sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
[linux-2.6-block.git] / kernel / sched / cpufreq_schedutil.c
CommitLineData
108c35a9 1// SPDX-License-Identifier: GPL-2.0
9bdcb44e
RW
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9bdcb44e
RW
7 */
8
60f05e86
VK
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
9bdcb44e
RW
11#include "sched.h"
12
938e5e4b 13#include <linux/sched/cpufreq.h>
325ea10c
IM
14#include <trace/events/power.h>
15
9eca544b
RW
16#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
17
9bdcb44e 18struct sugov_tunables {
97fb7a0a
IM
19 struct gov_attr_set attr_set;
20 unsigned int rate_limit_us;
9bdcb44e
RW
21};
22
23struct sugov_policy {
97fb7a0a
IM
24 struct cpufreq_policy *policy;
25
26 struct sugov_tunables *tunables;
27 struct list_head tunables_hook;
28
29 raw_spinlock_t update_lock; /* For shared policies */
30 u64 last_freq_update_time;
31 s64 freq_update_delay_ns;
32 unsigned int next_freq;
33 unsigned int cached_raw_freq;
34
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work;
37 struct kthread_work work;
38 struct mutex work_lock;
39 struct kthread_worker worker;
40 struct task_struct *thread;
41 bool work_in_progress;
42
43 bool need_freq_update;
9bdcb44e
RW
44};
45
46struct sugov_cpu {
97fb7a0a
IM
47 struct update_util_data update_util;
48 struct sugov_policy *sg_policy;
49 unsigned int cpu;
9bdcb44e 50
97fb7a0a
IM
51 bool iowait_boost_pending;
52 unsigned int iowait_boost;
fd7d5287 53 u64 last_update;
5cbea469 54
8cc90515 55 unsigned long bw_dl;
97fb7a0a 56 unsigned long max;
b7eaf1aa 57
97fb7a0a 58 /* The field below is for single-CPU policies only: */
b7eaf1aa 59#ifdef CONFIG_NO_HZ_COMMON
97fb7a0a 60 unsigned long saved_idle_calls;
b7eaf1aa 61#endif
9bdcb44e
RW
62};
63
64static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
65
66/************************ Governor internals ***********************/
67
68static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
69{
70 s64 delta_ns;
71
674e7541
VK
72 /*
73 * Since cpufreq_update_util() is called with rq->lock held for
97fb7a0a 74 * the @target_cpu, our per-CPU data is fully serialized.
674e7541 75 *
97fb7a0a 76 * However, drivers cannot in general deal with cross-CPU
674e7541 77 * requests, so while get_next_freq() will work, our
c49cbc19 78 * sugov_update_commit() call may not for the fast switching platforms.
674e7541
VK
79 *
80 * Hence stop here for remote requests if they aren't supported
81 * by the hardware, as calculating the frequency is pointless if
82 * we cannot in fact act on it.
c49cbc19
VK
83 *
84 * For the slow switching platforms, the kthread is always scheduled on
85 * the right set of CPUs and any CPU can find the next frequency and
86 * schedule the kthread.
674e7541 87 */
c49cbc19 88 if (sg_policy->policy->fast_switch_enabled &&
03639978 89 !cpufreq_this_cpu_can_update(sg_policy->policy))
674e7541
VK
90 return false;
91
ecd28842 92 if (unlikely(sg_policy->need_freq_update))
9bdcb44e 93 return true;
9bdcb44e
RW
94
95 delta_ns = time - sg_policy->last_freq_update_time;
97fb7a0a 96
9bdcb44e
RW
97 return delta_ns >= sg_policy->freq_update_delay_ns;
98}
99
a61dec74
RW
100static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
101 unsigned int next_freq)
9bdcb44e 102{
38d4ea22 103 if (sg_policy->next_freq == next_freq)
a61dec74 104 return false;
38d4ea22
RW
105
106 sg_policy->next_freq = next_freq;
9bdcb44e
RW
107 sg_policy->last_freq_update_time = time;
108
a61dec74
RW
109 return true;
110}
9bdcb44e 111
a61dec74
RW
112static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
113 unsigned int next_freq)
114{
115 struct cpufreq_policy *policy = sg_policy->policy;
116
117 if (!sugov_update_next_freq(sg_policy, time, next_freq))
118 return;
119
120 next_freq = cpufreq_driver_fast_switch(policy, next_freq);
121 if (!next_freq)
122 return;
9bdcb44e 123
a61dec74
RW
124 policy->cur = next_freq;
125 trace_cpu_frequency(next_freq, smp_processor_id());
126}
127
128static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
129 unsigned int next_freq)
130{
131 if (!sugov_update_next_freq(sg_policy, time, next_freq))
132 return;
133
134 if (!sg_policy->work_in_progress) {
9bdcb44e
RW
135 sg_policy->work_in_progress = true;
136 irq_work_queue(&sg_policy->irq_work);
137 }
138}
139
140/**
141 * get_next_freq - Compute a new frequency for a given cpufreq policy.
655cb1eb 142 * @sg_policy: schedutil policy object to compute the new frequency for.
9bdcb44e
RW
143 * @util: Current CPU utilization.
144 * @max: CPU capacity.
145 *
146 * If the utilization is frequency-invariant, choose the new frequency to be
147 * proportional to it, that is
148 *
149 * next_freq = C * max_freq * util / max
150 *
151 * Otherwise, approximate the would-be frequency-invariant utilization by
152 * util_raw * (curr_freq / max_freq) which leads to
153 *
154 * next_freq = C * curr_freq * util_raw / max
155 *
156 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
5cbea469
SM
157 *
158 * The lowest driver-supported frequency which is equal or greater than the raw
159 * next_freq (as calculated above) is returned, subject to policy min/max and
160 * cpufreq driver limitations.
9bdcb44e 161 */
655cb1eb
VK
162static unsigned int get_next_freq(struct sugov_policy *sg_policy,
163 unsigned long util, unsigned long max)
9bdcb44e 164{
5cbea469 165 struct cpufreq_policy *policy = sg_policy->policy;
9bdcb44e
RW
166 unsigned int freq = arch_scale_freq_invariant() ?
167 policy->cpuinfo.max_freq : policy->cur;
168
938e5e4b 169 freq = map_util_freq(util, freq, max);
5cbea469 170
ecd28842 171 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
5cbea469 172 return sg_policy->next_freq;
ecd28842
VK
173
174 sg_policy->need_freq_update = false;
6c4f0fa6 175 sg_policy->cached_raw_freq = freq;
5cbea469 176 return cpufreq_driver_resolve_freq(policy, freq);
9bdcb44e
RW
177}
178
45f5519e
PZ
179/*
180 * This function computes an effective utilization for the given CPU, to be
181 * used for frequency selection given the linear relation: f = u * f_max.
182 *
183 * The scheduler tracks the following metrics:
184 *
185 * cpu_util_{cfs,rt,dl,irq}()
186 * cpu_bw_dl()
187 *
188 * Where the cfs,rt and dl util numbers are tracked with the same metric and
189 * synchronized windows and are thus directly comparable.
190 *
191 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
192 * which excludes things like IRQ and steal-time. These latter are then accrued
193 * in the irq utilization.
194 *
195 * The DL bandwidth number otoh is not a measured metric but a value computed
196 * based on the task model parameters and gives the minimal utilization
197 * required to meet deadlines.
198 */
938e5e4b
QP
199unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
200 unsigned long max, enum schedutil_type type)
58919e83 201{
938e5e4b
QP
202 unsigned long dl_util, util, irq;
203 struct rq *rq = cpu_rq(cpu);
8f111bc3 204
938e5e4b 205 if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
dfa444dc
VG
206 return max;
207
45f5519e
PZ
208 /*
209 * Early check to see if IRQ/steal time saturates the CPU, can be
210 * because of inaccuracies in how we track these -- see
211 * update_irq_load_avg().
212 */
dfa444dc 213 irq = cpu_util_irq(rq);
dfa444dc 214 if (unlikely(irq >= max))
9033ea11
VG
215 return max;
216
45f5519e
PZ
217 /*
218 * Because the time spend on RT/DL tasks is visible as 'lost' time to
219 * CFS tasks and we use the same metric to track the effective
220 * utilization (PELT windows are synchronized) we can directly add them
221 * to obtain the CPU's actual utilization.
222 */
938e5e4b 223 util = util_cfs;
dfa444dc 224 util += cpu_util_rt(rq);
3ae117c6 225
938e5e4b
QP
226 dl_util = cpu_util_dl(rq);
227
9033ea11 228 /*
938e5e4b
QP
229 * For frequency selection we do not make cpu_util_dl() a permanent part
230 * of this sum because we want to use cpu_bw_dl() later on, but we need
231 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
232 * that we select f_max when there is no idle time.
45f5519e
PZ
233 *
234 * NOTE: numerical errors or stop class might cause us to not quite hit
235 * saturation when we should -- something for later.
9033ea11 236 */
938e5e4b 237 if (util + dl_util >= max)
9033ea11 238 return max;
8cc90515 239
938e5e4b
QP
240 /*
241 * OTOH, for energy computation we need the estimated running time, so
242 * include util_dl and ignore dl_bw.
243 */
244 if (type == ENERGY_UTIL)
245 util += dl_util;
246
d4edd662 247 /*
45f5519e
PZ
248 * There is still idle time; further improve the number by using the
249 * irq metric. Because IRQ/steal time is hidden from the task clock we
250 * need to scale the task numbers:
8cc90515 251 *
45f5519e
PZ
252 * 1 - irq
253 * U' = irq + ------- * U
254 * max
255 */
2e62c474 256 util = scale_irq_capacity(util, irq, max);
45f5519e
PZ
257 util += irq;
258
259 /*
8cc90515
VG
260 * Bandwidth required by DEADLINE must always be granted while, for
261 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
262 * to gracefully reduce the frequency when no tasks show up for longer
8ecf04e1
PB
263 * periods of time.
264 *
45f5519e
PZ
265 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
266 * bw_dl as requested freq. However, cpufreq is not yet ready for such
267 * an interface. So, we only do the latter for now.
d4edd662 268 */
938e5e4b
QP
269 if (type == FREQUENCY_UTIL)
270 util += cpu_bw_dl(rq);
271
272 return min(max, util);
273}
274
275static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
276{
277 struct rq *rq = cpu_rq(sg_cpu->cpu);
278 unsigned long util = cpu_util_cfs(rq);
8ec59c0f 279 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
938e5e4b
QP
280
281 sg_cpu->max = max;
282 sg_cpu->bw_dl = cpu_bw_dl(rq);
283
284 return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
58919e83
RW
285}
286
fd7d5287
PB
287/**
288 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
289 * @sg_cpu: the sugov data for the CPU to boost
290 * @time: the update time from the caller
291 * @set_iowait_boost: true if an IO boost has been requested
292 *
293 * The IO wait boost of a task is disabled after a tick since the last update
294 * of a CPU. If a new IO wait boost is requested after more then a tick, then
9eca544b
RW
295 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
296 * efficiency by ignoring sporadic wakeups from IO.
fd7d5287
PB
297 */
298static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
299 bool set_iowait_boost)
21ca6d2c 300{
fd7d5287 301 s64 delta_ns = time - sg_cpu->last_update;
a5a0809b 302
fd7d5287
PB
303 /* Reset boost only if a tick has elapsed since last request */
304 if (delta_ns <= TICK_NSEC)
305 return false;
a5a0809b 306
9eca544b 307 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
fd7d5287 308 sg_cpu->iowait_boost_pending = set_iowait_boost;
21ca6d2c 309
fd7d5287
PB
310 return true;
311}
a5a0809b 312
fd7d5287
PB
313/**
314 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
315 * @sg_cpu: the sugov data for the CPU to boost
316 * @time: the update time from the caller
317 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
318 *
319 * Each time a task wakes up after an IO operation, the CPU utilization can be
320 * boosted to a certain utilization which doubles at each "frequent and
9eca544b
RW
321 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
322 * of the maximum OPP.
323 *
fd7d5287
PB
324 * To keep doubling, an IO boost has to be requested at least once per tick,
325 * otherwise we restart from the utilization of the minimum OPP.
326 */
327static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
328 unsigned int flags)
329{
330 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
331
332 /* Reset boost if the CPU appears to have been idle enough */
333 if (sg_cpu->iowait_boost &&
334 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
335 return;
336
337 /* Boost only tasks waking up after IO */
338 if (!set_iowait_boost)
339 return;
340
341 /* Ensure boost doubles only one time at each request */
342 if (sg_cpu->iowait_boost_pending)
343 return;
344 sg_cpu->iowait_boost_pending = true;
345
346 /* Double the boost at each request */
347 if (sg_cpu->iowait_boost) {
a23314e9
PZ
348 sg_cpu->iowait_boost =
349 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
fd7d5287 350 return;
21ca6d2c 351 }
fd7d5287
PB
352
353 /* First wakeup after IO: start with minimum boost */
9eca544b 354 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
21ca6d2c
RW
355}
356
fd7d5287
PB
357/**
358 * sugov_iowait_apply() - Apply the IO boost to a CPU.
359 * @sg_cpu: the sugov data for the cpu to boost
360 * @time: the update time from the caller
361 * @util: the utilization to (eventually) boost
362 * @max: the maximum value the utilization can be boosted to
363 *
364 * A CPU running a task which woken up after an IO operation can have its
365 * utilization boosted to speed up the completion of those IO operations.
366 * The IO boost value is increased each time a task wakes up from IO, in
367 * sugov_iowait_apply(), and it's instead decreased by this function,
368 * each time an increase has not been requested (!iowait_boost_pending).
369 *
370 * A CPU which also appears to have been idle for at least one tick has also
371 * its IO boost utilization reset.
372 *
373 * This mechanism is designed to boost high frequently IO waiting tasks, while
374 * being more conservative on tasks which does sporadic IO operations.
375 */
a23314e9
PZ
376static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
377 unsigned long util, unsigned long max)
21ca6d2c 378{
a23314e9 379 unsigned long boost;
21ca6d2c 380
fd7d5287 381 /* No boost currently required */
a5a0809b 382 if (!sg_cpu->iowait_boost)
a23314e9 383 return util;
21ca6d2c 384
fd7d5287
PB
385 /* Reset boost if the CPU appears to have been idle enough */
386 if (sugov_iowait_reset(sg_cpu, time, false))
a23314e9 387 return util;
fd7d5287 388
a23314e9 389 if (!sg_cpu->iowait_boost_pending) {
fd7d5287 390 /*
a23314e9 391 * No boost pending; reduce the boost value.
fd7d5287 392 */
a5a0809b 393 sg_cpu->iowait_boost >>= 1;
9eca544b 394 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
a5a0809b 395 sg_cpu->iowait_boost = 0;
a23314e9 396 return util;
a5a0809b
JF
397 }
398 }
399
a23314e9
PZ
400 sg_cpu->iowait_boost_pending = false;
401
fd7d5287 402 /*
a23314e9
PZ
403 * @util is already in capacity scale; convert iowait_boost
404 * into the same scale so we can compare.
fd7d5287 405 */
a23314e9
PZ
406 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
407 return max(boost, util);
21ca6d2c
RW
408}
409
b7eaf1aa
RW
410#ifdef CONFIG_NO_HZ_COMMON
411static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
412{
466a2b42 413 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
b7eaf1aa
RW
414 bool ret = idle_calls == sg_cpu->saved_idle_calls;
415
416 sg_cpu->saved_idle_calls = idle_calls;
417 return ret;
418}
419#else
420static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
421#endif /* CONFIG_NO_HZ_COMMON */
422
e97a90f7
CS
423/*
424 * Make sugov_should_update_freq() ignore the rate limit when DL
425 * has increased the utilization.
426 */
427static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
428{
8cc90515 429 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
e97a90f7
CS
430 sg_policy->need_freq_update = true;
431}
432
9bdcb44e 433static void sugov_update_single(struct update_util_data *hook, u64 time,
58919e83 434 unsigned int flags)
9bdcb44e
RW
435{
436 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
58919e83 438 unsigned long util, max;
9bdcb44e 439 unsigned int next_f;
b7eaf1aa 440 bool busy;
9bdcb44e 441
fd7d5287 442 sugov_iowait_boost(sg_cpu, time, flags);
21ca6d2c
RW
443 sg_cpu->last_update = time;
444
e97a90f7
CS
445 ignore_dl_rate_limit(sg_cpu, sg_policy);
446
9bdcb44e
RW
447 if (!sugov_should_update_freq(sg_policy, time))
448 return;
449
b7eaf1aa
RW
450 busy = sugov_cpu_is_busy(sg_cpu);
451
dfa444dc 452 util = sugov_get_util(sg_cpu);
8f111bc3 453 max = sg_cpu->max;
a23314e9 454 util = sugov_iowait_apply(sg_cpu, time, util, max);
8f111bc3
PZ
455 next_f = get_next_freq(sg_policy, util, max);
456 /*
457 * Do not reduce the frequency if the CPU has not been idle
458 * recently, as the reduction is likely to be premature then.
459 */
ecd28842 460 if (busy && next_f < sg_policy->next_freq) {
8f111bc3 461 next_f = sg_policy->next_freq;
07458f6a 462
8f111bc3
PZ
463 /* Reset cached freq as next_freq has changed */
464 sg_policy->cached_raw_freq = 0;
58919e83 465 }
8f111bc3 466
a61dec74
RW
467 /*
468 * This code runs under rq->lock for the target CPU, so it won't run
469 * concurrently on two different CPUs for the same target and it is not
470 * necessary to acquire the lock in the fast switch case.
471 */
472 if (sg_policy->policy->fast_switch_enabled) {
473 sugov_fast_switch(sg_policy, time, next_f);
474 } else {
475 raw_spin_lock(&sg_policy->update_lock);
476 sugov_deferred_update(sg_policy, time, next_f);
477 raw_spin_unlock(&sg_policy->update_lock);
478 }
9bdcb44e
RW
479}
480
d86ab9cf 481static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
9bdcb44e 482{
5cbea469 483 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
9bdcb44e 484 struct cpufreq_policy *policy = sg_policy->policy;
cba1dfb5 485 unsigned long util = 0, max = 1;
9bdcb44e
RW
486 unsigned int j;
487
9bdcb44e 488 for_each_cpu(j, policy->cpus) {
cba1dfb5 489 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
9bdcb44e 490 unsigned long j_util, j_max;
9bdcb44e 491
dfa444dc 492 j_util = sugov_get_util(j_sg_cpu);
9bdcb44e 493 j_max = j_sg_cpu->max;
a23314e9 494 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
fd7d5287 495
9bdcb44e
RW
496 if (j_util * max > j_max * util) {
497 util = j_util;
498 max = j_max;
499 }
500 }
501
655cb1eb 502 return get_next_freq(sg_policy, util, max);
9bdcb44e
RW
503}
504
97fb7a0a
IM
505static void
506sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
9bdcb44e
RW
507{
508 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
509 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
510 unsigned int next_f;
511
512 raw_spin_lock(&sg_policy->update_lock);
513
fd7d5287 514 sugov_iowait_boost(sg_cpu, time, flags);
9bdcb44e
RW
515 sg_cpu->last_update = time;
516
e97a90f7 517 ignore_dl_rate_limit(sg_cpu, sg_policy);
cba1dfb5 518
9bdcb44e 519 if (sugov_should_update_freq(sg_policy, time)) {
8f111bc3 520 next_f = sugov_next_freq_shared(sg_cpu, time);
a61dec74
RW
521
522 if (sg_policy->policy->fast_switch_enabled)
523 sugov_fast_switch(sg_policy, time, next_f);
524 else
525 sugov_deferred_update(sg_policy, time, next_f);
9bdcb44e
RW
526 }
527
528 raw_spin_unlock(&sg_policy->update_lock);
529}
530
02a7b1ee 531static void sugov_work(struct kthread_work *work)
9bdcb44e
RW
532{
533 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
152db033
JFG
534 unsigned int freq;
535 unsigned long flags;
536
537 /*
538 * Hold sg_policy->update_lock shortly to handle the case where:
539 * incase sg_policy->next_freq is read here, and then updated by
a61dec74 540 * sugov_deferred_update() just before work_in_progress is set to false
152db033
JFG
541 * here, we may miss queueing the new update.
542 *
543 * Note: If a work was queued after the update_lock is released,
a61dec74 544 * sugov_work() will just be called again by kthread_work code; and the
152db033
JFG
545 * request will be proceed before the sugov thread sleeps.
546 */
547 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
548 freq = sg_policy->next_freq;
549 sg_policy->work_in_progress = false;
550 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
9bdcb44e
RW
551
552 mutex_lock(&sg_policy->work_lock);
152db033 553 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
9bdcb44e 554 mutex_unlock(&sg_policy->work_lock);
9bdcb44e
RW
555}
556
557static void sugov_irq_work(struct irq_work *irq_work)
558{
559 struct sugov_policy *sg_policy;
560
561 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
02a7b1ee 562
02a7b1ee 563 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
9bdcb44e
RW
564}
565
566/************************** sysfs interface ************************/
567
568static struct sugov_tunables *global_tunables;
569static DEFINE_MUTEX(global_tunables_lock);
570
571static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
572{
573 return container_of(attr_set, struct sugov_tunables, attr_set);
574}
575
576static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
577{
578 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
579
580 return sprintf(buf, "%u\n", tunables->rate_limit_us);
581}
582
97fb7a0a
IM
583static ssize_t
584rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
9bdcb44e
RW
585{
586 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
587 struct sugov_policy *sg_policy;
588 unsigned int rate_limit_us;
589
590 if (kstrtouint(buf, 10, &rate_limit_us))
591 return -EINVAL;
592
593 tunables->rate_limit_us = rate_limit_us;
594
595 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
596 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
597
598 return count;
599}
600
601static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
602
9782adeb 603static struct attribute *sugov_attrs[] = {
9bdcb44e
RW
604 &rate_limit_us.attr,
605 NULL
606};
9782adeb 607ATTRIBUTE_GROUPS(sugov);
9bdcb44e
RW
608
609static struct kobj_type sugov_tunables_ktype = {
9782adeb 610 .default_groups = sugov_groups,
9bdcb44e
RW
611 .sysfs_ops = &governor_sysfs_ops,
612};
613
614/********************** cpufreq governor interface *********************/
615
531b5c9f 616struct cpufreq_governor schedutil_gov;
9bdcb44e
RW
617
618static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
619{
620 struct sugov_policy *sg_policy;
621
622 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
623 if (!sg_policy)
624 return NULL;
625
626 sg_policy->policy = policy;
9bdcb44e
RW
627 raw_spin_lock_init(&sg_policy->update_lock);
628 return sg_policy;
629}
630
631static void sugov_policy_free(struct sugov_policy *sg_policy)
632{
9bdcb44e
RW
633 kfree(sg_policy);
634}
635
02a7b1ee
VK
636static int sugov_kthread_create(struct sugov_policy *sg_policy)
637{
638 struct task_struct *thread;
794a56eb 639 struct sched_attr attr = {
97fb7a0a
IM
640 .size = sizeof(struct sched_attr),
641 .sched_policy = SCHED_DEADLINE,
642 .sched_flags = SCHED_FLAG_SUGOV,
643 .sched_nice = 0,
644 .sched_priority = 0,
794a56eb
JL
645 /*
646 * Fake (unused) bandwidth; workaround to "fix"
647 * priority inheritance.
648 */
649 .sched_runtime = 1000000,
650 .sched_deadline = 10000000,
651 .sched_period = 10000000,
652 };
02a7b1ee
VK
653 struct cpufreq_policy *policy = sg_policy->policy;
654 int ret;
655
656 /* kthread only required for slow path */
657 if (policy->fast_switch_enabled)
658 return 0;
659
660 kthread_init_work(&sg_policy->work, sugov_work);
661 kthread_init_worker(&sg_policy->worker);
662 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
663 "sugov:%d",
664 cpumask_first(policy->related_cpus));
665 if (IS_ERR(thread)) {
666 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
667 return PTR_ERR(thread);
668 }
669
794a56eb 670 ret = sched_setattr_nocheck(thread, &attr);
02a7b1ee
VK
671 if (ret) {
672 kthread_stop(thread);
794a56eb 673 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
02a7b1ee
VK
674 return ret;
675 }
676
677 sg_policy->thread = thread;
1b04722c 678 kthread_bind_mask(thread, policy->related_cpus);
21ef5729
VK
679 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
680 mutex_init(&sg_policy->work_lock);
681
02a7b1ee
VK
682 wake_up_process(thread);
683
684 return 0;
685}
686
687static void sugov_kthread_stop(struct sugov_policy *sg_policy)
688{
689 /* kthread only required for slow path */
690 if (sg_policy->policy->fast_switch_enabled)
691 return;
692
693 kthread_flush_worker(&sg_policy->worker);
694 kthread_stop(sg_policy->thread);
21ef5729 695 mutex_destroy(&sg_policy->work_lock);
02a7b1ee
VK
696}
697
9bdcb44e
RW
698static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
699{
700 struct sugov_tunables *tunables;
701
702 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
703 if (tunables) {
704 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
705 if (!have_governor_per_policy())
706 global_tunables = tunables;
707 }
708 return tunables;
709}
710
711static void sugov_tunables_free(struct sugov_tunables *tunables)
712{
713 if (!have_governor_per_policy())
714 global_tunables = NULL;
715
716 kfree(tunables);
717}
718
719static int sugov_init(struct cpufreq_policy *policy)
720{
721 struct sugov_policy *sg_policy;
722 struct sugov_tunables *tunables;
9bdcb44e
RW
723 int ret = 0;
724
725 /* State should be equivalent to EXIT */
726 if (policy->governor_data)
727 return -EBUSY;
728
4a71ce43
VK
729 cpufreq_enable_fast_switch(policy);
730
9bdcb44e 731 sg_policy = sugov_policy_alloc(policy);
4a71ce43
VK
732 if (!sg_policy) {
733 ret = -ENOMEM;
734 goto disable_fast_switch;
735 }
9bdcb44e 736
02a7b1ee
VK
737 ret = sugov_kthread_create(sg_policy);
738 if (ret)
739 goto free_sg_policy;
740
9bdcb44e
RW
741 mutex_lock(&global_tunables_lock);
742
743 if (global_tunables) {
744 if (WARN_ON(have_governor_per_policy())) {
745 ret = -EINVAL;
02a7b1ee 746 goto stop_kthread;
9bdcb44e
RW
747 }
748 policy->governor_data = sg_policy;
749 sg_policy->tunables = global_tunables;
750
751 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
752 goto out;
753 }
754
755 tunables = sugov_tunables_alloc(sg_policy);
756 if (!tunables) {
757 ret = -ENOMEM;
02a7b1ee 758 goto stop_kthread;
9bdcb44e
RW
759 }
760
aa7519af 761 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
9bdcb44e
RW
762
763 policy->governor_data = sg_policy;
764 sg_policy->tunables = tunables;
765
766 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
767 get_governor_parent_kobj(policy), "%s",
768 schedutil_gov.name);
769 if (ret)
770 goto fail;
771
8e2ddb03 772out:
9bdcb44e 773 mutex_unlock(&global_tunables_lock);
9bdcb44e
RW
774 return 0;
775
8e2ddb03 776fail:
9a4f26cc 777 kobject_put(&tunables->attr_set.kobj);
9bdcb44e
RW
778 policy->governor_data = NULL;
779 sugov_tunables_free(tunables);
780
02a7b1ee
VK
781stop_kthread:
782 sugov_kthread_stop(sg_policy);
9bdcb44e
RW
783 mutex_unlock(&global_tunables_lock);
784
1b5d43cf 785free_sg_policy:
9bdcb44e 786 sugov_policy_free(sg_policy);
4a71ce43
VK
787
788disable_fast_switch:
789 cpufreq_disable_fast_switch(policy);
790
60f05e86 791 pr_err("initialization failed (error %d)\n", ret);
9bdcb44e
RW
792 return ret;
793}
794
e788892b 795static void sugov_exit(struct cpufreq_policy *policy)
9bdcb44e
RW
796{
797 struct sugov_policy *sg_policy = policy->governor_data;
798 struct sugov_tunables *tunables = sg_policy->tunables;
799 unsigned int count;
800
801 mutex_lock(&global_tunables_lock);
802
803 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
804 policy->governor_data = NULL;
805 if (!count)
806 sugov_tunables_free(tunables);
807
808 mutex_unlock(&global_tunables_lock);
809
02a7b1ee 810 sugov_kthread_stop(sg_policy);
9bdcb44e 811 sugov_policy_free(sg_policy);
4a71ce43 812 cpufreq_disable_fast_switch(policy);
9bdcb44e
RW
813}
814
815static int sugov_start(struct cpufreq_policy *policy)
816{
817 struct sugov_policy *sg_policy = policy->governor_data;
818 unsigned int cpu;
819
97fb7a0a
IM
820 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
821 sg_policy->last_freq_update_time = 0;
ecd28842 822 sg_policy->next_freq = 0;
97fb7a0a
IM
823 sg_policy->work_in_progress = false;
824 sg_policy->need_freq_update = false;
825 sg_policy->cached_raw_freq = 0;
9bdcb44e
RW
826
827 for_each_cpu(cpu, policy->cpus) {
828 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
829
4296f23e 830 memset(sg_cpu, 0, sizeof(*sg_cpu));
97fb7a0a
IM
831 sg_cpu->cpu = cpu;
832 sg_cpu->sg_policy = sg_policy;
ab2f7cf1
VM
833 }
834
835 for_each_cpu(cpu, policy->cpus) {
836 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
837
4296f23e
RW
838 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
839 policy_is_shared(policy) ?
840 sugov_update_shared :
841 sugov_update_single);
9bdcb44e
RW
842 }
843 return 0;
844}
845
e788892b 846static void sugov_stop(struct cpufreq_policy *policy)
9bdcb44e
RW
847{
848 struct sugov_policy *sg_policy = policy->governor_data;
849 unsigned int cpu;
850
851 for_each_cpu(cpu, policy->cpus)
852 cpufreq_remove_update_util_hook(cpu);
853
b290ebcf 854 synchronize_rcu();
9bdcb44e 855
21ef5729
VK
856 if (!policy->fast_switch_enabled) {
857 irq_work_sync(&sg_policy->irq_work);
858 kthread_cancel_work_sync(&sg_policy->work);
859 }
9bdcb44e
RW
860}
861
e788892b 862static void sugov_limits(struct cpufreq_policy *policy)
9bdcb44e
RW
863{
864 struct sugov_policy *sg_policy = policy->governor_data;
865
866 if (!policy->fast_switch_enabled) {
867 mutex_lock(&sg_policy->work_lock);
bf2be2de 868 cpufreq_policy_apply_limits(policy);
9bdcb44e
RW
869 mutex_unlock(&sg_policy->work_lock);
870 }
871
872 sg_policy->need_freq_update = true;
9bdcb44e
RW
873}
874
531b5c9f 875struct cpufreq_governor schedutil_gov = {
97fb7a0a
IM
876 .name = "schedutil",
877 .owner = THIS_MODULE,
878 .dynamic_switching = true,
879 .init = sugov_init,
880 .exit = sugov_exit,
881 .start = sugov_start,
882 .stop = sugov_stop,
883 .limits = sugov_limits,
9bdcb44e
RW
884};
885
9bdcb44e
RW
886#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
887struct cpufreq_governor *cpufreq_default_governor(void)
888{
889 return &schedutil_gov;
890}
9bdcb44e 891#endif
58919e83
RW
892
893static int __init sugov_register(void)
894{
895 return cpufreq_register_governor(&schedutil_gov);
896}
897fs_initcall(sugov_register);
531b5c9f
QP
898
899#ifdef CONFIG_ENERGY_MODEL
900extern bool sched_energy_update;
901extern struct mutex sched_energy_mutex;
902
903static void rebuild_sd_workfn(struct work_struct *work)
904{
905 mutex_lock(&sched_energy_mutex);
906 sched_energy_update = true;
907 rebuild_sched_domains();
908 sched_energy_update = false;
909 mutex_unlock(&sched_energy_mutex);
910}
911static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
912
913/*
914 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
915 * on governor changes to make sure the scheduler knows about it.
916 */
917void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
918 struct cpufreq_governor *old_gov)
919{
920 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
921 /*
922 * When called from the cpufreq_register_driver() path, the
923 * cpu_hotplug_lock is already held, so use a work item to
924 * avoid nested locking in rebuild_sched_domains().
925 */
926 schedule_work(&rebuild_sd_work);
927 }
928
929}
930#endif