Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux-2.6-block.git] / kernel / kexec_core.c
CommitLineData
2965faa5
DY
1/*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
de90a6bc 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2965faa5
DY
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
22#include <linux/ioport.h>
23#include <linux/hardirq.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/utsname.h>
27#include <linux/numa.h>
28#include <linux/suspend.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/uaccess.h>
34#include <linux/io.h>
35#include <linux/console.h>
36#include <linux/vmalloc.h>
37#include <linux/swap.h>
38#include <linux/syscore_ops.h>
39#include <linux/compiler.h>
40#include <linux/hugetlb.h>
41
42#include <asm/page.h>
43#include <asm/sections.h>
44
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47#include "kexec_internal.h"
48
49DEFINE_MUTEX(kexec_mutex);
50
51/* Per cpu memory for storing cpu states in case of system crash. */
52note_buf_t __percpu *crash_notes;
53
54/* vmcoreinfo stuff */
55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57size_t vmcoreinfo_size;
58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
59
60/* Flag to indicate we are going to kexec a new kernel */
61bool kexec_in_progress = false;
62
63
64/* Location of the reserved area for the crash kernel */
65struct resource crashk_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
1a085d07
TK
69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
71};
72struct resource crashk_low_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
1a085d07
TK
76 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
77 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
78};
79
80int kexec_should_crash(struct task_struct *p)
81{
82 /*
83 * If crash_kexec_post_notifiers is enabled, don't run
84 * crash_kexec() here yet, which must be run after panic
85 * notifiers in panic().
86 */
87 if (crash_kexec_post_notifiers)
88 return 0;
89 /*
90 * There are 4 panic() calls in do_exit() path, each of which
91 * corresponds to each of these 4 conditions.
92 */
93 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
94 return 1;
95 return 0;
96}
97
98/*
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
103 *
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
111 *
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
120 *
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
126 *
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
131 *
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
136 */
137
138/*
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
141 */
142#define KIMAGE_NO_DEST (-1UL)
143
144static struct page *kimage_alloc_page(struct kimage *image,
145 gfp_t gfp_mask,
146 unsigned long dest);
147
148int sanity_check_segment_list(struct kimage *image)
149{
150 int result, i;
151 unsigned long nr_segments = image->nr_segments;
152
153 /*
154 * Verify we have good destination addresses. The caller is
155 * responsible for making certain we don't attempt to load
156 * the new image into invalid or reserved areas of RAM. This
157 * just verifies it is an address we can use.
158 *
159 * Since the kernel does everything in page size chunks ensure
160 * the destination addresses are page aligned. Too many
161 * special cases crop of when we don't do this. The most
162 * insidious is getting overlapping destination addresses
163 * simply because addresses are changed to page size
164 * granularity.
165 */
166 result = -EADDRNOTAVAIL;
167 for (i = 0; i < nr_segments; i++) {
168 unsigned long mstart, mend;
169
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
173 return result;
174 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
175 return result;
176 }
177
178 /* Verify our destination addresses do not overlap.
179 * If we alloed overlapping destination addresses
180 * through very weird things can happen with no
181 * easy explanation as one segment stops on another.
182 */
183 result = -EINVAL;
184 for (i = 0; i < nr_segments; i++) {
185 unsigned long mstart, mend;
186 unsigned long j;
187
188 mstart = image->segment[i].mem;
189 mend = mstart + image->segment[i].memsz;
190 for (j = 0; j < i; j++) {
191 unsigned long pstart, pend;
192
193 pstart = image->segment[j].mem;
194 pend = pstart + image->segment[j].memsz;
195 /* Do the segments overlap ? */
196 if ((mend > pstart) && (mstart < pend))
197 return result;
198 }
199 }
200
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
204 * later on.
205 */
206 result = -EINVAL;
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
209 return result;
210 }
211
212 /*
213 * Verify we have good destination addresses. Normally
214 * the caller is responsible for making certain we don't
215 * attempt to load the new image into invalid or reserved
216 * areas of RAM. But crash kernels are preloaded into a
217 * reserved area of ram. We must ensure the addresses
218 * are in the reserved area otherwise preloading the
219 * kernel could corrupt things.
220 */
221
222 if (image->type == KEXEC_TYPE_CRASH) {
223 result = -EADDRNOTAVAIL;
224 for (i = 0; i < nr_segments; i++) {
225 unsigned long mstart, mend;
226
227 mstart = image->segment[i].mem;
228 mend = mstart + image->segment[i].memsz - 1;
229 /* Ensure we are within the crash kernel limits */
230 if ((mstart < crashk_res.start) ||
231 (mend > crashk_res.end))
232 return result;
233 }
234 }
235
236 return 0;
237}
238
239struct kimage *do_kimage_alloc_init(void)
240{
241 struct kimage *image;
242
243 /* Allocate a controlling structure */
244 image = kzalloc(sizeof(*image), GFP_KERNEL);
245 if (!image)
246 return NULL;
247
248 image->head = 0;
249 image->entry = &image->head;
250 image->last_entry = &image->head;
251 image->control_page = ~0; /* By default this does not apply */
252 image->type = KEXEC_TYPE_DEFAULT;
253
254 /* Initialize the list of control pages */
255 INIT_LIST_HEAD(&image->control_pages);
256
257 /* Initialize the list of destination pages */
258 INIT_LIST_HEAD(&image->dest_pages);
259
260 /* Initialize the list of unusable pages */
261 INIT_LIST_HEAD(&image->unusable_pages);
262
263 return image;
264}
265
266int kimage_is_destination_range(struct kimage *image,
267 unsigned long start,
268 unsigned long end)
269{
270 unsigned long i;
271
272 for (i = 0; i < image->nr_segments; i++) {
273 unsigned long mstart, mend;
274
275 mstart = image->segment[i].mem;
276 mend = mstart + image->segment[i].memsz;
277 if ((end > mstart) && (start < mend))
278 return 1;
279 }
280
281 return 0;
282}
283
284static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
285{
286 struct page *pages;
287
288 pages = alloc_pages(gfp_mask, order);
289 if (pages) {
290 unsigned int count, i;
291
292 pages->mapping = NULL;
293 set_page_private(pages, order);
294 count = 1 << order;
295 for (i = 0; i < count; i++)
296 SetPageReserved(pages + i);
297 }
298
299 return pages;
300}
301
302static void kimage_free_pages(struct page *page)
303{
304 unsigned int order, count, i;
305
306 order = page_private(page);
307 count = 1 << order;
308 for (i = 0; i < count; i++)
309 ClearPageReserved(page + i);
310 __free_pages(page, order);
311}
312
313void kimage_free_page_list(struct list_head *list)
314{
2b24692b 315 struct page *page, *next;
2965faa5 316
2b24692b 317 list_for_each_entry_safe(page, next, list, lru) {
2965faa5
DY
318 list_del(&page->lru);
319 kimage_free_pages(page);
320 }
321}
322
323static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
324 unsigned int order)
325{
326 /* Control pages are special, they are the intermediaries
327 * that are needed while we copy the rest of the pages
328 * to their final resting place. As such they must
329 * not conflict with either the destination addresses
330 * or memory the kernel is already using.
331 *
332 * The only case where we really need more than one of
333 * these are for architectures where we cannot disable
334 * the MMU and must instead generate an identity mapped
335 * page table for all of the memory.
336 *
337 * At worst this runs in O(N) of the image size.
338 */
339 struct list_head extra_pages;
340 struct page *pages;
341 unsigned int count;
342
343 count = 1 << order;
344 INIT_LIST_HEAD(&extra_pages);
345
346 /* Loop while I can allocate a page and the page allocated
347 * is a destination page.
348 */
349 do {
350 unsigned long pfn, epfn, addr, eaddr;
351
352 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
353 if (!pages)
354 break;
355 pfn = page_to_pfn(pages);
356 epfn = pfn + count;
357 addr = pfn << PAGE_SHIFT;
358 eaddr = epfn << PAGE_SHIFT;
359 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
360 kimage_is_destination_range(image, addr, eaddr)) {
361 list_add(&pages->lru, &extra_pages);
362 pages = NULL;
363 }
364 } while (!pages);
365
366 if (pages) {
367 /* Remember the allocated page... */
368 list_add(&pages->lru, &image->control_pages);
369
370 /* Because the page is already in it's destination
371 * location we will never allocate another page at
372 * that address. Therefore kimage_alloc_pages
373 * will not return it (again) and we don't need
374 * to give it an entry in image->segment[].
375 */
376 }
377 /* Deal with the destination pages I have inadvertently allocated.
378 *
379 * Ideally I would convert multi-page allocations into single
380 * page allocations, and add everything to image->dest_pages.
381 *
382 * For now it is simpler to just free the pages.
383 */
384 kimage_free_page_list(&extra_pages);
385
386 return pages;
387}
388
389static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
390 unsigned int order)
391{
392 /* Control pages are special, they are the intermediaries
393 * that are needed while we copy the rest of the pages
394 * to their final resting place. As such they must
395 * not conflict with either the destination addresses
396 * or memory the kernel is already using.
397 *
398 * Control pages are also the only pags we must allocate
399 * when loading a crash kernel. All of the other pages
400 * are specified by the segments and we just memcpy
401 * into them directly.
402 *
403 * The only case where we really need more than one of
404 * these are for architectures where we cannot disable
405 * the MMU and must instead generate an identity mapped
406 * page table for all of the memory.
407 *
408 * Given the low demand this implements a very simple
409 * allocator that finds the first hole of the appropriate
410 * size in the reserved memory region, and allocates all
411 * of the memory up to and including the hole.
412 */
413 unsigned long hole_start, hole_end, size;
414 struct page *pages;
415
416 pages = NULL;
417 size = (1 << order) << PAGE_SHIFT;
418 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
419 hole_end = hole_start + size - 1;
420 while (hole_end <= crashk_res.end) {
421 unsigned long i;
422
423 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
424 break;
425 /* See if I overlap any of the segments */
426 for (i = 0; i < image->nr_segments; i++) {
427 unsigned long mstart, mend;
428
429 mstart = image->segment[i].mem;
430 mend = mstart + image->segment[i].memsz - 1;
431 if ((hole_end >= mstart) && (hole_start <= mend)) {
432 /* Advance the hole to the end of the segment */
433 hole_start = (mend + (size - 1)) & ~(size - 1);
434 hole_end = hole_start + size - 1;
435 break;
436 }
437 }
438 /* If I don't overlap any segments I have found my hole! */
439 if (i == image->nr_segments) {
440 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
04e9949b 441 image->control_page = hole_end;
2965faa5
DY
442 break;
443 }
444 }
2965faa5
DY
445
446 return pages;
447}
448
449
450struct page *kimage_alloc_control_pages(struct kimage *image,
451 unsigned int order)
452{
453 struct page *pages = NULL;
454
455 switch (image->type) {
456 case KEXEC_TYPE_DEFAULT:
457 pages = kimage_alloc_normal_control_pages(image, order);
458 break;
459 case KEXEC_TYPE_CRASH:
460 pages = kimage_alloc_crash_control_pages(image, order);
461 break;
462 }
463
464 return pages;
465}
466
467static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
468{
469 if (*image->entry != 0)
470 image->entry++;
471
472 if (image->entry == image->last_entry) {
473 kimage_entry_t *ind_page;
474 struct page *page;
475
476 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
477 if (!page)
478 return -ENOMEM;
479
480 ind_page = page_address(page);
481 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
482 image->entry = ind_page;
483 image->last_entry = ind_page +
484 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
485 }
486 *image->entry = entry;
487 image->entry++;
488 *image->entry = 0;
489
490 return 0;
491}
492
493static int kimage_set_destination(struct kimage *image,
494 unsigned long destination)
495{
496 int result;
497
498 destination &= PAGE_MASK;
499 result = kimage_add_entry(image, destination | IND_DESTINATION);
500
501 return result;
502}
503
504
505static int kimage_add_page(struct kimage *image, unsigned long page)
506{
507 int result;
508
509 page &= PAGE_MASK;
510 result = kimage_add_entry(image, page | IND_SOURCE);
511
512 return result;
513}
514
515
516static void kimage_free_extra_pages(struct kimage *image)
517{
518 /* Walk through and free any extra destination pages I may have */
519 kimage_free_page_list(&image->dest_pages);
520
521 /* Walk through and free any unusable pages I have cached */
522 kimage_free_page_list(&image->unusable_pages);
523
524}
525void kimage_terminate(struct kimage *image)
526{
527 if (*image->entry != 0)
528 image->entry++;
529
530 *image->entry = IND_DONE;
531}
532
533#define for_each_kimage_entry(image, ptr, entry) \
534 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535 ptr = (entry & IND_INDIRECTION) ? \
536 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
537
538static void kimage_free_entry(kimage_entry_t entry)
539{
540 struct page *page;
541
542 page = pfn_to_page(entry >> PAGE_SHIFT);
543 kimage_free_pages(page);
544}
545
546void kimage_free(struct kimage *image)
547{
548 kimage_entry_t *ptr, entry;
549 kimage_entry_t ind = 0;
550
551 if (!image)
552 return;
553
554 kimage_free_extra_pages(image);
555 for_each_kimage_entry(image, ptr, entry) {
556 if (entry & IND_INDIRECTION) {
557 /* Free the previous indirection page */
558 if (ind & IND_INDIRECTION)
559 kimage_free_entry(ind);
560 /* Save this indirection page until we are
561 * done with it.
562 */
563 ind = entry;
564 } else if (entry & IND_SOURCE)
565 kimage_free_entry(entry);
566 }
567 /* Free the final indirection page */
568 if (ind & IND_INDIRECTION)
569 kimage_free_entry(ind);
570
571 /* Handle any machine specific cleanup */
572 machine_kexec_cleanup(image);
573
574 /* Free the kexec control pages... */
575 kimage_free_page_list(&image->control_pages);
576
577 /*
578 * Free up any temporary buffers allocated. This might hit if
579 * error occurred much later after buffer allocation.
580 */
581 if (image->file_mode)
582 kimage_file_post_load_cleanup(image);
583
584 kfree(image);
585}
586
587static kimage_entry_t *kimage_dst_used(struct kimage *image,
588 unsigned long page)
589{
590 kimage_entry_t *ptr, entry;
591 unsigned long destination = 0;
592
593 for_each_kimage_entry(image, ptr, entry) {
594 if (entry & IND_DESTINATION)
595 destination = entry & PAGE_MASK;
596 else if (entry & IND_SOURCE) {
597 if (page == destination)
598 return ptr;
599 destination += PAGE_SIZE;
600 }
601 }
602
603 return NULL;
604}
605
606static struct page *kimage_alloc_page(struct kimage *image,
607 gfp_t gfp_mask,
608 unsigned long destination)
609{
610 /*
611 * Here we implement safeguards to ensure that a source page
612 * is not copied to its destination page before the data on
613 * the destination page is no longer useful.
614 *
615 * To do this we maintain the invariant that a source page is
616 * either its own destination page, or it is not a
617 * destination page at all.
618 *
619 * That is slightly stronger than required, but the proof
620 * that no problems will not occur is trivial, and the
621 * implementation is simply to verify.
622 *
623 * When allocating all pages normally this algorithm will run
624 * in O(N) time, but in the worst case it will run in O(N^2)
625 * time. If the runtime is a problem the data structures can
626 * be fixed.
627 */
628 struct page *page;
629 unsigned long addr;
630
631 /*
632 * Walk through the list of destination pages, and see if I
633 * have a match.
634 */
635 list_for_each_entry(page, &image->dest_pages, lru) {
636 addr = page_to_pfn(page) << PAGE_SHIFT;
637 if (addr == destination) {
638 list_del(&page->lru);
639 return page;
640 }
641 }
642 page = NULL;
643 while (1) {
644 kimage_entry_t *old;
645
646 /* Allocate a page, if we run out of memory give up */
647 page = kimage_alloc_pages(gfp_mask, 0);
648 if (!page)
649 return NULL;
650 /* If the page cannot be used file it away */
651 if (page_to_pfn(page) >
652 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
653 list_add(&page->lru, &image->unusable_pages);
654 continue;
655 }
656 addr = page_to_pfn(page) << PAGE_SHIFT;
657
658 /* If it is the destination page we want use it */
659 if (addr == destination)
660 break;
661
662 /* If the page is not a destination page use it */
663 if (!kimage_is_destination_range(image, addr,
664 addr + PAGE_SIZE))
665 break;
666
667 /*
668 * I know that the page is someones destination page.
669 * See if there is already a source page for this
670 * destination page. And if so swap the source pages.
671 */
672 old = kimage_dst_used(image, addr);
673 if (old) {
674 /* If so move it */
675 unsigned long old_addr;
676 struct page *old_page;
677
678 old_addr = *old & PAGE_MASK;
679 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
680 copy_highpage(page, old_page);
681 *old = addr | (*old & ~PAGE_MASK);
682
683 /* The old page I have found cannot be a
684 * destination page, so return it if it's
685 * gfp_flags honor the ones passed in.
686 */
687 if (!(gfp_mask & __GFP_HIGHMEM) &&
688 PageHighMem(old_page)) {
689 kimage_free_pages(old_page);
690 continue;
691 }
692 addr = old_addr;
693 page = old_page;
694 break;
695 }
696 /* Place the page on the destination list, to be used later */
697 list_add(&page->lru, &image->dest_pages);
698 }
699
700 return page;
701}
702
703static int kimage_load_normal_segment(struct kimage *image,
704 struct kexec_segment *segment)
705{
706 unsigned long maddr;
707 size_t ubytes, mbytes;
708 int result;
709 unsigned char __user *buf = NULL;
710 unsigned char *kbuf = NULL;
711
712 result = 0;
713 if (image->file_mode)
714 kbuf = segment->kbuf;
715 else
716 buf = segment->buf;
717 ubytes = segment->bufsz;
718 mbytes = segment->memsz;
719 maddr = segment->mem;
720
721 result = kimage_set_destination(image, maddr);
722 if (result < 0)
723 goto out;
724
725 while (mbytes) {
726 struct page *page;
727 char *ptr;
728 size_t uchunk, mchunk;
729
730 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
731 if (!page) {
732 result = -ENOMEM;
733 goto out;
734 }
735 result = kimage_add_page(image, page_to_pfn(page)
736 << PAGE_SHIFT);
737 if (result < 0)
738 goto out;
739
740 ptr = kmap(page);
741 /* Start with a clear page */
742 clear_page(ptr);
743 ptr += maddr & ~PAGE_MASK;
744 mchunk = min_t(size_t, mbytes,
745 PAGE_SIZE - (maddr & ~PAGE_MASK));
746 uchunk = min(ubytes, mchunk);
747
748 /* For file based kexec, source pages are in kernel memory */
749 if (image->file_mode)
750 memcpy(ptr, kbuf, uchunk);
751 else
752 result = copy_from_user(ptr, buf, uchunk);
753 kunmap(page);
754 if (result) {
755 result = -EFAULT;
756 goto out;
757 }
758 ubytes -= uchunk;
759 maddr += mchunk;
760 if (image->file_mode)
761 kbuf += mchunk;
762 else
763 buf += mchunk;
764 mbytes -= mchunk;
765 }
766out:
767 return result;
768}
769
770static int kimage_load_crash_segment(struct kimage *image,
771 struct kexec_segment *segment)
772{
773 /* For crash dumps kernels we simply copy the data from
774 * user space to it's destination.
775 * We do things a page at a time for the sake of kmap.
776 */
777 unsigned long maddr;
778 size_t ubytes, mbytes;
779 int result;
780 unsigned char __user *buf = NULL;
781 unsigned char *kbuf = NULL;
782
783 result = 0;
784 if (image->file_mode)
785 kbuf = segment->kbuf;
786 else
787 buf = segment->buf;
788 ubytes = segment->bufsz;
789 mbytes = segment->memsz;
790 maddr = segment->mem;
791 while (mbytes) {
792 struct page *page;
793 char *ptr;
794 size_t uchunk, mchunk;
795
796 page = pfn_to_page(maddr >> PAGE_SHIFT);
797 if (!page) {
798 result = -ENOMEM;
799 goto out;
800 }
801 ptr = kmap(page);
802 ptr += maddr & ~PAGE_MASK;
803 mchunk = min_t(size_t, mbytes,
804 PAGE_SIZE - (maddr & ~PAGE_MASK));
805 uchunk = min(ubytes, mchunk);
806 if (mchunk > uchunk) {
807 /* Zero the trailing part of the page */
808 memset(ptr + uchunk, 0, mchunk - uchunk);
809 }
810
811 /* For file based kexec, source pages are in kernel memory */
812 if (image->file_mode)
813 memcpy(ptr, kbuf, uchunk);
814 else
815 result = copy_from_user(ptr, buf, uchunk);
816 kexec_flush_icache_page(page);
817 kunmap(page);
818 if (result) {
819 result = -EFAULT;
820 goto out;
821 }
822 ubytes -= uchunk;
823 maddr += mchunk;
824 if (image->file_mode)
825 kbuf += mchunk;
826 else
827 buf += mchunk;
828 mbytes -= mchunk;
829 }
830out:
831 return result;
832}
833
834int kimage_load_segment(struct kimage *image,
835 struct kexec_segment *segment)
836{
837 int result = -ENOMEM;
838
839 switch (image->type) {
840 case KEXEC_TYPE_DEFAULT:
841 result = kimage_load_normal_segment(image, segment);
842 break;
843 case KEXEC_TYPE_CRASH:
844 result = kimage_load_crash_segment(image, segment);
845 break;
846 }
847
848 return result;
849}
850
851struct kimage *kexec_image;
852struct kimage *kexec_crash_image;
853int kexec_load_disabled;
854
7bbee5ca
HK
855/*
856 * No panic_cpu check version of crash_kexec(). This function is called
857 * only when panic_cpu holds the current CPU number; this is the only CPU
858 * which processes crash_kexec routines.
859 */
860void __crash_kexec(struct pt_regs *regs)
2965faa5
DY
861{
862 /* Take the kexec_mutex here to prevent sys_kexec_load
863 * running on one cpu from replacing the crash kernel
864 * we are using after a panic on a different cpu.
865 *
866 * If the crash kernel was not located in a fixed area
867 * of memory the xchg(&kexec_crash_image) would be
868 * sufficient. But since I reuse the memory...
869 */
870 if (mutex_trylock(&kexec_mutex)) {
871 if (kexec_crash_image) {
872 struct pt_regs fixed_regs;
873
874 crash_setup_regs(&fixed_regs, regs);
875 crash_save_vmcoreinfo();
876 machine_crash_shutdown(&fixed_regs);
877 machine_kexec(kexec_crash_image);
878 }
879 mutex_unlock(&kexec_mutex);
880 }
881}
882
7bbee5ca
HK
883void crash_kexec(struct pt_regs *regs)
884{
885 int old_cpu, this_cpu;
886
887 /*
888 * Only one CPU is allowed to execute the crash_kexec() code as with
889 * panic(). Otherwise parallel calls of panic() and crash_kexec()
890 * may stop each other. To exclude them, we use panic_cpu here too.
891 */
892 this_cpu = raw_smp_processor_id();
893 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
894 if (old_cpu == PANIC_CPU_INVALID) {
895 /* This is the 1st CPU which comes here, so go ahead. */
cf9b1106 896 printk_nmi_flush_on_panic();
7bbee5ca
HK
897 __crash_kexec(regs);
898
899 /*
900 * Reset panic_cpu to allow another panic()/crash_kexec()
901 * call.
902 */
903 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
904 }
905}
906
2965faa5
DY
907size_t crash_get_memory_size(void)
908{
909 size_t size = 0;
910
911 mutex_lock(&kexec_mutex);
912 if (crashk_res.end != crashk_res.start)
913 size = resource_size(&crashk_res);
914 mutex_unlock(&kexec_mutex);
915 return size;
916}
917
918void __weak crash_free_reserved_phys_range(unsigned long begin,
919 unsigned long end)
920{
921 unsigned long addr;
922
923 for (addr = begin; addr < end; addr += PAGE_SIZE)
924 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
925}
926
927int crash_shrink_memory(unsigned long new_size)
928{
929 int ret = 0;
930 unsigned long start, end;
931 unsigned long old_size;
932 struct resource *ram_res;
933
934 mutex_lock(&kexec_mutex);
935
936 if (kexec_crash_image) {
937 ret = -ENOENT;
938 goto unlock;
939 }
940 start = crashk_res.start;
941 end = crashk_res.end;
942 old_size = (end == 0) ? 0 : end - start + 1;
943 if (new_size >= old_size) {
944 ret = (new_size == old_size) ? 0 : -EINVAL;
945 goto unlock;
946 }
947
948 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
949 if (!ram_res) {
950 ret = -ENOMEM;
951 goto unlock;
952 }
953
954 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
955 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
956
2965faa5
DY
957 crash_free_reserved_phys_range(end, crashk_res.end);
958
959 if ((start == end) && (crashk_res.parent != NULL))
960 release_resource(&crashk_res);
961
962 ram_res->start = end;
963 ram_res->end = crashk_res.end;
1a085d07 964 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2965faa5
DY
965 ram_res->name = "System RAM";
966
967 crashk_res.end = end - 1;
968
969 insert_resource(&iomem_resource, ram_res);
2965faa5
DY
970
971unlock:
972 mutex_unlock(&kexec_mutex);
973 return ret;
974}
975
976static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
977 size_t data_len)
978{
979 struct elf_note note;
980
981 note.n_namesz = strlen(name) + 1;
982 note.n_descsz = data_len;
983 note.n_type = type;
984 memcpy(buf, &note, sizeof(note));
985 buf += (sizeof(note) + 3)/4;
986 memcpy(buf, name, note.n_namesz);
987 buf += (note.n_namesz + 3)/4;
988 memcpy(buf, data, note.n_descsz);
989 buf += (note.n_descsz + 3)/4;
990
991 return buf;
992}
993
994static void final_note(u32 *buf)
995{
996 struct elf_note note;
997
998 note.n_namesz = 0;
999 note.n_descsz = 0;
1000 note.n_type = 0;
1001 memcpy(buf, &note, sizeof(note));
1002}
1003
1004void crash_save_cpu(struct pt_regs *regs, int cpu)
1005{
1006 struct elf_prstatus prstatus;
1007 u32 *buf;
1008
1009 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1010 return;
1011
1012 /* Using ELF notes here is opportunistic.
1013 * I need a well defined structure format
1014 * for the data I pass, and I need tags
1015 * on the data to indicate what information I have
1016 * squirrelled away. ELF notes happen to provide
1017 * all of that, so there is no need to invent something new.
1018 */
1019 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1020 if (!buf)
1021 return;
1022 memset(&prstatus, 0, sizeof(prstatus));
1023 prstatus.pr_pid = current->pid;
1024 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1025 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1026 &prstatus, sizeof(prstatus));
1027 final_note(buf);
1028}
1029
1030static int __init crash_notes_memory_init(void)
1031{
1032 /* Allocate memory for saving cpu registers. */
bbb78b8f
BH
1033 size_t size, align;
1034
1035 /*
1036 * crash_notes could be allocated across 2 vmalloc pages when percpu
1037 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1038 * pages are also on 2 continuous physical pages. In this case the
1039 * 2nd part of crash_notes in 2nd page could be lost since only the
1040 * starting address and size of crash_notes are exported through sysfs.
1041 * Here round up the size of crash_notes to the nearest power of two
1042 * and pass it to __alloc_percpu as align value. This can make sure
1043 * crash_notes is allocated inside one physical page.
1044 */
1045 size = sizeof(note_buf_t);
1046 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1047
1048 /*
1049 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1050 * definitely will be in 2 pages with that.
1051 */
1052 BUILD_BUG_ON(size > PAGE_SIZE);
1053
1054 crash_notes = __alloc_percpu(size, align);
2965faa5 1055 if (!crash_notes) {
de90a6bc 1056 pr_warn("Memory allocation for saving cpu register states failed\n");
2965faa5
DY
1057 return -ENOMEM;
1058 }
1059 return 0;
1060}
1061subsys_initcall(crash_notes_memory_init);
1062
1063
1064/*
1065 * parsing the "crashkernel" commandline
1066 *
1067 * this code is intended to be called from architecture specific code
1068 */
1069
1070
1071/*
1072 * This function parses command lines in the format
1073 *
1074 * crashkernel=ramsize-range:size[,...][@offset]
1075 *
1076 * The function returns 0 on success and -EINVAL on failure.
1077 */
1078static int __init parse_crashkernel_mem(char *cmdline,
1079 unsigned long long system_ram,
1080 unsigned long long *crash_size,
1081 unsigned long long *crash_base)
1082{
1083 char *cur = cmdline, *tmp;
1084
1085 /* for each entry of the comma-separated list */
1086 do {
1087 unsigned long long start, end = ULLONG_MAX, size;
1088
1089 /* get the start of the range */
1090 start = memparse(cur, &tmp);
1091 if (cur == tmp) {
1092 pr_warn("crashkernel: Memory value expected\n");
1093 return -EINVAL;
1094 }
1095 cur = tmp;
1096 if (*cur != '-') {
1097 pr_warn("crashkernel: '-' expected\n");
1098 return -EINVAL;
1099 }
1100 cur++;
1101
1102 /* if no ':' is here, than we read the end */
1103 if (*cur != ':') {
1104 end = memparse(cur, &tmp);
1105 if (cur == tmp) {
1106 pr_warn("crashkernel: Memory value expected\n");
1107 return -EINVAL;
1108 }
1109 cur = tmp;
1110 if (end <= start) {
1111 pr_warn("crashkernel: end <= start\n");
1112 return -EINVAL;
1113 }
1114 }
1115
1116 if (*cur != ':') {
1117 pr_warn("crashkernel: ':' expected\n");
1118 return -EINVAL;
1119 }
1120 cur++;
1121
1122 size = memparse(cur, &tmp);
1123 if (cur == tmp) {
1124 pr_warn("Memory value expected\n");
1125 return -EINVAL;
1126 }
1127 cur = tmp;
1128 if (size >= system_ram) {
1129 pr_warn("crashkernel: invalid size\n");
1130 return -EINVAL;
1131 }
1132
1133 /* match ? */
1134 if (system_ram >= start && system_ram < end) {
1135 *crash_size = size;
1136 break;
1137 }
1138 } while (*cur++ == ',');
1139
1140 if (*crash_size > 0) {
1141 while (*cur && *cur != ' ' && *cur != '@')
1142 cur++;
1143 if (*cur == '@') {
1144 cur++;
1145 *crash_base = memparse(cur, &tmp);
1146 if (cur == tmp) {
1147 pr_warn("Memory value expected after '@'\n");
1148 return -EINVAL;
1149 }
1150 }
1151 }
1152
1153 return 0;
1154}
1155
1156/*
1157 * That function parses "simple" (old) crashkernel command lines like
1158 *
1159 * crashkernel=size[@offset]
1160 *
1161 * It returns 0 on success and -EINVAL on failure.
1162 */
1163static int __init parse_crashkernel_simple(char *cmdline,
1164 unsigned long long *crash_size,
1165 unsigned long long *crash_base)
1166{
1167 char *cur = cmdline;
1168
1169 *crash_size = memparse(cmdline, &cur);
1170 if (cmdline == cur) {
1171 pr_warn("crashkernel: memory value expected\n");
1172 return -EINVAL;
1173 }
1174
1175 if (*cur == '@')
1176 *crash_base = memparse(cur+1, &cur);
1177 else if (*cur != ' ' && *cur != '\0') {
53b90c0c 1178 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1179 return -EINVAL;
1180 }
1181
1182 return 0;
1183}
1184
1185#define SUFFIX_HIGH 0
1186#define SUFFIX_LOW 1
1187#define SUFFIX_NULL 2
1188static __initdata char *suffix_tbl[] = {
1189 [SUFFIX_HIGH] = ",high",
1190 [SUFFIX_LOW] = ",low",
1191 [SUFFIX_NULL] = NULL,
1192};
1193
1194/*
1195 * That function parses "suffix" crashkernel command lines like
1196 *
1197 * crashkernel=size,[high|low]
1198 *
1199 * It returns 0 on success and -EINVAL on failure.
1200 */
1201static int __init parse_crashkernel_suffix(char *cmdline,
1202 unsigned long long *crash_size,
1203 const char *suffix)
1204{
1205 char *cur = cmdline;
1206
1207 *crash_size = memparse(cmdline, &cur);
1208 if (cmdline == cur) {
1209 pr_warn("crashkernel: memory value expected\n");
1210 return -EINVAL;
1211 }
1212
1213 /* check with suffix */
1214 if (strncmp(cur, suffix, strlen(suffix))) {
53b90c0c 1215 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1216 return -EINVAL;
1217 }
1218 cur += strlen(suffix);
1219 if (*cur != ' ' && *cur != '\0') {
53b90c0c 1220 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1221 return -EINVAL;
1222 }
1223
1224 return 0;
1225}
1226
1227static __init char *get_last_crashkernel(char *cmdline,
1228 const char *name,
1229 const char *suffix)
1230{
1231 char *p = cmdline, *ck_cmdline = NULL;
1232
1233 /* find crashkernel and use the last one if there are more */
1234 p = strstr(p, name);
1235 while (p) {
1236 char *end_p = strchr(p, ' ');
1237 char *q;
1238
1239 if (!end_p)
1240 end_p = p + strlen(p);
1241
1242 if (!suffix) {
1243 int i;
1244
1245 /* skip the one with any known suffix */
1246 for (i = 0; suffix_tbl[i]; i++) {
1247 q = end_p - strlen(suffix_tbl[i]);
1248 if (!strncmp(q, suffix_tbl[i],
1249 strlen(suffix_tbl[i])))
1250 goto next;
1251 }
1252 ck_cmdline = p;
1253 } else {
1254 q = end_p - strlen(suffix);
1255 if (!strncmp(q, suffix, strlen(suffix)))
1256 ck_cmdline = p;
1257 }
1258next:
1259 p = strstr(p+1, name);
1260 }
1261
1262 if (!ck_cmdline)
1263 return NULL;
1264
1265 return ck_cmdline;
1266}
1267
1268static int __init __parse_crashkernel(char *cmdline,
1269 unsigned long long system_ram,
1270 unsigned long long *crash_size,
1271 unsigned long long *crash_base,
1272 const char *name,
1273 const char *suffix)
1274{
1275 char *first_colon, *first_space;
1276 char *ck_cmdline;
1277
1278 BUG_ON(!crash_size || !crash_base);
1279 *crash_size = 0;
1280 *crash_base = 0;
1281
1282 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1283
1284 if (!ck_cmdline)
1285 return -EINVAL;
1286
1287 ck_cmdline += strlen(name);
1288
1289 if (suffix)
1290 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1291 suffix);
1292 /*
1293 * if the commandline contains a ':', then that's the extended
1294 * syntax -- if not, it must be the classic syntax
1295 */
1296 first_colon = strchr(ck_cmdline, ':');
1297 first_space = strchr(ck_cmdline, ' ');
1298 if (first_colon && (!first_space || first_colon < first_space))
1299 return parse_crashkernel_mem(ck_cmdline, system_ram,
1300 crash_size, crash_base);
1301
1302 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1303}
1304
1305/*
1306 * That function is the entry point for command line parsing and should be
1307 * called from the arch-specific code.
1308 */
1309int __init parse_crashkernel(char *cmdline,
1310 unsigned long long system_ram,
1311 unsigned long long *crash_size,
1312 unsigned long long *crash_base)
1313{
1314 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1315 "crashkernel=", NULL);
1316}
1317
1318int __init parse_crashkernel_high(char *cmdline,
1319 unsigned long long system_ram,
1320 unsigned long long *crash_size,
1321 unsigned long long *crash_base)
1322{
1323 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1324 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1325}
1326
1327int __init parse_crashkernel_low(char *cmdline,
1328 unsigned long long system_ram,
1329 unsigned long long *crash_size,
1330 unsigned long long *crash_base)
1331{
1332 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1333 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1334}
1335
1336static void update_vmcoreinfo_note(void)
1337{
1338 u32 *buf = vmcoreinfo_note;
1339
1340 if (!vmcoreinfo_size)
1341 return;
1342 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1343 vmcoreinfo_size);
1344 final_note(buf);
1345}
1346
1347void crash_save_vmcoreinfo(void)
1348{
1349 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1350 update_vmcoreinfo_note();
1351}
1352
1353void vmcoreinfo_append_str(const char *fmt, ...)
1354{
1355 va_list args;
1356 char buf[0x50];
1357 size_t r;
1358
1359 va_start(args, fmt);
1360 r = vscnprintf(buf, sizeof(buf), fmt, args);
1361 va_end(args);
1362
1363 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1364
1365 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1366
1367 vmcoreinfo_size += r;
1368}
1369
1370/*
1371 * provide an empty default implementation here -- architecture
1372 * code may override this
1373 */
1374void __weak arch_crash_save_vmcoreinfo(void)
1375{}
1376
1377unsigned long __weak paddr_vmcoreinfo_note(void)
1378{
1379 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1380}
1381
1382static int __init crash_save_vmcoreinfo_init(void)
1383{
1384 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1385 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1386
1387 VMCOREINFO_SYMBOL(init_uts_ns);
1388 VMCOREINFO_SYMBOL(node_online_map);
1389#ifdef CONFIG_MMU
1390 VMCOREINFO_SYMBOL(swapper_pg_dir);
1391#endif
1392 VMCOREINFO_SYMBOL(_stext);
1393 VMCOREINFO_SYMBOL(vmap_area_list);
1394
1395#ifndef CONFIG_NEED_MULTIPLE_NODES
1396 VMCOREINFO_SYMBOL(mem_map);
1397 VMCOREINFO_SYMBOL(contig_page_data);
1398#endif
1399#ifdef CONFIG_SPARSEMEM
1400 VMCOREINFO_SYMBOL(mem_section);
1401 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1402 VMCOREINFO_STRUCT_SIZE(mem_section);
1403 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1404#endif
1405 VMCOREINFO_STRUCT_SIZE(page);
1406 VMCOREINFO_STRUCT_SIZE(pglist_data);
1407 VMCOREINFO_STRUCT_SIZE(zone);
1408 VMCOREINFO_STRUCT_SIZE(free_area);
1409 VMCOREINFO_STRUCT_SIZE(list_head);
1410 VMCOREINFO_SIZE(nodemask_t);
1411 VMCOREINFO_OFFSET(page, flags);
0139aa7b 1412 VMCOREINFO_OFFSET(page, _refcount);
2965faa5
DY
1413 VMCOREINFO_OFFSET(page, mapping);
1414 VMCOREINFO_OFFSET(page, lru);
1415 VMCOREINFO_OFFSET(page, _mapcount);
1416 VMCOREINFO_OFFSET(page, private);
8639a847
AK
1417 VMCOREINFO_OFFSET(page, compound_dtor);
1418 VMCOREINFO_OFFSET(page, compound_order);
d7f53518 1419 VMCOREINFO_OFFSET(page, compound_head);
2965faa5
DY
1420 VMCOREINFO_OFFSET(pglist_data, node_zones);
1421 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1422#ifdef CONFIG_FLAT_NODE_MEM_MAP
1423 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1424#endif
1425 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1426 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1427 VMCOREINFO_OFFSET(pglist_data, node_id);
1428 VMCOREINFO_OFFSET(zone, free_area);
1429 VMCOREINFO_OFFSET(zone, vm_stat);
1430 VMCOREINFO_OFFSET(zone, spanned_pages);
1431 VMCOREINFO_OFFSET(free_area, free_list);
1432 VMCOREINFO_OFFSET(list_head, next);
1433 VMCOREINFO_OFFSET(list_head, prev);
1434 VMCOREINFO_OFFSET(vmap_area, va_start);
1435 VMCOREINFO_OFFSET(vmap_area, list);
1436 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1437 log_buf_kexec_setup();
1438 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1439 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1440 VMCOREINFO_NUMBER(PG_lru);
1441 VMCOREINFO_NUMBER(PG_private);
1442 VMCOREINFO_NUMBER(PG_swapcache);
1443 VMCOREINFO_NUMBER(PG_slab);
1444#ifdef CONFIG_MEMORY_FAILURE
1445 VMCOREINFO_NUMBER(PG_hwpoison);
1446#endif
1447 VMCOREINFO_NUMBER(PG_head_mask);
1448 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1303a27c
BH
1449#ifdef CONFIG_X86
1450 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1451#endif
8639a847
AK
1452#ifdef CONFIG_HUGETLB_PAGE
1453 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
2965faa5
DY
1454#endif
1455
1456 arch_crash_save_vmcoreinfo();
1457 update_vmcoreinfo_note();
1458
1459 return 0;
1460}
1461
1462subsys_initcall(crash_save_vmcoreinfo_init);
1463
1464/*
1465 * Move into place and start executing a preloaded standalone
1466 * executable. If nothing was preloaded return an error.
1467 */
1468int kernel_kexec(void)
1469{
1470 int error = 0;
1471
1472 if (!mutex_trylock(&kexec_mutex))
1473 return -EBUSY;
1474 if (!kexec_image) {
1475 error = -EINVAL;
1476 goto Unlock;
1477 }
1478
1479#ifdef CONFIG_KEXEC_JUMP
1480 if (kexec_image->preserve_context) {
1481 lock_system_sleep();
1482 pm_prepare_console();
1483 error = freeze_processes();
1484 if (error) {
1485 error = -EBUSY;
1486 goto Restore_console;
1487 }
1488 suspend_console();
1489 error = dpm_suspend_start(PMSG_FREEZE);
1490 if (error)
1491 goto Resume_console;
1492 /* At this point, dpm_suspend_start() has been called,
1493 * but *not* dpm_suspend_end(). We *must* call
1494 * dpm_suspend_end() now. Otherwise, drivers for
1495 * some devices (e.g. interrupt controllers) become
1496 * desynchronized with the actual state of the
1497 * hardware at resume time, and evil weirdness ensues.
1498 */
1499 error = dpm_suspend_end(PMSG_FREEZE);
1500 if (error)
1501 goto Resume_devices;
1502 error = disable_nonboot_cpus();
1503 if (error)
1504 goto Enable_cpus;
1505 local_irq_disable();
1506 error = syscore_suspend();
1507 if (error)
1508 goto Enable_irqs;
1509 } else
1510#endif
1511 {
1512 kexec_in_progress = true;
1513 kernel_restart_prepare(NULL);
1514 migrate_to_reboot_cpu();
1515
1516 /*
1517 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1518 * no further code needs to use CPU hotplug (which is true in
1519 * the reboot case). However, the kexec path depends on using
1520 * CPU hotplug again; so re-enable it here.
1521 */
1522 cpu_hotplug_enable();
1523 pr_emerg("Starting new kernel\n");
1524 machine_shutdown();
1525 }
1526
1527 machine_kexec(kexec_image);
1528
1529#ifdef CONFIG_KEXEC_JUMP
1530 if (kexec_image->preserve_context) {
1531 syscore_resume();
1532 Enable_irqs:
1533 local_irq_enable();
1534 Enable_cpus:
1535 enable_nonboot_cpus();
1536 dpm_resume_start(PMSG_RESTORE);
1537 Resume_devices:
1538 dpm_resume_end(PMSG_RESTORE);
1539 Resume_console:
1540 resume_console();
1541 thaw_processes();
1542 Restore_console:
1543 pm_restore_console();
1544 unlock_system_sleep();
1545 }
1546#endif
1547
1548 Unlock:
1549 mutex_unlock(&kexec_mutex);
1550 return error;
1551}
1552
1553/*
7a0058ec
XP
1554 * Protection mechanism for crashkernel reserved memory after
1555 * the kdump kernel is loaded.
2965faa5
DY
1556 *
1557 * Provide an empty default implementation here -- architecture
1558 * code may override this
1559 */
9b492cf5
XP
1560void __weak arch_kexec_protect_crashkres(void)
1561{}
1562
1563void __weak arch_kexec_unprotect_crashkres(void)
1564{}