rcu/nocb: Use separate flag to indicate offloaded ->cblist
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
22e40925 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff
PM
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
35#include <linux/percpu.h>
36#include <linux/notifier.h>
37#include <linux/cpu.h>
38#include <linux/mutex.h>
39#include <linux/time.h>
bbad9379 40#include <linux/kernel_stat.h>
a26ac245
PM
41#include <linux/wait.h>
42#include <linux/kthread.h>
ae7e81c0 43#include <uapi/linux/sched/types.h>
268bb0ce 44#include <linux/prefetch.h>
3d3b7db0
PM
45#include <linux/delay.h>
46#include <linux/stop_machine.h>
661a85dc 47#include <linux/random.h>
af658dca 48#include <linux/trace_events.h>
d1d74d14 49#include <linux/suspend.h>
a278d471 50#include <linux/ftrace.h>
d3052109 51#include <linux/tick.h>
2ccaff10 52#include <linux/sysrq.h>
c13324a5 53#include <linux/kprobes.h>
48d07c04
SAS
54#include <linux/gfp.h>
55#include <linux/oom.h>
56#include <linux/smpboot.h>
57#include <linux/jiffies.h>
58#include <linux/sched/isolation.h>
59#include "../time/tick-internal.h"
64db4cff 60
4102adab 61#include "tree.h"
29c00b4a 62#include "rcu.h"
9f77da9f 63
4102adab
PM
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9 71/*
dc5a4f29
PM
72 * Steal a bit from the bottom of ->dynticks for idle entry/exit
73 * control. Initially this is for TLB flushing.
f7f7bac9 74 */
dc5a4f29
PM
75#define RCU_DYNTICK_CTRL_MASK 0x1
76#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
77#ifndef rcu_eqs_special_exit
78#define rcu_eqs_special_exit() do { } while (0)
a8a29b3b
AB
79#endif
80
4c5273bf
PM
81static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
82 .dynticks_nesting = 1,
83 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
dc5a4f29 84 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4c5273bf 85};
358be2d3
PM
86struct rcu_state rcu_state = {
87 .level = { &rcu_state.node[0] },
358be2d3
PM
88 .gp_state = RCU_GP_IDLE,
89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
894d45bb 95 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
358be2d3 96};
27f4d280 97
a3dc2948
PM
98/* Dump rcu_node combining tree at boot to verify correct setup. */
99static bool dump_tree;
100module_param(dump_tree, bool, 0444);
48d07c04
SAS
101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102static bool use_softirq = 1;
103module_param(use_softirq, bool, 0444);
7fa27001
PM
104/* Control rcu_node-tree auto-balancing at boot time. */
105static bool rcu_fanout_exact;
106module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
107/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 111/* Number of rcu_nodes at specified level. */
e95d68d2 112int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
113int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
114
b0d30417 115/*
52d7e48b
PM
116 * The rcu_scheduler_active variable is initialized to the value
117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
119 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 120 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122 * to detect real grace periods. This variable is also used to suppress
123 * boot-time false positives from lockdep-RCU error checking. Finally, it
124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 126 */
bbad9379
PM
127int rcu_scheduler_active __read_mostly;
128EXPORT_SYMBOL_GPL(rcu_scheduler_active);
129
b0d30417
PM
130/*
131 * The rcu_scheduler_fully_active variable transitions from zero to one
132 * during the early_initcall() processing, which is after the scheduler
133 * is capable of creating new tasks. So RCU processing (for example,
134 * creating tasks for RCU priority boosting) must be delayed until after
135 * rcu_scheduler_fully_active transitions from zero to one. We also
136 * currently delay invocation of any RCU callbacks until after this point.
137 *
138 * It might later prove better for people registering RCU callbacks during
139 * early boot to take responsibility for these callbacks, but one step at
140 * a time.
141 */
142static int rcu_scheduler_fully_active __read_mostly;
143
b50912d0
PM
144static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
145 unsigned long gps, unsigned long flags);
0aa04b05
PM
146static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
147static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 148static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 149static void invoke_rcu_core(void);
63d4c8c9 150static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 151static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 152
a94844b2 153/* rcuc/rcub kthread realtime priority */
26730f55 154static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
3ffe3d1a 155module_param(kthread_prio, int, 0444);
a94844b2 156
8d7dc928 157/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 158
90040c9e
PM
159static int gp_preinit_delay;
160module_param(gp_preinit_delay, int, 0444);
161static int gp_init_delay;
162module_param(gp_init_delay, int, 0444);
163static int gp_cleanup_delay;
164module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 165
4cf439a2 166/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
167int rcu_get_gp_kthreads_prio(void)
168{
169 return kthread_prio;
170}
171EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
172
eab128e8
PM
173/*
174 * Number of grace periods between delays, normalized by the duration of
bfd090be 175 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
176 * each delay. The reason for this normalization is that it means that,
177 * for non-zero delays, the overall slowdown of grace periods is constant
178 * regardless of the duration of the delay. This arrangement balances
179 * the need for long delays to increase some race probabilities with the
180 * need for fast grace periods to increase other race probabilities.
181 */
182#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 183
0aa04b05
PM
184/*
185 * Compute the mask of online CPUs for the specified rcu_node structure.
186 * This will not be stable unless the rcu_node structure's ->lock is
187 * held, but the bit corresponding to the current CPU will be stable
188 * in most contexts.
189 */
190unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
191{
7d0ae808 192 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
193}
194
fc2219d4 195/*
7d0ae808 196 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
197 * permit this function to be invoked without holding the root rcu_node
198 * structure's ->lock, but of course results can be subject to change.
199 */
de8e8730 200static int rcu_gp_in_progress(void)
fc2219d4 201{
de8e8730 202 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
203}
204
903ee83d
PM
205/*
206 * Return the number of callbacks queued on the specified CPU.
207 * Handles both the nocbs and normal cases.
208 */
209static long rcu_get_n_cbs_cpu(int cpu)
210{
211 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
212
213 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
214 return rcu_segcblist_n_cbs(&rdp->cblist);
215 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
216}
217
d28139c4 218void rcu_softirq_qs(void)
b1f77b05 219{
45975c7d 220 rcu_qs();
d28139c4 221 rcu_preempt_deferred_qs(current);
b1f77b05 222}
64db4cff 223
2625d469
PM
224/*
225 * Record entry into an extended quiescent state. This is only to be
226 * called when not already in an extended quiescent state.
227 */
228static void rcu_dynticks_eqs_enter(void)
229{
dc5a4f29 230 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 231 int seq;
2625d469
PM
232
233 /*
b8c17e66 234 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
235 * critical sections, and we also must force ordering with the
236 * next idle sojourn.
237 */
dc5a4f29 238 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
239 /* Better be in an extended quiescent state! */
240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
241 (seq & RCU_DYNTICK_CTRL_CTR));
242 /* Better not have special action (TLB flush) pending! */
243 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
244 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
245}
246
247/*
248 * Record exit from an extended quiescent state. This is only to be
249 * called from an extended quiescent state.
250 */
251static void rcu_dynticks_eqs_exit(void)
252{
dc5a4f29 253 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 254 int seq;
2625d469
PM
255
256 /*
b8c17e66 257 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
258 * and we also must force ordering with the next RCU read-side
259 * critical section.
260 */
dc5a4f29 261 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
262 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
263 !(seq & RCU_DYNTICK_CTRL_CTR));
264 if (seq & RCU_DYNTICK_CTRL_MASK) {
dc5a4f29 265 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
b8c17e66
PM
266 smp_mb__after_atomic(); /* _exit after clearing mask. */
267 /* Prefer duplicate flushes to losing a flush. */
268 rcu_eqs_special_exit();
269 }
2625d469
PM
270}
271
272/*
273 * Reset the current CPU's ->dynticks counter to indicate that the
274 * newly onlined CPU is no longer in an extended quiescent state.
275 * This will either leave the counter unchanged, or increment it
276 * to the next non-quiescent value.
277 *
278 * The non-atomic test/increment sequence works because the upper bits
279 * of the ->dynticks counter are manipulated only by the corresponding CPU,
280 * or when the corresponding CPU is offline.
281 */
282static void rcu_dynticks_eqs_online(void)
283{
dc5a4f29 284 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2625d469 285
dc5a4f29 286 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 287 return;
dc5a4f29 288 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
2625d469
PM
289}
290
02a5c550
PM
291/*
292 * Is the current CPU in an extended quiescent state?
293 *
294 * No ordering, as we are sampling CPU-local information.
295 */
296bool rcu_dynticks_curr_cpu_in_eqs(void)
297{
dc5a4f29 298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
02a5c550 299
dc5a4f29 300 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
301}
302
8b2f63ab
PM
303/*
304 * Snapshot the ->dynticks counter with full ordering so as to allow
305 * stable comparison of this counter with past and future snapshots.
306 */
dc5a4f29 307int rcu_dynticks_snap(struct rcu_data *rdp)
8b2f63ab 308{
dc5a4f29 309 int snap = atomic_add_return(0, &rdp->dynticks);
8b2f63ab 310
b8c17e66 311 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
312}
313
02a5c550
PM
314/*
315 * Return true if the snapshot returned from rcu_dynticks_snap()
316 * indicates that RCU is in an extended quiescent state.
317 */
318static bool rcu_dynticks_in_eqs(int snap)
319{
b8c17e66 320 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
321}
322
323/*
dc5a4f29 324 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
325 * structure has spent some time in an extended quiescent state since
326 * rcu_dynticks_snap() returned the specified snapshot.
327 */
dc5a4f29 328static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 329{
dc5a4f29 330 return snap != rcu_dynticks_snap(rdp);
02a5c550
PM
331}
332
b8c17e66
PM
333/*
334 * Set the special (bottom) bit of the specified CPU so that it
335 * will take special action (such as flushing its TLB) on the
336 * next exit from an extended quiescent state. Returns true if
337 * the bit was successfully set, or false if the CPU was not in
338 * an extended quiescent state.
339 */
340bool rcu_eqs_special_set(int cpu)
341{
342 int old;
343 int new;
dc5a4f29 344 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
b8c17e66
PM
345
346 do {
dc5a4f29 347 old = atomic_read(&rdp->dynticks);
b8c17e66
PM
348 if (old & RCU_DYNTICK_CTRL_CTR)
349 return false;
350 new = old | RCU_DYNTICK_CTRL_MASK;
dc5a4f29 351 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
b8c17e66 352 return true;
6563de9d 353}
5cd37193 354
4a81e832
PM
355/*
356 * Let the RCU core know that this CPU has gone through the scheduler,
357 * which is a quiescent state. This is called when the need for a
358 * quiescent state is urgent, so we burn an atomic operation and full
359 * memory barriers to let the RCU core know about it, regardless of what
360 * this CPU might (or might not) do in the near future.
361 *
0f9be8ca 362 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 363 *
3b57a399 364 * The caller must have disabled interrupts and must not be idle.
4a81e832 365 */
395a2f09 366static void __maybe_unused rcu_momentary_dyntick_idle(void)
4a81e832 367{
3b57a399
PM
368 int special;
369
2dba13f0 370 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
dc5a4f29
PM
371 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
372 &this_cpu_ptr(&rcu_data)->dynticks);
3b57a399
PM
373 /* It is illegal to call this from idle state. */
374 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 375 rcu_preempt_deferred_qs(current);
4a81e832
PM
376}
377
45975c7d 378/**
eddded80 379 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
bb73c52b 380 *
eddded80 381 * If the current CPU is idle and running at a first-level (not nested)
45975c7d
PM
382 * interrupt from idle, return true. The caller must have at least
383 * disabled preemption.
5cd37193 384 */
45975c7d 385static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 386{
eddded80
JFG
387 /* Called only from within the scheduling-clock interrupt */
388 lockdep_assert_in_irq();
389
390 /* Check for counter underflows */
391 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
392 "RCU dynticks_nesting counter underflow!");
393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
394 "RCU dynticks_nmi_nesting counter underflow/zero!");
395
396 /* Are we at first interrupt nesting level? */
397 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
398 return false;
399
400 /* Does CPU appear to be idle from an RCU standpoint? */
401 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
5cd37193 402}
5cd37193 403
d5a9a8c3
PM
404#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
405#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
17c7798b
PM
406static long blimit = DEFAULT_RCU_BLIMIT;
407#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
408static long qhimark = DEFAULT_RCU_QHIMARK;
409#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
410static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 411
878d7439
ED
412module_param(blimit, long, 0444);
413module_param(qhimark, long, 0444);
414module_param(qlowmark, long, 0444);
3d76c082 415
026ad283
PM
416static ulong jiffies_till_first_fqs = ULONG_MAX;
417static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 418static bool rcu_kick_kthreads;
d40011f6 419
c06aed0e
PM
420/*
421 * How long the grace period must be before we start recruiting
422 * quiescent-state help from rcu_note_context_switch().
423 */
424static ulong jiffies_till_sched_qs = ULONG_MAX;
425module_param(jiffies_till_sched_qs, ulong, 0444);
85f2b60c 426static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
c06aed0e
PM
427module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
428
429/*
430 * Make sure that we give the grace-period kthread time to detect any
431 * idle CPUs before taking active measures to force quiescent states.
432 * However, don't go below 100 milliseconds, adjusted upwards for really
433 * large systems.
434 */
435static void adjust_jiffies_till_sched_qs(void)
436{
437 unsigned long j;
438
439 /* If jiffies_till_sched_qs was specified, respect the request. */
440 if (jiffies_till_sched_qs != ULONG_MAX) {
441 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
442 return;
443 }
85f2b60c 444 /* Otherwise, set to third fqs scan, but bound below on large system. */
c06aed0e
PM
445 j = READ_ONCE(jiffies_till_first_fqs) +
446 2 * READ_ONCE(jiffies_till_next_fqs);
447 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
448 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
449 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
450 WRITE_ONCE(jiffies_to_sched_qs, j);
451}
452
67abb96c
BP
453static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
454{
455 ulong j;
456 int ret = kstrtoul(val, 0, &j);
457
c06aed0e 458 if (!ret) {
67abb96c 459 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
460 adjust_jiffies_till_sched_qs();
461 }
67abb96c
BP
462 return ret;
463}
464
465static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
466{
467 ulong j;
468 int ret = kstrtoul(val, 0, &j);
469
c06aed0e 470 if (!ret) {
67abb96c 471 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
472 adjust_jiffies_till_sched_qs();
473 }
67abb96c
BP
474 return ret;
475}
476
477static struct kernel_param_ops first_fqs_jiffies_ops = {
478 .set = param_set_first_fqs_jiffies,
479 .get = param_get_ulong,
480};
481
482static struct kernel_param_ops next_fqs_jiffies_ops = {
483 .set = param_set_next_fqs_jiffies,
484 .get = param_get_ulong,
485};
486
487module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
488module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 489module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 490
8ff0b907 491static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
e3950ecd 492static int rcu_pending(void);
64db4cff
PM
493
494/*
17ef2fe9 495 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 496 */
17ef2fe9 497unsigned long rcu_get_gp_seq(void)
917963d0 498{
16fc9c60 499 return READ_ONCE(rcu_state.gp_seq);
917963d0 500}
17ef2fe9 501EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 502
291783b8
PM
503/*
504 * Return the number of RCU expedited batches completed thus far for
505 * debug & stats. Odd numbers mean that a batch is in progress, even
506 * numbers mean idle. The value returned will thus be roughly double
507 * the cumulative batches since boot.
508 */
509unsigned long rcu_exp_batches_completed(void)
510{
16fc9c60 511 return rcu_state.expedited_sequence;
291783b8
PM
512}
513EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
514
fd897573
PM
515/*
516 * Return the root node of the rcu_state structure.
517 */
518static struct rcu_node *rcu_get_root(void)
519{
520 return &rcu_state.node[0];
521}
522
69196019
PM
523/*
524 * Convert a ->gp_state value to a character string.
525 */
526static const char *gp_state_getname(short gs)
527{
528 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
529 return "???";
530 return gp_state_names[gs];
531}
532
ad0dc7f9
PM
533/*
534 * Send along grace-period-related data for rcutorture diagnostics.
535 */
536void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 537 unsigned long *gp_seq)
ad0dc7f9 538{
ad0dc7f9
PM
539 switch (test_type) {
540 case RCU_FLAVOR:
f7dd7d44
PM
541 *flags = READ_ONCE(rcu_state.gp_flags);
542 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
543 break;
544 default:
545 break;
546 }
ad0dc7f9
PM
547}
548EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549
9b2e4f18 550/*
215bba9f
PM
551 * Enter an RCU extended quiescent state, which can be either the
552 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 553 *
215bba9f
PM
554 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
555 * the possibility of usermode upcalls having messed up our count
556 * of interrupt nesting level during the prior busy period.
9b2e4f18 557 */
215bba9f 558static void rcu_eqs_enter(bool user)
9b2e4f18 559{
4c5273bf 560 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
96d3fd0d 561
4c5273bf
PM
562 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
563 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 564 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
565 rdp->dynticks_nesting == 0);
566 if (rdp->dynticks_nesting != 1) {
567 rdp->dynticks_nesting--;
215bba9f 568 return;
9b2e4f18 569 }
96d3fd0d 570
b04db8e1 571 lockdep_assert_irqs_disabled();
dc5a4f29 572 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
e68bbb26 573 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
574 rdp = this_cpu_ptr(&rcu_data);
575 do_nocb_deferred_wakeup(rdp);
198bbf81 576 rcu_prepare_for_idle();
3e310098 577 rcu_preempt_deferred_qs(current);
4c5273bf 578 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 579 rcu_dynticks_eqs_enter();
176f8f7a 580 rcu_dynticks_task_enter();
64db4cff 581}
adf5091e
FW
582
583/**
584 * rcu_idle_enter - inform RCU that current CPU is entering idle
585 *
586 * Enter idle mode, in other words, -leave- the mode in which RCU
587 * read-side critical sections can occur. (Though RCU read-side
588 * critical sections can occur in irq handlers in idle, a possibility
589 * handled by irq_enter() and irq_exit().)
590 *
c0da313e
PM
591 * If you add or remove a call to rcu_idle_enter(), be sure to test with
592 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
593 */
594void rcu_idle_enter(void)
595{
b04db8e1 596 lockdep_assert_irqs_disabled();
cb349ca9 597 rcu_eqs_enter(false);
adf5091e 598}
64db4cff 599
d1ec4c34 600#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
601/**
602 * rcu_user_enter - inform RCU that we are resuming userspace.
603 *
604 * Enter RCU idle mode right before resuming userspace. No use of RCU
605 * is permitted between this call and rcu_user_exit(). This way the
606 * CPU doesn't need to maintain the tick for RCU maintenance purposes
607 * when the CPU runs in userspace.
c0da313e
PM
608 *
609 * If you add or remove a call to rcu_user_enter(), be sure to test with
610 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
611 */
612void rcu_user_enter(void)
613{
b04db8e1 614 lockdep_assert_irqs_disabled();
d4db30af 615 rcu_eqs_enter(true);
adf5091e 616}
d1ec4c34 617#endif /* CONFIG_NO_HZ_FULL */
19dd1591 618
cf7614e1 619/*
fd581a91 620 * If we are returning from the outermost NMI handler that interrupted an
dc5a4f29 621 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
622 * to let the RCU grace-period handling know that the CPU is back to
623 * being RCU-idle.
624 *
cf7614e1 625 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
fd581a91
PM
626 * with CONFIG_RCU_EQS_DEBUG=y.
627 */
cf7614e1 628static __always_inline void rcu_nmi_exit_common(bool irq)
fd581a91 629{
4c5273bf 630 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
fd581a91
PM
631
632 /*
633 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
634 * (We are exiting an NMI handler, so RCU better be paying attention
635 * to us!)
636 */
4c5273bf 637 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
638 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
639
640 /*
641 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
642 * leave it in non-RCU-idle state.
643 */
4c5273bf 644 if (rdp->dynticks_nmi_nesting != 1) {
dc5a4f29 645 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
4c5273bf
PM
646 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
647 rdp->dynticks_nmi_nesting - 2);
fd581a91
PM
648 return;
649 }
650
651 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dc5a4f29 652 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
4c5273bf 653 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1
BP
654
655 if (irq)
656 rcu_prepare_for_idle();
657
fd581a91 658 rcu_dynticks_eqs_enter();
cf7614e1
BP
659
660 if (irq)
661 rcu_dynticks_task_enter();
662}
663
664/**
665 * rcu_nmi_exit - inform RCU of exit from NMI context
cf7614e1
BP
666 *
667 * If you add or remove a call to rcu_nmi_exit(), be sure to test
668 * with CONFIG_RCU_EQS_DEBUG=y.
669 */
670void rcu_nmi_exit(void)
671{
672 rcu_nmi_exit_common(false);
fd581a91
PM
673}
674
9b2e4f18
PM
675/**
676 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
677 *
678 * Exit from an interrupt handler, which might possibly result in entering
679 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 680 * sections can occur. The caller must have disabled interrupts.
64db4cff 681 *
9b2e4f18
PM
682 * This code assumes that the idle loop never does anything that might
683 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
684 * architecture's idle loop violates this assumption, RCU will give you what
685 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
686 *
687 * Use things like work queues to work around this limitation.
688 *
689 * You have been warned.
c0da313e
PM
690 *
691 * If you add or remove a call to rcu_irq_exit(), be sure to test with
692 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 693 */
9b2e4f18 694void rcu_irq_exit(void)
64db4cff 695{
b04db8e1 696 lockdep_assert_irqs_disabled();
cf7614e1 697 rcu_nmi_exit_common(true);
7c9906ca
PM
698}
699
700/*
701 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
702 *
703 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
704 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
705 */
706void rcu_irq_exit_irqson(void)
707{
708 unsigned long flags;
709
710 local_irq_save(flags);
711 rcu_irq_exit();
9b2e4f18
PM
712 local_irq_restore(flags);
713}
714
adf5091e
FW
715/*
716 * Exit an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
718 *
719 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
720 * allow for the possibility of usermode upcalls messing up our count of
721 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 722 */
adf5091e 723static void rcu_eqs_exit(bool user)
9b2e4f18 724{
4c5273bf 725 struct rcu_data *rdp;
84585aa8 726 long oldval;
9b2e4f18 727
b04db8e1 728 lockdep_assert_irqs_disabled();
4c5273bf
PM
729 rdp = this_cpu_ptr(&rcu_data);
730 oldval = rdp->dynticks_nesting;
1ce46ee5 731 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 732 if (oldval) {
4c5273bf 733 rdp->dynticks_nesting++;
9dd238e2 734 return;
3a592405 735 }
9dd238e2
PM
736 rcu_dynticks_task_exit();
737 rcu_dynticks_eqs_exit();
738 rcu_cleanup_after_idle();
dc5a4f29 739 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
e68bbb26 740 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
741 WRITE_ONCE(rdp->dynticks_nesting, 1);
742 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
743 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 744}
adf5091e
FW
745
746/**
747 * rcu_idle_exit - inform RCU that current CPU is leaving idle
748 *
749 * Exit idle mode, in other words, -enter- the mode in which RCU
750 * read-side critical sections can occur.
751 *
c0da313e
PM
752 * If you add or remove a call to rcu_idle_exit(), be sure to test with
753 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
754 */
755void rcu_idle_exit(void)
756{
c5d900bf
FW
757 unsigned long flags;
758
759 local_irq_save(flags);
cb349ca9 760 rcu_eqs_exit(false);
c5d900bf 761 local_irq_restore(flags);
adf5091e 762}
9b2e4f18 763
d1ec4c34 764#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
765/**
766 * rcu_user_exit - inform RCU that we are exiting userspace.
767 *
768 * Exit RCU idle mode while entering the kernel because it can
769 * run a RCU read side critical section anytime.
c0da313e
PM
770 *
771 * If you add or remove a call to rcu_user_exit(), be sure to test with
772 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
773 */
774void rcu_user_exit(void)
775{
91d1aa43 776 rcu_eqs_exit(1);
adf5091e 777}
d1ec4c34 778#endif /* CONFIG_NO_HZ_FULL */
19dd1591 779
64db4cff 780/**
cf7614e1
BP
781 * rcu_nmi_enter_common - inform RCU of entry to NMI context
782 * @irq: Is this call from rcu_irq_enter?
64db4cff 783 *
dc5a4f29 784 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
4c5273bf 785 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
786 * that the CPU is active. This implementation permits nested NMIs, as
787 * long as the nesting level does not overflow an int. (You will probably
788 * run out of stack space first.)
c0da313e 789 *
cf7614e1 790 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
c0da313e 791 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 792 */
cf7614e1 793static __always_inline void rcu_nmi_enter_common(bool irq)
64db4cff 794{
4c5273bf 795 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
84585aa8 796 long incby = 2;
64db4cff 797
734d1680 798 /* Complain about underflow. */
4c5273bf 799 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
800
801 /*
802 * If idle from RCU viewpoint, atomically increment ->dynticks
803 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
804 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
805 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
806 * to be in the outermost NMI handler that interrupted an RCU-idle
807 * period (observation due to Andy Lutomirski).
808 */
02a5c550 809 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1
BP
810
811 if (irq)
812 rcu_dynticks_task_exit();
813
2625d469 814 rcu_dynticks_eqs_exit();
cf7614e1
BP
815
816 if (irq)
817 rcu_cleanup_after_idle();
818
734d1680
PM
819 incby = 1;
820 }
bd2b879a 821 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf 822 rdp->dynticks_nmi_nesting,
dc5a4f29 823 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
4c5273bf
PM
824 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
825 rdp->dynticks_nmi_nesting + incby);
734d1680 826 barrier();
64db4cff
PM
827}
828
cf7614e1
BP
829/**
830 * rcu_nmi_enter - inform RCU of entry to NMI context
831 */
832void rcu_nmi_enter(void)
833{
834 rcu_nmi_enter_common(false);
835}
c13324a5 836NOKPROBE_SYMBOL(rcu_nmi_enter);
cf7614e1 837
64db4cff 838/**
9b2e4f18 839 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 840 *
9b2e4f18
PM
841 * Enter an interrupt handler, which might possibly result in exiting
842 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 843 * sections can occur. The caller must have disabled interrupts.
c0da313e 844 *
9b2e4f18 845 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
846 * handler that it never exits, for example when doing upcalls to user mode!
847 * This code assumes that the idle loop never does upcalls to user mode.
848 * If your architecture's idle loop does do upcalls to user mode (or does
849 * anything else that results in unbalanced calls to the irq_enter() and
850 * irq_exit() functions), RCU will give you what you deserve, good and hard.
851 * But very infrequently and irreproducibly.
9b2e4f18
PM
852 *
853 * Use things like work queues to work around this limitation.
854 *
855 * You have been warned.
c0da313e
PM
856 *
857 * If you add or remove a call to rcu_irq_enter(), be sure to test with
858 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 859 */
9b2e4f18 860void rcu_irq_enter(void)
64db4cff 861{
b04db8e1 862 lockdep_assert_irqs_disabled();
cf7614e1 863 rcu_nmi_enter_common(true);
7c9906ca 864}
734d1680 865
7c9906ca
PM
866/*
867 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
868 *
869 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
870 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
871 */
872void rcu_irq_enter_irqson(void)
873{
874 unsigned long flags;
734d1680 875
7c9906ca
PM
876 local_irq_save(flags);
877 rcu_irq_enter();
64db4cff 878 local_irq_restore(flags);
64db4cff
PM
879}
880
5c173eb8 881/**
2320bda2 882 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
64db4cff 883 *
791875d1
PM
884 * Return true if RCU is watching the running CPU, which means that this
885 * CPU can safely enter RCU read-side critical sections. In other words,
2320bda2
ZZ
886 * if the current CPU is not in its idle loop or is in an interrupt or
887 * NMI handler, return true.
64db4cff 888 */
9418fb20 889bool notrace rcu_is_watching(void)
64db4cff 890{
f534ed1f 891 bool ret;
34240697 892
46f00d18 893 preempt_disable_notrace();
791875d1 894 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 895 preempt_enable_notrace();
34240697 896 return ret;
64db4cff 897}
5c173eb8 898EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 899
bcbfdd01
PM
900/*
901 * If a holdout task is actually running, request an urgent quiescent
902 * state from its CPU. This is unsynchronized, so migrations can cause
903 * the request to go to the wrong CPU. Which is OK, all that will happen
904 * is that the CPU's next context switch will be a bit slower and next
905 * time around this task will generate another request.
906 */
907void rcu_request_urgent_qs_task(struct task_struct *t)
908{
909 int cpu;
910
911 barrier();
912 cpu = task_cpu(t);
913 if (!task_curr(t))
914 return; /* This task is not running on that CPU. */
2dba13f0 915 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
916}
917
62fde6ed 918#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
919
920/*
5554788e 921 * Is the current CPU online as far as RCU is concerned?
2036d94a 922 *
5554788e
PM
923 * Disable preemption to avoid false positives that could otherwise
924 * happen due to the current CPU number being sampled, this task being
925 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 926 * then determining that its old CPU is now offline.
c0d6d01b 927 *
5554788e
PM
928 * Disable checking if in an NMI handler because we cannot safely
929 * report errors from NMI handlers anyway. In addition, it is OK to use
930 * RCU on an offline processor during initial boot, hence the check for
931 * rcu_scheduler_fully_active.
c0d6d01b
PM
932 */
933bool rcu_lockdep_current_cpu_online(void)
934{
2036d94a
PM
935 struct rcu_data *rdp;
936 struct rcu_node *rnp;
b97d23c5 937 bool ret = false;
c0d6d01b 938
5554788e 939 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 940 return true;
c0d6d01b 941 preempt_disable();
b97d23c5
PM
942 rdp = this_cpu_ptr(&rcu_data);
943 rnp = rdp->mynode;
944 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
945 ret = true;
c0d6d01b 946 preempt_enable();
b97d23c5 947 return ret;
c0d6d01b
PM
948}
949EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
950
62fde6ed 951#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 952
9b9500da
PM
953/*
954 * We are reporting a quiescent state on behalf of some other CPU, so
955 * it is our responsibility to check for and handle potential overflow
a66ae8ae 956 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
957 * After all, the CPU might be in deep idle state, and thus executing no
958 * code whatsoever.
959 */
960static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
961{
a32e01ee 962 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
963 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
964 rnp->gp_seq))
9b9500da 965 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
966 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
967 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
968}
969
64db4cff
PM
970/*
971 * Snapshot the specified CPU's dynticks counter so that we can later
972 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 973 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 974 */
fe5ac724 975static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 976{
dc5a4f29 977 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
02a5c550 978 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 979 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 980 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 981 return 1;
7941dbde 982 }
23a9bacd 983 return 0;
64db4cff
PM
984}
985
986/*
987 * Return true if the specified CPU has passed through a quiescent
988 * state by virtue of being in or having passed through an dynticks
989 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 990 * for this same CPU, or by virtue of having been offline.
64db4cff 991 */
fe5ac724 992static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 993{
3a19b46a 994 unsigned long jtsq;
0f9be8ca 995 bool *rnhqp;
9226b10d 996 bool *ruqp;
9b9500da 997 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
998
999 /*
1000 * If the CPU passed through or entered a dynticks idle phase with
1001 * no active irq/NMI handlers, then we can safely pretend that the CPU
1002 * already acknowledged the request to pass through a quiescent
1003 * state. Either way, that CPU cannot possibly be in an RCU
1004 * read-side critical section that started before the beginning
1005 * of the current RCU grace period.
1006 */
dc5a4f29 1007 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 1008 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1009 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
1010 return 1;
1011 }
1012
f2e2df59
PM
1013 /* If waiting too long on an offline CPU, complain. */
1014 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1015 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1016 bool onl;
1017 struct rcu_node *rnp1;
1018
1019 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1020 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1021 __func__, rnp->grplo, rnp->grphi, rnp->level,
1022 (long)rnp->gp_seq, (long)rnp->completedqs);
1023 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1024 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1025 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1026 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1027 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1028 __func__, rdp->cpu, ".o"[onl],
1029 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1030 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1031 return 1; /* Break things loose after complaining. */
1032 }
1033
65d798f0 1034 /*
4a81e832 1035 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1036 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1037 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1038 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1039 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1040 * variable are safe because the assignments are repeated if this
1041 * CPU failed to pass through a quiescent state. This code
c06aed0e 1042 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1043 * is set way high.
6193c76a 1044 */
c06aed0e 1045 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1046 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1047 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1048 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1049 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
88d1bead 1050 time_after(jiffies, rcu_state.jiffies_resched))) {
0f9be8ca 1051 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1052 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1053 smp_store_release(ruqp, true);
7e28c5af
PM
1054 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1055 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1056 }
1057
28053bc7 1058 /*
c98cac60 1059 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
1060 * The above code handles this, but only for straight cond_resched().
1061 * And some in-kernel loops check need_resched() before calling
1062 * cond_resched(), which defeats the above code for CPUs that are
1063 * running in-kernel with scheduling-clock interrupts disabled.
1064 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1065 */
d3052109
PM
1066 if (tick_nohz_full_cpu(rdp->cpu) &&
1067 time_after(jiffies,
1068 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
28053bc7 1069 resched_cpu(rdp->cpu);
d3052109
PM
1070 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1071 }
1072
1073 /*
1074 * If more than halfway to RCU CPU stall-warning time, invoke
1075 * resched_cpu() more frequently to try to loosen things up a bit.
1076 * Also check to see if the CPU is getting hammered with interrupts,
1077 * but only once per grace period, just to keep the IPIs down to
1078 * a dull roar.
1079 */
1080 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1081 if (time_after(jiffies,
1082 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1083 resched_cpu(rdp->cpu);
1084 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1085 }
9b9500da 1086 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1087 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1088 (rnp->ffmask & rdp->grpmask)) {
1089 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1090 rdp->rcu_iw_pending = true;
8aa670cd 1091 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1092 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1093 }
1094 }
4914950a 1095
a82dcc76 1096 return 0;
64db4cff
PM
1097}
1098
41e80595
PM
1099/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1100static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1101 unsigned long gp_seq_req, const char *s)
0446be48 1102{
88d1bead 1103 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
abd13fdd 1104 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1105}
1106
1107/*
b73de91d 1108 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1109 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1110 * @rdp: The rcu_data corresponding to the CPU from which to start.
1111 * @gp_seq_req: The gp_seq of the grace period to start.
1112 *
41e80595 1113 * Start the specified grace period, as needed to handle newly arrived
0446be48 1114 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1115 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1116 * is reason to awaken the grace-period kthread.
0446be48 1117 *
d5cd9685
PM
1118 * The caller must hold the specified rcu_node structure's ->lock, which
1119 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1120 *
1121 * Returns true if the GP thread needs to be awakened else false.
0446be48 1122 */
df2bf8f7 1123static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1124 unsigned long gp_seq_req)
0446be48 1125{
48a7639c 1126 bool ret = false;
df2bf8f7 1127 struct rcu_node *rnp;
0446be48
PM
1128
1129 /*
360e0da6
PM
1130 * Use funnel locking to either acquire the root rcu_node
1131 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1132 * has already been recorded -- or if that grace period has in
1133 * fact already started. If there is already a grace period in
1134 * progress in a non-leaf node, no recording is needed because the
1135 * end of the grace period will scan the leaf rcu_node structures.
1136 * Note that rnp_start->lock must not be released.
0446be48 1137 */
df2bf8f7
JFG
1138 raw_lockdep_assert_held_rcu_node(rnp_start);
1139 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1140 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1141 if (rnp != rnp_start)
1142 raw_spin_lock_rcu_node(rnp);
1143 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1144 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1145 (rnp != rnp_start &&
1146 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1147 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1148 TPS("Prestarted"));
360e0da6
PM
1149 goto unlock_out;
1150 }
df2bf8f7 1151 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1152 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1153 /*
226ca5e7
JFG
1154 * We just marked the leaf or internal node, and a
1155 * grace period is in progress, which means that
1156 * rcu_gp_cleanup() will see the marking. Bail to
1157 * reduce contention.
a2165e41 1158 */
df2bf8f7 1159 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1160 TPS("Startedleaf"));
a2165e41
PM
1161 goto unlock_out;
1162 }
df2bf8f7
JFG
1163 if (rnp != rnp_start && rnp->parent != NULL)
1164 raw_spin_unlock_rcu_node(rnp);
1165 if (!rnp->parent)
360e0da6 1166 break; /* At root, and perhaps also leaf. */
0446be48
PM
1167 }
1168
360e0da6 1169 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1170 if (rcu_gp_in_progress()) {
df2bf8f7 1171 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1172 goto unlock_out;
1173 }
df2bf8f7 1174 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97
PM
1175 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1176 rcu_state.gp_req_activity = jiffies;
1177 if (!rcu_state.gp_kthread) {
df2bf8f7 1178 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1179 goto unlock_out;
0446be48 1180 }
9cbc5b97 1181 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1182 ret = true; /* Caller must wake GP kthread. */
0446be48 1183unlock_out:
ab5e869c 1184 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1185 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1186 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1187 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1188 }
df2bf8f7
JFG
1189 if (rnp != rnp_start)
1190 raw_spin_unlock_rcu_node(rnp);
48a7639c 1191 return ret;
0446be48
PM
1192}
1193
1194/*
1195 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1196 * whether any additional grace periods have been requested.
0446be48 1197 */
3481f2ea 1198static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1199{
fb31340f 1200 bool needmore;
da1df50d 1201 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1202
7a1d0f23
PM
1203 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1204 if (!needmore)
1205 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1206 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1207 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1208 return needmore;
1209}
1210
48a7639c 1211/*
1d1f898d
ZJ
1212 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1213 * an interrupt or softirq handler), and don't bother awakening when there
1214 * is nothing for the grace-period kthread to do (as in several CPUs raced
1215 * to awaken, and we lost), and finally don't try to awaken a kthread that
1216 * has not yet been created. If all those checks are passed, track some
1217 * debug information and awaken.
1218 *
1219 * So why do the self-wakeup when in an interrupt or softirq handler
1220 * in the grace-period kthread's context? Because the kthread might have
1221 * been interrupted just as it was going to sleep, and just after the final
1222 * pre-sleep check of the awaken condition. In this case, a wakeup really
1223 * is required, and is therefore supplied.
48a7639c 1224 */
532c00c9 1225static void rcu_gp_kthread_wake(void)
48a7639c 1226{
1d1f898d 1227 if ((current == rcu_state.gp_kthread &&
0f58d2ac 1228 !in_irq() && !in_serving_softirq()) ||
532c00c9
PM
1229 !READ_ONCE(rcu_state.gp_flags) ||
1230 !rcu_state.gp_kthread)
48a7639c 1231 return;
fd897573
PM
1232 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1233 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
532c00c9 1234 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1235}
1236
dc35c893 1237/*
29365e56
PM
1238 * If there is room, assign a ->gp_seq number to any callbacks on this
1239 * CPU that have not already been assigned. Also accelerate any callbacks
1240 * that were previously assigned a ->gp_seq number that has since proven
1241 * to be too conservative, which can happen if callbacks get assigned a
1242 * ->gp_seq number while RCU is idle, but with reference to a non-root
1243 * rcu_node structure. This function is idempotent, so it does not hurt
1244 * to call it repeatedly. Returns an flag saying that we should awaken
1245 * the RCU grace-period kthread.
dc35c893
PM
1246 *
1247 * The caller must hold rnp->lock with interrupts disabled.
1248 */
02f50142 1249static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1250{
b73de91d 1251 unsigned long gp_seq_req;
15fecf89 1252 bool ret = false;
dc35c893 1253
a32e01ee 1254 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1255
15fecf89
PM
1256 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1257 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1258 return false;
dc35c893
PM
1259
1260 /*
15fecf89
PM
1261 * Callbacks are often registered with incomplete grace-period
1262 * information. Something about the fact that getting exact
1263 * information requires acquiring a global lock... RCU therefore
1264 * makes a conservative estimate of the grace period number at which
1265 * a given callback will become ready to invoke. The following
1266 * code checks this estimate and improves it when possible, thus
1267 * accelerating callback invocation to an earlier grace-period
1268 * number.
dc35c893 1269 */
9cbc5b97 1270 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1271 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1272 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1273
1274 /* Trace depending on how much we were able to accelerate. */
15fecf89 1275 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1276 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1277 else
9cbc5b97 1278 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1279 return ret;
dc35c893
PM
1280}
1281
e44e73ca
PM
1282/*
1283 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1284 * rcu_node structure's ->lock be held. It consults the cached value
1285 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1286 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1287 * while holding the leaf rcu_node structure's ->lock.
1288 */
c6e09b97 1289static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1290 struct rcu_data *rdp)
1291{
1292 unsigned long c;
1293 bool needwake;
1294
1295 lockdep_assert_irqs_disabled();
c6e09b97 1296 c = rcu_seq_snap(&rcu_state.gp_seq);
e44e73ca
PM
1297 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1298 /* Old request still live, so mark recent callbacks. */
1299 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1300 return;
1301 }
1302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1303 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1304 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1305 if (needwake)
532c00c9 1306 rcu_gp_kthread_wake();
e44e73ca
PM
1307}
1308
dc35c893
PM
1309/*
1310 * Move any callbacks whose grace period has completed to the
1311 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1312 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1313 * sublist. This function is idempotent, so it does not hurt to
1314 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1315 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1316 *
1317 * The caller must hold rnp->lock with interrupts disabled.
1318 */
834f56bf 1319static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1320{
a32e01ee 1321 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1322
15fecf89
PM
1323 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1324 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1325 return false;
dc35c893
PM
1326
1327 /*
29365e56 1328 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1329 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1330 */
29365e56 1331 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1332
1333 /* Classify any remaining callbacks. */
02f50142 1334 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1335}
1336
d09b62df 1337/*
ba9fbe95
PM
1338 * Update CPU-local rcu_data state to record the beginnings and ends of
1339 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1340 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1341 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1342 */
c7e48f7b 1343static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1344{
48a7639c 1345 bool ret;
3563a438 1346 bool need_gp;
48a7639c 1347
a32e01ee 1348 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1349
67e14c1e
PM
1350 if (rdp->gp_seq == rnp->gp_seq)
1351 return false; /* Nothing to do. */
d09b62df 1352
67e14c1e
PM
1353 /* Handle the ends of any preceding grace periods first. */
1354 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1355 unlikely(READ_ONCE(rdp->gpwrap))) {
834f56bf 1356 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
9cbc5b97 1357 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1358 } else {
02f50142 1359 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
d09b62df 1360 }
398ebe60 1361
67e14c1e
PM
1362 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1363 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1364 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1365 /*
1366 * If the current grace period is waiting for this CPU,
1367 * set up to detect a quiescent state, otherwise don't
1368 * go looking for one.
1369 */
9cbc5b97 1370 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1371 need_gp = !!(rnp->qsmask & rdp->grpmask);
1372 rdp->cpu_no_qs.b.norm = need_gp;
3563a438 1373 rdp->core_needs_qs = need_gp;
6eaef633
PM
1374 zero_cpu_stall_ticks(rdp);
1375 }
67e14c1e 1376 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1377 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
3d18469a
PM
1378 rdp->gp_seq_needed = rnp->gp_seq_needed;
1379 WRITE_ONCE(rdp->gpwrap, false);
1380 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1381 return ret;
6eaef633
PM
1382}
1383
15cabdff 1384static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1385{
1386 unsigned long flags;
48a7639c 1387 bool needwake;
6eaef633
PM
1388 struct rcu_node *rnp;
1389
1390 local_irq_save(flags);
1391 rnp = rdp->mynode;
67e14c1e 1392 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1393 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1394 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1395 local_irq_restore(flags);
1396 return;
1397 }
c7e48f7b 1398 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1399 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1400 if (needwake)
532c00c9 1401 rcu_gp_kthread_wake();
6eaef633
PM
1402}
1403
22212332 1404static void rcu_gp_slow(int delay)
0f41c0dd
PM
1405{
1406 if (delay > 0 &&
22212332 1407 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1408 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1409 schedule_timeout_uninterruptible(delay);
1410}
1411
b3dbec76 1412/*
45fed3e7 1413 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1414 */
0854a05c 1415static bool rcu_gp_init(void)
b3dbec76 1416{
ec2c2976 1417 unsigned long flags;
0aa04b05 1418 unsigned long oldmask;
ec2c2976 1419 unsigned long mask;
b3dbec76 1420 struct rcu_data *rdp;
336a4f6c 1421 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1422
9cbc5b97 1423 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1424 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1425 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1426 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1427 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1428 return false;
f7be8209 1429 }
9cbc5b97 1430 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1431
de8e8730 1432 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1433 /*
1434 * Grace period already in progress, don't start another.
1435 * Not supposed to be able to happen.
1436 */
67c583a7 1437 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1438 return false;
7fdefc10
PM
1439 }
1440
7fdefc10 1441 /* Advance to a new grace period and initialize state. */
ad3832e9 1442 record_gp_stall_check_time();
ff3bb6f4 1443 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97
PM
1444 rcu_seq_start(&rcu_state.gp_seq);
1445 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1446 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1447
0aa04b05
PM
1448 /*
1449 * Apply per-leaf buffered online and offline operations to the
1450 * rcu_node tree. Note that this new grace period need not wait
1451 * for subsequent online CPUs, and that quiescent-state forcing
1452 * will handle subsequent offline CPUs.
1453 */
9cbc5b97 1454 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1455 rcu_for_each_leaf_node(rnp) {
894d45bb 1456 raw_spin_lock(&rcu_state.ofl_lock);
2a67e741 1457 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1458 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1459 !rnp->wait_blkd_tasks) {
1460 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1461 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1462 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1463 continue;
1464 }
1465
1466 /* Record old state, apply changes to ->qsmaskinit field. */
1467 oldmask = rnp->qsmaskinit;
1468 rnp->qsmaskinit = rnp->qsmaskinitnext;
1469
1470 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1471 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1472 if (!oldmask) { /* First online CPU for rcu_node. */
1473 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1474 rcu_init_new_rnp(rnp);
1475 } else if (rcu_preempt_has_tasks(rnp)) {
1476 rnp->wait_blkd_tasks = true; /* blocked tasks */
1477 } else { /* Last offline CPU and can propagate. */
0aa04b05 1478 rcu_cleanup_dead_rnp(rnp);
962aff03 1479 }
0aa04b05
PM
1480 }
1481
1482 /*
1483 * If all waited-on tasks from prior grace period are
1484 * done, and if all this rcu_node structure's CPUs are
1485 * still offline, propagate up the rcu_node tree and
1486 * clear ->wait_blkd_tasks. Otherwise, if one of this
1487 * rcu_node structure's CPUs has since come back online,
962aff03 1488 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1489 */
1490 if (rnp->wait_blkd_tasks &&
962aff03 1491 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1492 rnp->wait_blkd_tasks = false;
962aff03
PM
1493 if (!rnp->qsmaskinit)
1494 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1495 }
1496
67c583a7 1497 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1498 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1499 }
22212332 1500 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1501
1502 /*
1503 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1504 * structures for all currently online CPUs in breadth-first
1505 * order, starting from the root rcu_node structure, relying on the
1506 * layout of the tree within the rcu_state.node[] array. Note that
1507 * other CPUs will access only the leaves of the hierarchy, thus
1508 * seeing that no grace period is in progress, at least until the
1509 * corresponding leaf node has been initialized.
7fdefc10
PM
1510 *
1511 * The grace period cannot complete until the initialization
1512 * process finishes, because this kthread handles both.
1513 */
9cbc5b97 1514 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1515 rcu_for_each_node_breadth_first(rnp) {
22212332 1516 rcu_gp_slow(gp_init_delay);
ec2c2976 1517 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1518 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1519 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1520 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1521 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1522 if (rnp == rdp->mynode)
c7e48f7b 1523 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1524 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1525 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1526 rnp->level, rnp->grplo,
1527 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1528 /* Quiescent states for tasks on any now-offline CPUs. */
1529 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1530 rnp->rcu_gp_init_mask = mask;
ec2c2976 1531 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1532 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1533 else
1534 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1535 cond_resched_tasks_rcu_qs();
9cbc5b97 1536 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1537 }
b3dbec76 1538
45fed3e7 1539 return true;
7fdefc10 1540}
b3dbec76 1541
b9a425cf 1542/*
b3dae109 1543 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1544 * time.
b9a425cf 1545 */
0854a05c 1546static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1547{
336a4f6c 1548 struct rcu_node *rnp = rcu_get_root();
b9a425cf
PM
1549
1550 /* Someone like call_rcu() requested a force-quiescent-state scan. */
0854a05c 1551 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1552 if (*gfp & RCU_GP_FLAG_FQS)
1553 return true;
1554
1555 /* The current grace period has completed. */
1556 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1557 return true;
1558
1559 return false;
1560}
1561
4cdfc175
PM
1562/*
1563 * Do one round of quiescent-state forcing.
1564 */
0854a05c 1565static void rcu_gp_fqs(bool first_time)
4cdfc175 1566{
336a4f6c 1567 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1568
9cbc5b97
PM
1569 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1570 rcu_state.n_force_qs++;
77f81fe0 1571 if (first_time) {
4cdfc175 1572 /* Collect dyntick-idle snapshots. */
e9ecb780 1573 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1574 } else {
1575 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1576 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1577 }
1578 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1579 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1580 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1581 WRITE_ONCE(rcu_state.gp_flags,
1582 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1583 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1584 }
4cdfc175
PM
1585}
1586
c3854a05
PM
1587/*
1588 * Loop doing repeated quiescent-state forcing until the grace period ends.
1589 */
1590static void rcu_gp_fqs_loop(void)
1591{
1592 bool first_gp_fqs;
1593 int gf;
1594 unsigned long j;
1595 int ret;
1596 struct rcu_node *rnp = rcu_get_root();
1597
1598 first_gp_fqs = true;
c06aed0e 1599 j = READ_ONCE(jiffies_till_first_fqs);
c3854a05
PM
1600 ret = 0;
1601 for (;;) {
1602 if (!ret) {
1603 rcu_state.jiffies_force_qs = jiffies + j;
1604 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1605 jiffies + (j ? 3 * j : 2));
c3854a05
PM
1606 }
1607 trace_rcu_grace_period(rcu_state.name,
1608 READ_ONCE(rcu_state.gp_seq),
1609 TPS("fqswait"));
1610 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1611 ret = swait_event_idle_timeout_exclusive(
1612 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1613 rcu_state.gp_state = RCU_GP_DOING_FQS;
1614 /* Locking provides needed memory barriers. */
1615 /* If grace period done, leave loop. */
1616 if (!READ_ONCE(rnp->qsmask) &&
1617 !rcu_preempt_blocked_readers_cgp(rnp))
1618 break;
1619 /* If time for quiescent-state forcing, do it. */
1620 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1621 (gf & RCU_GP_FLAG_FQS)) {
1622 trace_rcu_grace_period(rcu_state.name,
1623 READ_ONCE(rcu_state.gp_seq),
1624 TPS("fqsstart"));
1625 rcu_gp_fqs(first_gp_fqs);
1626 first_gp_fqs = false;
1627 trace_rcu_grace_period(rcu_state.name,
1628 READ_ONCE(rcu_state.gp_seq),
1629 TPS("fqsend"));
1630 cond_resched_tasks_rcu_qs();
1631 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1632 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1633 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1634 } else {
1635 /* Deal with stray signal. */
1636 cond_resched_tasks_rcu_qs();
1637 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1638 WARN_ON(signal_pending(current));
1639 trace_rcu_grace_period(rcu_state.name,
1640 READ_ONCE(rcu_state.gp_seq),
1641 TPS("fqswaitsig"));
1642 ret = 1; /* Keep old FQS timing. */
1643 j = jiffies;
1644 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1645 j = 1;
1646 else
1647 j = rcu_state.jiffies_force_qs - j;
1648 }
1649 }
1650}
1651
7fdefc10
PM
1652/*
1653 * Clean up after the old grace period.
1654 */
0854a05c 1655static void rcu_gp_cleanup(void)
7fdefc10
PM
1656{
1657 unsigned long gp_duration;
48a7639c 1658 bool needgp = false;
de30ad51 1659 unsigned long new_gp_seq;
7fdefc10 1660 struct rcu_data *rdp;
336a4f6c 1661 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1662 struct swait_queue_head *sq;
b3dbec76 1663
9cbc5b97 1664 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1665 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1666 rcu_state.gp_end = jiffies;
1667 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1668 if (gp_duration > rcu_state.gp_max)
1669 rcu_state.gp_max = gp_duration;
b3dbec76 1670
7fdefc10
PM
1671 /*
1672 * We know the grace period is complete, but to everyone else
1673 * it appears to still be ongoing. But it is also the case
1674 * that to everyone else it looks like there is nothing that
1675 * they can do to advance the grace period. It is therefore
1676 * safe for us to drop the lock in order to mark the grace
1677 * period as completed in all of the rcu_node structures.
7fdefc10 1678 */
67c583a7 1679 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1680
5d4b8659 1681 /*
ff3bb6f4
PM
1682 * Propagate new ->gp_seq value to rcu_node structures so that
1683 * other CPUs don't have to wait until the start of the next grace
1684 * period to process their callbacks. This also avoids some nasty
1685 * RCU grace-period initialization races by forcing the end of
1686 * the current grace period to be completely recorded in all of
1687 * the rcu_node structures before the beginning of the next grace
1688 * period is recorded in any of the rcu_node structures.
5d4b8659 1689 */
9cbc5b97 1690 new_gp_seq = rcu_state.gp_seq;
de30ad51 1691 rcu_seq_end(&new_gp_seq);
aedf4ba9 1692 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1693 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1694 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1695 dump_blkd_tasks(rnp, 10);
5c60d25f 1696 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1697 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 1698 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1699 if (rnp == rdp->mynode)
c7e48f7b 1700 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1701 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1702 needgp = rcu_future_gp_cleanup(rnp) || needgp;
065bb78c 1703 sq = rcu_nocb_gp_get(rnp);
67c583a7 1704 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1705 rcu_nocb_gp_cleanup(sq);
cee43939 1706 cond_resched_tasks_rcu_qs();
9cbc5b97 1707 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1708 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1709 }
336a4f6c 1710 rnp = rcu_get_root();
9cbc5b97 1711 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1712
0a89e5a4 1713 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1714 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1715 rcu_seq_end(&rcu_state.gp_seq);
9cbc5b97 1716 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 1717 /* Check for GP requests since above loop. */
da1df50d 1718 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1719 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1720 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1721 TPS("CleanupMore"));
fb31340f
PM
1722 needgp = true;
1723 }
48a7639c 1724 /* Advance CBs to reduce false positives below. */
02f50142 1725 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
9cbc5b97
PM
1726 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1727 rcu_state.gp_req_activity = jiffies;
1728 trace_rcu_grace_period(rcu_state.name,
1729 READ_ONCE(rcu_state.gp_seq),
bb311ecc 1730 TPS("newreq"));
18390aea 1731 } else {
9cbc5b97
PM
1732 WRITE_ONCE(rcu_state.gp_flags,
1733 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1734 }
67c583a7 1735 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
1736}
1737
1738/*
1739 * Body of kthread that handles grace periods.
1740 */
0854a05c 1741static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 1742{
5871968d 1743 rcu_bind_gp_kthread();
7fdefc10
PM
1744 for (;;) {
1745
1746 /* Handle grace-period start. */
1747 for (;;) {
9cbc5b97
PM
1748 trace_rcu_grace_period(rcu_state.name,
1749 READ_ONCE(rcu_state.gp_seq),
63c4db78 1750 TPS("reqwait"));
9cbc5b97
PM
1751 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1752 swait_event_idle_exclusive(rcu_state.gp_wq,
1753 READ_ONCE(rcu_state.gp_flags) &
1754 RCU_GP_FLAG_INIT);
1755 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 1756 /* Locking provides needed memory barrier. */
0854a05c 1757 if (rcu_gp_init())
7fdefc10 1758 break;
cee43939 1759 cond_resched_tasks_rcu_qs();
9cbc5b97 1760 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 1761 WARN_ON(signal_pending(current));
9cbc5b97
PM
1762 trace_rcu_grace_period(rcu_state.name,
1763 READ_ONCE(rcu_state.gp_seq),
63c4db78 1764 TPS("reqwaitsig"));
7fdefc10 1765 }
cabc49c1 1766
4cdfc175 1767 /* Handle quiescent-state forcing. */
c3854a05 1768 rcu_gp_fqs_loop();
4cdfc175
PM
1769
1770 /* Handle grace-period end. */
9cbc5b97 1771 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 1772 rcu_gp_cleanup();
9cbc5b97 1773 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 1774 }
b3dbec76
PM
1775}
1776
f41d911f 1777/*
49918a54
PM
1778 * Report a full set of quiescent states to the rcu_state data structure.
1779 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1780 * another grace period is required. Whether we wake the grace-period
1781 * kthread or it awakens itself for the next round of quiescent-state
1782 * forcing, that kthread will clean up after the just-completed grace
1783 * period. Note that the caller must hold rnp->lock, which is released
1784 * before return.
f41d911f 1785 */
aff4e9ed 1786static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 1787 __releases(rcu_get_root()->lock)
f41d911f 1788{
336a4f6c 1789 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 1790 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
1791 WRITE_ONCE(rcu_state.gp_flags,
1792 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 1793 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 1794 rcu_gp_kthread_wake();
f41d911f
PM
1795}
1796
64db4cff 1797/*
d3f6bad3
PM
1798 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1799 * Allows quiescent states for a group of CPUs to be reported at one go
1800 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
1801 * must be represented by the same rcu_node structure (which need not be a
1802 * leaf rcu_node structure, though it often will be). The gps parameter
1803 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 1804 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 1805 * must be held upon entry, and it is released before return.
ec2c2976
PM
1806 *
1807 * As a special case, if mask is zero, the bit-already-cleared check is
1808 * disabled. This allows propagating quiescent state due to resumed tasks
1809 * during grace-period initialization.
64db4cff 1810 */
b50912d0
PM
1811static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1812 unsigned long gps, unsigned long flags)
64db4cff
PM
1813 __releases(rnp->lock)
1814{
654e9533 1815 unsigned long oldmask = 0;
28ecd580
PM
1816 struct rcu_node *rnp_c;
1817
a32e01ee 1818 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1819
64db4cff
PM
1820 /* Walk up the rcu_node hierarchy. */
1821 for (;;) {
ec2c2976 1822 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 1823
654e9533
PM
1824 /*
1825 * Our bit has already been cleared, or the
1826 * relevant grace period is already over, so done.
1827 */
67c583a7 1828 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1829 return;
1830 }
654e9533 1831 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 1832 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 1833 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 1834 rnp->qsmask &= ~mask;
67a0edbf 1835 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
1836 mask, rnp->qsmask, rnp->level,
1837 rnp->grplo, rnp->grphi,
1838 !!rnp->gp_tasks);
27f4d280 1839 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1840
1841 /* Other bits still set at this level, so done. */
67c583a7 1842 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1843 return;
1844 }
d43a5d32 1845 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
1846 mask = rnp->grpmask;
1847 if (rnp->parent == NULL) {
1848
1849 /* No more levels. Exit loop holding root lock. */
1850
1851 break;
1852 }
67c583a7 1853 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 1854 rnp_c = rnp;
64db4cff 1855 rnp = rnp->parent;
2a67e741 1856 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 1857 oldmask = rnp_c->qsmask;
64db4cff
PM
1858 }
1859
1860 /*
1861 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1862 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1863 * to clean up and start the next grace period if one is needed.
64db4cff 1864 */
aff4e9ed 1865 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
1866}
1867
cc99a310
PM
1868/*
1869 * Record a quiescent state for all tasks that were previously queued
1870 * on the specified rcu_node structure and that were blocking the current
49918a54 1871 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
1872 * irqs disabled, and this lock is released upon return, but irqs remain
1873 * disabled.
1874 */
17a8212b 1875static void __maybe_unused
139ad4da 1876rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
1877 __releases(rnp->lock)
1878{
654e9533 1879 unsigned long gps;
cc99a310
PM
1880 unsigned long mask;
1881 struct rcu_node *rnp_p;
1882
a32e01ee 1883 raw_lockdep_assert_held_rcu_node(rnp);
45975c7d 1884 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
c74859d1
PM
1885 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1886 rnp->qsmask != 0) {
67c583a7 1887 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
1888 return; /* Still need more quiescent states! */
1889 }
1890
77cfc7bf 1891 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
1892 rnp_p = rnp->parent;
1893 if (rnp_p == NULL) {
1894 /*
a77da14c
PM
1895 * Only one rcu_node structure in the tree, so don't
1896 * try to report up to its nonexistent parent!
cc99a310 1897 */
aff4e9ed 1898 rcu_report_qs_rsp(flags);
cc99a310
PM
1899 return;
1900 }
1901
c9a24e2d
PM
1902 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1903 gps = rnp->gp_seq;
cc99a310 1904 mask = rnp->grpmask;
67c583a7 1905 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 1906 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 1907 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
1908}
1909
64db4cff 1910/*
d3f6bad3 1911 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 1912 * structure. This must be called from the specified CPU.
64db4cff
PM
1913 */
1914static void
33085c46 1915rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
1916{
1917 unsigned long flags;
1918 unsigned long mask;
48a7639c 1919 bool needwake;
64db4cff
PM
1920 struct rcu_node *rnp;
1921
1922 rnp = rdp->mynode;
2a67e741 1923 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
1924 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1925 rdp->gpwrap) {
64db4cff
PM
1926
1927 /*
e4cc1f22
PM
1928 * The grace period in which this quiescent state was
1929 * recorded has ended, so don't report it upwards.
1930 * We will instead need a new quiescent state that lies
1931 * within the current grace period.
64db4cff 1932 */
5b74c458 1933 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 1934 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1935 return;
1936 }
1937 mask = rdp->grpmask;
b2eb85b4 1938 rdp->core_needs_qs = false;
64db4cff 1939 if ((rnp->qsmask & mask) == 0) {
67c583a7 1940 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1941 } else {
64db4cff
PM
1942 /*
1943 * This GP can't end until cpu checks in, so all of our
1944 * callbacks can be processed during the next GP.
1945 */
02f50142 1946 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 1947
b50912d0 1948 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 1949 /* ^^^ Released rnp->lock */
48a7639c 1950 if (needwake)
532c00c9 1951 rcu_gp_kthread_wake();
64db4cff
PM
1952 }
1953}
1954
1955/*
1956 * Check to see if there is a new grace period of which this CPU
1957 * is not yet aware, and if so, set up local rcu_data state for it.
1958 * Otherwise, see if this CPU has just passed through its first
1959 * quiescent state for this grace period, and record that fact if so.
1960 */
1961static void
8087d3e3 1962rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 1963{
05eb552b 1964 /* Check for grace-period ends and beginnings. */
15cabdff 1965 note_gp_changes(rdp);
64db4cff
PM
1966
1967 /*
1968 * Does this CPU still need to do its part for current grace period?
1969 * If no, return and let the other CPUs do their part as well.
1970 */
97c668b8 1971 if (!rdp->core_needs_qs)
64db4cff
PM
1972 return;
1973
1974 /*
1975 * Was there a quiescent state since the beginning of the grace
1976 * period? If no, then exit and wait for the next call.
1977 */
3a19b46a 1978 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
1979 return;
1980
d3f6bad3
PM
1981 /*
1982 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1983 * judge of that).
1984 */
33085c46 1985 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
1986}
1987
b1420f1c 1988/*
780cd590
PM
1989 * Near the end of the offline process. Trace the fact that this CPU
1990 * is going offline.
b1420f1c 1991 */
780cd590 1992int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 1993{
4f5fbd78
YS
1994 bool blkd;
1995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1996 struct rcu_node *rnp = rdp->mynode;
b1420f1c 1997
ea46351c 1998 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 1999 return 0;
ea46351c 2000
4f5fbd78 2001 blkd = !!(rnp->qsmask & rdp->grpmask);
780cd590 2002 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
477351f7 2003 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 2004 return 0;
64db4cff
PM
2005}
2006
8af3a5e7
PM
2007/*
2008 * All CPUs for the specified rcu_node structure have gone offline,
2009 * and all tasks that were preempted within an RCU read-side critical
2010 * section while running on one of those CPUs have since exited their RCU
2011 * read-side critical section. Some other CPU is reporting this fact with
2012 * the specified rcu_node structure's ->lock held and interrupts disabled.
2013 * This function therefore goes up the tree of rcu_node structures,
2014 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2015 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2016 * updated.
8af3a5e7
PM
2017 *
2018 * This function does check that the specified rcu_node structure has
2019 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2020 * prematurely. That said, invoking it after the fact will cost you
2021 * a needless lock acquisition. So once it has done its work, don't
2022 * invoke it again.
2023 */
2024static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2025{
2026 long mask;
2027 struct rcu_node *rnp = rnp_leaf;
2028
962aff03 2029 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2030 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2031 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2032 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2033 return;
2034 for (;;) {
2035 mask = rnp->grpmask;
2036 rnp = rnp->parent;
2037 if (!rnp)
2038 break;
2a67e741 2039 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2040 rnp->qsmaskinit &= ~mask;
962aff03
PM
2041 /* Between grace periods, so better already be zero! */
2042 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2043 if (rnp->qsmaskinit) {
67c583a7
BF
2044 raw_spin_unlock_rcu_node(rnp);
2045 /* irqs remain disabled. */
8af3a5e7
PM
2046 return;
2047 }
67c583a7 2048 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2049 }
2050}
2051
64db4cff 2052/*
e5601400 2053 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2054 * this fact from process context. Do the remainder of the cleanup.
2055 * There can only be one CPU hotplug operation at a time, so no need for
2056 * explicit locking.
64db4cff 2057 */
780cd590 2058int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2059{
da1df50d 2060 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2061 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2062
ea46351c 2063 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2064 return 0;
ea46351c 2065
2036d94a 2066 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2067 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2068 /* Do any needed no-CB deferred wakeups from this CPU. */
2069 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2070 return 0;
64db4cff
PM
2071}
2072
64db4cff
PM
2073/*
2074 * Invoke any RCU callbacks that have made it to the end of their grace
2075 * period. Thottle as specified by rdp->blimit.
2076 */
5bb5d09c 2077static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2078{
2079 unsigned long flags;
15fecf89
PM
2080 struct rcu_head *rhp;
2081 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2082 long bl, count;
64db4cff 2083
dc35c893 2084 /* If no callbacks are ready, just return. */
15fecf89 2085 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2086 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2087 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2088 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2089 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2090 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2091 need_resched(), is_idle_task(current),
2092 rcu_is_callbacks_kthread());
64db4cff 2093 return;
29c00b4a 2094 }
64db4cff
PM
2095
2096 /*
2097 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2098 * races with call_rcu() from interrupt handlers. Leave the
2099 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2100 */
2101 local_irq_save(flags);
8146c4e2 2102 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2103 bl = rdp->blimit;
3c779dfe
PM
2104 trace_rcu_batch_start(rcu_state.name,
2105 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
15fecf89
PM
2106 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2107 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2108 local_irq_restore(flags);
2109
2110 /* Invoke callbacks. */
15fecf89
PM
2111 rhp = rcu_cblist_dequeue(&rcl);
2112 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2113 debug_rcu_head_unqueue(rhp);
3c779dfe 2114 if (__rcu_reclaim(rcu_state.name, rhp))
15fecf89
PM
2115 rcu_cblist_dequeued_lazy(&rcl);
2116 /*
2117 * Stop only if limit reached and CPU has something to do.
2118 * Note: The rcl structure counts down from zero.
2119 */
4b27f20b 2120 if (-rcl.len >= bl &&
dff1672d
PM
2121 (need_resched() ||
2122 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2123 break;
2124 }
2125
2126 local_irq_save(flags);
4b27f20b 2127 count = -rcl.len;
3c779dfe 2128 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2129 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2130
15fecf89
PM
2131 /* Update counts and requeue any remaining callbacks. */
2132 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2133 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2134 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2135
2136 /* Reinstate batch limit if we have worked down the excess. */
15fecf89 2137 count = rcu_segcblist_n_cbs(&rdp->cblist);
d5a9a8c3 2138 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
64db4cff
PM
2139 rdp->blimit = blimit;
2140
37c72e56 2141 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2142 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2143 rdp->qlen_last_fqs_check = 0;
3c779dfe 2144 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2145 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2146 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2147
2148 /*
2149 * The following usually indicates a double call_rcu(). To track
2150 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2151 */
15fecf89 2152 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2153
64db4cff
PM
2154 local_irq_restore(flags);
2155
e0f23060 2156 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2157 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2158 invoke_rcu_core();
64db4cff
PM
2159}
2160
2161/*
c98cac60
PM
2162 * This function is invoked from each scheduling-clock interrupt,
2163 * and checks to see if this CPU is in a non-context-switch quiescent
2164 * state, for example, user mode or idle loop. It also schedules RCU
2165 * core processing. If the current grace period has gone on too long,
2166 * it will ask the scheduler to manufacture a context switch for the sole
2167 * purpose of providing a providing the needed quiescent state.
64db4cff 2168 */
c98cac60 2169void rcu_sched_clock_irq(int user)
64db4cff 2170{
f7f7bac9 2171 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2172 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2173 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2174 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2175 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2176 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2177 set_tsk_need_resched(current);
2178 set_preempt_need_resched();
2179 }
2dba13f0 2180 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2181 }
c98cac60 2182 rcu_flavor_sched_clock_irq(user);
e3950ecd 2183 if (rcu_pending())
a46e0899 2184 invoke_rcu_core();
07f27570 2185
f7f7bac9 2186 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2187}
2188
64db4cff 2189/*
5d8a752e
ZZ
2190 * Scan the leaf rcu_node structures. For each structure on which all
2191 * CPUs have reported a quiescent state and on which there are tasks
2192 * blocking the current grace period, initiate RCU priority boosting.
2193 * Otherwise, invoke the specified function to check dyntick state for
2194 * each CPU that has not yet reported a quiescent state.
64db4cff 2195 */
8ff0b907 2196static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2197{
64db4cff
PM
2198 int cpu;
2199 unsigned long flags;
2200 unsigned long mask;
a0b6c9a7 2201 struct rcu_node *rnp;
64db4cff 2202
aedf4ba9 2203 rcu_for_each_leaf_node(rnp) {
cee43939 2204 cond_resched_tasks_rcu_qs();
64db4cff 2205 mask = 0;
2a67e741 2206 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2207 if (rnp->qsmask == 0) {
45975c7d 2208 if (!IS_ENABLED(CONFIG_PREEMPT) ||
a77da14c
PM
2209 rcu_preempt_blocked_readers_cgp(rnp)) {
2210 /*
2211 * No point in scanning bits because they
2212 * are all zero. But we might need to
2213 * priority-boost blocked readers.
2214 */
2215 rcu_initiate_boost(rnp, flags);
2216 /* rcu_initiate_boost() releases rnp->lock */
2217 continue;
2218 }
92816435
PM
2219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2220 continue;
64db4cff 2221 }
bc75e999
MR
2222 for_each_leaf_node_possible_cpu(rnp, cpu) {
2223 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2224 if ((rnp->qsmask & bit) != 0) {
da1df50d 2225 if (f(per_cpu_ptr(&rcu_data, cpu)))
0edd1b17
PM
2226 mask |= bit;
2227 }
64db4cff 2228 }
45f014c5 2229 if (mask != 0) {
c9a24e2d 2230 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2231 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2232 } else {
2233 /* Nothing to do here, so just drop the lock. */
67c583a7 2234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2235 }
64db4cff 2236 }
64db4cff
PM
2237}
2238
2239/*
2240 * Force quiescent states on reluctant CPUs, and also detect which
2241 * CPUs are in dyntick-idle mode.
2242 */
cd920e5a 2243void rcu_force_quiescent_state(void)
64db4cff
PM
2244{
2245 unsigned long flags;
394f2769
PM
2246 bool ret;
2247 struct rcu_node *rnp;
2248 struct rcu_node *rnp_old = NULL;
2249
2250 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2251 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2252 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2253 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2254 !raw_spin_trylock(&rnp->fqslock);
2255 if (rnp_old != NULL)
2256 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2257 if (ret)
394f2769 2258 return;
394f2769
PM
2259 rnp_old = rnp;
2260 }
336a4f6c 2261 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2262
394f2769 2263 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2264 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2265 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2266 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2267 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2268 return; /* Someone beat us to it. */
46a1e34e 2269 }
67a0edbf
PM
2270 WRITE_ONCE(rcu_state.gp_flags,
2271 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2272 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2273 rcu_gp_kthread_wake();
64db4cff 2274}
cd920e5a 2275EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2276
fb60e533 2277/* Perform RCU core processing work for the current CPU. */
48d07c04 2278static __latent_entropy void rcu_core(void)
64db4cff
PM
2279{
2280 unsigned long flags;
da1df50d 2281 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2282 struct rcu_node *rnp = rdp->mynode;
64db4cff 2283
b049fdf8
PM
2284 if (cpu_is_offline(smp_processor_id()))
2285 return;
2286 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2287 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2288
3e310098 2289 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2290 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2291 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2292 } else if (rcu_preempt_need_deferred_qs(current)) {
2293 set_tsk_need_resched(current);
2294 set_preempt_need_resched();
2295 }
3e310098 2296
64db4cff 2297 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2298 rcu_check_quiescent_state(rdp);
64db4cff 2299
bd7af846 2300 /* No grace period and unregistered callbacks? */
de8e8730 2301 if (!rcu_gp_in_progress() &&
bd7af846
PM
2302 rcu_segcblist_is_enabled(&rdp->cblist)) {
2303 local_irq_save(flags);
e44e73ca 2304 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2305 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2306 local_irq_restore(flags);
64db4cff
PM
2307 }
2308
791416c4 2309 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2310
64db4cff 2311 /* If there are callbacks ready, invoke them. */
43e903ad
PM
2312 if (rcu_segcblist_ready_cbs(&rdp->cblist) &&
2313 likely(READ_ONCE(rcu_scheduler_fully_active)))
2314 rcu_do_batch(rdp);
96d3fd0d
PM
2315
2316 /* Do any needed deferred wakeups of rcuo kthreads. */
2317 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2318 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2319}
2320
48d07c04
SAS
2321static void rcu_core_si(struct softirq_action *h)
2322{
2323 rcu_core();
2324}
2325
2326static void rcu_wake_cond(struct task_struct *t, int status)
2327{
2328 /*
2329 * If the thread is yielding, only wake it when this
2330 * is invoked from idle
2331 */
2332 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2333 wake_up_process(t);
2334}
2335
2336static void invoke_rcu_core_kthread(void)
2337{
2338 struct task_struct *t;
2339 unsigned long flags;
2340
2341 local_irq_save(flags);
2342 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2343 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2344 if (t != NULL && t != current)
2345 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2346 local_irq_restore(flags);
2347}
2348
48d07c04
SAS
2349/*
2350 * Wake up this CPU's rcuc kthread to do RCU core processing.
2351 */
a46e0899 2352static void invoke_rcu_core(void)
09223371 2353{
48d07c04
SAS
2354 if (!cpu_online(smp_processor_id()))
2355 return;
2356 if (use_softirq)
b0f74036 2357 raise_softirq(RCU_SOFTIRQ);
48d07c04
SAS
2358 else
2359 invoke_rcu_core_kthread();
2360}
2361
2362static void rcu_cpu_kthread_park(unsigned int cpu)
2363{
2364 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2365}
2366
2367static int rcu_cpu_kthread_should_run(unsigned int cpu)
2368{
2369 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2370}
2371
2372/*
2373 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2374 * the RCU softirq used in configurations of RCU that do not support RCU
2375 * priority boosting.
2376 */
2377static void rcu_cpu_kthread(unsigned int cpu)
2378{
2379 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2380 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2381 int spincnt;
2382
2383 for (spincnt = 0; spincnt < 10; spincnt++) {
2384 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2385 local_bh_disable();
2386 *statusp = RCU_KTHREAD_RUNNING;
2387 local_irq_disable();
2388 work = *workp;
2389 *workp = 0;
2390 local_irq_enable();
2391 if (work)
2392 rcu_core();
2393 local_bh_enable();
2394 if (*workp == 0) {
2395 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396 *statusp = RCU_KTHREAD_WAITING;
2397 return;
2398 }
2399 }
2400 *statusp = RCU_KTHREAD_YIELDING;
2401 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402 schedule_timeout_interruptible(2);
2403 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404 *statusp = RCU_KTHREAD_WAITING;
2405}
2406
2407static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2408 .store = &rcu_data.rcu_cpu_kthread_task,
2409 .thread_should_run = rcu_cpu_kthread_should_run,
2410 .thread_fn = rcu_cpu_kthread,
2411 .thread_comm = "rcuc/%u",
2412 .setup = rcu_cpu_kthread_setup,
2413 .park = rcu_cpu_kthread_park,
2414};
2415
2416/*
2417 * Spawn per-CPU RCU core processing kthreads.
2418 */
2419static int __init rcu_spawn_core_kthreads(void)
2420{
2421 int cpu;
2422
2423 for_each_possible_cpu(cpu)
2424 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2425 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2426 return 0;
2427 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2428 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2429 return 0;
09223371 2430}
48d07c04 2431early_initcall(rcu_spawn_core_kthreads);
09223371 2432
29154c57
PM
2433/*
2434 * Handle any core-RCU processing required by a call_rcu() invocation.
2435 */
5c7d8967
PM
2436static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2437 unsigned long flags)
64db4cff 2438{
62fde6ed
PM
2439 /*
2440 * If called from an extended quiescent state, invoke the RCU
2441 * core in order to force a re-evaluation of RCU's idleness.
2442 */
9910affa 2443 if (!rcu_is_watching())
62fde6ed
PM
2444 invoke_rcu_core();
2445
a16b7a69 2446 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2447 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2448 return;
64db4cff 2449
37c72e56
PM
2450 /*
2451 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2452 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2453 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2454 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2455 * is the only one waiting for a grace period to complete.
2456 */
15fecf89
PM
2457 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2458 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2459
2460 /* Are we ignoring a completed grace period? */
15cabdff 2461 note_gp_changes(rdp);
b52573d2
PM
2462
2463 /* Start a new grace period if one not already started. */
de8e8730 2464 if (!rcu_gp_in_progress()) {
c6e09b97 2465 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2466 } else {
2467 /* Give the grace period a kick. */
d5a9a8c3 2468 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
5c7d8967 2469 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2470 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2471 rcu_force_quiescent_state();
5c7d8967 2472 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2473 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2474 }
4cdfc175 2475 }
29154c57
PM
2476}
2477
ae150184
PM
2478/*
2479 * RCU callback function to leak a callback.
2480 */
2481static void rcu_leak_callback(struct rcu_head *rhp)
2482{
2483}
2484
3fbfbf7a
PM
2485/*
2486 * Helper function for call_rcu() and friends. The cpu argument will
2487 * normally be -1, indicating "currently running CPU". It may specify
dd46a788 2488 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
3fbfbf7a
PM
2489 * is expected to specify a CPU.
2490 */
64db4cff 2491static void
5c7d8967 2492__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
64db4cff
PM
2493{
2494 unsigned long flags;
2495 struct rcu_data *rdp;
2496
b8f2ed53
PM
2497 /* Misaligned rcu_head! */
2498 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2499
ae150184 2500 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2501 /*
2502 * Probable double call_rcu(), so leak the callback.
2503 * Use rcu:rcu_callback trace event to find the previous
2504 * time callback was passed to __call_rcu().
2505 */
d75f773c 2506 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
fa3c6647 2507 head, head->func);
7d0ae808 2508 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2509 return;
2510 }
64db4cff
PM
2511 head->func = func;
2512 head->next = NULL;
64db4cff 2513 local_irq_save(flags);
da1df50d 2514 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2515
2516 /* Add the callback to our list. */
15fecf89 2517 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2518 int offline;
2519
2520 if (cpu != -1)
da1df50d 2521 rdp = per_cpu_ptr(&rcu_data, cpu);
143da9c2
PM
2522 if (likely(rdp->mynode)) {
2523 /* Post-boot, so this should be for a no-CBs CPU. */
2524 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2525 WARN_ON_ONCE(offline);
2526 /* Offline CPU, _call_rcu() illegal, leak callback. */
2527 local_irq_restore(flags);
2528 return;
2529 }
2530 /*
2531 * Very early boot, before rcu_init(). Initialize if needed
2532 * and then drop through to queue the callback.
2533 */
08543bda 2534 WARN_ON_ONCE(cpu != -1);
34404ca8 2535 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2536 if (rcu_segcblist_empty(&rdp->cblist))
2537 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2538 }
15fecf89 2539 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
d4c08f2a 2540 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2541 trace_rcu_kfree_callback(rcu_state.name, head,
2542 (unsigned long)func,
15fecf89
PM
2543 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2544 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2545 else
3c779dfe 2546 trace_rcu_callback(rcu_state.name, head,
15fecf89
PM
2547 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2549
29154c57 2550 /* Go handle any RCU core processing required. */
5c7d8967 2551 __call_rcu_core(rdp, head, flags);
64db4cff
PM
2552 local_irq_restore(flags);
2553}
2554
a68a2bb2 2555/**
45975c7d 2556 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2557 * @head: structure to be used for queueing the RCU updates.
2558 * @func: actual callback function to be invoked after the grace period
2559 *
2560 * The callback function will be invoked some time after a full grace
45975c7d
PM
2561 * period elapses, in other words after all pre-existing RCU read-side
2562 * critical sections have completed. However, the callback function
2563 * might well execute concurrently with RCU read-side critical sections
2564 * that started after call_rcu() was invoked. RCU read-side critical
2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566 * may be nested. In addition, regions of code across which interrupts,
2567 * preemption, or softirqs have been disabled also serve as RCU read-side
2568 * critical sections. This includes hardware interrupt handlers, softirq
2569 * handlers, and NMI handlers.
2570 *
2571 * Note that all CPUs must agree that the grace period extended beyond
2572 * all pre-existing RCU read-side critical section. On systems with more
2573 * than one CPU, this means that when "func()" is invoked, each CPU is
2574 * guaranteed to have executed a full memory barrier since the end of its
2575 * last RCU read-side critical section whose beginning preceded the call
2576 * to call_rcu(). It also means that each CPU executing an RCU read-side
2577 * critical section that continues beyond the start of "func()" must have
2578 * executed a memory barrier after the call_rcu() but before the beginning
2579 * of that RCU read-side critical section. Note that these guarantees
2580 * include CPUs that are offline, idle, or executing in user mode, as
2581 * well as CPUs that are executing in the kernel.
2582 *
2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584 * resulting RCU callback function "func()", then both CPU A and CPU B are
2585 * guaranteed to execute a full memory barrier during the time interval
2586 * between the call to call_rcu() and the invocation of "func()" -- even
2587 * if CPU A and CPU B are the same CPU (but again only if the system has
2588 * more than one CPU).
2589 */
2590void call_rcu(struct rcu_head *head, rcu_callback_t func)
2591{
5c7d8967 2592 __call_rcu(head, func, -1, 0);
45975c7d
PM
2593}
2594EXPORT_SYMBOL_GPL(call_rcu);
64db4cff 2595
495aa969
ACB
2596/*
2597 * Queue an RCU callback for lazy invocation after a grace period.
2598 * This will likely be later named something like "call_rcu_lazy()",
2599 * but this change will require some way of tagging the lazy RCU
2600 * callbacks in the list of pending callbacks. Until then, this
2601 * function may only be called from __kfree_rcu().
2602 */
98ece508 2603void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 2604{
5c7d8967 2605 __call_rcu(head, func, -1, 1);
495aa969
ACB
2606}
2607EXPORT_SYMBOL_GPL(kfree_call_rcu);
2608
e5bc3af7
PM
2609/*
2610 * During early boot, any blocking grace-period wait automatically
2611 * implies a grace period. Later on, this is never the case for PREEMPT.
2612 *
2613 * Howevr, because a context switch is a grace period for !PREEMPT, any
2614 * blocking grace-period wait automatically implies a grace period if
2615 * there is only one CPU online at any point time during execution of
2616 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2617 * occasionally incorrectly indicate that there are multiple CPUs online
2618 * when there was in fact only one the whole time, as this just adds some
2619 * overhead: RCU still operates correctly.
2620 */
2621static int rcu_blocking_is_gp(void)
2622{
2623 int ret;
2624
2625 if (IS_ENABLED(CONFIG_PREEMPT))
2626 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2627 might_sleep(); /* Check for RCU read-side critical section. */
2628 preempt_disable();
2629 ret = num_online_cpus() <= 1;
2630 preempt_enable();
2631 return ret;
2632}
2633
2634/**
2635 * synchronize_rcu - wait until a grace period has elapsed.
2636 *
2637 * Control will return to the caller some time after a full grace
2638 * period has elapsed, in other words after all currently executing RCU
2639 * read-side critical sections have completed. Note, however, that
2640 * upon return from synchronize_rcu(), the caller might well be executing
2641 * concurrently with new RCU read-side critical sections that began while
2642 * synchronize_rcu() was waiting. RCU read-side critical sections are
2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644 * In addition, regions of code across which interrupts, preemption, or
2645 * softirqs have been disabled also serve as RCU read-side critical
2646 * sections. This includes hardware interrupt handlers, softirq handlers,
2647 * and NMI handlers.
2648 *
2649 * Note that this guarantee implies further memory-ordering guarantees.
2650 * On systems with more than one CPU, when synchronize_rcu() returns,
2651 * each CPU is guaranteed to have executed a full memory barrier since
2652 * the end of its last RCU read-side critical section whose beginning
2653 * preceded the call to synchronize_rcu(). In addition, each CPU having
2654 * an RCU read-side critical section that extends beyond the return from
2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656 * after the beginning of synchronize_rcu() and before the beginning of
2657 * that RCU read-side critical section. Note that these guarantees include
2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659 * that are executing in the kernel.
2660 *
2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663 * to have executed a full memory barrier during the execution of
2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665 * again only if the system has more than one CPU).
2666 */
2667void synchronize_rcu(void)
2668{
2669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2670 lock_is_held(&rcu_lock_map) ||
2671 lock_is_held(&rcu_sched_lock_map),
2672 "Illegal synchronize_rcu() in RCU read-side critical section");
2673 if (rcu_blocking_is_gp())
2674 return;
2675 if (rcu_gp_is_expedited())
2676 synchronize_rcu_expedited();
2677 else
2678 wait_rcu_gp(call_rcu);
2679}
2680EXPORT_SYMBOL_GPL(synchronize_rcu);
2681
765a3f4f
PM
2682/**
2683 * get_state_synchronize_rcu - Snapshot current RCU state
2684 *
2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686 * to determine whether or not a full grace period has elapsed in the
2687 * meantime.
2688 */
2689unsigned long get_state_synchronize_rcu(void)
2690{
2691 /*
2692 * Any prior manipulation of RCU-protected data must happen
e4be81a2 2693 * before the load from ->gp_seq.
765a3f4f
PM
2694 */
2695 smp_mb(); /* ^^^ */
16fc9c60 2696 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
2697}
2698EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2699
2700/**
2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2702 *
2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2704 *
2705 * If a full RCU grace period has elapsed since the earlier call to
2706 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2707 * synchronize_rcu() to wait for a full grace period.
2708 *
2709 * Yes, this function does not take counter wrap into account. But
2710 * counter wrap is harmless. If the counter wraps, we have waited for
2711 * more than 2 billion grace periods (and way more on a 64-bit system!),
2712 * so waiting for one additional grace period should be just fine.
2713 */
2714void cond_synchronize_rcu(unsigned long oldstate)
2715{
16fc9c60 2716 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 2717 synchronize_rcu();
e4be81a2
PM
2718 else
2719 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
2720}
2721EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2722
64db4cff 2723/*
98ece508 2724 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
2725 * the current CPU, returning 1 if so and zero otherwise. The checks are
2726 * in order of increasing expense: checks that can be carried out against
2727 * CPU-local state are performed first. However, we must check for CPU
2728 * stalls first, else we might not get a chance.
64db4cff 2729 */
98ece508 2730static int rcu_pending(void)
64db4cff 2731{
98ece508 2732 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
2733 struct rcu_node *rnp = rdp->mynode;
2734
64db4cff 2735 /* Check for CPU stalls, if enabled. */
ea12ff2b 2736 check_cpu_stall(rdp);
64db4cff 2737
a096932f 2738 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4580b054 2739 if (rcu_nohz_full_cpu())
a096932f
PM
2740 return 0;
2741
64db4cff 2742 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 2743 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
2744 return 1;
2745
2746 /* Does this CPU have callbacks ready to invoke? */
01c495f7 2747 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
2748 return 1;
2749
2750 /* Has RCU gone idle with this CPU needing another grace period? */
de8e8730 2751 if (!rcu_gp_in_progress() &&
c1935209
PM
2752 rcu_segcblist_is_enabled(&rdp->cblist) &&
2753 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
2754 return 1;
2755
67e14c1e
PM
2756 /* Have RCU grace period completed or started? */
2757 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 2758 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
2759 return 1;
2760
96d3fd0d 2761 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 2762 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 2763 return 1;
96d3fd0d 2764
64db4cff
PM
2765 /* nothing to do */
2766 return 0;
2767}
2768
a83eff0a 2769/*
dd46a788 2770 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
2771 * the compiler is expected to optimize this away.
2772 */
dd46a788 2773static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 2774{
8344b871
PM
2775 trace_rcu_barrier(rcu_state.name, s, cpu,
2776 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
2777}
2778
b1420f1c 2779/*
dd46a788
PM
2780 * RCU callback function for rcu_barrier(). If we are last, wake
2781 * up the task executing rcu_barrier().
b1420f1c 2782 */
24ebbca8 2783static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2784{
ec9f5835 2785 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
dd46a788 2786 rcu_barrier_trace(TPS("LastCB"), -1,
ec9f5835
PM
2787 rcu_state.barrier_sequence);
2788 complete(&rcu_state.barrier_completion);
a83eff0a 2789 } else {
dd46a788 2790 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
a83eff0a 2791 }
d0ec774c
PM
2792}
2793
2794/*
2795 * Called with preemption disabled, and from cross-cpu IRQ context.
2796 */
ec9f5835 2797static void rcu_barrier_func(void *unused)
d0ec774c 2798{
da1df50d 2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
d0ec774c 2800
dd46a788 2801 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
2802 rdp->barrier_head.func = rcu_barrier_callback;
2803 debug_rcu_head_queue(&rdp->barrier_head);
2804 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
ec9f5835 2805 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
2806 } else {
2807 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 2808 rcu_barrier_trace(TPS("IRQNQ"), -1,
ec9f5835 2809 rcu_state.barrier_sequence);
f92c734f 2810 }
d0ec774c
PM
2811}
2812
dd46a788
PM
2813/**
2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2815 *
2816 * Note that this primitive does not necessarily wait for an RCU grace period
2817 * to complete. For example, if there are no RCU callbacks queued anywhere
2818 * in the system, then rcu_barrier() is within its rights to return
2819 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 2820 */
dd46a788 2821void rcu_barrier(void)
d0ec774c 2822{
b1420f1c 2823 int cpu;
b1420f1c 2824 struct rcu_data *rdp;
ec9f5835 2825 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 2826
dd46a788 2827 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 2828
e74f4c45 2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 2830 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 2831
4f525a52 2832 /* Did someone else do our work for us? */
ec9f5835 2833 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 2834 rcu_barrier_trace(TPS("EarlyExit"), -1,
ec9f5835 2835 rcu_state.barrier_sequence);
cf3a9c48 2836 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 2837 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
2838 return;
2839 }
2840
4f525a52 2841 /* Mark the start of the barrier operation. */
ec9f5835 2842 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 2843 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 2844
d0ec774c 2845 /*
b1420f1c
PM
2846 * Initialize the count to one rather than to zero in order to
2847 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2848 * (or preemption of this task). Exclude CPU-hotplug operations
2849 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2850 */
ec9f5835
PM
2851 init_completion(&rcu_state.barrier_completion);
2852 atomic_set(&rcu_state.barrier_cpu_count, 1);
1331e7a1 2853 get_online_cpus();
b1420f1c
PM
2854
2855 /*
1331e7a1
PM
2856 * Force each CPU with callbacks to register a new callback.
2857 * When that callback is invoked, we will know that all of the
2858 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2859 */
3fbfbf7a 2860 for_each_possible_cpu(cpu) {
da1df50d 2861 rdp = per_cpu_ptr(&rcu_data, cpu);
ce5215c1
PM
2862 if (!cpu_online(cpu) &&
2863 !rcu_segcblist_is_offloaded(&rdp->cblist))
2864 continue;
2865 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
4580b054 2866 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
dd46a788 2867 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
ec9f5835 2868 rcu_state.barrier_sequence);
d7e29933 2869 } else {
dd46a788 2870 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
ec9f5835 2871 rcu_state.barrier_sequence);
41050a00 2872 smp_mb__before_atomic();
ec9f5835 2873 atomic_inc(&rcu_state.barrier_cpu_count);
d7e29933 2874 __call_rcu(&rdp->barrier_head,
5c7d8967 2875 rcu_barrier_callback, cpu, 0);
d7e29933 2876 }
15fecf89 2877 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
dd46a788 2878 rcu_barrier_trace(TPS("OnlineQ"), cpu,
ec9f5835
PM
2879 rcu_state.barrier_sequence);
2880 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
b1420f1c 2881 } else {
dd46a788 2882 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
ec9f5835 2883 rcu_state.barrier_sequence);
b1420f1c
PM
2884 }
2885 }
1331e7a1 2886 put_online_cpus();
b1420f1c
PM
2887
2888 /*
2889 * Now that we have an rcu_barrier_callback() callback on each
2890 * CPU, and thus each counted, remove the initial count.
2891 */
ec9f5835
PM
2892 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2893 complete(&rcu_state.barrier_completion);
b1420f1c
PM
2894
2895 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 2896 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 2897
4f525a52 2898 /* Mark the end of the barrier operation. */
dd46a788 2899 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 2900 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 2901
b1420f1c 2902 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 2903 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 2904}
45975c7d 2905EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 2906
0aa04b05
PM
2907/*
2908 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2909 * first CPU in a given leaf rcu_node structure coming online. The caller
2910 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2911 * disabled.
2912 */
2913static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2914{
2915 long mask;
8d672fa6 2916 long oldmask;
0aa04b05
PM
2917 struct rcu_node *rnp = rnp_leaf;
2918
8d672fa6 2919 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 2920 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
2921 for (;;) {
2922 mask = rnp->grpmask;
2923 rnp = rnp->parent;
2924 if (rnp == NULL)
2925 return;
6cf10081 2926 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 2927 oldmask = rnp->qsmaskinit;
0aa04b05 2928 rnp->qsmaskinit |= mask;
67c583a7 2929 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
2930 if (oldmask)
2931 return;
0aa04b05
PM
2932 }
2933}
2934
64db4cff 2935/*
27569620 2936 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2937 */
27569620 2938static void __init
53b46303 2939rcu_boot_init_percpu_data(int cpu)
64db4cff 2940{
da1df50d 2941 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
2942
2943 /* Set up local state, ensuring consistent view of global state. */
bc75e999 2944 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4c5273bf 2945 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
dc5a4f29 2946 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
53b46303 2947 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 2948 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 2949 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 2950 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 2951 rdp->cpu = cpu;
3fbfbf7a 2952 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
2953}
2954
2955/*
53b46303
PM
2956 * Invoked early in the CPU-online process, when pretty much all services
2957 * are available. The incoming CPU is not present.
2958 *
2959 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
2960 * offline event can be happening at a given time. Note also that we can
2961 * accept some slop in the rsp->gp_seq access due to the fact that this
2962 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2963 */
53b46303 2964int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
2965{
2966 unsigned long flags;
da1df50d 2967 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 2968 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
2969
2970 /* Set up local state, ensuring consistent view of global state. */
6cf10081 2971 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 2972 rdp->qlen_last_fqs_check = 0;
53b46303 2973 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 2974 rdp->blimit = blimit;
15fecf89
PM
2975 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2976 !init_nocb_callback_list(rdp))
2977 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 2978 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 2979 rcu_dynticks_eqs_online();
67c583a7 2980 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 2981
0aa04b05
PM
2982 /*
2983 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
2984 * propagation up the rcu_node tree will happen at the beginning
2985 * of the next grace period.
2986 */
64db4cff 2987 rnp = rdp->mynode;
2a67e741 2988 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 2989 rdp->beenonline = true; /* We have now been online. */
de30ad51 2990 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 2991 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 2992 rdp->cpu_no_qs.b.norm = true;
97c668b8 2993 rdp->core_needs_qs = false;
9b9500da 2994 rdp->rcu_iw_pending = false;
8aa670cd 2995 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
53b46303 2996 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 2997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742 2998 rcu_prepare_kthreads(cpu);
ad368d15 2999 rcu_spawn_cpu_nocb_kthread(cpu);
4df83742
TG
3000
3001 return 0;
3002}
3003
deb34f36
PM
3004/*
3005 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3006 */
4df83742
TG
3007static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3008{
da1df50d 3009 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3010
3011 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3012}
3013
deb34f36
PM
3014/*
3015 * Near the end of the CPU-online process. Pretty much all services
3016 * enabled, and the CPU is now very much alive.
3017 */
4df83742
TG
3018int rcutree_online_cpu(unsigned int cpu)
3019{
9b9500da
PM
3020 unsigned long flags;
3021 struct rcu_data *rdp;
3022 struct rcu_node *rnp;
9b9500da 3023
b97d23c5
PM
3024 rdp = per_cpu_ptr(&rcu_data, cpu);
3025 rnp = rdp->mynode;
3026 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3027 rnp->ffmask |= rdp->grpmask;
3028 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
3029 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3030 return 0; /* Too early in boot for scheduler work. */
3031 sync_sched_exp_online_cleanup(cpu);
3032 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3033 return 0;
3034}
3035
deb34f36
PM
3036/*
3037 * Near the beginning of the process. The CPU is still very much alive
3038 * with pretty much all services enabled.
3039 */
4df83742
TG
3040int rcutree_offline_cpu(unsigned int cpu)
3041{
9b9500da
PM
3042 unsigned long flags;
3043 struct rcu_data *rdp;
3044 struct rcu_node *rnp;
9b9500da 3045
b97d23c5
PM
3046 rdp = per_cpu_ptr(&rcu_data, cpu);
3047 rnp = rdp->mynode;
3048 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3049 rnp->ffmask &= ~rdp->grpmask;
3050 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3051
4df83742
TG
3052 rcutree_affinity_setting(cpu, cpu);
3053 return 0;
3054}
3055
f64c6013
PZ
3056static DEFINE_PER_CPU(int, rcu_cpu_started);
3057
7ec99de3
PM
3058/*
3059 * Mark the specified CPU as being online so that subsequent grace periods
3060 * (both expedited and normal) will wait on it. Note that this means that
3061 * incoming CPUs are not allowed to use RCU read-side critical sections
3062 * until this function is called. Failing to observe this restriction
3063 * will result in lockdep splats.
deb34f36
PM
3064 *
3065 * Note that this function is special in that it is invoked directly
3066 * from the incoming CPU rather than from the cpuhp_step mechanism.
3067 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3068 */
3069void rcu_cpu_starting(unsigned int cpu)
3070{
3071 unsigned long flags;
3072 unsigned long mask;
313517fc
PM
3073 int nbits;
3074 unsigned long oldmask;
7ec99de3
PM
3075 struct rcu_data *rdp;
3076 struct rcu_node *rnp;
7ec99de3 3077
f64c6013
PZ
3078 if (per_cpu(rcu_cpu_started, cpu))
3079 return;
3080
3081 per_cpu(rcu_cpu_started, cpu) = 1;
3082
b97d23c5
PM
3083 rdp = per_cpu_ptr(&rcu_data, cpu);
3084 rnp = rdp->mynode;
3085 mask = rdp->grpmask;
3086 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3087 rnp->qsmaskinitnext |= mask;
3088 oldmask = rnp->expmaskinitnext;
3089 rnp->expmaskinitnext |= mask;
3090 oldmask ^= rnp->expmaskinitnext;
3091 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3092 /* Allow lockless access for expedited grace periods. */
eb7a6653 3093 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
b97d23c5 3094 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3095 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3096 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5
PM
3097 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3098 /* Report QS -after- changing ->qsmaskinitnext! */
3099 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3100 } else {
3101 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3102 }
313517fc 3103 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3104}
3105
27d50c7e
TG
3106#ifdef CONFIG_HOTPLUG_CPU
3107/*
53b46303
PM
3108 * The outgoing function has no further need of RCU, so remove it from
3109 * the rcu_node tree's ->qsmaskinitnext bit masks.
3110 *
3111 * Note that this function is special in that it is invoked directly
3112 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3113 * This is because this function must be invoked at a precise location.
27d50c7e 3114 */
53b46303 3115void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3116{
3117 unsigned long flags;
3118 unsigned long mask;
da1df50d 3119 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3120 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3121
49918a54 3122 /* QS for any half-done expedited grace period. */
53b46303 3123 preempt_disable();
63d4c8c9 3124 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3125 preempt_enable();
3126 rcu_preempt_deferred_qs(current);
3127
27d50c7e
TG
3128 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3129 mask = rdp->grpmask;
894d45bb 3130 raw_spin_lock(&rcu_state.ofl_lock);
27d50c7e 3131 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3132 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3133 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3134 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3135 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3136 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3137 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3138 }
27d50c7e 3139 rnp->qsmaskinitnext &= ~mask;
710d60cb 3140 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
894d45bb 3141 raw_spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3142
3143 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3144}
a58163d8 3145
53b46303
PM
3146/*
3147 * The outgoing CPU has just passed through the dying-idle state, and we
3148 * are being invoked from the CPU that was IPIed to continue the offline
3149 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3150 */
3151void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3152{
3153 unsigned long flags;
b1a2d79f 3154 struct rcu_data *my_rdp;
da1df50d 3155 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3156 struct rcu_node *rnp_root = rcu_get_root();
ec4eacce 3157 bool needwake;
a58163d8 3158
ce5215c1
PM
3159 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3160 rcu_segcblist_empty(&rdp->cblist))
95335c03
PM
3161 return; /* No callbacks to migrate. */
3162
b1a2d79f 3163 local_irq_save(flags);
da1df50d 3164 my_rdp = this_cpu_ptr(&rcu_data);
b1a2d79f
PM
3165 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3166 local_irq_restore(flags);
3167 return;
3168 }
9fa46fb8 3169 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce 3170 /* Leverage recent GPs and set GP for new callbacks. */
834f56bf
PM
3171 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3172 rcu_advance_cbs(rnp_root, my_rdp);
f2dbe4a5 3173 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3174 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3175 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3176 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce 3177 if (needwake)
532c00c9 3178 rcu_gp_kthread_wake();
a58163d8
PM
3179 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3180 !rcu_segcblist_empty(&rdp->cblist),
3181 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3182 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3183 rcu_segcblist_first_cb(&rdp->cblist));
3184}
27d50c7e
TG
3185#endif
3186
deb34f36
PM
3187/*
3188 * On non-huge systems, use expedited RCU grace periods to make suspend
3189 * and hibernation run faster.
3190 */
d1d74d14
BP
3191static int rcu_pm_notify(struct notifier_block *self,
3192 unsigned long action, void *hcpu)
3193{
3194 switch (action) {
3195 case PM_HIBERNATION_PREPARE:
3196 case PM_SUSPEND_PREPARE:
e85e6a21 3197 rcu_expedite_gp();
d1d74d14
BP
3198 break;
3199 case PM_POST_HIBERNATION:
3200 case PM_POST_SUSPEND:
e85e6a21 3201 rcu_unexpedite_gp();
d1d74d14
BP
3202 break;
3203 default:
3204 break;
3205 }
3206 return NOTIFY_OK;
3207}
3208
b3dbec76 3209/*
49918a54 3210 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3211 */
3212static int __init rcu_spawn_gp_kthread(void)
3213{
3214 unsigned long flags;
a94844b2 3215 int kthread_prio_in = kthread_prio;
b3dbec76 3216 struct rcu_node *rnp;
a94844b2 3217 struct sched_param sp;
b3dbec76
PM
3218 struct task_struct *t;
3219
a94844b2 3220 /* Force priority into range. */
c7cd161e
JFG
3221 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3222 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3223 kthread_prio = 2;
3224 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3225 kthread_prio = 1;
3226 else if (kthread_prio < 0)
3227 kthread_prio = 0;
3228 else if (kthread_prio > 99)
3229 kthread_prio = 99;
c7cd161e 3230
a94844b2
PM
3231 if (kthread_prio != kthread_prio_in)
3232 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3233 kthread_prio, kthread_prio_in);
3234
9386c0b7 3235 rcu_scheduler_fully_active = 1;
b97d23c5 3236 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
3237 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3238 return 0;
b97d23c5
PM
3239 rnp = rcu_get_root();
3240 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3241 rcu_state.gp_kthread = t;
3242 if (kthread_prio) {
3243 sp.sched_priority = kthread_prio;
3244 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 3245 }
b97d23c5
PM
3246 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3247 wake_up_process(t);
35ce7f29 3248 rcu_spawn_nocb_kthreads();
9386c0b7 3249 rcu_spawn_boost_kthreads();
b3dbec76
PM
3250 return 0;
3251}
3252early_initcall(rcu_spawn_gp_kthread);
3253
bbad9379 3254/*
52d7e48b
PM
3255 * This function is invoked towards the end of the scheduler's
3256 * initialization process. Before this is called, the idle task might
3257 * contain synchronous grace-period primitives (during which time, this idle
3258 * task is booting the system, and such primitives are no-ops). After this
3259 * function is called, any synchronous grace-period primitives are run as
3260 * expedited, with the requesting task driving the grace period forward.
900b1028 3261 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3262 * runtime RCU functionality.
bbad9379
PM
3263 */
3264void rcu_scheduler_starting(void)
3265{
3266 WARN_ON(num_online_cpus() != 1);
3267 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3268 rcu_test_sync_prims();
3269 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3270 rcu_test_sync_prims();
bbad9379
PM
3271}
3272
64db4cff 3273/*
49918a54 3274 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 3275 */
b8bb1f63 3276static void __init rcu_init_one(void)
64db4cff 3277{
cb007102
AG
3278 static const char * const buf[] = RCU_NODE_NAME_INIT;
3279 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3280 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3281 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3282
199977bf 3283 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3284 int cpustride = 1;
3285 int i;
3286 int j;
3287 struct rcu_node *rnp;
3288
05b84aec 3289 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3290
3eaaaf6c
PM
3291 /* Silence gcc 4.8 false positive about array index out of range. */
3292 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3293 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3294
64db4cff
PM
3295 /* Initialize the level-tracking arrays. */
3296
f885b7f2 3297 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
3298 rcu_state.level[i] =
3299 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 3300 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3301
3302 /* Initialize the elements themselves, starting from the leaves. */
3303
f885b7f2 3304 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3305 cpustride *= levelspread[i];
eb7a6653 3306 rnp = rcu_state.level[i];
41f5c631 3307 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3308 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3309 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3310 &rcu_node_class[i], buf[i]);
394f2769
PM
3311 raw_spin_lock_init(&rnp->fqslock);
3312 lockdep_set_class_and_name(&rnp->fqslock,
3313 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
3314 rnp->gp_seq = rcu_state.gp_seq;
3315 rnp->gp_seq_needed = rcu_state.gp_seq;
3316 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
3317 rnp->qsmask = 0;
3318 rnp->qsmaskinit = 0;
3319 rnp->grplo = j * cpustride;
3320 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3321 if (rnp->grphi >= nr_cpu_ids)
3322 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3323 if (i == 0) {
3324 rnp->grpnum = 0;
3325 rnp->grpmask = 0;
3326 rnp->parent = NULL;
3327 } else {
199977bf 3328 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 3329 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 3330 rnp->parent = rcu_state.level[i - 1] +
199977bf 3331 j / levelspread[i - 1];
64db4cff
PM
3332 }
3333 rnp->level = i;
12f5f524 3334 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3335 rcu_init_one_nocb(rnp);
f6a12f34
PM
3336 init_waitqueue_head(&rnp->exp_wq[0]);
3337 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3338 init_waitqueue_head(&rnp->exp_wq[2]);
3339 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3340 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3341 }
3342 }
0c34029a 3343
eb7a6653
PM
3344 init_swait_queue_head(&rcu_state.gp_wq);
3345 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 3346 rnp = rcu_first_leaf_node();
0c34029a 3347 for_each_possible_cpu(i) {
4a90a068 3348 while (i > rnp->grphi)
0c34029a 3349 rnp++;
da1df50d 3350 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 3351 rcu_boot_init_percpu_data(i);
0c34029a 3352 }
64db4cff
PM
3353}
3354
f885b7f2
PM
3355/*
3356 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3357 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3358 * the ->node array in the rcu_state structure.
3359 */
3360static void __init rcu_init_geometry(void)
3361{
026ad283 3362 ulong d;
f885b7f2 3363 int i;
05b84aec 3364 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3365
026ad283
PM
3366 /*
3367 * Initialize any unspecified boot parameters.
3368 * The default values of jiffies_till_first_fqs and
3369 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3370 * value, which is a function of HZ, then adding one for each
3371 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3372 */
3373 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3374 if (jiffies_till_first_fqs == ULONG_MAX)
3375 jiffies_till_first_fqs = d;
3376 if (jiffies_till_next_fqs == ULONG_MAX)
3377 jiffies_till_next_fqs = d;
6973032a 3378 adjust_jiffies_till_sched_qs();
026ad283 3379
f885b7f2 3380 /* If the compile-time values are accurate, just leave. */
47d631af 3381 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3382 nr_cpu_ids == NR_CPUS)
f885b7f2 3383 return;
a7538352 3384 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3385 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3386
f885b7f2 3387 /*
ee968ac6
PM
3388 * The boot-time rcu_fanout_leaf parameter must be at least two
3389 * and cannot exceed the number of bits in the rcu_node masks.
3390 * Complain and fall back to the compile-time values if this
3391 * limit is exceeded.
f885b7f2 3392 */
ee968ac6 3393 if (rcu_fanout_leaf < 2 ||
75cf15a4 3394 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 3395 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
3396 WARN_ON(1);
3397 return;
3398 }
3399
f885b7f2
PM
3400 /*
3401 * Compute number of nodes that can be handled an rcu_node tree
9618138b 3402 * with the given number of levels.
f885b7f2 3403 */
9618138b 3404 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 3405 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 3406 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
3407
3408 /*
75cf15a4 3409 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 3410 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 3411 */
ee968ac6
PM
3412 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3413 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3414 WARN_ON(1);
3415 return;
3416 }
f885b7f2 3417
679f9858 3418 /* Calculate the number of levels in the tree. */
9618138b 3419 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 3420 }
9618138b 3421 rcu_num_lvls = i + 1;
679f9858 3422
f885b7f2 3423 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 3424 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 3425 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
3426 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3427 }
f885b7f2
PM
3428
3429 /* Calculate the total number of rcu_node structures. */
3430 rcu_num_nodes = 0;
679f9858 3431 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 3432 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
3433}
3434
a3dc2948
PM
3435/*
3436 * Dump out the structure of the rcu_node combining tree associated
49918a54 3437 * with the rcu_state structure.
a3dc2948 3438 */
b8bb1f63 3439static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
3440{
3441 int level = 0;
3442 struct rcu_node *rnp;
3443
3444 pr_info("rcu_node tree layout dump\n");
3445 pr_info(" ");
aedf4ba9 3446 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
3447 if (rnp->level != level) {
3448 pr_cont("\n");
3449 pr_info(" ");
3450 level = rnp->level;
3451 }
3452 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3453 }
3454 pr_cont("\n");
3455}
3456
ad7c946b 3457struct workqueue_struct *rcu_gp_wq;
25f3d7ef 3458struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 3459
9f680ab4 3460void __init rcu_init(void)
64db4cff 3461{
017c4261 3462 int cpu;
9f680ab4 3463
47627678
PM
3464 rcu_early_boot_tests();
3465
f41d911f 3466 rcu_bootup_announce();
f885b7f2 3467 rcu_init_geometry();
b8bb1f63 3468 rcu_init_one();
a3dc2948 3469 if (dump_tree)
b8bb1f63 3470 rcu_dump_rcu_node_tree();
48d07c04
SAS
3471 if (use_softirq)
3472 open_softirq(RCU_SOFTIRQ, rcu_core_si);
9f680ab4
PM
3473
3474 /*
3475 * We don't need protection against CPU-hotplug here because
3476 * this is called early in boot, before either interrupts
3477 * or the scheduler are operational.
3478 */
d1d74d14 3479 pm_notifier(rcu_pm_notify, 0);
7ec99de3 3480 for_each_online_cpu(cpu) {
4df83742 3481 rcutree_prepare_cpu(cpu);
7ec99de3 3482 rcu_cpu_starting(cpu);
9b9500da 3483 rcutree_online_cpu(cpu);
7ec99de3 3484 }
ad7c946b
PM
3485
3486 /* Create workqueue for expedited GPs and for Tree SRCU. */
3487 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3488 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
3489 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3490 WARN_ON(!rcu_par_gp_wq);
e0fcba9a 3491 srcu_init();
64db4cff
PM
3492}
3493
10462d6f 3494#include "tree_stall.h"
3549c2bc 3495#include "tree_exp.h"
4102adab 3496#include "tree_plugin.h"