452{
4453 return 0;
4454}
4455
4456static inline int throttled_lb_pair(struct task_group *tg,
4457 int src_cpu, int dest_cpu)
4458{
4459 return 0;
4460}
029632fb
PZ
4461
4462void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4463
4464#ifdef CONFIG_FAIR_GROUP_SCHED
4465static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4466#endif
4467
029632fb
PZ
4468static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4469{
4470 return NULL;
4471}
4472static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4473static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4474static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4475
4476#endif /* CONFIG_CFS_BANDWIDTH */
4477
bf0f6f24
IM
4478/**************************************************
4479 * CFS operations on tasks:
4480 */
4481
8f4d37ec
PZ
4482#ifdef CONFIG_SCHED_HRTICK
4483static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4484{
8f4d37ec
PZ
4485 struct sched_entity *se = &p->se;
4486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4487
9148a3a1 4488 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4489
8bf46a39 4490 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4491 u64 slice = sched_slice(cfs_rq, se);
4492 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4493 s64 delta = slice - ran;
4494
4495 if (delta < 0) {
4496 if (rq->curr == p)
8875125e 4497 resched_curr(rq);
8f4d37ec
PZ
4498 return;
4499 }
31656519 4500 hrtick_start(rq, delta);
8f4d37ec
PZ
4501 }
4502}
a4c2f00f
PZ
4503
4504/*
4505 * called from enqueue/dequeue and updates the hrtick when the
4506 * current task is from our class and nr_running is low enough
4507 * to matter.
4508 */
4509static void hrtick_update(struct rq *rq)
4510{
4511 struct task_struct *curr = rq->curr;
4512
b39e66ea 4513 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4514 return;
4515
4516 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4517 hrtick_start_fair(rq, curr);
4518}
55e12e5e 4519#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4520static inline void
4521hrtick_start_fair(struct rq *rq, struct task_struct *p)
4522{
4523}
a4c2f00f
PZ
4524
4525static inline void hrtick_update(struct rq *rq)
4526{
4527}
8f4d37ec
PZ
4528#endif
4529
bf0f6f24
IM
4530/*
4531 * The enqueue_task method is called before nr_running is
4532 * increased. Here we update the fair scheduling stats and
4533 * then put the task into the rbtree:
4534 */
ea87bb78 4535static void
371fd7e7 4536enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4537{
4538 struct cfs_rq *cfs_rq;
62fb1851 4539 struct sched_entity *se = &p->se;
bf0f6f24 4540
8c34ab19
RW
4541 /*
4542 * If in_iowait is set, the code below may not trigger any cpufreq
4543 * utilization updates, so do it here explicitly with the IOWAIT flag
4544 * passed.
4545 */
4546 if (p->in_iowait)
4547 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4548
bf0f6f24 4549 for_each_sched_entity(se) {
62fb1851 4550 if (se->on_rq)
bf0f6f24
IM
4551 break;
4552 cfs_rq = cfs_rq_of(se);
88ec22d3 4553 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4554
4555 /*
4556 * end evaluation on encountering a throttled cfs_rq
4557 *
4558 * note: in the case of encountering a throttled cfs_rq we will
4559 * post the final h_nr_running increment below.
e210bffd 4560 */
85dac906
PT
4561 if (cfs_rq_throttled(cfs_rq))
4562 break;
953bfcd1 4563 cfs_rq->h_nr_running++;
85dac906 4564
88ec22d3 4565 flags = ENQUEUE_WAKEUP;
bf0f6f24 4566 }
8f4d37ec 4567
2069dd75 4568 for_each_sched_entity(se) {
0f317143 4569 cfs_rq = cfs_rq_of(se);
953bfcd1 4570 cfs_rq->h_nr_running++;
2069dd75 4571
85dac906
PT
4572 if (cfs_rq_throttled(cfs_rq))
4573 break;
4574
9d89c257 4575 update_load_avg(se, 1);
17bc14b7 4576 update_cfs_shares(cfs_rq);
2069dd75
PZ
4577 }
4578
cd126afe 4579 if (!se)
72465447 4580 add_nr_running(rq, 1);
cd126afe 4581
a4c2f00f 4582 hrtick_update(rq);
bf0f6f24
IM
4583}
4584
2f36825b
VP
4585static void set_next_buddy(struct sched_entity *se);
4586
bf0f6f24
IM
4587/*
4588 * The dequeue_task method is called before nr_running is
4589 * decreased. We remove the task from the rbtree and
4590 * update the fair scheduling stats:
4591 */
371fd7e7 4592static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4593{
4594 struct cfs_rq *cfs_rq;
62fb1851 4595 struct sched_entity *se = &p->se;
2f36825b 4596 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4597
4598 for_each_sched_entity(se) {
4599 cfs_rq = cfs_rq_of(se);
371fd7e7 4600 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4601
4602 /*
4603 * end evaluation on encountering a throttled cfs_rq
4604 *
4605 * note: in the case of encountering a throttled cfs_rq we will
4606 * post the final h_nr_running decrement below.
4607 */
4608 if (cfs_rq_throttled(cfs_rq))
4609 break;
953bfcd1 4610 cfs_rq->h_nr_running--;
2069dd75 4611
bf0f6f24 4612 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4613 if (cfs_rq->load.weight) {
754bd598
KK
4614 /* Avoid re-evaluating load for this entity: */
4615 se = parent_entity(se);
2f36825b
VP
4616 /*
4617 * Bias pick_next to pick a task from this cfs_rq, as
4618 * p is sleeping when it is within its sched_slice.
4619 */
754bd598
KK
4620 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4621 set_next_buddy(se);
bf0f6f24 4622 break;
2f36825b 4623 }
371fd7e7 4624 flags |= DEQUEUE_SLEEP;
bf0f6f24 4625 }
8f4d37ec 4626
2069dd75 4627 for_each_sched_entity(se) {
0f317143 4628 cfs_rq = cfs_rq_of(se);
953bfcd1 4629 cfs_rq->h_nr_running--;
2069dd75 4630
85dac906
PT
4631 if (cfs_rq_throttled(cfs_rq))
4632 break;
4633
9d89c257 4634 update_load_avg(se, 1);
17bc14b7 4635 update_cfs_shares(cfs_rq);
2069dd75
PZ
4636 }
4637
cd126afe 4638 if (!se)
72465447 4639 sub_nr_running(rq, 1);
cd126afe 4640
a4c2f00f 4641 hrtick_update(rq);
bf0f6f24
IM
4642}
4643
e7693a36 4644#ifdef CONFIG_SMP
10e2f1ac
PZ
4645
4646/* Working cpumask for: load_balance, load_balance_newidle. */
4647DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4648DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4649
9fd81dd5 4650#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4651/*
4652 * per rq 'load' arrray crap; XXX kill this.
4653 */
4654
4655/*
d937cdc5 4656 * The exact cpuload calculated at every tick would be:
3289bdb4 4657 *
d937cdc5
PZ
4658 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4659 *
4660 * If a cpu misses updates for n ticks (as it was idle) and update gets
4661 * called on the n+1-th tick when cpu may be busy, then we have:
4662 *
4663 * load_n = (1 - 1/2^i)^n * load_0
4664 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4665 *
4666 * decay_load_missed() below does efficient calculation of
3289bdb4 4667 *
d937cdc5
PZ
4668 * load' = (1 - 1/2^i)^n * load
4669 *
4670 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4671 * This allows us to precompute the above in said factors, thereby allowing the
4672 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4673 * fixed_power_int())
3289bdb4 4674 *
d937cdc5 4675 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4676 */
4677#define DEGRADE_SHIFT 7
d937cdc5
PZ
4678
4679static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4680static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4681 { 0, 0, 0, 0, 0, 0, 0, 0 },
4682 { 64, 32, 8, 0, 0, 0, 0, 0 },
4683 { 96, 72, 40, 12, 1, 0, 0, 0 },
4684 { 112, 98, 75, 43, 15, 1, 0, 0 },
4685 { 120, 112, 98, 76, 45, 16, 2, 0 }
4686};
3289bdb4
PZ
4687
4688/*
4689 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4690 * would be when CPU is idle and so we just decay the old load without
4691 * adding any new load.
4692 */
4693static unsigned long
4694decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4695{
4696 int j = 0;
4697
4698 if (!missed_updates)
4699 return load;
4700
4701 if (missed_updates >= degrade_zero_ticks[idx])
4702 return 0;
4703
4704 if (idx == 1)
4705 return load >> missed_updates;
4706
4707 while (missed_updates) {
4708 if (missed_updates % 2)
4709 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4710
4711 missed_updates >>= 1;
4712 j++;
4713 }
4714 return load;
4715}
9fd81dd5 4716#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4717
59543275 4718/**
cee1afce 4719 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4720 * @this_rq: The rq to update statistics for
4721 * @this_load: The current load
4722 * @pending_updates: The number of missed updates
59543275 4723 *
3289bdb4 4724 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4725 * scheduler tick (TICK_NSEC).
4726 *
4727 * This function computes a decaying average:
4728 *
4729 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4730 *
4731 * Because of NOHZ it might not get called on every tick which gives need for
4732 * the @pending_updates argument.
4733 *
4734 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4735 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4736 * = A * (A * load[i]_n-2 + B) + B
4737 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4738 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4739 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4740 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4741 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4742 *
4743 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4744 * any change in load would have resulted in the tick being turned back on.
4745 *
4746 * For regular NOHZ, this reduces to:
4747 *
4748 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4749 *
4750 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4751 * term.
3289bdb4 4752 */
1f41906a
FW
4753static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4754 unsigned long pending_updates)
3289bdb4 4755{
9fd81dd5 4756 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4757 int i, scale;
4758
4759 this_rq->nr_load_updates++;
4760
4761 /* Update our load: */
4762 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4763 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4764 unsigned long old_load, new_load;
4765
4766 /* scale is effectively 1 << i now, and >> i divides by scale */
4767
7400d3bb 4768 old_load = this_rq->cpu_load[i];
9fd81dd5 4769#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4770 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4771 if (tickless_load) {
4772 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4773 /*
4774 * old_load can never be a negative value because a
4775 * decayed tickless_load cannot be greater than the
4776 * original tickless_load.
4777 */
4778 old_load += tickless_load;
4779 }
9fd81dd5 4780#endif
3289bdb4
PZ
4781 new_load = this_load;
4782 /*
4783 * Round up the averaging division if load is increasing. This
4784 * prevents us from getting stuck on 9 if the load is 10, for
4785 * example.
4786 */
4787 if (new_load > old_load)
4788 new_load += scale - 1;
4789
4790 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4791 }
4792
4793 sched_avg_update(this_rq);
4794}
4795
7ea241af
YD
4796/* Used instead of source_load when we know the type == 0 */
4797static unsigned long weighted_cpuload(const int cpu)
4798{
4799 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4800}
4801
3289bdb4 4802#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4803/*
4804 * There is no sane way to deal with nohz on smp when using jiffies because the
4805 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4806 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4807 *
4808 * Therefore we need to avoid the delta approach from the regular tick when
4809 * possible since that would seriously skew the load calculation. This is why we
4810 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4811 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4812 * loop exit, nohz_idle_balance, nohz full exit...)
4813 *
4814 * This means we might still be one tick off for nohz periods.
4815 */
4816
4817static void cpu_load_update_nohz(struct rq *this_rq,
4818 unsigned long curr_jiffies,
4819 unsigned long load)
be68a682
FW
4820{
4821 unsigned long pending_updates;
4822
4823 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4824 if (pending_updates) {
4825 this_rq->last_load_update_tick = curr_jiffies;
4826 /*
4827 * In the regular NOHZ case, we were idle, this means load 0.
4828 * In the NOHZ_FULL case, we were non-idle, we should consider
4829 * its weighted load.
4830 */
1f41906a 4831 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4832 }
4833}
4834
3289bdb4
PZ
4835/*
4836 * Called from nohz_idle_balance() to update the load ratings before doing the
4837 * idle balance.
4838 */
cee1afce 4839static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4840{
3289bdb4
PZ
4841 /*
4842 * bail if there's load or we're actually up-to-date.
4843 */
be68a682 4844 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4845 return;
4846
1f41906a 4847 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4848}
4849
4850/*
1f41906a
FW
4851 * Record CPU load on nohz entry so we know the tickless load to account
4852 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4853 * than other cpu_load[idx] but it should be fine as cpu_load readers
4854 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4855 */
1f41906a 4856void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4857{
4858 struct rq *this_rq = this_rq();
1f41906a
FW
4859
4860 /*
4861 * This is all lockless but should be fine. If weighted_cpuload changes
4862 * concurrently we'll exit nohz. And cpu_load write can race with
4863 * cpu_load_update_idle() but both updater would be writing the same.
4864 */
4865 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4866}
4867
4868/*
4869 * Account the tickless load in the end of a nohz frame.
4870 */
4871void cpu_load_update_nohz_stop(void)
4872{
316c1608 4873 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4874 struct rq *this_rq = this_rq();
4875 unsigned long load;
3289bdb4
PZ
4876
4877 if (curr_jiffies == this_rq->last_load_update_tick)
4878 return;
4879
1f41906a 4880 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4881 raw_spin_lock(&this_rq->lock);
b52fad2d 4882 update_rq_clock(this_rq);
1f41906a 4883 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4884 raw_spin_unlock(&this_rq->lock);
4885}
1f41906a
FW
4886#else /* !CONFIG_NO_HZ_COMMON */
4887static inline void cpu_load_update_nohz(struct rq *this_rq,
4888 unsigned long curr_jiffies,
4889 unsigned long load) { }
4890#endif /* CONFIG_NO_HZ_COMMON */
4891
4892static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4893{
9fd81dd5 4894#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4895 /* See the mess around cpu_load_update_nohz(). */
4896 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4897#endif
1f41906a
FW
4898 cpu_load_update(this_rq, load, 1);
4899}
3289bdb4
PZ
4900
4901/*
4902 * Called from scheduler_tick()
4903 */
cee1afce 4904void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4905{
7ea241af 4906 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4907
4908 if (tick_nohz_tick_stopped())
4909 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4910 else
4911 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4912}
4913
029632fb
PZ
4914/*
4915 * Return a low guess at the load of a migration-source cpu weighted
4916 * according to the scheduling class and "nice" value.
4917 *
4918 * We want to under-estimate the load of migration sources, to
4919 * balance conservatively.
4920 */
4921static unsigned long source_load(int cpu, int type)
4922{
4923 struct rq *rq = cpu_rq(cpu);
4924 unsigned long total = weighted_cpuload(cpu);
4925
4926 if (type == 0 || !sched_feat(LB_BIAS))
4927 return total;
4928
4929 return min(rq->cpu_load[type-1], total);
4930}
4931
4932/*
4933 * Return a high guess at the load of a migration-target cpu weighted
4934 * according to the scheduling class and "nice" value.
4935 */
4936static unsigned long target_load(int cpu, int type)
4937{
4938 struct rq *rq = cpu_rq(cpu);
4939 unsigned long total = weighted_cpuload(cpu);
4940
4941 if (type == 0 || !sched_feat(LB_BIAS))
4942 return total;
4943
4944 return max(rq->cpu_load[type-1], total);
4945}
4946
ced549fa 4947static unsigned long capacity_of(int cpu)
029632fb 4948{
ced549fa 4949 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4950}
4951
ca6d75e6
VG
4952static unsigned long capacity_orig_of(int cpu)
4953{
4954 return cpu_rq(cpu)->cpu_capacity_orig;
4955}
4956
029632fb
PZ
4957static unsigned long cpu_avg_load_per_task(int cpu)
4958{
4959 struct rq *rq = cpu_rq(cpu);
316c1608 4960 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4961 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4962
4963 if (nr_running)
b92486cb 4964 return load_avg / nr_running;
029632fb
PZ
4965
4966 return 0;
4967}
4968
bb3469ac 4969#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4970/*
4971 * effective_load() calculates the load change as seen from the root_task_group
4972 *
4973 * Adding load to a group doesn't make a group heavier, but can cause movement
4974 * of group shares between cpus. Assuming the shares were perfectly aligned one
4975 * can calculate the shift in shares.
cf5f0acf
PZ
4976 *
4977 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4978 * on this @cpu and results in a total addition (subtraction) of @wg to the
4979 * total group weight.
4980 *
4981 * Given a runqueue weight distribution (rw_i) we can compute a shares
4982 * distribution (s_i) using:
4983 *
4984 * s_i = rw_i / \Sum rw_j (1)
4985 *
4986 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4987 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4988 * shares distribution (s_i):
4989 *
4990 * rw_i = { 2, 4, 1, 0 }
4991 * s_i = { 2/7, 4/7, 1/7, 0 }
4992 *
4993 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4994 * task used to run on and the CPU the waker is running on), we need to
4995 * compute the effect of waking a task on either CPU and, in case of a sync
4996 * wakeup, compute the effect of the current task going to sleep.
4997 *
4998 * So for a change of @wl to the local @cpu with an overall group weight change
4999 * of @wl we can compute the new shares distribution (s'_i) using:
5000 *
5001 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5002 *
5003 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5004 * differences in waking a task to CPU 0. The additional task changes the
5005 * weight and shares distributions like:
5006 *
5007 * rw'_i = { 3, 4, 1, 0 }
5008 * s'_i = { 3/8, 4/8, 1/8, 0 }
5009 *
5010 * We can then compute the difference in effective weight by using:
5011 *
5012 * dw_i = S * (s'_i - s_i) (3)
5013 *
5014 * Where 'S' is the group weight as seen by its parent.
5015 *
5016 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5017 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5018 * 4/7) times the weight of the group.
f5bfb7d9 5019 */
2069dd75 5020static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5021{
4be9daaa 5022 struct sched_entity *se = tg->se[cpu];
f1d239f7 5023
9722c2da 5024 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5025 return wl;
5026
4be9daaa 5027 for_each_sched_entity(se) {
7dd49125
PZ
5028 struct cfs_rq *cfs_rq = se->my_q;
5029 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5030
7dd49125 5031 tg = cfs_rq->tg;
bb3469ac 5032
cf5f0acf
PZ
5033 /*
5034 * W = @wg + \Sum rw_j
5035 */
7dd49125
PZ
5036 W = wg + atomic_long_read(&tg->load_avg);
5037
5038 /* Ensure \Sum rw_j >= rw_i */
5039 W -= cfs_rq->tg_load_avg_contrib;
5040 W += w;
4be9daaa 5041
cf5f0acf
PZ
5042 /*
5043 * w = rw_i + @wl
5044 */
7dd49125 5045 w += wl;
940959e9 5046
cf5f0acf
PZ
5047 /*
5048 * wl = S * s'_i; see (2)
5049 */
5050 if (W > 0 && w < W)
ab522e33 5051 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5052 else
ab522e33 5053 wl = scale_load_down(tg->shares);
940959e9 5054
cf5f0acf
PZ
5055 /*
5056 * Per the above, wl is the new se->load.weight value; since
5057 * those are clipped to [MIN_SHARES, ...) do so now. See
5058 * calc_cfs_shares().
5059 */
977dda7c
PT
5060 if (wl < MIN_SHARES)
5061 wl = MIN_SHARES;
cf5f0acf
PZ
5062
5063 /*
5064 * wl = dw_i = S * (s'_i - s_i); see (3)
5065 */
9d89c257 5066 wl -= se->avg.load_avg;
cf5f0acf
PZ
5067
5068 /*
5069 * Recursively apply this logic to all parent groups to compute
5070 * the final effective load change on the root group. Since
5071 * only the @tg group gets extra weight, all parent groups can
5072 * only redistribute existing shares. @wl is the shift in shares
5073 * resulting from this level per the above.
5074 */
4be9daaa 5075 wg = 0;
4be9daaa 5076 }
bb3469ac 5077
4be9daaa 5078 return wl;
bb3469ac
PZ
5079}
5080#else
4be9daaa 5081
58d081b5 5082static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5083{
83378269 5084 return wl;
bb3469ac 5085}
4be9daaa 5086
bb3469ac
PZ
5087#endif
5088
c58d25f3
PZ
5089static void record_wakee(struct task_struct *p)
5090{
5091 /*
5092 * Only decay a single time; tasks that have less then 1 wakeup per
5093 * jiffy will not have built up many flips.
5094 */
5095 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5096 current->wakee_flips >>= 1;
5097 current->wakee_flip_decay_ts = jiffies;
5098 }
5099
5100 if (current->last_wakee != p) {
5101 current->last_wakee = p;
5102 current->wakee_flips++;
5103 }
5104}
5105
63b0e9ed
MG
5106/*
5107 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5108 *
63b0e9ed 5109 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5110 * at a frequency roughly N times higher than one of its wakees.
5111 *
5112 * In order to determine whether we should let the load spread vs consolidating
5113 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5114 * partner, and a factor of lls_size higher frequency in the other.
5115 *
5116 * With both conditions met, we can be relatively sure that the relationship is
5117 * non-monogamous, with partner count exceeding socket size.
5118 *
5119 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5120 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5121 * socket size.
63b0e9ed 5122 */
62470419
MW
5123static int wake_wide(struct task_struct *p)
5124{
63b0e9ed
MG
5125 unsigned int master = current->wakee_flips;
5126 unsigned int slave = p->wakee_flips;
7d9ffa89 5127 int factor = this_cpu_read(sd_llc_size);
62470419 5128
63b0e9ed
MG
5129 if (master < slave)
5130 swap(master, slave);
5131 if (slave < factor || master < slave * factor)
5132 return 0;
5133 return 1;
62470419
MW
5134}
5135
772bd008
MR
5136static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5137 int prev_cpu, int sync)
098fb9db 5138{
e37b6a7b 5139 s64 this_load, load;
bd61c98f 5140 s64 this_eff_load, prev_eff_load;
772bd008 5141 int idx, this_cpu;
c88d5910 5142 struct task_group *tg;
83378269 5143 unsigned long weight;
b3137bc8 5144 int balanced;
098fb9db 5145
c88d5910
PZ
5146 idx = sd->wake_idx;
5147 this_cpu = smp_processor_id();
c88d5910
PZ
5148 load = source_load(prev_cpu, idx);
5149 this_load = target_load(this_cpu, idx);
098fb9db 5150
b3137bc8
MG
5151 /*
5152 * If sync wakeup then subtract the (maximum possible)
5153 * effect of the currently running task from the load
5154 * of the current CPU:
5155 */
83378269
PZ
5156 if (sync) {
5157 tg = task_group(current);
9d89c257 5158 weight = current->se.avg.load_avg;
83378269 5159
c88d5910 5160 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5161 load += effective_load(tg, prev_cpu, 0, -weight);
5162 }
b3137bc8 5163
83378269 5164 tg = task_group(p);
9d89c257 5165 weight = p->se.avg.load_avg;
b3137bc8 5166
71a29aa7
PZ
5167 /*
5168 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5169 * due to the sync cause above having dropped this_load to 0, we'll
5170 * always have an imbalance, but there's really nothing you can do
5171 * about that, so that's good too.
71a29aa7
PZ
5172 *
5173 * Otherwise check if either cpus are near enough in load to allow this
5174 * task to be woken on this_cpu.
5175 */
bd61c98f
VG
5176 this_eff_load = 100;
5177 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5178
bd61c98f
VG
5179 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5180 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5181
bd61c98f 5182 if (this_load > 0) {
e51fd5e2
PZ
5183 this_eff_load *= this_load +
5184 effective_load(tg, this_cpu, weight, weight);
5185
e51fd5e2 5186 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5187 }
e51fd5e2 5188
bd61c98f 5189 balanced = this_eff_load <= prev_eff_load;
098fb9db 5190
ae92882e 5191 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5192
05bfb65f
VG
5193 if (!balanced)
5194 return 0;
098fb9db 5195
ae92882e
JP
5196 schedstat_inc(sd->ttwu_move_affine);
5197 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5198
5199 return 1;
098fb9db
IM
5200}
5201
aaee1203
PZ
5202/*
5203 * find_idlest_group finds and returns the least busy CPU group within the
5204 * domain.
5205 */
5206static struct sched_group *
78e7ed53 5207find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5208 int this_cpu, int sd_flag)
e7693a36 5209{
b3bd3de6 5210 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5211 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5212 int load_idx = sd->forkexec_idx;
aaee1203 5213 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5214
c44f2a02
VG
5215 if (sd_flag & SD_BALANCE_WAKE)
5216 load_idx = sd->wake_idx;
5217
aaee1203
PZ
5218 do {
5219 unsigned long load, avg_load;
5220 int local_group;
5221 int i;
e7693a36 5222
aaee1203
PZ
5223 /* Skip over this group if it has no CPUs allowed */
5224 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5225 tsk_cpus_allowed(p)))
aaee1203
PZ
5226 continue;
5227
5228 local_group = cpumask_test_cpu(this_cpu,
5229 sched_group_cpus(group));
5230
5231 /* Tally up the load of all CPUs in the group */
5232 avg_load = 0;
5233
5234 for_each_cpu(i, sched_group_cpus(group)) {
5235 /* Bias balancing toward cpus of our domain */
5236 if (local_group)
5237 load = source_load(i, load_idx);
5238 else
5239 load = target_load(i, load_idx);
5240
5241 avg_load += load;
5242 }
5243
63b2ca30 5244 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5245 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5246
5247 if (local_group) {
5248 this_load = avg_load;
aaee1203
PZ
5249 } else if (avg_load < min_load) {
5250 min_load = avg_load;
5251 idlest = group;
5252 }
5253 } while (group = group->next, group != sd->groups);
5254
5255 if (!idlest || 100*this_load < imbalance*min_load)
5256 return NULL;
5257 return idlest;
5258}
5259
5260/*
5261 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5262 */
5263static int
5264find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5265{
5266 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5267 unsigned int min_exit_latency = UINT_MAX;
5268 u64 latest_idle_timestamp = 0;
5269 int least_loaded_cpu = this_cpu;
5270 int shallowest_idle_cpu = -1;
aaee1203
PZ
5271 int i;
5272
eaecf41f
MR
5273 /* Check if we have any choice: */
5274 if (group->group_weight == 1)
5275 return cpumask_first(sched_group_cpus(group));
5276
aaee1203 5277 /* Traverse only the allowed CPUs */
fa17b507 5278 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5279 if (idle_cpu(i)) {
5280 struct rq *rq = cpu_rq(i);
5281 struct cpuidle_state *idle = idle_get_state(rq);
5282 if (idle && idle->exit_latency < min_exit_latency) {
5283 /*
5284 * We give priority to a CPU whose idle state
5285 * has the smallest exit latency irrespective
5286 * of any idle timestamp.
5287 */
5288 min_exit_latency = idle->exit_latency;
5289 latest_idle_timestamp = rq->idle_stamp;
5290 shallowest_idle_cpu = i;
5291 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5292 rq->idle_stamp > latest_idle_timestamp) {
5293 /*
5294 * If equal or no active idle state, then
5295 * the most recently idled CPU might have
5296 * a warmer cache.
5297 */
5298 latest_idle_timestamp = rq->idle_stamp;
5299 shallowest_idle_cpu = i;
5300 }
9f96742a 5301 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5302 load = weighted_cpuload(i);
5303 if (load < min_load || (load == min_load && i == this_cpu)) {
5304 min_load = load;
5305 least_loaded_cpu = i;
5306 }
e7693a36
GH
5307 }
5308 }
5309
83a0a96a 5310 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5311}
e7693a36 5312
a50bde51 5313/*
10e2f1ac
PZ
5314 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5315 * (@start), and wraps around.
5316 *
5317 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5318 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5319 * through the LLC domain.
5320 *
5321 * Especially tbench is found sensitive to this.
5322 */
5323
5324static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5325{
5326 int next;
5327
5328again:
5329 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5330
5331 if (*wrapped) {
5332 if (next >= start)
5333 return nr_cpumask_bits;
5334 } else {
5335 if (next >= nr_cpumask_bits) {
5336 *wrapped = 1;
5337 n = -1;
5338 goto again;
5339 }
5340 }
5341
5342 return next;
5343}
5344
5345#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5346 for ((wrap) = 0, (cpu) = (start)-1; \
5347 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5348 (cpu) < nr_cpumask_bits; )
5349
5350#ifdef CONFIG_SCHED_SMT
5351
5352static inline void set_idle_cores(int cpu, int val)
5353{
5354 struct sched_domain_shared *sds;
5355
5356 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5357 if (sds)
5358 WRITE_ONCE(sds->has_idle_cores, val);
5359}
5360
5361static inline bool test_idle_cores(int cpu, bool def)
5362{
5363 struct sched_domain_shared *sds;
5364
5365 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5366 if (sds)
5367 return READ_ONCE(sds->has_idle_cores);
5368
5369 return def;
5370}
5371
5372/*
5373 * Scans the local SMT mask to see if the entire core is idle, and records this
5374 * information in sd_llc_shared->has_idle_cores.
5375 *
5376 * Since SMT siblings share all cache levels, inspecting this limited remote
5377 * state should be fairly cheap.
5378 */
1b568f0a 5379void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5380{
5381 int core = cpu_of(rq);
5382 int cpu;
5383
5384 rcu_read_lock();
5385 if (test_idle_cores(core, true))
5386 goto unlock;
5387
5388 for_each_cpu(cpu, cpu_smt_mask(core)) {
5389 if (cpu == core)
5390 continue;
5391
5392 if (!idle_cpu(cpu))
5393 goto unlock;
5394 }
5395
5396 set_idle_cores(core, 1);
5397unlock:
5398 rcu_read_unlock();
5399}
5400
5401/*
5402 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5403 * there are no idle cores left in the system; tracked through
5404 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5405 */
5406static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5407{
5408 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5409 int core, cpu, wrap;
5410
1b568f0a
PZ
5411 if (!static_branch_likely(&sched_smt_present))
5412 return -1;
5413
10e2f1ac
PZ
5414 if (!test_idle_cores(target, false))
5415 return -1;
5416
5417 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5418
5419 for_each_cpu_wrap(core, cpus, target, wrap) {
5420 bool idle = true;
5421
5422 for_each_cpu(cpu, cpu_smt_mask(core)) {
5423 cpumask_clear_cpu(cpu, cpus);
5424 if (!idle_cpu(cpu))
5425 idle = false;
5426 }
5427
5428 if (idle)
5429 return core;
5430 }
5431
5432 /*
5433 * Failed to find an idle core; stop looking for one.
5434 */
5435 set_idle_cores(target, 0);
5436
5437 return -1;
5438}
5439
5440/*
5441 * Scan the local SMT mask for idle CPUs.
5442 */
5443static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5444{
5445 int cpu;
5446
1b568f0a
PZ
5447 if (!static_branch_likely(&sched_smt_present))
5448 return -1;
5449
10e2f1ac
PZ
5450 for_each_cpu(cpu, cpu_smt_mask(target)) {
5451 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5452 continue;
5453 if (idle_cpu(cpu))
5454 return cpu;
5455 }
5456
5457 return -1;
5458}
5459
5460#else /* CONFIG_SCHED_SMT */
5461
5462static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5463{
5464 return -1;
5465}
5466
5467static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5468{
5469 return -1;
5470}
5471
5472#endif /* CONFIG_SCHED_SMT */
5473
5474/*
5475 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5476 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5477 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5478 */
10e2f1ac
PZ
5479static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5480{
9cfb38a7
WL
5481 struct sched_domain *this_sd;
5482 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5483 u64 time, cost;
5484 s64 delta;
5485 int cpu, wrap;
5486
9cfb38a7
WL
5487 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5488 if (!this_sd)
5489 return -1;
5490
5491 avg_cost = this_sd->avg_scan_cost;
5492
10e2f1ac
PZ
5493 /*
5494 * Due to large variance we need a large fuzz factor; hackbench in
5495 * particularly is sensitive here.
5496 */
5497 if ((avg_idle / 512) < avg_cost)
5498 return -1;
5499
5500 time = local_clock();
5501
5502 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5503 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5504 continue;
5505 if (idle_cpu(cpu))
5506 break;
5507 }
5508
5509 time = local_clock() - time;
5510 cost = this_sd->avg_scan_cost;
5511 delta = (s64)(time - cost) / 8;
5512 this_sd->avg_scan_cost += delta;
5513
5514 return cpu;
5515}
5516
5517/*
5518 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5519 */
772bd008 5520static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5521{
99bd5e2f 5522 struct sched_domain *sd;
10e2f1ac 5523 int i;
a50bde51 5524
e0a79f52
MG
5525 if (idle_cpu(target))
5526 return target;
99bd5e2f
SS
5527
5528 /*
10e2f1ac 5529 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5530 */
772bd008
MR
5531 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5532 return prev;
a50bde51 5533
518cd623 5534 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5535 if (!sd)
5536 return target;
772bd008 5537
10e2f1ac
PZ
5538 i = select_idle_core(p, sd, target);
5539 if ((unsigned)i < nr_cpumask_bits)
5540 return i;
37407ea7 5541
10e2f1ac
PZ
5542 i = select_idle_cpu(p, sd, target);
5543 if ((unsigned)i < nr_cpumask_bits)
5544 return i;
5545
5546 i = select_idle_smt(p, sd, target);
5547 if ((unsigned)i < nr_cpumask_bits)
5548 return i;
970e1789 5549
a50bde51
PZ
5550 return target;
5551}
231678b7 5552
8bb5b00c 5553/*
9e91d61d 5554 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5555 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5556 * compare the utilization with the capacity of the CPU that is available for
5557 * CFS task (ie cpu_capacity).
231678b7
DE
5558 *
5559 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5560 * recent utilization of currently non-runnable tasks on a CPU. It represents
5561 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5562 * capacity_orig is the cpu_capacity available at the highest frequency
5563 * (arch_scale_freq_capacity()).
5564 * The utilization of a CPU converges towards a sum equal to or less than the
5565 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5566 * the running time on this CPU scaled by capacity_curr.
5567 *
5568 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5569 * higher than capacity_orig because of unfortunate rounding in
5570 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5571 * the average stabilizes with the new running time. We need to check that the
5572 * utilization stays within the range of [0..capacity_orig] and cap it if
5573 * necessary. Without utilization capping, a group could be seen as overloaded
5574 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5575 * available capacity. We allow utilization to overshoot capacity_curr (but not
5576 * capacity_orig) as it useful for predicting the capacity required after task
5577 * migrations (scheduler-driven DVFS).
8bb5b00c 5578 */
9e91d61d 5579static int cpu_util(int cpu)
8bb5b00c 5580{
9e91d61d 5581 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5582 unsigned long capacity = capacity_orig_of(cpu);
5583
231678b7 5584 return (util >= capacity) ? capacity : util;
8bb5b00c 5585}
a50bde51 5586
3273163c
MR
5587static inline int task_util(struct task_struct *p)
5588{
5589 return p->se.avg.util_avg;
5590}
5591
5592/*
5593 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5594 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5595 *
5596 * In that case WAKE_AFFINE doesn't make sense and we'll let
5597 * BALANCE_WAKE sort things out.
5598 */
5599static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5600{
5601 long min_cap, max_cap;
5602
5603 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5604 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5605
5606 /* Minimum capacity is close to max, no need to abort wake_affine */
5607 if (max_cap - min_cap < max_cap >> 3)
5608 return 0;
5609
5610 return min_cap * 1024 < task_util(p) * capacity_margin;
5611}
5612
aaee1203 5613/*
de91b9cb
MR
5614 * select_task_rq_fair: Select target runqueue for the waking task in domains
5615 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5616 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5617 *
de91b9cb
MR
5618 * Balances load by selecting the idlest cpu in the idlest group, or under
5619 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5620 *
de91b9cb 5621 * Returns the target cpu number.
aaee1203
PZ
5622 *
5623 * preempt must be disabled.
5624 */
0017d735 5625static int
ac66f547 5626select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5627{
29cd8bae 5628 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5629 int cpu = smp_processor_id();
63b0e9ed 5630 int new_cpu = prev_cpu;
99bd5e2f 5631 int want_affine = 0;
5158f4e4 5632 int sync = wake_flags & WF_SYNC;
c88d5910 5633
c58d25f3
PZ
5634 if (sd_flag & SD_BALANCE_WAKE) {
5635 record_wakee(p);
3273163c
MR
5636 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5637 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5638 }
aaee1203 5639
dce840a0 5640 rcu_read_lock();
aaee1203 5641 for_each_domain(cpu, tmp) {
e4f42888 5642 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5643 break;
e4f42888 5644
fe3bcfe1 5645 /*
99bd5e2f
SS
5646 * If both cpu and prev_cpu are part of this domain,
5647 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5648 */
99bd5e2f
SS
5649 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5650 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5651 affine_sd = tmp;
29cd8bae 5652 break;
f03542a7 5653 }
29cd8bae 5654
f03542a7 5655 if (tmp->flags & sd_flag)
29cd8bae 5656 sd = tmp;
63b0e9ed
MG
5657 else if (!want_affine)
5658 break;
29cd8bae
PZ
5659 }
5660
63b0e9ed
MG
5661 if (affine_sd) {
5662 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5663 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5664 new_cpu = cpu;
8b911acd 5665 }
e7693a36 5666
63b0e9ed
MG
5667 if (!sd) {
5668 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5669 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5670
5671 } else while (sd) {
aaee1203 5672 struct sched_group *group;
c88d5910 5673 int weight;
098fb9db 5674
0763a660 5675 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5676 sd = sd->child;
5677 continue;
5678 }
098fb9db 5679
c44f2a02 5680 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5681 if (!group) {
5682 sd = sd->child;
5683 continue;
5684 }
4ae7d5ce 5685
d7c33c49 5686 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5687 if (new_cpu == -1 || new_cpu == cpu) {
5688 /* Now try balancing at a lower domain level of cpu */
5689 sd = sd->child;
5690 continue;
e7693a36 5691 }
aaee1203
PZ
5692
5693 /* Now try balancing at a lower domain level of new_cpu */
5694 cpu = new_cpu;
669c55e9 5695 weight = sd->span_weight;
aaee1203
PZ
5696 sd = NULL;
5697 for_each_domain(cpu, tmp) {
669c55e9 5698 if (weight <= tmp->span_weight)
aaee1203 5699 break;
0763a660 5700 if (tmp->flags & sd_flag)
aaee1203
PZ
5701 sd = tmp;
5702 }
5703 /* while loop will break here if sd == NULL */
e7693a36 5704 }
dce840a0 5705 rcu_read_unlock();
e7693a36 5706
c88d5910 5707 return new_cpu;
e7693a36 5708}
0a74bef8
PT
5709
5710/*
5711 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5712 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5713 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5714 */
5a4fd036 5715static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5716{
59efa0ba
PZ
5717 /*
5718 * As blocked tasks retain absolute vruntime the migration needs to
5719 * deal with this by subtracting the old and adding the new
5720 * min_vruntime -- the latter is done by enqueue_entity() when placing
5721 * the task on the new runqueue.
5722 */
5723 if (p->state == TASK_WAKING) {
5724 struct sched_entity *se = &p->se;
5725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5726 u64 min_vruntime;
5727
5728#ifndef CONFIG_64BIT
5729 u64 min_vruntime_copy;
5730
5731 do {
5732 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5733 smp_rmb();
5734 min_vruntime = cfs_rq->min_vruntime;
5735 } while (min_vruntime != min_vruntime_copy);
5736#else
5737 min_vruntime = cfs_rq->min_vruntime;
5738#endif
5739
5740 se->vruntime -= min_vruntime;
5741 }
5742
aff3e498 5743 /*
9d89c257
YD
5744 * We are supposed to update the task to "current" time, then its up to date
5745 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5746 * what current time is, so simply throw away the out-of-date time. This
5747 * will result in the wakee task is less decayed, but giving the wakee more
5748 * load sounds not bad.
aff3e498 5749 */
9d89c257
YD
5750 remove_entity_load_avg(&p->se);
5751
5752 /* Tell new CPU we are migrated */
5753 p->se.avg.last_update_time = 0;
3944a927
BS
5754
5755 /* We have migrated, no longer consider this task hot */
9d89c257 5756 p->se.exec_start = 0;
0a74bef8 5757}
12695578
YD
5758
5759static void task_dead_fair(struct task_struct *p)
5760{
5761 remove_entity_load_avg(&p->se);
5762}
e7693a36
GH
5763#endif /* CONFIG_SMP */
5764
e52fb7c0
PZ
5765static unsigned long
5766wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5767{
5768 unsigned long gran = sysctl_sched_wakeup_granularity;
5769
5770 /*
e52fb7c0
PZ
5771 * Since its curr running now, convert the gran from real-time
5772 * to virtual-time in his units.
13814d42
MG
5773 *
5774 * By using 'se' instead of 'curr' we penalize light tasks, so
5775 * they get preempted easier. That is, if 'se' < 'curr' then
5776 * the resulting gran will be larger, therefore penalizing the
5777 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5778 * be smaller, again penalizing the lighter task.
5779 *
5780 * This is especially important for buddies when the leftmost
5781 * task is higher priority than the buddy.
0bbd3336 5782 */
f4ad9bd2 5783 return calc_delta_fair(gran, se);
0bbd3336
PZ
5784}
5785
464b7527
PZ
5786/*
5787 * Should 'se' preempt 'curr'.
5788 *
5789 * |s1
5790 * |s2
5791 * |s3
5792 * g
5793 * |<--->|c
5794 *
5795 * w(c, s1) = -1
5796 * w(c, s2) = 0
5797 * w(c, s3) = 1
5798 *
5799 */
5800static int
5801wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5802{
5803 s64 gran, vdiff = curr->vruntime - se->vruntime;
5804
5805 if (vdiff <= 0)
5806 return -1;
5807
e52fb7c0 5808 gran = wakeup_gran(curr, se);
464b7527
PZ
5809 if (vdiff > gran)
5810 return 1;
5811
5812 return 0;
5813}
5814
02479099
PZ
5815static void set_last_buddy(struct sched_entity *se)
5816{
69c80f3e
VP
5817 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5818 return;
5819
5820 for_each_sched_entity(se)
5821 cfs_rq_of(se)->last = se;
02479099
PZ
5822}
5823
5824static void set_next_buddy(struct sched_entity *se)
5825{
69c80f3e
VP
5826 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5827 return;
5828
5829 for_each_sched_entity(se)
5830 cfs_rq_of(se)->next = se;
02479099
PZ
5831}
5832
ac53db59
RR
5833static void set_skip_buddy(struct sched_entity *se)
5834{
69c80f3e
VP
5835 for_each_sched_entity(se)
5836 cfs_rq_of(se)->skip = se;
ac53db59
RR
5837}
5838
bf0f6f24
IM
5839/*
5840 * Preempt the current task with a newly woken task if needed:
5841 */
5a9b86f6 5842static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5843{
5844 struct task_struct *curr = rq->curr;
8651a86c 5845 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5846 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5847 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5848 int next_buddy_marked = 0;
bf0f6f24 5849
4ae7d5ce
IM
5850 if (unlikely(se == pse))
5851 return;
5852
5238cdd3 5853 /*
163122b7 5854 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5855 * unconditionally check_prempt_curr() after an enqueue (which may have
5856 * lead to a throttle). This both saves work and prevents false
5857 * next-buddy nomination below.
5858 */
5859 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5860 return;
5861
2f36825b 5862 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5863 set_next_buddy(pse);
2f36825b
VP
5864 next_buddy_marked = 1;
5865 }
57fdc26d 5866
aec0a514
BR
5867 /*
5868 * We can come here with TIF_NEED_RESCHED already set from new task
5869 * wake up path.
5238cdd3
PT
5870 *
5871 * Note: this also catches the edge-case of curr being in a throttled
5872 * group (e.g. via set_curr_task), since update_curr() (in the
5873 * enqueue of curr) will have resulted in resched being set. This
5874 * prevents us from potentially nominating it as a false LAST_BUDDY
5875 * below.
aec0a514
BR
5876 */
5877 if (test_tsk_need_resched(curr))
5878 return;
5879
a2f5c9ab
DH
5880 /* Idle tasks are by definition preempted by non-idle tasks. */
5881 if (unlikely(curr->policy == SCHED_IDLE) &&
5882 likely(p->policy != SCHED_IDLE))
5883 goto preempt;
5884
91c234b4 5885 /*
a2f5c9ab
DH
5886 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5887 * is driven by the tick):
91c234b4 5888 */
8ed92e51 5889 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5890 return;
bf0f6f24 5891
464b7527 5892 find_matching_se(&se, &pse);
9bbd7374 5893 update_curr(cfs_rq_of(se));
002f128b 5894 BUG_ON(!pse);
2f36825b
VP
5895 if (wakeup_preempt_entity(se, pse) == 1) {
5896 /*
5897 * Bias pick_next to pick the sched entity that is
5898 * triggering this preemption.
5899 */
5900 if (!next_buddy_marked)
5901 set_next_buddy(pse);
3a7e73a2 5902 goto preempt;
2f36825b 5903 }
464b7527 5904
3a7e73a2 5905 return;
a65ac745 5906
3a7e73a2 5907preempt:
8875125e 5908 resched_curr(rq);
3a7e73a2
PZ
5909 /*
5910 * Only set the backward buddy when the current task is still
5911 * on the rq. This can happen when a wakeup gets interleaved
5912 * with schedule on the ->pre_schedule() or idle_balance()
5913 * point, either of which can * drop the rq lock.
5914 *
5915 * Also, during early boot the idle thread is in the fair class,
5916 * for obvious reasons its a bad idea to schedule back to it.
5917 */
5918 if (unlikely(!se->on_rq || curr == rq->idle))
5919 return;
5920
5921 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5922 set_last_buddy(se);
bf0f6f24
IM
5923}
5924
606dba2e 5925static struct task_struct *
e7904a28 5926pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5927{
5928 struct cfs_rq *cfs_rq = &rq->cfs;
5929 struct sched_entity *se;
678d5718 5930 struct task_struct *p;
37e117c0 5931 int new_tasks;
678d5718 5932
6e83125c 5933again:
678d5718
PZ
5934#ifdef CONFIG_FAIR_GROUP_SCHED
5935 if (!cfs_rq->nr_running)
38033c37 5936 goto idle;
678d5718 5937
3f1d2a31 5938 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5939 goto simple;
5940
5941 /*
5942 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5943 * likely that a next task is from the same cgroup as the current.
5944 *
5945 * Therefore attempt to avoid putting and setting the entire cgroup
5946 * hierarchy, only change the part that actually changes.
5947 */
5948
5949 do {
5950 struct sched_entity *curr = cfs_rq->curr;
5951
5952 /*
5953 * Since we got here without doing put_prev_entity() we also
5954 * have to consider cfs_rq->curr. If it is still a runnable
5955 * entity, update_curr() will update its vruntime, otherwise
5956 * forget we've ever seen it.
5957 */
54d27365
BS
5958 if (curr) {
5959 if (curr->on_rq)
5960 update_curr(cfs_rq);
5961 else
5962 curr = NULL;
678d5718 5963
54d27365
BS
5964 /*
5965 * This call to check_cfs_rq_runtime() will do the
5966 * throttle and dequeue its entity in the parent(s).
5967 * Therefore the 'simple' nr_running test will indeed
5968 * be correct.
5969 */
5970 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5971 goto simple;
5972 }
678d5718
PZ
5973
5974 se = pick_next_entity(cfs_rq, curr);
5975 cfs_rq = group_cfs_rq(se);
5976 } while (cfs_rq);
5977
5978 p = task_of(se);
5979
5980 /*
5981 * Since we haven't yet done put_prev_entity and if the selected task
5982 * is a different task than we started out with, try and touch the
5983 * least amount of cfs_rqs.
5984 */
5985 if (prev != p) {
5986 struct sched_entity *pse = &prev->se;
5987
5988 while (!(cfs_rq = is_same_group(se, pse))) {
5989 int se_depth = se->depth;
5990 int pse_depth = pse->depth;
5991
5992 if (se_depth <= pse_depth) {
5993 put_prev_entity(cfs_rq_of(pse), pse);
5994 pse = parent_entity(pse);
5995 }
5996 if (se_depth >= pse_depth) {
5997 set_next_entity(cfs_rq_of(se), se);
5998 se = parent_entity(se);
5999 }
6000 }
6001
6002 put_prev_entity(cfs_rq, pse);
6003 set_next_entity(cfs_rq, se);
6004 }
6005
6006 if (hrtick_enabled(rq))
6007 hrtick_start_fair(rq, p);
6008
6009 return p;
6010simple:
6011 cfs_rq = &rq->cfs;
6012#endif
bf0f6f24 6013
36ace27e 6014 if (!cfs_rq->nr_running)
38033c37 6015 goto idle;
bf0f6f24 6016
3f1d2a31 6017 put_prev_task(rq, prev);
606dba2e 6018
bf0f6f24 6019 do {
678d5718 6020 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6021 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6022 cfs_rq = group_cfs_rq(se);
6023 } while (cfs_rq);
6024
8f4d37ec 6025 p = task_of(se);
678d5718 6026
b39e66ea
MG
6027 if (hrtick_enabled(rq))
6028 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6029
6030 return p;
38033c37
PZ
6031
6032idle:
cbce1a68
PZ
6033 /*
6034 * This is OK, because current is on_cpu, which avoids it being picked
6035 * for load-balance and preemption/IRQs are still disabled avoiding
6036 * further scheduler activity on it and we're being very careful to
6037 * re-start the picking loop.
6038 */
e7904a28 6039 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 6040 new_tasks = idle_balance(rq);
e7904a28 6041 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
6042 /*
6043 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6044 * possible for any higher priority task to appear. In that case we
6045 * must re-start the pick_next_entity() loop.
6046 */
e4aa358b 6047 if (new_tasks < 0)
37e117c0
PZ
6048 return RETRY_TASK;
6049
e4aa358b 6050 if (new_tasks > 0)
38033c37 6051 goto again;
38033c37
PZ
6052
6053 return NULL;
bf0f6f24
IM
6054}
6055
6056/*
6057 * Account for a descheduled task:
6058 */
31ee529c 6059static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6060{
6061 struct sched_entity *se = &prev->se;
6062 struct cfs_rq *cfs_rq;
6063
6064 for_each_sched_entity(se) {
6065 cfs_rq = cfs_rq_of(se);
ab6cde26 6066 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6067 }
6068}
6069
ac53db59
RR
6070/*
6071 * sched_yield() is very simple
6072 *
6073 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6074 */
6075static void yield_task_fair(struct rq *rq)
6076{
6077 struct task_struct *curr = rq->curr;
6078 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6079 struct sched_entity *se = &curr->se;
6080
6081 /*
6082 * Are we the only task in the tree?
6083 */
6084 if (unlikely(rq->nr_running == 1))
6085 return;
6086
6087 clear_buddies(cfs_rq, se);
6088
6089 if (curr->policy != SCHED_BATCH) {
6090 update_rq_clock(rq);
6091 /*
6092 * Update run-time statistics of the 'current'.
6093 */
6094 update_curr(cfs_rq);
916671c0
MG
6095 /*
6096 * Tell update_rq_clock() that we've just updated,
6097 * so we don't do microscopic update in schedule()
6098 * and double the fastpath cost.
6099 */
9edfbfed 6100 rq_clock_skip_update(rq, true);
ac53db59
RR
6101 }
6102
6103 set_skip_buddy(se);
6104}
6105
d95f4122
MG
6106static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6107{
6108 struct sched_entity *se = &p->se;
6109
5238cdd3
PT
6110 /* throttled hierarchies are not runnable */
6111 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6112 return false;
6113
6114 /* Tell the scheduler that we'd really like pse to run next. */
6115 set_next_buddy(se);
6116
d95f4122
MG
6117 yield_task_fair(rq);
6118
6119 return true;
6120}
6121
681f3e68 6122#ifdef CONFIG_SMP
bf0f6f24 6123/**************************************************
e9c84cb8
PZ
6124 * Fair scheduling class load-balancing methods.
6125 *
6126 * BASICS
6127 *
6128 * The purpose of load-balancing is to achieve the same basic fairness the
6129 * per-cpu scheduler provides, namely provide a proportional amount of compute
6130 * time to each task. This is expressed in the following equation:
6131 *
6132 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6133 *
6134 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6135 * W_i,0 is defined as:
6136 *
6137 * W_i,0 = \Sum_j w_i,j (2)
6138 *
6139 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6140 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6141 *
6142 * The weight average is an exponential decay average of the instantaneous
6143 * weight:
6144 *
6145 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6146 *
ced549fa 6147 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6148 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6149 * can also include other factors [XXX].
6150 *
6151 * To achieve this balance we define a measure of imbalance which follows
6152 * directly from (1):
6153 *
ced549fa 6154 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6155 *
6156 * We them move tasks around to minimize the imbalance. In the continuous
6157 * function space it is obvious this converges, in the discrete case we get
6158 * a few fun cases generally called infeasible weight scenarios.
6159 *
6160 * [XXX expand on:
6161 * - infeasible weights;
6162 * - local vs global optima in the discrete case. ]
6163 *
6164 *
6165 * SCHED DOMAINS
6166 *
6167 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6168 * for all i,j solution, we create a tree of cpus that follows the hardware
6169 * topology where each level pairs two lower groups (or better). This results
6170 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6171 * tree to only the first of the previous level and we decrease the frequency
6172 * of load-balance at each level inv. proportional to the number of cpus in
6173 * the groups.
6174 *
6175 * This yields:
6176 *
6177 * log_2 n 1 n
6178 * \Sum { --- * --- * 2^i } = O(n) (5)
6179 * i = 0 2^i 2^i
6180 * `- size of each group
6181 * | | `- number of cpus doing load-balance
6182 * | `- freq
6183 * `- sum over all levels
6184 *
6185 * Coupled with a limit on how many tasks we can migrate every balance pass,
6186 * this makes (5) the runtime complexity of the balancer.
6187 *
6188 * An important property here is that each CPU is still (indirectly) connected
6189 * to every other cpu in at most O(log n) steps:
6190 *
6191 * The adjacency matrix of the resulting graph is given by:
6192 *
97a7142f 6193 * log_2 n
e9c84cb8
PZ
6194 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6195 * k = 0
6196 *
6197 * And you'll find that:
6198 *
6199 * A^(log_2 n)_i,j != 0 for all i,j (7)
6200 *
6201 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6202 * The task movement gives a factor of O(m), giving a convergence complexity
6203 * of:
6204 *
6205 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6206 *
6207 *
6208 * WORK CONSERVING
6209 *
6210 * In order to avoid CPUs going idle while there's still work to do, new idle
6211 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6212 * tree itself instead of relying on other CPUs to bring it work.
6213 *
6214 * This adds some complexity to both (5) and (8) but it reduces the total idle
6215 * time.
6216 *
6217 * [XXX more?]
6218 *
6219 *
6220 * CGROUPS
6221 *
6222 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6223 *
6224 * s_k,i
6225 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6226 * S_k
6227 *
6228 * Where
6229 *
6230 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6231 *
6232 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6233 *
6234 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6235 * property.
6236 *
6237 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6238 * rewrite all of this once again.]
97a7142f 6239 */
bf0f6f24 6240
ed387b78
HS
6241static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6242
0ec8aa00
PZ
6243enum fbq_type { regular, remote, all };
6244
ddcdf6e7 6245#define LBF_ALL_PINNED 0x01
367456c7 6246#define LBF_NEED_BREAK 0x02
6263322c
PZ
6247#define LBF_DST_PINNED 0x04
6248#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6249
6250struct lb_env {
6251 struct sched_domain *sd;
6252
ddcdf6e7 6253 struct rq *src_rq;
85c1e7da 6254 int src_cpu;
ddcdf6e7
PZ
6255
6256 int dst_cpu;
6257 struct rq *dst_rq;
6258
88b8dac0
SV
6259 struct cpumask *dst_grpmask;
6260 int new_dst_cpu;
ddcdf6e7 6261 enum cpu_idle_type idle;
bd939f45 6262 long imbalance;
b9403130
MW
6263 /* The set of CPUs under consideration for load-balancing */
6264 struct cpumask *cpus;
6265
ddcdf6e7 6266 unsigned int flags;
367456c7
PZ
6267
6268 unsigned int loop;
6269 unsigned int loop_break;
6270 unsigned int loop_max;
0ec8aa00
PZ
6271
6272 enum fbq_type fbq_type;
163122b7 6273 struct list_head tasks;
ddcdf6e7
PZ
6274};
6275
029632fb
PZ
6276/*
6277 * Is this task likely cache-hot:
6278 */
5d5e2b1b 6279static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6280{
6281 s64 delta;
6282
e5673f28
KT
6283 lockdep_assert_held(&env->src_rq->lock);
6284
029632fb
PZ
6285 if (p->sched_class != &fair_sched_class)
6286 return 0;
6287
6288 if (unlikely(p->policy == SCHED_IDLE))
6289 return 0;
6290
6291 /*
6292 * Buddy candidates are cache hot:
6293 */
5d5e2b1b 6294 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6295 (&p->se == cfs_rq_of(&p->se)->next ||
6296 &p->se == cfs_rq_of(&p->se)->last))
6297 return 1;
6298
6299 if (sysctl_sched_migration_cost == -1)
6300 return 1;
6301 if (sysctl_sched_migration_cost == 0)
6302 return 0;
6303
5d5e2b1b 6304 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6305
6306 return delta < (s64)sysctl_sched_migration_cost;
6307}
6308
3a7053b3 6309#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6310/*
2a1ed24c
SD
6311 * Returns 1, if task migration degrades locality
6312 * Returns 0, if task migration improves locality i.e migration preferred.
6313 * Returns -1, if task migration is not affected by locality.
c1ceac62 6314 */
2a1ed24c 6315static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6316{
b1ad065e 6317 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6318 unsigned long src_faults, dst_faults;
3a7053b3
MG
6319 int src_nid, dst_nid;
6320
2a595721 6321 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6322 return -1;
6323
c3b9bc5b 6324 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6325 return -1;
7a0f3083
MG
6326
6327 src_nid = cpu_to_node(env->src_cpu);
6328 dst_nid = cpu_to_node(env->dst_cpu);
6329
83e1d2cd 6330 if (src_nid == dst_nid)
2a1ed24c 6331 return -1;
7a0f3083 6332
2a1ed24c
SD
6333 /* Migrating away from the preferred node is always bad. */
6334 if (src_nid == p->numa_preferred_nid) {
6335 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6336 return 1;
6337 else
6338 return -1;
6339 }
b1ad065e 6340
c1ceac62
RR
6341 /* Encourage migration to the preferred node. */
6342 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6343 return 0;
b1ad065e 6344
c1ceac62
RR
6345 if (numa_group) {
6346 src_faults = group_faults(p, src_nid);
6347 dst_faults = group_faults(p, dst_nid);
6348 } else {
6349 src_faults = task_faults(p, src_nid);
6350 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6351 }
6352
c1ceac62 6353 return dst_faults < src_faults;
7a0f3083
MG
6354}
6355
3a7053b3 6356#else
2a1ed24c 6357static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6358 struct lb_env *env)
6359{
2a1ed24c 6360 return -1;
7a0f3083 6361}
3a7053b3
MG
6362#endif
6363
1e3c88bd
PZ
6364/*
6365 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6366 */
6367static
8e45cb54 6368int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6369{
2a1ed24c 6370 int tsk_cache_hot;
e5673f28
KT
6371
6372 lockdep_assert_held(&env->src_rq->lock);
6373
1e3c88bd
PZ
6374 /*
6375 * We do not migrate tasks that are:
d3198084 6376 * 1) throttled_lb_pair, or
1e3c88bd 6377 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6378 * 3) running (obviously), or
6379 * 4) are cache-hot on their current CPU.
1e3c88bd 6380 */
d3198084
JK
6381 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6382 return 0;
6383
ddcdf6e7 6384 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6385 int cpu;
88b8dac0 6386
ae92882e 6387 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6388
6263322c
PZ
6389 env->flags |= LBF_SOME_PINNED;
6390
88b8dac0
SV
6391 /*
6392 * Remember if this task can be migrated to any other cpu in
6393 * our sched_group. We may want to revisit it if we couldn't
6394 * meet load balance goals by pulling other tasks on src_cpu.
6395 *
6396 * Also avoid computing new_dst_cpu if we have already computed
6397 * one in current iteration.
6398 */
6263322c 6399 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6400 return 0;
6401
e02e60c1
JK
6402 /* Prevent to re-select dst_cpu via env's cpus */
6403 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6404 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6405 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6406 env->new_dst_cpu = cpu;
6407 break;
6408 }
88b8dac0 6409 }
e02e60c1 6410
1e3c88bd
PZ
6411 return 0;
6412 }
88b8dac0
SV
6413
6414 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6415 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6416
ddcdf6e7 6417 if (task_running(env->src_rq, p)) {
ae92882e 6418 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6419 return 0;
6420 }
6421
6422 /*
6423 * Aggressive migration if:
3a7053b3
MG
6424 * 1) destination numa is preferred
6425 * 2) task is cache cold, or
6426 * 3) too many balance attempts have failed.
1e3c88bd 6427 */
2a1ed24c
SD
6428 tsk_cache_hot = migrate_degrades_locality(p, env);
6429 if (tsk_cache_hot == -1)
6430 tsk_cache_hot = task_hot(p, env);
3a7053b3 6431
2a1ed24c 6432 if (tsk_cache_hot <= 0 ||
7a96c231 6433 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6434 if (tsk_cache_hot == 1) {
ae92882e
JP
6435 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6436 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6437 }
1e3c88bd
PZ
6438 return 1;
6439 }
6440
ae92882e 6441 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6442 return 0;
1e3c88bd
PZ
6443}
6444
897c395f 6445/*
163122b7
KT
6446 * detach_task() -- detach the task for the migration specified in env
6447 */
6448static void detach_task(struct task_struct *p, struct lb_env *env)
6449{
6450 lockdep_assert_held(&env->src_rq->lock);
6451
163122b7 6452 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6453 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6454 set_task_cpu(p, env->dst_cpu);
6455}
6456
897c395f 6457/*
e5673f28 6458 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6459 * part of active balancing operations within "domain".
897c395f 6460 *
e5673f28 6461 * Returns a task if successful and NULL otherwise.
897c395f 6462 */
e5673f28 6463static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6464{
6465 struct task_struct *p, *n;
897c395f 6466
e5673f28
KT
6467 lockdep_assert_held(&env->src_rq->lock);
6468
367456c7 6469 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6470 if (!can_migrate_task(p, env))
6471 continue;
897c395f 6472
163122b7 6473 detach_task(p, env);
e5673f28 6474
367456c7 6475 /*
e5673f28 6476 * Right now, this is only the second place where
163122b7 6477 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6478 * so we can safely collect stats here rather than
163122b7 6479 * inside detach_tasks().
367456c7 6480 */
ae92882e 6481 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6482 return p;
897c395f 6483 }
e5673f28 6484 return NULL;
897c395f
PZ
6485}
6486
eb95308e
PZ
6487static const unsigned int sched_nr_migrate_break = 32;
6488
5d6523eb 6489/*
163122b7
KT
6490 * detach_tasks() -- tries to detach up to imbalance weighted load from
6491 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6492 *
163122b7 6493 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6494 */
163122b7 6495static int detach_tasks(struct lb_env *env)
1e3c88bd 6496{
5d6523eb
PZ
6497 struct list_head *tasks = &env->src_rq->cfs_tasks;
6498 struct task_struct *p;
367456c7 6499 unsigned long load;
163122b7
KT
6500 int detached = 0;
6501
6502 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6503
bd939f45 6504 if (env->imbalance <= 0)
5d6523eb 6505 return 0;
1e3c88bd 6506
5d6523eb 6507 while (!list_empty(tasks)) {
985d3a4c
YD
6508 /*
6509 * We don't want to steal all, otherwise we may be treated likewise,
6510 * which could at worst lead to a livelock crash.
6511 */
6512 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6513 break;
6514
5d6523eb 6515 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6516
367456c7
PZ
6517 env->loop++;
6518 /* We've more or less seen every task there is, call it quits */
5d6523eb 6519 if (env->loop > env->loop_max)
367456c7 6520 break;
5d6523eb
PZ
6521
6522 /* take a breather every nr_migrate tasks */
367456c7 6523 if (env->loop > env->loop_break) {
eb95308e 6524 env->loop_break += sched_nr_migrate_break;
8e45cb54 6525 env->flags |= LBF_NEED_BREAK;
ee00e66f 6526 break;
a195f004 6527 }
1e3c88bd 6528
d3198084 6529 if (!can_migrate_task(p, env))
367456c7
PZ
6530 goto next;
6531
6532 load = task_h_load(p);
5d6523eb 6533
eb95308e 6534 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6535 goto next;
6536
bd939f45 6537 if ((load / 2) > env->imbalance)
367456c7 6538 goto next;
1e3c88bd 6539
163122b7
KT
6540 detach_task(p, env);
6541 list_add(&p->se.group_node, &env->tasks);
6542
6543 detached++;
bd939f45 6544 env->imbalance -= load;
1e3c88bd
PZ
6545
6546#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6547 /*
6548 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6549 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6550 * the critical section.
6551 */
5d6523eb 6552 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6553 break;
1e3c88bd
PZ
6554#endif
6555
ee00e66f
PZ
6556 /*
6557 * We only want to steal up to the prescribed amount of
6558 * weighted load.
6559 */
bd939f45 6560 if (env->imbalance <= 0)
ee00e66f 6561 break;
367456c7
PZ
6562
6563 continue;
6564next:
5d6523eb 6565 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6566 }
5d6523eb 6567
1e3c88bd 6568 /*
163122b7
KT
6569 * Right now, this is one of only two places we collect this stat
6570 * so we can safely collect detach_one_task() stats here rather
6571 * than inside detach_one_task().
1e3c88bd 6572 */
ae92882e 6573 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6574
163122b7
KT
6575 return detached;
6576}
6577
6578/*
6579 * attach_task() -- attach the task detached by detach_task() to its new rq.
6580 */
6581static void attach_task(struct rq *rq, struct task_struct *p)
6582{
6583 lockdep_assert_held(&rq->lock);
6584
6585 BUG_ON(task_rq(p) != rq);
163122b7 6586 activate_task(rq, p, 0);
3ea94de1 6587 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6588 check_preempt_curr(rq, p, 0);
6589}
6590
6591/*
6592 * attach_one_task() -- attaches the task returned from detach_one_task() to
6593 * its new rq.
6594 */
6595static void attach_one_task(struct rq *rq, struct task_struct *p)
6596{
6597 raw_spin_lock(&rq->lock);
6598 attach_task(rq, p);
6599 raw_spin_unlock(&rq->lock);
6600}
6601
6602/*
6603 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6604 * new rq.
6605 */
6606static void attach_tasks(struct lb_env *env)
6607{
6608 struct list_head *tasks = &env->tasks;
6609 struct task_struct *p;
6610
6611 raw_spin_lock(&env->dst_rq->lock);
6612
6613 while (!list_empty(tasks)) {
6614 p = list_first_entry(tasks, struct task_struct, se.group_node);
6615 list_del_init(&p->se.group_node);
1e3c88bd 6616
163122b7
KT
6617 attach_task(env->dst_rq, p);
6618 }
6619
6620 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6621}
6622
230059de 6623#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6624static void update_blocked_averages(int cpu)
9e3081ca 6625{
9e3081ca 6626 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6627 struct cfs_rq *cfs_rq;
6628 unsigned long flags;
9e3081ca 6629
48a16753
PT
6630 raw_spin_lock_irqsave(&rq->lock, flags);
6631 update_rq_clock(rq);
9d89c257 6632
9763b67f
PZ
6633 /*
6634 * Iterates the task_group tree in a bottom up fashion, see
6635 * list_add_leaf_cfs_rq() for details.
6636 */
64660c86 6637 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6638 /* throttled entities do not contribute to load */
6639 if (throttled_hierarchy(cfs_rq))
6640 continue;
48a16753 6641
a2c6c91f 6642 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6643 update_tg_load_avg(cfs_rq, 0);
6644 }
48a16753 6645 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6646}
6647
9763b67f 6648/*
68520796 6649 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6650 * This needs to be done in a top-down fashion because the load of a child
6651 * group is a fraction of its parents load.
6652 */
68520796 6653static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6654{
68520796
VD
6655 struct rq *rq = rq_of(cfs_rq);
6656 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6657 unsigned long now = jiffies;
68520796 6658 unsigned long load;
a35b6466 6659
68520796 6660 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6661 return;
6662
68520796
VD
6663 cfs_rq->h_load_next = NULL;
6664 for_each_sched_entity(se) {
6665 cfs_rq = cfs_rq_of(se);
6666 cfs_rq->h_load_next = se;
6667 if (cfs_rq->last_h_load_update == now)
6668 break;
6669 }
a35b6466 6670
68520796 6671 if (!se) {
7ea241af 6672 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6673 cfs_rq->last_h_load_update = now;
6674 }
6675
6676 while ((se = cfs_rq->h_load_next) != NULL) {
6677 load = cfs_rq->h_load;
7ea241af
YD
6678 load = div64_ul(load * se->avg.load_avg,
6679 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6680 cfs_rq = group_cfs_rq(se);
6681 cfs_rq->h_load = load;
6682 cfs_rq->last_h_load_update = now;
6683 }
9763b67f
PZ
6684}
6685
367456c7 6686static unsigned long task_h_load(struct task_struct *p)
230059de 6687{
367456c7 6688 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6689
68520796 6690 update_cfs_rq_h_load(cfs_rq);
9d89c257 6691 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6692 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6693}
6694#else
48a16753 6695static inline void update_blocked_averages(int cpu)
9e3081ca 6696{
6c1d47c0
VG
6697 struct rq *rq = cpu_rq(cpu);
6698 struct cfs_rq *cfs_rq = &rq->cfs;
6699 unsigned long flags;
6700
6701 raw_spin_lock_irqsave(&rq->lock, flags);
6702 update_rq_clock(rq);
a2c6c91f 6703 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6704 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6705}
6706
367456c7 6707static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6708{
9d89c257 6709 return p->se.avg.load_avg;
1e3c88bd 6710}
230059de 6711#endif
1e3c88bd 6712
1e3c88bd 6713/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6714
6715enum group_type {
6716 group_other = 0,
6717 group_imbalanced,
6718 group_overloaded,
6719};
6720
1e3c88bd
PZ
6721/*
6722 * sg_lb_stats - stats of a sched_group required for load_balancing
6723 */
6724struct sg_lb_stats {
6725 unsigned long avg_load; /*Avg load across the CPUs of the group */
6726 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6727 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6728 unsigned long load_per_task;
63b2ca30 6729 unsigned long group_capacity;
9e91d61d 6730 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6731 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6732 unsigned int idle_cpus;
6733 unsigned int group_weight;
caeb178c 6734 enum group_type group_type;
ea67821b 6735 int group_no_capacity;
0ec8aa00
PZ
6736#ifdef CONFIG_NUMA_BALANCING
6737 unsigned int nr_numa_running;
6738 unsigned int nr_preferred_running;
6739#endif
1e3c88bd
PZ
6740};
6741
56cf515b
JK
6742/*
6743 * sd_lb_stats - Structure to store the statistics of a sched_domain
6744 * during load balancing.
6745 */
6746struct sd_lb_stats {
6747 struct sched_group *busiest; /* Busiest group in this sd */
6748 struct sched_group *local; /* Local group in this sd */
6749 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6750 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6751 unsigned long avg_load; /* Average load across all groups in sd */
6752
56cf515b 6753 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6754 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6755};
6756
147c5fc2
PZ
6757static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6758{
6759 /*
6760 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6761 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6762 * We must however clear busiest_stat::avg_load because
6763 * update_sd_pick_busiest() reads this before assignment.
6764 */
6765 *sds = (struct sd_lb_stats){
6766 .busiest = NULL,
6767 .local = NULL,
6768 .total_load = 0UL,
63b2ca30 6769 .total_capacity = 0UL,
147c5fc2
PZ
6770 .busiest_stat = {
6771 .avg_load = 0UL,
caeb178c
RR
6772 .sum_nr_running = 0,
6773 .group_type = group_other,
147c5fc2
PZ
6774 },
6775 };
6776}
6777
1e3c88bd
PZ
6778/**
6779 * get_sd_load_idx - Obtain the load index for a given sched domain.
6780 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6781 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6782 *
6783 * Return: The load index.
1e3c88bd
PZ
6784 */
6785static inline int get_sd_load_idx(struct sched_domain *sd,
6786 enum cpu_idle_type idle)
6787{
6788 int load_idx;
6789
6790 switch (idle) {
6791 case CPU_NOT_IDLE:
6792 load_idx = sd->busy_idx;
6793 break;
6794
6795 case CPU_NEWLY_IDLE:
6796 load_idx = sd->newidle_idx;
6797 break;
6798 default:
6799 load_idx = sd->idle_idx;
6800 break;
6801 }
6802
6803 return load_idx;
6804}
6805
ced549fa 6806static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6807{
6808 struct rq *rq = cpu_rq(cpu);
b5b4860d 6809 u64 total, used, age_stamp, avg;
cadefd3d 6810 s64 delta;
1e3c88bd 6811
b654f7de
PZ
6812 /*
6813 * Since we're reading these variables without serialization make sure
6814 * we read them once before doing sanity checks on them.
6815 */
316c1608
JL
6816 age_stamp = READ_ONCE(rq->age_stamp);
6817 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6818 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6819
cadefd3d
PZ
6820 if (unlikely(delta < 0))
6821 delta = 0;
6822
6823 total = sched_avg_period() + delta;
aa483808 6824
b5b4860d 6825 used = div_u64(avg, total);
1e3c88bd 6826
b5b4860d
VG
6827 if (likely(used < SCHED_CAPACITY_SCALE))
6828 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6829
b5b4860d 6830 return 1;
1e3c88bd
PZ
6831}
6832
ced549fa 6833static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6834{
8cd5601c 6835 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6836 struct sched_group *sdg = sd->groups;
6837
ca6d75e6 6838 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6839
ced549fa 6840 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6841 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6842
ced549fa
NP
6843 if (!capacity)
6844 capacity = 1;
1e3c88bd 6845
ced549fa
NP
6846 cpu_rq(cpu)->cpu_capacity = capacity;
6847 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6848}
6849
63b2ca30 6850void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6851{
6852 struct sched_domain *child = sd->child;
6853 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6854 unsigned long capacity;
4ec4412e
VG
6855 unsigned long interval;
6856
6857 interval = msecs_to_jiffies(sd->balance_interval);
6858 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6859 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6860
6861 if (!child) {
ced549fa 6862 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6863 return;
6864 }
6865
dc7ff76e 6866 capacity = 0;
1e3c88bd 6867
74a5ce20
PZ
6868 if (child->flags & SD_OVERLAP) {
6869 /*
6870 * SD_OVERLAP domains cannot assume that child groups
6871 * span the current group.
6872 */
6873
863bffc8 6874 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6875 struct sched_group_capacity *sgc;
9abf24d4 6876 struct rq *rq = cpu_rq(cpu);
863bffc8 6877
9abf24d4 6878 /*
63b2ca30 6879 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6880 * gets here before we've attached the domains to the
6881 * runqueues.
6882 *
ced549fa
NP
6883 * Use capacity_of(), which is set irrespective of domains
6884 * in update_cpu_capacity().
9abf24d4 6885 *
dc7ff76e 6886 * This avoids capacity from being 0 and
9abf24d4 6887 * causing divide-by-zero issues on boot.
9abf24d4
SD
6888 */
6889 if (unlikely(!rq->sd)) {
ced549fa 6890 capacity += capacity_of(cpu);
9abf24d4
SD
6891 continue;
6892 }
863bffc8 6893
63b2ca30 6894 sgc = rq->sd->groups->sgc;
63b2ca30 6895 capacity += sgc->capacity;
863bffc8 6896 }
74a5ce20
PZ
6897 } else {
6898 /*
6899 * !SD_OVERLAP domains can assume that child groups
6900 * span the current group.
97a7142f 6901 */
74a5ce20
PZ
6902
6903 group = child->groups;
6904 do {
63b2ca30 6905 capacity += group->sgc->capacity;
74a5ce20
PZ
6906 group = group->next;
6907 } while (group != child->groups);
6908 }
1e3c88bd 6909
63b2ca30 6910 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6911}
6912
9d5efe05 6913/*
ea67821b
VG
6914 * Check whether the capacity of the rq has been noticeably reduced by side
6915 * activity. The imbalance_pct is used for the threshold.
6916 * Return true is the capacity is reduced
9d5efe05
SV
6917 */
6918static inline int
ea67821b 6919check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6920{
ea67821b
VG
6921 return ((rq->cpu_capacity * sd->imbalance_pct) <
6922 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6923}
6924
30ce5dab
PZ
6925/*
6926 * Group imbalance indicates (and tries to solve) the problem where balancing
6927 * groups is inadequate due to tsk_cpus_allowed() constraints.
6928 *
6929 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6930 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6931 * Something like:
6932 *
6933 * { 0 1 2 3 } { 4 5 6 7 }
6934 * * * * *
6935 *
6936 * If we were to balance group-wise we'd place two tasks in the first group and
6937 * two tasks in the second group. Clearly this is undesired as it will overload
6938 * cpu 3 and leave one of the cpus in the second group unused.
6939 *
6940 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6941 * by noticing the lower domain failed to reach balance and had difficulty
6942 * moving tasks due to affinity constraints.
30ce5dab
PZ
6943 *
6944 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6945 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6946 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6947 * to create an effective group imbalance.
6948 *
6949 * This is a somewhat tricky proposition since the next run might not find the
6950 * group imbalance and decide the groups need to be balanced again. A most
6951 * subtle and fragile situation.
6952 */
6953
6263322c 6954static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6955{
63b2ca30 6956 return group->sgc->imbalance;
30ce5dab
PZ
6957}
6958
b37d9316 6959/*
ea67821b
VG
6960 * group_has_capacity returns true if the group has spare capacity that could
6961 * be used by some tasks.
6962 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6963 * smaller than the number of CPUs or if the utilization is lower than the
6964 * available capacity for CFS tasks.
ea67821b
VG
6965 * For the latter, we use a threshold to stabilize the state, to take into
6966 * account the variance of the tasks' load and to return true if the available
6967 * capacity in meaningful for the load balancer.
6968 * As an example, an available capacity of 1% can appear but it doesn't make
6969 * any benefit for the load balance.
b37d9316 6970 */
ea67821b
VG
6971static inline bool
6972group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6973{
ea67821b
VG
6974 if (sgs->sum_nr_running < sgs->group_weight)
6975 return true;
c61037e9 6976
ea67821b 6977 if ((sgs->group_capacity * 100) >
9e91d61d 6978 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6979 return true;
b37d9316 6980
ea67821b
VG
6981 return false;
6982}
6983
6984/*
6985 * group_is_overloaded returns true if the group has more tasks than it can
6986 * handle.
6987 * group_is_overloaded is not equals to !group_has_capacity because a group
6988 * with the exact right number of tasks, has no more spare capacity but is not
6989 * overloaded so both group_has_capacity and group_is_overloaded return
6990 * false.
6991 */
6992static inline bool
6993group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6994{
6995 if (sgs->sum_nr_running <= sgs->group_weight)
6996 return false;
b37d9316 6997
ea67821b 6998 if ((sgs->group_capacity * 100) <
9e91d61d 6999 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7000 return true;
b37d9316 7001
ea67821b 7002 return false;
b37d9316
PZ
7003}
7004
79a89f92
LY
7005static inline enum
7006group_type group_classify(struct sched_group *group,
7007 struct sg_lb_stats *sgs)
caeb178c 7008{
ea67821b 7009 if (sgs->group_no_capacity)
caeb178c
RR
7010 return group_overloaded;
7011
7012 if (sg_imbalanced(group))
7013 return group_imbalanced;
7014
7015 return group_other;
7016}
7017
1e3c88bd
PZ
7018/**
7019 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7020 * @env: The load balancing environment.
1e3c88bd 7021 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7022 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7023 * @local_group: Does group contain this_cpu.
1e3c88bd 7024 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7025 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7026 */
bd939f45
PZ
7027static inline void update_sg_lb_stats(struct lb_env *env,
7028 struct sched_group *group, int load_idx,
4486edd1
TC
7029 int local_group, struct sg_lb_stats *sgs,
7030 bool *overload)
1e3c88bd 7031{
30ce5dab 7032 unsigned long load;
a426f99c 7033 int i, nr_running;
1e3c88bd 7034
b72ff13c
PZ
7035 memset(sgs, 0, sizeof(*sgs));
7036
b9403130 7037 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7038 struct rq *rq = cpu_rq(i);
7039
1e3c88bd 7040 /* Bias balancing toward cpus of our domain */
6263322c 7041 if (local_group)
04f733b4 7042 load = target_load(i, load_idx);
6263322c 7043 else
1e3c88bd 7044 load = source_load(i, load_idx);
1e3c88bd
PZ
7045
7046 sgs->group_load += load;
9e91d61d 7047 sgs->group_util += cpu_util(i);
65fdac08 7048 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7049
a426f99c
WL
7050 nr_running = rq->nr_running;
7051 if (nr_running > 1)
4486edd1
TC
7052 *overload = true;
7053
0ec8aa00
PZ
7054#ifdef CONFIG_NUMA_BALANCING
7055 sgs->nr_numa_running += rq->nr_numa_running;
7056 sgs->nr_preferred_running += rq->nr_preferred_running;
7057#endif
1e3c88bd 7058 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7059 /*
7060 * No need to call idle_cpu() if nr_running is not 0
7061 */
7062 if (!nr_running && idle_cpu(i))
aae6d3dd 7063 sgs->idle_cpus++;
1e3c88bd
PZ
7064 }
7065
63b2ca30
NP
7066 /* Adjust by relative CPU capacity of the group */
7067 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7068 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7069
dd5feea1 7070 if (sgs->sum_nr_running)
38d0f770 7071 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7072
aae6d3dd 7073 sgs->group_weight = group->group_weight;
b37d9316 7074
ea67821b 7075 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7076 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7077}
7078
532cb4c4
MN
7079/**
7080 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7081 * @env: The load balancing environment.
532cb4c4
MN
7082 * @sds: sched_domain statistics
7083 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7084 * @sgs: sched_group statistics
532cb4c4
MN
7085 *
7086 * Determine if @sg is a busier group than the previously selected
7087 * busiest group.
e69f6186
YB
7088 *
7089 * Return: %true if @sg is a busier group than the previously selected
7090 * busiest group. %false otherwise.
532cb4c4 7091 */
bd939f45 7092static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7093 struct sd_lb_stats *sds,
7094 struct sched_group *sg,
bd939f45 7095 struct sg_lb_stats *sgs)
532cb4c4 7096{
caeb178c 7097 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7098
caeb178c 7099 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7100 return true;
7101
caeb178c
RR
7102 if (sgs->group_type < busiest->group_type)
7103 return false;
7104
7105 if (sgs->avg_load <= busiest->avg_load)
7106 return false;
7107
7108 /* This is the busiest node in its class. */
7109 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7110 return true;
7111
1f621e02
SD
7112 /* No ASYM_PACKING if target cpu is already busy */
7113 if (env->idle == CPU_NOT_IDLE)
7114 return true;
532cb4c4
MN
7115 /*
7116 * ASYM_PACKING needs to move all the work to the lowest
7117 * numbered CPUs in the group, therefore mark all groups
7118 * higher than ourself as busy.
7119 */
caeb178c 7120 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
7121 if (!sds->busiest)
7122 return true;
7123
1f621e02
SD
7124 /* Prefer to move from highest possible cpu's work */
7125 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
7126 return true;
7127 }
7128
7129 return false;
7130}
7131
0ec8aa00
PZ
7132#ifdef CONFIG_NUMA_BALANCING
7133static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7134{
7135 if (sgs->sum_nr_running > sgs->nr_numa_running)
7136 return regular;
7137 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7138 return remote;
7139 return all;
7140}
7141
7142static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7143{
7144 if (rq->nr_running > rq->nr_numa_running)
7145 return regular;
7146 if (rq->nr_running > rq->nr_preferred_running)
7147 return remote;
7148 return all;
7149}
7150#else
7151static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7152{
7153 return all;
7154}
7155
7156static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7157{
7158 return regular;
7159}
7160#endif /* CONFIG_NUMA_BALANCING */
7161
1e3c88bd 7162/**
461819ac 7163 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7164 * @env: The load balancing environment.
1e3c88bd
PZ
7165 * @sds: variable to hold the statistics for this sched_domain.
7166 */
0ec8aa00 7167static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7168{
bd939f45
PZ
7169 struct sched_domain *child = env->sd->child;
7170 struct sched_group *sg = env->sd->groups;
56cf515b 7171 struct sg_lb_stats tmp_sgs;
1e3c88bd 7172 int load_idx, prefer_sibling = 0;
4486edd1 7173 bool overload = false;
1e3c88bd
PZ
7174
7175 if (child && child->flags & SD_PREFER_SIBLING)
7176 prefer_sibling = 1;
7177
bd939f45 7178 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7179
7180 do {
56cf515b 7181 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7182 int local_group;
7183
bd939f45 7184 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7185 if (local_group) {
7186 sds->local = sg;
7187 sgs = &sds->local_stat;
b72ff13c
PZ
7188
7189 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7190 time_after_eq(jiffies, sg->sgc->next_update))
7191 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7192 }
1e3c88bd 7193
4486edd1
TC
7194 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7195 &overload);
1e3c88bd 7196
b72ff13c
PZ
7197 if (local_group)
7198 goto next_group;
7199
1e3c88bd
PZ
7200 /*
7201 * In case the child domain prefers tasks go to siblings
ea67821b 7202 * first, lower the sg capacity so that we'll try
75dd321d
NR
7203 * and move all the excess tasks away. We lower the capacity
7204 * of a group only if the local group has the capacity to fit
ea67821b
VG
7205 * these excess tasks. The extra check prevents the case where
7206 * you always pull from the heaviest group when it is already
7207 * under-utilized (possible with a large weight task outweighs
7208 * the tasks on the system).
1e3c88bd 7209 */
b72ff13c 7210 if (prefer_sibling && sds->local &&
ea67821b
VG
7211 group_has_capacity(env, &sds->local_stat) &&
7212 (sgs->sum_nr_running > 1)) {
7213 sgs->group_no_capacity = 1;
79a89f92 7214 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7215 }
1e3c88bd 7216
b72ff13c 7217 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7218 sds->busiest = sg;
56cf515b 7219 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7220 }
7221
b72ff13c
PZ
7222next_group:
7223 /* Now, start updating sd_lb_stats */
7224 sds->total_load += sgs->group_load;
63b2ca30 7225 sds->total_capacity += sgs->group_capacity;
b72ff13c 7226
532cb4c4 7227 sg = sg->next;
bd939f45 7228 } while (sg != env->sd->groups);
0ec8aa00
PZ
7229
7230 if (env->sd->flags & SD_NUMA)
7231 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7232
7233 if (!env->sd->parent) {
7234 /* update overload indicator if we are at root domain */
7235 if (env->dst_rq->rd->overload != overload)
7236 env->dst_rq->rd->overload = overload;
7237 }
7238
532cb4c4
MN
7239}
7240
532cb4c4
MN
7241/**
7242 * check_asym_packing - Check to see if the group is packed into the
7243 * sched doman.
7244 *
7245 * This is primarily intended to used at the sibling level. Some
7246 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7247 * case of POWER7, it can move to lower SMT modes only when higher
7248 * threads are idle. When in lower SMT modes, the threads will
7249 * perform better since they share less core resources. Hence when we
7250 * have idle threads, we want them to be the higher ones.
7251 *
7252 * This packing function is run on idle threads. It checks to see if
7253 * the busiest CPU in this domain (core in the P7 case) has a higher
7254 * CPU number than the packing function is being run on. Here we are
7255 * assuming lower CPU number will be equivalent to lower a SMT thread
7256 * number.
7257 *
e69f6186 7258 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7259 * this CPU. The amount of the imbalance is returned in *imbalance.
7260 *
cd96891d 7261 * @env: The load balancing environment.
532cb4c4 7262 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7263 */
bd939f45 7264static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7265{
7266 int busiest_cpu;
7267
bd939f45 7268 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7269 return 0;
7270
1f621e02
SD
7271 if (env->idle == CPU_NOT_IDLE)
7272 return 0;
7273
532cb4c4
MN
7274 if (!sds->busiest)
7275 return 0;
7276
7277 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7278 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7279 return 0;
7280
bd939f45 7281 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7282 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7283 SCHED_CAPACITY_SCALE);
bd939f45 7284
532cb4c4 7285 return 1;
1e3c88bd
PZ
7286}
7287
7288/**
7289 * fix_small_imbalance - Calculate the minor imbalance that exists
7290 * amongst the groups of a sched_domain, during
7291 * load balancing.
cd96891d 7292 * @env: The load balancing environment.
1e3c88bd 7293 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7294 */
bd939f45
PZ
7295static inline
7296void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7297{
63b2ca30 7298 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7299 unsigned int imbn = 2;
dd5feea1 7300 unsigned long scaled_busy_load_per_task;
56cf515b 7301 struct sg_lb_stats *local, *busiest;
1e3c88bd 7302
56cf515b
JK
7303 local = &sds->local_stat;
7304 busiest = &sds->busiest_stat;
1e3c88bd 7305
56cf515b
JK
7306 if (!local->sum_nr_running)
7307 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7308 else if (busiest->load_per_task > local->load_per_task)
7309 imbn = 1;
dd5feea1 7310
56cf515b 7311 scaled_busy_load_per_task =
ca8ce3d0 7312 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7313 busiest->group_capacity;
56cf515b 7314
3029ede3
VD
7315 if (busiest->avg_load + scaled_busy_load_per_task >=
7316 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7317 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7318 return;
7319 }
7320
7321 /*
7322 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7323 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7324 * moving them.
7325 */
7326
63b2ca30 7327 capa_now += busiest->group_capacity *
56cf515b 7328 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7329 capa_now += local->group_capacity *
56cf515b 7330 min(local->load_per_task, local->avg_load);
ca8ce3d0 7331 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7332
7333 /* Amount of load we'd subtract */
a2cd4260 7334 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7335 capa_move += busiest->group_capacity *
56cf515b 7336 min(busiest->load_per_task,
a2cd4260 7337 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7338 }
1e3c88bd
PZ
7339
7340 /* Amount of load we'd add */
63b2ca30 7341 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7342 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7343 tmp = (busiest->avg_load * busiest->group_capacity) /
7344 local->group_capacity;
56cf515b 7345 } else {
ca8ce3d0 7346 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7347 local->group_capacity;
56cf515b 7348 }
63b2ca30 7349 capa_move += local->group_capacity *
3ae11c90 7350 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7351 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7352
7353 /* Move if we gain throughput */
63b2ca30 7354 if (capa_move > capa_now)
56cf515b 7355 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7356}
7357
7358/**
7359 * calculate_imbalance - Calculate the amount of imbalance present within the
7360 * groups of a given sched_domain during load balance.
bd939f45 7361 * @env: load balance environment
1e3c88bd 7362 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7363 */
bd939f45 7364static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7365{
dd5feea1 7366 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7367 struct sg_lb_stats *local, *busiest;
7368
7369 local = &sds->local_stat;
56cf515b 7370 busiest = &sds->busiest_stat;
dd5feea1 7371
caeb178c 7372 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7373 /*
7374 * In the group_imb case we cannot rely on group-wide averages
7375 * to ensure cpu-load equilibrium, look at wider averages. XXX
7376 */
56cf515b
JK
7377 busiest->load_per_task =
7378 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7379 }
7380
1e3c88bd 7381 /*
885e542c
DE
7382 * Avg load of busiest sg can be less and avg load of local sg can
7383 * be greater than avg load across all sgs of sd because avg load
7384 * factors in sg capacity and sgs with smaller group_type are
7385 * skipped when updating the busiest sg:
1e3c88bd 7386 */
b1885550
VD
7387 if (busiest->avg_load <= sds->avg_load ||
7388 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7389 env->imbalance = 0;
7390 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7391 }
7392
9a5d9ba6
PZ
7393 /*
7394 * If there aren't any idle cpus, avoid creating some.
7395 */
7396 if (busiest->group_type == group_overloaded &&
7397 local->group_type == group_overloaded) {
1be0eb2a 7398 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7399 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7400 load_above_capacity -= busiest->group_capacity;
26656215 7401 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7402 load_above_capacity /= busiest->group_capacity;
7403 } else
ea67821b 7404 load_above_capacity = ~0UL;
dd5feea1
SS
7405 }
7406
7407 /*
7408 * We're trying to get all the cpus to the average_load, so we don't
7409 * want to push ourselves above the average load, nor do we wish to
7410 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7411 * we also don't want to reduce the group load below the group
7412 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7413 */
30ce5dab 7414 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7415
7416 /* How much load to actually move to equalise the imbalance */
56cf515b 7417 env->imbalance = min(
63b2ca30
NP
7418 max_pull * busiest->group_capacity,
7419 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7420 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7421
7422 /*
7423 * if *imbalance is less than the average load per runnable task
25985edc 7424 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7425 * a think about bumping its value to force at least one task to be
7426 * moved
7427 */
56cf515b 7428 if (env->imbalance < busiest->load_per_task)
bd939f45 7429 return fix_small_imbalance(env, sds);
1e3c88bd 7430}
fab47622 7431
1e3c88bd
PZ
7432/******* find_busiest_group() helpers end here *********************/
7433
7434/**
7435 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7436 * if there is an imbalance.
1e3c88bd
PZ
7437 *
7438 * Also calculates the amount of weighted load which should be moved
7439 * to restore balance.
7440 *
cd96891d 7441 * @env: The load balancing environment.
1e3c88bd 7442 *
e69f6186 7443 * Return: - The busiest group if imbalance exists.
1e3c88bd 7444 */
56cf515b 7445static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7446{
56cf515b 7447 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7448 struct sd_lb_stats sds;
7449
147c5fc2 7450 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7451
7452 /*
7453 * Compute the various statistics relavent for load balancing at
7454 * this level.
7455 */
23f0d209 7456 update_sd_lb_stats(env, &sds);
56cf515b
JK
7457 local = &sds.local_stat;
7458 busiest = &sds.busiest_stat;
1e3c88bd 7459
ea67821b 7460 /* ASYM feature bypasses nice load balance check */
1f621e02 7461 if (check_asym_packing(env, &sds))
532cb4c4
MN
7462 return sds.busiest;
7463
cc57aa8f 7464 /* There is no busy sibling group to pull tasks from */
56cf515b 7465 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7466 goto out_balanced;
7467
ca8ce3d0
NP
7468 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7469 / sds.total_capacity;
b0432d8f 7470
866ab43e
PZ
7471 /*
7472 * If the busiest group is imbalanced the below checks don't
30ce5dab 7473 * work because they assume all things are equal, which typically
866ab43e
PZ
7474 * isn't true due to cpus_allowed constraints and the like.
7475 */
caeb178c 7476 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7477 goto force_balance;
7478
cc57aa8f 7479 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7480 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7481 busiest->group_no_capacity)
fab47622
NR
7482 goto force_balance;
7483
cc57aa8f 7484 /*
9c58c79a 7485 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7486 * don't try and pull any tasks.
7487 */
56cf515b 7488 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7489 goto out_balanced;
7490
cc57aa8f
PZ
7491 /*
7492 * Don't pull any tasks if this group is already above the domain
7493 * average load.
7494 */
56cf515b 7495 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7496 goto out_balanced;
7497
bd939f45 7498 if (env->idle == CPU_IDLE) {
aae6d3dd 7499 /*
43f4d666
VG
7500 * This cpu is idle. If the busiest group is not overloaded
7501 * and there is no imbalance between this and busiest group
7502 * wrt idle cpus, it is balanced. The imbalance becomes
7503 * significant if the diff is greater than 1 otherwise we
7504 * might end up to just move the imbalance on another group
aae6d3dd 7505 */
43f4d666
VG
7506 if ((busiest->group_type != group_overloaded) &&
7507 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7508 goto out_balanced;
c186fafe
PZ
7509 } else {
7510 /*
7511 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7512 * imbalance_pct to be conservative.
7513 */
56cf515b
JK
7514 if (100 * busiest->avg_load <=
7515 env->sd->imbalance_pct * local->avg_load)
c186fafe 7516 goto out_balanced;
aae6d3dd 7517 }
1e3c88bd 7518
fab47622 7519force_balance:
1e3c88bd 7520 /* Looks like there is an imbalance. Compute it */
bd939f45 7521 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7522 return sds.busiest;
7523
7524out_balanced:
bd939f45 7525 env->imbalance = 0;
1e3c88bd
PZ
7526 return NULL;
7527}
7528
7529/*
7530 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7531 */
bd939f45 7532static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7533 struct sched_group *group)
1e3c88bd
PZ
7534{
7535 struct rq *busiest = NULL, *rq;
ced549fa 7536 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7537 int i;
7538
6906a408 7539 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7540 unsigned long capacity, wl;
0ec8aa00
PZ
7541 enum fbq_type rt;
7542
7543 rq = cpu_rq(i);
7544 rt = fbq_classify_rq(rq);
1e3c88bd 7545
0ec8aa00
PZ
7546 /*
7547 * We classify groups/runqueues into three groups:
7548 * - regular: there are !numa tasks
7549 * - remote: there are numa tasks that run on the 'wrong' node
7550 * - all: there is no distinction
7551 *
7552 * In order to avoid migrating ideally placed numa tasks,
7553 * ignore those when there's better options.
7554 *
7555 * If we ignore the actual busiest queue to migrate another
7556 * task, the next balance pass can still reduce the busiest
7557 * queue by moving tasks around inside the node.
7558 *
7559 * If we cannot move enough load due to this classification
7560 * the next pass will adjust the group classification and
7561 * allow migration of more tasks.
7562 *
7563 * Both cases only affect the total convergence complexity.
7564 */
7565 if (rt > env->fbq_type)
7566 continue;
7567
ced549fa 7568 capacity = capacity_of(i);
9d5efe05 7569
6e40f5bb 7570 wl = weighted_cpuload(i);
1e3c88bd 7571
6e40f5bb
TG
7572 /*
7573 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7574 * which is not scaled with the cpu capacity.
6e40f5bb 7575 */
ea67821b
VG
7576
7577 if (rq->nr_running == 1 && wl > env->imbalance &&
7578 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7579 continue;
7580
6e40f5bb
TG
7581 /*
7582 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7583 * the weighted_cpuload() scaled with the cpu capacity, so
7584 * that the load can be moved away from the cpu that is
7585 * potentially running at a lower capacity.
95a79b80 7586 *
ced549fa 7587 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7588 * multiplication to rid ourselves of the division works out
ced549fa
NP
7589 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7590 * our previous maximum.
6e40f5bb 7591 */
ced549fa 7592 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7593 busiest_load = wl;
ced549fa 7594 busiest_capacity = capacity;
1e3c88bd
PZ
7595 busiest = rq;
7596 }
7597 }
7598
7599 return busiest;
7600}
7601
7602/*
7603 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7604 * so long as it is large enough.
7605 */
7606#define MAX_PINNED_INTERVAL 512
7607
bd939f45 7608static int need_active_balance(struct lb_env *env)
1af3ed3d 7609{
bd939f45
PZ
7610 struct sched_domain *sd = env->sd;
7611
7612 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7613
7614 /*
7615 * ASYM_PACKING needs to force migrate tasks from busy but
7616 * higher numbered CPUs in order to pack all tasks in the
7617 * lowest numbered CPUs.
7618 */
bd939f45 7619 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7620 return 1;
1af3ed3d
PZ
7621 }
7622
1aaf90a4
VG
7623 /*
7624 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7625 * It's worth migrating the task if the src_cpu's capacity is reduced
7626 * because of other sched_class or IRQs if more capacity stays
7627 * available on dst_cpu.
7628 */
7629 if ((env->idle != CPU_NOT_IDLE) &&
7630 (env->src_rq->cfs.h_nr_running == 1)) {
7631 if ((check_cpu_capacity(env->src_rq, sd)) &&
7632 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7633 return 1;
7634 }
7635
1af3ed3d
PZ
7636 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7637}
7638
969c7921
TH
7639static int active_load_balance_cpu_stop(void *data);
7640
23f0d209
JK
7641static int should_we_balance(struct lb_env *env)
7642{
7643 struct sched_group *sg = env->sd->groups;
7644 struct cpumask *sg_cpus, *sg_mask;
7645 int cpu, balance_cpu = -1;
7646
7647 /*
7648 * In the newly idle case, we will allow all the cpu's
7649 * to do the newly idle load balance.
7650 */
7651 if (env->idle == CPU_NEWLY_IDLE)
7652 return 1;
7653
7654 sg_cpus = sched_group_cpus(sg);
7655 sg_mask = sched_group_mask(sg);
7656 /* Try to find first idle cpu */
7657 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7658 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7659 continue;
7660
7661 balance_cpu = cpu;
7662 break;
7663 }
7664
7665 if (balance_cpu == -1)
7666 balance_cpu = group_balance_cpu(sg);
7667
7668 /*
7669 * First idle cpu or the first cpu(busiest) in this sched group
7670 * is eligible for doing load balancing at this and above domains.
7671 */
b0cff9d8 7672 return balance_cpu == env->dst_cpu;
23f0d209
JK
7673}
7674
1e3c88bd
PZ
7675/*
7676 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7677 * tasks if there is an imbalance.
7678 */
7679static int load_balance(int this_cpu, struct rq *this_rq,
7680 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7681 int *continue_balancing)
1e3c88bd 7682{
88b8dac0 7683 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7684 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7685 struct sched_group *group;
1e3c88bd
PZ
7686 struct rq *busiest;
7687 unsigned long flags;
4ba29684 7688 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7689
8e45cb54
PZ
7690 struct lb_env env = {
7691 .sd = sd,
ddcdf6e7
PZ
7692 .dst_cpu = this_cpu,
7693 .dst_rq = this_rq,
88b8dac0 7694 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7695 .idle = idle,
eb95308e 7696 .loop_break = sched_nr_migrate_break,
b9403130 7697 .cpus = cpus,
0ec8aa00 7698 .fbq_type = all,
163122b7 7699 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7700 };
7701
cfc03118
JK
7702 /*
7703 * For NEWLY_IDLE load_balancing, we don't need to consider
7704 * other cpus in our group
7705 */
e02e60c1 7706 if (idle == CPU_NEWLY_IDLE)
cfc03118 7707 env.dst_grpmask = NULL;
cfc03118 7708
1e3c88bd
PZ
7709 cpumask_copy(cpus, cpu_active_mask);
7710
ae92882e 7711 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7712
7713redo:
23f0d209
JK
7714 if (!should_we_balance(&env)) {
7715 *continue_balancing = 0;
1e3c88bd 7716 goto out_balanced;
23f0d209 7717 }
1e3c88bd 7718
23f0d209 7719 group = find_busiest_group(&env);
1e3c88bd 7720 if (!group) {
ae92882e 7721 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7722 goto out_balanced;
7723 }
7724
b9403130 7725 busiest = find_busiest_queue(&env, group);
1e3c88bd 7726 if (!busiest) {
ae92882e 7727 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7728 goto out_balanced;
7729 }
7730
78feefc5 7731 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7732
ae92882e 7733 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 7734
1aaf90a4
VG
7735 env.src_cpu = busiest->cpu;
7736 env.src_rq = busiest;
7737
1e3c88bd
PZ
7738 ld_moved = 0;
7739 if (busiest->nr_running > 1) {
7740 /*
7741 * Attempt to move tasks. If find_busiest_group has found
7742 * an imbalance but busiest->nr_running <= 1, the group is
7743 * still unbalanced. ld_moved simply stays zero, so it is
7744 * correctly treated as an imbalance.
7745 */
8e45cb54 7746 env.flags |= LBF_ALL_PINNED;
c82513e5 7747 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7748
5d6523eb 7749more_balance:
163122b7 7750 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7751
7752 /*
7753 * cur_ld_moved - load moved in current iteration
7754 * ld_moved - cumulative load moved across iterations
7755 */
163122b7 7756 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7757
7758 /*
163122b7
KT
7759 * We've detached some tasks from busiest_rq. Every
7760 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7761 * unlock busiest->lock, and we are able to be sure
7762 * that nobody can manipulate the tasks in parallel.
7763 * See task_rq_lock() family for the details.
1e3c88bd 7764 */
163122b7
KT
7765
7766 raw_spin_unlock(&busiest->lock);
7767
7768 if (cur_ld_moved) {
7769 attach_tasks(&env);
7770 ld_moved += cur_ld_moved;
7771 }
7772
1e3c88bd 7773 local_irq_restore(flags);
88b8dac0 7774
f1cd0858
JK
7775 if (env.flags & LBF_NEED_BREAK) {
7776 env.flags &= ~LBF_NEED_BREAK;
7777 goto more_balance;
7778 }
7779
88b8dac0
SV
7780 /*
7781 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7782 * us and move them to an alternate dst_cpu in our sched_group
7783 * where they can run. The upper limit on how many times we
7784 * iterate on same src_cpu is dependent on number of cpus in our
7785 * sched_group.
7786 *
7787 * This changes load balance semantics a bit on who can move
7788 * load to a given_cpu. In addition to the given_cpu itself
7789 * (or a ilb_cpu acting on its behalf where given_cpu is
7790 * nohz-idle), we now have balance_cpu in a position to move
7791 * load to given_cpu. In rare situations, this may cause
7792 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7793 * _independently_ and at _same_ time to move some load to
7794 * given_cpu) causing exceess load to be moved to given_cpu.
7795 * This however should not happen so much in practice and
7796 * moreover subsequent load balance cycles should correct the
7797 * excess load moved.
7798 */
6263322c 7799 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7800
7aff2e3a
VD
7801 /* Prevent to re-select dst_cpu via env's cpus */
7802 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7803
78feefc5 7804 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7805 env.dst_cpu = env.new_dst_cpu;
6263322c 7806 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7807 env.loop = 0;
7808 env.loop_break = sched_nr_migrate_break;
e02e60c1 7809
88b8dac0
SV
7810 /*
7811 * Go back to "more_balance" rather than "redo" since we
7812 * need to continue with same src_cpu.
7813 */
7814 goto more_balance;
7815 }
1e3c88bd 7816
6263322c
PZ
7817 /*
7818 * We failed to reach balance because of affinity.
7819 */
7820 if (sd_parent) {
63b2ca30 7821 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7822
afdeee05 7823 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7824 *group_imbalance = 1;
6263322c
PZ
7825 }
7826
1e3c88bd 7827 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7828 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7829 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7830 if (!cpumask_empty(cpus)) {
7831 env.loop = 0;
7832 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7833 goto redo;
bbf18b19 7834 }
afdeee05 7835 goto out_all_pinned;
1e3c88bd
PZ
7836 }
7837 }
7838
7839 if (!ld_moved) {
ae92882e 7840 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
7841 /*
7842 * Increment the failure counter only on periodic balance.
7843 * We do not want newidle balance, which can be very
7844 * frequent, pollute the failure counter causing
7845 * excessive cache_hot migrations and active balances.
7846 */
7847 if (idle != CPU_NEWLY_IDLE)
7848 sd->nr_balance_failed++;
1e3c88bd 7849
bd939f45 7850 if (need_active_balance(&env)) {
1e3c88bd
PZ
7851 raw_spin_lock_irqsave(&busiest->lock, flags);
7852
969c7921
TH
7853 /* don't kick the active_load_balance_cpu_stop,
7854 * if the curr task on busiest cpu can't be
7855 * moved to this_cpu
1e3c88bd
PZ
7856 */
7857 if (!cpumask_test_cpu(this_cpu,
fa17b507 7858 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7859 raw_spin_unlock_irqrestore(&busiest->lock,
7860 flags);
8e45cb54 7861 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7862 goto out_one_pinned;
7863 }
7864
969c7921
TH
7865 /*
7866 * ->active_balance synchronizes accesses to
7867 * ->active_balance_work. Once set, it's cleared
7868 * only after active load balance is finished.
7869 */
1e3c88bd
PZ
7870 if (!busiest->active_balance) {
7871 busiest->active_balance = 1;
7872 busiest->push_cpu = this_cpu;
7873 active_balance = 1;
7874 }
7875 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7876
bd939f45 7877 if (active_balance) {
969c7921
TH
7878 stop_one_cpu_nowait(cpu_of(busiest),
7879 active_load_balance_cpu_stop, busiest,
7880 &busiest->active_balance_work);
bd939f45 7881 }
1e3c88bd 7882
d02c0711 7883 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7884 sd->nr_balance_failed = sd->cache_nice_tries+1;
7885 }
7886 } else
7887 sd->nr_balance_failed = 0;
7888
7889 if (likely(!active_balance)) {
7890 /* We were unbalanced, so reset the balancing interval */
7891 sd->balance_interval = sd->min_interval;
7892 } else {
7893 /*
7894 * If we've begun active balancing, start to back off. This
7895 * case may not be covered by the all_pinned logic if there
7896 * is only 1 task on the busy runqueue (because we don't call
163122b7 7897 * detach_tasks).
1e3c88bd
PZ
7898 */
7899 if (sd->balance_interval < sd->max_interval)
7900 sd->balance_interval *= 2;
7901 }
7902
1e3c88bd
PZ
7903 goto out;
7904
7905out_balanced:
afdeee05
VG
7906 /*
7907 * We reach balance although we may have faced some affinity
7908 * constraints. Clear the imbalance flag if it was set.
7909 */
7910 if (sd_parent) {
7911 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7912
7913 if (*group_imbalance)
7914 *group_imbalance = 0;
7915 }
7916
7917out_all_pinned:
7918 /*
7919 * We reach balance because all tasks are pinned at this level so
7920 * we can't migrate them. Let the imbalance flag set so parent level
7921 * can try to migrate them.
7922 */
ae92882e 7923 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
7924
7925 sd->nr_balance_failed = 0;
7926
7927out_one_pinned:
7928 /* tune up the balancing interval */
8e45cb54 7929 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7930 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7931 (sd->balance_interval < sd->max_interval))
7932 sd->balance_interval *= 2;
7933
46e49b38 7934 ld_moved = 0;
1e3c88bd 7935out:
1e3c88bd
PZ
7936 return ld_moved;
7937}
7938
52a08ef1
JL
7939static inline unsigned long
7940get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7941{
7942 unsigned long interval = sd->balance_interval;
7943
7944 if (cpu_busy)
7945 interval *= sd->busy_factor;
7946
7947 /* scale ms to jiffies */
7948 interval = msecs_to_jiffies(interval);
7949 interval = clamp(interval, 1UL, max_load_balance_interval);
7950
7951 return interval;
7952}
7953
7954static inline void
31851a98 7955update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7956{
7957 unsigned long interval, next;
7958
31851a98
LY
7959 /* used by idle balance, so cpu_busy = 0 */
7960 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7961 next = sd->last_balance + interval;
7962
7963 if (time_after(*next_balance, next))
7964 *next_balance = next;
7965}
7966
1e3c88bd
PZ
7967/*
7968 * idle_balance is called by schedule() if this_cpu is about to become
7969 * idle. Attempts to pull tasks from other CPUs.
7970 */
6e83125c 7971static int idle_balance(struct rq *this_rq)
1e3c88bd 7972{
52a08ef1
JL
7973 unsigned long next_balance = jiffies + HZ;
7974 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7975 struct sched_domain *sd;
7976 int pulled_task = 0;
9bd721c5 7977 u64 curr_cost = 0;
1e3c88bd 7978
6e83125c
PZ
7979 /*
7980 * We must set idle_stamp _before_ calling idle_balance(), such that we
7981 * measure the duration of idle_balance() as idle time.
7982 */
7983 this_rq->idle_stamp = rq_clock(this_rq);
7984
4486edd1
TC
7985 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7986 !this_rq->rd->overload) {
52a08ef1
JL
7987 rcu_read_lock();
7988 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7989 if (sd)
31851a98 7990 update_next_balance(sd, &next_balance);
52a08ef1
JL
7991 rcu_read_unlock();
7992
6e83125c 7993 goto out;
52a08ef1 7994 }
1e3c88bd 7995
f492e12e
PZ
7996 raw_spin_unlock(&this_rq->lock);
7997
48a16753 7998 update_blocked_averages(this_cpu);
dce840a0 7999 rcu_read_lock();
1e3c88bd 8000 for_each_domain(this_cpu, sd) {
23f0d209 8001 int continue_balancing = 1;
9bd721c5 8002 u64 t0, domain_cost;
1e3c88bd
PZ
8003
8004 if (!(sd->flags & SD_LOAD_BALANCE))
8005 continue;
8006
52a08ef1 8007 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8008 update_next_balance(sd, &next_balance);
9bd721c5 8009 break;
52a08ef1 8010 }
9bd721c5 8011
f492e12e 8012 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8013 t0 = sched_clock_cpu(this_cpu);
8014
f492e12e 8015 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8016 sd, CPU_NEWLY_IDLE,
8017 &continue_balancing);
9bd721c5
JL
8018
8019 domain_cost = sched_clock_cpu(this_cpu) - t0;
8020 if (domain_cost > sd->max_newidle_lb_cost)
8021 sd->max_newidle_lb_cost = domain_cost;
8022
8023 curr_cost += domain_cost;
f492e12e 8024 }
1e3c88bd 8025
31851a98 8026 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8027
8028 /*
8029 * Stop searching for tasks to pull if there are
8030 * now runnable tasks on this rq.
8031 */
8032 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8033 break;
1e3c88bd 8034 }
dce840a0 8035 rcu_read_unlock();
f492e12e
PZ
8036
8037 raw_spin_lock(&this_rq->lock);
8038
0e5b5337
JL
8039 if (curr_cost > this_rq->max_idle_balance_cost)
8040 this_rq->max_idle_balance_cost = curr_cost;
8041
e5fc6611 8042 /*
0e5b5337
JL
8043 * While browsing the domains, we released the rq lock, a task could
8044 * have been enqueued in the meantime. Since we're not going idle,
8045 * pretend we pulled a task.
e5fc6611 8046 */
0e5b5337 8047 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8048 pulled_task = 1;
e5fc6611 8049
52a08ef1
JL
8050out:
8051 /* Move the next balance forward */
8052 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8053 this_rq->next_balance = next_balance;
9bd721c5 8054
e4aa358b 8055 /* Is there a task of a high priority class? */
46383648 8056 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8057 pulled_task = -1;
8058
38c6ade2 8059 if (pulled_task)
6e83125c
PZ
8060 this_rq->idle_stamp = 0;
8061
3c4017c1 8062 return pulled_task;
1e3c88bd
PZ
8063}
8064
8065/*
969c7921
TH
8066 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8067 * running tasks off the busiest CPU onto idle CPUs. It requires at
8068 * least 1 task to be running on each physical CPU where possible, and
8069 * avoids physical / logical imbalances.
1e3c88bd 8070 */
969c7921 8071static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8072{
969c7921
TH
8073 struct rq *busiest_rq = data;
8074 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8075 int target_cpu = busiest_rq->push_cpu;
969c7921 8076 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8077 struct sched_domain *sd;
e5673f28 8078 struct task_struct *p = NULL;
969c7921
TH
8079
8080 raw_spin_lock_irq(&busiest_rq->lock);
8081
8082 /* make sure the requested cpu hasn't gone down in the meantime */
8083 if (unlikely(busiest_cpu != smp_processor_id() ||
8084 !busiest_rq->active_balance))
8085 goto out_unlock;
1e3c88bd
PZ
8086
8087 /* Is there any task to move? */
8088 if (busiest_rq->nr_running <= 1)
969c7921 8089 goto out_unlock;
1e3c88bd
PZ
8090
8091 /*
8092 * This condition is "impossible", if it occurs
8093 * we need to fix it. Originally reported by
8094 * Bjorn Helgaas on a 128-cpu setup.
8095 */
8096 BUG_ON(busiest_rq == target_rq);
8097
1e3c88bd 8098 /* Search for an sd spanning us and the target CPU. */
dce840a0 8099 rcu_read_lock();
1e3c88bd
PZ
8100 for_each_domain(target_cpu, sd) {
8101 if ((sd->flags & SD_LOAD_BALANCE) &&
8102 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8103 break;
8104 }
8105
8106 if (likely(sd)) {
8e45cb54
PZ
8107 struct lb_env env = {
8108 .sd = sd,
ddcdf6e7
PZ
8109 .dst_cpu = target_cpu,
8110 .dst_rq = target_rq,
8111 .src_cpu = busiest_rq->cpu,
8112 .src_rq = busiest_rq,
8e45cb54
PZ
8113 .idle = CPU_IDLE,
8114 };
8115
ae92882e 8116 schedstat_inc(sd->alb_count);
1e3c88bd 8117
e5673f28 8118 p = detach_one_task(&env);
d02c0711 8119 if (p) {
ae92882e 8120 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8121 /* Active balancing done, reset the failure counter. */
8122 sd->nr_balance_failed = 0;
8123 } else {
ae92882e 8124 schedstat_inc(sd->alb_failed);
d02c0711 8125 }
1e3c88bd 8126 }
dce840a0 8127 rcu_read_unlock();
969c7921
TH
8128out_unlock:
8129 busiest_rq->active_balance = 0;
e5673f28
KT
8130 raw_spin_unlock(&busiest_rq->lock);
8131
8132 if (p)
8133 attach_one_task(target_rq, p);
8134
8135 local_irq_enable();
8136
969c7921 8137 return 0;
1e3c88bd
PZ
8138}
8139
d987fc7f
MG
8140static inline int on_null_domain(struct rq *rq)
8141{
8142 return unlikely(!rcu_dereference_sched(rq->sd));
8143}
8144
3451d024 8145#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8146/*
8147 * idle load balancing details
83cd4fe2
VP
8148 * - When one of the busy CPUs notice that there may be an idle rebalancing
8149 * needed, they will kick the idle load balancer, which then does idle
8150 * load balancing for all the idle CPUs.
8151 */
1e3c88bd 8152static struct {
83cd4fe2 8153 cpumask_var_t idle_cpus_mask;
0b005cf5 8154 atomic_t nr_cpus;
83cd4fe2
VP
8155 unsigned long next_balance; /* in jiffy units */
8156} nohz ____cacheline_aligned;
1e3c88bd 8157
3dd0337d 8158static inline int find_new_ilb(void)
1e3c88bd 8159{
0b005cf5 8160 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8161
786d6dc7
SS
8162 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8163 return ilb;
8164
8165 return nr_cpu_ids;
1e3c88bd 8166}
1e3c88bd 8167
83cd4fe2
VP
8168/*
8169 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8170 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8171 * CPU (if there is one).
8172 */
0aeeeeba 8173static void nohz_balancer_kick(void)
83cd4fe2
VP
8174{
8175 int ilb_cpu;
8176
8177 nohz.next_balance++;
8178
3dd0337d 8179 ilb_cpu = find_new_ilb();
83cd4fe2 8180
0b005cf5
SS
8181 if (ilb_cpu >= nr_cpu_ids)
8182 return;
83cd4fe2 8183
cd490c5b 8184 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8185 return;
8186 /*
8187 * Use smp_send_reschedule() instead of resched_cpu().
8188 * This way we generate a sched IPI on the target cpu which
8189 * is idle. And the softirq performing nohz idle load balance
8190 * will be run before returning from the IPI.
8191 */
8192 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8193 return;
8194}
8195
20a5c8cc 8196void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8197{
8198 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8199 /*
8200 * Completely isolated CPUs don't ever set, so we must test.
8201 */
8202 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8203 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8204 atomic_dec(&nohz.nr_cpus);
8205 }
71325960
SS
8206 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8207 }
8208}
8209
69e1e811
SS
8210static inline void set_cpu_sd_state_busy(void)
8211{
8212 struct sched_domain *sd;
37dc6b50 8213 int cpu = smp_processor_id();
69e1e811 8214
69e1e811 8215 rcu_read_lock();
0e369d75 8216 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8217
8218 if (!sd || !sd->nohz_idle)
8219 goto unlock;
8220 sd->nohz_idle = 0;
8221
0e369d75 8222 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8223unlock:
69e1e811
SS
8224 rcu_read_unlock();
8225}
8226
8227void set_cpu_sd_state_idle(void)
8228{
8229 struct sched_domain *sd;
37dc6b50 8230 int cpu = smp_processor_id();
69e1e811 8231
69e1e811 8232 rcu_read_lock();
0e369d75 8233 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8234
8235 if (!sd || sd->nohz_idle)
8236 goto unlock;
8237 sd->nohz_idle = 1;
8238
0e369d75 8239 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8240unlock:
69e1e811
SS
8241 rcu_read_unlock();
8242}
8243
1e3c88bd 8244/*
c1cc017c 8245 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8246 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8247 */
c1cc017c 8248void nohz_balance_enter_idle(int cpu)
1e3c88bd 8249{
71325960
SS
8250 /*
8251 * If this cpu is going down, then nothing needs to be done.
8252 */
8253 if (!cpu_active(cpu))
8254 return;
8255
c1cc017c
AS
8256 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8257 return;
1e3c88bd 8258
d987fc7f
MG
8259 /*
8260 * If we're a completely isolated CPU, we don't play.
8261 */
8262 if (on_null_domain(cpu_rq(cpu)))
8263 return;
8264
c1cc017c
AS
8265 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8266 atomic_inc(&nohz.nr_cpus);
8267 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8268}
8269#endif
8270
8271static DEFINE_SPINLOCK(balancing);
8272
49c022e6
PZ
8273/*
8274 * Scale the max load_balance interval with the number of CPUs in the system.
8275 * This trades load-balance latency on larger machines for less cross talk.
8276 */
029632fb 8277void update_max_interval(void)
49c022e6
PZ
8278{
8279 max_load_balance_interval = HZ*num_online_cpus()/10;
8280}
8281
1e3c88bd
PZ
8282/*
8283 * It checks each scheduling domain to see if it is due to be balanced,
8284 * and initiates a balancing operation if so.
8285 *
b9b0853a 8286 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8287 */
f7ed0a89 8288static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8289{
23f0d209 8290 int continue_balancing = 1;
f7ed0a89 8291 int cpu = rq->cpu;
1e3c88bd 8292 unsigned long interval;
04f733b4 8293 struct sched_domain *sd;
1e3c88bd
PZ
8294 /* Earliest time when we have to do rebalance again */
8295 unsigned long next_balance = jiffies + 60*HZ;
8296 int update_next_balance = 0;
f48627e6
JL
8297 int need_serialize, need_decay = 0;
8298 u64 max_cost = 0;
1e3c88bd 8299
48a16753 8300 update_blocked_averages(cpu);
2069dd75 8301
dce840a0 8302 rcu_read_lock();
1e3c88bd 8303 for_each_domain(cpu, sd) {
f48627e6
JL
8304 /*
8305 * Decay the newidle max times here because this is a regular
8306 * visit to all the domains. Decay ~1% per second.
8307 */
8308 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8309 sd->max_newidle_lb_cost =
8310 (sd->max_newidle_lb_cost * 253) / 256;
8311 sd->next_decay_max_lb_cost = jiffies + HZ;
8312 need_decay = 1;
8313 }
8314 max_cost += sd->max_newidle_lb_cost;
8315
1e3c88bd
PZ
8316 if (!(sd->flags & SD_LOAD_BALANCE))
8317 continue;
8318
f48627e6
JL
8319 /*
8320 * Stop the load balance at this level. There is another
8321 * CPU in our sched group which is doing load balancing more
8322 * actively.
8323 */
8324 if (!continue_balancing) {
8325 if (need_decay)
8326 continue;
8327 break;
8328 }
8329
52a08ef1 8330 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8331
8332 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8333 if (need_serialize) {
8334 if (!spin_trylock(&balancing))
8335 goto out;
8336 }
8337
8338 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8339 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8340 /*
6263322c 8341 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8342 * env->dst_cpu, so we can't know our idle
8343 * state even if we migrated tasks. Update it.
1e3c88bd 8344 */
de5eb2dd 8345 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8346 }
8347 sd->last_balance = jiffies;
52a08ef1 8348 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8349 }
8350 if (need_serialize)
8351 spin_unlock(&balancing);
8352out:
8353 if (time_after(next_balance, sd->last_balance + interval)) {
8354 next_balance = sd->last_balance + interval;
8355 update_next_balance = 1;
8356 }
f48627e6
JL
8357 }
8358 if (need_decay) {
1e3c88bd 8359 /*
f48627e6
JL
8360 * Ensure the rq-wide value also decays but keep it at a
8361 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8362 */
f48627e6
JL
8363 rq->max_idle_balance_cost =
8364 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8365 }
dce840a0 8366 rcu_read_unlock();
1e3c88bd
PZ
8367
8368 /*
8369 * next_balance will be updated only when there is a need.
8370 * When the cpu is attached to null domain for ex, it will not be
8371 * updated.
8372 */
c5afb6a8 8373 if (likely(update_next_balance)) {
1e3c88bd 8374 rq->next_balance = next_balance;
c5afb6a8
VG
8375
8376#ifdef CONFIG_NO_HZ_COMMON
8377 /*
8378 * If this CPU has been elected to perform the nohz idle
8379 * balance. Other idle CPUs have already rebalanced with
8380 * nohz_idle_balance() and nohz.next_balance has been
8381 * updated accordingly. This CPU is now running the idle load
8382 * balance for itself and we need to update the
8383 * nohz.next_balance accordingly.
8384 */
8385 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8386 nohz.next_balance = rq->next_balance;
8387#endif
8388 }
1e3c88bd
PZ
8389}
8390
3451d024 8391#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8392/*
3451d024 8393 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8394 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8395 */
208cb16b 8396static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8397{
208cb16b 8398 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8399 struct rq *rq;
8400 int balance_cpu;
c5afb6a8
VG
8401 /* Earliest time when we have to do rebalance again */
8402 unsigned long next_balance = jiffies + 60*HZ;
8403 int update_next_balance = 0;
83cd4fe2 8404
1c792db7
SS
8405 if (idle != CPU_IDLE ||
8406 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8407 goto end;
83cd4fe2
VP
8408
8409 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8410 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8411 continue;
8412
8413 /*
8414 * If this cpu gets work to do, stop the load balancing
8415 * work being done for other cpus. Next load
8416 * balancing owner will pick it up.
8417 */
1c792db7 8418 if (need_resched())
83cd4fe2 8419 break;
83cd4fe2 8420
5ed4f1d9
VG
8421 rq = cpu_rq(balance_cpu);
8422
ed61bbc6
TC
8423 /*
8424 * If time for next balance is due,
8425 * do the balance.
8426 */
8427 if (time_after_eq(jiffies, rq->next_balance)) {
8428 raw_spin_lock_irq(&rq->lock);
8429 update_rq_clock(rq);
cee1afce 8430 cpu_load_update_idle(rq);
ed61bbc6
TC
8431 raw_spin_unlock_irq(&rq->lock);
8432 rebalance_domains(rq, CPU_IDLE);
8433 }
83cd4fe2 8434
c5afb6a8
VG
8435 if (time_after(next_balance, rq->next_balance)) {
8436 next_balance = rq->next_balance;
8437 update_next_balance = 1;
8438 }
83cd4fe2 8439 }
c5afb6a8
VG
8440
8441 /*
8442 * next_balance will be updated only when there is a need.
8443 * When the CPU is attached to null domain for ex, it will not be
8444 * updated.
8445 */
8446 if (likely(update_next_balance))
8447 nohz.next_balance = next_balance;
1c792db7
SS
8448end:
8449 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8450}
8451
8452/*
0b005cf5 8453 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8454 * of an idle cpu in the system.
0b005cf5 8455 * - This rq has more than one task.
1aaf90a4
VG
8456 * - This rq has at least one CFS task and the capacity of the CPU is
8457 * significantly reduced because of RT tasks or IRQs.
8458 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8459 * multiple busy cpu.
0b005cf5
SS
8460 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8461 * domain span are idle.
83cd4fe2 8462 */
1aaf90a4 8463static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8464{
8465 unsigned long now = jiffies;
0e369d75 8466 struct sched_domain_shared *sds;
0b005cf5 8467 struct sched_domain *sd;
4a725627 8468 int nr_busy, cpu = rq->cpu;
1aaf90a4 8469 bool kick = false;
83cd4fe2 8470
4a725627 8471 if (unlikely(rq->idle_balance))
1aaf90a4 8472 return false;
83cd4fe2 8473
1c792db7
SS
8474 /*
8475 * We may be recently in ticked or tickless idle mode. At the first
8476 * busy tick after returning from idle, we will update the busy stats.
8477 */
69e1e811 8478 set_cpu_sd_state_busy();
c1cc017c 8479 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8480
8481 /*
8482 * None are in tickless mode and hence no need for NOHZ idle load
8483 * balancing.
8484 */
8485 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8486 return false;
1c792db7
SS
8487
8488 if (time_before(now, nohz.next_balance))
1aaf90a4 8489 return false;
83cd4fe2 8490
0b005cf5 8491 if (rq->nr_running >= 2)
1aaf90a4 8492 return true;
83cd4fe2 8493
067491b7 8494 rcu_read_lock();
0e369d75
PZ
8495 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8496 if (sds) {
8497 /*
8498 * XXX: write a coherent comment on why we do this.
8499 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8500 */
8501 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8502 if (nr_busy > 1) {
8503 kick = true;
8504 goto unlock;
8505 }
8506
83cd4fe2 8507 }
37dc6b50 8508
1aaf90a4
VG
8509 sd = rcu_dereference(rq->sd);
8510 if (sd) {
8511 if ((rq->cfs.h_nr_running >= 1) &&
8512 check_cpu_capacity(rq, sd)) {
8513 kick = true;
8514 goto unlock;
8515 }
8516 }
37dc6b50 8517
1aaf90a4 8518 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8519 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8520 sched_domain_span(sd)) < cpu)) {
8521 kick = true;
8522 goto unlock;
8523 }
067491b7 8524
1aaf90a4 8525unlock:
067491b7 8526 rcu_read_unlock();
1aaf90a4 8527 return kick;
83cd4fe2
VP
8528}
8529#else
208cb16b 8530static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8531#endif
8532
8533/*
8534 * run_rebalance_domains is triggered when needed from the scheduler tick.
8535 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8536 */
0766f788 8537static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8538{
208cb16b 8539 struct rq *this_rq = this_rq();
6eb57e0d 8540 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8541 CPU_IDLE : CPU_NOT_IDLE;
8542
1e3c88bd 8543 /*
83cd4fe2 8544 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8545 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8546 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8547 * give the idle cpus a chance to load balance. Else we may
8548 * load balance only within the local sched_domain hierarchy
8549 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8550 */
208cb16b 8551 nohz_idle_balance(this_rq, idle);
d4573c3e 8552 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8553}
8554
1e3c88bd
PZ
8555/*
8556 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8557 */
7caff66f 8558void trigger_load_balance(struct rq *rq)
1e3c88bd 8559{
1e3c88bd 8560 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8561 if (unlikely(on_null_domain(rq)))
8562 return;
8563
8564 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8565 raise_softirq(SCHED_SOFTIRQ);
3451d024 8566#ifdef CONFIG_NO_HZ_COMMON
c726099e 8567 if (nohz_kick_needed(rq))
0aeeeeba 8568 nohz_balancer_kick();
83cd4fe2 8569#endif
1e3c88bd
PZ
8570}
8571
0bcdcf28
CE
8572static void rq_online_fair(struct rq *rq)
8573{
8574 update_sysctl();
0e59bdae
KT
8575
8576 update_runtime_enabled(rq);
0bcdcf28
CE
8577}
8578
8579static void rq_offline_fair(struct rq *rq)
8580{
8581 update_sysctl();
a4c96ae3
PB
8582
8583 /* Ensure any throttled groups are reachable by pick_next_task */
8584 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8585}
8586
55e12e5e 8587#endif /* CONFIG_SMP */
e1d1484f 8588
bf0f6f24
IM
8589/*
8590 * scheduler tick hitting a task of our scheduling class:
8591 */
8f4d37ec 8592static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8593{
8594 struct cfs_rq *cfs_rq;
8595 struct sched_entity *se = &curr->se;
8596
8597 for_each_sched_entity(se) {
8598 cfs_rq = cfs_rq_of(se);
8f4d37ec 8599 entity_tick(cfs_rq, se, queued);
bf0f6f24 8600 }
18bf2805 8601
b52da86e 8602 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8603 task_tick_numa(rq, curr);
bf0f6f24
IM
8604}
8605
8606/*
cd29fe6f
PZ
8607 * called on fork with the child task as argument from the parent's context
8608 * - child not yet on the tasklist
8609 * - preemption disabled
bf0f6f24 8610 */
cd29fe6f 8611static void task_fork_fair(struct task_struct *p)
bf0f6f24 8612{
4fc420c9
DN
8613 struct cfs_rq *cfs_rq;
8614 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8615 struct rq *rq = this_rq();
bf0f6f24 8616
e210bffd 8617 raw_spin_lock(&rq->lock);
861d034e
PZ
8618 update_rq_clock(rq);
8619
4fc420c9
DN
8620 cfs_rq = task_cfs_rq(current);
8621 curr = cfs_rq->curr;
e210bffd
PZ
8622 if (curr) {
8623 update_curr(cfs_rq);
b5d9d734 8624 se->vruntime = curr->vruntime;
e210bffd 8625 }
aeb73b04 8626 place_entity(cfs_rq, se, 1);
4d78e7b6 8627
cd29fe6f 8628 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8629 /*
edcb60a3
IM
8630 * Upon rescheduling, sched_class::put_prev_task() will place
8631 * 'current' within the tree based on its new key value.
8632 */
4d78e7b6 8633 swap(curr->vruntime, se->vruntime);
8875125e 8634 resched_curr(rq);
4d78e7b6 8635 }
bf0f6f24 8636
88ec22d3 8637 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8638 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8639}
8640
cb469845
SR
8641/*
8642 * Priority of the task has changed. Check to see if we preempt
8643 * the current task.
8644 */
da7a735e
PZ
8645static void
8646prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8647{
da0c1e65 8648 if (!task_on_rq_queued(p))
da7a735e
PZ
8649 return;
8650
cb469845
SR
8651 /*
8652 * Reschedule if we are currently running on this runqueue and
8653 * our priority decreased, or if we are not currently running on
8654 * this runqueue and our priority is higher than the current's
8655 */
da7a735e 8656 if (rq->curr == p) {
cb469845 8657 if (p->prio > oldprio)
8875125e 8658 resched_curr(rq);
cb469845 8659 } else
15afe09b 8660 check_preempt_curr(rq, p, 0);
cb469845
SR
8661}
8662
daa59407 8663static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8664{
8665 struct sched_entity *se = &p->se;
da7a735e
PZ
8666
8667 /*
daa59407
BP
8668 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8669 * the dequeue_entity(.flags=0) will already have normalized the
8670 * vruntime.
8671 */
8672 if (p->on_rq)
8673 return true;
8674
8675 /*
8676 * When !on_rq, vruntime of the task has usually NOT been normalized.
8677 * But there are some cases where it has already been normalized:
da7a735e 8678 *
daa59407
BP
8679 * - A forked child which is waiting for being woken up by
8680 * wake_up_new_task().
8681 * - A task which has been woken up by try_to_wake_up() and
8682 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8683 */
daa59407
BP
8684 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8685 return true;
8686
8687 return false;
8688}
8689
8690static void detach_task_cfs_rq(struct task_struct *p)
8691{
8692 struct sched_entity *se = &p->se;
8693 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8694 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8695
8696 if (!vruntime_normalized(p)) {
da7a735e
PZ
8697 /*
8698 * Fix up our vruntime so that the current sleep doesn't
8699 * cause 'unlimited' sleep bonus.
8700 */
8701 place_entity(cfs_rq, se, 0);
8702 se->vruntime -= cfs_rq->min_vruntime;
8703 }
9ee474f5 8704
9d89c257 8705 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8706 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8707 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8708 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8709}
8710
daa59407 8711static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8712{
f36c019c 8713 struct sched_entity *se = &p->se;
daa59407 8714 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8715 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8716
8717#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8718 /*
8719 * Since the real-depth could have been changed (only FAIR
8720 * class maintain depth value), reset depth properly.
8721 */
8722 se->depth = se->parent ? se->parent->depth + 1 : 0;
8723#endif
7855a35a 8724
6efdb105 8725 /* Synchronize task with its cfs_rq */
7c3edd2c 8726 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8727 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8728 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8729
8730 if (!vruntime_normalized(p))
8731 se->vruntime += cfs_rq->min_vruntime;
8732}
6efdb105 8733
daa59407
BP
8734static void switched_from_fair(struct rq *rq, struct task_struct *p)
8735{
8736 detach_task_cfs_rq(p);
8737}
8738
8739static void switched_to_fair(struct rq *rq, struct task_struct *p)
8740{
8741 attach_task_cfs_rq(p);
7855a35a 8742
daa59407 8743 if (task_on_rq_queued(p)) {
7855a35a 8744 /*
daa59407
BP
8745 * We were most likely switched from sched_rt, so
8746 * kick off the schedule if running, otherwise just see
8747 * if we can still preempt the current task.
7855a35a 8748 */
daa59407
BP
8749 if (rq->curr == p)
8750 resched_curr(rq);
8751 else
8752 check_preempt_curr(rq, p, 0);
7855a35a 8753 }
cb469845
SR
8754}
8755
83b699ed
SV
8756/* Account for a task changing its policy or group.
8757 *
8758 * This routine is mostly called to set cfs_rq->curr field when a task
8759 * migrates between groups/classes.
8760 */
8761static void set_curr_task_fair(struct rq *rq)
8762{
8763 struct sched_entity *se = &rq->curr->se;
8764
ec12cb7f
PT
8765 for_each_sched_entity(se) {
8766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8767
8768 set_next_entity(cfs_rq, se);
8769 /* ensure bandwidth has been allocated on our new cfs_rq */
8770 account_cfs_rq_runtime(cfs_rq, 0);
8771 }
83b699ed
SV
8772}
8773
029632fb
PZ
8774void init_cfs_rq(struct cfs_rq *cfs_rq)
8775{
8776 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8777 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8778#ifndef CONFIG_64BIT
8779 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8780#endif
141965c7 8781#ifdef CONFIG_SMP
9d89c257
YD
8782 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8783 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8784#endif
029632fb
PZ
8785}
8786
810b3817 8787#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8788static void task_set_group_fair(struct task_struct *p)
8789{
8790 struct sched_entity *se = &p->se;
8791
8792 set_task_rq(p, task_cpu(p));
8793 se->depth = se->parent ? se->parent->depth + 1 : 0;
8794}
8795
bc54da21 8796static void task_move_group_fair(struct task_struct *p)
810b3817 8797{
daa59407 8798 detach_task_cfs_rq(p);
b2b5ce02 8799 set_task_rq(p, task_cpu(p));
6efdb105
BP
8800
8801#ifdef CONFIG_SMP
8802 /* Tell se's cfs_rq has been changed -- migrated */
8803 p->se.avg.last_update_time = 0;
8804#endif
daa59407 8805 attach_task_cfs_rq(p);
810b3817 8806}
029632fb 8807
ea86cb4b
VG
8808static void task_change_group_fair(struct task_struct *p, int type)
8809{
8810 switch (type) {
8811 case TASK_SET_GROUP:
8812 task_set_group_fair(p);
8813 break;
8814
8815 case TASK_MOVE_GROUP:
8816 task_move_group_fair(p);
8817 break;
8818 }
8819}
8820
029632fb
PZ
8821void free_fair_sched_group(struct task_group *tg)
8822{
8823 int i;
8824
8825 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8826
8827 for_each_possible_cpu(i) {
8828 if (tg->cfs_rq)
8829 kfree(tg->cfs_rq[i]);
6fe1f348 8830 if (tg->se)
029632fb
PZ
8831 kfree(tg->se[i]);
8832 }
8833
8834 kfree(tg->cfs_rq);
8835 kfree(tg->se);
8836}
8837
8838int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8839{
029632fb 8840 struct sched_entity *se;
b7fa30c9
PZ
8841 struct cfs_rq *cfs_rq;
8842 struct rq *rq;
029632fb
PZ
8843 int i;
8844
8845 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8846 if (!tg->cfs_rq)
8847 goto err;
8848 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8849 if (!tg->se)
8850 goto err;
8851
8852 tg->shares = NICE_0_LOAD;
8853
8854 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8855
8856 for_each_possible_cpu(i) {
b7fa30c9
PZ
8857 rq = cpu_rq(i);
8858
029632fb
PZ
8859 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8860 GFP_KERNEL, cpu_to_node(i));
8861 if (!cfs_rq)
8862 goto err;
8863
8864 se = kzalloc_node(sizeof(struct sched_entity),
8865 GFP_KERNEL, cpu_to_node(i));
8866 if (!se)
8867 goto err_free_rq;
8868
8869 init_cfs_rq(cfs_rq);
8870 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8871 init_entity_runnable_average(se);
029632fb
PZ
8872 }
8873
8874 return 1;
8875
8876err_free_rq:
8877 kfree(cfs_rq);
8878err:
8879 return 0;
8880}
8881
8663e24d
PZ
8882void online_fair_sched_group(struct task_group *tg)
8883{
8884 struct sched_entity *se;
8885 struct rq *rq;
8886 int i;
8887
8888 for_each_possible_cpu(i) {
8889 rq = cpu_rq(i);
8890 se = tg->se[i];
8891
8892 raw_spin_lock_irq(&rq->lock);
8893 post_init_entity_util_avg(se);
55e16d30 8894 sync_throttle(tg, i);
8663e24d
PZ
8895 raw_spin_unlock_irq(&rq->lock);
8896 }
8897}
8898
6fe1f348 8899void unregister_fair_sched_group(struct task_group *tg)
029632fb 8900{
029632fb 8901 unsigned long flags;
6fe1f348
PZ
8902 struct rq *rq;
8903 int cpu;
029632fb 8904
6fe1f348
PZ
8905 for_each_possible_cpu(cpu) {
8906 if (tg->se[cpu])
8907 remove_entity_load_avg(tg->se[cpu]);
029632fb 8908
6fe1f348
PZ
8909 /*
8910 * Only empty task groups can be destroyed; so we can speculatively
8911 * check on_list without danger of it being re-added.
8912 */
8913 if (!tg->cfs_rq[cpu]->on_list)
8914 continue;
8915
8916 rq = cpu_rq(cpu);
8917
8918 raw_spin_lock_irqsave(&rq->lock, flags);
8919 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8920 raw_spin_unlock_irqrestore(&rq->lock, flags);
8921 }
029632fb
PZ
8922}
8923
8924void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8925 struct sched_entity *se, int cpu,
8926 struct sched_entity *parent)
8927{
8928 struct rq *rq = cpu_rq(cpu);
8929
8930 cfs_rq->tg = tg;
8931 cfs_rq->rq = rq;
029632fb
PZ
8932 init_cfs_rq_runtime(cfs_rq);
8933
8934 tg->cfs_rq[cpu] = cfs_rq;
8935 tg->se[cpu] = se;
8936
8937 /* se could be NULL for root_task_group */
8938 if (!se)
8939 return;
8940
fed14d45 8941 if (!parent) {
029632fb 8942 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8943 se->depth = 0;
8944 } else {
029632fb 8945 se->cfs_rq = parent->my_q;
fed14d45
PZ
8946 se->depth = parent->depth + 1;
8947 }
029632fb
PZ
8948
8949 se->my_q = cfs_rq;
0ac9b1c2
PT
8950 /* guarantee group entities always have weight */
8951 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8952 se->parent = parent;
8953}
8954
8955static DEFINE_MUTEX(shares_mutex);
8956
8957int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8958{
8959 int i;
8960 unsigned long flags;
8961
8962 /*
8963 * We can't change the weight of the root cgroup.
8964 */
8965 if (!tg->se[0])
8966 return -EINVAL;
8967
8968 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8969
8970 mutex_lock(&shares_mutex);
8971 if (tg->shares == shares)
8972 goto done;
8973
8974 tg->shares = shares;
8975 for_each_possible_cpu(i) {
8976 struct rq *rq = cpu_rq(i);
8977 struct sched_entity *se;
8978
8979 se = tg->se[i];
8980 /* Propagate contribution to hierarchy */
8981 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8982
8983 /* Possible calls to update_curr() need rq clock */
8984 update_rq_clock(rq);
17bc14b7 8985 for_each_sched_entity(se)
029632fb
PZ
8986 update_cfs_shares(group_cfs_rq(se));
8987 raw_spin_unlock_irqrestore(&rq->lock, flags);
8988 }
8989
8990done:
8991 mutex_unlock(&shares_mutex);
8992 return 0;
8993}
8994#else /* CONFIG_FAIR_GROUP_SCHED */
8995
8996void free_fair_sched_group(struct task_group *tg) { }
8997
8998int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8999{
9000 return 1;
9001}
9002
8663e24d
PZ
9003void online_fair_sched_group(struct task_group *tg) { }
9004
6fe1f348 9005void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9006
9007#endif /* CONFIG_FAIR_GROUP_SCHED */
9008
810b3817 9009
6d686f45 9010static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9011{
9012 struct sched_entity *se = &task->se;
0d721cea
PW
9013 unsigned int rr_interval = 0;
9014
9015 /*
9016 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9017 * idle runqueue:
9018 */
0d721cea 9019 if (rq->cfs.load.weight)
a59f4e07 9020 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9021
9022 return rr_interval;
9023}
9024
bf0f6f24
IM
9025/*
9026 * All the scheduling class methods:
9027 */
029632fb 9028const struct sched_class fair_sched_class = {
5522d5d5 9029 .next = &idle_sched_class,
bf0f6f24
IM
9030 .enqueue_task = enqueue_task_fair,
9031 .dequeue_task = dequeue_task_fair,
9032 .yield_task = yield_task_fair,
d95f4122 9033 .yield_to_task = yield_to_task_fair,
bf0f6f24 9034
2e09bf55 9035 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9036
9037 .pick_next_task = pick_next_task_fair,
9038 .put_prev_task = put_prev_task_fair,
9039
681f3e68 9040#ifdef CONFIG_SMP
4ce72a2c 9041 .select_task_rq = select_task_rq_fair,
0a74bef8 9042 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9043
0bcdcf28
CE
9044 .rq_online = rq_online_fair,
9045 .rq_offline = rq_offline_fair,
88ec22d3 9046
12695578 9047 .task_dead = task_dead_fair,
c5b28038 9048 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9049#endif
bf0f6f24 9050
83b699ed 9051 .set_curr_task = set_curr_task_fair,
bf0f6f24 9052 .task_tick = task_tick_fair,
cd29fe6f 9053 .task_fork = task_fork_fair,
cb469845
SR
9054
9055 .prio_changed = prio_changed_fair,
da7a735e 9056 .switched_from = switched_from_fair,
cb469845 9057 .switched_to = switched_to_fair,
810b3817 9058
0d721cea
PW
9059 .get_rr_interval = get_rr_interval_fair,
9060
6e998916
SG
9061 .update_curr = update_curr_fair,
9062
810b3817 9063#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9064 .task_change_group = task_change_group_fair,
810b3817 9065#endif
bf0f6f24
IM
9066};
9067
9068#ifdef CONFIG_SCHED_DEBUG
029632fb 9069void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9070{
bf0f6f24
IM
9071 struct cfs_rq *cfs_rq;
9072
5973e5b9 9073 rcu_read_lock();
c3b64f1e 9074 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9075 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9076 rcu_read_unlock();
bf0f6f24 9077}
397f2378
SD
9078
9079#ifdef CONFIG_NUMA_BALANCING
9080void show_numa_stats(struct task_struct *p, struct seq_file *m)
9081{
9082 int node;
9083 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9084
9085 for_each_online_node(node) {
9086 if (p->numa_faults) {
9087 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9088 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9089 }
9090 if (p->numa_group) {
9091 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9092 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9093 }
9094 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9095 }
9096}
9097#endif /* CONFIG_NUMA_BALANCING */
9098#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9099
9100__init void init_sched_fair_class(void)
9101{
9102#ifdef CONFIG_SMP
9103 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9104
3451d024 9105#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9106 nohz.next_balance = jiffies;
029632fb 9107 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9108#endif
9109#endif /* SMP */
9110
9111}