Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
aab03e05
DF
1/*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 13 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17#include "sched.h"
18
6bfd6d72
JL
19#include <linux/slab.h>
20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47{
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51}
52
332ac17e
DF
53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54{
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58}
59
332ac17e
DF
60void init_dl_bw(struct dl_bw *dl_b)
61{
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 64 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
65 dl_b->bw = -1;
66 else
1724813d 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70}
71
07c54f7a 72void init_dl_rq(struct dl_rq *dl_rq)
aab03e05
DF
73{
74 dl_rq->rb_root = RB_ROOT;
1baca4ce
JL
75
76#ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
332ac17e
DF
83#else
84 init_dl_bw(&dl_rq->dl_bw);
1baca4ce
JL
85#endif
86}
87
88#ifdef CONFIG_SMP
89
90static inline int dl_overloaded(struct rq *rq)
91{
92 return atomic_read(&rq->rd->dlo_count);
93}
94
95static inline void dl_set_overload(struct rq *rq)
96{
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109}
110
111static inline void dl_clear_overload(struct rq *rq)
112{
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118}
119
120static void update_dl_migration(struct dl_rq *dl_rq)
121{
995b9ea4 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131}
132
133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134{
135 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 136
50605ffb 137 if (tsk_nr_cpus_allowed(p) > 1)
1baca4ce
JL
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141}
142
143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 146
50605ffb 147 if (tsk_nr_cpus_allowed(p) > 1)
1baca4ce
JL
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151}
152
153/*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158{
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
7d92de3a 179 if (leftmost) {
1baca4ce 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
7d92de3a
WL
181 dl_rq->earliest_dl.next = p->dl.deadline;
182 }
1baca4ce
JL
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
aab03e05
DF
186}
187
1baca4ce
JL
188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189{
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
7d92de3a
WL
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
203 }
1baca4ce
JL
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208}
209
210static inline int has_pushable_dl_tasks(struct rq *rq)
211{
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213}
214
215static int push_dl_task(struct rq *rq);
216
dc877341
PZ
217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218{
219 return dl_task(prev);
220}
221
9916e214
PZ
222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
224
225static void push_dl_tasks(struct rq *);
9916e214 226static void pull_dl_task(struct rq *);
e3fca9e7
PZ
227
228static inline void queue_push_tasks(struct rq *rq)
dc877341 229{
e3fca9e7
PZ
230 if (!has_pushable_dl_tasks(rq))
231 return;
232
9916e214
PZ
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234}
235
236static inline void queue_pull_task(struct rq *rq)
237{
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
239}
240
fa9c9d10
WL
241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242
a649f237 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
244{
245 struct rq *later_rq = NULL;
246 bool fallback = false;
247
248 later_rq = find_lock_later_rq(p, rq);
249
250 if (!later_rq) {
251 int cpu;
252
253 /*
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
256 */
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
260 /*
261 * Fail to find any suitable cpu.
262 * The task will never come back!
263 */
264 BUG_ON(dl_bandwidth_enabled());
265
266 /*
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
270 */
271 cpu = cpumask_any(cpu_active_mask);
272 }
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
275 }
276
a649f237
PZ
277 /*
278 * By now the task is replenished and enqueued; migrate it.
279 */
fa9c9d10
WL
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
a649f237 282 activate_task(later_rq, p, 0);
fa9c9d10
WL
283
284 if (!fallback)
285 resched_curr(later_rq);
286
a649f237
PZ
287 double_unlock_balance(later_rq, rq);
288
289 return later_rq;
fa9c9d10
WL
290}
291
1baca4ce
JL
292#else
293
294static inline
295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296{
297}
298
299static inline
300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301{
302}
303
304static inline
305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306{
307}
308
309static inline
310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311{
312}
313
dc877341
PZ
314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315{
316 return false;
317}
318
0ea60c20 319static inline void pull_dl_task(struct rq *rq)
dc877341 320{
dc877341
PZ
321}
322
e3fca9e7 323static inline void queue_push_tasks(struct rq *rq)
dc877341 324{
dc877341
PZ
325}
326
9916e214 327static inline void queue_pull_task(struct rq *rq)
dc877341
PZ
328{
329}
1baca4ce
JL
330#endif /* CONFIG_SMP */
331
aab03e05
DF
332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
336
337/*
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
343 *
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
348 */
2d3d891d
DF
349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
aab03e05
DF
351{
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
354
72f9f3fd
LA
355 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356
357 /*
358 * We are racing with the deadline timer. So, do nothing because
359 * the deadline timer handler will take care of properly recharging
360 * the runtime and postponing the deadline
361 */
362 if (dl_se->dl_throttled)
363 return;
aab03e05
DF
364
365 /*
366 * We use the regular wall clock time to set deadlines in the
367 * future; in fact, we must consider execution overheads (time
368 * spent on hardirq context, etc.).
369 */
2d3d891d
DF
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
372}
373
374/*
375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376 * possibility of a entity lasting more than what it declared, and thus
377 * exhausting its runtime.
378 *
379 * Here we are interested in making runtime overrun possible, but we do
380 * not want a entity which is misbehaving to affect the scheduling of all
381 * other entities.
382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383 * is used, in order to confine each entity within its own bandwidth.
384 *
385 * This function deals exactly with that, and ensures that when the runtime
386 * of a entity is replenished, its deadline is also postponed. That ensures
387 * the overrunning entity can't interfere with other entity in the system and
388 * can't make them miss their deadlines. Reasons why this kind of overruns
389 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 390 * runtime, or it just underestimated it during sched_setattr().
aab03e05 391 */
2d3d891d
DF
392static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 struct sched_dl_entity *pi_se)
aab03e05
DF
394{
395 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 struct rq *rq = rq_of_dl_rq(dl_rq);
397
2d3d891d
DF
398 BUG_ON(pi_se->dl_runtime <= 0);
399
400 /*
401 * This could be the case for a !-dl task that is boosted.
402 * Just go with full inherited parameters.
403 */
404 if (dl_se->dl_deadline == 0) {
405 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 dl_se->runtime = pi_se->dl_runtime;
407 }
408
48be3a67
PZ
409 if (dl_se->dl_yielded && dl_se->runtime > 0)
410 dl_se->runtime = 0;
411
aab03e05
DF
412 /*
413 * We keep moving the deadline away until we get some
414 * available runtime for the entity. This ensures correct
415 * handling of situations where the runtime overrun is
416 * arbitrary large.
417 */
418 while (dl_se->runtime <= 0) {
2d3d891d
DF
419 dl_se->deadline += pi_se->dl_period;
420 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
421 }
422
423 /*
424 * At this point, the deadline really should be "in
425 * the future" with respect to rq->clock. If it's
426 * not, we are, for some reason, lagging too much!
427 * Anyway, after having warn userspace abut that,
428 * we still try to keep the things running by
429 * resetting the deadline and the budget of the
430 * entity.
431 */
432 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 433 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
434 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 dl_se->runtime = pi_se->dl_runtime;
aab03e05 436 }
1019a359
PZ
437
438 if (dl_se->dl_yielded)
439 dl_se->dl_yielded = 0;
440 if (dl_se->dl_throttled)
441 dl_se->dl_throttled = 0;
aab03e05
DF
442}
443
444/*
445 * Here we check if --at time t-- an entity (which is probably being
446 * [re]activated or, in general, enqueued) can use its remaining runtime
447 * and its current deadline _without_ exceeding the bandwidth it is
448 * assigned (function returns true if it can't). We are in fact applying
449 * one of the CBS rules: when a task wakes up, if the residual runtime
450 * over residual deadline fits within the allocated bandwidth, then we
451 * can keep the current (absolute) deadline and residual budget without
452 * disrupting the schedulability of the system. Otherwise, we should
453 * refill the runtime and set the deadline a period in the future,
454 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
455 * result in breaking guarantees promised to other tasks (refer to
456 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
457 *
458 * This function returns true if:
459 *
755378a4 460 * runtime / (deadline - t) > dl_runtime / dl_period ,
aab03e05
DF
461 *
462 * IOW we can't recycle current parameters.
755378a4
HG
463 *
464 * Notice that the bandwidth check is done against the period. For
465 * task with deadline equal to period this is the same of using
466 * dl_deadline instead of dl_period in the equation above.
aab03e05 467 */
2d3d891d
DF
468static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
470{
471 u64 left, right;
472
473 /*
474 * left and right are the two sides of the equation above,
475 * after a bit of shuffling to use multiplications instead
476 * of divisions.
477 *
478 * Note that none of the time values involved in the two
479 * multiplications are absolute: dl_deadline and dl_runtime
480 * are the relative deadline and the maximum runtime of each
481 * instance, runtime is the runtime left for the last instance
482 * and (deadline - t), since t is rq->clock, is the time left
483 * to the (absolute) deadline. Even if overflowing the u64 type
484 * is very unlikely to occur in both cases, here we scale down
485 * as we want to avoid that risk at all. Scaling down by 10
486 * means that we reduce granularity to 1us. We are fine with it,
487 * since this is only a true/false check and, anyway, thinking
488 * of anything below microseconds resolution is actually fiction
489 * (but still we want to give the user that illusion >;).
490 */
332ac17e
DF
491 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 right = ((dl_se->deadline - t) >> DL_SCALE) *
493 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
494
495 return dl_time_before(right, left);
496}
497
498/*
499 * When a -deadline entity is queued back on the runqueue, its runtime and
500 * deadline might need updating.
501 *
502 * The policy here is that we update the deadline of the entity only if:
503 * - the current deadline is in the past,
504 * - using the remaining runtime with the current deadline would make
505 * the entity exceed its bandwidth.
506 */
2d3d891d
DF
507static void update_dl_entity(struct sched_dl_entity *dl_se,
508 struct sched_dl_entity *pi_se)
aab03e05
DF
509{
510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 struct rq *rq = rq_of_dl_rq(dl_rq);
512
aab03e05 513 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d
DF
514 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
517 }
518}
519
520/*
521 * If the entity depleted all its runtime, and if we want it to sleep
522 * while waiting for some new execution time to become available, we
523 * set the bandwidth enforcement timer to the replenishment instant
524 * and try to activate it.
525 *
526 * Notice that it is important for the caller to know if the timer
527 * actually started or not (i.e., the replenishment instant is in
528 * the future or in the past).
529 */
a649f237 530static int start_dl_timer(struct task_struct *p)
aab03e05 531{
a649f237
PZ
532 struct sched_dl_entity *dl_se = &p->dl;
533 struct hrtimer *timer = &dl_se->dl_timer;
534 struct rq *rq = task_rq(p);
aab03e05 535 ktime_t now, act;
aab03e05
DF
536 s64 delta;
537
a649f237
PZ
538 lockdep_assert_held(&rq->lock);
539
aab03e05
DF
540 /*
541 * We want the timer to fire at the deadline, but considering
542 * that it is actually coming from rq->clock and not from
543 * hrtimer's time base reading.
544 */
545 act = ns_to_ktime(dl_se->deadline);
a649f237 546 now = hrtimer_cb_get_time(timer);
aab03e05
DF
547 delta = ktime_to_ns(now) - rq_clock(rq);
548 act = ktime_add_ns(act, delta);
549
550 /*
551 * If the expiry time already passed, e.g., because the value
552 * chosen as the deadline is too small, don't even try to
553 * start the timer in the past!
554 */
555 if (ktime_us_delta(act, now) < 0)
556 return 0;
557
a649f237
PZ
558 /*
559 * !enqueued will guarantee another callback; even if one is already in
560 * progress. This ensures a balanced {get,put}_task_struct().
561 *
562 * The race against __run_timer() clearing the enqueued state is
563 * harmless because we're holding task_rq()->lock, therefore the timer
564 * expiring after we've done the check will wait on its task_rq_lock()
565 * and observe our state.
566 */
567 if (!hrtimer_is_queued(timer)) {
568 get_task_struct(p);
569 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 }
aab03e05 571
cc9684d3 572 return 1;
aab03e05
DF
573}
574
575/*
576 * This is the bandwidth enforcement timer callback. If here, we know
577 * a task is not on its dl_rq, since the fact that the timer was running
578 * means the task is throttled and needs a runtime replenishment.
579 *
580 * However, what we actually do depends on the fact the task is active,
581 * (it is on its rq) or has been removed from there by a call to
582 * dequeue_task_dl(). In the former case we must issue the runtime
583 * replenishment and add the task back to the dl_rq; in the latter, we just
584 * do nothing but clearing dl_throttled, so that runtime and deadline
585 * updating (and the queueing back to dl_rq) will be done by the
586 * next call to enqueue_task_dl().
587 */
588static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589{
590 struct sched_dl_entity *dl_se = container_of(timer,
591 struct sched_dl_entity,
592 dl_timer);
593 struct task_struct *p = dl_task_of(dl_se);
eb580751 594 struct rq_flags rf;
0f397f2c 595 struct rq *rq;
3960c8c0 596
eb580751 597 rq = task_rq_lock(p, &rf);
0f397f2c 598
aab03e05 599 /*
a649f237
PZ
600 * The task might have changed its scheduling policy to something
601 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 */
603 if (!dl_task(p)) {
604 __dl_clear_params(p);
605 goto unlock;
606 }
607
a649f237
PZ
608 /*
609 * The task might have been boosted by someone else and might be in the
610 * boosting/deboosting path, its not throttled.
611 */
612 if (dl_se->dl_boosted)
613 goto unlock;
a79ec89f 614
fa9c9d10 615 /*
a649f237
PZ
616 * Spurious timer due to start_dl_timer() race; or we already received
617 * a replenishment from rt_mutex_setprio().
fa9c9d10 618 */
a649f237 619 if (!dl_se->dl_throttled)
fa9c9d10 620 goto unlock;
a649f237
PZ
621
622 sched_clock_tick();
623 update_rq_clock(rq);
fa9c9d10 624
a79ec89f
KT
625 /*
626 * If the throttle happened during sched-out; like:
627 *
628 * schedule()
629 * deactivate_task()
630 * dequeue_task_dl()
631 * update_curr_dl()
632 * start_dl_timer()
633 * __dequeue_task_dl()
634 * prev->on_rq = 0;
635 *
636 * We can be both throttled and !queued. Replenish the counter
637 * but do not enqueue -- wait for our wakeup to do that.
638 */
639 if (!task_on_rq_queued(p)) {
640 replenish_dl_entity(dl_se, dl_se);
641 goto unlock;
642 }
643
1019a359
PZ
644 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 if (dl_task(rq->curr))
646 check_preempt_curr_dl(rq, p, 0);
647 else
648 resched_curr(rq);
a649f237 649
1baca4ce 650#ifdef CONFIG_SMP
1019a359 651 /*
a649f237
PZ
652 * Perform balancing operations here; after the replenishments. We
653 * cannot drop rq->lock before this, otherwise the assertion in
654 * start_dl_timer() about not missing updates is not true.
655 *
656 * If we find that the rq the task was on is no longer available, we
657 * need to select a new rq.
658 *
659 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 */
661 if (unlikely(!rq->online))
662 rq = dl_task_offline_migration(rq, p);
663
664 /*
665 * Queueing this task back might have overloaded rq, check if we need
666 * to kick someone away.
1019a359 667 */
0aaafaab
PZ
668 if (has_pushable_dl_tasks(rq)) {
669 /*
670 * Nothing relies on rq->lock after this, so its safe to drop
671 * rq->lock.
672 */
e7904a28 673 lockdep_unpin_lock(&rq->lock, rf.cookie);
1019a359 674 push_dl_task(rq);
e7904a28 675 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 676 }
1baca4ce 677#endif
a649f237 678
aab03e05 679unlock:
eb580751 680 task_rq_unlock(rq, p, &rf);
aab03e05 681
a649f237
PZ
682 /*
683 * This can free the task_struct, including this hrtimer, do not touch
684 * anything related to that after this.
685 */
686 put_task_struct(p);
687
aab03e05
DF
688 return HRTIMER_NORESTART;
689}
690
691void init_dl_task_timer(struct sched_dl_entity *dl_se)
692{
693 struct hrtimer *timer = &dl_se->dl_timer;
694
aab03e05
DF
695 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
696 timer->function = dl_task_timer;
697}
698
699static
6fab5410 700int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 701{
269ad801 702 return (dl_se->runtime <= 0);
aab03e05
DF
703}
704
faa59937
JL
705extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
706
aab03e05
DF
707/*
708 * Update the current task's runtime statistics (provided it is still
709 * a -deadline task and has not been removed from the dl_rq).
710 */
711static void update_curr_dl(struct rq *rq)
712{
713 struct task_struct *curr = rq->curr;
714 struct sched_dl_entity *dl_se = &curr->dl;
715 u64 delta_exec;
716
717 if (!dl_task(curr) || !on_dl_rq(dl_se))
718 return;
719
720 /*
721 * Consumed budget is computed considering the time as
722 * observed by schedulable tasks (excluding time spent
723 * in hardirq context, etc.). Deadlines are instead
724 * computed using hard walltime. This seems to be the more
725 * natural solution, but the full ramifications of this
726 * approach need further study.
727 */
728 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
48be3a67
PZ
729 if (unlikely((s64)delta_exec <= 0)) {
730 if (unlikely(dl_se->dl_yielded))
731 goto throttle;
734ff2a7 732 return;
48be3a67 733 }
aab03e05 734
594dd290
WL
735 /* kick cpufreq (see the comment in linux/cpufreq.h). */
736 if (cpu_of(rq) == smp_processor_id())
737 cpufreq_trigger_update(rq_clock(rq));
738
aab03e05
DF
739 schedstat_set(curr->se.statistics.exec_max,
740 max(curr->se.statistics.exec_max, delta_exec));
741
742 curr->se.sum_exec_runtime += delta_exec;
743 account_group_exec_runtime(curr, delta_exec);
744
745 curr->se.exec_start = rq_clock_task(rq);
746 cpuacct_charge(curr, delta_exec);
747
239be4a9
DF
748 sched_rt_avg_update(rq, delta_exec);
749
48be3a67
PZ
750 dl_se->runtime -= delta_exec;
751
752throttle:
753 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1019a359 754 dl_se->dl_throttled = 1;
aab03e05 755 __dequeue_task_dl(rq, curr, 0);
a649f237 756 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
757 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758
759 if (!is_leftmost(curr, &rq->dl))
8875125e 760 resched_curr(rq);
aab03e05 761 }
1724813d
PZ
762
763 /*
764 * Because -- for now -- we share the rt bandwidth, we need to
765 * account our runtime there too, otherwise actual rt tasks
766 * would be able to exceed the shared quota.
767 *
768 * Account to the root rt group for now.
769 *
770 * The solution we're working towards is having the RT groups scheduled
771 * using deadline servers -- however there's a few nasties to figure
772 * out before that can happen.
773 */
774 if (rt_bandwidth_enabled()) {
775 struct rt_rq *rt_rq = &rq->rt;
776
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
778 /*
779 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
780 * have our own CBS to keep us inline; only account when RT
781 * bandwidth is relevant.
1724813d 782 */
faa59937
JL
783 if (sched_rt_bandwidth_account(rt_rq))
784 rt_rq->rt_time += delta_exec;
1724813d
PZ
785 raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 }
aab03e05
DF
787}
788
1baca4ce
JL
789#ifdef CONFIG_SMP
790
1baca4ce
JL
791static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792{
793 struct rq *rq = rq_of_dl_rq(dl_rq);
794
795 if (dl_rq->earliest_dl.curr == 0 ||
796 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 797 dl_rq->earliest_dl.curr = deadline;
6bfd6d72 798 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
1baca4ce
JL
799 }
800}
801
802static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803{
804 struct rq *rq = rq_of_dl_rq(dl_rq);
805
806 /*
807 * Since we may have removed our earliest (and/or next earliest)
808 * task we must recompute them.
809 */
810 if (!dl_rq->dl_nr_running) {
811 dl_rq->earliest_dl.curr = 0;
812 dl_rq->earliest_dl.next = 0;
6bfd6d72 813 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1baca4ce
JL
814 } else {
815 struct rb_node *leftmost = dl_rq->rb_leftmost;
816 struct sched_dl_entity *entry;
817
818 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 dl_rq->earliest_dl.curr = entry->deadline;
6bfd6d72 820 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
1baca4ce
JL
821 }
822}
823
824#else
825
826static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828
829#endif /* CONFIG_SMP */
830
831static inline
832void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833{
834 int prio = dl_task_of(dl_se)->prio;
835 u64 deadline = dl_se->deadline;
836
837 WARN_ON(!dl_prio(prio));
838 dl_rq->dl_nr_running++;
72465447 839 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
840
841 inc_dl_deadline(dl_rq, deadline);
842 inc_dl_migration(dl_se, dl_rq);
843}
844
845static inline
846void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847{
848 int prio = dl_task_of(dl_se)->prio;
849
850 WARN_ON(!dl_prio(prio));
851 WARN_ON(!dl_rq->dl_nr_running);
852 dl_rq->dl_nr_running--;
72465447 853 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
854
855 dec_dl_deadline(dl_rq, dl_se->deadline);
856 dec_dl_migration(dl_se, dl_rq);
857}
858
aab03e05
DF
859static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860{
861 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 struct rb_node **link = &dl_rq->rb_root.rb_node;
863 struct rb_node *parent = NULL;
864 struct sched_dl_entity *entry;
865 int leftmost = 1;
866
867 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868
869 while (*link) {
870 parent = *link;
871 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 if (dl_time_before(dl_se->deadline, entry->deadline))
873 link = &parent->rb_left;
874 else {
875 link = &parent->rb_right;
876 leftmost = 0;
877 }
878 }
879
880 if (leftmost)
881 dl_rq->rb_leftmost = &dl_se->rb_node;
882
883 rb_link_node(&dl_se->rb_node, parent, link);
884 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885
1baca4ce 886 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
887}
888
889static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890{
891 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892
893 if (RB_EMPTY_NODE(&dl_se->rb_node))
894 return;
895
896 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 struct rb_node *next_node;
898
899 next_node = rb_next(&dl_se->rb_node);
900 dl_rq->rb_leftmost = next_node;
901 }
902
903 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 RB_CLEAR_NODE(&dl_se->rb_node);
905
1baca4ce 906 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
907}
908
909static void
2d3d891d
DF
910enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
912{
913 BUG_ON(on_dl_rq(dl_se));
914
915 /*
916 * If this is a wakeup or a new instance, the scheduling
917 * parameters of the task might need updating. Otherwise,
918 * we want a replenishment of its runtime.
919 */
72f9f3fd 920 if (flags & ENQUEUE_WAKEUP)
2d3d891d 921 update_dl_entity(dl_se, pi_se);
6a503c3b
LA
922 else if (flags & ENQUEUE_REPLENISH)
923 replenish_dl_entity(dl_se, pi_se);
aab03e05
DF
924
925 __enqueue_dl_entity(dl_se);
926}
927
928static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929{
930 __dequeue_dl_entity(dl_se);
931}
932
933static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934{
2d3d891d
DF
935 struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 struct sched_dl_entity *pi_se = &p->dl;
937
938 /*
939 * Use the scheduling parameters of the top pi-waiter
ff277d42 940 * task if we have one and its (absolute) deadline is
2d3d891d
DF
941 * smaller than our one... OTW we keep our runtime and
942 * deadline.
943 */
64be6f1f 944 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
2d3d891d 945 pi_se = &pi_task->dl;
64be6f1f
JL
946 } else if (!dl_prio(p->normal_prio)) {
947 /*
948 * Special case in which we have a !SCHED_DEADLINE task
949 * that is going to be deboosted, but exceedes its
950 * runtime while doing so. No point in replenishing
951 * it, as it's going to return back to its original
952 * scheduling class after this.
953 */
954 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 return;
956 }
2d3d891d 957
aab03e05
DF
958 /*
959 * If p is throttled, we do nothing. In fact, if it exhausted
960 * its budget it needs a replenishment and, since it now is on
961 * its rq, the bandwidth timer callback (which clearly has not
962 * run yet) will take care of this.
963 */
1019a359 964 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
aab03e05
DF
965 return;
966
2d3d891d 967 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce 968
50605ffb 969 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1baca4ce 970 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
971}
972
973static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974{
975 dequeue_dl_entity(&p->dl);
1baca4ce 976 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
977}
978
979static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980{
981 update_curr_dl(rq);
982 __dequeue_task_dl(rq, p, flags);
aab03e05
DF
983}
984
985/*
986 * Yield task semantic for -deadline tasks is:
987 *
988 * get off from the CPU until our next instance, with
989 * a new runtime. This is of little use now, since we
990 * don't have a bandwidth reclaiming mechanism. Anyway,
991 * bandwidth reclaiming is planned for the future, and
992 * yield_task_dl will indicate that some spare budget
993 * is available for other task instances to use it.
994 */
995static void yield_task_dl(struct rq *rq)
996{
aab03e05
DF
997 /*
998 * We make the task go to sleep until its current deadline by
999 * forcing its runtime to zero. This way, update_curr_dl() stops
1000 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1001 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05 1002 */
48be3a67
PZ
1003 rq->curr->dl.dl_yielded = 1;
1004
6f1607f1 1005 update_rq_clock(rq);
aab03e05 1006 update_curr_dl(rq);
44fb085b
WL
1007 /*
1008 * Tell update_rq_clock() that we've just updated,
1009 * so we don't do microscopic update in schedule()
1010 * and double the fastpath cost.
1011 */
1012 rq_clock_skip_update(rq, true);
aab03e05
DF
1013}
1014
1baca4ce
JL
1015#ifdef CONFIG_SMP
1016
1017static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1018
1019static int
1020select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021{
1022 struct task_struct *curr;
1023 struct rq *rq;
1024
1d7e974c 1025 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1026 goto out;
1027
1028 rq = cpu_rq(cpu);
1029
1030 rcu_read_lock();
316c1608 1031 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1032
1033 /*
1034 * If we are dealing with a -deadline task, we must
1035 * decide where to wake it up.
1036 * If it has a later deadline and the current task
1037 * on this rq can't move (provided the waking task
1038 * can!) we prefer to send it somewhere else. On the
1039 * other hand, if it has a shorter deadline, we
1040 * try to make it stay here, it might be important.
1041 */
1042 if (unlikely(dl_task(curr)) &&
50605ffb 1043 (tsk_nr_cpus_allowed(curr) < 2 ||
1baca4ce 1044 !dl_entity_preempt(&p->dl, &curr->dl)) &&
50605ffb 1045 (tsk_nr_cpus_allowed(p) > 1)) {
1baca4ce
JL
1046 int target = find_later_rq(p);
1047
9d514262 1048 if (target != -1 &&
5aa50507
LA
1049 (dl_time_before(p->dl.deadline,
1050 cpu_rq(target)->dl.earliest_dl.curr) ||
1051 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1052 cpu = target;
1053 }
1054 rcu_read_unlock();
1055
1056out:
1057 return cpu;
1058}
1059
1060static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061{
1062 /*
1063 * Current can't be migrated, useless to reschedule,
1064 * let's hope p can move out.
1065 */
50605ffb 1066 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
6bfd6d72 1067 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1baca4ce
JL
1068 return;
1069
1070 /*
1071 * p is migratable, so let's not schedule it and
1072 * see if it is pushed or pulled somewhere else.
1073 */
50605ffb 1074 if (tsk_nr_cpus_allowed(p) != 1 &&
6bfd6d72 1075 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1baca4ce
JL
1076 return;
1077
8875125e 1078 resched_curr(rq);
1baca4ce
JL
1079}
1080
1081#endif /* CONFIG_SMP */
1082
aab03e05
DF
1083/*
1084 * Only called when both the current and waking task are -deadline
1085 * tasks.
1086 */
1087static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088 int flags)
1089{
1baca4ce 1090 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1091 resched_curr(rq);
1baca4ce
JL
1092 return;
1093 }
1094
1095#ifdef CONFIG_SMP
1096 /*
1097 * In the unlikely case current and p have the same deadline
1098 * let us try to decide what's the best thing to do...
1099 */
332ac17e
DF
1100 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1102 check_preempt_equal_dl(rq, p);
1103#endif /* CONFIG_SMP */
aab03e05
DF
1104}
1105
1106#ifdef CONFIG_SCHED_HRTICK
1107static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108{
177ef2a6 1109 hrtick_start(rq, p->dl.runtime);
aab03e05 1110}
36ce9881
WL
1111#else /* !CONFIG_SCHED_HRTICK */
1112static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113{
1114}
aab03e05
DF
1115#endif
1116
1117static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118 struct dl_rq *dl_rq)
1119{
1120 struct rb_node *left = dl_rq->rb_leftmost;
1121
1122 if (!left)
1123 return NULL;
1124
1125 return rb_entry(left, struct sched_dl_entity, rb_node);
1126}
1127
e7904a28
PZ
1128struct task_struct *
1129pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
aab03e05
DF
1130{
1131 struct sched_dl_entity *dl_se;
1132 struct task_struct *p;
1133 struct dl_rq *dl_rq;
1134
1135 dl_rq = &rq->dl;
1136
a1d9a323 1137 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1138 /*
1139 * This is OK, because current is on_cpu, which avoids it being
1140 * picked for load-balance and preemption/IRQs are still
1141 * disabled avoiding further scheduler activity on it and we're
1142 * being very careful to re-start the picking loop.
1143 */
e7904a28 1144 lockdep_unpin_lock(&rq->lock, cookie);
38033c37 1145 pull_dl_task(rq);
e7904a28 1146 lockdep_repin_lock(&rq->lock, cookie);
a1d9a323
KT
1147 /*
1148 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1149 * means a stop task can slip in, in which case we need to
1150 * re-start task selection.
1151 */
da0c1e65 1152 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1153 return RETRY_TASK;
1154 }
1155
734ff2a7
KT
1156 /*
1157 * When prev is DL, we may throttle it in put_prev_task().
1158 * So, we update time before we check for dl_nr_running.
1159 */
1160 if (prev->sched_class == &dl_sched_class)
1161 update_curr_dl(rq);
38033c37 1162
aab03e05
DF
1163 if (unlikely(!dl_rq->dl_nr_running))
1164 return NULL;
1165
3f1d2a31 1166 put_prev_task(rq, prev);
606dba2e 1167
aab03e05
DF
1168 dl_se = pick_next_dl_entity(rq, dl_rq);
1169 BUG_ON(!dl_se);
1170
1171 p = dl_task_of(dl_se);
1172 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1173
1174 /* Running task will never be pushed. */
71362650 1175 dequeue_pushable_dl_task(rq, p);
1baca4ce 1176
aab03e05
DF
1177 if (hrtick_enabled(rq))
1178 start_hrtick_dl(rq, p);
1baca4ce 1179
e3fca9e7 1180 queue_push_tasks(rq);
1baca4ce 1181
aab03e05
DF
1182 return p;
1183}
1184
1185static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1186{
1187 update_curr_dl(rq);
1baca4ce 1188
50605ffb 1189 if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1baca4ce 1190 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1191}
1192
1193static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1194{
1195 update_curr_dl(rq);
1196
a7bebf48
WL
1197 /*
1198 * Even when we have runtime, update_curr_dl() might have resulted in us
1199 * not being the leftmost task anymore. In that case NEED_RESCHED will
1200 * be set and schedule() will start a new hrtick for the next task.
1201 */
1202 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1203 is_leftmost(p, &rq->dl))
aab03e05 1204 start_hrtick_dl(rq, p);
aab03e05
DF
1205}
1206
1207static void task_fork_dl(struct task_struct *p)
1208{
1209 /*
1210 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1211 * sched_fork()
1212 */
1213}
1214
1215static void task_dead_dl(struct task_struct *p)
1216{
332ac17e
DF
1217 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1218
1219 /*
1220 * Since we are TASK_DEAD we won't slip out of the domain!
1221 */
1222 raw_spin_lock_irq(&dl_b->lock);
40767b0d 1223 /* XXX we should retain the bw until 0-lag */
332ac17e
DF
1224 dl_b->total_bw -= p->dl.dl_bw;
1225 raw_spin_unlock_irq(&dl_b->lock);
aab03e05
DF
1226}
1227
1228static void set_curr_task_dl(struct rq *rq)
1229{
1230 struct task_struct *p = rq->curr;
1231
1232 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1233
1234 /* You can't push away the running task */
1235 dequeue_pushable_dl_task(rq, p);
1236}
1237
1238#ifdef CONFIG_SMP
1239
1240/* Only try algorithms three times */
1241#define DL_MAX_TRIES 3
1242
1243static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1244{
1245 if (!task_running(rq, p) &&
1ba93d42 1246 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1baca4ce 1247 return 1;
1baca4ce
JL
1248 return 0;
1249}
1250
8b5e770e
WL
1251/*
1252 * Return the earliest pushable rq's task, which is suitable to be executed
1253 * on the CPU, NULL otherwise:
1254 */
1255static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1256{
1257 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1258 struct task_struct *p = NULL;
1259
1260 if (!has_pushable_dl_tasks(rq))
1261 return NULL;
1262
1263next_node:
1264 if (next_node) {
1265 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1266
1267 if (pick_dl_task(rq, p, cpu))
1268 return p;
1269
1270 next_node = rb_next(next_node);
1271 goto next_node;
1272 }
1273
1274 return NULL;
1275}
1276
1baca4ce
JL
1277static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1278
1279static int find_later_rq(struct task_struct *task)
1280{
1281 struct sched_domain *sd;
4ba29684 1282 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce
JL
1283 int this_cpu = smp_processor_id();
1284 int best_cpu, cpu = task_cpu(task);
1285
1286 /* Make sure the mask is initialized first */
1287 if (unlikely(!later_mask))
1288 return -1;
1289
50605ffb 1290 if (tsk_nr_cpus_allowed(task) == 1)
1baca4ce
JL
1291 return -1;
1292
91ec6778
JL
1293 /*
1294 * We have to consider system topology and task affinity
1295 * first, then we can look for a suitable cpu.
1296 */
6bfd6d72
JL
1297 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1298 task, later_mask);
1baca4ce
JL
1299 if (best_cpu == -1)
1300 return -1;
1301
1302 /*
1303 * If we are here, some target has been found,
1304 * the most suitable of which is cached in best_cpu.
1305 * This is, among the runqueues where the current tasks
1306 * have later deadlines than the task's one, the rq
1307 * with the latest possible one.
1308 *
1309 * Now we check how well this matches with task's
1310 * affinity and system topology.
1311 *
1312 * The last cpu where the task run is our first
1313 * guess, since it is most likely cache-hot there.
1314 */
1315 if (cpumask_test_cpu(cpu, later_mask))
1316 return cpu;
1317 /*
1318 * Check if this_cpu is to be skipped (i.e., it is
1319 * not in the mask) or not.
1320 */
1321 if (!cpumask_test_cpu(this_cpu, later_mask))
1322 this_cpu = -1;
1323
1324 rcu_read_lock();
1325 for_each_domain(cpu, sd) {
1326 if (sd->flags & SD_WAKE_AFFINE) {
1327
1328 /*
1329 * If possible, preempting this_cpu is
1330 * cheaper than migrating.
1331 */
1332 if (this_cpu != -1 &&
1333 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1334 rcu_read_unlock();
1335 return this_cpu;
1336 }
1337
1338 /*
1339 * Last chance: if best_cpu is valid and is
1340 * in the mask, that becomes our choice.
1341 */
1342 if (best_cpu < nr_cpu_ids &&
1343 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1344 rcu_read_unlock();
1345 return best_cpu;
1346 }
1347 }
1348 }
1349 rcu_read_unlock();
1350
1351 /*
1352 * At this point, all our guesses failed, we just return
1353 * 'something', and let the caller sort the things out.
1354 */
1355 if (this_cpu != -1)
1356 return this_cpu;
1357
1358 cpu = cpumask_any(later_mask);
1359 if (cpu < nr_cpu_ids)
1360 return cpu;
1361
1362 return -1;
1363}
1364
1365/* Locks the rq it finds */
1366static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1367{
1368 struct rq *later_rq = NULL;
1369 int tries;
1370 int cpu;
1371
1372 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1373 cpu = find_later_rq(task);
1374
1375 if ((cpu == -1) || (cpu == rq->cpu))
1376 break;
1377
1378 later_rq = cpu_rq(cpu);
1379
5aa50507
LA
1380 if (later_rq->dl.dl_nr_running &&
1381 !dl_time_before(task->dl.deadline,
9d514262
WL
1382 later_rq->dl.earliest_dl.curr)) {
1383 /*
1384 * Target rq has tasks of equal or earlier deadline,
1385 * retrying does not release any lock and is unlikely
1386 * to yield a different result.
1387 */
1388 later_rq = NULL;
1389 break;
1390 }
1391
1baca4ce
JL
1392 /* Retry if something changed. */
1393 if (double_lock_balance(rq, later_rq)) {
1394 if (unlikely(task_rq(task) != rq ||
1395 !cpumask_test_cpu(later_rq->cpu,
ade42e09 1396 tsk_cpus_allowed(task)) ||
da0c1e65 1397 task_running(rq, task) ||
13b5ab02 1398 !dl_task(task) ||
da0c1e65 1399 !task_on_rq_queued(task))) {
1baca4ce
JL
1400 double_unlock_balance(rq, later_rq);
1401 later_rq = NULL;
1402 break;
1403 }
1404 }
1405
1406 /*
1407 * If the rq we found has no -deadline task, or
1408 * its earliest one has a later deadline than our
1409 * task, the rq is a good one.
1410 */
1411 if (!later_rq->dl.dl_nr_running ||
1412 dl_time_before(task->dl.deadline,
1413 later_rq->dl.earliest_dl.curr))
1414 break;
1415
1416 /* Otherwise we try again. */
1417 double_unlock_balance(rq, later_rq);
1418 later_rq = NULL;
1419 }
1420
1421 return later_rq;
1422}
1423
1424static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1425{
1426 struct task_struct *p;
1427
1428 if (!has_pushable_dl_tasks(rq))
1429 return NULL;
1430
1431 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1432 struct task_struct, pushable_dl_tasks);
1433
1434 BUG_ON(rq->cpu != task_cpu(p));
1435 BUG_ON(task_current(rq, p));
50605ffb 1436 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1baca4ce 1437
da0c1e65 1438 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
1439 BUG_ON(!dl_task(p));
1440
1441 return p;
1442}
1443
1444/*
1445 * See if the non running -deadline tasks on this rq
1446 * can be sent to some other CPU where they can preempt
1447 * and start executing.
1448 */
1449static int push_dl_task(struct rq *rq)
1450{
1451 struct task_struct *next_task;
1452 struct rq *later_rq;
c51b8ab5 1453 int ret = 0;
1baca4ce
JL
1454
1455 if (!rq->dl.overloaded)
1456 return 0;
1457
1458 next_task = pick_next_pushable_dl_task(rq);
1459 if (!next_task)
1460 return 0;
1461
1462retry:
1463 if (unlikely(next_task == rq->curr)) {
1464 WARN_ON(1);
1465 return 0;
1466 }
1467
1468 /*
1469 * If next_task preempts rq->curr, and rq->curr
1470 * can move away, it makes sense to just reschedule
1471 * without going further in pushing next_task.
1472 */
1473 if (dl_task(rq->curr) &&
1474 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
50605ffb 1475 tsk_nr_cpus_allowed(rq->curr) > 1) {
8875125e 1476 resched_curr(rq);
1baca4ce
JL
1477 return 0;
1478 }
1479
1480 /* We might release rq lock */
1481 get_task_struct(next_task);
1482
1483 /* Will lock the rq it'll find */
1484 later_rq = find_lock_later_rq(next_task, rq);
1485 if (!later_rq) {
1486 struct task_struct *task;
1487
1488 /*
1489 * We must check all this again, since
1490 * find_lock_later_rq releases rq->lock and it is
1491 * then possible that next_task has migrated.
1492 */
1493 task = pick_next_pushable_dl_task(rq);
1494 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1495 /*
1496 * The task is still there. We don't try
1497 * again, some other cpu will pull it when ready.
1498 */
1baca4ce
JL
1499 goto out;
1500 }
1501
1502 if (!task)
1503 /* No more tasks */
1504 goto out;
1505
1506 put_task_struct(next_task);
1507 next_task = task;
1508 goto retry;
1509 }
1510
1511 deactivate_task(rq, next_task, 0);
1512 set_task_cpu(next_task, later_rq->cpu);
1513 activate_task(later_rq, next_task, 0);
c51b8ab5 1514 ret = 1;
1baca4ce 1515
8875125e 1516 resched_curr(later_rq);
1baca4ce
JL
1517
1518 double_unlock_balance(rq, later_rq);
1519
1520out:
1521 put_task_struct(next_task);
1522
c51b8ab5 1523 return ret;
1baca4ce
JL
1524}
1525
1526static void push_dl_tasks(struct rq *rq)
1527{
4ffa08ed 1528 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
1529 while (push_dl_task(rq))
1530 ;
aab03e05
DF
1531}
1532
0ea60c20 1533static void pull_dl_task(struct rq *this_rq)
1baca4ce 1534{
0ea60c20 1535 int this_cpu = this_rq->cpu, cpu;
1baca4ce 1536 struct task_struct *p;
0ea60c20 1537 bool resched = false;
1baca4ce
JL
1538 struct rq *src_rq;
1539 u64 dmin = LONG_MAX;
1540
1541 if (likely(!dl_overloaded(this_rq)))
0ea60c20 1542 return;
1baca4ce
JL
1543
1544 /*
1545 * Match the barrier from dl_set_overloaded; this guarantees that if we
1546 * see overloaded we must also see the dlo_mask bit.
1547 */
1548 smp_rmb();
1549
1550 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1551 if (this_cpu == cpu)
1552 continue;
1553
1554 src_rq = cpu_rq(cpu);
1555
1556 /*
1557 * It looks racy, abd it is! However, as in sched_rt.c,
1558 * we are fine with this.
1559 */
1560 if (this_rq->dl.dl_nr_running &&
1561 dl_time_before(this_rq->dl.earliest_dl.curr,
1562 src_rq->dl.earliest_dl.next))
1563 continue;
1564
1565 /* Might drop this_rq->lock */
1566 double_lock_balance(this_rq, src_rq);
1567
1568 /*
1569 * If there are no more pullable tasks on the
1570 * rq, we're done with it.
1571 */
1572 if (src_rq->dl.dl_nr_running <= 1)
1573 goto skip;
1574
8b5e770e 1575 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
1576
1577 /*
1578 * We found a task to be pulled if:
1579 * - it preempts our current (if there's one),
1580 * - it will preempt the last one we pulled (if any).
1581 */
1582 if (p && dl_time_before(p->dl.deadline, dmin) &&
1583 (!this_rq->dl.dl_nr_running ||
1584 dl_time_before(p->dl.deadline,
1585 this_rq->dl.earliest_dl.curr))) {
1586 WARN_ON(p == src_rq->curr);
da0c1e65 1587 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
1588
1589 /*
1590 * Then we pull iff p has actually an earlier
1591 * deadline than the current task of its runqueue.
1592 */
1593 if (dl_time_before(p->dl.deadline,
1594 src_rq->curr->dl.deadline))
1595 goto skip;
1596
0ea60c20 1597 resched = true;
1baca4ce
JL
1598
1599 deactivate_task(src_rq, p, 0);
1600 set_task_cpu(p, this_cpu);
1601 activate_task(this_rq, p, 0);
1602 dmin = p->dl.deadline;
1603
1604 /* Is there any other task even earlier? */
1605 }
1606skip:
1607 double_unlock_balance(this_rq, src_rq);
1608 }
1609
0ea60c20
PZ
1610 if (resched)
1611 resched_curr(this_rq);
1baca4ce
JL
1612}
1613
1614/*
1615 * Since the task is not running and a reschedule is not going to happen
1616 * anytime soon on its runqueue, we try pushing it away now.
1617 */
1618static void task_woken_dl(struct rq *rq, struct task_struct *p)
1619{
1620 if (!task_running(rq, p) &&
1621 !test_tsk_need_resched(rq->curr) &&
50605ffb 1622 tsk_nr_cpus_allowed(p) > 1 &&
1baca4ce 1623 dl_task(rq->curr) &&
50605ffb 1624 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
6b0a563f 1625 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
1626 push_dl_tasks(rq);
1627 }
1628}
1629
1630static void set_cpus_allowed_dl(struct task_struct *p,
1631 const struct cpumask *new_mask)
1632{
7f51412a 1633 struct root_domain *src_rd;
6c37067e 1634 struct rq *rq;
1baca4ce
JL
1635
1636 BUG_ON(!dl_task(p));
1637
7f51412a
JL
1638 rq = task_rq(p);
1639 src_rd = rq->rd;
1640 /*
1641 * Migrating a SCHED_DEADLINE task between exclusive
1642 * cpusets (different root_domains) entails a bandwidth
1643 * update. We already made space for us in the destination
1644 * domain (see cpuset_can_attach()).
1645 */
1646 if (!cpumask_intersects(src_rd->span, new_mask)) {
1647 struct dl_bw *src_dl_b;
1648
1649 src_dl_b = dl_bw_of(cpu_of(rq));
1650 /*
1651 * We now free resources of the root_domain we are migrating
1652 * off. In the worst case, sched_setattr() may temporary fail
1653 * until we complete the update.
1654 */
1655 raw_spin_lock(&src_dl_b->lock);
1656 __dl_clear(src_dl_b, p->dl.dl_bw);
1657 raw_spin_unlock(&src_dl_b->lock);
1658 }
1659
6c37067e 1660 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
1661}
1662
1663/* Assumes rq->lock is held */
1664static void rq_online_dl(struct rq *rq)
1665{
1666 if (rq->dl.overloaded)
1667 dl_set_overload(rq);
6bfd6d72 1668
16b26943 1669 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72
JL
1670 if (rq->dl.dl_nr_running > 0)
1671 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1baca4ce
JL
1672}
1673
1674/* Assumes rq->lock is held */
1675static void rq_offline_dl(struct rq *rq)
1676{
1677 if (rq->dl.overloaded)
1678 dl_clear_overload(rq);
6bfd6d72
JL
1679
1680 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
16b26943 1681 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
1682}
1683
a6c0e746 1684void __init init_sched_dl_class(void)
1baca4ce
JL
1685{
1686 unsigned int i;
1687
1688 for_each_possible_cpu(i)
1689 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1690 GFP_KERNEL, cpu_to_node(i));
1691}
1692
1693#endif /* CONFIG_SMP */
1694
aab03e05
DF
1695static void switched_from_dl(struct rq *rq, struct task_struct *p)
1696{
a649f237
PZ
1697 /*
1698 * Start the deadline timer; if we switch back to dl before this we'll
1699 * continue consuming our current CBS slice. If we stay outside of
1700 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1701 * task.
1702 */
1703 if (!start_dl_timer(p))
1704 __dl_clear_params(p);
a5e7be3b 1705
1baca4ce
JL
1706 /*
1707 * Since this might be the only -deadline task on the rq,
1708 * this is the right place to try to pull some other one
1709 * from an overloaded cpu, if any.
1710 */
cd660911
WL
1711 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1712 return;
1713
9916e214 1714 queue_pull_task(rq);
aab03e05
DF
1715}
1716
1baca4ce
JL
1717/*
1718 * When switching to -deadline, we may overload the rq, then
1719 * we try to push someone off, if possible.
1720 */
aab03e05
DF
1721static void switched_to_dl(struct rq *rq, struct task_struct *p)
1722{
72f9f3fd
LA
1723 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1724 setup_new_dl_entity(&p->dl, &p->dl);
1725
da0c1e65 1726 if (task_on_rq_queued(p) && rq->curr != p) {
1baca4ce 1727#ifdef CONFIG_SMP
50605ffb 1728 if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
9916e214
PZ
1729 queue_push_tasks(rq);
1730#else
1731 if (dl_task(rq->curr))
1732 check_preempt_curr_dl(rq, p, 0);
1733 else
1734 resched_curr(rq);
1735#endif
aab03e05
DF
1736 }
1737}
1738
1baca4ce
JL
1739/*
1740 * If the scheduling parameters of a -deadline task changed,
1741 * a push or pull operation might be needed.
1742 */
aab03e05
DF
1743static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1744 int oldprio)
1745{
da0c1e65 1746 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 1747#ifdef CONFIG_SMP
1baca4ce
JL
1748 /*
1749 * This might be too much, but unfortunately
1750 * we don't have the old deadline value, and
1751 * we can't argue if the task is increasing
1752 * or lowering its prio, so...
1753 */
1754 if (!rq->dl.overloaded)
9916e214 1755 queue_pull_task(rq);
1baca4ce
JL
1756
1757 /*
1758 * If we now have a earlier deadline task than p,
1759 * then reschedule, provided p is still on this
1760 * runqueue.
1761 */
9916e214 1762 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 1763 resched_curr(rq);
1baca4ce
JL
1764#else
1765 /*
1766 * Again, we don't know if p has a earlier
1767 * or later deadline, so let's blindly set a
1768 * (maybe not needed) rescheduling point.
1769 */
8875125e 1770 resched_curr(rq);
1baca4ce 1771#endif /* CONFIG_SMP */
801ccdbf 1772 }
aab03e05 1773}
aab03e05
DF
1774
1775const struct sched_class dl_sched_class = {
1776 .next = &rt_sched_class,
1777 .enqueue_task = enqueue_task_dl,
1778 .dequeue_task = dequeue_task_dl,
1779 .yield_task = yield_task_dl,
1780
1781 .check_preempt_curr = check_preempt_curr_dl,
1782
1783 .pick_next_task = pick_next_task_dl,
1784 .put_prev_task = put_prev_task_dl,
1785
1786#ifdef CONFIG_SMP
1787 .select_task_rq = select_task_rq_dl,
1baca4ce
JL
1788 .set_cpus_allowed = set_cpus_allowed_dl,
1789 .rq_online = rq_online_dl,
1790 .rq_offline = rq_offline_dl,
1baca4ce 1791 .task_woken = task_woken_dl,
aab03e05
DF
1792#endif
1793
1794 .set_curr_task = set_curr_task_dl,
1795 .task_tick = task_tick_dl,
1796 .task_fork = task_fork_dl,
1797 .task_dead = task_dead_dl,
1798
1799 .prio_changed = prio_changed_dl,
1800 .switched_from = switched_from_dl,
1801 .switched_to = switched_to_dl,
6e998916
SG
1802
1803 .update_curr = update_curr_dl,
aab03e05 1804};
acb32132
WL
1805
1806#ifdef CONFIG_SCHED_DEBUG
1807extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1808
1809void print_dl_stats(struct seq_file *m, int cpu)
1810{
1811 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1812}
1813#endif /* CONFIG_SCHED_DEBUG */