Uninline find_pid etc set of functions
[linux-2.6-block.git] / kernel / pid.c
CommitLineData
1da177e4
LT
1/*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
30e49c26
PE
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/init.h>
33#include <linux/bootmem.h>
34#include <linux/hash.h>
61a58c6c 35#include <linux/pid_namespace.h>
820e45db 36#include <linux/init_task.h>
3eb07c8c 37#include <linux/syscalls.h>
1da177e4 38
8ef047aa
PE
39#define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
92476d7f 41static struct hlist_head *pid_hash;
1da177e4 42static int pidhash_shift;
820e45db 43struct pid init_struct_pid = INIT_STRUCT_PID;
c9c5d922 44static struct kmem_cache *pid_ns_cachep;
1da177e4
LT
45
46int pid_max = PID_MAX_DEFAULT;
1da177e4
LT
47
48#define RESERVED_PIDS 300
49
50int pid_max_min = RESERVED_PIDS + 1;
51int pid_max_max = PID_MAX_LIMIT;
52
1da177e4
LT
53#define BITS_PER_PAGE (PAGE_SIZE*8)
54#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
3fbc9648 55
61a58c6c
SB
56static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
3fbc9648 58{
61a58c6c 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
3fbc9648
SB
60}
61
1da177e4
LT
62#define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65/*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
61a58c6c 71struct pid_namespace init_pid_ns = {
9a575a92
CLG
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
74 },
3fbc9648
SB
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 },
84d73786 78 .last_pid = 0,
faacbfd3
PE
79 .level = 0,
80 .child_reaper = &init_task,
3fbc9648 81};
198fe21b 82EXPORT_SYMBOL_GPL(init_pid_ns);
1da177e4 83
b461cc03 84int is_container_init(struct task_struct *tsk)
b460cbc5 85{
b461cc03
PE
86 int ret = 0;
87 struct pid *pid;
88
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
94
95 return ret;
b460cbc5 96}
b461cc03 97EXPORT_SYMBOL(is_container_init);
b460cbc5 98
92476d7f
EB
99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
3fbc9648 112
1da177e4
LT
113static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
61a58c6c 115static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
1da177e4 116{
61a58c6c 117 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
1da177e4
LT
118 int offset = pid & BITS_PER_PAGE_MASK;
119
120 clear_bit(offset, map->page);
121 atomic_inc(&map->nr_free);
122}
123
61a58c6c 124static int alloc_pidmap(struct pid_namespace *pid_ns)
1da177e4 125{
61a58c6c 126 int i, offset, max_scan, pid, last = pid_ns->last_pid;
6a1f3b84 127 struct pidmap *map;
1da177e4
LT
128
129 pid = last + 1;
130 if (pid >= pid_max)
131 pid = RESERVED_PIDS;
132 offset = pid & BITS_PER_PAGE_MASK;
61a58c6c 133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
1da177e4
LT
134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135 for (i = 0; i <= max_scan; ++i) {
136 if (unlikely(!map->page)) {
3fbc9648 137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1da177e4
LT
138 /*
139 * Free the page if someone raced with us
140 * installing it:
141 */
92476d7f 142 spin_lock_irq(&pidmap_lock);
1da177e4 143 if (map->page)
3fbc9648 144 kfree(page);
1da177e4 145 else
3fbc9648 146 map->page = page;
92476d7f 147 spin_unlock_irq(&pidmap_lock);
1da177e4
LT
148 if (unlikely(!map->page))
149 break;
150 }
151 if (likely(atomic_read(&map->nr_free))) {
152 do {
153 if (!test_and_set_bit(offset, map->page)) {
154 atomic_dec(&map->nr_free);
61a58c6c 155 pid_ns->last_pid = pid;
1da177e4
LT
156 return pid;
157 }
158 offset = find_next_offset(map, offset);
61a58c6c 159 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
160 /*
161 * find_next_offset() found a bit, the pid from it
162 * is in-bounds, and if we fell back to the last
163 * bitmap block and the final block was the same
164 * as the starting point, pid is before last_pid.
165 */
166 } while (offset < BITS_PER_PAGE && pid < pid_max &&
167 (i != max_scan || pid < last ||
168 !((last+1) & BITS_PER_PAGE_MASK)));
169 }
61a58c6c 170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
1da177e4
LT
171 ++map;
172 offset = 0;
173 } else {
61a58c6c 174 map = &pid_ns->pidmap[0];
1da177e4
LT
175 offset = RESERVED_PIDS;
176 if (unlikely(last == offset))
177 break;
178 }
61a58c6c 179 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
180 }
181 return -1;
182}
183
61a58c6c 184static int next_pidmap(struct pid_namespace *pid_ns, int last)
0804ef4b
EB
185{
186 int offset;
f40f50d3 187 struct pidmap *map, *end;
0804ef4b
EB
188
189 offset = (last + 1) & BITS_PER_PAGE_MASK;
61a58c6c
SB
190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
f40f50d3 192 for (; map < end; map++, offset = 0) {
0804ef4b
EB
193 if (unlikely(!map->page))
194 continue;
195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196 if (offset < BITS_PER_PAGE)
61a58c6c 197 return mk_pid(pid_ns, map, offset);
0804ef4b
EB
198 }
199 return -1;
200}
201
92476d7f
EB
202fastcall void put_pid(struct pid *pid)
203{
baf8f0f8
PE
204 struct pid_namespace *ns;
205
92476d7f
EB
206 if (!pid)
207 return;
baf8f0f8 208
8ef047aa 209 ns = pid->numbers[pid->level].ns;
92476d7f 210 if ((atomic_read(&pid->count) == 1) ||
8ef047aa 211 atomic_dec_and_test(&pid->count)) {
baf8f0f8 212 kmem_cache_free(ns->pid_cachep, pid);
b461cc03 213 put_pid_ns(ns);
8ef047aa 214 }
92476d7f 215}
bbf73147 216EXPORT_SYMBOL_GPL(put_pid);
92476d7f
EB
217
218static void delayed_put_pid(struct rcu_head *rhp)
219{
220 struct pid *pid = container_of(rhp, struct pid, rcu);
221 put_pid(pid);
222}
223
224fastcall void free_pid(struct pid *pid)
225{
226 /* We can be called with write_lock_irq(&tasklist_lock) held */
8ef047aa 227 int i;
92476d7f
EB
228 unsigned long flags;
229
230 spin_lock_irqsave(&pidmap_lock, flags);
198fe21b
PE
231 for (i = 0; i <= pid->level; i++)
232 hlist_del_rcu(&pid->numbers[i].pid_chain);
92476d7f
EB
233 spin_unlock_irqrestore(&pidmap_lock, flags);
234
8ef047aa
PE
235 for (i = 0; i <= pid->level; i++)
236 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237
92476d7f
EB
238 call_rcu(&pid->rcu, delayed_put_pid);
239}
240
8ef047aa 241struct pid *alloc_pid(struct pid_namespace *ns)
92476d7f
EB
242{
243 struct pid *pid;
244 enum pid_type type;
8ef047aa
PE
245 int i, nr;
246 struct pid_namespace *tmp;
198fe21b 247 struct upid *upid;
92476d7f 248
baf8f0f8 249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
92476d7f
EB
250 if (!pid)
251 goto out;
252
8ef047aa
PE
253 tmp = ns;
254 for (i = ns->level; i >= 0; i--) {
255 nr = alloc_pidmap(tmp);
256 if (nr < 0)
257 goto out_free;
92476d7f 258
8ef047aa
PE
259 pid->numbers[i].nr = nr;
260 pid->numbers[i].ns = tmp;
261 tmp = tmp->parent;
262 }
263
b461cc03 264 get_pid_ns(ns);
8ef047aa 265 pid->level = ns->level;
92476d7f 266 atomic_set(&pid->count, 1);
92476d7f
EB
267 for (type = 0; type < PIDTYPE_MAX; ++type)
268 INIT_HLIST_HEAD(&pid->tasks[type]);
269
270 spin_lock_irq(&pidmap_lock);
198fe21b
PE
271 for (i = ns->level; i >= 0; i--) {
272 upid = &pid->numbers[i];
273 hlist_add_head_rcu(&upid->pid_chain,
274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 }
92476d7f
EB
276 spin_unlock_irq(&pidmap_lock);
277
278out:
279 return pid;
280
281out_free:
8ef047aa
PE
282 for (i++; i <= ns->level; i++)
283 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284
baf8f0f8 285 kmem_cache_free(ns->pid_cachep, pid);
92476d7f
EB
286 pid = NULL;
287 goto out;
288}
289
198fe21b 290struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
1da177e4
LT
291{
292 struct hlist_node *elem;
198fe21b
PE
293 struct upid *pnr;
294
295 hlist_for_each_entry_rcu(pnr, elem,
296 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
297 if (pnr->nr == nr && pnr->ns == ns)
298 return container_of(pnr, struct pid,
299 numbers[ns->level]);
1da177e4 300
1da177e4
LT
301 return NULL;
302}
198fe21b 303EXPORT_SYMBOL_GPL(find_pid_ns);
1da177e4 304
8990571e
PE
305struct pid *find_vpid(int nr)
306{
307 return find_pid_ns(nr, current->nsproxy->pid_ns);
308}
309EXPORT_SYMBOL_GPL(find_vpid);
310
311struct pid *find_pid(int nr)
312{
313 return find_pid_ns(nr, &init_pid_ns);
314}
315EXPORT_SYMBOL_GPL(find_pid);
316
e713d0da
SB
317/*
318 * attach_pid() must be called with the tasklist_lock write-held.
319 */
320int fastcall attach_pid(struct task_struct *task, enum pid_type type,
321 struct pid *pid)
1da177e4 322{
92476d7f 323 struct pid_link *link;
92476d7f 324
92476d7f 325 link = &task->pids[type];
e713d0da 326 link->pid = pid;
92476d7f 327 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
1da177e4
LT
328
329 return 0;
330}
331
36c8b586 332void fastcall detach_pid(struct task_struct *task, enum pid_type type)
1da177e4 333{
92476d7f
EB
334 struct pid_link *link;
335 struct pid *pid;
336 int tmp;
1da177e4 337
92476d7f
EB
338 link = &task->pids[type];
339 pid = link->pid;
1da177e4 340
92476d7f
EB
341 hlist_del_rcu(&link->node);
342 link->pid = NULL;
1da177e4 343
92476d7f
EB
344 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
345 if (!hlist_empty(&pid->tasks[tmp]))
346 return;
1da177e4 347
92476d7f 348 free_pid(pid);
1da177e4
LT
349}
350
c18258c6
EB
351/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
352void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
353 enum pid_type type)
354{
355 new->pids[type].pid = old->pids[type].pid;
356 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
357 old->pids[type].pid = NULL;
358}
359
92476d7f 360struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
1da177e4 361{
92476d7f
EB
362 struct task_struct *result = NULL;
363 if (pid) {
364 struct hlist_node *first;
365 first = rcu_dereference(pid->tasks[type].first);
366 if (first)
367 result = hlist_entry(first, struct task_struct, pids[(type)].node);
368 }
369 return result;
370}
1da177e4 371
92476d7f
EB
372/*
373 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
374 */
198fe21b
PE
375struct task_struct *find_task_by_pid_type_ns(int type, int nr,
376 struct pid_namespace *ns)
92476d7f 377{
198fe21b 378 return pid_task(find_pid_ns(nr, ns), type);
92476d7f 379}
1da177e4 380
198fe21b 381EXPORT_SYMBOL(find_task_by_pid_type_ns);
1da177e4 382
228ebcbe
PE
383struct task_struct *find_task_by_pid(pid_t nr)
384{
385 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
386}
387EXPORT_SYMBOL(find_task_by_pid);
388
389struct task_struct *find_task_by_vpid(pid_t vnr)
390{
391 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
392 current->nsproxy->pid_ns);
393}
394EXPORT_SYMBOL(find_task_by_vpid);
395
396struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
397{
398 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
399}
400EXPORT_SYMBOL(find_task_by_pid_ns);
401
1a657f78
ON
402struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
403{
404 struct pid *pid;
405 rcu_read_lock();
406 pid = get_pid(task->pids[type].pid);
407 rcu_read_unlock();
408 return pid;
409}
410
92476d7f
EB
411struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
412{
413 struct task_struct *result;
414 rcu_read_lock();
415 result = pid_task(pid, type);
416 if (result)
417 get_task_struct(result);
418 rcu_read_unlock();
419 return result;
1da177e4
LT
420}
421
92476d7f 422struct pid *find_get_pid(pid_t nr)
1da177e4
LT
423{
424 struct pid *pid;
425
92476d7f 426 rcu_read_lock();
198fe21b 427 pid = get_pid(find_vpid(nr));
92476d7f 428 rcu_read_unlock();
1da177e4 429
92476d7f 430 return pid;
1da177e4
LT
431}
432
7af57294
PE
433pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
434{
435 struct upid *upid;
436 pid_t nr = 0;
437
438 if (pid && ns->level <= pid->level) {
439 upid = &pid->numbers[ns->level];
440 if (upid->ns == ns)
441 nr = upid->nr;
442 }
443 return nr;
444}
445
0804ef4b
EB
446/*
447 * Used by proc to find the first pid that is greater then or equal to nr.
448 *
449 * If there is a pid at nr this function is exactly the same as find_pid.
450 */
198fe21b 451struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
0804ef4b
EB
452{
453 struct pid *pid;
454
455 do {
198fe21b 456 pid = find_pid_ns(nr, ns);
0804ef4b
EB
457 if (pid)
458 break;
198fe21b 459 nr = next_pidmap(ns, nr);
0804ef4b
EB
460 } while (nr > 0);
461
462 return pid;
463}
bbf73147 464EXPORT_SYMBOL_GPL(find_get_pid);
0804ef4b 465
baf8f0f8
PE
466struct pid_cache {
467 int nr_ids;
468 char name[16];
469 struct kmem_cache *cachep;
470 struct list_head list;
471};
472
473static LIST_HEAD(pid_caches_lh);
474static DEFINE_MUTEX(pid_caches_mutex);
475
476/*
477 * creates the kmem cache to allocate pids from.
478 * @nr_ids: the number of numerical ids this pid will have to carry
479 */
480
481static struct kmem_cache *create_pid_cachep(int nr_ids)
482{
483 struct pid_cache *pcache;
484 struct kmem_cache *cachep;
485
486 mutex_lock(&pid_caches_mutex);
487 list_for_each_entry (pcache, &pid_caches_lh, list)
488 if (pcache->nr_ids == nr_ids)
489 goto out;
490
491 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
492 if (pcache == NULL)
493 goto err_alloc;
494
495 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
496 cachep = kmem_cache_create(pcache->name,
30e49c26
PE
497 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
498 0, SLAB_HWCACHE_ALIGN, NULL);
baf8f0f8
PE
499 if (cachep == NULL)
500 goto err_cachep;
501
502 pcache->nr_ids = nr_ids;
503 pcache->cachep = cachep;
504 list_add(&pcache->list, &pid_caches_lh);
505out:
506 mutex_unlock(&pid_caches_mutex);
507 return pcache->cachep;
508
509err_cachep:
510 kfree(pcache);
511err_alloc:
512 mutex_unlock(&pid_caches_mutex);
513 return NULL;
514}
515
30e49c26
PE
516static struct pid_namespace *create_pid_namespace(int level)
517{
518 struct pid_namespace *ns;
519 int i;
520
c9c5d922 521 ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
30e49c26
PE
522 if (ns == NULL)
523 goto out;
524
525 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
526 if (!ns->pidmap[0].page)
527 goto out_free;
528
529 ns->pid_cachep = create_pid_cachep(level + 1);
530 if (ns->pid_cachep == NULL)
531 goto out_free_map;
532
533 kref_init(&ns->kref);
534 ns->last_pid = 0;
535 ns->child_reaper = NULL;
536 ns->level = level;
537
538 set_bit(0, ns->pidmap[0].page);
539 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
540
541 for (i = 1; i < PIDMAP_ENTRIES; i++) {
542 ns->pidmap[i].page = 0;
543 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
544 }
545
546 return ns;
547
548out_free_map:
549 kfree(ns->pidmap[0].page);
550out_free:
c9c5d922 551 kmem_cache_free(pid_ns_cachep, ns);
30e49c26
PE
552out:
553 return ERR_PTR(-ENOMEM);
554}
555
556static void destroy_pid_namespace(struct pid_namespace *ns)
557{
558 int i;
559
560 for (i = 0; i < PIDMAP_ENTRIES; i++)
561 kfree(ns->pidmap[i].page);
c9c5d922 562 kmem_cache_free(pid_ns_cachep, ns);
30e49c26
PE
563}
564
213dd266 565struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
9a575a92 566{
30e49c26
PE
567 struct pid_namespace *new_ns;
568
e3222c4e 569 BUG_ON(!old_ns);
30e49c26
PE
570 new_ns = get_pid_ns(old_ns);
571 if (!(flags & CLONE_NEWPID))
572 goto out;
573
574 new_ns = ERR_PTR(-EINVAL);
575 if (flags & CLONE_THREAD)
576 goto out_put;
577
578 new_ns = create_pid_namespace(old_ns->level + 1);
579 if (!IS_ERR(new_ns))
580 new_ns->parent = get_pid_ns(old_ns);
581
582out_put:
583 put_pid_ns(old_ns);
584out:
585 return new_ns;
9a575a92
CLG
586}
587
588void free_pid_ns(struct kref *kref)
589{
30e49c26 590 struct pid_namespace *ns, *parent;
9a575a92
CLG
591
592 ns = container_of(kref, struct pid_namespace, kref);
30e49c26
PE
593
594 parent = ns->parent;
595 destroy_pid_namespace(ns);
596
597 if (parent != NULL)
598 put_pid_ns(parent);
9a575a92
CLG
599}
600
3eb07c8c
SB
601void zap_pid_ns_processes(struct pid_namespace *pid_ns)
602{
603 int nr;
604 int rc;
605
606 /*
607 * The last thread in the cgroup-init thread group is terminating.
608 * Find remaining pid_ts in the namespace, signal and wait for them
609 * to exit.
610 *
611 * Note: This signals each threads in the namespace - even those that
612 * belong to the same thread group, To avoid this, we would have
613 * to walk the entire tasklist looking a processes in this
614 * namespace, but that could be unnecessarily expensive if the
615 * pid namespace has just a few processes. Or we need to
616 * maintain a tasklist for each pid namespace.
617 *
618 */
619 read_lock(&tasklist_lock);
620 nr = next_pidmap(pid_ns, 1);
621 while (nr > 0) {
622 kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
623 nr = next_pidmap(pid_ns, nr);
624 }
625 read_unlock(&tasklist_lock);
626
627 do {
628 clear_thread_flag(TIF_SIGPENDING);
629 rc = sys_wait4(-1, NULL, __WALL, NULL);
630 } while (rc != -ECHILD);
631
632
633 /* Child reaper for the pid namespace is going away */
634 pid_ns->child_reaper = NULL;
635 return;
636}
637
1da177e4
LT
638/*
639 * The pid hash table is scaled according to the amount of memory in the
640 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
641 * more.
642 */
643void __init pidhash_init(void)
644{
92476d7f 645 int i, pidhash_size;
1da177e4
LT
646 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
647
648 pidhash_shift = max(4, fls(megabytes * 4));
649 pidhash_shift = min(12, pidhash_shift);
650 pidhash_size = 1 << pidhash_shift;
651
652 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
653 pidhash_size, pidhash_shift,
92476d7f
EB
654 pidhash_size * sizeof(struct hlist_head));
655
656 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
657 if (!pid_hash)
658 panic("Could not alloc pidhash!\n");
659 for (i = 0; i < pidhash_size; i++)
660 INIT_HLIST_HEAD(&pid_hash[i]);
1da177e4
LT
661}
662
663void __init pidmap_init(void)
664{
61a58c6c 665 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
73b9ebfe 666 /* Reserve PID 0. We never call free_pidmap(0) */
61a58c6c
SB
667 set_bit(0, init_pid_ns.pidmap[0].page);
668 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
92476d7f 669
baf8f0f8
PE
670 init_pid_ns.pid_cachep = create_pid_cachep(1);
671 if (init_pid_ns.pid_cachep == NULL)
672 panic("Can't create pid_1 cachep\n");
c9c5d922
SB
673
674 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
1da177e4 675}