Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
8b08ca52
PZ
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
052f1dc7 335#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
052f1dc7 338#endif
6f505b16 339
052f1dc7 340#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 343#endif
8b08ca52 344 rcu_read_unlock();
29f59db3
SV
345}
346
347#else
348
6f505b16 349static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
350static inline struct task_group *task_group(struct task_struct *p)
351{
352 return NULL;
353}
29f59db3 354
7c941438 355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 356
6aa645ea
IM
357/* CFS-related fields in a runqueue */
358struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
6aa645ea 362 u64 exec_clock;
e9acbff6 363 u64 min_vruntime;
6aa645ea
IM
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
4a55bd5e
PZ
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
4793241b 375 struct sched_entity *curr, *next, *last;
ddc97297 376
5ac5c4d6 377 unsigned int nr_spread_over;
ddc97297 378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
392
393#ifdef CONFIG_SMP
c09595f6 394 /*
c8cba857 395 * the part of load.weight contributed by tasks
c09595f6 396 */
c8cba857 397 unsigned long task_weight;
c09595f6 398
c8cba857
PZ
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
c09595f6 406
c8cba857
PZ
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
f1d239f7
PZ
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
c09595f6 416#endif
6aa645ea
IM
417#endif
418};
1da177e4 419
6aa645ea
IM
420/* Real-Time classes' related field in a runqueue: */
421struct rt_rq {
422 struct rt_prio_array active;
63489e45 423 unsigned long rt_nr_running;
052f1dc7 424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
425 struct {
426 int curr; /* highest queued rt task prio */
398a153b 427#ifdef CONFIG_SMP
e864c499 428 int next; /* next highest */
398a153b 429#endif
e864c499 430 } highest_prio;
6f505b16 431#endif
fa85ae24 432#ifdef CONFIG_SMP
73fe6aae 433 unsigned long rt_nr_migratory;
a1ba4d8b 434 unsigned long rt_nr_total;
a22d7fc1 435 int overloaded;
917b627d 436 struct plist_head pushable_tasks;
fa85ae24 437#endif
6f505b16 438 int rt_throttled;
fa85ae24 439 u64 rt_time;
ac086bc2 440 u64 rt_runtime;
ea736ed5 441 /* Nests inside the rq lock: */
0986b11b 442 raw_spinlock_t rt_runtime_lock;
6f505b16 443
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 unsigned long rt_nr_boosted;
446
6f505b16
PZ
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
6f505b16 450#endif
6aa645ea
IM
451};
452
57d885fe
GH
453#ifdef CONFIG_SMP
454
455/*
456 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
57d885fe
GH
462 */
463struct root_domain {
464 atomic_t refcount;
c6c4927b
RR
465 cpumask_var_t span;
466 cpumask_var_t online;
637f5085 467
0eab9146 468 /*
637f5085
GH
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
c6c4927b 472 cpumask_var_t rto_mask;
0eab9146 473 atomic_t rto_count;
6e0534f2
GH
474#ifdef CONFIG_SMP
475 struct cpupri cpupri;
476#endif
57d885fe
GH
477};
478
dc938520
GH
479/*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
57d885fe
GH
483static struct root_domain def_root_domain;
484
485#endif
486
1da177e4
LT
487/*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
70b97a7f 494struct rq {
d8016491 495 /* runqueue lock: */
05fa785c 496 raw_spinlock_t lock;
1da177e4
LT
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
6aa645ea
IM
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 505#ifdef CONFIG_NO_HZ
39c0cbe2 506 u64 nohz_stamp;
46cb4b7c
SS
507 unsigned char in_nohz_recently;
508#endif
a64692a3
MG
509 unsigned int skip_clock_update;
510
d8016491
IM
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
6aa645ea
IM
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
6f505b16 517 struct rt_rq rt;
6f505b16 518
6aa645ea 519#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
522#endif
523#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 524 struct list_head leaf_rt_rq_list;
1da177e4 525#endif
1da177e4
LT
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
36c8b586 535 struct task_struct *curr, *idle;
c9819f45 536 unsigned long next_balance;
1da177e4 537 struct mm_struct *prev_mm;
6aa645ea 538
3e51f33f 539 u64 clock;
6aa645ea 540
1da177e4
LT
541 atomic_t nr_iowait;
542
543#ifdef CONFIG_SMP
0eab9146 544 struct root_domain *rd;
1da177e4
LT
545 struct sched_domain *sd;
546
a0a522ce 547 unsigned char idle_at_tick;
1da177e4 548 /* For active balancing */
3f029d3c 549 int post_schedule;
1da177e4
LT
550 int active_balance;
551 int push_cpu;
969c7921 552 struct cpu_stop_work active_balance_work;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
a8a51d5e 557 unsigned long avg_load_per_task;
1da177e4 558
e9e9250b
PZ
559 u64 rt_avg;
560 u64 age_stamp;
1b9508f6
MG
561 u64 idle_stamp;
562 u64 avg_idle;
1da177e4
LT
563#endif
564
dce48a84
TG
565 /* calc_load related fields */
566 unsigned long calc_load_update;
567 long calc_load_active;
568
8f4d37ec 569#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
570#ifdef CONFIG_SMP
571 int hrtick_csd_pending;
572 struct call_single_data hrtick_csd;
573#endif
8f4d37ec
PZ
574 struct hrtimer hrtick_timer;
575#endif
576
1da177e4
LT
577#ifdef CONFIG_SCHEDSTATS
578 /* latency stats */
579 struct sched_info rq_sched_info;
9c2c4802
KC
580 unsigned long long rq_cpu_time;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
582
583 /* sys_sched_yield() stats */
480b9434 584 unsigned int yld_count;
1da177e4
LT
585
586 /* schedule() stats */
480b9434
KC
587 unsigned int sched_switch;
588 unsigned int sched_count;
589 unsigned int sched_goidle;
1da177e4
LT
590
591 /* try_to_wake_up() stats */
480b9434
KC
592 unsigned int ttwu_count;
593 unsigned int ttwu_local;
b8efb561
IM
594
595 /* BKL stats */
480b9434 596 unsigned int bkl_count;
1da177e4
LT
597#endif
598};
599
f34e3b61 600static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 601
7d478721
PZ
602static inline
603void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 604{
7d478721 605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
606
607 /*
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
610 */
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
dd41f596
IM
613}
614
0a2966b4
CL
615static inline int cpu_of(struct rq *rq)
616{
617#ifdef CONFIG_SMP
618 return rq->cpu;
619#else
620 return 0;
621#endif
622}
623
497f0ab3 624#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
628
674311d5
NP
629/*
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 631 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
632 *
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
635 */
48f24c4d 636#define for_each_domain(cpu, __sd) \
497f0ab3 637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
638
639#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640#define this_rq() (&__get_cpu_var(runqueues))
641#define task_rq(p) cpu_rq(task_cpu(p))
642#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 643#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 644
aa9c4c0f 645inline void update_rq_clock(struct rq *rq)
3e51f33f 646{
a64692a3
MG
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
649}
650
bf5c91ba
IM
651/*
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 */
654#ifdef CONFIG_SCHED_DEBUG
655# define const_debug __read_mostly
656#else
657# define const_debug static const
658#endif
659
017730c1
IM
660/**
661 * runqueue_is_locked
e17b38bf 662 * @cpu: the processor in question.
017730c1
IM
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
89f19f04 668int runqueue_is_locked(int cpu)
017730c1 669{
05fa785c 670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
34f3a814 706static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 707{
f00b45c1
PZ
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 714 }
34f3a814 715 seq_puts(m, "\n");
f00b45c1 716
34f3a814 717 return 0;
f00b45c1
PZ
718}
719
720static ssize_t
721sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723{
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
2398f2c6
PZ
794/*
795 * ratelimit for updating the group shares.
55cd5340 796 * default: 0.25ms
2398f2c6 797 */
55cd5340 798unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 799unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 800
ffda12a1
PZ
801/*
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
805 */
806unsigned int sysctl_sched_shares_thresh = 4;
807
e9e9250b
PZ
808/*
809 * period over which we average the RT time consumption, measured
810 * in ms.
811 *
812 * default: 1s
813 */
814const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815
fa85ae24 816/*
9f0c1e56 817 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
818 * default: 1s
819 */
9f0c1e56 820unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 821
6892b75e
IM
822static __read_mostly int scheduler_running;
823
9f0c1e56
PZ
824/*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828int sysctl_sched_rt_runtime = 950000;
fa85ae24 829
d0b27fa7
PZ
830static inline u64 global_rt_period(void)
831{
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833}
834
835static inline u64 global_rt_runtime(void)
836{
e26873bb 837 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841}
fa85ae24 842
1da177e4 843#ifndef prepare_arch_switch
4866cde0
NP
844# define prepare_arch_switch(next) do { } while (0)
845#endif
846#ifndef finish_arch_switch
847# define finish_arch_switch(prev) do { } while (0)
848#endif
849
051a1d1a
DA
850static inline int task_current(struct rq *rq, struct task_struct *p)
851{
852 return rq->curr == p;
853}
854
4866cde0 855#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 856static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 857{
051a1d1a 858 return task_current(rq, p);
4866cde0
NP
859}
860
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
862{
863}
864
70b97a7f 865static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 866{
da04c035
IM
867#ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870#endif
8a25d5de
IM
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
05fa785c 878 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
879}
880
881#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 882static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 return p->oncpu;
886#else
051a1d1a 887 return task_current(rq, p);
4866cde0
NP
888#endif
889}
890
70b97a7f 891static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
892{
893#ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900#endif
901#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 902 raw_spin_unlock_irq(&rq->lock);
4866cde0 903#else
05fa785c 904 raw_spin_unlock(&rq->lock);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918#endif
919#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
1da177e4 921#endif
4866cde0
NP
922}
923#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 924
0970d299 925/*
65cc8e48
PZ
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
0970d299
PZ
928 */
929static inline int task_is_waking(struct task_struct *p)
930{
0017d735 931 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
932}
933
b29739f9
IM
934/*
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
937 */
70b97a7f 938static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
939 __acquires(rq->lock)
940{
0970d299
PZ
941 struct rq *rq;
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
05fa785c 965 raw_spin_lock(&rq->lock);
65cc8e48 966 if (likely(rq == task_rq(p)))
3a5c359a 967 return rq;
05fa785c 968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
ad474cac
ON
972void task_rq_unlock_wait(struct task_struct *p)
973{
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 977 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
978}
979
a9957449 980static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
981 __releases(rq->lock)
982{
05fa785c 983 raw_spin_unlock(&rq->lock);
b29739f9
IM
984}
985
70b97a7f 986static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
987 __releases(rq->lock)
988{
05fa785c 989 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
990}
991
1da177e4 992/*
cc2a73b5 993 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 994 */
a9957449 995static struct rq *this_rq_lock(void)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4
LT
999
1000 local_irq_disable();
1001 rq = this_rq();
05fa785c 1002 raw_spin_lock(&rq->lock);
1da177e4
LT
1003
1004 return rq;
1005}
1006
8f4d37ec
PZ
1007#ifdef CONFIG_SCHED_HRTICK
1008/*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
8f4d37ec
PZ
1018
1019/*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024static inline int hrtick_enabled(struct rq *rq)
1025{
1026 if (!sched_feat(HRTICK))
1027 return 0;
ba42059f 1028 if (!cpu_active(cpu_of(rq)))
b328ca18 1029 return 0;
8f4d37ec
PZ
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039/*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044{
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
05fa785c 1049 raw_spin_lock(&rq->lock);
3e51f33f 1050 update_rq_clock(rq);
8f4d37ec 1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1052 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1053
1054 return HRTIMER_NORESTART;
1055}
1056
95e904c7 1057#ifdef CONFIG_SMP
31656519
PZ
1058/*
1059 * called from hardirq (IPI) context
1060 */
1061static void __hrtick_start(void *arg)
b328ca18 1062{
31656519 1063 struct rq *rq = arg;
b328ca18 1064
05fa785c 1065 raw_spin_lock(&rq->lock);
31656519
PZ
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
05fa785c 1068 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1069}
1070
31656519
PZ
1071/*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1077{
31656519
PZ
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1080
cc584b21 1081 hrtimer_set_expires(timer, time);
31656519
PZ
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
6e275637 1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1087 rq->hrtick_csd_pending = 1;
1088 }
b328ca18
PZ
1089}
1090
1091static int
1092hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093{
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
31656519 1103 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108}
1109
fa748203 1110static __init void init_hrtick(void)
b328ca18
PZ
1111{
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113}
31656519
PZ
1114#else
1115/*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120static void hrtick_start(struct rq *rq, u64 delay)
1121{
7f1e2ca9 1122 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1123 HRTIMER_MODE_REL_PINNED, 0);
31656519 1124}
b328ca18 1125
006c75f1 1126static inline void init_hrtick(void)
8f4d37ec 1127{
8f4d37ec 1128}
31656519 1129#endif /* CONFIG_SMP */
8f4d37ec 1130
31656519 1131static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1132{
31656519
PZ
1133#ifdef CONFIG_SMP
1134 rq->hrtick_csd_pending = 0;
8f4d37ec 1135
31656519
PZ
1136 rq->hrtick_csd.flags = 0;
1137 rq->hrtick_csd.func = __hrtick_start;
1138 rq->hrtick_csd.info = rq;
1139#endif
8f4d37ec 1140
31656519
PZ
1141 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 rq->hrtick_timer.function = hrtick;
8f4d37ec 1143}
006c75f1 1144#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1145static inline void hrtick_clear(struct rq *rq)
1146{
1147}
1148
8f4d37ec
PZ
1149static inline void init_rq_hrtick(struct rq *rq)
1150{
1151}
1152
b328ca18
PZ
1153static inline void init_hrtick(void)
1154{
1155}
006c75f1 1156#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1157
c24d20db
IM
1158/*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165#ifdef CONFIG_SMP
1166
1167#ifndef tsk_is_polling
1168#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169#endif
1170
31656519 1171static void resched_task(struct task_struct *p)
c24d20db
IM
1172{
1173 int cpu;
1174
05fa785c 1175 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1176
5ed0cec0 1177 if (test_tsk_need_resched(p))
c24d20db
IM
1178 return;
1179
5ed0cec0 1180 set_tsk_need_resched(p);
c24d20db
IM
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190}
1191
1192static void resched_cpu(int cpu)
1193{
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
05fa785c 1197 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1198 return;
1199 resched_task(cpu_curr(cpu));
05fa785c 1200 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1201}
06d8308c
TG
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
5ed0cec0 1236 set_tsk_need_resched(rq->idle);
06d8308c
TG
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
39c0cbe2
MG
1243
1244int nohz_ratelimit(int cpu)
1245{
1246 struct rq *rq = cpu_rq(cpu);
1247 u64 diff = rq->clock - rq->nohz_stamp;
1248
1249 rq->nohz_stamp = rq->clock;
1250
1251 return diff < (NSEC_PER_SEC / HZ) >> 1;
1252}
1253
6d6bc0ad 1254#endif /* CONFIG_NO_HZ */
06d8308c 1255
e9e9250b
PZ
1256static u64 sched_avg_period(void)
1257{
1258 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259}
1260
1261static void sched_avg_update(struct rq *rq)
1262{
1263 s64 period = sched_avg_period();
1264
1265 while ((s64)(rq->clock - rq->age_stamp) > period) {
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2dd73a4f
PW
1344/*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
cce7ade8
PZ
1353#define WEIGHT_IDLEPRIO 3
1354#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1355
1356/*
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1361 *
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
dd41f596
IM
1367 */
1368static const int prio_to_weight[40] = {
254753dc
IM
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1377};
1378
5714d2de
IM
1379/*
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 *
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1385 */
dd41f596 1386static const u32 prio_to_wmult[40] = {
254753dc
IM
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1395};
2dd73a4f 1396
ef12fefa
BR
1397/* Time spent by the tasks of the cpu accounting group executing in ... */
1398enum cpuacct_stat_index {
1399 CPUACCT_STAT_USER, /* ... user mode */
1400 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1401
1402 CPUACCT_STAT_NSTATS,
1403};
1404
d842de87
SV
1405#ifdef CONFIG_CGROUP_CPUACCT
1406static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1407static void cpuacct_update_stats(struct task_struct *tsk,
1408 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1409#else
1410static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1411static inline void cpuacct_update_stats(struct task_struct *tsk,
1412 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1413#endif
1414
18d95a28
PZ
1415static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1416{
1417 update_load_add(&rq->load, load);
1418}
1419
1420static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1421{
1422 update_load_sub(&rq->load, load);
1423}
1424
7940ca36 1425#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1426typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1427
1428/*
1429 * Iterate the full tree, calling @down when first entering a node and @up when
1430 * leaving it for the final time.
1431 */
eb755805 1432static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1433{
1434 struct task_group *parent, *child;
eb755805 1435 int ret;
c09595f6
PZ
1436
1437 rcu_read_lock();
1438 parent = &root_task_group;
1439down:
eb755805
PZ
1440 ret = (*down)(parent, data);
1441 if (ret)
1442 goto out_unlock;
c09595f6
PZ
1443 list_for_each_entry_rcu(child, &parent->children, siblings) {
1444 parent = child;
1445 goto down;
1446
1447up:
1448 continue;
1449 }
eb755805
PZ
1450 ret = (*up)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453
1454 child = parent;
1455 parent = parent->parent;
1456 if (parent)
1457 goto up;
eb755805 1458out_unlock:
c09595f6 1459 rcu_read_unlock();
eb755805
PZ
1460
1461 return ret;
c09595f6
PZ
1462}
1463
eb755805
PZ
1464static int tg_nop(struct task_group *tg, void *data)
1465{
1466 return 0;
c09595f6 1467}
eb755805
PZ
1468#endif
1469
1470#ifdef CONFIG_SMP
f5f08f39
PZ
1471/* Used instead of source_load when we know the type == 0 */
1472static unsigned long weighted_cpuload(const int cpu)
1473{
1474 return cpu_rq(cpu)->load.weight;
1475}
1476
1477/*
1478 * Return a low guess at the load of a migration-source cpu weighted
1479 * according to the scheduling class and "nice" value.
1480 *
1481 * We want to under-estimate the load of migration sources, to
1482 * balance conservatively.
1483 */
1484static unsigned long source_load(int cpu, int type)
1485{
1486 struct rq *rq = cpu_rq(cpu);
1487 unsigned long total = weighted_cpuload(cpu);
1488
1489 if (type == 0 || !sched_feat(LB_BIAS))
1490 return total;
1491
1492 return min(rq->cpu_load[type-1], total);
1493}
1494
1495/*
1496 * Return a high guess at the load of a migration-target cpu weighted
1497 * according to the scheduling class and "nice" value.
1498 */
1499static unsigned long target_load(int cpu, int type)
1500{
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1503
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1506
1507 return max(rq->cpu_load[type-1], total);
1508}
1509
ae154be1
PZ
1510static struct sched_group *group_of(int cpu)
1511{
d11c563d 1512 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1513
1514 if (!sd)
1515 return NULL;
1516
1517 return sd->groups;
1518}
1519
1520static unsigned long power_of(int cpu)
1521{
1522 struct sched_group *group = group_of(cpu);
1523
1524 if (!group)
1525 return SCHED_LOAD_SCALE;
1526
1527 return group->cpu_power;
1528}
1529
eb755805
PZ
1530static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531
1532static unsigned long cpu_avg_load_per_task(int cpu)
1533{
1534 struct rq *rq = cpu_rq(cpu);
af6d596f 1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1536
4cd42620
SR
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1539 else
1540 rq->avg_load_per_task = 0;
eb755805
PZ
1541
1542 return rq->avg_load_per_task;
1543}
1544
1545#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1546
43cf38eb 1547static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1548
c09595f6
PZ
1549static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1550
1551/*
1552 * Calculate and set the cpu's group shares.
1553 */
34d76c41
PZ
1554static void update_group_shares_cpu(struct task_group *tg, int cpu,
1555 unsigned long sd_shares,
1556 unsigned long sd_rq_weight,
4a6cc4bd 1557 unsigned long *usd_rq_weight)
18d95a28 1558{
34d76c41 1559 unsigned long shares, rq_weight;
a5004278 1560 int boost = 0;
c09595f6 1561
4a6cc4bd 1562 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1563 if (!rq_weight) {
1564 boost = 1;
1565 rq_weight = NICE_0_LOAD;
1566 }
c8cba857 1567
c09595f6 1568 /*
a8af7246
PZ
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
c09595f6 1572 */
ec4e0e2f 1573 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1574 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1575
ffda12a1
PZ
1576 if (abs(shares - tg->se[cpu]->load.weight) >
1577 sysctl_sched_shares_thresh) {
1578 struct rq *rq = cpu_rq(cpu);
1579 unsigned long flags;
c09595f6 1580
05fa785c 1581 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1582 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1583 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1584 __set_se_shares(tg->se[cpu], shares);
05fa785c 1585 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1586 }
18d95a28 1587}
c09595f6
PZ
1588
1589/*
c8cba857
PZ
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
c09595f6 1593 */
eb755805 1594static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1595{
cd8ad40d 1596 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1597 unsigned long *usd_rq_weight;
eb755805 1598 struct sched_domain *sd = data;
34d76c41 1599 unsigned long flags;
c8cba857 1600 int i;
c09595f6 1601
34d76c41
PZ
1602 if (!tg->se[0])
1603 return 0;
1604
1605 local_irq_save(flags);
4a6cc4bd 1606 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1607
758b2cdc 1608 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1609 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1610 usd_rq_weight[i] = weight;
34d76c41 1611
cd8ad40d 1612 rq_weight += weight;
ec4e0e2f
KC
1613 /*
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1617 */
ec4e0e2f
KC
1618 if (!weight)
1619 weight = NICE_0_LOAD;
1620
cd8ad40d 1621 sum_weight += weight;
c8cba857 1622 shares += tg->cfs_rq[i]->shares;
c09595f6 1623 }
c09595f6 1624
cd8ad40d
PZ
1625 if (!rq_weight)
1626 rq_weight = sum_weight;
1627
c8cba857
PZ
1628 if ((!shares && rq_weight) || shares > tg->shares)
1629 shares = tg->shares;
1630
1631 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1632 shares = tg->shares;
c09595f6 1633
758b2cdc 1634 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1635 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1636
1637 local_irq_restore(flags);
eb755805
PZ
1638
1639 return 0;
c09595f6
PZ
1640}
1641
1642/*
c8cba857
PZ
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
c09595f6 1646 */
eb755805 1647static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1648{
c8cba857 1649 unsigned long load;
eb755805 1650 long cpu = (long)data;
c09595f6 1651
c8cba857
PZ
1652 if (!tg->parent) {
1653 load = cpu_rq(cpu)->load.weight;
1654 } else {
1655 load = tg->parent->cfs_rq[cpu]->h_load;
1656 load *= tg->cfs_rq[cpu]->shares;
1657 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1658 }
c09595f6 1659
c8cba857 1660 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1661
eb755805 1662 return 0;
c09595f6
PZ
1663}
1664
c8cba857 1665static void update_shares(struct sched_domain *sd)
4d8d595d 1666{
e7097159
PZ
1667 s64 elapsed;
1668 u64 now;
1669
1670 if (root_task_group_empty())
1671 return;
1672
1673 now = cpu_clock(raw_smp_processor_id());
1674 elapsed = now - sd->last_update;
2398f2c6
PZ
1675
1676 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1677 sd->last_update = now;
eb755805 1678 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1679 }
4d8d595d
PZ
1680}
1681
eb755805 1682static void update_h_load(long cpu)
c09595f6 1683{
e7097159
PZ
1684 if (root_task_group_empty())
1685 return;
1686
eb755805 1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1688}
1689
c09595f6
PZ
1690#else
1691
c8cba857 1692static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1693{
1694}
1695
18d95a28
PZ
1696#endif
1697
8f45e2b5
GH
1698#ifdef CONFIG_PREEMPT
1699
b78bb868
PZ
1700static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1701
70574a99 1702/*
8f45e2b5
GH
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
70574a99 1709 */
8f45e2b5
GH
1710static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1714{
05fa785c 1715 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1716 double_rq_lock(this_rq, busiest);
1717
1718 return 1;
1719}
1720
1721#else
1722/*
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1728 */
1729static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733{
1734 int ret = 0;
1735
05fa785c 1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1737 if (busiest < this_rq) {
05fa785c
TG
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
70574a99
AD
1742 ret = 1;
1743 } else
05fa785c
TG
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
70574a99
AD
1746 }
1747 return ret;
1748}
1749
8f45e2b5
GH
1750#endif /* CONFIG_PREEMPT */
1751
1752/*
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 */
1755static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756{
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
05fa785c 1759 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1760 BUG_ON(1);
1761 }
1762
1763 return _double_lock_balance(this_rq, busiest);
1764}
1765
70574a99
AD
1766static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1768{
05fa785c 1769 raw_spin_unlock(&busiest->lock);
70574a99
AD
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1771}
1e3c88bd
PZ
1772
1773/*
1774 * double_rq_lock - safely lock two runqueues
1775 *
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1778 */
1779static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1782{
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 }
1795 }
1e3c88bd
PZ
1796}
1797
1798/*
1799 * double_rq_unlock - safely unlock two runqueues
1800 *
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1803 */
1804static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1807{
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1813}
1814
18d95a28
PZ
1815#endif
1816
30432094 1817#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1818static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819{
30432094 1820#ifdef CONFIG_SMP
34e83e85
IM
1821 cfs_rq->shares = shares;
1822#endif
1823}
30432094 1824#endif
e7693a36 1825
74f5187a 1826static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1827static void update_sysctl(void);
acb4a848 1828static int get_update_sysctl_factor(void);
dce48a84 1829
cd29fe6f
PZ
1830static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1831{
1832 set_task_rq(p, cpu);
1833#ifdef CONFIG_SMP
1834 /*
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1838 */
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841#endif
1842}
dce48a84 1843
1e3c88bd 1844static const struct sched_class rt_sched_class;
dd41f596
IM
1845
1846#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1847#define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
dd41f596 1849
1e3c88bd
PZ
1850#include "sched_stats.h"
1851
c09595f6 1852static void inc_nr_running(struct rq *rq)
9c217245
IM
1853{
1854 rq->nr_running++;
9c217245
IM
1855}
1856
c09595f6 1857static void dec_nr_running(struct rq *rq)
9c217245
IM
1858{
1859 rq->nr_running--;
9c217245
IM
1860}
1861
45bf76df
IM
1862static void set_load_weight(struct task_struct *p)
1863{
1864 if (task_has_rt_policy(p)) {
dd41f596
IM
1865 p->se.load.weight = prio_to_weight[0] * 2;
1866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1867 return;
1868 }
45bf76df 1869
dd41f596
IM
1870 /*
1871 * SCHED_IDLE tasks get minimal weight:
1872 */
1873 if (p->policy == SCHED_IDLE) {
1874 p->se.load.weight = WEIGHT_IDLEPRIO;
1875 p->se.load.inv_weight = WMULT_IDLEPRIO;
1876 return;
1877 }
71f8bd46 1878
dd41f596
IM
1879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1881}
1882
371fd7e7 1883static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1884{
a64692a3 1885 update_rq_clock(rq);
dd41f596 1886 sched_info_queued(p);
371fd7e7 1887 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1888 p->se.on_rq = 1;
71f8bd46
IM
1889}
1890
371fd7e7 1891static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1892{
a64692a3 1893 update_rq_clock(rq);
46ac22ba 1894 sched_info_dequeued(p);
371fd7e7 1895 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1896 p->se.on_rq = 0;
71f8bd46
IM
1897}
1898
1e3c88bd
PZ
1899/*
1900 * activate_task - move a task to the runqueue.
1901 */
371fd7e7 1902static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1903{
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible--;
1906
371fd7e7 1907 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1908 inc_nr_running(rq);
1909}
1910
1911/*
1912 * deactivate_task - remove a task from the runqueue.
1913 */
371fd7e7 1914static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1915{
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible++;
1918
371fd7e7 1919 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1920 dec_nr_running(rq);
1921}
1922
1923#include "sched_idletask.c"
1924#include "sched_fair.c"
1925#include "sched_rt.c"
1926#ifdef CONFIG_SCHED_DEBUG
1927# include "sched_debug.c"
1928#endif
1929
14531189 1930/*
dd41f596 1931 * __normal_prio - return the priority that is based on the static prio
14531189 1932 */
14531189
IM
1933static inline int __normal_prio(struct task_struct *p)
1934{
dd41f596 1935 return p->static_prio;
14531189
IM
1936}
1937
b29739f9
IM
1938/*
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1944 */
36c8b586 1945static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1946{
1947 int prio;
1948
e05606d3 1949 if (task_has_rt_policy(p))
b29739f9
IM
1950 prio = MAX_RT_PRIO-1 - p->rt_priority;
1951 else
1952 prio = __normal_prio(p);
1953 return prio;
1954}
1955
1956/*
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1962 */
36c8b586 1963static int effective_prio(struct task_struct *p)
b29739f9
IM
1964{
1965 p->normal_prio = normal_prio(p);
1966 /*
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1970 */
1971 if (!rt_prio(p->prio))
1972 return p->normal_prio;
1973 return p->prio;
1974}
1975
1da177e4
LT
1976/**
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1979 */
36c8b586 1980inline int task_curr(const struct task_struct *p)
1da177e4
LT
1981{
1982 return cpu_curr(task_cpu(p)) == p;
1983}
1984
cb469845
SR
1985static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1986 const struct sched_class *prev_class,
1987 int oldprio, int running)
1988{
1989 if (prev_class != p->sched_class) {
1990 if (prev_class->switched_from)
1991 prev_class->switched_from(rq, p, running);
1992 p->sched_class->switched_to(rq, p, running);
1993 } else
1994 p->sched_class->prio_changed(rq, p, oldprio, running);
1995}
1996
1da177e4 1997#ifdef CONFIG_SMP
cc367732
IM
1998/*
1999 * Is this task likely cache-hot:
2000 */
e7693a36 2001static int
cc367732
IM
2002task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2003{
2004 s64 delta;
2005
e6c8fba7
PZ
2006 if (p->sched_class != &fair_sched_class)
2007 return 0;
2008
f540a608
IM
2009 /*
2010 * Buddy candidates are cache hot:
2011 */
f685ceac 2012 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2013 (&p->se == cfs_rq_of(&p->se)->next ||
2014 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2015 return 1;
2016
6bc1665b
IM
2017 if (sysctl_sched_migration_cost == -1)
2018 return 1;
2019 if (sysctl_sched_migration_cost == 0)
2020 return 0;
2021
cc367732
IM
2022 delta = now - p->se.exec_start;
2023
2024 return delta < (s64)sysctl_sched_migration_cost;
2025}
2026
dd41f596 2027void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2028{
e2912009
PZ
2029#ifdef CONFIG_SCHED_DEBUG
2030 /*
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2033 */
077614ee
PZ
2034 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2035 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2036#endif
2037
de1d7286 2038 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2039
0c69774e
PZ
2040 if (task_cpu(p) != new_cpu) {
2041 p->se.nr_migrations++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2043 }
dd41f596
IM
2044
2045 __set_task_cpu(p, new_cpu);
c65cc870
IM
2046}
2047
969c7921 2048struct migration_arg {
36c8b586 2049 struct task_struct *task;
1da177e4 2050 int dest_cpu;
70b97a7f 2051};
1da177e4 2052
969c7921
TH
2053static int migration_cpu_stop(void *data);
2054
1da177e4
LT
2055/*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
969c7921 2059static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2060{
70b97a7f 2061 struct rq *rq = task_rq(p);
1da177e4
LT
2062
2063 /*
2064 * If the task is not on a runqueue (and not running), then
e2912009 2065 * the next wake-up will properly place the task.
1da177e4 2066 */
969c7921 2067 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2068}
2069
2070/*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
85ba2d86
RM
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
1da177e4
LT
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
85ba2d86 2086unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2087{
2088 unsigned long flags;
dd41f596 2089 int running, on_rq;
85ba2d86 2090 unsigned long ncsw;
70b97a7f 2091 struct rq *rq;
1da177e4 2092
3a5c359a
AK
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
fa490cfd 2101
3a5c359a
AK
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
85ba2d86
RM
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
3a5c359a 2116 cpu_relax();
85ba2d86 2117 }
fa490cfd 2118
3a5c359a
AK
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
27a9da65 2125 trace_sched_wait_task(p);
3a5c359a
AK
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
85ba2d86 2128 ncsw = 0;
f31e11d8 2129 if (!match_state || p->state == match_state)
93dcf55f 2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2131 task_rq_unlock(rq, &flags);
fa490cfd 2132
85ba2d86
RM
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
3a5c359a
AK
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
fa490cfd 2149
3a5c359a
AK
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
80dd99b3 2155 * So if it was still runnable (but just not actively
3a5c359a
AK
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
85ba2d86
RM
2171
2172 return ncsw;
1da177e4
LT
2173}
2174
2175/***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
36c8b586 2188void kick_process(struct task_struct *p)
1da177e4
LT
2189{
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197}
b43e3521 2198EXPORT_SYMBOL_GPL(kick_process);
476d139c 2199#endif /* CONFIG_SMP */
1da177e4 2200
0793a61d
TG
2201/**
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2206 *
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2209 */
2210void task_oncpu_function_call(struct task_struct *p,
2211 void (*func) (void *info), void *info)
2212{
2213 int cpu;
2214
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if (task_curr(p))
2218 smp_call_function_single(cpu, func, info, 1);
2219 preempt_enable();
2220}
2221
970b13ba 2222#ifdef CONFIG_SMP
30da688e
ON
2223/*
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2225 */
5da9a0fb
PZ
2226static int select_fallback_rq(int cpu, struct task_struct *p)
2227{
2228 int dest_cpu;
2229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2230
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2234 return dest_cpu;
2235
2236 /* Any allowed, online CPU? */
2237 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2238 if (dest_cpu < nr_cpu_ids)
2239 return dest_cpu;
2240
2241 /* No more Mr. Nice Guy. */
897f0b3c 2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2244 /*
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2247 * leave kernel.
2248 */
2249 if (p->mm && printk_ratelimit()) {
2250 printk(KERN_INFO "process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p), p->comm, cpu);
2253 }
2254 }
2255
2256 return dest_cpu;
2257}
2258
e2912009 2259/*
30da688e 2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2261 */
970b13ba 2262static inline
0017d735 2263int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2264{
0017d735 2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2266
2267 /*
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2271 *
2272 * Since this is common to all placement strategies, this lives here.
2273 *
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2276 */
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2278 !cpu_online(cpu)))
5da9a0fb 2279 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2280
2281 return cpu;
970b13ba 2282}
09a40af5
MG
2283
2284static void update_avg(u64 *avg, u64 sample)
2285{
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288}
970b13ba
PZ
2289#endif
2290
1da177e4
LT
2291/***
2292 * try_to_wake_up - wake up a thread
2293 * @p: the to-be-woken-up thread
2294 * @state: the mask of task states that can be woken
2295 * @sync: do a synchronous wakeup?
2296 *
2297 * Put it on the run-queue if it's not already there. The "current"
2298 * thread is always on the run-queue (except when the actual
2299 * re-schedule is in progress), and as such you're allowed to do
2300 * the simpler "current->state = TASK_RUNNING" to mark yourself
2301 * runnable without the overhead of this.
2302 *
2303 * returns failure only if the task is already active.
2304 */
7d478721
PZ
2305static int try_to_wake_up(struct task_struct *p, unsigned int state,
2306 int wake_flags)
1da177e4 2307{
cc367732 2308 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2309 unsigned long flags;
371fd7e7 2310 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2311 struct rq *rq;
1da177e4 2312
e9c84311 2313 this_cpu = get_cpu();
2398f2c6 2314
04e2f174 2315 smp_wmb();
ab3b3aa5 2316 rq = task_rq_lock(p, &flags);
e9c84311 2317 if (!(p->state & state))
1da177e4
LT
2318 goto out;
2319
dd41f596 2320 if (p->se.on_rq)
1da177e4
LT
2321 goto out_running;
2322
2323 cpu = task_cpu(p);
cc367732 2324 orig_cpu = cpu;
1da177e4
LT
2325
2326#ifdef CONFIG_SMP
2327 if (unlikely(task_running(rq, p)))
2328 goto out_activate;
2329
e9c84311
PZ
2330 /*
2331 * In order to handle concurrent wakeups and release the rq->lock
2332 * we put the task in TASK_WAKING state.
eb24073b
IM
2333 *
2334 * First fix up the nr_uninterruptible count:
e9c84311 2335 */
cc87f76a
PZ
2336 if (task_contributes_to_load(p)) {
2337 if (likely(cpu_online(orig_cpu)))
2338 rq->nr_uninterruptible--;
2339 else
2340 this_rq()->nr_uninterruptible--;
2341 }
e9c84311 2342 p->state = TASK_WAKING;
efbbd05a 2343
371fd7e7 2344 if (p->sched_class->task_waking) {
efbbd05a 2345 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2346 en_flags |= ENQUEUE_WAKING;
2347 }
efbbd05a 2348
0017d735
PZ
2349 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2350 if (cpu != orig_cpu)
5d2f5a61 2351 set_task_cpu(p, cpu);
0017d735 2352 __task_rq_unlock(rq);
ab19cb23 2353
0970d299
PZ
2354 rq = cpu_rq(cpu);
2355 raw_spin_lock(&rq->lock);
f5dc3753 2356
0970d299
PZ
2357 /*
2358 * We migrated the task without holding either rq->lock, however
2359 * since the task is not on the task list itself, nobody else
2360 * will try and migrate the task, hence the rq should match the
2361 * cpu we just moved it to.
2362 */
2363 WARN_ON(task_cpu(p) != cpu);
e9c84311 2364 WARN_ON(p->state != TASK_WAKING);
1da177e4 2365
e7693a36
GH
2366#ifdef CONFIG_SCHEDSTATS
2367 schedstat_inc(rq, ttwu_count);
2368 if (cpu == this_cpu)
2369 schedstat_inc(rq, ttwu_local);
2370 else {
2371 struct sched_domain *sd;
2372 for_each_domain(this_cpu, sd) {
758b2cdc 2373 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2374 schedstat_inc(sd, ttwu_wake_remote);
2375 break;
2376 }
2377 }
2378 }
6d6bc0ad 2379#endif /* CONFIG_SCHEDSTATS */
e7693a36 2380
1da177e4
LT
2381out_activate:
2382#endif /* CONFIG_SMP */
41acab88 2383 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2384 if (wake_flags & WF_SYNC)
41acab88 2385 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2386 if (orig_cpu != cpu)
41acab88 2387 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2388 if (cpu == this_cpu)
41acab88 2389 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2390 else
41acab88 2391 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2392 activate_task(rq, p, en_flags);
1da177e4
LT
2393 success = 1;
2394
2395out_running:
27a9da65 2396 trace_sched_wakeup(p, success);
7d478721 2397 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2398
1da177e4 2399 p->state = TASK_RUNNING;
9a897c5a 2400#ifdef CONFIG_SMP
efbbd05a
PZ
2401 if (p->sched_class->task_woken)
2402 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2403
2404 if (unlikely(rq->idle_stamp)) {
2405 u64 delta = rq->clock - rq->idle_stamp;
2406 u64 max = 2*sysctl_sched_migration_cost;
2407
2408 if (delta > max)
2409 rq->avg_idle = max;
2410 else
2411 update_avg(&rq->avg_idle, delta);
2412 rq->idle_stamp = 0;
2413 }
9a897c5a 2414#endif
1da177e4
LT
2415out:
2416 task_rq_unlock(rq, &flags);
e9c84311 2417 put_cpu();
1da177e4
LT
2418
2419 return success;
2420}
2421
50fa610a
DH
2422/**
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2425 *
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2428 * running.
2429 *
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2432 */
7ad5b3a5 2433int wake_up_process(struct task_struct *p)
1da177e4 2434{
d9514f6c 2435 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2436}
1da177e4
LT
2437EXPORT_SYMBOL(wake_up_process);
2438
7ad5b3a5 2439int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2440{
2441 return try_to_wake_up(p, state, 0);
2442}
2443
1da177e4
LT
2444/*
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
dd41f596
IM
2447 *
2448 * __sched_fork() is basic setup used by init_idle() too:
2449 */
2450static void __sched_fork(struct task_struct *p)
2451{
dd41f596
IM
2452 p->se.exec_start = 0;
2453 p->se.sum_exec_runtime = 0;
f6cf891c 2454 p->se.prev_sum_exec_runtime = 0;
6c594c21 2455 p->se.nr_migrations = 0;
6cfb0d5d
IM
2456
2457#ifdef CONFIG_SCHEDSTATS
41acab88 2458 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2459#endif
476d139c 2460
fa717060 2461 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2462 p->se.on_rq = 0;
4a55bd5e 2463 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2464
e107be36
AK
2465#ifdef CONFIG_PREEMPT_NOTIFIERS
2466 INIT_HLIST_HEAD(&p->preempt_notifiers);
2467#endif
dd41f596
IM
2468}
2469
2470/*
2471 * fork()/clone()-time setup:
2472 */
2473void sched_fork(struct task_struct *p, int clone_flags)
2474{
2475 int cpu = get_cpu();
2476
2477 __sched_fork(p);
06b83b5f 2478 /*
0017d735 2479 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2482 */
0017d735 2483 p->state = TASK_RUNNING;
dd41f596 2484
b9dc29e7
MG
2485 /*
2486 * Revert to default priority/policy on fork if requested.
2487 */
2488 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2489 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2490 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2491 p->normal_prio = p->static_prio;
2492 }
b9dc29e7 2493
6c697bdf
MG
2494 if (PRIO_TO_NICE(p->static_prio) < 0) {
2495 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2496 p->normal_prio = p->static_prio;
6c697bdf
MG
2497 set_load_weight(p);
2498 }
2499
b9dc29e7
MG
2500 /*
2501 * We don't need the reset flag anymore after the fork. It has
2502 * fulfilled its duty:
2503 */
2504 p->sched_reset_on_fork = 0;
2505 }
ca94c442 2506
f83f9ac2
PW
2507 /*
2508 * Make sure we do not leak PI boosting priority to the child.
2509 */
2510 p->prio = current->normal_prio;
2511
2ddbf952
HS
2512 if (!rt_prio(p->prio))
2513 p->sched_class = &fair_sched_class;
b29739f9 2514
cd29fe6f
PZ
2515 if (p->sched_class->task_fork)
2516 p->sched_class->task_fork(p);
2517
5f3edc1b
PZ
2518 set_task_cpu(p, cpu);
2519
52f17b6c 2520#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2521 if (likely(sched_info_on()))
52f17b6c 2522 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2523#endif
d6077cb8 2524#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2525 p->oncpu = 0;
2526#endif
1da177e4 2527#ifdef CONFIG_PREEMPT
4866cde0 2528 /* Want to start with kernel preemption disabled. */
a1261f54 2529 task_thread_info(p)->preempt_count = 1;
1da177e4 2530#endif
917b627d
GH
2531 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2532
476d139c 2533 put_cpu();
1da177e4
LT
2534}
2535
2536/*
2537 * wake_up_new_task - wake up a newly created task for the first time.
2538 *
2539 * This function will do some initial scheduler statistics housekeeping
2540 * that must be done for every newly created context, then puts the task
2541 * on the runqueue and wakes it.
2542 */
7ad5b3a5 2543void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2544{
2545 unsigned long flags;
dd41f596 2546 struct rq *rq;
c890692b 2547 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2548
2549#ifdef CONFIG_SMP
0017d735
PZ
2550 rq = task_rq_lock(p, &flags);
2551 p->state = TASK_WAKING;
2552
fabf318e
PZ
2553 /*
2554 * Fork balancing, do it here and not earlier because:
2555 * - cpus_allowed can change in the fork path
2556 * - any previously selected cpu might disappear through hotplug
2557 *
0017d735
PZ
2558 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2559 * without people poking at ->cpus_allowed.
fabf318e 2560 */
0017d735 2561 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2562 set_task_cpu(p, cpu);
1da177e4 2563
06b83b5f 2564 p->state = TASK_RUNNING;
0017d735
PZ
2565 task_rq_unlock(rq, &flags);
2566#endif
2567
2568 rq = task_rq_lock(p, &flags);
cd29fe6f 2569 activate_task(rq, p, 0);
27a9da65 2570 trace_sched_wakeup_new(p, 1);
a7558e01 2571 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2572#ifdef CONFIG_SMP
efbbd05a
PZ
2573 if (p->sched_class->task_woken)
2574 p->sched_class->task_woken(rq, p);
9a897c5a 2575#endif
dd41f596 2576 task_rq_unlock(rq, &flags);
fabf318e 2577 put_cpu();
1da177e4
LT
2578}
2579
e107be36
AK
2580#ifdef CONFIG_PREEMPT_NOTIFIERS
2581
2582/**
80dd99b3 2583 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2584 * @notifier: notifier struct to register
e107be36
AK
2585 */
2586void preempt_notifier_register(struct preempt_notifier *notifier)
2587{
2588 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2589}
2590EXPORT_SYMBOL_GPL(preempt_notifier_register);
2591
2592/**
2593 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2594 * @notifier: notifier struct to unregister
e107be36
AK
2595 *
2596 * This is safe to call from within a preemption notifier.
2597 */
2598void preempt_notifier_unregister(struct preempt_notifier *notifier)
2599{
2600 hlist_del(&notifier->link);
2601}
2602EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2603
2604static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2605{
2606 struct preempt_notifier *notifier;
2607 struct hlist_node *node;
2608
2609 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2610 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2611}
2612
2613static void
2614fire_sched_out_preempt_notifiers(struct task_struct *curr,
2615 struct task_struct *next)
2616{
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_out(notifier, next);
2622}
2623
6d6bc0ad 2624#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2625
2626static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2627{
2628}
2629
2630static void
2631fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
2633{
2634}
2635
6d6bc0ad 2636#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2637
4866cde0
NP
2638/**
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
421cee29 2641 * @prev: the current task that is being switched out
4866cde0
NP
2642 * @next: the task we are going to switch to.
2643 *
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2647 *
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2650 */
e107be36
AK
2651static inline void
2652prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
4866cde0 2654{
e107be36 2655 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2656 prepare_lock_switch(rq, next);
2657 prepare_arch_switch(next);
2658}
2659
1da177e4
LT
2660/**
2661 * finish_task_switch - clean up after a task-switch
344babaa 2662 * @rq: runqueue associated with task-switch
1da177e4
LT
2663 * @prev: the thread we just switched away from.
2664 *
4866cde0
NP
2665 * finish_task_switch must be called after the context switch, paired
2666 * with a prepare_task_switch call before the context switch.
2667 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2668 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2669 *
2670 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2671 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2672 * with the lock held can cause deadlocks; see schedule() for
2673 * details.)
2674 */
a9957449 2675static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2676 __releases(rq->lock)
2677{
1da177e4 2678 struct mm_struct *mm = rq->prev_mm;
55a101f8 2679 long prev_state;
1da177e4
LT
2680
2681 rq->prev_mm = NULL;
2682
2683 /*
2684 * A task struct has one reference for the use as "current".
c394cc9f 2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
c394cc9f 2688 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2691 * be dropped twice.
2692 * Manfred Spraul <manfred@colorfullife.com>
2693 */
55a101f8 2694 prev_state = prev->state;
4866cde0 2695 finish_arch_switch(prev);
8381f65d
JI
2696#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2697 local_irq_disable();
2698#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2699 perf_event_task_sched_in(current);
8381f65d
JI
2700#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2701 local_irq_enable();
2702#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2703 finish_lock_switch(rq, prev);
e8fa1362 2704
e107be36 2705 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2706 if (mm)
2707 mmdrop(mm);
c394cc9f 2708 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2709 /*
2710 * Remove function-return probe instances associated with this
2711 * task and put them back on the free list.
9761eea8 2712 */
c6fd91f0 2713 kprobe_flush_task(prev);
1da177e4 2714 put_task_struct(prev);
c6fd91f0 2715 }
1da177e4
LT
2716}
2717
3f029d3c
GH
2718#ifdef CONFIG_SMP
2719
2720/* assumes rq->lock is held */
2721static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2722{
2723 if (prev->sched_class->pre_schedule)
2724 prev->sched_class->pre_schedule(rq, prev);
2725}
2726
2727/* rq->lock is NOT held, but preemption is disabled */
2728static inline void post_schedule(struct rq *rq)
2729{
2730 if (rq->post_schedule) {
2731 unsigned long flags;
2732
05fa785c 2733 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2734 if (rq->curr->sched_class->post_schedule)
2735 rq->curr->sched_class->post_schedule(rq);
05fa785c 2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2737
2738 rq->post_schedule = 0;
2739 }
2740}
2741
2742#else
da19ab51 2743
3f029d3c
GH
2744static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2745{
2746}
2747
2748static inline void post_schedule(struct rq *rq)
2749{
1da177e4
LT
2750}
2751
3f029d3c
GH
2752#endif
2753
1da177e4
LT
2754/**
2755 * schedule_tail - first thing a freshly forked thread must call.
2756 * @prev: the thread we just switched away from.
2757 */
36c8b586 2758asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2759 __releases(rq->lock)
2760{
70b97a7f
IM
2761 struct rq *rq = this_rq();
2762
4866cde0 2763 finish_task_switch(rq, prev);
da19ab51 2764
3f029d3c
GH
2765 /*
2766 * FIXME: do we need to worry about rq being invalidated by the
2767 * task_switch?
2768 */
2769 post_schedule(rq);
70b97a7f 2770
4866cde0
NP
2771#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2773 preempt_enable();
2774#endif
1da177e4 2775 if (current->set_child_tid)
b488893a 2776 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2777}
2778
2779/*
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2782 */
dd41f596 2783static inline void
70b97a7f 2784context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2785 struct task_struct *next)
1da177e4 2786{
dd41f596 2787 struct mm_struct *mm, *oldmm;
1da177e4 2788
e107be36 2789 prepare_task_switch(rq, prev, next);
27a9da65 2790 trace_sched_switch(prev, next);
dd41f596
IM
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
9226d125
ZA
2793 /*
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2797 */
224101ed 2798 arch_start_context_switch(prev);
9226d125 2799
710390d9 2800 if (likely(!mm)) {
1da177e4
LT
2801 next->active_mm = oldmm;
2802 atomic_inc(&oldmm->mm_count);
2803 enter_lazy_tlb(oldmm, next);
2804 } else
2805 switch_mm(oldmm, mm, next);
2806
710390d9 2807 if (likely(!prev->mm)) {
1da177e4 2808 prev->active_mm = NULL;
1da177e4
LT
2809 rq->prev_mm = oldmm;
2810 }
3a5f5e48
IM
2811 /*
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2816 */
2817#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2818 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2819#endif
1da177e4
LT
2820
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev, next, prev);
2823
dd41f596
IM
2824 barrier();
2825 /*
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2829 */
2830 finish_task_switch(this_rq(), prev);
1da177e4
LT
2831}
2832
2833/*
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2835 *
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2839 */
2840unsigned long nr_running(void)
2841{
2842 unsigned long i, sum = 0;
2843
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2846
2847 return sum;
f711f609 2848}
1da177e4
LT
2849
2850unsigned long nr_uninterruptible(void)
f711f609 2851{
1da177e4 2852 unsigned long i, sum = 0;
f711f609 2853
0a945022 2854 for_each_possible_cpu(i)
1da177e4 2855 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2856
2857 /*
1da177e4
LT
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
f711f609 2860 */
1da177e4
LT
2861 if (unlikely((long)sum < 0))
2862 sum = 0;
f711f609 2863
1da177e4 2864 return sum;
f711f609 2865}
f711f609 2866
1da177e4 2867unsigned long long nr_context_switches(void)
46cb4b7c 2868{
cc94abfc
SR
2869 int i;
2870 unsigned long long sum = 0;
46cb4b7c 2871
0a945022 2872 for_each_possible_cpu(i)
1da177e4 2873 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2874
1da177e4
LT
2875 return sum;
2876}
483b4ee6 2877
1da177e4
LT
2878unsigned long nr_iowait(void)
2879{
2880 unsigned long i, sum = 0;
483b4ee6 2881
0a945022 2882 for_each_possible_cpu(i)
1da177e4 2883 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2884
1da177e4
LT
2885 return sum;
2886}
483b4ee6 2887
69d25870
AV
2888unsigned long nr_iowait_cpu(void)
2889{
2890 struct rq *this = this_rq();
2891 return atomic_read(&this->nr_iowait);
2892}
46cb4b7c 2893
69d25870
AV
2894unsigned long this_cpu_load(void)
2895{
2896 struct rq *this = this_rq();
2897 return this->cpu_load[0];
2898}
e790fb0b 2899
46cb4b7c 2900
dce48a84
TG
2901/* Variables and functions for calc_load */
2902static atomic_long_t calc_load_tasks;
2903static unsigned long calc_load_update;
2904unsigned long avenrun[3];
2905EXPORT_SYMBOL(avenrun);
46cb4b7c 2906
74f5187a
PZ
2907static long calc_load_fold_active(struct rq *this_rq)
2908{
2909 long nr_active, delta = 0;
2910
2911 nr_active = this_rq->nr_running;
2912 nr_active += (long) this_rq->nr_uninterruptible;
2913
2914 if (nr_active != this_rq->calc_load_active) {
2915 delta = nr_active - this_rq->calc_load_active;
2916 this_rq->calc_load_active = nr_active;
2917 }
2918
2919 return delta;
2920}
2921
2922#ifdef CONFIG_NO_HZ
2923/*
2924 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2925 *
2926 * When making the ILB scale, we should try to pull this in as well.
2927 */
2928static atomic_long_t calc_load_tasks_idle;
2929
2930static void calc_load_account_idle(struct rq *this_rq)
2931{
2932 long delta;
2933
2934 delta = calc_load_fold_active(this_rq);
2935 if (delta)
2936 atomic_long_add(delta, &calc_load_tasks_idle);
2937}
2938
2939static long calc_load_fold_idle(void)
2940{
2941 long delta = 0;
2942
2943 /*
2944 * Its got a race, we don't care...
2945 */
2946 if (atomic_long_read(&calc_load_tasks_idle))
2947 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2948
2949 return delta;
2950}
2951#else
2952static void calc_load_account_idle(struct rq *this_rq)
2953{
2954}
2955
2956static inline long calc_load_fold_idle(void)
2957{
2958 return 0;
2959}
2960#endif
2961
2d02494f
TG
2962/**
2963 * get_avenrun - get the load average array
2964 * @loads: pointer to dest load array
2965 * @offset: offset to add
2966 * @shift: shift count to shift the result left
2967 *
2968 * These values are estimates at best, so no need for locking.
2969 */
2970void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2971{
2972 loads[0] = (avenrun[0] + offset) << shift;
2973 loads[1] = (avenrun[1] + offset) << shift;
2974 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2975}
46cb4b7c 2976
dce48a84
TG
2977static unsigned long
2978calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2979{
dce48a84
TG
2980 load *= exp;
2981 load += active * (FIXED_1 - exp);
2982 return load >> FSHIFT;
2983}
46cb4b7c
SS
2984
2985/*
dce48a84
TG
2986 * calc_load - update the avenrun load estimates 10 ticks after the
2987 * CPUs have updated calc_load_tasks.
7835b98b 2988 */
dce48a84 2989void calc_global_load(void)
7835b98b 2990{
dce48a84
TG
2991 unsigned long upd = calc_load_update + 10;
2992 long active;
1da177e4 2993
dce48a84
TG
2994 if (time_before(jiffies, upd))
2995 return;
1da177e4 2996
dce48a84
TG
2997 active = atomic_long_read(&calc_load_tasks);
2998 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2999
dce48a84
TG
3000 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3001 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3002 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3003
dce48a84
TG
3004 calc_load_update += LOAD_FREQ;
3005}
1da177e4 3006
dce48a84 3007/*
74f5187a
PZ
3008 * Called from update_cpu_load() to periodically update this CPU's
3009 * active count.
dce48a84
TG
3010 */
3011static void calc_load_account_active(struct rq *this_rq)
3012{
74f5187a 3013 long delta;
08c183f3 3014
74f5187a
PZ
3015 if (time_before(jiffies, this_rq->calc_load_update))
3016 return;
783609c6 3017
74f5187a
PZ
3018 delta = calc_load_fold_active(this_rq);
3019 delta += calc_load_fold_idle();
3020 if (delta)
dce48a84 3021 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3022
3023 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3024}
3025
3026/*
dd41f596
IM
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
46cb4b7c 3029 */
dd41f596 3030static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3031{
495eca49 3032 unsigned long this_load = this_rq->load.weight;
dd41f596 3033 int i, scale;
46cb4b7c 3034
dd41f596 3035 this_rq->nr_load_updates++;
46cb4b7c 3036
dd41f596
IM
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
7d1e6a9b 3040
dd41f596 3041 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3042
dd41f596
IM
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
a25707f3
IM
3045 /*
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3049 */
3050 if (new_load > old_load)
3051 new_load += scale-1;
dd41f596
IM
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3053 }
46cb4b7c 3054
74f5187a 3055 calc_load_account_active(this_rq);
46cb4b7c
SS
3056}
3057
dd41f596 3058#ifdef CONFIG_SMP
8a0be9ef 3059
46cb4b7c 3060/*
38022906
PZ
3061 * sched_exec - execve() is a valuable balancing opportunity, because at
3062 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3063 */
38022906 3064void sched_exec(void)
46cb4b7c 3065{
38022906 3066 struct task_struct *p = current;
1da177e4 3067 unsigned long flags;
70b97a7f 3068 struct rq *rq;
0017d735 3069 int dest_cpu;
46cb4b7c 3070
1da177e4 3071 rq = task_rq_lock(p, &flags);
0017d735
PZ
3072 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3073 if (dest_cpu == smp_processor_id())
3074 goto unlock;
38022906 3075
46cb4b7c 3076 /*
38022906 3077 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3078 */
30da688e 3079 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3080 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3081 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3082
1da177e4 3083 task_rq_unlock(rq, &flags);
969c7921 3084 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3085 return;
3086 }
0017d735 3087unlock:
1da177e4 3088 task_rq_unlock(rq, &flags);
1da177e4 3089}
dd41f596 3090
1da177e4
LT
3091#endif
3092
1da177e4
LT
3093DEFINE_PER_CPU(struct kernel_stat, kstat);
3094
3095EXPORT_PER_CPU_SYMBOL(kstat);
3096
3097/*
c5f8d995 3098 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3099 * @p in case that task is currently running.
c5f8d995
HS
3100 *
3101 * Called with task_rq_lock() held on @rq.
1da177e4 3102 */
c5f8d995
HS
3103static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3104{
3105 u64 ns = 0;
3106
3107 if (task_current(rq, p)) {
3108 update_rq_clock(rq);
3109 ns = rq->clock - p->se.exec_start;
3110 if ((s64)ns < 0)
3111 ns = 0;
3112 }
3113
3114 return ns;
3115}
3116
bb34d92f 3117unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3118{
1da177e4 3119 unsigned long flags;
41b86e9c 3120 struct rq *rq;
bb34d92f 3121 u64 ns = 0;
48f24c4d 3122
41b86e9c 3123 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3124 ns = do_task_delta_exec(p, rq);
3125 task_rq_unlock(rq, &flags);
1508487e 3126
c5f8d995
HS
3127 return ns;
3128}
f06febc9 3129
c5f8d995
HS
3130/*
3131 * Return accounted runtime for the task.
3132 * In case the task is currently running, return the runtime plus current's
3133 * pending runtime that have not been accounted yet.
3134 */
3135unsigned long long task_sched_runtime(struct task_struct *p)
3136{
3137 unsigned long flags;
3138 struct rq *rq;
3139 u64 ns = 0;
3140
3141 rq = task_rq_lock(p, &flags);
3142 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3143 task_rq_unlock(rq, &flags);
3144
3145 return ns;
3146}
48f24c4d 3147
c5f8d995
HS
3148/*
3149 * Return sum_exec_runtime for the thread group.
3150 * In case the task is currently running, return the sum plus current's
3151 * pending runtime that have not been accounted yet.
3152 *
3153 * Note that the thread group might have other running tasks as well,
3154 * so the return value not includes other pending runtime that other
3155 * running tasks might have.
3156 */
3157unsigned long long thread_group_sched_runtime(struct task_struct *p)
3158{
3159 struct task_cputime totals;
3160 unsigned long flags;
3161 struct rq *rq;
3162 u64 ns;
3163
3164 rq = task_rq_lock(p, &flags);
3165 thread_group_cputime(p, &totals);
3166 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3167 task_rq_unlock(rq, &flags);
48f24c4d 3168
1da177e4
LT
3169 return ns;
3170}
3171
1da177e4
LT
3172/*
3173 * Account user cpu time to a process.
3174 * @p: the process that the cpu time gets accounted to
1da177e4 3175 * @cputime: the cpu time spent in user space since the last update
457533a7 3176 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3177 */
457533a7
MS
3178void account_user_time(struct task_struct *p, cputime_t cputime,
3179 cputime_t cputime_scaled)
1da177e4
LT
3180{
3181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3182 cputime64_t tmp;
3183
457533a7 3184 /* Add user time to process. */
1da177e4 3185 p->utime = cputime_add(p->utime, cputime);
457533a7 3186 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3187 account_group_user_time(p, cputime);
1da177e4
LT
3188
3189 /* Add user time to cpustat. */
3190 tmp = cputime_to_cputime64(cputime);
3191 if (TASK_NICE(p) > 0)
3192 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3193 else
3194 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3195
3196 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3197 /* Account for user time used */
3198 acct_update_integrals(p);
1da177e4
LT
3199}
3200
94886b84
LV
3201/*
3202 * Account guest cpu time to a process.
3203 * @p: the process that the cpu time gets accounted to
3204 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3205 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3206 */
457533a7
MS
3207static void account_guest_time(struct task_struct *p, cputime_t cputime,
3208 cputime_t cputime_scaled)
94886b84
LV
3209{
3210 cputime64_t tmp;
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3212
3213 tmp = cputime_to_cputime64(cputime);
3214
457533a7 3215 /* Add guest time to process. */
94886b84 3216 p->utime = cputime_add(p->utime, cputime);
457533a7 3217 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3218 account_group_user_time(p, cputime);
94886b84
LV
3219 p->gtime = cputime_add(p->gtime, cputime);
3220
457533a7 3221 /* Add guest time to cpustat. */
ce0e7b28
RO
3222 if (TASK_NICE(p) > 0) {
3223 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3224 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3225 } else {
3226 cpustat->user = cputime64_add(cpustat->user, tmp);
3227 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3228 }
94886b84
LV
3229}
3230
1da177e4
LT
3231/*
3232 * Account system cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3236 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3237 */
3238void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3239 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3240{
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3242 cputime64_t tmp;
3243
983ed7a6 3244 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3245 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3246 return;
3247 }
94886b84 3248
457533a7 3249 /* Add system time to process. */
1da177e4 3250 p->stime = cputime_add(p->stime, cputime);
457533a7 3251 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3252 account_group_system_time(p, cputime);
1da177e4
LT
3253
3254 /* Add system time to cpustat. */
3255 tmp = cputime_to_cputime64(cputime);
3256 if (hardirq_count() - hardirq_offset)
3257 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3258 else if (softirq_count())
3259 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3260 else
79741dd3
MS
3261 cpustat->system = cputime64_add(cpustat->system, tmp);
3262
ef12fefa
BR
3263 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3264
1da177e4
LT
3265 /* Account for system time used */
3266 acct_update_integrals(p);
1da177e4
LT
3267}
3268
c66f08be 3269/*
1da177e4 3270 * Account for involuntary wait time.
1da177e4 3271 * @steal: the cpu time spent in involuntary wait
c66f08be 3272 */
79741dd3 3273void account_steal_time(cputime_t cputime)
c66f08be 3274{
79741dd3
MS
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3277
3278 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3279}
3280
1da177e4 3281/*
79741dd3
MS
3282 * Account for idle time.
3283 * @cputime: the cpu time spent in idle wait
1da177e4 3284 */
79741dd3 3285void account_idle_time(cputime_t cputime)
1da177e4
LT
3286{
3287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3288 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3289 struct rq *rq = this_rq();
1da177e4 3290
79741dd3
MS
3291 if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3295}
3296
79741dd3
MS
3297#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3298
3299/*
3300 * Account a single tick of cpu time.
3301 * @p: the process that the cpu time gets accounted to
3302 * @user_tick: indicates if the tick is a user or a system tick
3303 */
3304void account_process_tick(struct task_struct *p, int user_tick)
3305{
a42548a1 3306 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3307 struct rq *rq = this_rq();
3308
3309 if (user_tick)
a42548a1 3310 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3311 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3312 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3313 one_jiffy_scaled);
3314 else
a42548a1 3315 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3316}
3317
3318/*
3319 * Account multiple ticks of steal time.
3320 * @p: the process from which the cpu time has been stolen
3321 * @ticks: number of stolen ticks
3322 */
3323void account_steal_ticks(unsigned long ticks)
3324{
3325 account_steal_time(jiffies_to_cputime(ticks));
3326}
3327
3328/*
3329 * Account multiple ticks of idle time.
3330 * @ticks: number of stolen ticks
3331 */
3332void account_idle_ticks(unsigned long ticks)
3333{
3334 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3335}
3336
79741dd3
MS
3337#endif
3338
49048622
BS
3339/*
3340 * Use precise platform statistics if available:
3341 */
3342#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3343void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3344{
d99ca3b9
HS
3345 *ut = p->utime;
3346 *st = p->stime;
49048622
BS
3347}
3348
0cf55e1e 3349void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3350{
0cf55e1e
HS
3351 struct task_cputime cputime;
3352
3353 thread_group_cputime(p, &cputime);
3354
3355 *ut = cputime.utime;
3356 *st = cputime.stime;
49048622
BS
3357}
3358#else
761b1d26
HS
3359
3360#ifndef nsecs_to_cputime
b7b20df9 3361# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3362#endif
3363
d180c5bc 3364void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3365{
d99ca3b9 3366 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3367
3368 /*
3369 * Use CFS's precise accounting:
3370 */
d180c5bc 3371 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3372
3373 if (total) {
d180c5bc
HS
3374 u64 temp;
3375
3376 temp = (u64)(rtime * utime);
49048622 3377 do_div(temp, total);
d180c5bc
HS
3378 utime = (cputime_t)temp;
3379 } else
3380 utime = rtime;
49048622 3381
d180c5bc
HS
3382 /*
3383 * Compare with previous values, to keep monotonicity:
3384 */
761b1d26 3385 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3386 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3387
d99ca3b9
HS
3388 *ut = p->prev_utime;
3389 *st = p->prev_stime;
49048622
BS
3390}
3391
0cf55e1e
HS
3392/*
3393 * Must be called with siglock held.
3394 */
3395void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3396{
0cf55e1e
HS
3397 struct signal_struct *sig = p->signal;
3398 struct task_cputime cputime;
3399 cputime_t rtime, utime, total;
49048622 3400
0cf55e1e 3401 thread_group_cputime(p, &cputime);
49048622 3402
0cf55e1e
HS
3403 total = cputime_add(cputime.utime, cputime.stime);
3404 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3405
0cf55e1e
HS
3406 if (total) {
3407 u64 temp;
49048622 3408
0cf55e1e
HS
3409 temp = (u64)(rtime * cputime.utime);
3410 do_div(temp, total);
3411 utime = (cputime_t)temp;
3412 } else
3413 utime = rtime;
3414
3415 sig->prev_utime = max(sig->prev_utime, utime);
3416 sig->prev_stime = max(sig->prev_stime,
3417 cputime_sub(rtime, sig->prev_utime));
3418
3419 *ut = sig->prev_utime;
3420 *st = sig->prev_stime;
49048622 3421}
49048622 3422#endif
49048622 3423
7835b98b
CL
3424/*
3425 * This function gets called by the timer code, with HZ frequency.
3426 * We call it with interrupts disabled.
3427 *
3428 * It also gets called by the fork code, when changing the parent's
3429 * timeslices.
3430 */
3431void scheduler_tick(void)
3432{
7835b98b
CL
3433 int cpu = smp_processor_id();
3434 struct rq *rq = cpu_rq(cpu);
dd41f596 3435 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3436
3437 sched_clock_tick();
dd41f596 3438
05fa785c 3439 raw_spin_lock(&rq->lock);
3e51f33f 3440 update_rq_clock(rq);
f1a438d8 3441 update_cpu_load(rq);
fa85ae24 3442 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3443 raw_spin_unlock(&rq->lock);
7835b98b 3444
49f47433 3445 perf_event_task_tick(curr);
e220d2dc 3446
e418e1c2 3447#ifdef CONFIG_SMP
dd41f596
IM
3448 rq->idle_at_tick = idle_cpu(cpu);
3449 trigger_load_balance(rq, cpu);
e418e1c2 3450#endif
1da177e4
LT
3451}
3452
132380a0 3453notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3454{
3455 if (in_lock_functions(addr)) {
3456 addr = CALLER_ADDR2;
3457 if (in_lock_functions(addr))
3458 addr = CALLER_ADDR3;
3459 }
3460 return addr;
3461}
1da177e4 3462
7e49fcce
SR
3463#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3464 defined(CONFIG_PREEMPT_TRACER))
3465
43627582 3466void __kprobes add_preempt_count(int val)
1da177e4 3467{
6cd8a4bb 3468#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3469 /*
3470 * Underflow?
3471 */
9a11b49a
IM
3472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3473 return;
6cd8a4bb 3474#endif
1da177e4 3475 preempt_count() += val;
6cd8a4bb 3476#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3477 /*
3478 * Spinlock count overflowing soon?
3479 */
33859f7f
MOS
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3481 PREEMPT_MASK - 10);
6cd8a4bb
SR
3482#endif
3483 if (preempt_count() == val)
3484 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3485}
3486EXPORT_SYMBOL(add_preempt_count);
3487
43627582 3488void __kprobes sub_preempt_count(int val)
1da177e4 3489{
6cd8a4bb 3490#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3491 /*
3492 * Underflow?
3493 */
01e3eb82 3494 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3495 return;
1da177e4
LT
3496 /*
3497 * Is the spinlock portion underflowing?
3498 */
9a11b49a
IM
3499 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3500 !(preempt_count() & PREEMPT_MASK)))
3501 return;
6cd8a4bb 3502#endif
9a11b49a 3503
6cd8a4bb
SR
3504 if (preempt_count() == val)
3505 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3506 preempt_count() -= val;
3507}
3508EXPORT_SYMBOL(sub_preempt_count);
3509
3510#endif
3511
3512/*
dd41f596 3513 * Print scheduling while atomic bug:
1da177e4 3514 */
dd41f596 3515static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3516{
838225b4
SS
3517 struct pt_regs *regs = get_irq_regs();
3518
3df0fc5b
PZ
3519 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3520 prev->comm, prev->pid, preempt_count());
838225b4 3521
dd41f596 3522 debug_show_held_locks(prev);
e21f5b15 3523 print_modules();
dd41f596
IM
3524 if (irqs_disabled())
3525 print_irqtrace_events(prev);
838225b4
SS
3526
3527 if (regs)
3528 show_regs(regs);
3529 else
3530 dump_stack();
dd41f596 3531}
1da177e4 3532
dd41f596
IM
3533/*
3534 * Various schedule()-time debugging checks and statistics:
3535 */
3536static inline void schedule_debug(struct task_struct *prev)
3537{
1da177e4 3538 /*
41a2d6cf 3539 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3540 * schedule() atomically, we ignore that path for now.
3541 * Otherwise, whine if we are scheduling when we should not be.
3542 */
3f33a7ce 3543 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3544 __schedule_bug(prev);
3545
1da177e4
LT
3546 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3547
2d72376b 3548 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3549#ifdef CONFIG_SCHEDSTATS
3550 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3551 schedstat_inc(this_rq(), bkl_count);
3552 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3553 }
3554#endif
dd41f596
IM
3555}
3556
6cecd084 3557static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3558{
a64692a3
MG
3559 if (prev->se.on_rq)
3560 update_rq_clock(rq);
3561 rq->skip_clock_update = 0;
6cecd084 3562 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3563}
3564
dd41f596
IM
3565/*
3566 * Pick up the highest-prio task:
3567 */
3568static inline struct task_struct *
b67802ea 3569pick_next_task(struct rq *rq)
dd41f596 3570{
5522d5d5 3571 const struct sched_class *class;
dd41f596 3572 struct task_struct *p;
1da177e4
LT
3573
3574 /*
dd41f596
IM
3575 * Optimization: we know that if all tasks are in
3576 * the fair class we can call that function directly:
1da177e4 3577 */
dd41f596 3578 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3579 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3580 if (likely(p))
3581 return p;
1da177e4
LT
3582 }
3583
dd41f596
IM
3584 class = sched_class_highest;
3585 for ( ; ; ) {
fb8d4724 3586 p = class->pick_next_task(rq);
dd41f596
IM
3587 if (p)
3588 return p;
3589 /*
3590 * Will never be NULL as the idle class always
3591 * returns a non-NULL p:
3592 */
3593 class = class->next;
3594 }
3595}
1da177e4 3596
dd41f596
IM
3597/*
3598 * schedule() is the main scheduler function.
3599 */
ff743345 3600asmlinkage void __sched schedule(void)
dd41f596
IM
3601{
3602 struct task_struct *prev, *next;
67ca7bde 3603 unsigned long *switch_count;
dd41f596 3604 struct rq *rq;
31656519 3605 int cpu;
dd41f596 3606
ff743345
PZ
3607need_resched:
3608 preempt_disable();
dd41f596
IM
3609 cpu = smp_processor_id();
3610 rq = cpu_rq(cpu);
25502a6c 3611 rcu_note_context_switch(cpu);
dd41f596
IM
3612 prev = rq->curr;
3613 switch_count = &prev->nivcsw;
3614
3615 release_kernel_lock(prev);
3616need_resched_nonpreemptible:
3617
3618 schedule_debug(prev);
1da177e4 3619
31656519 3620 if (sched_feat(HRTICK))
f333fdc9 3621 hrtick_clear(rq);
8f4d37ec 3622
05fa785c 3623 raw_spin_lock_irq(&rq->lock);
1e819950 3624 clear_tsk_need_resched(prev);
1da177e4 3625
1da177e4 3626 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3627 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3628 prev->state = TASK_RUNNING;
16882c1e 3629 else
371fd7e7 3630 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3631 switch_count = &prev->nvcsw;
1da177e4
LT
3632 }
3633
3f029d3c 3634 pre_schedule(rq, prev);
f65eda4f 3635
dd41f596 3636 if (unlikely(!rq->nr_running))
1da177e4 3637 idle_balance(cpu, rq);
1da177e4 3638
df1c99d4 3639 put_prev_task(rq, prev);
b67802ea 3640 next = pick_next_task(rq);
1da177e4 3641
1da177e4 3642 if (likely(prev != next)) {
673a90a1 3643 sched_info_switch(prev, next);
49f47433 3644 perf_event_task_sched_out(prev, next);
673a90a1 3645
1da177e4
LT
3646 rq->nr_switches++;
3647 rq->curr = next;
3648 ++*switch_count;
3649
dd41f596 3650 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3651 /*
3652 * the context switch might have flipped the stack from under
3653 * us, hence refresh the local variables.
3654 */
3655 cpu = smp_processor_id();
3656 rq = cpu_rq(cpu);
1da177e4 3657 } else
05fa785c 3658 raw_spin_unlock_irq(&rq->lock);
1da177e4 3659
3f029d3c 3660 post_schedule(rq);
1da177e4 3661
6d558c3a
YZ
3662 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3663 prev = rq->curr;
3664 switch_count = &prev->nivcsw;
1da177e4 3665 goto need_resched_nonpreemptible;
6d558c3a 3666 }
8f4d37ec 3667
1da177e4 3668 preempt_enable_no_resched();
ff743345 3669 if (need_resched())
1da177e4
LT
3670 goto need_resched;
3671}
1da177e4
LT
3672EXPORT_SYMBOL(schedule);
3673
c08f7829 3674#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3675/*
3676 * Look out! "owner" is an entirely speculative pointer
3677 * access and not reliable.
3678 */
3679int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3680{
3681 unsigned int cpu;
3682 struct rq *rq;
3683
3684 if (!sched_feat(OWNER_SPIN))
3685 return 0;
3686
3687#ifdef CONFIG_DEBUG_PAGEALLOC
3688 /*
3689 * Need to access the cpu field knowing that
3690 * DEBUG_PAGEALLOC could have unmapped it if
3691 * the mutex owner just released it and exited.
3692 */
3693 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3694 return 0;
0d66bf6d
PZ
3695#else
3696 cpu = owner->cpu;
3697#endif
3698
3699 /*
3700 * Even if the access succeeded (likely case),
3701 * the cpu field may no longer be valid.
3702 */
3703 if (cpu >= nr_cpumask_bits)
4b402210 3704 return 0;
0d66bf6d
PZ
3705
3706 /*
3707 * We need to validate that we can do a
3708 * get_cpu() and that we have the percpu area.
3709 */
3710 if (!cpu_online(cpu))
4b402210 3711 return 0;
0d66bf6d
PZ
3712
3713 rq = cpu_rq(cpu);
3714
3715 for (;;) {
3716 /*
3717 * Owner changed, break to re-assess state.
3718 */
3719 if (lock->owner != owner)
3720 break;
3721
3722 /*
3723 * Is that owner really running on that cpu?
3724 */
3725 if (task_thread_info(rq->curr) != owner || need_resched())
3726 return 0;
3727
3728 cpu_relax();
3729 }
4b402210 3730
0d66bf6d
PZ
3731 return 1;
3732}
3733#endif
3734
1da177e4
LT
3735#ifdef CONFIG_PREEMPT
3736/*
2ed6e34f 3737 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3738 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3739 * occur there and call schedule directly.
3740 */
3741asmlinkage void __sched preempt_schedule(void)
3742{
3743 struct thread_info *ti = current_thread_info();
6478d880 3744
1da177e4
LT
3745 /*
3746 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3747 * we do not want to preempt the current task. Just return..
1da177e4 3748 */
beed33a8 3749 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3750 return;
3751
3a5c359a
AK
3752 do {
3753 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3754 schedule();
3a5c359a 3755 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3756
3a5c359a
AK
3757 /*
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3760 */
3761 barrier();
5ed0cec0 3762 } while (need_resched());
1da177e4 3763}
1da177e4
LT
3764EXPORT_SYMBOL(preempt_schedule);
3765
3766/*
2ed6e34f 3767 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3768 * off of irq context.
3769 * Note, that this is called and return with irqs disabled. This will
3770 * protect us against recursive calling from irq.
3771 */
3772asmlinkage void __sched preempt_schedule_irq(void)
3773{
3774 struct thread_info *ti = current_thread_info();
6478d880 3775
2ed6e34f 3776 /* Catch callers which need to be fixed */
1da177e4
LT
3777 BUG_ON(ti->preempt_count || !irqs_disabled());
3778
3a5c359a
AK
3779 do {
3780 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3781 local_irq_enable();
3782 schedule();
3783 local_irq_disable();
3a5c359a 3784 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3785
3a5c359a
AK
3786 /*
3787 * Check again in case we missed a preemption opportunity
3788 * between schedule and now.
3789 */
3790 barrier();
5ed0cec0 3791 } while (need_resched());
1da177e4
LT
3792}
3793
3794#endif /* CONFIG_PREEMPT */
3795
63859d4f 3796int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3797 void *key)
1da177e4 3798{
63859d4f 3799 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3800}
1da177e4
LT
3801EXPORT_SYMBOL(default_wake_function);
3802
3803/*
41a2d6cf
IM
3804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3806 * number) then we wake all the non-exclusive tasks and one exclusive task.
3807 *
3808 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3811 */
78ddb08f 3812static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3813 int nr_exclusive, int wake_flags, void *key)
1da177e4 3814{
2e45874c 3815 wait_queue_t *curr, *next;
1da177e4 3816
2e45874c 3817 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3818 unsigned flags = curr->flags;
3819
63859d4f 3820 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3821 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3822 break;
3823 }
3824}
3825
3826/**
3827 * __wake_up - wake up threads blocked on a waitqueue.
3828 * @q: the waitqueue
3829 * @mode: which threads
3830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3831 * @key: is directly passed to the wakeup function
50fa610a
DH
3832 *
3833 * It may be assumed that this function implies a write memory barrier before
3834 * changing the task state if and only if any tasks are woken up.
1da177e4 3835 */
7ad5b3a5 3836void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3837 int nr_exclusive, void *key)
1da177e4
LT
3838{
3839 unsigned long flags;
3840
3841 spin_lock_irqsave(&q->lock, flags);
3842 __wake_up_common(q, mode, nr_exclusive, 0, key);
3843 spin_unlock_irqrestore(&q->lock, flags);
3844}
1da177e4
LT
3845EXPORT_SYMBOL(__wake_up);
3846
3847/*
3848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3849 */
7ad5b3a5 3850void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3851{
3852 __wake_up_common(q, mode, 1, 0, NULL);
3853}
3854
4ede816a
DL
3855void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3856{
3857 __wake_up_common(q, mode, 1, 0, key);
3858}
3859
1da177e4 3860/**
4ede816a 3861 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3862 * @q: the waitqueue
3863 * @mode: which threads
3864 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3865 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3866 *
3867 * The sync wakeup differs that the waker knows that it will schedule
3868 * away soon, so while the target thread will be woken up, it will not
3869 * be migrated to another CPU - ie. the two threads are 'synchronized'
3870 * with each other. This can prevent needless bouncing between CPUs.
3871 *
3872 * On UP it can prevent extra preemption.
50fa610a
DH
3873 *
3874 * It may be assumed that this function implies a write memory barrier before
3875 * changing the task state if and only if any tasks are woken up.
1da177e4 3876 */
4ede816a
DL
3877void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3878 int nr_exclusive, void *key)
1da177e4
LT
3879{
3880 unsigned long flags;
7d478721 3881 int wake_flags = WF_SYNC;
1da177e4
LT
3882
3883 if (unlikely(!q))
3884 return;
3885
3886 if (unlikely(!nr_exclusive))
7d478721 3887 wake_flags = 0;
1da177e4
LT
3888
3889 spin_lock_irqsave(&q->lock, flags);
7d478721 3890 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3891 spin_unlock_irqrestore(&q->lock, flags);
3892}
4ede816a
DL
3893EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3894
3895/*
3896 * __wake_up_sync - see __wake_up_sync_key()
3897 */
3898void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3899{
3900 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3901}
1da177e4
LT
3902EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3903
65eb3dc6
KD
3904/**
3905 * complete: - signals a single thread waiting on this completion
3906 * @x: holds the state of this particular completion
3907 *
3908 * This will wake up a single thread waiting on this completion. Threads will be
3909 * awakened in the same order in which they were queued.
3910 *
3911 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3915 */
b15136e9 3916void complete(struct completion *x)
1da177e4
LT
3917{
3918 unsigned long flags;
3919
3920 spin_lock_irqsave(&x->wait.lock, flags);
3921 x->done++;
d9514f6c 3922 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3923 spin_unlock_irqrestore(&x->wait.lock, flags);
3924}
3925EXPORT_SYMBOL(complete);
3926
65eb3dc6
KD
3927/**
3928 * complete_all: - signals all threads waiting on this completion
3929 * @x: holds the state of this particular completion
3930 *
3931 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3932 *
3933 * It may be assumed that this function implies a write memory barrier before
3934 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3935 */
b15136e9 3936void complete_all(struct completion *x)
1da177e4
LT
3937{
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&x->wait.lock, flags);
3941 x->done += UINT_MAX/2;
d9514f6c 3942 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944}
3945EXPORT_SYMBOL(complete_all);
3946
8cbbe86d
AK
3947static inline long __sched
3948do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3949{
1da177e4
LT
3950 if (!x->done) {
3951 DECLARE_WAITQUEUE(wait, current);
3952
a93d2f17 3953 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3954 do {
94d3d824 3955 if (signal_pending_state(state, current)) {
ea71a546
ON
3956 timeout = -ERESTARTSYS;
3957 break;
8cbbe86d
AK
3958 }
3959 __set_current_state(state);
1da177e4
LT
3960 spin_unlock_irq(&x->wait.lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&x->wait.lock);
ea71a546 3963 } while (!x->done && timeout);
1da177e4 3964 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3965 if (!x->done)
3966 return timeout;
1da177e4
LT
3967 }
3968 x->done--;
ea71a546 3969 return timeout ?: 1;
1da177e4 3970}
1da177e4 3971
8cbbe86d
AK
3972static long __sched
3973wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3974{
1da177e4
LT
3975 might_sleep();
3976
3977 spin_lock_irq(&x->wait.lock);
8cbbe86d 3978 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3979 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3980 return timeout;
3981}
1da177e4 3982
65eb3dc6
KD
3983/**
3984 * wait_for_completion: - waits for completion of a task
3985 * @x: holds the state of this particular completion
3986 *
3987 * This waits to be signaled for completion of a specific task. It is NOT
3988 * interruptible and there is no timeout.
3989 *
3990 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3991 * and interrupt capability. Also see complete().
3992 */
b15136e9 3993void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3994{
3995 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3996}
8cbbe86d 3997EXPORT_SYMBOL(wait_for_completion);
1da177e4 3998
65eb3dc6
KD
3999/**
4000 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4001 * @x: holds the state of this particular completion
4002 * @timeout: timeout value in jiffies
4003 *
4004 * This waits for either a completion of a specific task to be signaled or for a
4005 * specified timeout to expire. The timeout is in jiffies. It is not
4006 * interruptible.
4007 */
b15136e9 4008unsigned long __sched
8cbbe86d 4009wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4010{
8cbbe86d 4011 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4012}
8cbbe86d 4013EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4014
65eb3dc6
KD
4015/**
4016 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4017 * @x: holds the state of this particular completion
4018 *
4019 * This waits for completion of a specific task to be signaled. It is
4020 * interruptible.
4021 */
8cbbe86d 4022int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4023{
51e97990
AK
4024 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4025 if (t == -ERESTARTSYS)
4026 return t;
4027 return 0;
0fec171c 4028}
8cbbe86d 4029EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4030
65eb3dc6
KD
4031/**
4032 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4033 * @x: holds the state of this particular completion
4034 * @timeout: timeout value in jiffies
4035 *
4036 * This waits for either a completion of a specific task to be signaled or for a
4037 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4038 */
b15136e9 4039unsigned long __sched
8cbbe86d
AK
4040wait_for_completion_interruptible_timeout(struct completion *x,
4041 unsigned long timeout)
0fec171c 4042{
8cbbe86d 4043 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4044}
8cbbe86d 4045EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4046
65eb3dc6
KD
4047/**
4048 * wait_for_completion_killable: - waits for completion of a task (killable)
4049 * @x: holds the state of this particular completion
4050 *
4051 * This waits to be signaled for completion of a specific task. It can be
4052 * interrupted by a kill signal.
4053 */
009e577e
MW
4054int __sched wait_for_completion_killable(struct completion *x)
4055{
4056 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4057 if (t == -ERESTARTSYS)
4058 return t;
4059 return 0;
4060}
4061EXPORT_SYMBOL(wait_for_completion_killable);
4062
be4de352
DC
4063/**
4064 * try_wait_for_completion - try to decrement a completion without blocking
4065 * @x: completion structure
4066 *
4067 * Returns: 0 if a decrement cannot be done without blocking
4068 * 1 if a decrement succeeded.
4069 *
4070 * If a completion is being used as a counting completion,
4071 * attempt to decrement the counter without blocking. This
4072 * enables us to avoid waiting if the resource the completion
4073 * is protecting is not available.
4074 */
4075bool try_wait_for_completion(struct completion *x)
4076{
7539a3b3 4077 unsigned long flags;
be4de352
DC
4078 int ret = 1;
4079
7539a3b3 4080 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4081 if (!x->done)
4082 ret = 0;
4083 else
4084 x->done--;
7539a3b3 4085 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4086 return ret;
4087}
4088EXPORT_SYMBOL(try_wait_for_completion);
4089
4090/**
4091 * completion_done - Test to see if a completion has any waiters
4092 * @x: completion structure
4093 *
4094 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4095 * 1 if there are no waiters.
4096 *
4097 */
4098bool completion_done(struct completion *x)
4099{
7539a3b3 4100 unsigned long flags;
be4de352
DC
4101 int ret = 1;
4102
7539a3b3 4103 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4104 if (!x->done)
4105 ret = 0;
7539a3b3 4106 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4107 return ret;
4108}
4109EXPORT_SYMBOL(completion_done);
4110
8cbbe86d
AK
4111static long __sched
4112sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4113{
0fec171c
IM
4114 unsigned long flags;
4115 wait_queue_t wait;
4116
4117 init_waitqueue_entry(&wait, current);
1da177e4 4118
8cbbe86d 4119 __set_current_state(state);
1da177e4 4120
8cbbe86d
AK
4121 spin_lock_irqsave(&q->lock, flags);
4122 __add_wait_queue(q, &wait);
4123 spin_unlock(&q->lock);
4124 timeout = schedule_timeout(timeout);
4125 spin_lock_irq(&q->lock);
4126 __remove_wait_queue(q, &wait);
4127 spin_unlock_irqrestore(&q->lock, flags);
4128
4129 return timeout;
4130}
4131
4132void __sched interruptible_sleep_on(wait_queue_head_t *q)
4133{
4134 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4135}
1da177e4
LT
4136EXPORT_SYMBOL(interruptible_sleep_on);
4137
0fec171c 4138long __sched
95cdf3b7 4139interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4140{
8cbbe86d 4141 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4142}
1da177e4
LT
4143EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4144
0fec171c 4145void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4146{
8cbbe86d 4147 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4148}
1da177e4
LT
4149EXPORT_SYMBOL(sleep_on);
4150
0fec171c 4151long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4152{
8cbbe86d 4153 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4154}
1da177e4
LT
4155EXPORT_SYMBOL(sleep_on_timeout);
4156
b29739f9
IM
4157#ifdef CONFIG_RT_MUTEXES
4158
4159/*
4160 * rt_mutex_setprio - set the current priority of a task
4161 * @p: task
4162 * @prio: prio value (kernel-internal form)
4163 *
4164 * This function changes the 'effective' priority of a task. It does
4165 * not touch ->normal_prio like __setscheduler().
4166 *
4167 * Used by the rt_mutex code to implement priority inheritance logic.
4168 */
36c8b586 4169void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4170{
4171 unsigned long flags;
83b699ed 4172 int oldprio, on_rq, running;
70b97a7f 4173 struct rq *rq;
83ab0aa0 4174 const struct sched_class *prev_class;
b29739f9
IM
4175
4176 BUG_ON(prio < 0 || prio > MAX_PRIO);
4177
4178 rq = task_rq_lock(p, &flags);
4179
d5f9f942 4180 oldprio = p->prio;
83ab0aa0 4181 prev_class = p->sched_class;
dd41f596 4182 on_rq = p->se.on_rq;
051a1d1a 4183 running = task_current(rq, p);
0e1f3483 4184 if (on_rq)
69be72c1 4185 dequeue_task(rq, p, 0);
0e1f3483
HS
4186 if (running)
4187 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4188
4189 if (rt_prio(prio))
4190 p->sched_class = &rt_sched_class;
4191 else
4192 p->sched_class = &fair_sched_class;
4193
b29739f9
IM
4194 p->prio = prio;
4195
0e1f3483
HS
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
dd41f596 4198 if (on_rq) {
371fd7e7 4199 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4200
4201 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4202 }
4203 task_rq_unlock(rq, &flags);
4204}
4205
4206#endif
4207
36c8b586 4208void set_user_nice(struct task_struct *p, long nice)
1da177e4 4209{
dd41f596 4210 int old_prio, delta, on_rq;
1da177e4 4211 unsigned long flags;
70b97a7f 4212 struct rq *rq;
1da177e4
LT
4213
4214 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4215 return;
4216 /*
4217 * We have to be careful, if called from sys_setpriority(),
4218 * the task might be in the middle of scheduling on another CPU.
4219 */
4220 rq = task_rq_lock(p, &flags);
4221 /*
4222 * The RT priorities are set via sched_setscheduler(), but we still
4223 * allow the 'normal' nice value to be set - but as expected
4224 * it wont have any effect on scheduling until the task is
dd41f596 4225 * SCHED_FIFO/SCHED_RR:
1da177e4 4226 */
e05606d3 4227 if (task_has_rt_policy(p)) {
1da177e4
LT
4228 p->static_prio = NICE_TO_PRIO(nice);
4229 goto out_unlock;
4230 }
dd41f596 4231 on_rq = p->se.on_rq;
c09595f6 4232 if (on_rq)
69be72c1 4233 dequeue_task(rq, p, 0);
1da177e4 4234
1da177e4 4235 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4236 set_load_weight(p);
b29739f9
IM
4237 old_prio = p->prio;
4238 p->prio = effective_prio(p);
4239 delta = p->prio - old_prio;
1da177e4 4240
dd41f596 4241 if (on_rq) {
371fd7e7 4242 enqueue_task(rq, p, 0);
1da177e4 4243 /*
d5f9f942
AM
4244 * If the task increased its priority or is running and
4245 * lowered its priority, then reschedule its CPU:
1da177e4 4246 */
d5f9f942 4247 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4248 resched_task(rq->curr);
4249 }
4250out_unlock:
4251 task_rq_unlock(rq, &flags);
4252}
1da177e4
LT
4253EXPORT_SYMBOL(set_user_nice);
4254
e43379f1
MM
4255/*
4256 * can_nice - check if a task can reduce its nice value
4257 * @p: task
4258 * @nice: nice value
4259 */
36c8b586 4260int can_nice(const struct task_struct *p, const int nice)
e43379f1 4261{
024f4747
MM
4262 /* convert nice value [19,-20] to rlimit style value [1,40] */
4263 int nice_rlim = 20 - nice;
48f24c4d 4264
78d7d407 4265 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4266 capable(CAP_SYS_NICE));
4267}
4268
1da177e4
LT
4269#ifdef __ARCH_WANT_SYS_NICE
4270
4271/*
4272 * sys_nice - change the priority of the current process.
4273 * @increment: priority increment
4274 *
4275 * sys_setpriority is a more generic, but much slower function that
4276 * does similar things.
4277 */
5add95d4 4278SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4279{
48f24c4d 4280 long nice, retval;
1da177e4
LT
4281
4282 /*
4283 * Setpriority might change our priority at the same moment.
4284 * We don't have to worry. Conceptually one call occurs first
4285 * and we have a single winner.
4286 */
e43379f1
MM
4287 if (increment < -40)
4288 increment = -40;
1da177e4
LT
4289 if (increment > 40)
4290 increment = 40;
4291
2b8f836f 4292 nice = TASK_NICE(current) + increment;
1da177e4
LT
4293 if (nice < -20)
4294 nice = -20;
4295 if (nice > 19)
4296 nice = 19;
4297
e43379f1
MM
4298 if (increment < 0 && !can_nice(current, nice))
4299 return -EPERM;
4300
1da177e4
LT
4301 retval = security_task_setnice(current, nice);
4302 if (retval)
4303 return retval;
4304
4305 set_user_nice(current, nice);
4306 return 0;
4307}
4308
4309#endif
4310
4311/**
4312 * task_prio - return the priority value of a given task.
4313 * @p: the task in question.
4314 *
4315 * This is the priority value as seen by users in /proc.
4316 * RT tasks are offset by -200. Normal tasks are centered
4317 * around 0, value goes from -16 to +15.
4318 */
36c8b586 4319int task_prio(const struct task_struct *p)
1da177e4
LT
4320{
4321 return p->prio - MAX_RT_PRIO;
4322}
4323
4324/**
4325 * task_nice - return the nice value of a given task.
4326 * @p: the task in question.
4327 */
36c8b586 4328int task_nice(const struct task_struct *p)
1da177e4
LT
4329{
4330 return TASK_NICE(p);
4331}
150d8bed 4332EXPORT_SYMBOL(task_nice);
1da177e4
LT
4333
4334/**
4335 * idle_cpu - is a given cpu idle currently?
4336 * @cpu: the processor in question.
4337 */
4338int idle_cpu(int cpu)
4339{
4340 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4341}
4342
1da177e4
LT
4343/**
4344 * idle_task - return the idle task for a given cpu.
4345 * @cpu: the processor in question.
4346 */
36c8b586 4347struct task_struct *idle_task(int cpu)
1da177e4
LT
4348{
4349 return cpu_rq(cpu)->idle;
4350}
4351
4352/**
4353 * find_process_by_pid - find a process with a matching PID value.
4354 * @pid: the pid in question.
4355 */
a9957449 4356static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4357{
228ebcbe 4358 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4359}
4360
4361/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4362static void
4363__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4364{
dd41f596 4365 BUG_ON(p->se.on_rq);
48f24c4d 4366
1da177e4
LT
4367 p->policy = policy;
4368 p->rt_priority = prio;
b29739f9
IM
4369 p->normal_prio = normal_prio(p);
4370 /* we are holding p->pi_lock already */
4371 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4372 if (rt_prio(p->prio))
4373 p->sched_class = &rt_sched_class;
4374 else
4375 p->sched_class = &fair_sched_class;
2dd73a4f 4376 set_load_weight(p);
1da177e4
LT
4377}
4378
c69e8d9c
DH
4379/*
4380 * check the target process has a UID that matches the current process's
4381 */
4382static bool check_same_owner(struct task_struct *p)
4383{
4384 const struct cred *cred = current_cred(), *pcred;
4385 bool match;
4386
4387 rcu_read_lock();
4388 pcred = __task_cred(p);
4389 match = (cred->euid == pcred->euid ||
4390 cred->euid == pcred->uid);
4391 rcu_read_unlock();
4392 return match;
4393}
4394
961ccddd
RR
4395static int __sched_setscheduler(struct task_struct *p, int policy,
4396 struct sched_param *param, bool user)
1da177e4 4397{
83b699ed 4398 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4399 unsigned long flags;
83ab0aa0 4400 const struct sched_class *prev_class;
70b97a7f 4401 struct rq *rq;
ca94c442 4402 int reset_on_fork;
1da177e4 4403
66e5393a
SR
4404 /* may grab non-irq protected spin_locks */
4405 BUG_ON(in_interrupt());
1da177e4
LT
4406recheck:
4407 /* double check policy once rq lock held */
ca94c442
LP
4408 if (policy < 0) {
4409 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4410 policy = oldpolicy = p->policy;
ca94c442
LP
4411 } else {
4412 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4413 policy &= ~SCHED_RESET_ON_FORK;
4414
4415 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4416 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4417 policy != SCHED_IDLE)
4418 return -EINVAL;
4419 }
4420
1da177e4
LT
4421 /*
4422 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4423 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4424 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4425 */
4426 if (param->sched_priority < 0 ||
95cdf3b7 4427 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4428 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4429 return -EINVAL;
e05606d3 4430 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4431 return -EINVAL;
4432
37e4ab3f
OC
4433 /*
4434 * Allow unprivileged RT tasks to decrease priority:
4435 */
961ccddd 4436 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4437 if (rt_policy(policy)) {
8dc3e909 4438 unsigned long rlim_rtprio;
8dc3e909
ON
4439
4440 if (!lock_task_sighand(p, &flags))
4441 return -ESRCH;
78d7d407 4442 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4443 unlock_task_sighand(p, &flags);
4444
4445 /* can't set/change the rt policy */
4446 if (policy != p->policy && !rlim_rtprio)
4447 return -EPERM;
4448
4449 /* can't increase priority */
4450 if (param->sched_priority > p->rt_priority &&
4451 param->sched_priority > rlim_rtprio)
4452 return -EPERM;
4453 }
dd41f596
IM
4454 /*
4455 * Like positive nice levels, dont allow tasks to
4456 * move out of SCHED_IDLE either:
4457 */
4458 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4459 return -EPERM;
5fe1d75f 4460
37e4ab3f 4461 /* can't change other user's priorities */
c69e8d9c 4462 if (!check_same_owner(p))
37e4ab3f 4463 return -EPERM;
ca94c442
LP
4464
4465 /* Normal users shall not reset the sched_reset_on_fork flag */
4466 if (p->sched_reset_on_fork && !reset_on_fork)
4467 return -EPERM;
37e4ab3f 4468 }
1da177e4 4469
725aad24 4470 if (user) {
b68aa230 4471#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4472 /*
4473 * Do not allow realtime tasks into groups that have no runtime
4474 * assigned.
4475 */
9a7e0b18
PZ
4476 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4477 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4478 return -EPERM;
b68aa230
PZ
4479#endif
4480
725aad24
JF
4481 retval = security_task_setscheduler(p, policy, param);
4482 if (retval)
4483 return retval;
4484 }
4485
b29739f9
IM
4486 /*
4487 * make sure no PI-waiters arrive (or leave) while we are
4488 * changing the priority of the task:
4489 */
1d615482 4490 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4491 /*
4492 * To be able to change p->policy safely, the apropriate
4493 * runqueue lock must be held.
4494 */
b29739f9 4495 rq = __task_rq_lock(p);
1da177e4
LT
4496 /* recheck policy now with rq lock held */
4497 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4498 policy = oldpolicy = -1;
b29739f9 4499 __task_rq_unlock(rq);
1d615482 4500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4501 goto recheck;
4502 }
dd41f596 4503 on_rq = p->se.on_rq;
051a1d1a 4504 running = task_current(rq, p);
0e1f3483 4505 if (on_rq)
2e1cb74a 4506 deactivate_task(rq, p, 0);
0e1f3483
HS
4507 if (running)
4508 p->sched_class->put_prev_task(rq, p);
f6b53205 4509
ca94c442
LP
4510 p->sched_reset_on_fork = reset_on_fork;
4511
1da177e4 4512 oldprio = p->prio;
83ab0aa0 4513 prev_class = p->sched_class;
dd41f596 4514 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4515
0e1f3483
HS
4516 if (running)
4517 p->sched_class->set_curr_task(rq);
dd41f596
IM
4518 if (on_rq) {
4519 activate_task(rq, p, 0);
cb469845
SR
4520
4521 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4522 }
b29739f9 4523 __task_rq_unlock(rq);
1d615482 4524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4525
95e02ca9
TG
4526 rt_mutex_adjust_pi(p);
4527
1da177e4
LT
4528 return 0;
4529}
961ccddd
RR
4530
4531/**
4532 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4533 * @p: the task in question.
4534 * @policy: new policy.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * NOTE that the task may be already dead.
4538 */
4539int sched_setscheduler(struct task_struct *p, int policy,
4540 struct sched_param *param)
4541{
4542 return __sched_setscheduler(p, policy, param, true);
4543}
1da177e4
LT
4544EXPORT_SYMBOL_GPL(sched_setscheduler);
4545
961ccddd
RR
4546/**
4547 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4548 * @p: the task in question.
4549 * @policy: new policy.
4550 * @param: structure containing the new RT priority.
4551 *
4552 * Just like sched_setscheduler, only don't bother checking if the
4553 * current context has permission. For example, this is needed in
4554 * stop_machine(): we create temporary high priority worker threads,
4555 * but our caller might not have that capability.
4556 */
4557int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4558 struct sched_param *param)
4559{
4560 return __sched_setscheduler(p, policy, param, false);
4561}
4562
95cdf3b7
IM
4563static int
4564do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4565{
1da177e4
LT
4566 struct sched_param lparam;
4567 struct task_struct *p;
36c8b586 4568 int retval;
1da177e4
LT
4569
4570 if (!param || pid < 0)
4571 return -EINVAL;
4572 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4573 return -EFAULT;
5fe1d75f
ON
4574
4575 rcu_read_lock();
4576 retval = -ESRCH;
1da177e4 4577 p = find_process_by_pid(pid);
5fe1d75f
ON
4578 if (p != NULL)
4579 retval = sched_setscheduler(p, policy, &lparam);
4580 rcu_read_unlock();
36c8b586 4581
1da177e4
LT
4582 return retval;
4583}
4584
4585/**
4586 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4587 * @pid: the pid in question.
4588 * @policy: new policy.
4589 * @param: structure containing the new RT priority.
4590 */
5add95d4
HC
4591SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4592 struct sched_param __user *, param)
1da177e4 4593{
c21761f1
JB
4594 /* negative values for policy are not valid */
4595 if (policy < 0)
4596 return -EINVAL;
4597
1da177e4
LT
4598 return do_sched_setscheduler(pid, policy, param);
4599}
4600
4601/**
4602 * sys_sched_setparam - set/change the RT priority of a thread
4603 * @pid: the pid in question.
4604 * @param: structure containing the new RT priority.
4605 */
5add95d4 4606SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4607{
4608 return do_sched_setscheduler(pid, -1, param);
4609}
4610
4611/**
4612 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4613 * @pid: the pid in question.
4614 */
5add95d4 4615SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4616{
36c8b586 4617 struct task_struct *p;
3a5c359a 4618 int retval;
1da177e4
LT
4619
4620 if (pid < 0)
3a5c359a 4621 return -EINVAL;
1da177e4
LT
4622
4623 retval = -ESRCH;
5fe85be0 4624 rcu_read_lock();
1da177e4
LT
4625 p = find_process_by_pid(pid);
4626 if (p) {
4627 retval = security_task_getscheduler(p);
4628 if (!retval)
ca94c442
LP
4629 retval = p->policy
4630 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4631 }
5fe85be0 4632 rcu_read_unlock();
1da177e4
LT
4633 return retval;
4634}
4635
4636/**
ca94c442 4637 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4638 * @pid: the pid in question.
4639 * @param: structure containing the RT priority.
4640 */
5add95d4 4641SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4642{
4643 struct sched_param lp;
36c8b586 4644 struct task_struct *p;
3a5c359a 4645 int retval;
1da177e4
LT
4646
4647 if (!param || pid < 0)
3a5c359a 4648 return -EINVAL;
1da177e4 4649
5fe85be0 4650 rcu_read_lock();
1da177e4
LT
4651 p = find_process_by_pid(pid);
4652 retval = -ESRCH;
4653 if (!p)
4654 goto out_unlock;
4655
4656 retval = security_task_getscheduler(p);
4657 if (retval)
4658 goto out_unlock;
4659
4660 lp.sched_priority = p->rt_priority;
5fe85be0 4661 rcu_read_unlock();
1da177e4
LT
4662
4663 /*
4664 * This one might sleep, we cannot do it with a spinlock held ...
4665 */
4666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4667
1da177e4
LT
4668 return retval;
4669
4670out_unlock:
5fe85be0 4671 rcu_read_unlock();
1da177e4
LT
4672 return retval;
4673}
4674
96f874e2 4675long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4676{
5a16f3d3 4677 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4678 struct task_struct *p;
4679 int retval;
1da177e4 4680
95402b38 4681 get_online_cpus();
23f5d142 4682 rcu_read_lock();
1da177e4
LT
4683
4684 p = find_process_by_pid(pid);
4685 if (!p) {
23f5d142 4686 rcu_read_unlock();
95402b38 4687 put_online_cpus();
1da177e4
LT
4688 return -ESRCH;
4689 }
4690
23f5d142 4691 /* Prevent p going away */
1da177e4 4692 get_task_struct(p);
23f5d142 4693 rcu_read_unlock();
1da177e4 4694
5a16f3d3
RR
4695 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4696 retval = -ENOMEM;
4697 goto out_put_task;
4698 }
4699 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4700 retval = -ENOMEM;
4701 goto out_free_cpus_allowed;
4702 }
1da177e4 4703 retval = -EPERM;
c69e8d9c 4704 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4705 goto out_unlock;
4706
e7834f8f
DQ
4707 retval = security_task_setscheduler(p, 0, NULL);
4708 if (retval)
4709 goto out_unlock;
4710
5a16f3d3
RR
4711 cpuset_cpus_allowed(p, cpus_allowed);
4712 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4713 again:
5a16f3d3 4714 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4715
8707d8b8 4716 if (!retval) {
5a16f3d3
RR
4717 cpuset_cpus_allowed(p, cpus_allowed);
4718 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4719 /*
4720 * We must have raced with a concurrent cpuset
4721 * update. Just reset the cpus_allowed to the
4722 * cpuset's cpus_allowed
4723 */
5a16f3d3 4724 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4725 goto again;
4726 }
4727 }
1da177e4 4728out_unlock:
5a16f3d3
RR
4729 free_cpumask_var(new_mask);
4730out_free_cpus_allowed:
4731 free_cpumask_var(cpus_allowed);
4732out_put_task:
1da177e4 4733 put_task_struct(p);
95402b38 4734 put_online_cpus();
1da177e4
LT
4735 return retval;
4736}
4737
4738static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4739 struct cpumask *new_mask)
1da177e4 4740{
96f874e2
RR
4741 if (len < cpumask_size())
4742 cpumask_clear(new_mask);
4743 else if (len > cpumask_size())
4744 len = cpumask_size();
4745
1da177e4
LT
4746 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747}
4748
4749/**
4750 * sys_sched_setaffinity - set the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to the new cpu mask
4754 */
5add95d4
HC
4755SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4756 unsigned long __user *, user_mask_ptr)
1da177e4 4757{
5a16f3d3 4758 cpumask_var_t new_mask;
1da177e4
LT
4759 int retval;
4760
5a16f3d3
RR
4761 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4762 return -ENOMEM;
1da177e4 4763
5a16f3d3
RR
4764 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4765 if (retval == 0)
4766 retval = sched_setaffinity(pid, new_mask);
4767 free_cpumask_var(new_mask);
4768 return retval;
1da177e4
LT
4769}
4770
96f874e2 4771long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4772{
36c8b586 4773 struct task_struct *p;
31605683
TG
4774 unsigned long flags;
4775 struct rq *rq;
1da177e4 4776 int retval;
1da177e4 4777
95402b38 4778 get_online_cpus();
23f5d142 4779 rcu_read_lock();
1da177e4
LT
4780
4781 retval = -ESRCH;
4782 p = find_process_by_pid(pid);
4783 if (!p)
4784 goto out_unlock;
4785
e7834f8f
DQ
4786 retval = security_task_getscheduler(p);
4787 if (retval)
4788 goto out_unlock;
4789
31605683 4790 rq = task_rq_lock(p, &flags);
96f874e2 4791 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4792 task_rq_unlock(rq, &flags);
1da177e4
LT
4793
4794out_unlock:
23f5d142 4795 rcu_read_unlock();
95402b38 4796 put_online_cpus();
1da177e4 4797
9531b62f 4798 return retval;
1da177e4
LT
4799}
4800
4801/**
4802 * sys_sched_getaffinity - get the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4806 */
5add95d4
HC
4807SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4808 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4809{
4810 int ret;
f17c8607 4811 cpumask_var_t mask;
1da177e4 4812
84fba5ec 4813 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4814 return -EINVAL;
4815 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4816 return -EINVAL;
4817
f17c8607
RR
4818 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4819 return -ENOMEM;
1da177e4 4820
f17c8607
RR
4821 ret = sched_getaffinity(pid, mask);
4822 if (ret == 0) {
8bc037fb 4823 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4824
4825 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4826 ret = -EFAULT;
4827 else
cd3d8031 4828 ret = retlen;
f17c8607
RR
4829 }
4830 free_cpumask_var(mask);
1da177e4 4831
f17c8607 4832 return ret;
1da177e4
LT
4833}
4834
4835/**
4836 * sys_sched_yield - yield the current processor to other threads.
4837 *
dd41f596
IM
4838 * This function yields the current CPU to other tasks. If there are no
4839 * other threads running on this CPU then this function will return.
1da177e4 4840 */
5add95d4 4841SYSCALL_DEFINE0(sched_yield)
1da177e4 4842{
70b97a7f 4843 struct rq *rq = this_rq_lock();
1da177e4 4844
2d72376b 4845 schedstat_inc(rq, yld_count);
4530d7ab 4846 current->sched_class->yield_task(rq);
1da177e4
LT
4847
4848 /*
4849 * Since we are going to call schedule() anyway, there's
4850 * no need to preempt or enable interrupts:
4851 */
4852 __release(rq->lock);
8a25d5de 4853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4854 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4855 preempt_enable_no_resched();
4856
4857 schedule();
4858
4859 return 0;
4860}
4861
d86ee480
PZ
4862static inline int should_resched(void)
4863{
4864 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4865}
4866
e7b38404 4867static void __cond_resched(void)
1da177e4 4868{
e7aaaa69
FW
4869 add_preempt_count(PREEMPT_ACTIVE);
4870 schedule();
4871 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4872}
4873
02b67cc3 4874int __sched _cond_resched(void)
1da177e4 4875{
d86ee480 4876 if (should_resched()) {
1da177e4
LT
4877 __cond_resched();
4878 return 1;
4879 }
4880 return 0;
4881}
02b67cc3 4882EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4883
4884/*
613afbf8 4885 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4886 * call schedule, and on return reacquire the lock.
4887 *
41a2d6cf 4888 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4889 * operations here to prevent schedule() from being called twice (once via
4890 * spin_unlock(), once by hand).
4891 */
613afbf8 4892int __cond_resched_lock(spinlock_t *lock)
1da177e4 4893{
d86ee480 4894 int resched = should_resched();
6df3cecb
JK
4895 int ret = 0;
4896
f607c668
PZ
4897 lockdep_assert_held(lock);
4898
95c354fe 4899 if (spin_needbreak(lock) || resched) {
1da177e4 4900 spin_unlock(lock);
d86ee480 4901 if (resched)
95c354fe
NP
4902 __cond_resched();
4903 else
4904 cpu_relax();
6df3cecb 4905 ret = 1;
1da177e4 4906 spin_lock(lock);
1da177e4 4907 }
6df3cecb 4908 return ret;
1da177e4 4909}
613afbf8 4910EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4911
613afbf8 4912int __sched __cond_resched_softirq(void)
1da177e4
LT
4913{
4914 BUG_ON(!in_softirq());
4915
d86ee480 4916 if (should_resched()) {
98d82567 4917 local_bh_enable();
1da177e4
LT
4918 __cond_resched();
4919 local_bh_disable();
4920 return 1;
4921 }
4922 return 0;
4923}
613afbf8 4924EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4925
1da177e4
LT
4926/**
4927 * yield - yield the current processor to other threads.
4928 *
72fd4a35 4929 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4930 * thread runnable and calls sys_sched_yield().
4931 */
4932void __sched yield(void)
4933{
4934 set_current_state(TASK_RUNNING);
4935 sys_sched_yield();
4936}
1da177e4
LT
4937EXPORT_SYMBOL(yield);
4938
4939/*
41a2d6cf 4940 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4941 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4942 */
4943void __sched io_schedule(void)
4944{
54d35f29 4945 struct rq *rq = raw_rq();
1da177e4 4946
0ff92245 4947 delayacct_blkio_start();
1da177e4 4948 atomic_inc(&rq->nr_iowait);
8f0dfc34 4949 current->in_iowait = 1;
1da177e4 4950 schedule();
8f0dfc34 4951 current->in_iowait = 0;
1da177e4 4952 atomic_dec(&rq->nr_iowait);
0ff92245 4953 delayacct_blkio_end();
1da177e4 4954}
1da177e4
LT
4955EXPORT_SYMBOL(io_schedule);
4956
4957long __sched io_schedule_timeout(long timeout)
4958{
54d35f29 4959 struct rq *rq = raw_rq();
1da177e4
LT
4960 long ret;
4961
0ff92245 4962 delayacct_blkio_start();
1da177e4 4963 atomic_inc(&rq->nr_iowait);
8f0dfc34 4964 current->in_iowait = 1;
1da177e4 4965 ret = schedule_timeout(timeout);
8f0dfc34 4966 current->in_iowait = 0;
1da177e4 4967 atomic_dec(&rq->nr_iowait);
0ff92245 4968 delayacct_blkio_end();
1da177e4
LT
4969 return ret;
4970}
4971
4972/**
4973 * sys_sched_get_priority_max - return maximum RT priority.
4974 * @policy: scheduling class.
4975 *
4976 * this syscall returns the maximum rt_priority that can be used
4977 * by a given scheduling class.
4978 */
5add95d4 4979SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4980{
4981 int ret = -EINVAL;
4982
4983 switch (policy) {
4984 case SCHED_FIFO:
4985 case SCHED_RR:
4986 ret = MAX_USER_RT_PRIO-1;
4987 break;
4988 case SCHED_NORMAL:
b0a9499c 4989 case SCHED_BATCH:
dd41f596 4990 case SCHED_IDLE:
1da177e4
LT
4991 ret = 0;
4992 break;
4993 }
4994 return ret;
4995}
4996
4997/**
4998 * sys_sched_get_priority_min - return minimum RT priority.
4999 * @policy: scheduling class.
5000 *
5001 * this syscall returns the minimum rt_priority that can be used
5002 * by a given scheduling class.
5003 */
5add95d4 5004SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5005{
5006 int ret = -EINVAL;
5007
5008 switch (policy) {
5009 case SCHED_FIFO:
5010 case SCHED_RR:
5011 ret = 1;
5012 break;
5013 case SCHED_NORMAL:
b0a9499c 5014 case SCHED_BATCH:
dd41f596 5015 case SCHED_IDLE:
1da177e4
LT
5016 ret = 0;
5017 }
5018 return ret;
5019}
5020
5021/**
5022 * sys_sched_rr_get_interval - return the default timeslice of a process.
5023 * @pid: pid of the process.
5024 * @interval: userspace pointer to the timeslice value.
5025 *
5026 * this syscall writes the default timeslice value of a given process
5027 * into the user-space timespec buffer. A value of '0' means infinity.
5028 */
17da2bd9 5029SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5030 struct timespec __user *, interval)
1da177e4 5031{
36c8b586 5032 struct task_struct *p;
a4ec24b4 5033 unsigned int time_slice;
dba091b9
TG
5034 unsigned long flags;
5035 struct rq *rq;
3a5c359a 5036 int retval;
1da177e4 5037 struct timespec t;
1da177e4
LT
5038
5039 if (pid < 0)
3a5c359a 5040 return -EINVAL;
1da177e4
LT
5041
5042 retval = -ESRCH;
1a551ae7 5043 rcu_read_lock();
1da177e4
LT
5044 p = find_process_by_pid(pid);
5045 if (!p)
5046 goto out_unlock;
5047
5048 retval = security_task_getscheduler(p);
5049 if (retval)
5050 goto out_unlock;
5051
dba091b9
TG
5052 rq = task_rq_lock(p, &flags);
5053 time_slice = p->sched_class->get_rr_interval(rq, p);
5054 task_rq_unlock(rq, &flags);
a4ec24b4 5055
1a551ae7 5056 rcu_read_unlock();
a4ec24b4 5057 jiffies_to_timespec(time_slice, &t);
1da177e4 5058 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5059 return retval;
3a5c359a 5060
1da177e4 5061out_unlock:
1a551ae7 5062 rcu_read_unlock();
1da177e4
LT
5063 return retval;
5064}
5065
7c731e0a 5066static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5067
82a1fcb9 5068void sched_show_task(struct task_struct *p)
1da177e4 5069{
1da177e4 5070 unsigned long free = 0;
36c8b586 5071 unsigned state;
1da177e4 5072
1da177e4 5073 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5074 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5075 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5076#if BITS_PER_LONG == 32
1da177e4 5077 if (state == TASK_RUNNING)
3df0fc5b 5078 printk(KERN_CONT " running ");
1da177e4 5079 else
3df0fc5b 5080 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5081#else
5082 if (state == TASK_RUNNING)
3df0fc5b 5083 printk(KERN_CONT " running task ");
1da177e4 5084 else
3df0fc5b 5085 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5086#endif
5087#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5088 free = stack_not_used(p);
1da177e4 5089#endif
3df0fc5b 5090 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5091 task_pid_nr(p), task_pid_nr(p->real_parent),
5092 (unsigned long)task_thread_info(p)->flags);
1da177e4 5093
5fb5e6de 5094 show_stack(p, NULL);
1da177e4
LT
5095}
5096
e59e2ae2 5097void show_state_filter(unsigned long state_filter)
1da177e4 5098{
36c8b586 5099 struct task_struct *g, *p;
1da177e4 5100
4bd77321 5101#if BITS_PER_LONG == 32
3df0fc5b
PZ
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
1da177e4 5104#else
3df0fc5b
PZ
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
1da177e4
LT
5107#endif
5108 read_lock(&tasklist_lock);
5109 do_each_thread(g, p) {
5110 /*
5111 * reset the NMI-timeout, listing all files on a slow
5112 * console might take alot of time:
5113 */
5114 touch_nmi_watchdog();
39bc89fd 5115 if (!state_filter || (p->state & state_filter))
82a1fcb9 5116 sched_show_task(p);
1da177e4
LT
5117 } while_each_thread(g, p);
5118
04c9167f
JF
5119 touch_all_softlockup_watchdogs();
5120
dd41f596
IM
5121#ifdef CONFIG_SCHED_DEBUG
5122 sysrq_sched_debug_show();
5123#endif
1da177e4 5124 read_unlock(&tasklist_lock);
e59e2ae2
IM
5125 /*
5126 * Only show locks if all tasks are dumped:
5127 */
93335a21 5128 if (!state_filter)
e59e2ae2 5129 debug_show_all_locks();
1da177e4
LT
5130}
5131
1df21055
IM
5132void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5133{
dd41f596 5134 idle->sched_class = &idle_sched_class;
1df21055
IM
5135}
5136
f340c0d1
IM
5137/**
5138 * init_idle - set up an idle thread for a given CPU
5139 * @idle: task in question
5140 * @cpu: cpu the idle task belongs to
5141 *
5142 * NOTE: this function does not set the idle thread's NEED_RESCHED
5143 * flag, to make booting more robust.
5144 */
5c1e1767 5145void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5146{
70b97a7f 5147 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5148 unsigned long flags;
5149
05fa785c 5150 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5151
dd41f596 5152 __sched_fork(idle);
06b83b5f 5153 idle->state = TASK_RUNNING;
dd41f596
IM
5154 idle->se.exec_start = sched_clock();
5155
96f874e2 5156 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5157 __set_task_cpu(idle, cpu);
1da177e4 5158
1da177e4 5159 rq->curr = rq->idle = idle;
4866cde0
NP
5160#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5161 idle->oncpu = 1;
5162#endif
05fa785c 5163 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5164
5165 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5166#if defined(CONFIG_PREEMPT)
5167 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5168#else
a1261f54 5169 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5170#endif
dd41f596
IM
5171 /*
5172 * The idle tasks have their own, simple scheduling class:
5173 */
5174 idle->sched_class = &idle_sched_class;
fb52607a 5175 ftrace_graph_init_task(idle);
1da177e4
LT
5176}
5177
5178/*
5179 * In a system that switches off the HZ timer nohz_cpu_mask
5180 * indicates which cpus entered this state. This is used
5181 * in the rcu update to wait only for active cpus. For system
5182 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5183 * always be CPU_BITS_NONE.
1da177e4 5184 */
6a7b3dc3 5185cpumask_var_t nohz_cpu_mask;
1da177e4 5186
19978ca6
IM
5187/*
5188 * Increase the granularity value when there are more CPUs,
5189 * because with more CPUs the 'effective latency' as visible
5190 * to users decreases. But the relationship is not linear,
5191 * so pick a second-best guess by going with the log2 of the
5192 * number of CPUs.
5193 *
5194 * This idea comes from the SD scheduler of Con Kolivas:
5195 */
acb4a848 5196static int get_update_sysctl_factor(void)
19978ca6 5197{
4ca3ef71 5198 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5199 unsigned int factor;
5200
5201 switch (sysctl_sched_tunable_scaling) {
5202 case SCHED_TUNABLESCALING_NONE:
5203 factor = 1;
5204 break;
5205 case SCHED_TUNABLESCALING_LINEAR:
5206 factor = cpus;
5207 break;
5208 case SCHED_TUNABLESCALING_LOG:
5209 default:
5210 factor = 1 + ilog2(cpus);
5211 break;
5212 }
19978ca6 5213
acb4a848
CE
5214 return factor;
5215}
19978ca6 5216
acb4a848
CE
5217static void update_sysctl(void)
5218{
5219 unsigned int factor = get_update_sysctl_factor();
19978ca6 5220
0bcdcf28
CE
5221#define SET_SYSCTL(name) \
5222 (sysctl_##name = (factor) * normalized_sysctl_##name)
5223 SET_SYSCTL(sched_min_granularity);
5224 SET_SYSCTL(sched_latency);
5225 SET_SYSCTL(sched_wakeup_granularity);
5226 SET_SYSCTL(sched_shares_ratelimit);
5227#undef SET_SYSCTL
5228}
55cd5340 5229
0bcdcf28
CE
5230static inline void sched_init_granularity(void)
5231{
5232 update_sysctl();
19978ca6
IM
5233}
5234
1da177e4
LT
5235#ifdef CONFIG_SMP
5236/*
5237 * This is how migration works:
5238 *
969c7921
TH
5239 * 1) we invoke migration_cpu_stop() on the target CPU using
5240 * stop_one_cpu().
5241 * 2) stopper starts to run (implicitly forcing the migrated thread
5242 * off the CPU)
5243 * 3) it checks whether the migrated task is still in the wrong runqueue.
5244 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5245 * it and puts it into the right queue.
969c7921
TH
5246 * 5) stopper completes and stop_one_cpu() returns and the migration
5247 * is done.
1da177e4
LT
5248 */
5249
5250/*
5251 * Change a given task's CPU affinity. Migrate the thread to a
5252 * proper CPU and schedule it away if the CPU it's executing on
5253 * is removed from the allowed bitmask.
5254 *
5255 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5256 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5257 * call is not atomic; no spinlocks may be held.
5258 */
96f874e2 5259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5260{
5261 unsigned long flags;
70b97a7f 5262 struct rq *rq;
969c7921 5263 unsigned int dest_cpu;
48f24c4d 5264 int ret = 0;
1da177e4 5265
65cc8e48
PZ
5266 /*
5267 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5268 * drop the rq->lock and still rely on ->cpus_allowed.
5269 */
5270again:
5271 while (task_is_waking(p))
5272 cpu_relax();
1da177e4 5273 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5274 if (task_is_waking(p)) {
5275 task_rq_unlock(rq, &flags);
5276 goto again;
5277 }
e2912009 5278
6ad4c188 5279 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5280 ret = -EINVAL;
5281 goto out;
5282 }
5283
9985b0ba 5284 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5285 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5286 ret = -EINVAL;
5287 goto out;
5288 }
5289
73fe6aae 5290 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5291 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5292 else {
96f874e2
RR
5293 cpumask_copy(&p->cpus_allowed, new_mask);
5294 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5295 }
5296
1da177e4 5297 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5298 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5299 goto out;
5300
969c7921
TH
5301 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5302 if (migrate_task(p, dest_cpu)) {
5303 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5304 /* Need help from migration thread: drop lock and wait. */
5305 task_rq_unlock(rq, &flags);
969c7921 5306 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5307 tlb_migrate_finish(p->mm);
5308 return 0;
5309 }
5310out:
5311 task_rq_unlock(rq, &flags);
48f24c4d 5312
1da177e4
LT
5313 return ret;
5314}
cd8ba7cd 5315EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5316
5317/*
41a2d6cf 5318 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5319 * this because either it can't run here any more (set_cpus_allowed()
5320 * away from this CPU, or CPU going down), or because we're
5321 * attempting to rebalance this task on exec (sched_exec).
5322 *
5323 * So we race with normal scheduler movements, but that's OK, as long
5324 * as the task is no longer on this CPU.
efc30814
KK
5325 *
5326 * Returns non-zero if task was successfully migrated.
1da177e4 5327 */
efc30814 5328static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5329{
70b97a7f 5330 struct rq *rq_dest, *rq_src;
e2912009 5331 int ret = 0;
1da177e4 5332
e761b772 5333 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5334 return ret;
1da177e4
LT
5335
5336 rq_src = cpu_rq(src_cpu);
5337 rq_dest = cpu_rq(dest_cpu);
5338
5339 double_rq_lock(rq_src, rq_dest);
5340 /* Already moved. */
5341 if (task_cpu(p) != src_cpu)
b1e38734 5342 goto done;
1da177e4 5343 /* Affinity changed (again). */
96f874e2 5344 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5345 goto fail;
1da177e4 5346
e2912009
PZ
5347 /*
5348 * If we're not on a rq, the next wake-up will ensure we're
5349 * placed properly.
5350 */
5351 if (p->se.on_rq) {
2e1cb74a 5352 deactivate_task(rq_src, p, 0);
e2912009 5353 set_task_cpu(p, dest_cpu);
dd41f596 5354 activate_task(rq_dest, p, 0);
15afe09b 5355 check_preempt_curr(rq_dest, p, 0);
1da177e4 5356 }
b1e38734 5357done:
efc30814 5358 ret = 1;
b1e38734 5359fail:
1da177e4 5360 double_rq_unlock(rq_src, rq_dest);
efc30814 5361 return ret;
1da177e4
LT
5362}
5363
5364/*
969c7921
TH
5365 * migration_cpu_stop - this will be executed by a highprio stopper thread
5366 * and performs thread migration by bumping thread off CPU then
5367 * 'pushing' onto another runqueue.
1da177e4 5368 */
969c7921 5369static int migration_cpu_stop(void *data)
1da177e4 5370{
969c7921 5371 struct migration_arg *arg = data;
f7b4cddc 5372
969c7921
TH
5373 /*
5374 * The original target cpu might have gone down and we might
5375 * be on another cpu but it doesn't matter.
5376 */
f7b4cddc 5377 local_irq_disable();
969c7921 5378 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5379 local_irq_enable();
1da177e4 5380 return 0;
f7b4cddc
ON
5381}
5382
1da177e4 5383#ifdef CONFIG_HOTPLUG_CPU
054b9108 5384/*
3a4fa0a2 5385 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5386 */
6a1bdc1b 5387void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5388{
1445c08d
ON
5389 struct rq *rq = cpu_rq(dead_cpu);
5390 int needs_cpu, uninitialized_var(dest_cpu);
5391 unsigned long flags;
e76bd8d9 5392
1445c08d 5393 local_irq_save(flags);
e76bd8d9 5394
1445c08d
ON
5395 raw_spin_lock(&rq->lock);
5396 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5397 if (needs_cpu)
5398 dest_cpu = select_fallback_rq(dead_cpu, p);
5399 raw_spin_unlock(&rq->lock);
c1804d54
ON
5400 /*
5401 * It can only fail if we race with set_cpus_allowed(),
5402 * in the racer should migrate the task anyway.
5403 */
1445c08d 5404 if (needs_cpu)
c1804d54 5405 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5406 local_irq_restore(flags);
1da177e4
LT
5407}
5408
5409/*
5410 * While a dead CPU has no uninterruptible tasks queued at this point,
5411 * it might still have a nonzero ->nr_uninterruptible counter, because
5412 * for performance reasons the counter is not stricly tracking tasks to
5413 * their home CPUs. So we just add the counter to another CPU's counter,
5414 * to keep the global sum constant after CPU-down:
5415 */
70b97a7f 5416static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5417{
6ad4c188 5418 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5419 unsigned long flags;
5420
5421 local_irq_save(flags);
5422 double_rq_lock(rq_src, rq_dest);
5423 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5424 rq_src->nr_uninterruptible = 0;
5425 double_rq_unlock(rq_src, rq_dest);
5426 local_irq_restore(flags);
5427}
5428
5429/* Run through task list and migrate tasks from the dead cpu. */
5430static void migrate_live_tasks(int src_cpu)
5431{
48f24c4d 5432 struct task_struct *p, *t;
1da177e4 5433
f7b4cddc 5434 read_lock(&tasklist_lock);
1da177e4 5435
48f24c4d
IM
5436 do_each_thread(t, p) {
5437 if (p == current)
1da177e4
LT
5438 continue;
5439
48f24c4d
IM
5440 if (task_cpu(p) == src_cpu)
5441 move_task_off_dead_cpu(src_cpu, p);
5442 } while_each_thread(t, p);
1da177e4 5443
f7b4cddc 5444 read_unlock(&tasklist_lock);
1da177e4
LT
5445}
5446
dd41f596
IM
5447/*
5448 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5449 * It does so by boosting its priority to highest possible.
5450 * Used by CPU offline code.
1da177e4
LT
5451 */
5452void sched_idle_next(void)
5453{
48f24c4d 5454 int this_cpu = smp_processor_id();
70b97a7f 5455 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5456 struct task_struct *p = rq->idle;
5457 unsigned long flags;
5458
5459 /* cpu has to be offline */
48f24c4d 5460 BUG_ON(cpu_online(this_cpu));
1da177e4 5461
48f24c4d
IM
5462 /*
5463 * Strictly not necessary since rest of the CPUs are stopped by now
5464 * and interrupts disabled on the current cpu.
1da177e4 5465 */
05fa785c 5466 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5467
dd41f596 5468 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5469
94bc9a7b 5470 activate_task(rq, p, 0);
1da177e4 5471
05fa785c 5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5473}
5474
48f24c4d
IM
5475/*
5476 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5477 * offline.
5478 */
5479void idle_task_exit(void)
5480{
5481 struct mm_struct *mm = current->active_mm;
5482
5483 BUG_ON(cpu_online(smp_processor_id()));
5484
5485 if (mm != &init_mm)
5486 switch_mm(mm, &init_mm, current);
5487 mmdrop(mm);
5488}
5489
054b9108 5490/* called under rq->lock with disabled interrupts */
36c8b586 5491static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5492{
70b97a7f 5493 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5494
5495 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5496 BUG_ON(!p->exit_state);
1da177e4
LT
5497
5498 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5499 BUG_ON(p->state == TASK_DEAD);
1da177e4 5500
48f24c4d 5501 get_task_struct(p);
1da177e4
LT
5502
5503 /*
5504 * Drop lock around migration; if someone else moves it,
41a2d6cf 5505 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5506 * fine.
5507 */
05fa785c 5508 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5509 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5510 raw_spin_lock_irq(&rq->lock);
1da177e4 5511
48f24c4d 5512 put_task_struct(p);
1da177e4
LT
5513}
5514
5515/* release_task() removes task from tasklist, so we won't find dead tasks. */
5516static void migrate_dead_tasks(unsigned int dead_cpu)
5517{
70b97a7f 5518 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5519 struct task_struct *next;
48f24c4d 5520
dd41f596
IM
5521 for ( ; ; ) {
5522 if (!rq->nr_running)
5523 break;
b67802ea 5524 next = pick_next_task(rq);
dd41f596
IM
5525 if (!next)
5526 break;
79c53799 5527 next->sched_class->put_prev_task(rq, next);
dd41f596 5528 migrate_dead(dead_cpu, next);
e692ab53 5529
1da177e4
LT
5530 }
5531}
dce48a84
TG
5532
5533/*
5534 * remove the tasks which were accounted by rq from calc_load_tasks.
5535 */
5536static void calc_global_load_remove(struct rq *rq)
5537{
5538 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5539 rq->calc_load_active = 0;
dce48a84 5540}
1da177e4
LT
5541#endif /* CONFIG_HOTPLUG_CPU */
5542
e692ab53
NP
5543#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5544
5545static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5546 {
5547 .procname = "sched_domain",
c57baf1e 5548 .mode = 0555,
e0361851 5549 },
56992309 5550 {}
e692ab53
NP
5551};
5552
5553static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5554 {
5555 .procname = "kernel",
c57baf1e 5556 .mode = 0555,
e0361851
AD
5557 .child = sd_ctl_dir,
5558 },
56992309 5559 {}
e692ab53
NP
5560};
5561
5562static struct ctl_table *sd_alloc_ctl_entry(int n)
5563{
5564 struct ctl_table *entry =
5cf9f062 5565 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5566
e692ab53
NP
5567 return entry;
5568}
5569
6382bc90
MM
5570static void sd_free_ctl_entry(struct ctl_table **tablep)
5571{
cd790076 5572 struct ctl_table *entry;
6382bc90 5573
cd790076
MM
5574 /*
5575 * In the intermediate directories, both the child directory and
5576 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5577 * will always be set. In the lowest directory the names are
cd790076
MM
5578 * static strings and all have proc handlers.
5579 */
5580 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5581 if (entry->child)
5582 sd_free_ctl_entry(&entry->child);
cd790076
MM
5583 if (entry->proc_handler == NULL)
5584 kfree(entry->procname);
5585 }
6382bc90
MM
5586
5587 kfree(*tablep);
5588 *tablep = NULL;
5589}
5590
e692ab53 5591static void
e0361851 5592set_table_entry(struct ctl_table *entry,
e692ab53
NP
5593 const char *procname, void *data, int maxlen,
5594 mode_t mode, proc_handler *proc_handler)
5595{
e692ab53
NP
5596 entry->procname = procname;
5597 entry->data = data;
5598 entry->maxlen = maxlen;
5599 entry->mode = mode;
5600 entry->proc_handler = proc_handler;
5601}
5602
5603static struct ctl_table *
5604sd_alloc_ctl_domain_table(struct sched_domain *sd)
5605{
a5d8c348 5606 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5607
ad1cdc1d
MM
5608 if (table == NULL)
5609 return NULL;
5610
e0361851 5611 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5612 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5613 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5614 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5615 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5616 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5617 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5618 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5619 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5620 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5621 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5622 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5623 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5624 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5625 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5626 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5627 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5628 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5629 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5630 &sd->cache_nice_tries,
5631 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5632 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5633 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5634 set_table_entry(&table[11], "name", sd->name,
5635 CORENAME_MAX_SIZE, 0444, proc_dostring);
5636 /* &table[12] is terminator */
e692ab53
NP
5637
5638 return table;
5639}
5640
9a4e7159 5641static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5642{
5643 struct ctl_table *entry, *table;
5644 struct sched_domain *sd;
5645 int domain_num = 0, i;
5646 char buf[32];
5647
5648 for_each_domain(cpu, sd)
5649 domain_num++;
5650 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5651 if (table == NULL)
5652 return NULL;
e692ab53
NP
5653
5654 i = 0;
5655 for_each_domain(cpu, sd) {
5656 snprintf(buf, 32, "domain%d", i);
e692ab53 5657 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5658 entry->mode = 0555;
e692ab53
NP
5659 entry->child = sd_alloc_ctl_domain_table(sd);
5660 entry++;
5661 i++;
5662 }
5663 return table;
5664}
5665
5666static struct ctl_table_header *sd_sysctl_header;
6382bc90 5667static void register_sched_domain_sysctl(void)
e692ab53 5668{
6ad4c188 5669 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5670 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5671 char buf[32];
5672
7378547f
MM
5673 WARN_ON(sd_ctl_dir[0].child);
5674 sd_ctl_dir[0].child = entry;
5675
ad1cdc1d
MM
5676 if (entry == NULL)
5677 return;
5678
6ad4c188 5679 for_each_possible_cpu(i) {
e692ab53 5680 snprintf(buf, 32, "cpu%d", i);
e692ab53 5681 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5682 entry->mode = 0555;
e692ab53 5683 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5684 entry++;
e692ab53 5685 }
7378547f
MM
5686
5687 WARN_ON(sd_sysctl_header);
e692ab53
NP
5688 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5689}
6382bc90 5690
7378547f 5691/* may be called multiple times per register */
6382bc90
MM
5692static void unregister_sched_domain_sysctl(void)
5693{
7378547f
MM
5694 if (sd_sysctl_header)
5695 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5696 sd_sysctl_header = NULL;
7378547f
MM
5697 if (sd_ctl_dir[0].child)
5698 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5699}
e692ab53 5700#else
6382bc90
MM
5701static void register_sched_domain_sysctl(void)
5702{
5703}
5704static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5705{
5706}
5707#endif
5708
1f11eb6a
GH
5709static void set_rq_online(struct rq *rq)
5710{
5711 if (!rq->online) {
5712 const struct sched_class *class;
5713
c6c4927b 5714 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5715 rq->online = 1;
5716
5717 for_each_class(class) {
5718 if (class->rq_online)
5719 class->rq_online(rq);
5720 }
5721 }
5722}
5723
5724static void set_rq_offline(struct rq *rq)
5725{
5726 if (rq->online) {
5727 const struct sched_class *class;
5728
5729 for_each_class(class) {
5730 if (class->rq_offline)
5731 class->rq_offline(rq);
5732 }
5733
c6c4927b 5734 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5735 rq->online = 0;
5736 }
5737}
5738
1da177e4
LT
5739/*
5740 * migration_call - callback that gets triggered when a CPU is added.
5741 * Here we can start up the necessary migration thread for the new CPU.
5742 */
48f24c4d
IM
5743static int __cpuinit
5744migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5745{
48f24c4d 5746 int cpu = (long)hcpu;
1da177e4 5747 unsigned long flags;
969c7921 5748 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5749
5750 switch (action) {
5be9361c 5751
1da177e4 5752 case CPU_UP_PREPARE:
8bb78442 5753 case CPU_UP_PREPARE_FROZEN:
a468d389 5754 rq->calc_load_update = calc_load_update;
1da177e4 5755 break;
48f24c4d 5756
1da177e4 5757 case CPU_ONLINE:
8bb78442 5758 case CPU_ONLINE_FROZEN:
1f94ef59 5759 /* Update our root-domain */
05fa785c 5760 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5761 if (rq->rd) {
c6c4927b 5762 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5763
5764 set_rq_online(rq);
1f94ef59 5765 }
05fa785c 5766 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5767 break;
48f24c4d 5768
1da177e4 5769#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5770 case CPU_DEAD:
8bb78442 5771 case CPU_DEAD_FROZEN:
1da177e4 5772 migrate_live_tasks(cpu);
1da177e4 5773 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5774 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5775 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5776 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5777 rq->idle->sched_class = &idle_sched_class;
1da177e4 5778 migrate_dead_tasks(cpu);
05fa785c 5779 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5780 migrate_nr_uninterruptible(rq);
5781 BUG_ON(rq->nr_running != 0);
dce48a84 5782 calc_global_load_remove(rq);
1da177e4 5783 break;
57d885fe 5784
08f503b0
GH
5785 case CPU_DYING:
5786 case CPU_DYING_FROZEN:
57d885fe 5787 /* Update our root-domain */
05fa785c 5788 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5789 if (rq->rd) {
c6c4927b 5790 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5791 set_rq_offline(rq);
57d885fe 5792 }
05fa785c 5793 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5794 break;
1da177e4
LT
5795#endif
5796 }
5797 return NOTIFY_OK;
5798}
5799
f38b0820
PM
5800/*
5801 * Register at high priority so that task migration (migrate_all_tasks)
5802 * happens before everything else. This has to be lower priority than
cdd6c482 5803 * the notifier in the perf_event subsystem, though.
1da177e4 5804 */
26c2143b 5805static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5806 .notifier_call = migration_call,
5807 .priority = 10
5808};
5809
7babe8db 5810static int __init migration_init(void)
1da177e4
LT
5811{
5812 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5813 int err;
48f24c4d
IM
5814
5815 /* Start one for the boot CPU: */
07dccf33
AM
5816 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5817 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5818 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5819 register_cpu_notifier(&migration_notifier);
7babe8db 5820
a004cd42 5821 return 0;
1da177e4 5822}
7babe8db 5823early_initcall(migration_init);
1da177e4
LT
5824#endif
5825
5826#ifdef CONFIG_SMP
476f3534 5827
3e9830dc 5828#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5829
f6630114
MT
5830static __read_mostly int sched_domain_debug_enabled;
5831
5832static int __init sched_domain_debug_setup(char *str)
5833{
5834 sched_domain_debug_enabled = 1;
5835
5836 return 0;
5837}
5838early_param("sched_debug", sched_domain_debug_setup);
5839
7c16ec58 5840static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5841 struct cpumask *groupmask)
1da177e4 5842{
4dcf6aff 5843 struct sched_group *group = sd->groups;
434d53b0 5844 char str[256];
1da177e4 5845
968ea6d8 5846 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5847 cpumask_clear(groupmask);
4dcf6aff
IM
5848
5849 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5850
5851 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5852 printk("does not load-balance\n");
4dcf6aff 5853 if (sd->parent)
3df0fc5b
PZ
5854 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5855 " has parent");
4dcf6aff 5856 return -1;
41c7ce9a
NP
5857 }
5858
3df0fc5b 5859 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5860
758b2cdc 5861 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5862 printk(KERN_ERR "ERROR: domain->span does not contain "
5863 "CPU%d\n", cpu);
4dcf6aff 5864 }
758b2cdc 5865 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5866 printk(KERN_ERR "ERROR: domain->groups does not contain"
5867 " CPU%d\n", cpu);
4dcf6aff 5868 }
1da177e4 5869
4dcf6aff 5870 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5871 do {
4dcf6aff 5872 if (!group) {
3df0fc5b
PZ
5873 printk("\n");
5874 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5875 break;
5876 }
5877
18a3885f 5878 if (!group->cpu_power) {
3df0fc5b
PZ
5879 printk(KERN_CONT "\n");
5880 printk(KERN_ERR "ERROR: domain->cpu_power not "
5881 "set\n");
4dcf6aff
IM
5882 break;
5883 }
1da177e4 5884
758b2cdc 5885 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5886 printk(KERN_CONT "\n");
5887 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5888 break;
5889 }
1da177e4 5890
758b2cdc 5891 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5892 printk(KERN_CONT "\n");
5893 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5894 break;
5895 }
1da177e4 5896
758b2cdc 5897 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5898
968ea6d8 5899 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5900
3df0fc5b 5901 printk(KERN_CONT " %s", str);
18a3885f 5902 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5903 printk(KERN_CONT " (cpu_power = %d)",
5904 group->cpu_power);
381512cf 5905 }
1da177e4 5906
4dcf6aff
IM
5907 group = group->next;
5908 } while (group != sd->groups);
3df0fc5b 5909 printk(KERN_CONT "\n");
1da177e4 5910
758b2cdc 5911 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5912 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5913
758b2cdc
RR
5914 if (sd->parent &&
5915 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5916 printk(KERN_ERR "ERROR: parent span is not a superset "
5917 "of domain->span\n");
4dcf6aff
IM
5918 return 0;
5919}
1da177e4 5920
4dcf6aff
IM
5921static void sched_domain_debug(struct sched_domain *sd, int cpu)
5922{
d5dd3db1 5923 cpumask_var_t groupmask;
4dcf6aff 5924 int level = 0;
1da177e4 5925
f6630114
MT
5926 if (!sched_domain_debug_enabled)
5927 return;
5928
4dcf6aff
IM
5929 if (!sd) {
5930 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5931 return;
5932 }
1da177e4 5933
4dcf6aff
IM
5934 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5935
d5dd3db1 5936 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5937 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5938 return;
5939 }
5940
4dcf6aff 5941 for (;;) {
7c16ec58 5942 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5943 break;
1da177e4
LT
5944 level++;
5945 sd = sd->parent;
33859f7f 5946 if (!sd)
4dcf6aff
IM
5947 break;
5948 }
d5dd3db1 5949 free_cpumask_var(groupmask);
1da177e4 5950}
6d6bc0ad 5951#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5952# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5953#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5954
1a20ff27 5955static int sd_degenerate(struct sched_domain *sd)
245af2c7 5956{
758b2cdc 5957 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5958 return 1;
5959
5960 /* Following flags need at least 2 groups */
5961 if (sd->flags & (SD_LOAD_BALANCE |
5962 SD_BALANCE_NEWIDLE |
5963 SD_BALANCE_FORK |
89c4710e
SS
5964 SD_BALANCE_EXEC |
5965 SD_SHARE_CPUPOWER |
5966 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5967 if (sd->groups != sd->groups->next)
5968 return 0;
5969 }
5970
5971 /* Following flags don't use groups */
c88d5910 5972 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5973 return 0;
5974
5975 return 1;
5976}
5977
48f24c4d
IM
5978static int
5979sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5980{
5981 unsigned long cflags = sd->flags, pflags = parent->flags;
5982
5983 if (sd_degenerate(parent))
5984 return 1;
5985
758b2cdc 5986 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5987 return 0;
5988
245af2c7
SS
5989 /* Flags needing groups don't count if only 1 group in parent */
5990 if (parent->groups == parent->groups->next) {
5991 pflags &= ~(SD_LOAD_BALANCE |
5992 SD_BALANCE_NEWIDLE |
5993 SD_BALANCE_FORK |
89c4710e
SS
5994 SD_BALANCE_EXEC |
5995 SD_SHARE_CPUPOWER |
5996 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5997 if (nr_node_ids == 1)
5998 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5999 }
6000 if (~cflags & pflags)
6001 return 0;
6002
6003 return 1;
6004}
6005
c6c4927b
RR
6006static void free_rootdomain(struct root_domain *rd)
6007{
047106ad
PZ
6008 synchronize_sched();
6009
68e74568
RR
6010 cpupri_cleanup(&rd->cpupri);
6011
c6c4927b
RR
6012 free_cpumask_var(rd->rto_mask);
6013 free_cpumask_var(rd->online);
6014 free_cpumask_var(rd->span);
6015 kfree(rd);
6016}
6017
57d885fe
GH
6018static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6019{
a0490fa3 6020 struct root_domain *old_rd = NULL;
57d885fe 6021 unsigned long flags;
57d885fe 6022
05fa785c 6023 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6024
6025 if (rq->rd) {
a0490fa3 6026 old_rd = rq->rd;
57d885fe 6027
c6c4927b 6028 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6029 set_rq_offline(rq);
57d885fe 6030
c6c4927b 6031 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6032
a0490fa3
IM
6033 /*
6034 * If we dont want to free the old_rt yet then
6035 * set old_rd to NULL to skip the freeing later
6036 * in this function:
6037 */
6038 if (!atomic_dec_and_test(&old_rd->refcount))
6039 old_rd = NULL;
57d885fe
GH
6040 }
6041
6042 atomic_inc(&rd->refcount);
6043 rq->rd = rd;
6044
c6c4927b 6045 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6046 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6047 set_rq_online(rq);
57d885fe 6048
05fa785c 6049 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6050
6051 if (old_rd)
6052 free_rootdomain(old_rd);
57d885fe
GH
6053}
6054
fd5e1b5d 6055static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6056{
36b7b6d4
PE
6057 gfp_t gfp = GFP_KERNEL;
6058
57d885fe
GH
6059 memset(rd, 0, sizeof(*rd));
6060
36b7b6d4
PE
6061 if (bootmem)
6062 gfp = GFP_NOWAIT;
c6c4927b 6063
36b7b6d4 6064 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6065 goto out;
36b7b6d4 6066 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6067 goto free_span;
36b7b6d4 6068 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6069 goto free_online;
6e0534f2 6070
0fb53029 6071 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6072 goto free_rto_mask;
c6c4927b 6073 return 0;
6e0534f2 6074
68e74568
RR
6075free_rto_mask:
6076 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6077free_online:
6078 free_cpumask_var(rd->online);
6079free_span:
6080 free_cpumask_var(rd->span);
0c910d28 6081out:
c6c4927b 6082 return -ENOMEM;
57d885fe
GH
6083}
6084
6085static void init_defrootdomain(void)
6086{
c6c4927b
RR
6087 init_rootdomain(&def_root_domain, true);
6088
57d885fe
GH
6089 atomic_set(&def_root_domain.refcount, 1);
6090}
6091
dc938520 6092static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6093{
6094 struct root_domain *rd;
6095
6096 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6097 if (!rd)
6098 return NULL;
6099
c6c4927b
RR
6100 if (init_rootdomain(rd, false) != 0) {
6101 kfree(rd);
6102 return NULL;
6103 }
57d885fe
GH
6104
6105 return rd;
6106}
6107
1da177e4 6108/*
0eab9146 6109 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6110 * hold the hotplug lock.
6111 */
0eab9146
IM
6112static void
6113cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6114{
70b97a7f 6115 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6116 struct sched_domain *tmp;
6117
669c55e9
PZ
6118 for (tmp = sd; tmp; tmp = tmp->parent)
6119 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6120
245af2c7 6121 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6122 for (tmp = sd; tmp; ) {
245af2c7
SS
6123 struct sched_domain *parent = tmp->parent;
6124 if (!parent)
6125 break;
f29c9b1c 6126
1a848870 6127 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6128 tmp->parent = parent->parent;
1a848870
SS
6129 if (parent->parent)
6130 parent->parent->child = tmp;
f29c9b1c
LZ
6131 } else
6132 tmp = tmp->parent;
245af2c7
SS
6133 }
6134
1a848870 6135 if (sd && sd_degenerate(sd)) {
245af2c7 6136 sd = sd->parent;
1a848870
SS
6137 if (sd)
6138 sd->child = NULL;
6139 }
1da177e4
LT
6140
6141 sched_domain_debug(sd, cpu);
6142
57d885fe 6143 rq_attach_root(rq, rd);
674311d5 6144 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6145}
6146
6147/* cpus with isolated domains */
dcc30a35 6148static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6149
6150/* Setup the mask of cpus configured for isolated domains */
6151static int __init isolated_cpu_setup(char *str)
6152{
bdddd296 6153 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6154 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6155 return 1;
6156}
6157
8927f494 6158__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6159
6160/*
6711cab4
SS
6161 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6162 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6163 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6164 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6165 *
6166 * init_sched_build_groups will build a circular linked list of the groups
6167 * covered by the given span, and will set each group's ->cpumask correctly,
6168 * and ->cpu_power to 0.
6169 */
a616058b 6170static void
96f874e2
RR
6171init_sched_build_groups(const struct cpumask *span,
6172 const struct cpumask *cpu_map,
6173 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6174 struct sched_group **sg,
96f874e2
RR
6175 struct cpumask *tmpmask),
6176 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6177{
6178 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6179 int i;
6180
96f874e2 6181 cpumask_clear(covered);
7c16ec58 6182
abcd083a 6183 for_each_cpu(i, span) {
6711cab4 6184 struct sched_group *sg;
7c16ec58 6185 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6186 int j;
6187
758b2cdc 6188 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6189 continue;
6190
758b2cdc 6191 cpumask_clear(sched_group_cpus(sg));
18a3885f 6192 sg->cpu_power = 0;
1da177e4 6193
abcd083a 6194 for_each_cpu(j, span) {
7c16ec58 6195 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6196 continue;
6197
96f874e2 6198 cpumask_set_cpu(j, covered);
758b2cdc 6199 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6200 }
6201 if (!first)
6202 first = sg;
6203 if (last)
6204 last->next = sg;
6205 last = sg;
6206 }
6207 last->next = first;
6208}
6209
9c1cfda2 6210#define SD_NODES_PER_DOMAIN 16
1da177e4 6211
9c1cfda2 6212#ifdef CONFIG_NUMA
198e2f18 6213
9c1cfda2
JH
6214/**
6215 * find_next_best_node - find the next node to include in a sched_domain
6216 * @node: node whose sched_domain we're building
6217 * @used_nodes: nodes already in the sched_domain
6218 *
41a2d6cf 6219 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6220 * finds the closest node not already in the @used_nodes map.
6221 *
6222 * Should use nodemask_t.
6223 */
c5f59f08 6224static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6225{
6226 int i, n, val, min_val, best_node = 0;
6227
6228 min_val = INT_MAX;
6229
076ac2af 6230 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6231 /* Start at @node */
076ac2af 6232 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6233
6234 if (!nr_cpus_node(n))
6235 continue;
6236
6237 /* Skip already used nodes */
c5f59f08 6238 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6239 continue;
6240
6241 /* Simple min distance search */
6242 val = node_distance(node, n);
6243
6244 if (val < min_val) {
6245 min_val = val;
6246 best_node = n;
6247 }
6248 }
6249
c5f59f08 6250 node_set(best_node, *used_nodes);
9c1cfda2
JH
6251 return best_node;
6252}
6253
6254/**
6255 * sched_domain_node_span - get a cpumask for a node's sched_domain
6256 * @node: node whose cpumask we're constructing
73486722 6257 * @span: resulting cpumask
9c1cfda2 6258 *
41a2d6cf 6259 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6260 * should be one that prevents unnecessary balancing, but also spreads tasks
6261 * out optimally.
6262 */
96f874e2 6263static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6264{
c5f59f08 6265 nodemask_t used_nodes;
48f24c4d 6266 int i;
9c1cfda2 6267
6ca09dfc 6268 cpumask_clear(span);
c5f59f08 6269 nodes_clear(used_nodes);
9c1cfda2 6270
6ca09dfc 6271 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6272 node_set(node, used_nodes);
9c1cfda2
JH
6273
6274 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6275 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6276
6ca09dfc 6277 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6278 }
9c1cfda2 6279}
6d6bc0ad 6280#endif /* CONFIG_NUMA */
9c1cfda2 6281
5c45bf27 6282int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6283
6c99e9ad
RR
6284/*
6285 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6286 *
6287 * ( See the the comments in include/linux/sched.h:struct sched_group
6288 * and struct sched_domain. )
6c99e9ad
RR
6289 */
6290struct static_sched_group {
6291 struct sched_group sg;
6292 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6293};
6294
6295struct static_sched_domain {
6296 struct sched_domain sd;
6297 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6298};
6299
49a02c51
AH
6300struct s_data {
6301#ifdef CONFIG_NUMA
6302 int sd_allnodes;
6303 cpumask_var_t domainspan;
6304 cpumask_var_t covered;
6305 cpumask_var_t notcovered;
6306#endif
6307 cpumask_var_t nodemask;
6308 cpumask_var_t this_sibling_map;
6309 cpumask_var_t this_core_map;
6310 cpumask_var_t send_covered;
6311 cpumask_var_t tmpmask;
6312 struct sched_group **sched_group_nodes;
6313 struct root_domain *rd;
6314};
6315
2109b99e
AH
6316enum s_alloc {
6317 sa_sched_groups = 0,
6318 sa_rootdomain,
6319 sa_tmpmask,
6320 sa_send_covered,
6321 sa_this_core_map,
6322 sa_this_sibling_map,
6323 sa_nodemask,
6324 sa_sched_group_nodes,
6325#ifdef CONFIG_NUMA
6326 sa_notcovered,
6327 sa_covered,
6328 sa_domainspan,
6329#endif
6330 sa_none,
6331};
6332
9c1cfda2 6333/*
48f24c4d 6334 * SMT sched-domains:
9c1cfda2 6335 */
1da177e4 6336#ifdef CONFIG_SCHED_SMT
6c99e9ad 6337static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6338static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6339
41a2d6cf 6340static int
96f874e2
RR
6341cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6342 struct sched_group **sg, struct cpumask *unused)
1da177e4 6343{
6711cab4 6344 if (sg)
1871e52c 6345 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6346 return cpu;
6347}
6d6bc0ad 6348#endif /* CONFIG_SCHED_SMT */
1da177e4 6349
48f24c4d
IM
6350/*
6351 * multi-core sched-domains:
6352 */
1e9f28fa 6353#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6354static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6355static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6356#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6357
6358#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6359static int
96f874e2
RR
6360cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6361 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6362{
6711cab4 6363 int group;
7c16ec58 6364
c69fc56d 6365 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6366 group = cpumask_first(mask);
6711cab4 6367 if (sg)
6c99e9ad 6368 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6369 return group;
1e9f28fa
SS
6370}
6371#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6372static int
96f874e2
RR
6373cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6374 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6375{
6711cab4 6376 if (sg)
6c99e9ad 6377 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6378 return cpu;
6379}
6380#endif
6381
6c99e9ad
RR
6382static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6383static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6384
41a2d6cf 6385static int
96f874e2
RR
6386cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6387 struct sched_group **sg, struct cpumask *mask)
1da177e4 6388{
6711cab4 6389 int group;
48f24c4d 6390#ifdef CONFIG_SCHED_MC
6ca09dfc 6391 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6392 group = cpumask_first(mask);
1e9f28fa 6393#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6394 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6395 group = cpumask_first(mask);
1da177e4 6396#else
6711cab4 6397 group = cpu;
1da177e4 6398#endif
6711cab4 6399 if (sg)
6c99e9ad 6400 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6401 return group;
1da177e4
LT
6402}
6403
6404#ifdef CONFIG_NUMA
1da177e4 6405/*
9c1cfda2
JH
6406 * The init_sched_build_groups can't handle what we want to do with node
6407 * groups, so roll our own. Now each node has its own list of groups which
6408 * gets dynamically allocated.
1da177e4 6409 */
62ea9ceb 6410static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6411static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6412
62ea9ceb 6413static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6414static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6415
96f874e2
RR
6416static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6417 struct sched_group **sg,
6418 struct cpumask *nodemask)
9c1cfda2 6419{
6711cab4
SS
6420 int group;
6421
6ca09dfc 6422 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6423 group = cpumask_first(nodemask);
6711cab4
SS
6424
6425 if (sg)
6c99e9ad 6426 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6427 return group;
1da177e4 6428}
6711cab4 6429
08069033
SS
6430static void init_numa_sched_groups_power(struct sched_group *group_head)
6431{
6432 struct sched_group *sg = group_head;
6433 int j;
6434
6435 if (!sg)
6436 return;
3a5c359a 6437 do {
758b2cdc 6438 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6439 struct sched_domain *sd;
08069033 6440
6c99e9ad 6441 sd = &per_cpu(phys_domains, j).sd;
13318a71 6442 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6443 /*
6444 * Only add "power" once for each
6445 * physical package.
6446 */
6447 continue;
6448 }
08069033 6449
18a3885f 6450 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6451 }
6452 sg = sg->next;
6453 } while (sg != group_head);
08069033 6454}
0601a88d
AH
6455
6456static int build_numa_sched_groups(struct s_data *d,
6457 const struct cpumask *cpu_map, int num)
6458{
6459 struct sched_domain *sd;
6460 struct sched_group *sg, *prev;
6461 int n, j;
6462
6463 cpumask_clear(d->covered);
6464 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6465 if (cpumask_empty(d->nodemask)) {
6466 d->sched_group_nodes[num] = NULL;
6467 goto out;
6468 }
6469
6470 sched_domain_node_span(num, d->domainspan);
6471 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6472
6473 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6474 GFP_KERNEL, num);
6475 if (!sg) {
3df0fc5b
PZ
6476 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6477 num);
0601a88d
AH
6478 return -ENOMEM;
6479 }
6480 d->sched_group_nodes[num] = sg;
6481
6482 for_each_cpu(j, d->nodemask) {
6483 sd = &per_cpu(node_domains, j).sd;
6484 sd->groups = sg;
6485 }
6486
18a3885f 6487 sg->cpu_power = 0;
0601a88d
AH
6488 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6489 sg->next = sg;
6490 cpumask_or(d->covered, d->covered, d->nodemask);
6491
6492 prev = sg;
6493 for (j = 0; j < nr_node_ids; j++) {
6494 n = (num + j) % nr_node_ids;
6495 cpumask_complement(d->notcovered, d->covered);
6496 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6497 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6498 if (cpumask_empty(d->tmpmask))
6499 break;
6500 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6501 if (cpumask_empty(d->tmpmask))
6502 continue;
6503 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504 GFP_KERNEL, num);
6505 if (!sg) {
3df0fc5b
PZ
6506 printk(KERN_WARNING
6507 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6508 return -ENOMEM;
6509 }
18a3885f 6510 sg->cpu_power = 0;
0601a88d
AH
6511 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6512 sg->next = prev->next;
6513 cpumask_or(d->covered, d->covered, d->tmpmask);
6514 prev->next = sg;
6515 prev = sg;
6516 }
6517out:
6518 return 0;
6519}
6d6bc0ad 6520#endif /* CONFIG_NUMA */
1da177e4 6521
a616058b 6522#ifdef CONFIG_NUMA
51888ca2 6523/* Free memory allocated for various sched_group structures */
96f874e2
RR
6524static void free_sched_groups(const struct cpumask *cpu_map,
6525 struct cpumask *nodemask)
51888ca2 6526{
a616058b 6527 int cpu, i;
51888ca2 6528
abcd083a 6529 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6530 struct sched_group **sched_group_nodes
6531 = sched_group_nodes_bycpu[cpu];
6532
51888ca2
SV
6533 if (!sched_group_nodes)
6534 continue;
6535
076ac2af 6536 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6537 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6538
6ca09dfc 6539 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6540 if (cpumask_empty(nodemask))
51888ca2
SV
6541 continue;
6542
6543 if (sg == NULL)
6544 continue;
6545 sg = sg->next;
6546next_sg:
6547 oldsg = sg;
6548 sg = sg->next;
6549 kfree(oldsg);
6550 if (oldsg != sched_group_nodes[i])
6551 goto next_sg;
6552 }
6553 kfree(sched_group_nodes);
6554 sched_group_nodes_bycpu[cpu] = NULL;
6555 }
51888ca2 6556}
6d6bc0ad 6557#else /* !CONFIG_NUMA */
96f874e2
RR
6558static void free_sched_groups(const struct cpumask *cpu_map,
6559 struct cpumask *nodemask)
a616058b
SS
6560{
6561}
6d6bc0ad 6562#endif /* CONFIG_NUMA */
51888ca2 6563
89c4710e
SS
6564/*
6565 * Initialize sched groups cpu_power.
6566 *
6567 * cpu_power indicates the capacity of sched group, which is used while
6568 * distributing the load between different sched groups in a sched domain.
6569 * Typically cpu_power for all the groups in a sched domain will be same unless
6570 * there are asymmetries in the topology. If there are asymmetries, group
6571 * having more cpu_power will pickup more load compared to the group having
6572 * less cpu_power.
89c4710e
SS
6573 */
6574static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6575{
6576 struct sched_domain *child;
6577 struct sched_group *group;
f93e65c1
PZ
6578 long power;
6579 int weight;
89c4710e
SS
6580
6581 WARN_ON(!sd || !sd->groups);
6582
13318a71 6583 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6584 return;
6585
6586 child = sd->child;
6587
18a3885f 6588 sd->groups->cpu_power = 0;
5517d86b 6589
f93e65c1
PZ
6590 if (!child) {
6591 power = SCHED_LOAD_SCALE;
6592 weight = cpumask_weight(sched_domain_span(sd));
6593 /*
6594 * SMT siblings share the power of a single core.
a52bfd73
PZ
6595 * Usually multiple threads get a better yield out of
6596 * that one core than a single thread would have,
6597 * reflect that in sd->smt_gain.
f93e65c1 6598 */
a52bfd73
PZ
6599 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6600 power *= sd->smt_gain;
f93e65c1 6601 power /= weight;
a52bfd73
PZ
6602 power >>= SCHED_LOAD_SHIFT;
6603 }
18a3885f 6604 sd->groups->cpu_power += power;
89c4710e
SS
6605 return;
6606 }
6607
89c4710e 6608 /*
f93e65c1 6609 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6610 */
6611 group = child->groups;
6612 do {
18a3885f 6613 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6614 group = group->next;
6615 } while (group != child->groups);
6616}
6617
7c16ec58
MT
6618/*
6619 * Initializers for schedule domains
6620 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6621 */
6622
a5d8c348
IM
6623#ifdef CONFIG_SCHED_DEBUG
6624# define SD_INIT_NAME(sd, type) sd->name = #type
6625#else
6626# define SD_INIT_NAME(sd, type) do { } while (0)
6627#endif
6628
7c16ec58 6629#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6630
7c16ec58
MT
6631#define SD_INIT_FUNC(type) \
6632static noinline void sd_init_##type(struct sched_domain *sd) \
6633{ \
6634 memset(sd, 0, sizeof(*sd)); \
6635 *sd = SD_##type##_INIT; \
1d3504fc 6636 sd->level = SD_LV_##type; \
a5d8c348 6637 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6638}
6639
6640SD_INIT_FUNC(CPU)
6641#ifdef CONFIG_NUMA
6642 SD_INIT_FUNC(ALLNODES)
6643 SD_INIT_FUNC(NODE)
6644#endif
6645#ifdef CONFIG_SCHED_SMT
6646 SD_INIT_FUNC(SIBLING)
6647#endif
6648#ifdef CONFIG_SCHED_MC
6649 SD_INIT_FUNC(MC)
6650#endif
6651
1d3504fc
HS
6652static int default_relax_domain_level = -1;
6653
6654static int __init setup_relax_domain_level(char *str)
6655{
30e0e178
LZ
6656 unsigned long val;
6657
6658 val = simple_strtoul(str, NULL, 0);
6659 if (val < SD_LV_MAX)
6660 default_relax_domain_level = val;
6661
1d3504fc
HS
6662 return 1;
6663}
6664__setup("relax_domain_level=", setup_relax_domain_level);
6665
6666static void set_domain_attribute(struct sched_domain *sd,
6667 struct sched_domain_attr *attr)
6668{
6669 int request;
6670
6671 if (!attr || attr->relax_domain_level < 0) {
6672 if (default_relax_domain_level < 0)
6673 return;
6674 else
6675 request = default_relax_domain_level;
6676 } else
6677 request = attr->relax_domain_level;
6678 if (request < sd->level) {
6679 /* turn off idle balance on this domain */
c88d5910 6680 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6681 } else {
6682 /* turn on idle balance on this domain */
c88d5910 6683 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6684 }
6685}
6686
2109b99e
AH
6687static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6688 const struct cpumask *cpu_map)
6689{
6690 switch (what) {
6691 case sa_sched_groups:
6692 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6693 d->sched_group_nodes = NULL;
6694 case sa_rootdomain:
6695 free_rootdomain(d->rd); /* fall through */
6696 case sa_tmpmask:
6697 free_cpumask_var(d->tmpmask); /* fall through */
6698 case sa_send_covered:
6699 free_cpumask_var(d->send_covered); /* fall through */
6700 case sa_this_core_map:
6701 free_cpumask_var(d->this_core_map); /* fall through */
6702 case sa_this_sibling_map:
6703 free_cpumask_var(d->this_sibling_map); /* fall through */
6704 case sa_nodemask:
6705 free_cpumask_var(d->nodemask); /* fall through */
6706 case sa_sched_group_nodes:
d1b55138 6707#ifdef CONFIG_NUMA
2109b99e
AH
6708 kfree(d->sched_group_nodes); /* fall through */
6709 case sa_notcovered:
6710 free_cpumask_var(d->notcovered); /* fall through */
6711 case sa_covered:
6712 free_cpumask_var(d->covered); /* fall through */
6713 case sa_domainspan:
6714 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6715#endif
2109b99e
AH
6716 case sa_none:
6717 break;
6718 }
6719}
3404c8d9 6720
2109b99e
AH
6721static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6722 const struct cpumask *cpu_map)
6723{
3404c8d9 6724#ifdef CONFIG_NUMA
2109b99e
AH
6725 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6726 return sa_none;
6727 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6728 return sa_domainspan;
6729 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6730 return sa_covered;
6731 /* Allocate the per-node list of sched groups */
6732 d->sched_group_nodes = kcalloc(nr_node_ids,
6733 sizeof(struct sched_group *), GFP_KERNEL);
6734 if (!d->sched_group_nodes) {
3df0fc5b 6735 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6736 return sa_notcovered;
d1b55138 6737 }
2109b99e 6738 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6739#endif
2109b99e
AH
6740 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6741 return sa_sched_group_nodes;
6742 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6743 return sa_nodemask;
6744 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6745 return sa_this_sibling_map;
6746 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6747 return sa_this_core_map;
6748 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6749 return sa_send_covered;
6750 d->rd = alloc_rootdomain();
6751 if (!d->rd) {
3df0fc5b 6752 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6753 return sa_tmpmask;
57d885fe 6754 }
2109b99e
AH
6755 return sa_rootdomain;
6756}
57d885fe 6757
7f4588f3
AH
6758static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6759 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6760{
6761 struct sched_domain *sd = NULL;
7c16ec58 6762#ifdef CONFIG_NUMA
7f4588f3 6763 struct sched_domain *parent;
1da177e4 6764
7f4588f3
AH
6765 d->sd_allnodes = 0;
6766 if (cpumask_weight(cpu_map) >
6767 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6768 sd = &per_cpu(allnodes_domains, i).sd;
6769 SD_INIT(sd, ALLNODES);
1d3504fc 6770 set_domain_attribute(sd, attr);
7f4588f3
AH
6771 cpumask_copy(sched_domain_span(sd), cpu_map);
6772 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6773 d->sd_allnodes = 1;
6774 }
6775 parent = sd;
6776
6777 sd = &per_cpu(node_domains, i).sd;
6778 SD_INIT(sd, NODE);
6779 set_domain_attribute(sd, attr);
6780 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6781 sd->parent = parent;
6782 if (parent)
6783 parent->child = sd;
6784 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6785#endif
7f4588f3
AH
6786 return sd;
6787}
1da177e4 6788
87cce662
AH
6789static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6790 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6791 struct sched_domain *parent, int i)
6792{
6793 struct sched_domain *sd;
6794 sd = &per_cpu(phys_domains, i).sd;
6795 SD_INIT(sd, CPU);
6796 set_domain_attribute(sd, attr);
6797 cpumask_copy(sched_domain_span(sd), d->nodemask);
6798 sd->parent = parent;
6799 if (parent)
6800 parent->child = sd;
6801 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6802 return sd;
6803}
1da177e4 6804
410c4081
AH
6805static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6806 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6807 struct sched_domain *parent, int i)
6808{
6809 struct sched_domain *sd = parent;
1e9f28fa 6810#ifdef CONFIG_SCHED_MC
410c4081
AH
6811 sd = &per_cpu(core_domains, i).sd;
6812 SD_INIT(sd, MC);
6813 set_domain_attribute(sd, attr);
6814 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6815 sd->parent = parent;
6816 parent->child = sd;
6817 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6818#endif
410c4081
AH
6819 return sd;
6820}
1e9f28fa 6821
d8173535
AH
6822static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6823 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6824 struct sched_domain *parent, int i)
6825{
6826 struct sched_domain *sd = parent;
1da177e4 6827#ifdef CONFIG_SCHED_SMT
d8173535
AH
6828 sd = &per_cpu(cpu_domains, i).sd;
6829 SD_INIT(sd, SIBLING);
6830 set_domain_attribute(sd, attr);
6831 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6832 sd->parent = parent;
6833 parent->child = sd;
6834 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6835#endif
d8173535
AH
6836 return sd;
6837}
1da177e4 6838
0e8e85c9
AH
6839static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6840 const struct cpumask *cpu_map, int cpu)
6841{
6842 switch (l) {
1da177e4 6843#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6844 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6845 cpumask_and(d->this_sibling_map, cpu_map,
6846 topology_thread_cpumask(cpu));
6847 if (cpu == cpumask_first(d->this_sibling_map))
6848 init_sched_build_groups(d->this_sibling_map, cpu_map,
6849 &cpu_to_cpu_group,
6850 d->send_covered, d->tmpmask);
6851 break;
1da177e4 6852#endif
1e9f28fa 6853#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6854 case SD_LV_MC: /* set up multi-core groups */
6855 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6856 if (cpu == cpumask_first(d->this_core_map))
6857 init_sched_build_groups(d->this_core_map, cpu_map,
6858 &cpu_to_core_group,
6859 d->send_covered, d->tmpmask);
6860 break;
1e9f28fa 6861#endif
86548096
AH
6862 case SD_LV_CPU: /* set up physical groups */
6863 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6864 if (!cpumask_empty(d->nodemask))
6865 init_sched_build_groups(d->nodemask, cpu_map,
6866 &cpu_to_phys_group,
6867 d->send_covered, d->tmpmask);
6868 break;
1da177e4 6869#ifdef CONFIG_NUMA
de616e36
AH
6870 case SD_LV_ALLNODES:
6871 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6872 d->send_covered, d->tmpmask);
6873 break;
6874#endif
0e8e85c9
AH
6875 default:
6876 break;
7c16ec58 6877 }
0e8e85c9 6878}
9c1cfda2 6879
2109b99e
AH
6880/*
6881 * Build sched domains for a given set of cpus and attach the sched domains
6882 * to the individual cpus
6883 */
6884static int __build_sched_domains(const struct cpumask *cpu_map,
6885 struct sched_domain_attr *attr)
6886{
6887 enum s_alloc alloc_state = sa_none;
6888 struct s_data d;
294b0c96 6889 struct sched_domain *sd;
2109b99e 6890 int i;
7c16ec58 6891#ifdef CONFIG_NUMA
2109b99e 6892 d.sd_allnodes = 0;
7c16ec58 6893#endif
9c1cfda2 6894
2109b99e
AH
6895 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6896 if (alloc_state != sa_rootdomain)
6897 goto error;
6898 alloc_state = sa_sched_groups;
9c1cfda2 6899
1da177e4 6900 /*
1a20ff27 6901 * Set up domains for cpus specified by the cpu_map.
1da177e4 6902 */
abcd083a 6903 for_each_cpu(i, cpu_map) {
49a02c51
AH
6904 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6905 cpu_map);
9761eea8 6906
7f4588f3 6907 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6908 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6909 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6910 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6911 }
9c1cfda2 6912
abcd083a 6913 for_each_cpu(i, cpu_map) {
0e8e85c9 6914 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6915 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6916 }
9c1cfda2 6917
1da177e4 6918 /* Set up physical groups */
86548096
AH
6919 for (i = 0; i < nr_node_ids; i++)
6920 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6921
1da177e4
LT
6922#ifdef CONFIG_NUMA
6923 /* Set up node groups */
de616e36
AH
6924 if (d.sd_allnodes)
6925 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6926
0601a88d
AH
6927 for (i = 0; i < nr_node_ids; i++)
6928 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6929 goto error;
1da177e4
LT
6930#endif
6931
6932 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6933#ifdef CONFIG_SCHED_SMT
abcd083a 6934 for_each_cpu(i, cpu_map) {
294b0c96 6935 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6936 init_sched_groups_power(i, sd);
5c45bf27 6937 }
1da177e4 6938#endif
1e9f28fa 6939#ifdef CONFIG_SCHED_MC
abcd083a 6940 for_each_cpu(i, cpu_map) {
294b0c96 6941 sd = &per_cpu(core_domains, i).sd;
89c4710e 6942 init_sched_groups_power(i, sd);
5c45bf27
SS
6943 }
6944#endif
1e9f28fa 6945
abcd083a 6946 for_each_cpu(i, cpu_map) {
294b0c96 6947 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6948 init_sched_groups_power(i, sd);
1da177e4
LT
6949 }
6950
9c1cfda2 6951#ifdef CONFIG_NUMA
076ac2af 6952 for (i = 0; i < nr_node_ids; i++)
49a02c51 6953 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6954
49a02c51 6955 if (d.sd_allnodes) {
6711cab4 6956 struct sched_group *sg;
f712c0c7 6957
96f874e2 6958 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6959 d.tmpmask);
f712c0c7
SS
6960 init_numa_sched_groups_power(sg);
6961 }
9c1cfda2
JH
6962#endif
6963
1da177e4 6964 /* Attach the domains */
abcd083a 6965 for_each_cpu(i, cpu_map) {
1da177e4 6966#ifdef CONFIG_SCHED_SMT
6c99e9ad 6967 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 6968#elif defined(CONFIG_SCHED_MC)
6c99e9ad 6969 sd = &per_cpu(core_domains, i).sd;
1da177e4 6970#else
6c99e9ad 6971 sd = &per_cpu(phys_domains, i).sd;
1da177e4 6972#endif
49a02c51 6973 cpu_attach_domain(sd, d.rd, i);
1da177e4 6974 }
51888ca2 6975
2109b99e
AH
6976 d.sched_group_nodes = NULL; /* don't free this we still need it */
6977 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6978 return 0;
51888ca2 6979
51888ca2 6980error:
2109b99e
AH
6981 __free_domain_allocs(&d, alloc_state, cpu_map);
6982 return -ENOMEM;
1da177e4 6983}
029190c5 6984
96f874e2 6985static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
6986{
6987 return __build_sched_domains(cpu_map, NULL);
6988}
6989
acc3f5d7 6990static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6991static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6992static struct sched_domain_attr *dattr_cur;
6993 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6994
6995/*
6996 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6997 * cpumask) fails, then fallback to a single sched domain,
6998 * as determined by the single cpumask fallback_doms.
029190c5 6999 */
4212823f 7000static cpumask_var_t fallback_doms;
029190c5 7001
ee79d1bd
HC
7002/*
7003 * arch_update_cpu_topology lets virtualized architectures update the
7004 * cpu core maps. It is supposed to return 1 if the topology changed
7005 * or 0 if it stayed the same.
7006 */
7007int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7008{
ee79d1bd 7009 return 0;
22e52b07
HC
7010}
7011
acc3f5d7
RR
7012cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7013{
7014 int i;
7015 cpumask_var_t *doms;
7016
7017 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7018 if (!doms)
7019 return NULL;
7020 for (i = 0; i < ndoms; i++) {
7021 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7022 free_sched_domains(doms, i);
7023 return NULL;
7024 }
7025 }
7026 return doms;
7027}
7028
7029void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7030{
7031 unsigned int i;
7032 for (i = 0; i < ndoms; i++)
7033 free_cpumask_var(doms[i]);
7034 kfree(doms);
7035}
7036
1a20ff27 7037/*
41a2d6cf 7038 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7039 * For now this just excludes isolated cpus, but could be used to
7040 * exclude other special cases in the future.
1a20ff27 7041 */
96f874e2 7042static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7043{
7378547f
MM
7044 int err;
7045
22e52b07 7046 arch_update_cpu_topology();
029190c5 7047 ndoms_cur = 1;
acc3f5d7 7048 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7049 if (!doms_cur)
acc3f5d7
RR
7050 doms_cur = &fallback_doms;
7051 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7052 dattr_cur = NULL;
acc3f5d7 7053 err = build_sched_domains(doms_cur[0]);
6382bc90 7054 register_sched_domain_sysctl();
7378547f
MM
7055
7056 return err;
1a20ff27
DG
7057}
7058
96f874e2
RR
7059static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7060 struct cpumask *tmpmask)
1da177e4 7061{
7c16ec58 7062 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7063}
1da177e4 7064
1a20ff27
DG
7065/*
7066 * Detach sched domains from a group of cpus specified in cpu_map
7067 * These cpus will now be attached to the NULL domain
7068 */
96f874e2 7069static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7070{
96f874e2
RR
7071 /* Save because hotplug lock held. */
7072 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7073 int i;
7074
abcd083a 7075 for_each_cpu(i, cpu_map)
57d885fe 7076 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7077 synchronize_sched();
96f874e2 7078 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7079}
7080
1d3504fc
HS
7081/* handle null as "default" */
7082static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7083 struct sched_domain_attr *new, int idx_new)
7084{
7085 struct sched_domain_attr tmp;
7086
7087 /* fast path */
7088 if (!new && !cur)
7089 return 1;
7090
7091 tmp = SD_ATTR_INIT;
7092 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7093 new ? (new + idx_new) : &tmp,
7094 sizeof(struct sched_domain_attr));
7095}
7096
029190c5
PJ
7097/*
7098 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7099 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7100 * doms_new[] to the current sched domain partitioning, doms_cur[].
7101 * It destroys each deleted domain and builds each new domain.
7102 *
acc3f5d7 7103 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7104 * The masks don't intersect (don't overlap.) We should setup one
7105 * sched domain for each mask. CPUs not in any of the cpumasks will
7106 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7107 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7108 * it as it is.
7109 *
acc3f5d7
RR
7110 * The passed in 'doms_new' should be allocated using
7111 * alloc_sched_domains. This routine takes ownership of it and will
7112 * free_sched_domains it when done with it. If the caller failed the
7113 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7114 * and partition_sched_domains() will fallback to the single partition
7115 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7116 *
96f874e2 7117 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7118 * ndoms_new == 0 is a special case for destroying existing domains,
7119 * and it will not create the default domain.
dfb512ec 7120 *
029190c5
PJ
7121 * Call with hotplug lock held
7122 */
acc3f5d7 7123void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7124 struct sched_domain_attr *dattr_new)
029190c5 7125{
dfb512ec 7126 int i, j, n;
d65bd5ec 7127 int new_topology;
029190c5 7128
712555ee 7129 mutex_lock(&sched_domains_mutex);
a1835615 7130
7378547f
MM
7131 /* always unregister in case we don't destroy any domains */
7132 unregister_sched_domain_sysctl();
7133
d65bd5ec
HC
7134 /* Let architecture update cpu core mappings. */
7135 new_topology = arch_update_cpu_topology();
7136
dfb512ec 7137 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7138
7139 /* Destroy deleted domains */
7140 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7141 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7142 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7143 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7144 goto match1;
7145 }
7146 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7147 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7148match1:
7149 ;
7150 }
7151
e761b772
MK
7152 if (doms_new == NULL) {
7153 ndoms_cur = 0;
acc3f5d7 7154 doms_new = &fallback_doms;
6ad4c188 7155 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7156 WARN_ON_ONCE(dattr_new);
e761b772
MK
7157 }
7158
029190c5
PJ
7159 /* Build new domains */
7160 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7161 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7162 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7163 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7164 goto match2;
7165 }
7166 /* no match - add a new doms_new */
acc3f5d7 7167 __build_sched_domains(doms_new[i],
1d3504fc 7168 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7169match2:
7170 ;
7171 }
7172
7173 /* Remember the new sched domains */
acc3f5d7
RR
7174 if (doms_cur != &fallback_doms)
7175 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7176 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7177 doms_cur = doms_new;
1d3504fc 7178 dattr_cur = dattr_new;
029190c5 7179 ndoms_cur = ndoms_new;
7378547f
MM
7180
7181 register_sched_domain_sysctl();
a1835615 7182
712555ee 7183 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7184}
7185
5c45bf27 7186#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7187static void arch_reinit_sched_domains(void)
5c45bf27 7188{
95402b38 7189 get_online_cpus();
dfb512ec
MK
7190
7191 /* Destroy domains first to force the rebuild */
7192 partition_sched_domains(0, NULL, NULL);
7193
e761b772 7194 rebuild_sched_domains();
95402b38 7195 put_online_cpus();
5c45bf27
SS
7196}
7197
7198static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7199{
afb8a9b7 7200 unsigned int level = 0;
5c45bf27 7201
afb8a9b7
GS
7202 if (sscanf(buf, "%u", &level) != 1)
7203 return -EINVAL;
7204
7205 /*
7206 * level is always be positive so don't check for
7207 * level < POWERSAVINGS_BALANCE_NONE which is 0
7208 * What happens on 0 or 1 byte write,
7209 * need to check for count as well?
7210 */
7211
7212 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7213 return -EINVAL;
7214
7215 if (smt)
afb8a9b7 7216 sched_smt_power_savings = level;
5c45bf27 7217 else
afb8a9b7 7218 sched_mc_power_savings = level;
5c45bf27 7219
c70f22d2 7220 arch_reinit_sched_domains();
5c45bf27 7221
c70f22d2 7222 return count;
5c45bf27
SS
7223}
7224
5c45bf27 7225#ifdef CONFIG_SCHED_MC
f718cd4a 7226static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7227 struct sysdev_class_attribute *attr,
f718cd4a 7228 char *page)
5c45bf27
SS
7229{
7230 return sprintf(page, "%u\n", sched_mc_power_savings);
7231}
f718cd4a 7232static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7233 struct sysdev_class_attribute *attr,
48f24c4d 7234 const char *buf, size_t count)
5c45bf27
SS
7235{
7236 return sched_power_savings_store(buf, count, 0);
7237}
f718cd4a
AK
7238static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7239 sched_mc_power_savings_show,
7240 sched_mc_power_savings_store);
5c45bf27
SS
7241#endif
7242
7243#ifdef CONFIG_SCHED_SMT
f718cd4a 7244static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7245 struct sysdev_class_attribute *attr,
f718cd4a 7246 char *page)
5c45bf27
SS
7247{
7248 return sprintf(page, "%u\n", sched_smt_power_savings);
7249}
f718cd4a 7250static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7251 struct sysdev_class_attribute *attr,
48f24c4d 7252 const char *buf, size_t count)
5c45bf27
SS
7253{
7254 return sched_power_savings_store(buf, count, 1);
7255}
f718cd4a
AK
7256static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7257 sched_smt_power_savings_show,
6707de00
AB
7258 sched_smt_power_savings_store);
7259#endif
7260
39aac648 7261int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7262{
7263 int err = 0;
7264
7265#ifdef CONFIG_SCHED_SMT
7266 if (smt_capable())
7267 err = sysfs_create_file(&cls->kset.kobj,
7268 &attr_sched_smt_power_savings.attr);
7269#endif
7270#ifdef CONFIG_SCHED_MC
7271 if (!err && mc_capable())
7272 err = sysfs_create_file(&cls->kset.kobj,
7273 &attr_sched_mc_power_savings.attr);
7274#endif
7275 return err;
7276}
6d6bc0ad 7277#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7278
e761b772 7279#ifndef CONFIG_CPUSETS
1da177e4 7280/*
e761b772
MK
7281 * Add online and remove offline CPUs from the scheduler domains.
7282 * When cpusets are enabled they take over this function.
1da177e4
LT
7283 */
7284static int update_sched_domains(struct notifier_block *nfb,
7285 unsigned long action, void *hcpu)
e761b772
MK
7286{
7287 switch (action) {
7288 case CPU_ONLINE:
7289 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7290 case CPU_DOWN_PREPARE:
7291 case CPU_DOWN_PREPARE_FROZEN:
7292 case CPU_DOWN_FAILED:
7293 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7294 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7295 return NOTIFY_OK;
7296
7297 default:
7298 return NOTIFY_DONE;
7299 }
7300}
7301#endif
7302
7303static int update_runtime(struct notifier_block *nfb,
7304 unsigned long action, void *hcpu)
1da177e4 7305{
7def2be1
PZ
7306 int cpu = (int)(long)hcpu;
7307
1da177e4 7308 switch (action) {
1da177e4 7309 case CPU_DOWN_PREPARE:
8bb78442 7310 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7311 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7312 return NOTIFY_OK;
7313
1da177e4 7314 case CPU_DOWN_FAILED:
8bb78442 7315 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7316 case CPU_ONLINE:
8bb78442 7317 case CPU_ONLINE_FROZEN:
7def2be1 7318 enable_runtime(cpu_rq(cpu));
e761b772
MK
7319 return NOTIFY_OK;
7320
1da177e4
LT
7321 default:
7322 return NOTIFY_DONE;
7323 }
1da177e4 7324}
1da177e4
LT
7325
7326void __init sched_init_smp(void)
7327{
dcc30a35
RR
7328 cpumask_var_t non_isolated_cpus;
7329
7330 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7331 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7332
434d53b0
MT
7333#if defined(CONFIG_NUMA)
7334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7335 GFP_KERNEL);
7336 BUG_ON(sched_group_nodes_bycpu == NULL);
7337#endif
95402b38 7338 get_online_cpus();
712555ee 7339 mutex_lock(&sched_domains_mutex);
6ad4c188 7340 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7342 if (cpumask_empty(non_isolated_cpus))
7343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7344 mutex_unlock(&sched_domains_mutex);
95402b38 7345 put_online_cpus();
e761b772
MK
7346
7347#ifndef CONFIG_CPUSETS
1da177e4
LT
7348 /* XXX: Theoretical race here - CPU may be hotplugged now */
7349 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7350#endif
7351
7352 /* RT runtime code needs to handle some hotplug events */
7353 hotcpu_notifier(update_runtime, 0);
7354
b328ca18 7355 init_hrtick();
5c1e1767
NP
7356
7357 /* Move init over to a non-isolated CPU */
dcc30a35 7358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7359 BUG();
19978ca6 7360 sched_init_granularity();
dcc30a35 7361 free_cpumask_var(non_isolated_cpus);
4212823f 7362
0e3900e6 7363 init_sched_rt_class();
1da177e4
LT
7364}
7365#else
7366void __init sched_init_smp(void)
7367{
19978ca6 7368 sched_init_granularity();
1da177e4
LT
7369}
7370#endif /* CONFIG_SMP */
7371
cd1bb94b
AB
7372const_debug unsigned int sysctl_timer_migration = 1;
7373
1da177e4
LT
7374int in_sched_functions(unsigned long addr)
7375{
1da177e4
LT
7376 return in_lock_functions(addr) ||
7377 (addr >= (unsigned long)__sched_text_start
7378 && addr < (unsigned long)__sched_text_end);
7379}
7380
a9957449 7381static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7382{
7383 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7384 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7385#ifdef CONFIG_FAIR_GROUP_SCHED
7386 cfs_rq->rq = rq;
7387#endif
67e9fb2a 7388 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7389}
7390
fa85ae24
PZ
7391static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7392{
7393 struct rt_prio_array *array;
7394 int i;
7395
7396 array = &rt_rq->active;
7397 for (i = 0; i < MAX_RT_PRIO; i++) {
7398 INIT_LIST_HEAD(array->queue + i);
7399 __clear_bit(i, array->bitmap);
7400 }
7401 /* delimiter for bitsearch: */
7402 __set_bit(MAX_RT_PRIO, array->bitmap);
7403
052f1dc7 7404#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7405 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7406#ifdef CONFIG_SMP
e864c499 7407 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7408#endif
48d5e258 7409#endif
fa85ae24
PZ
7410#ifdef CONFIG_SMP
7411 rt_rq->rt_nr_migratory = 0;
fa85ae24 7412 rt_rq->overloaded = 0;
05fa785c 7413 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7414#endif
7415
7416 rt_rq->rt_time = 0;
7417 rt_rq->rt_throttled = 0;
ac086bc2 7418 rt_rq->rt_runtime = 0;
0986b11b 7419 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7420
052f1dc7 7421#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7422 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7423 rt_rq->rq = rq;
7424#endif
fa85ae24
PZ
7425}
7426
6f505b16 7427#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7428static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7429 struct sched_entity *se, int cpu, int add,
7430 struct sched_entity *parent)
6f505b16 7431{
ec7dc8ac 7432 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7433 tg->cfs_rq[cpu] = cfs_rq;
7434 init_cfs_rq(cfs_rq, rq);
7435 cfs_rq->tg = tg;
7436 if (add)
7437 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7438
7439 tg->se[cpu] = se;
354d60c2
DG
7440 /* se could be NULL for init_task_group */
7441 if (!se)
7442 return;
7443
ec7dc8ac
DG
7444 if (!parent)
7445 se->cfs_rq = &rq->cfs;
7446 else
7447 se->cfs_rq = parent->my_q;
7448
6f505b16
PZ
7449 se->my_q = cfs_rq;
7450 se->load.weight = tg->shares;
e05510d0 7451 se->load.inv_weight = 0;
ec7dc8ac 7452 se->parent = parent;
6f505b16 7453}
052f1dc7 7454#endif
6f505b16 7455
052f1dc7 7456#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7457static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7458 struct sched_rt_entity *rt_se, int cpu, int add,
7459 struct sched_rt_entity *parent)
6f505b16 7460{
ec7dc8ac
DG
7461 struct rq *rq = cpu_rq(cpu);
7462
6f505b16
PZ
7463 tg->rt_rq[cpu] = rt_rq;
7464 init_rt_rq(rt_rq, rq);
7465 rt_rq->tg = tg;
ac086bc2 7466 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7467 if (add)
7468 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7469
7470 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7471 if (!rt_se)
7472 return;
7473
ec7dc8ac
DG
7474 if (!parent)
7475 rt_se->rt_rq = &rq->rt;
7476 else
7477 rt_se->rt_rq = parent->my_q;
7478
6f505b16 7479 rt_se->my_q = rt_rq;
ec7dc8ac 7480 rt_se->parent = parent;
6f505b16
PZ
7481 INIT_LIST_HEAD(&rt_se->run_list);
7482}
7483#endif
7484
1da177e4
LT
7485void __init sched_init(void)
7486{
dd41f596 7487 int i, j;
434d53b0
MT
7488 unsigned long alloc_size = 0, ptr;
7489
7490#ifdef CONFIG_FAIR_GROUP_SCHED
7491 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7492#endif
7493#ifdef CONFIG_RT_GROUP_SCHED
7494 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7495#endif
df7c8e84 7496#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7497 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7498#endif
434d53b0 7499 if (alloc_size) {
36b7b6d4 7500 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7501
7502#ifdef CONFIG_FAIR_GROUP_SCHED
7503 init_task_group.se = (struct sched_entity **)ptr;
7504 ptr += nr_cpu_ids * sizeof(void **);
7505
7506 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7507 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7508
6d6bc0ad 7509#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7510#ifdef CONFIG_RT_GROUP_SCHED
7511 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7512 ptr += nr_cpu_ids * sizeof(void **);
7513
7514 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7515 ptr += nr_cpu_ids * sizeof(void **);
7516
6d6bc0ad 7517#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7518#ifdef CONFIG_CPUMASK_OFFSTACK
7519 for_each_possible_cpu(i) {
7520 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7521 ptr += cpumask_size();
7522 }
7523#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7524 }
dd41f596 7525
57d885fe
GH
7526#ifdef CONFIG_SMP
7527 init_defrootdomain();
7528#endif
7529
d0b27fa7
PZ
7530 init_rt_bandwidth(&def_rt_bandwidth,
7531 global_rt_period(), global_rt_runtime());
7532
7533#ifdef CONFIG_RT_GROUP_SCHED
7534 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7535 global_rt_period(), global_rt_runtime());
6d6bc0ad 7536#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7537
7c941438 7538#ifdef CONFIG_CGROUP_SCHED
6f505b16 7539 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7540 INIT_LIST_HEAD(&init_task_group.children);
7541
7c941438 7542#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7543
4a6cc4bd
JK
7544#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7545 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7546 __alignof__(unsigned long));
7547#endif
0a945022 7548 for_each_possible_cpu(i) {
70b97a7f 7549 struct rq *rq;
1da177e4
LT
7550
7551 rq = cpu_rq(i);
05fa785c 7552 raw_spin_lock_init(&rq->lock);
7897986b 7553 rq->nr_running = 0;
dce48a84
TG
7554 rq->calc_load_active = 0;
7555 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7556 init_cfs_rq(&rq->cfs, rq);
6f505b16 7557 init_rt_rq(&rq->rt, rq);
dd41f596 7558#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7559 init_task_group.shares = init_task_group_load;
6f505b16 7560 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7561#ifdef CONFIG_CGROUP_SCHED
7562 /*
7563 * How much cpu bandwidth does init_task_group get?
7564 *
7565 * In case of task-groups formed thr' the cgroup filesystem, it
7566 * gets 100% of the cpu resources in the system. This overall
7567 * system cpu resource is divided among the tasks of
7568 * init_task_group and its child task-groups in a fair manner,
7569 * based on each entity's (task or task-group's) weight
7570 * (se->load.weight).
7571 *
7572 * In other words, if init_task_group has 10 tasks of weight
7573 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7574 * then A0's share of the cpu resource is:
7575 *
0d905bca 7576 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7577 *
7578 * We achieve this by letting init_task_group's tasks sit
7579 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7580 */
ec7dc8ac 7581 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7582#endif
354d60c2
DG
7583#endif /* CONFIG_FAIR_GROUP_SCHED */
7584
7585 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7586#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7587 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7588#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7589 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7590#endif
dd41f596 7591#endif
1da177e4 7592
dd41f596
IM
7593 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7594 rq->cpu_load[j] = 0;
1da177e4 7595#ifdef CONFIG_SMP
41c7ce9a 7596 rq->sd = NULL;
57d885fe 7597 rq->rd = NULL;
3f029d3c 7598 rq->post_schedule = 0;
1da177e4 7599 rq->active_balance = 0;
dd41f596 7600 rq->next_balance = jiffies;
1da177e4 7601 rq->push_cpu = 0;
0a2966b4 7602 rq->cpu = i;
1f11eb6a 7603 rq->online = 0;
eae0c9df
MG
7604 rq->idle_stamp = 0;
7605 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7606 rq_attach_root(rq, &def_root_domain);
1da177e4 7607#endif
8f4d37ec 7608 init_rq_hrtick(rq);
1da177e4 7609 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7610 }
7611
2dd73a4f 7612 set_load_weight(&init_task);
b50f60ce 7613
e107be36
AK
7614#ifdef CONFIG_PREEMPT_NOTIFIERS
7615 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7616#endif
7617
c9819f45 7618#ifdef CONFIG_SMP
962cf36c 7619 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7620#endif
7621
b50f60ce 7622#ifdef CONFIG_RT_MUTEXES
1d615482 7623 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7624#endif
7625
1da177e4
LT
7626 /*
7627 * The boot idle thread does lazy MMU switching as well:
7628 */
7629 atomic_inc(&init_mm.mm_count);
7630 enter_lazy_tlb(&init_mm, current);
7631
7632 /*
7633 * Make us the idle thread. Technically, schedule() should not be
7634 * called from this thread, however somewhere below it might be,
7635 * but because we are the idle thread, we just pick up running again
7636 * when this runqueue becomes "idle".
7637 */
7638 init_idle(current, smp_processor_id());
dce48a84
TG
7639
7640 calc_load_update = jiffies + LOAD_FREQ;
7641
dd41f596
IM
7642 /*
7643 * During early bootup we pretend to be a normal task:
7644 */
7645 current->sched_class = &fair_sched_class;
6892b75e 7646
6a7b3dc3 7647 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7648 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7649#ifdef CONFIG_SMP
7d1e6a9b 7650#ifdef CONFIG_NO_HZ
49557e62 7651 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7652 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7653#endif
bdddd296
RR
7654 /* May be allocated at isolcpus cmdline parse time */
7655 if (cpu_isolated_map == NULL)
7656 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7657#endif /* SMP */
6a7b3dc3 7658
cdd6c482 7659 perf_event_init();
0d905bca 7660
6892b75e 7661 scheduler_running = 1;
1da177e4
LT
7662}
7663
7664#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7665static inline int preempt_count_equals(int preempt_offset)
7666{
234da7bc 7667 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7668
7669 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7670}
7671
d894837f 7672void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7673{
48f24c4d 7674#ifdef in_atomic
1da177e4
LT
7675 static unsigned long prev_jiffy; /* ratelimiting */
7676
e4aafea2
FW
7677 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7678 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7679 return;
7680 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7681 return;
7682 prev_jiffy = jiffies;
7683
3df0fc5b
PZ
7684 printk(KERN_ERR
7685 "BUG: sleeping function called from invalid context at %s:%d\n",
7686 file, line);
7687 printk(KERN_ERR
7688 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7689 in_atomic(), irqs_disabled(),
7690 current->pid, current->comm);
aef745fc
IM
7691
7692 debug_show_held_locks(current);
7693 if (irqs_disabled())
7694 print_irqtrace_events(current);
7695 dump_stack();
1da177e4
LT
7696#endif
7697}
7698EXPORT_SYMBOL(__might_sleep);
7699#endif
7700
7701#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7702static void normalize_task(struct rq *rq, struct task_struct *p)
7703{
7704 int on_rq;
3e51f33f 7705
3a5e4dc1
AK
7706 on_rq = p->se.on_rq;
7707 if (on_rq)
7708 deactivate_task(rq, p, 0);
7709 __setscheduler(rq, p, SCHED_NORMAL, 0);
7710 if (on_rq) {
7711 activate_task(rq, p, 0);
7712 resched_task(rq->curr);
7713 }
7714}
7715
1da177e4
LT
7716void normalize_rt_tasks(void)
7717{
a0f98a1c 7718 struct task_struct *g, *p;
1da177e4 7719 unsigned long flags;
70b97a7f 7720 struct rq *rq;
1da177e4 7721
4cf5d77a 7722 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7723 do_each_thread(g, p) {
178be793
IM
7724 /*
7725 * Only normalize user tasks:
7726 */
7727 if (!p->mm)
7728 continue;
7729
6cfb0d5d 7730 p->se.exec_start = 0;
6cfb0d5d 7731#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7732 p->se.statistics.wait_start = 0;
7733 p->se.statistics.sleep_start = 0;
7734 p->se.statistics.block_start = 0;
6cfb0d5d 7735#endif
dd41f596
IM
7736
7737 if (!rt_task(p)) {
7738 /*
7739 * Renice negative nice level userspace
7740 * tasks back to 0:
7741 */
7742 if (TASK_NICE(p) < 0 && p->mm)
7743 set_user_nice(p, 0);
1da177e4 7744 continue;
dd41f596 7745 }
1da177e4 7746
1d615482 7747 raw_spin_lock(&p->pi_lock);
b29739f9 7748 rq = __task_rq_lock(p);
1da177e4 7749
178be793 7750 normalize_task(rq, p);
3a5e4dc1 7751
b29739f9 7752 __task_rq_unlock(rq);
1d615482 7753 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7754 } while_each_thread(g, p);
7755
4cf5d77a 7756 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7757}
7758
7759#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7760
7761#ifdef CONFIG_IA64
7762/*
7763 * These functions are only useful for the IA64 MCA handling.
7764 *
7765 * They can only be called when the whole system has been
7766 * stopped - every CPU needs to be quiescent, and no scheduling
7767 * activity can take place. Using them for anything else would
7768 * be a serious bug, and as a result, they aren't even visible
7769 * under any other configuration.
7770 */
7771
7772/**
7773 * curr_task - return the current task for a given cpu.
7774 * @cpu: the processor in question.
7775 *
7776 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7777 */
36c8b586 7778struct task_struct *curr_task(int cpu)
1df5c10a
LT
7779{
7780 return cpu_curr(cpu);
7781}
7782
7783/**
7784 * set_curr_task - set the current task for a given cpu.
7785 * @cpu: the processor in question.
7786 * @p: the task pointer to set.
7787 *
7788 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7789 * are serviced on a separate stack. It allows the architecture to switch the
7790 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7791 * must be called with all CPU's synchronized, and interrupts disabled, the
7792 * and caller must save the original value of the current task (see
7793 * curr_task() above) and restore that value before reenabling interrupts and
7794 * re-starting the system.
7795 *
7796 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7797 */
36c8b586 7798void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7799{
7800 cpu_curr(cpu) = p;
7801}
7802
7803#endif
29f59db3 7804
bccbe08a
PZ
7805#ifdef CONFIG_FAIR_GROUP_SCHED
7806static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7807{
7808 int i;
7809
7810 for_each_possible_cpu(i) {
7811 if (tg->cfs_rq)
7812 kfree(tg->cfs_rq[i]);
7813 if (tg->se)
7814 kfree(tg->se[i]);
6f505b16
PZ
7815 }
7816
7817 kfree(tg->cfs_rq);
7818 kfree(tg->se);
6f505b16
PZ
7819}
7820
ec7dc8ac
DG
7821static
7822int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7823{
29f59db3 7824 struct cfs_rq *cfs_rq;
eab17229 7825 struct sched_entity *se;
9b5b7751 7826 struct rq *rq;
29f59db3
SV
7827 int i;
7828
434d53b0 7829 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7830 if (!tg->cfs_rq)
7831 goto err;
434d53b0 7832 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7833 if (!tg->se)
7834 goto err;
052f1dc7
PZ
7835
7836 tg->shares = NICE_0_LOAD;
29f59db3
SV
7837
7838 for_each_possible_cpu(i) {
9b5b7751 7839 rq = cpu_rq(i);
29f59db3 7840
eab17229
LZ
7841 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7842 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7843 if (!cfs_rq)
7844 goto err;
7845
eab17229
LZ
7846 se = kzalloc_node(sizeof(struct sched_entity),
7847 GFP_KERNEL, cpu_to_node(i));
29f59db3 7848 if (!se)
dfc12eb2 7849 goto err_free_rq;
29f59db3 7850
eab17229 7851 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7852 }
7853
7854 return 1;
7855
dfc12eb2
PC
7856 err_free_rq:
7857 kfree(cfs_rq);
bccbe08a
PZ
7858 err:
7859 return 0;
7860}
7861
7862static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7863{
7864 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7865 &cpu_rq(cpu)->leaf_cfs_rq_list);
7866}
7867
7868static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7869{
7870 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7871}
6d6bc0ad 7872#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7873static inline void free_fair_sched_group(struct task_group *tg)
7874{
7875}
7876
ec7dc8ac
DG
7877static inline
7878int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7879{
7880 return 1;
7881}
7882
7883static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7884{
7885}
7886
7887static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7888{
7889}
6d6bc0ad 7890#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7891
7892#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7893static void free_rt_sched_group(struct task_group *tg)
7894{
7895 int i;
7896
d0b27fa7
PZ
7897 destroy_rt_bandwidth(&tg->rt_bandwidth);
7898
bccbe08a
PZ
7899 for_each_possible_cpu(i) {
7900 if (tg->rt_rq)
7901 kfree(tg->rt_rq[i]);
7902 if (tg->rt_se)
7903 kfree(tg->rt_se[i]);
7904 }
7905
7906 kfree(tg->rt_rq);
7907 kfree(tg->rt_se);
7908}
7909
ec7dc8ac
DG
7910static
7911int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7912{
7913 struct rt_rq *rt_rq;
eab17229 7914 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7915 struct rq *rq;
7916 int i;
7917
434d53b0 7918 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7919 if (!tg->rt_rq)
7920 goto err;
434d53b0 7921 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7922 if (!tg->rt_se)
7923 goto err;
7924
d0b27fa7
PZ
7925 init_rt_bandwidth(&tg->rt_bandwidth,
7926 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7927
7928 for_each_possible_cpu(i) {
7929 rq = cpu_rq(i);
7930
eab17229
LZ
7931 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7932 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7933 if (!rt_rq)
7934 goto err;
29f59db3 7935
eab17229
LZ
7936 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7937 GFP_KERNEL, cpu_to_node(i));
6f505b16 7938 if (!rt_se)
dfc12eb2 7939 goto err_free_rq;
29f59db3 7940
eab17229 7941 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7942 }
7943
bccbe08a
PZ
7944 return 1;
7945
dfc12eb2
PC
7946 err_free_rq:
7947 kfree(rt_rq);
bccbe08a
PZ
7948 err:
7949 return 0;
7950}
7951
7952static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7953{
7954 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7955 &cpu_rq(cpu)->leaf_rt_rq_list);
7956}
7957
7958static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7959{
7960 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7961}
6d6bc0ad 7962#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7963static inline void free_rt_sched_group(struct task_group *tg)
7964{
7965}
7966
ec7dc8ac
DG
7967static inline
7968int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7969{
7970 return 1;
7971}
7972
7973static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7974{
7975}
7976
7977static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7978{
7979}
6d6bc0ad 7980#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7981
7c941438 7982#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
7983static void free_sched_group(struct task_group *tg)
7984{
7985 free_fair_sched_group(tg);
7986 free_rt_sched_group(tg);
7987 kfree(tg);
7988}
7989
7990/* allocate runqueue etc for a new task group */
ec7dc8ac 7991struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7992{
7993 struct task_group *tg;
7994 unsigned long flags;
7995 int i;
7996
7997 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7998 if (!tg)
7999 return ERR_PTR(-ENOMEM);
8000
ec7dc8ac 8001 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8002 goto err;
8003
ec7dc8ac 8004 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8005 goto err;
8006
8ed36996 8007 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8008 for_each_possible_cpu(i) {
bccbe08a
PZ
8009 register_fair_sched_group(tg, i);
8010 register_rt_sched_group(tg, i);
9b5b7751 8011 }
6f505b16 8012 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8013
8014 WARN_ON(!parent); /* root should already exist */
8015
8016 tg->parent = parent;
f473aa5e 8017 INIT_LIST_HEAD(&tg->children);
09f2724a 8018 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8019 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8020
9b5b7751 8021 return tg;
29f59db3
SV
8022
8023err:
6f505b16 8024 free_sched_group(tg);
29f59db3
SV
8025 return ERR_PTR(-ENOMEM);
8026}
8027
9b5b7751 8028/* rcu callback to free various structures associated with a task group */
6f505b16 8029static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8030{
29f59db3 8031 /* now it should be safe to free those cfs_rqs */
6f505b16 8032 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8033}
8034
9b5b7751 8035/* Destroy runqueue etc associated with a task group */
4cf86d77 8036void sched_destroy_group(struct task_group *tg)
29f59db3 8037{
8ed36996 8038 unsigned long flags;
9b5b7751 8039 int i;
29f59db3 8040
8ed36996 8041 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8042 for_each_possible_cpu(i) {
bccbe08a
PZ
8043 unregister_fair_sched_group(tg, i);
8044 unregister_rt_sched_group(tg, i);
9b5b7751 8045 }
6f505b16 8046 list_del_rcu(&tg->list);
f473aa5e 8047 list_del_rcu(&tg->siblings);
8ed36996 8048 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8049
9b5b7751 8050 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8051 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8052}
8053
9b5b7751 8054/* change task's runqueue when it moves between groups.
3a252015
IM
8055 * The caller of this function should have put the task in its new group
8056 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8057 * reflect its new group.
9b5b7751
SV
8058 */
8059void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8060{
8061 int on_rq, running;
8062 unsigned long flags;
8063 struct rq *rq;
8064
8065 rq = task_rq_lock(tsk, &flags);
8066
051a1d1a 8067 running = task_current(rq, tsk);
29f59db3
SV
8068 on_rq = tsk->se.on_rq;
8069
0e1f3483 8070 if (on_rq)
29f59db3 8071 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8072 if (unlikely(running))
8073 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8074
6f505b16 8075 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8076
810b3817
PZ
8077#ifdef CONFIG_FAIR_GROUP_SCHED
8078 if (tsk->sched_class->moved_group)
88ec22d3 8079 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8080#endif
8081
0e1f3483
HS
8082 if (unlikely(running))
8083 tsk->sched_class->set_curr_task(rq);
8084 if (on_rq)
371fd7e7 8085 enqueue_task(rq, tsk, 0);
29f59db3 8086
29f59db3
SV
8087 task_rq_unlock(rq, &flags);
8088}
7c941438 8089#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8090
052f1dc7 8091#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8092static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8093{
8094 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8095 int on_rq;
8096
29f59db3 8097 on_rq = se->on_rq;
62fb1851 8098 if (on_rq)
29f59db3
SV
8099 dequeue_entity(cfs_rq, se, 0);
8100
8101 se->load.weight = shares;
e05510d0 8102 se->load.inv_weight = 0;
29f59db3 8103
62fb1851 8104 if (on_rq)
29f59db3 8105 enqueue_entity(cfs_rq, se, 0);
c09595f6 8106}
62fb1851 8107
c09595f6
PZ
8108static void set_se_shares(struct sched_entity *se, unsigned long shares)
8109{
8110 struct cfs_rq *cfs_rq = se->cfs_rq;
8111 struct rq *rq = cfs_rq->rq;
8112 unsigned long flags;
8113
05fa785c 8114 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8115 __set_se_shares(se, shares);
05fa785c 8116 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8117}
8118
8ed36996
PZ
8119static DEFINE_MUTEX(shares_mutex);
8120
4cf86d77 8121int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8122{
8123 int i;
8ed36996 8124 unsigned long flags;
c61935fd 8125
ec7dc8ac
DG
8126 /*
8127 * We can't change the weight of the root cgroup.
8128 */
8129 if (!tg->se[0])
8130 return -EINVAL;
8131
18d95a28
PZ
8132 if (shares < MIN_SHARES)
8133 shares = MIN_SHARES;
cb4ad1ff
MX
8134 else if (shares > MAX_SHARES)
8135 shares = MAX_SHARES;
62fb1851 8136
8ed36996 8137 mutex_lock(&shares_mutex);
9b5b7751 8138 if (tg->shares == shares)
5cb350ba 8139 goto done;
29f59db3 8140
8ed36996 8141 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8142 for_each_possible_cpu(i)
8143 unregister_fair_sched_group(tg, i);
f473aa5e 8144 list_del_rcu(&tg->siblings);
8ed36996 8145 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8146
8147 /* wait for any ongoing reference to this group to finish */
8148 synchronize_sched();
8149
8150 /*
8151 * Now we are free to modify the group's share on each cpu
8152 * w/o tripping rebalance_share or load_balance_fair.
8153 */
9b5b7751 8154 tg->shares = shares;
c09595f6
PZ
8155 for_each_possible_cpu(i) {
8156 /*
8157 * force a rebalance
8158 */
8159 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8160 set_se_shares(tg->se[i], shares);
c09595f6 8161 }
29f59db3 8162
6b2d7700
SV
8163 /*
8164 * Enable load balance activity on this group, by inserting it back on
8165 * each cpu's rq->leaf_cfs_rq_list.
8166 */
8ed36996 8167 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8168 for_each_possible_cpu(i)
8169 register_fair_sched_group(tg, i);
f473aa5e 8170 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8171 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8172done:
8ed36996 8173 mutex_unlock(&shares_mutex);
9b5b7751 8174 return 0;
29f59db3
SV
8175}
8176
5cb350ba
DG
8177unsigned long sched_group_shares(struct task_group *tg)
8178{
8179 return tg->shares;
8180}
052f1dc7 8181#endif
5cb350ba 8182
052f1dc7 8183#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8184/*
9f0c1e56 8185 * Ensure that the real time constraints are schedulable.
6f505b16 8186 */
9f0c1e56
PZ
8187static DEFINE_MUTEX(rt_constraints_mutex);
8188
8189static unsigned long to_ratio(u64 period, u64 runtime)
8190{
8191 if (runtime == RUNTIME_INF)
9a7e0b18 8192 return 1ULL << 20;
9f0c1e56 8193
9a7e0b18 8194 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8195}
8196
9a7e0b18
PZ
8197/* Must be called with tasklist_lock held */
8198static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8199{
9a7e0b18 8200 struct task_struct *g, *p;
b40b2e8e 8201
9a7e0b18
PZ
8202 do_each_thread(g, p) {
8203 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8204 return 1;
8205 } while_each_thread(g, p);
b40b2e8e 8206
9a7e0b18
PZ
8207 return 0;
8208}
b40b2e8e 8209
9a7e0b18
PZ
8210struct rt_schedulable_data {
8211 struct task_group *tg;
8212 u64 rt_period;
8213 u64 rt_runtime;
8214};
b40b2e8e 8215
9a7e0b18
PZ
8216static int tg_schedulable(struct task_group *tg, void *data)
8217{
8218 struct rt_schedulable_data *d = data;
8219 struct task_group *child;
8220 unsigned long total, sum = 0;
8221 u64 period, runtime;
b40b2e8e 8222
9a7e0b18
PZ
8223 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8224 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8225
9a7e0b18
PZ
8226 if (tg == d->tg) {
8227 period = d->rt_period;
8228 runtime = d->rt_runtime;
b40b2e8e 8229 }
b40b2e8e 8230
4653f803
PZ
8231 /*
8232 * Cannot have more runtime than the period.
8233 */
8234 if (runtime > period && runtime != RUNTIME_INF)
8235 return -EINVAL;
6f505b16 8236
4653f803
PZ
8237 /*
8238 * Ensure we don't starve existing RT tasks.
8239 */
9a7e0b18
PZ
8240 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8241 return -EBUSY;
6f505b16 8242
9a7e0b18 8243 total = to_ratio(period, runtime);
6f505b16 8244
4653f803
PZ
8245 /*
8246 * Nobody can have more than the global setting allows.
8247 */
8248 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8249 return -EINVAL;
6f505b16 8250
4653f803
PZ
8251 /*
8252 * The sum of our children's runtime should not exceed our own.
8253 */
9a7e0b18
PZ
8254 list_for_each_entry_rcu(child, &tg->children, siblings) {
8255 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8256 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8257
9a7e0b18
PZ
8258 if (child == d->tg) {
8259 period = d->rt_period;
8260 runtime = d->rt_runtime;
8261 }
6f505b16 8262
9a7e0b18 8263 sum += to_ratio(period, runtime);
9f0c1e56 8264 }
6f505b16 8265
9a7e0b18
PZ
8266 if (sum > total)
8267 return -EINVAL;
8268
8269 return 0;
6f505b16
PZ
8270}
8271
9a7e0b18 8272static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8273{
9a7e0b18
PZ
8274 struct rt_schedulable_data data = {
8275 .tg = tg,
8276 .rt_period = period,
8277 .rt_runtime = runtime,
8278 };
8279
8280 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8281}
8282
d0b27fa7
PZ
8283static int tg_set_bandwidth(struct task_group *tg,
8284 u64 rt_period, u64 rt_runtime)
6f505b16 8285{
ac086bc2 8286 int i, err = 0;
9f0c1e56 8287
9f0c1e56 8288 mutex_lock(&rt_constraints_mutex);
521f1a24 8289 read_lock(&tasklist_lock);
9a7e0b18
PZ
8290 err = __rt_schedulable(tg, rt_period, rt_runtime);
8291 if (err)
9f0c1e56 8292 goto unlock;
ac086bc2 8293
0986b11b 8294 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8295 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8296 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8297
8298 for_each_possible_cpu(i) {
8299 struct rt_rq *rt_rq = tg->rt_rq[i];
8300
0986b11b 8301 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8302 rt_rq->rt_runtime = rt_runtime;
0986b11b 8303 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8304 }
0986b11b 8305 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8306 unlock:
521f1a24 8307 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8308 mutex_unlock(&rt_constraints_mutex);
8309
8310 return err;
6f505b16
PZ
8311}
8312
d0b27fa7
PZ
8313int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8314{
8315 u64 rt_runtime, rt_period;
8316
8317 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8318 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8319 if (rt_runtime_us < 0)
8320 rt_runtime = RUNTIME_INF;
8321
8322 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8323}
8324
9f0c1e56
PZ
8325long sched_group_rt_runtime(struct task_group *tg)
8326{
8327 u64 rt_runtime_us;
8328
d0b27fa7 8329 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8330 return -1;
8331
d0b27fa7 8332 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8333 do_div(rt_runtime_us, NSEC_PER_USEC);
8334 return rt_runtime_us;
8335}
d0b27fa7
PZ
8336
8337int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8338{
8339 u64 rt_runtime, rt_period;
8340
8341 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8342 rt_runtime = tg->rt_bandwidth.rt_runtime;
8343
619b0488
R
8344 if (rt_period == 0)
8345 return -EINVAL;
8346
d0b27fa7
PZ
8347 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8348}
8349
8350long sched_group_rt_period(struct task_group *tg)
8351{
8352 u64 rt_period_us;
8353
8354 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8355 do_div(rt_period_us, NSEC_PER_USEC);
8356 return rt_period_us;
8357}
8358
8359static int sched_rt_global_constraints(void)
8360{
4653f803 8361 u64 runtime, period;
d0b27fa7
PZ
8362 int ret = 0;
8363
ec5d4989
HS
8364 if (sysctl_sched_rt_period <= 0)
8365 return -EINVAL;
8366
4653f803
PZ
8367 runtime = global_rt_runtime();
8368 period = global_rt_period();
8369
8370 /*
8371 * Sanity check on the sysctl variables.
8372 */
8373 if (runtime > period && runtime != RUNTIME_INF)
8374 return -EINVAL;
10b612f4 8375
d0b27fa7 8376 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8377 read_lock(&tasklist_lock);
4653f803 8378 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8379 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8380 mutex_unlock(&rt_constraints_mutex);
8381
8382 return ret;
8383}
54e99124
DG
8384
8385int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8386{
8387 /* Don't accept realtime tasks when there is no way for them to run */
8388 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8389 return 0;
8390
8391 return 1;
8392}
8393
6d6bc0ad 8394#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8395static int sched_rt_global_constraints(void)
8396{
ac086bc2
PZ
8397 unsigned long flags;
8398 int i;
8399
ec5d4989
HS
8400 if (sysctl_sched_rt_period <= 0)
8401 return -EINVAL;
8402
60aa605d
PZ
8403 /*
8404 * There's always some RT tasks in the root group
8405 * -- migration, kstopmachine etc..
8406 */
8407 if (sysctl_sched_rt_runtime == 0)
8408 return -EBUSY;
8409
0986b11b 8410 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8411 for_each_possible_cpu(i) {
8412 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8413
0986b11b 8414 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8415 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8416 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8417 }
0986b11b 8418 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8419
d0b27fa7
PZ
8420 return 0;
8421}
6d6bc0ad 8422#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8423
8424int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8425 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8426 loff_t *ppos)
8427{
8428 int ret;
8429 int old_period, old_runtime;
8430 static DEFINE_MUTEX(mutex);
8431
8432 mutex_lock(&mutex);
8433 old_period = sysctl_sched_rt_period;
8434 old_runtime = sysctl_sched_rt_runtime;
8435
8d65af78 8436 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8437
8438 if (!ret && write) {
8439 ret = sched_rt_global_constraints();
8440 if (ret) {
8441 sysctl_sched_rt_period = old_period;
8442 sysctl_sched_rt_runtime = old_runtime;
8443 } else {
8444 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8445 def_rt_bandwidth.rt_period =
8446 ns_to_ktime(global_rt_period());
8447 }
8448 }
8449 mutex_unlock(&mutex);
8450
8451 return ret;
8452}
68318b8e 8453
052f1dc7 8454#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8455
8456/* return corresponding task_group object of a cgroup */
2b01dfe3 8457static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8458{
2b01dfe3
PM
8459 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8460 struct task_group, css);
68318b8e
SV
8461}
8462
8463static struct cgroup_subsys_state *
2b01dfe3 8464cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8465{
ec7dc8ac 8466 struct task_group *tg, *parent;
68318b8e 8467
2b01dfe3 8468 if (!cgrp->parent) {
68318b8e 8469 /* This is early initialization for the top cgroup */
68318b8e
SV
8470 return &init_task_group.css;
8471 }
8472
ec7dc8ac
DG
8473 parent = cgroup_tg(cgrp->parent);
8474 tg = sched_create_group(parent);
68318b8e
SV
8475 if (IS_ERR(tg))
8476 return ERR_PTR(-ENOMEM);
8477
68318b8e
SV
8478 return &tg->css;
8479}
8480
41a2d6cf
IM
8481static void
8482cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8483{
2b01dfe3 8484 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8485
8486 sched_destroy_group(tg);
8487}
8488
41a2d6cf 8489static int
be367d09 8490cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8491{
b68aa230 8492#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8493 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8494 return -EINVAL;
8495#else
68318b8e
SV
8496 /* We don't support RT-tasks being in separate groups */
8497 if (tsk->sched_class != &fair_sched_class)
8498 return -EINVAL;
b68aa230 8499#endif
be367d09
BB
8500 return 0;
8501}
68318b8e 8502
be367d09
BB
8503static int
8504cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8505 struct task_struct *tsk, bool threadgroup)
8506{
8507 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8508 if (retval)
8509 return retval;
8510 if (threadgroup) {
8511 struct task_struct *c;
8512 rcu_read_lock();
8513 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8514 retval = cpu_cgroup_can_attach_task(cgrp, c);
8515 if (retval) {
8516 rcu_read_unlock();
8517 return retval;
8518 }
8519 }
8520 rcu_read_unlock();
8521 }
68318b8e
SV
8522 return 0;
8523}
8524
8525static void
2b01dfe3 8526cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8527 struct cgroup *old_cont, struct task_struct *tsk,
8528 bool threadgroup)
68318b8e
SV
8529{
8530 sched_move_task(tsk);
be367d09
BB
8531 if (threadgroup) {
8532 struct task_struct *c;
8533 rcu_read_lock();
8534 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8535 sched_move_task(c);
8536 }
8537 rcu_read_unlock();
8538 }
68318b8e
SV
8539}
8540
052f1dc7 8541#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8542static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8543 u64 shareval)
68318b8e 8544{
2b01dfe3 8545 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8546}
8547
f4c753b7 8548static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8549{
2b01dfe3 8550 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8551
8552 return (u64) tg->shares;
8553}
6d6bc0ad 8554#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8555
052f1dc7 8556#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8557static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8558 s64 val)
6f505b16 8559{
06ecb27c 8560 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8561}
8562
06ecb27c 8563static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8564{
06ecb27c 8565 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8566}
d0b27fa7
PZ
8567
8568static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8569 u64 rt_period_us)
8570{
8571 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8572}
8573
8574static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8575{
8576 return sched_group_rt_period(cgroup_tg(cgrp));
8577}
6d6bc0ad 8578#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8579
fe5c7cc2 8580static struct cftype cpu_files[] = {
052f1dc7 8581#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8582 {
8583 .name = "shares",
f4c753b7
PM
8584 .read_u64 = cpu_shares_read_u64,
8585 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8586 },
052f1dc7
PZ
8587#endif
8588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8589 {
9f0c1e56 8590 .name = "rt_runtime_us",
06ecb27c
PM
8591 .read_s64 = cpu_rt_runtime_read,
8592 .write_s64 = cpu_rt_runtime_write,
6f505b16 8593 },
d0b27fa7
PZ
8594 {
8595 .name = "rt_period_us",
f4c753b7
PM
8596 .read_u64 = cpu_rt_period_read_uint,
8597 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8598 },
052f1dc7 8599#endif
68318b8e
SV
8600};
8601
8602static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8603{
fe5c7cc2 8604 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8605}
8606
8607struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8608 .name = "cpu",
8609 .create = cpu_cgroup_create,
8610 .destroy = cpu_cgroup_destroy,
8611 .can_attach = cpu_cgroup_can_attach,
8612 .attach = cpu_cgroup_attach,
8613 .populate = cpu_cgroup_populate,
8614 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8615 .early_init = 1,
8616};
8617
052f1dc7 8618#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8619
8620#ifdef CONFIG_CGROUP_CPUACCT
8621
8622/*
8623 * CPU accounting code for task groups.
8624 *
8625 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8626 * (balbir@in.ibm.com).
8627 */
8628
934352f2 8629/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8630struct cpuacct {
8631 struct cgroup_subsys_state css;
8632 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8633 u64 __percpu *cpuusage;
ef12fefa 8634 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8635 struct cpuacct *parent;
d842de87
SV
8636};
8637
8638struct cgroup_subsys cpuacct_subsys;
8639
8640/* return cpu accounting group corresponding to this container */
32cd756a 8641static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8642{
32cd756a 8643 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8644 struct cpuacct, css);
8645}
8646
8647/* return cpu accounting group to which this task belongs */
8648static inline struct cpuacct *task_ca(struct task_struct *tsk)
8649{
8650 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8651 struct cpuacct, css);
8652}
8653
8654/* create a new cpu accounting group */
8655static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8656 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8657{
8658 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8659 int i;
d842de87
SV
8660
8661 if (!ca)
ef12fefa 8662 goto out;
d842de87
SV
8663
8664 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8665 if (!ca->cpuusage)
8666 goto out_free_ca;
8667
8668 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8669 if (percpu_counter_init(&ca->cpustat[i], 0))
8670 goto out_free_counters;
d842de87 8671
934352f2
BR
8672 if (cgrp->parent)
8673 ca->parent = cgroup_ca(cgrp->parent);
8674
d842de87 8675 return &ca->css;
ef12fefa
BR
8676
8677out_free_counters:
8678 while (--i >= 0)
8679 percpu_counter_destroy(&ca->cpustat[i]);
8680 free_percpu(ca->cpuusage);
8681out_free_ca:
8682 kfree(ca);
8683out:
8684 return ERR_PTR(-ENOMEM);
d842de87
SV
8685}
8686
8687/* destroy an existing cpu accounting group */
41a2d6cf 8688static void
32cd756a 8689cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8690{
32cd756a 8691 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8692 int i;
d842de87 8693
ef12fefa
BR
8694 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8695 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8696 free_percpu(ca->cpuusage);
8697 kfree(ca);
8698}
8699
720f5498
KC
8700static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8701{
b36128c8 8702 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8703 u64 data;
8704
8705#ifndef CONFIG_64BIT
8706 /*
8707 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8708 */
05fa785c 8709 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8710 data = *cpuusage;
05fa785c 8711 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8712#else
8713 data = *cpuusage;
8714#endif
8715
8716 return data;
8717}
8718
8719static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8720{
b36128c8 8721 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8722
8723#ifndef CONFIG_64BIT
8724 /*
8725 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8726 */
05fa785c 8727 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8728 *cpuusage = val;
05fa785c 8729 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8730#else
8731 *cpuusage = val;
8732#endif
8733}
8734
d842de87 8735/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8736static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8737{
32cd756a 8738 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8739 u64 totalcpuusage = 0;
8740 int i;
8741
720f5498
KC
8742 for_each_present_cpu(i)
8743 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8744
8745 return totalcpuusage;
8746}
8747
0297b803
DG
8748static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8749 u64 reset)
8750{
8751 struct cpuacct *ca = cgroup_ca(cgrp);
8752 int err = 0;
8753 int i;
8754
8755 if (reset) {
8756 err = -EINVAL;
8757 goto out;
8758 }
8759
720f5498
KC
8760 for_each_present_cpu(i)
8761 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8762
0297b803
DG
8763out:
8764 return err;
8765}
8766
e9515c3c
KC
8767static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8768 struct seq_file *m)
8769{
8770 struct cpuacct *ca = cgroup_ca(cgroup);
8771 u64 percpu;
8772 int i;
8773
8774 for_each_present_cpu(i) {
8775 percpu = cpuacct_cpuusage_read(ca, i);
8776 seq_printf(m, "%llu ", (unsigned long long) percpu);
8777 }
8778 seq_printf(m, "\n");
8779 return 0;
8780}
8781
ef12fefa
BR
8782static const char *cpuacct_stat_desc[] = {
8783 [CPUACCT_STAT_USER] = "user",
8784 [CPUACCT_STAT_SYSTEM] = "system",
8785};
8786
8787static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8788 struct cgroup_map_cb *cb)
8789{
8790 struct cpuacct *ca = cgroup_ca(cgrp);
8791 int i;
8792
8793 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8794 s64 val = percpu_counter_read(&ca->cpustat[i]);
8795 val = cputime64_to_clock_t(val);
8796 cb->fill(cb, cpuacct_stat_desc[i], val);
8797 }
8798 return 0;
8799}
8800
d842de87
SV
8801static struct cftype files[] = {
8802 {
8803 .name = "usage",
f4c753b7
PM
8804 .read_u64 = cpuusage_read,
8805 .write_u64 = cpuusage_write,
d842de87 8806 },
e9515c3c
KC
8807 {
8808 .name = "usage_percpu",
8809 .read_seq_string = cpuacct_percpu_seq_read,
8810 },
ef12fefa
BR
8811 {
8812 .name = "stat",
8813 .read_map = cpuacct_stats_show,
8814 },
d842de87
SV
8815};
8816
32cd756a 8817static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8818{
32cd756a 8819 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8820}
8821
8822/*
8823 * charge this task's execution time to its accounting group.
8824 *
8825 * called with rq->lock held.
8826 */
8827static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8828{
8829 struct cpuacct *ca;
934352f2 8830 int cpu;
d842de87 8831
c40c6f85 8832 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8833 return;
8834
934352f2 8835 cpu = task_cpu(tsk);
a18b83b7
BR
8836
8837 rcu_read_lock();
8838
d842de87 8839 ca = task_ca(tsk);
d842de87 8840
934352f2 8841 for (; ca; ca = ca->parent) {
b36128c8 8842 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8843 *cpuusage += cputime;
8844 }
a18b83b7
BR
8845
8846 rcu_read_unlock();
d842de87
SV
8847}
8848
fa535a77
AB
8849/*
8850 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8851 * in cputime_t units. As a result, cpuacct_update_stats calls
8852 * percpu_counter_add with values large enough to always overflow the
8853 * per cpu batch limit causing bad SMP scalability.
8854 *
8855 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8856 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8857 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8858 */
8859#ifdef CONFIG_SMP
8860#define CPUACCT_BATCH \
8861 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8862#else
8863#define CPUACCT_BATCH 0
8864#endif
8865
ef12fefa
BR
8866/*
8867 * Charge the system/user time to the task's accounting group.
8868 */
8869static void cpuacct_update_stats(struct task_struct *tsk,
8870 enum cpuacct_stat_index idx, cputime_t val)
8871{
8872 struct cpuacct *ca;
fa535a77 8873 int batch = CPUACCT_BATCH;
ef12fefa
BR
8874
8875 if (unlikely(!cpuacct_subsys.active))
8876 return;
8877
8878 rcu_read_lock();
8879 ca = task_ca(tsk);
8880
8881 do {
fa535a77 8882 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8883 ca = ca->parent;
8884 } while (ca);
8885 rcu_read_unlock();
8886}
8887
d842de87
SV
8888struct cgroup_subsys cpuacct_subsys = {
8889 .name = "cpuacct",
8890 .create = cpuacct_create,
8891 .destroy = cpuacct_destroy,
8892 .populate = cpuacct_populate,
8893 .subsys_id = cpuacct_subsys_id,
8894};
8895#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8896
8897#ifndef CONFIG_SMP
8898
03b042bf
PM
8899void synchronize_sched_expedited(void)
8900{
fc390cde 8901 barrier();
03b042bf
PM
8902}
8903EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8904
8905#else /* #ifndef CONFIG_SMP */
8906
cc631fb7 8907static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8908
cc631fb7 8909static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8910{
969c7921
TH
8911 /*
8912 * There must be a full memory barrier on each affected CPU
8913 * between the time that try_stop_cpus() is called and the
8914 * time that it returns.
8915 *
8916 * In the current initial implementation of cpu_stop, the
8917 * above condition is already met when the control reaches
8918 * this point and the following smp_mb() is not strictly
8919 * necessary. Do smp_mb() anyway for documentation and
8920 * robustness against future implementation changes.
8921 */
cc631fb7 8922 smp_mb(); /* See above comment block. */
969c7921 8923 return 0;
03b042bf 8924}
03b042bf
PM
8925
8926/*
8927 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8928 * approach to force grace period to end quickly. This consumes
8929 * significant time on all CPUs, and is thus not recommended for
8930 * any sort of common-case code.
8931 *
8932 * Note that it is illegal to call this function while holding any
8933 * lock that is acquired by a CPU-hotplug notifier. Failing to
8934 * observe this restriction will result in deadlock.
8935 */
8936void synchronize_sched_expedited(void)
8937{
969c7921 8938 int snap, trycount = 0;
03b042bf
PM
8939
8940 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8941 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8942 get_online_cpus();
969c7921
TH
8943 while (try_stop_cpus(cpu_online_mask,
8944 synchronize_sched_expedited_cpu_stop,
94458d5e 8945 NULL) == -EAGAIN) {
03b042bf
PM
8946 put_online_cpus();
8947 if (trycount++ < 10)
8948 udelay(trycount * num_online_cpus());
8949 else {
8950 synchronize_sched();
8951 return;
8952 }
969c7921 8953 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8954 smp_mb(); /* ensure test happens before caller kfree */
8955 return;
8956 }
8957 get_online_cpus();
8958 }
969c7921 8959 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8960 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8961 put_online_cpus();
03b042bf
PM
8962}
8963EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8964
8965#endif /* #else #ifndef CONFIG_SMP */