Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
cb105258
VG
9#define pr_fmt(fmt) "kexec: " fmt
10
c59ede7b 11#include <linux/capability.h>
dc009d92
EB
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
8c5a1cf0 17#include <linux/mutex.h>
dc009d92
EB
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
dc009d92 22#include <linux/ioport.h>
6e274d14 23#include <linux/hardirq.h>
85916f81
MD
24#include <linux/elf.h>
25#include <linux/elfcore.h>
fd59d231
KO
26#include <linux/utsname.h>
27#include <linux/numa.h>
3ab83521
HY
28#include <linux/suspend.h>
29#include <linux/device.h>
89081d17
HY
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/console.h>
5f41b8cd 34#include <linux/vmalloc.h>
06a7f711 35#include <linux/swap.h>
19234c08 36#include <linux/syscore_ops.h>
52f5684c 37#include <linux/compiler.h>
8f1d26d0 38#include <linux/hugetlb.h>
6e274d14 39
dc009d92
EB
40#include <asm/page.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
fd59d231 43#include <asm/sections.h>
dc009d92 44
12db5562
VG
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47
cc571658 48/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 49note_buf_t __percpu *crash_notes;
cc571658 50
fd59d231 51/* vmcoreinfo stuff */
edb79a21 52static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 53u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
54size_t vmcoreinfo_size;
55size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 56
4fc9bbf9
KA
57/* Flag to indicate we are going to kexec a new kernel */
58bool kexec_in_progress = false;
59
12db5562
VG
60/*
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
63 */
64char __weak kexec_purgatory[0];
65size_t __weak kexec_purgatory_size = 0;
66
74ca317c 67#ifdef CONFIG_KEXEC_FILE
12db5562 68static int kexec_calculate_store_digests(struct kimage *image);
74ca317c 69#endif
12db5562 70
dc009d92
EB
71/* Location of the reserved area for the crash kernel */
72struct resource crashk_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
77};
0212f915 78struct resource crashk_low_res = {
157752d8 79 .name = "Crash kernel",
0212f915
YL
80 .start = 0,
81 .end = 0,
82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
83};
dc009d92 84
6e274d14
AN
85int kexec_should_crash(struct task_struct *p)
86{
b460cbc5 87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
88 return 1;
89 return 0;
90}
91
dc009d92
EB
92/*
93 * When kexec transitions to the new kernel there is a one-to-one
94 * mapping between physical and virtual addresses. On processors
95 * where you can disable the MMU this is trivial, and easy. For
96 * others it is still a simple predictable page table to setup.
97 *
98 * In that environment kexec copies the new kernel to its final
99 * resting place. This means I can only support memory whose
100 * physical address can fit in an unsigned long. In particular
101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102 * If the assembly stub has more restrictive requirements
103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104 * defined more restrictively in <asm/kexec.h>.
105 *
106 * The code for the transition from the current kernel to the
107 * the new kernel is placed in the control_code_buffer, whose size
163f6876 108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
109 * page of memory is necessary, but some architectures require more.
110 * Because this memory must be identity mapped in the transition from
111 * virtual to physical addresses it must live in the range
112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113 * modifiable.
114 *
115 * The assembly stub in the control code buffer is passed a linked list
116 * of descriptor pages detailing the source pages of the new kernel,
117 * and the destination addresses of those source pages. As this data
118 * structure is not used in the context of the current OS, it must
119 * be self-contained.
120 *
121 * The code has been made to work with highmem pages and will use a
122 * destination page in its final resting place (if it happens
123 * to allocate it). The end product of this is that most of the
124 * physical address space, and most of RAM can be used.
125 *
126 * Future directions include:
127 * - allocating a page table with the control code buffer identity
128 * mapped, to simplify machine_kexec and make kexec_on_panic more
129 * reliable.
130 */
131
132/*
133 * KIMAGE_NO_DEST is an impossible destination address..., for
134 * allocating pages whose destination address we do not care about.
135 */
136#define KIMAGE_NO_DEST (-1UL)
137
72414d3f
MS
138static int kimage_is_destination_range(struct kimage *image,
139 unsigned long start, unsigned long end);
140static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 141 gfp_t gfp_mask,
72414d3f 142 unsigned long dest);
dc009d92 143
dabe7862
VG
144static int copy_user_segment_list(struct kimage *image,
145 unsigned long nr_segments,
146 struct kexec_segment __user *segments)
dc009d92 147{
dabe7862 148 int ret;
dc009d92 149 size_t segment_bytes;
dc009d92
EB
150
151 /* Read in the segments */
152 image->nr_segments = nr_segments;
153 segment_bytes = nr_segments * sizeof(*segments);
dabe7862
VG
154 ret = copy_from_user(image->segment, segments, segment_bytes);
155 if (ret)
156 ret = -EFAULT;
157
158 return ret;
159}
160
161static int sanity_check_segment_list(struct kimage *image)
162{
163 int result, i;
164 unsigned long nr_segments = image->nr_segments;
dc009d92
EB
165
166 /*
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
171 *
172 * Since the kernel does everything in page size chunks ensure
b595076a 173 * the destination addresses are page aligned. Too many
dc009d92
EB
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
177 * granularity.
178 */
179 result = -EADDRNOTAVAIL;
180 for (i = 0; i < nr_segments; i++) {
181 unsigned long mstart, mend;
72414d3f 182
dc009d92
EB
183 mstart = image->segment[i].mem;
184 mend = mstart + image->segment[i].memsz;
185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
dabe7862 186 return result;
dc009d92 187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
dabe7862 188 return result;
dc009d92
EB
189 }
190
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
195 */
196 result = -EINVAL;
72414d3f 197 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
198 unsigned long mstart, mend;
199 unsigned long j;
72414d3f 200
dc009d92
EB
201 mstart = image->segment[i].mem;
202 mend = mstart + image->segment[i].memsz;
72414d3f 203 for (j = 0; j < i; j++) {
dc009d92
EB
204 unsigned long pstart, pend;
205 pstart = image->segment[j].mem;
206 pend = pstart + image->segment[j].memsz;
207 /* Do the segments overlap ? */
208 if ((mend > pstart) && (mstart < pend))
dabe7862 209 return result;
dc009d92
EB
210 }
211 }
212
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
216 * later on.
217 */
218 result = -EINVAL;
72414d3f 219 for (i = 0; i < nr_segments; i++) {
dc009d92 220 if (image->segment[i].bufsz > image->segment[i].memsz)
dabe7862 221 return result;
dc009d92
EB
222 }
223
dabe7862
VG
224 /*
225 * Verify we have good destination addresses. Normally
226 * the caller is responsible for making certain we don't
227 * attempt to load the new image into invalid or reserved
228 * areas of RAM. But crash kernels are preloaded into a
229 * reserved area of ram. We must ensure the addresses
230 * are in the reserved area otherwise preloading the
231 * kernel could corrupt things.
232 */
72414d3f 233
dabe7862
VG
234 if (image->type == KEXEC_TYPE_CRASH) {
235 result = -EADDRNOTAVAIL;
236 for (i = 0; i < nr_segments; i++) {
237 unsigned long mstart, mend;
238
239 mstart = image->segment[i].mem;
240 mend = mstart + image->segment[i].memsz - 1;
241 /* Ensure we are within the crash kernel limits */
242 if ((mstart < crashk_res.start) ||
243 (mend > crashk_res.end))
244 return result;
245 }
246 }
dc009d92 247
dabe7862
VG
248 return 0;
249}
250
251static struct kimage *do_kimage_alloc_init(void)
252{
253 struct kimage *image;
254
255 /* Allocate a controlling structure */
256 image = kzalloc(sizeof(*image), GFP_KERNEL);
257 if (!image)
258 return NULL;
259
260 image->head = 0;
261 image->entry = &image->head;
262 image->last_entry = &image->head;
263 image->control_page = ~0; /* By default this does not apply */
264 image->type = KEXEC_TYPE_DEFAULT;
265
266 /* Initialize the list of control pages */
267 INIT_LIST_HEAD(&image->control_pages);
268
269 /* Initialize the list of destination pages */
270 INIT_LIST_HEAD(&image->dest_pages);
271
272 /* Initialize the list of unusable pages */
273 INIT_LIST_HEAD(&image->unusable_pages);
274
275 return image;
dc009d92
EB
276}
277
b92e7e0d
ZY
278static void kimage_free_page_list(struct list_head *list);
279
255aedd9
VG
280static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281 unsigned long nr_segments,
282 struct kexec_segment __user *segments,
283 unsigned long flags)
dc009d92 284{
255aedd9 285 int ret;
dc009d92 286 struct kimage *image;
255aedd9
VG
287 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288
289 if (kexec_on_panic) {
290 /* Verify we have a valid entry point */
291 if ((entry < crashk_res.start) || (entry > crashk_res.end))
292 return -EADDRNOTAVAIL;
293 }
dc009d92
EB
294
295 /* Allocate and initialize a controlling structure */
dabe7862
VG
296 image = do_kimage_alloc_init();
297 if (!image)
298 return -ENOMEM;
299
300 image->start = entry;
301
255aedd9
VG
302 ret = copy_user_segment_list(image, nr_segments, segments);
303 if (ret)
dabe7862
VG
304 goto out_free_image;
305
255aedd9
VG
306 ret = sanity_check_segment_list(image);
307 if (ret)
dabe7862 308 goto out_free_image;
72414d3f 309
255aedd9
VG
310 /* Enable the special crash kernel control page allocation policy. */
311 if (kexec_on_panic) {
312 image->control_page = crashk_res.start;
313 image->type = KEXEC_TYPE_CRASH;
314 }
315
dc009d92
EB
316 /*
317 * Find a location for the control code buffer, and add it
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
320 */
255aedd9 321 ret = -ENOMEM;
dc009d92 322 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 323 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92 324 if (!image->control_code_page) {
e1bebcf4 325 pr_err("Could not allocate control_code_buffer\n");
dabe7862 326 goto out_free_image;
dc009d92
EB
327 }
328
255aedd9
VG
329 if (!kexec_on_panic) {
330 image->swap_page = kimage_alloc_control_pages(image, 0);
331 if (!image->swap_page) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages;
334 }
3ab83521
HY
335 }
336
b92e7e0d
ZY
337 *rimage = image;
338 return 0;
dabe7862 339out_free_control_pages:
b92e7e0d 340 kimage_free_page_list(&image->control_pages);
dabe7862 341out_free_image:
b92e7e0d 342 kfree(image);
255aedd9 343 return ret;
dc009d92
EB
344}
345
74ca317c 346#ifdef CONFIG_KEXEC_FILE
cb105258
VG
347static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348{
349 struct fd f = fdget(fd);
350 int ret;
351 struct kstat stat;
352 loff_t pos;
353 ssize_t bytes = 0;
354
355 if (!f.file)
356 return -EBADF;
357
358 ret = vfs_getattr(&f.file->f_path, &stat);
359 if (ret)
360 goto out;
361
362 if (stat.size > INT_MAX) {
363 ret = -EFBIG;
364 goto out;
365 }
366
367 /* Don't hand 0 to vmalloc, it whines. */
368 if (stat.size == 0) {
369 ret = -EINVAL;
370 goto out;
371 }
372
373 *buf = vmalloc(stat.size);
374 if (!*buf) {
375 ret = -ENOMEM;
376 goto out;
377 }
378
379 pos = 0;
380 while (pos < stat.size) {
381 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382 stat.size - pos);
383 if (bytes < 0) {
384 vfree(*buf);
385 ret = bytes;
386 goto out;
387 }
388
389 if (bytes == 0)
390 break;
391 pos += bytes;
392 }
393
394 if (pos != stat.size) {
395 ret = -EBADF;
396 vfree(*buf);
397 goto out;
398 }
399
400 *buf_len = pos;
401out:
402 fdput(f);
403 return ret;
404}
405
406/* Architectures can provide this probe function */
407int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408 unsigned long buf_len)
409{
410 return -ENOEXEC;
411}
412
413void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414{
415 return ERR_PTR(-ENOEXEC);
416}
417
418void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419{
420}
421
8e7d8381
VG
422int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423 unsigned long buf_len)
424{
425 return -EKEYREJECTED;
426}
427
12db5562
VG
428/* Apply relocations of type RELA */
429int __weak
430arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431 unsigned int relsec)
432{
433 pr_err("RELA relocation unsupported.\n");
434 return -ENOEXEC;
435}
436
437/* Apply relocations of type REL */
438int __weak
439arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440 unsigned int relsec)
441{
442 pr_err("REL relocation unsupported.\n");
443 return -ENOEXEC;
444}
445
cb105258 446/*
ad699349 447 * Free up memory used by kernel, initrd, and command line. This is temporary
cb105258
VG
448 * memory allocation which is not needed any more after these buffers have
449 * been loaded into separate segments and have been copied elsewhere.
450 */
451static void kimage_file_post_load_cleanup(struct kimage *image)
452{
12db5562
VG
453 struct purgatory_info *pi = &image->purgatory_info;
454
cb105258
VG
455 vfree(image->kernel_buf);
456 image->kernel_buf = NULL;
457
458 vfree(image->initrd_buf);
459 image->initrd_buf = NULL;
460
461 kfree(image->cmdline_buf);
462 image->cmdline_buf = NULL;
463
12db5562
VG
464 vfree(pi->purgatory_buf);
465 pi->purgatory_buf = NULL;
466
467 vfree(pi->sechdrs);
468 pi->sechdrs = NULL;
469
cb105258
VG
470 /* See if architecture has anything to cleanup post load */
471 arch_kimage_file_post_load_cleanup(image);
27f48d3e
VG
472
473 /*
474 * Above call should have called into bootloader to free up
475 * any data stored in kimage->image_loader_data. It should
476 * be ok now to free it up.
477 */
478 kfree(image->image_loader_data);
479 image->image_loader_data = NULL;
cb105258
VG
480}
481
482/*
483 * In file mode list of segments is prepared by kernel. Copy relevant
484 * data from user space, do error checking, prepare segment list
485 */
486static int
487kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488 const char __user *cmdline_ptr,
489 unsigned long cmdline_len, unsigned flags)
490{
491 int ret = 0;
492 void *ldata;
493
494 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495 &image->kernel_buf_len);
496 if (ret)
497 return ret;
498
499 /* Call arch image probe handlers */
500 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501 image->kernel_buf_len);
502
503 if (ret)
504 goto out;
505
8e7d8381
VG
506#ifdef CONFIG_KEXEC_VERIFY_SIG
507 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508 image->kernel_buf_len);
509 if (ret) {
510 pr_debug("kernel signature verification failed.\n");
511 goto out;
512 }
513 pr_debug("kernel signature verification successful.\n");
514#endif
cb105258
VG
515 /* It is possible that there no initramfs is being loaded */
516 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518 &image->initrd_buf_len);
519 if (ret)
520 goto out;
521 }
522
523 if (cmdline_len) {
524 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525 if (!image->cmdline_buf) {
526 ret = -ENOMEM;
527 goto out;
528 }
529
530 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531 cmdline_len);
532 if (ret) {
533 ret = -EFAULT;
534 goto out;
535 }
536
537 image->cmdline_buf_len = cmdline_len;
538
539 /* command line should be a string with last byte null */
540 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541 ret = -EINVAL;
542 goto out;
543 }
544 }
545
546 /* Call arch image load handlers */
547 ldata = arch_kexec_kernel_image_load(image);
548
549 if (IS_ERR(ldata)) {
550 ret = PTR_ERR(ldata);
551 goto out;
552 }
553
554 image->image_loader_data = ldata;
555out:
556 /* In case of error, free up all allocated memory in this function */
557 if (ret)
558 kimage_file_post_load_cleanup(image);
559 return ret;
560}
561
562static int
563kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564 int initrd_fd, const char __user *cmdline_ptr,
565 unsigned long cmdline_len, unsigned long flags)
566{
567 int ret;
568 struct kimage *image;
dd5f7260 569 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
cb105258
VG
570
571 image = do_kimage_alloc_init();
572 if (!image)
573 return -ENOMEM;
574
575 image->file_mode = 1;
576
dd5f7260
VG
577 if (kexec_on_panic) {
578 /* Enable special crash kernel control page alloc policy. */
579 image->control_page = crashk_res.start;
580 image->type = KEXEC_TYPE_CRASH;
581 }
582
cb105258
VG
583 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584 cmdline_ptr, cmdline_len, flags);
585 if (ret)
586 goto out_free_image;
587
588 ret = sanity_check_segment_list(image);
589 if (ret)
590 goto out_free_post_load_bufs;
591
592 ret = -ENOMEM;
593 image->control_code_page = kimage_alloc_control_pages(image,
594 get_order(KEXEC_CONTROL_PAGE_SIZE));
595 if (!image->control_code_page) {
596 pr_err("Could not allocate control_code_buffer\n");
597 goto out_free_post_load_bufs;
598 }
599
dd5f7260
VG
600 if (!kexec_on_panic) {
601 image->swap_page = kimage_alloc_control_pages(image, 0);
602 if (!image->swap_page) {
d5393955 603 pr_err("Could not allocate swap buffer\n");
dd5f7260
VG
604 goto out_free_control_pages;
605 }
cb105258
VG
606 }
607
608 *rimage = image;
609 return 0;
610out_free_control_pages:
611 kimage_free_page_list(&image->control_pages);
612out_free_post_load_bufs:
613 kimage_file_post_load_cleanup(image);
cb105258
VG
614out_free_image:
615 kfree(image);
616 return ret;
617}
74ca317c
VG
618#else /* CONFIG_KEXEC_FILE */
619static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620#endif /* CONFIG_KEXEC_FILE */
cb105258 621
72414d3f
MS
622static int kimage_is_destination_range(struct kimage *image,
623 unsigned long start,
624 unsigned long end)
dc009d92
EB
625{
626 unsigned long i;
627
628 for (i = 0; i < image->nr_segments; i++) {
629 unsigned long mstart, mend;
72414d3f 630
dc009d92 631 mstart = image->segment[i].mem;
72414d3f
MS
632 mend = mstart + image->segment[i].memsz;
633 if ((end > mstart) && (start < mend))
dc009d92 634 return 1;
dc009d92 635 }
72414d3f 636
dc009d92
EB
637 return 0;
638}
639
9796fdd8 640static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
641{
642 struct page *pages;
72414d3f 643
dc009d92
EB
644 pages = alloc_pages(gfp_mask, order);
645 if (pages) {
646 unsigned int count, i;
647 pages->mapping = NULL;
4c21e2f2 648 set_page_private(pages, order);
dc009d92 649 count = 1 << order;
72414d3f 650 for (i = 0; i < count; i++)
dc009d92 651 SetPageReserved(pages + i);
dc009d92 652 }
72414d3f 653
dc009d92
EB
654 return pages;
655}
656
657static void kimage_free_pages(struct page *page)
658{
659 unsigned int order, count, i;
72414d3f 660
4c21e2f2 661 order = page_private(page);
dc009d92 662 count = 1 << order;
72414d3f 663 for (i = 0; i < count; i++)
dc009d92 664 ClearPageReserved(page + i);
dc009d92
EB
665 __free_pages(page, order);
666}
667
668static void kimage_free_page_list(struct list_head *list)
669{
670 struct list_head *pos, *next;
72414d3f 671
dc009d92
EB
672 list_for_each_safe(pos, next, list) {
673 struct page *page;
674
675 page = list_entry(pos, struct page, lru);
676 list_del(&page->lru);
dc009d92
EB
677 kimage_free_pages(page);
678 }
679}
680
72414d3f
MS
681static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682 unsigned int order)
dc009d92
EB
683{
684 /* Control pages are special, they are the intermediaries
685 * that are needed while we copy the rest of the pages
686 * to their final resting place. As such they must
687 * not conflict with either the destination addresses
688 * or memory the kernel is already using.
689 *
690 * The only case where we really need more than one of
691 * these are for architectures where we cannot disable
692 * the MMU and must instead generate an identity mapped
693 * page table for all of the memory.
694 *
695 * At worst this runs in O(N) of the image size.
696 */
697 struct list_head extra_pages;
698 struct page *pages;
699 unsigned int count;
700
701 count = 1 << order;
702 INIT_LIST_HEAD(&extra_pages);
703
704 /* Loop while I can allocate a page and the page allocated
705 * is a destination page.
706 */
707 do {
708 unsigned long pfn, epfn, addr, eaddr;
72414d3f 709
7e01b5ac 710 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
dc009d92
EB
711 if (!pages)
712 break;
713 pfn = page_to_pfn(pages);
714 epfn = pfn + count;
715 addr = pfn << PAGE_SHIFT;
716 eaddr = epfn << PAGE_SHIFT;
717 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 718 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
719 list_add(&pages->lru, &extra_pages);
720 pages = NULL;
721 }
72414d3f
MS
722 } while (!pages);
723
dc009d92
EB
724 if (pages) {
725 /* Remember the allocated page... */
726 list_add(&pages->lru, &image->control_pages);
727
728 /* Because the page is already in it's destination
729 * location we will never allocate another page at
730 * that address. Therefore kimage_alloc_pages
731 * will not return it (again) and we don't need
732 * to give it an entry in image->segment[].
733 */
734 }
735 /* Deal with the destination pages I have inadvertently allocated.
736 *
737 * Ideally I would convert multi-page allocations into single
25985edc 738 * page allocations, and add everything to image->dest_pages.
dc009d92
EB
739 *
740 * For now it is simpler to just free the pages.
741 */
742 kimage_free_page_list(&extra_pages);
dc009d92 743
72414d3f 744 return pages;
dc009d92
EB
745}
746
72414d3f
MS
747static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748 unsigned int order)
dc009d92
EB
749{
750 /* Control pages are special, they are the intermediaries
751 * that are needed while we copy the rest of the pages
752 * to their final resting place. As such they must
753 * not conflict with either the destination addresses
754 * or memory the kernel is already using.
755 *
756 * Control pages are also the only pags we must allocate
757 * when loading a crash kernel. All of the other pages
758 * are specified by the segments and we just memcpy
759 * into them directly.
760 *
761 * The only case where we really need more than one of
762 * these are for architectures where we cannot disable
763 * the MMU and must instead generate an identity mapped
764 * page table for all of the memory.
765 *
766 * Given the low demand this implements a very simple
767 * allocator that finds the first hole of the appropriate
768 * size in the reserved memory region, and allocates all
769 * of the memory up to and including the hole.
770 */
771 unsigned long hole_start, hole_end, size;
772 struct page *pages;
72414d3f 773
dc009d92
EB
774 pages = NULL;
775 size = (1 << order) << PAGE_SHIFT;
776 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777 hole_end = hole_start + size - 1;
72414d3f 778 while (hole_end <= crashk_res.end) {
dc009d92 779 unsigned long i;
72414d3f 780
3d214fae 781 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
dc009d92 782 break;
dc009d92 783 /* See if I overlap any of the segments */
72414d3f 784 for (i = 0; i < image->nr_segments; i++) {
dc009d92 785 unsigned long mstart, mend;
72414d3f 786
dc009d92
EB
787 mstart = image->segment[i].mem;
788 mend = mstart + image->segment[i].memsz - 1;
789 if ((hole_end >= mstart) && (hole_start <= mend)) {
790 /* Advance the hole to the end of the segment */
791 hole_start = (mend + (size - 1)) & ~(size - 1);
792 hole_end = hole_start + size - 1;
793 break;
794 }
795 }
796 /* If I don't overlap any segments I have found my hole! */
797 if (i == image->nr_segments) {
798 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799 break;
800 }
801 }
72414d3f 802 if (pages)
dc009d92 803 image->control_page = hole_end;
72414d3f 804
dc009d92
EB
805 return pages;
806}
807
808
72414d3f
MS
809struct page *kimage_alloc_control_pages(struct kimage *image,
810 unsigned int order)
dc009d92
EB
811{
812 struct page *pages = NULL;
72414d3f
MS
813
814 switch (image->type) {
dc009d92
EB
815 case KEXEC_TYPE_DEFAULT:
816 pages = kimage_alloc_normal_control_pages(image, order);
817 break;
818 case KEXEC_TYPE_CRASH:
819 pages = kimage_alloc_crash_control_pages(image, order);
820 break;
821 }
72414d3f 822
dc009d92
EB
823 return pages;
824}
825
826static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827{
72414d3f 828 if (*image->entry != 0)
dc009d92 829 image->entry++;
72414d3f 830
dc009d92
EB
831 if (image->entry == image->last_entry) {
832 kimage_entry_t *ind_page;
833 struct page *page;
72414d3f 834
dc009d92 835 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 836 if (!page)
dc009d92 837 return -ENOMEM;
72414d3f 838
dc009d92
EB
839 ind_page = page_address(page);
840 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841 image->entry = ind_page;
72414d3f
MS
842 image->last_entry = ind_page +
843 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
844 }
845 *image->entry = entry;
846 image->entry++;
847 *image->entry = 0;
72414d3f 848
dc009d92
EB
849 return 0;
850}
851
72414d3f
MS
852static int kimage_set_destination(struct kimage *image,
853 unsigned long destination)
dc009d92
EB
854{
855 int result;
856
857 destination &= PAGE_MASK;
858 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 859
dc009d92
EB
860 return result;
861}
862
863
864static int kimage_add_page(struct kimage *image, unsigned long page)
865{
866 int result;
867
868 page &= PAGE_MASK;
869 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 870
dc009d92
EB
871 return result;
872}
873
874
875static void kimage_free_extra_pages(struct kimage *image)
876{
877 /* Walk through and free any extra destination pages I may have */
878 kimage_free_page_list(&image->dest_pages);
879
25985edc 880 /* Walk through and free any unusable pages I have cached */
7d3e2bca 881 kimage_free_page_list(&image->unusable_pages);
dc009d92
EB
882
883}
7fccf032 884static void kimage_terminate(struct kimage *image)
dc009d92 885{
72414d3f 886 if (*image->entry != 0)
dc009d92 887 image->entry++;
72414d3f 888
dc009d92 889 *image->entry = IND_DONE;
dc009d92
EB
890}
891
892#define for_each_kimage_entry(image, ptr, entry) \
893 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
e1bebcf4
FF
894 ptr = (entry & IND_INDIRECTION) ? \
895 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
dc009d92
EB
896
897static void kimage_free_entry(kimage_entry_t entry)
898{
899 struct page *page;
900
901 page = pfn_to_page(entry >> PAGE_SHIFT);
902 kimage_free_pages(page);
903}
904
905static void kimage_free(struct kimage *image)
906{
907 kimage_entry_t *ptr, entry;
908 kimage_entry_t ind = 0;
909
910 if (!image)
911 return;
72414d3f 912
dc009d92
EB
913 kimage_free_extra_pages(image);
914 for_each_kimage_entry(image, ptr, entry) {
915 if (entry & IND_INDIRECTION) {
916 /* Free the previous indirection page */
72414d3f 917 if (ind & IND_INDIRECTION)
dc009d92 918 kimage_free_entry(ind);
dc009d92
EB
919 /* Save this indirection page until we are
920 * done with it.
921 */
922 ind = entry;
e1bebcf4 923 } else if (entry & IND_SOURCE)
dc009d92 924 kimage_free_entry(entry);
dc009d92
EB
925 }
926 /* Free the final indirection page */
72414d3f 927 if (ind & IND_INDIRECTION)
dc009d92 928 kimage_free_entry(ind);
dc009d92
EB
929
930 /* Handle any machine specific cleanup */
931 machine_kexec_cleanup(image);
932
933 /* Free the kexec control pages... */
934 kimage_free_page_list(&image->control_pages);
cb105258 935
cb105258
VG
936 /*
937 * Free up any temporary buffers allocated. This might hit if
938 * error occurred much later after buffer allocation.
939 */
940 if (image->file_mode)
941 kimage_file_post_load_cleanup(image);
942
dc009d92
EB
943 kfree(image);
944}
945
72414d3f
MS
946static kimage_entry_t *kimage_dst_used(struct kimage *image,
947 unsigned long page)
dc009d92
EB
948{
949 kimage_entry_t *ptr, entry;
950 unsigned long destination = 0;
951
952 for_each_kimage_entry(image, ptr, entry) {
72414d3f 953 if (entry & IND_DESTINATION)
dc009d92 954 destination = entry & PAGE_MASK;
dc009d92 955 else if (entry & IND_SOURCE) {
72414d3f 956 if (page == destination)
dc009d92 957 return ptr;
dc009d92
EB
958 destination += PAGE_SIZE;
959 }
960 }
72414d3f 961
314b6a4d 962 return NULL;
dc009d92
EB
963}
964
72414d3f 965static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 966 gfp_t gfp_mask,
72414d3f 967 unsigned long destination)
dc009d92
EB
968{
969 /*
970 * Here we implement safeguards to ensure that a source page
971 * is not copied to its destination page before the data on
972 * the destination page is no longer useful.
973 *
974 * To do this we maintain the invariant that a source page is
975 * either its own destination page, or it is not a
976 * destination page at all.
977 *
978 * That is slightly stronger than required, but the proof
979 * that no problems will not occur is trivial, and the
980 * implementation is simply to verify.
981 *
982 * When allocating all pages normally this algorithm will run
983 * in O(N) time, but in the worst case it will run in O(N^2)
984 * time. If the runtime is a problem the data structures can
985 * be fixed.
986 */
987 struct page *page;
988 unsigned long addr;
989
990 /*
991 * Walk through the list of destination pages, and see if I
992 * have a match.
993 */
994 list_for_each_entry(page, &image->dest_pages, lru) {
995 addr = page_to_pfn(page) << PAGE_SHIFT;
996 if (addr == destination) {
997 list_del(&page->lru);
998 return page;
999 }
1000 }
1001 page = NULL;
1002 while (1) {
1003 kimage_entry_t *old;
1004
1005 /* Allocate a page, if we run out of memory give up */
1006 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 1007 if (!page)
314b6a4d 1008 return NULL;
dc009d92 1009 /* If the page cannot be used file it away */
72414d3f
MS
1010 if (page_to_pfn(page) >
1011 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
7d3e2bca 1012 list_add(&page->lru, &image->unusable_pages);
dc009d92
EB
1013 continue;
1014 }
1015 addr = page_to_pfn(page) << PAGE_SHIFT;
1016
1017 /* If it is the destination page we want use it */
1018 if (addr == destination)
1019 break;
1020
1021 /* If the page is not a destination page use it */
72414d3f
MS
1022 if (!kimage_is_destination_range(image, addr,
1023 addr + PAGE_SIZE))
dc009d92
EB
1024 break;
1025
1026 /*
1027 * I know that the page is someones destination page.
1028 * See if there is already a source page for this
1029 * destination page. And if so swap the source pages.
1030 */
1031 old = kimage_dst_used(image, addr);
1032 if (old) {
1033 /* If so move it */
1034 unsigned long old_addr;
1035 struct page *old_page;
1036
1037 old_addr = *old & PAGE_MASK;
1038 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1039 copy_highpage(page, old_page);
1040 *old = addr | (*old & ~PAGE_MASK);
1041
1042 /* The old page I have found cannot be a
f9092f35
JS
1043 * destination page, so return it if it's
1044 * gfp_flags honor the ones passed in.
dc009d92 1045 */
f9092f35
JS
1046 if (!(gfp_mask & __GFP_HIGHMEM) &&
1047 PageHighMem(old_page)) {
1048 kimage_free_pages(old_page);
1049 continue;
1050 }
dc009d92
EB
1051 addr = old_addr;
1052 page = old_page;
1053 break;
e1bebcf4 1054 } else {
dc009d92
EB
1055 /* Place the page on the destination list I
1056 * will use it later.
1057 */
1058 list_add(&page->lru, &image->dest_pages);
1059 }
1060 }
72414d3f 1061
dc009d92
EB
1062 return page;
1063}
1064
1065static int kimage_load_normal_segment(struct kimage *image,
72414d3f 1066 struct kexec_segment *segment)
dc009d92
EB
1067{
1068 unsigned long maddr;
310faaa9 1069 size_t ubytes, mbytes;
dc009d92 1070 int result;
cb105258
VG
1071 unsigned char __user *buf = NULL;
1072 unsigned char *kbuf = NULL;
dc009d92
EB
1073
1074 result = 0;
cb105258
VG
1075 if (image->file_mode)
1076 kbuf = segment->kbuf;
1077 else
1078 buf = segment->buf;
dc009d92
EB
1079 ubytes = segment->bufsz;
1080 mbytes = segment->memsz;
1081 maddr = segment->mem;
1082
1083 result = kimage_set_destination(image, maddr);
72414d3f 1084 if (result < 0)
dc009d92 1085 goto out;
72414d3f
MS
1086
1087 while (mbytes) {
dc009d92
EB
1088 struct page *page;
1089 char *ptr;
1090 size_t uchunk, mchunk;
72414d3f 1091
dc009d92 1092 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 1093 if (!page) {
dc009d92
EB
1094 result = -ENOMEM;
1095 goto out;
1096 }
72414d3f
MS
1097 result = kimage_add_page(image, page_to_pfn(page)
1098 << PAGE_SHIFT);
1099 if (result < 0)
dc009d92 1100 goto out;
72414d3f 1101
dc009d92
EB
1102 ptr = kmap(page);
1103 /* Start with a clear page */
3ecb01df 1104 clear_page(ptr);
dc009d92 1105 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
1106 mchunk = min_t(size_t, mbytes,
1107 PAGE_SIZE - (maddr & ~PAGE_MASK));
1108 uchunk = min(ubytes, mchunk);
72414d3f 1109
cb105258
VG
1110 /* For file based kexec, source pages are in kernel memory */
1111 if (image->file_mode)
1112 memcpy(ptr, kbuf, uchunk);
1113 else
1114 result = copy_from_user(ptr, buf, uchunk);
dc009d92
EB
1115 kunmap(page);
1116 if (result) {
f65a03f6 1117 result = -EFAULT;
dc009d92
EB
1118 goto out;
1119 }
1120 ubytes -= uchunk;
1121 maddr += mchunk;
cb105258
VG
1122 if (image->file_mode)
1123 kbuf += mchunk;
1124 else
1125 buf += mchunk;
dc009d92
EB
1126 mbytes -= mchunk;
1127 }
72414d3f 1128out:
dc009d92
EB
1129 return result;
1130}
1131
1132static int kimage_load_crash_segment(struct kimage *image,
72414d3f 1133 struct kexec_segment *segment)
dc009d92
EB
1134{
1135 /* For crash dumps kernels we simply copy the data from
1136 * user space to it's destination.
1137 * We do things a page at a time for the sake of kmap.
1138 */
1139 unsigned long maddr;
310faaa9 1140 size_t ubytes, mbytes;
dc009d92 1141 int result;
dd5f7260
VG
1142 unsigned char __user *buf = NULL;
1143 unsigned char *kbuf = NULL;
dc009d92
EB
1144
1145 result = 0;
dd5f7260
VG
1146 if (image->file_mode)
1147 kbuf = segment->kbuf;
1148 else
1149 buf = segment->buf;
dc009d92
EB
1150 ubytes = segment->bufsz;
1151 mbytes = segment->memsz;
1152 maddr = segment->mem;
72414d3f 1153 while (mbytes) {
dc009d92
EB
1154 struct page *page;
1155 char *ptr;
1156 size_t uchunk, mchunk;
72414d3f 1157
dc009d92 1158 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 1159 if (!page) {
dc009d92
EB
1160 result = -ENOMEM;
1161 goto out;
1162 }
1163 ptr = kmap(page);
1164 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
1165 mchunk = min_t(size_t, mbytes,
1166 PAGE_SIZE - (maddr & ~PAGE_MASK));
1167 uchunk = min(ubytes, mchunk);
1168 if (mchunk > uchunk) {
dc009d92
EB
1169 /* Zero the trailing part of the page */
1170 memset(ptr + uchunk, 0, mchunk - uchunk);
1171 }
dd5f7260
VG
1172
1173 /* For file based kexec, source pages are in kernel memory */
1174 if (image->file_mode)
1175 memcpy(ptr, kbuf, uchunk);
1176 else
1177 result = copy_from_user(ptr, buf, uchunk);
a7956113 1178 kexec_flush_icache_page(page);
dc009d92
EB
1179 kunmap(page);
1180 if (result) {
f65a03f6 1181 result = -EFAULT;
dc009d92
EB
1182 goto out;
1183 }
1184 ubytes -= uchunk;
1185 maddr += mchunk;
dd5f7260
VG
1186 if (image->file_mode)
1187 kbuf += mchunk;
1188 else
1189 buf += mchunk;
dc009d92
EB
1190 mbytes -= mchunk;
1191 }
72414d3f 1192out:
dc009d92
EB
1193 return result;
1194}
1195
1196static int kimage_load_segment(struct kimage *image,
72414d3f 1197 struct kexec_segment *segment)
dc009d92
EB
1198{
1199 int result = -ENOMEM;
72414d3f
MS
1200
1201 switch (image->type) {
dc009d92
EB
1202 case KEXEC_TYPE_DEFAULT:
1203 result = kimage_load_normal_segment(image, segment);
1204 break;
1205 case KEXEC_TYPE_CRASH:
1206 result = kimage_load_crash_segment(image, segment);
1207 break;
1208 }
72414d3f 1209
dc009d92
EB
1210 return result;
1211}
1212
1213/*
1214 * Exec Kernel system call: for obvious reasons only root may call it.
1215 *
1216 * This call breaks up into three pieces.
1217 * - A generic part which loads the new kernel from the current
1218 * address space, and very carefully places the data in the
1219 * allocated pages.
1220 *
1221 * - A generic part that interacts with the kernel and tells all of
1222 * the devices to shut down. Preventing on-going dmas, and placing
1223 * the devices in a consistent state so a later kernel can
1224 * reinitialize them.
1225 *
1226 * - A machine specific part that includes the syscall number
002ace78 1227 * and then copies the image to it's final destination. And
dc009d92
EB
1228 * jumps into the image at entry.
1229 *
1230 * kexec does not sync, or unmount filesystems so if you need
1231 * that to happen you need to do that yourself.
1232 */
c330dda9
JM
1233struct kimage *kexec_image;
1234struct kimage *kexec_crash_image;
7984754b 1235int kexec_load_disabled;
8c5a1cf0
AM
1236
1237static DEFINE_MUTEX(kexec_mutex);
dc009d92 1238
754fe8d2
HC
1239SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1240 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
1241{
1242 struct kimage **dest_image, *image;
dc009d92
EB
1243 int result;
1244
1245 /* We only trust the superuser with rebooting the system. */
7984754b 1246 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
dc009d92
EB
1247 return -EPERM;
1248
1249 /*
1250 * Verify we have a legal set of flags
1251 * This leaves us room for future extensions.
1252 */
1253 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1254 return -EINVAL;
1255
1256 /* Verify we are on the appropriate architecture */
1257 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1258 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 1259 return -EINVAL;
dc009d92
EB
1260
1261 /* Put an artificial cap on the number
1262 * of segments passed to kexec_load.
1263 */
1264 if (nr_segments > KEXEC_SEGMENT_MAX)
1265 return -EINVAL;
1266
1267 image = NULL;
1268 result = 0;
1269
1270 /* Because we write directly to the reserved memory
1271 * region when loading crash kernels we need a mutex here to
1272 * prevent multiple crash kernels from attempting to load
1273 * simultaneously, and to prevent a crash kernel from loading
1274 * over the top of a in use crash kernel.
1275 *
1276 * KISS: always take the mutex.
1277 */
8c5a1cf0 1278 if (!mutex_trylock(&kexec_mutex))
dc009d92 1279 return -EBUSY;
72414d3f 1280
dc009d92 1281 dest_image = &kexec_image;
72414d3f 1282 if (flags & KEXEC_ON_CRASH)
dc009d92 1283 dest_image = &kexec_crash_image;
dc009d92
EB
1284 if (nr_segments > 0) {
1285 unsigned long i;
72414d3f 1286
518a0c71
GL
1287 if (flags & KEXEC_ON_CRASH) {
1288 /*
1289 * Loading another kernel to switch to if this one
1290 * crashes. Free any current crash dump kernel before
dc009d92
EB
1291 * we corrupt it.
1292 */
518a0c71 1293
dc009d92 1294 kimage_free(xchg(&kexec_crash_image, NULL));
255aedd9
VG
1295 result = kimage_alloc_init(&image, entry, nr_segments,
1296 segments, flags);
558df720 1297 crash_map_reserved_pages();
518a0c71
GL
1298 } else {
1299 /* Loading another kernel to reboot into. */
1300
1301 result = kimage_alloc_init(&image, entry, nr_segments,
1302 segments, flags);
dc009d92 1303 }
72414d3f 1304 if (result)
dc009d92 1305 goto out;
72414d3f 1306
3ab83521
HY
1307 if (flags & KEXEC_PRESERVE_CONTEXT)
1308 image->preserve_context = 1;
dc009d92 1309 result = machine_kexec_prepare(image);
72414d3f 1310 if (result)
dc009d92 1311 goto out;
72414d3f
MS
1312
1313 for (i = 0; i < nr_segments; i++) {
dc009d92 1314 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1315 if (result)
dc009d92 1316 goto out;
dc009d92 1317 }
7fccf032 1318 kimage_terminate(image);
558df720
MH
1319 if (flags & KEXEC_ON_CRASH)
1320 crash_unmap_reserved_pages();
dc009d92
EB
1321 }
1322 /* Install the new kernel, and Uninstall the old */
1323 image = xchg(dest_image, image);
1324
72414d3f 1325out:
8c5a1cf0 1326 mutex_unlock(&kexec_mutex);
dc009d92 1327 kimage_free(image);
72414d3f 1328
dc009d92
EB
1329 return result;
1330}
1331
558df720
MH
1332/*
1333 * Add and remove page tables for crashkernel memory
1334 *
1335 * Provide an empty default implementation here -- architecture
1336 * code may override this
1337 */
1338void __weak crash_map_reserved_pages(void)
1339{}
1340
1341void __weak crash_unmap_reserved_pages(void)
1342{}
1343
dc009d92 1344#ifdef CONFIG_COMPAT
ca2c405a
HC
1345COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1346 compat_ulong_t, nr_segments,
1347 struct compat_kexec_segment __user *, segments,
1348 compat_ulong_t, flags)
dc009d92
EB
1349{
1350 struct compat_kexec_segment in;
1351 struct kexec_segment out, __user *ksegments;
1352 unsigned long i, result;
1353
1354 /* Don't allow clients that don't understand the native
1355 * architecture to do anything.
1356 */
72414d3f 1357 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1358 return -EINVAL;
dc009d92 1359
72414d3f 1360 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1361 return -EINVAL;
dc009d92
EB
1362
1363 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
e1bebcf4 1364 for (i = 0; i < nr_segments; i++) {
dc009d92 1365 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1366 if (result)
dc009d92 1367 return -EFAULT;
dc009d92
EB
1368
1369 out.buf = compat_ptr(in.buf);
1370 out.bufsz = in.bufsz;
1371 out.mem = in.mem;
1372 out.memsz = in.memsz;
1373
1374 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1375 if (result)
dc009d92 1376 return -EFAULT;
dc009d92
EB
1377 }
1378
1379 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1380}
1381#endif
1382
74ca317c 1383#ifdef CONFIG_KEXEC_FILE
f0895685
VG
1384SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1385 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1386 unsigned long, flags)
1387{
cb105258
VG
1388 int ret = 0, i;
1389 struct kimage **dest_image, *image;
1390
1391 /* We only trust the superuser with rebooting the system. */
1392 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1393 return -EPERM;
1394
1395 /* Make sure we have a legal set of flags */
1396 if (flags != (flags & KEXEC_FILE_FLAGS))
1397 return -EINVAL;
1398
1399 image = NULL;
1400
1401 if (!mutex_trylock(&kexec_mutex))
1402 return -EBUSY;
1403
1404 dest_image = &kexec_image;
1405 if (flags & KEXEC_FILE_ON_CRASH)
1406 dest_image = &kexec_crash_image;
1407
1408 if (flags & KEXEC_FILE_UNLOAD)
1409 goto exchange;
1410
1411 /*
1412 * In case of crash, new kernel gets loaded in reserved region. It is
1413 * same memory where old crash kernel might be loaded. Free any
1414 * current crash dump kernel before we corrupt it.
1415 */
1416 if (flags & KEXEC_FILE_ON_CRASH)
1417 kimage_free(xchg(&kexec_crash_image, NULL));
1418
1419 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1420 cmdline_len, flags);
1421 if (ret)
1422 goto out;
1423
1424 ret = machine_kexec_prepare(image);
1425 if (ret)
1426 goto out;
1427
12db5562
VG
1428 ret = kexec_calculate_store_digests(image);
1429 if (ret)
1430 goto out;
1431
cb105258
VG
1432 for (i = 0; i < image->nr_segments; i++) {
1433 struct kexec_segment *ksegment;
1434
1435 ksegment = &image->segment[i];
1436 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1437 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1438 ksegment->memsz);
1439
1440 ret = kimage_load_segment(image, &image->segment[i]);
1441 if (ret)
1442 goto out;
1443 }
1444
1445 kimage_terminate(image);
1446
1447 /*
1448 * Free up any temporary buffers allocated which are not needed
1449 * after image has been loaded
1450 */
1451 kimage_file_post_load_cleanup(image);
1452exchange:
1453 image = xchg(dest_image, image);
1454out:
1455 mutex_unlock(&kexec_mutex);
1456 kimage_free(image);
1457 return ret;
f0895685
VG
1458}
1459
74ca317c
VG
1460#endif /* CONFIG_KEXEC_FILE */
1461
6e274d14 1462void crash_kexec(struct pt_regs *regs)
dc009d92 1463{
8c5a1cf0 1464 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1465 * running on one cpu from replacing the crash kernel
1466 * we are using after a panic on a different cpu.
1467 *
1468 * If the crash kernel was not located in a fixed area
1469 * of memory the xchg(&kexec_crash_image) would be
1470 * sufficient. But since I reuse the memory...
1471 */
8c5a1cf0 1472 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1473 if (kexec_crash_image) {
e996e581 1474 struct pt_regs fixed_regs;
0f4bd46e 1475
e996e581 1476 crash_setup_regs(&fixed_regs, regs);
fd59d231 1477 crash_save_vmcoreinfo();
e996e581 1478 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1479 machine_kexec(kexec_crash_image);
dc009d92 1480 }
8c5a1cf0 1481 mutex_unlock(&kexec_mutex);
dc009d92
EB
1482 }
1483}
cc571658 1484
06a7f711
AW
1485size_t crash_get_memory_size(void)
1486{
e05bd336 1487 size_t size = 0;
06a7f711 1488 mutex_lock(&kexec_mutex);
e05bd336 1489 if (crashk_res.end != crashk_res.start)
28f65c11 1490 size = resource_size(&crashk_res);
06a7f711
AW
1491 mutex_unlock(&kexec_mutex);
1492 return size;
1493}
1494
c0bb9e45
AB
1495void __weak crash_free_reserved_phys_range(unsigned long begin,
1496 unsigned long end)
06a7f711
AW
1497{
1498 unsigned long addr;
1499
e07cee23
JL
1500 for (addr = begin; addr < end; addr += PAGE_SIZE)
1501 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
06a7f711
AW
1502}
1503
1504int crash_shrink_memory(unsigned long new_size)
1505{
1506 int ret = 0;
1507 unsigned long start, end;
bec013c4 1508 unsigned long old_size;
6480e5a0 1509 struct resource *ram_res;
06a7f711
AW
1510
1511 mutex_lock(&kexec_mutex);
1512
1513 if (kexec_crash_image) {
1514 ret = -ENOENT;
1515 goto unlock;
1516 }
1517 start = crashk_res.start;
1518 end = crashk_res.end;
bec013c4
MH
1519 old_size = (end == 0) ? 0 : end - start + 1;
1520 if (new_size >= old_size) {
1521 ret = (new_size == old_size) ? 0 : -EINVAL;
06a7f711
AW
1522 goto unlock;
1523 }
1524
6480e5a0
MH
1525 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1526 if (!ram_res) {
1527 ret = -ENOMEM;
1528 goto unlock;
1529 }
1530
558df720
MH
1531 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1532 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
06a7f711 1533
558df720 1534 crash_map_reserved_pages();
c0bb9e45 1535 crash_free_reserved_phys_range(end, crashk_res.end);
06a7f711 1536
e05bd336 1537 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1538 release_resource(&crashk_res);
6480e5a0
MH
1539
1540 ram_res->start = end;
1541 ram_res->end = crashk_res.end;
1542 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1543 ram_res->name = "System RAM";
1544
475f9aa6 1545 crashk_res.end = end - 1;
6480e5a0
MH
1546
1547 insert_resource(&iomem_resource, ram_res);
558df720 1548 crash_unmap_reserved_pages();
06a7f711
AW
1549
1550unlock:
1551 mutex_unlock(&kexec_mutex);
1552 return ret;
1553}
1554
85916f81
MD
1555static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1556 size_t data_len)
1557{
1558 struct elf_note note;
1559
1560 note.n_namesz = strlen(name) + 1;
1561 note.n_descsz = data_len;
1562 note.n_type = type;
1563 memcpy(buf, &note, sizeof(note));
1564 buf += (sizeof(note) + 3)/4;
1565 memcpy(buf, name, note.n_namesz);
1566 buf += (note.n_namesz + 3)/4;
1567 memcpy(buf, data, note.n_descsz);
1568 buf += (note.n_descsz + 3)/4;
1569
1570 return buf;
1571}
1572
1573static void final_note(u32 *buf)
1574{
1575 struct elf_note note;
1576
1577 note.n_namesz = 0;
1578 note.n_descsz = 0;
1579 note.n_type = 0;
1580 memcpy(buf, &note, sizeof(note));
1581}
1582
1583void crash_save_cpu(struct pt_regs *regs, int cpu)
1584{
1585 struct elf_prstatus prstatus;
1586 u32 *buf;
1587
4f4b6c1a 1588 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1589 return;
1590
1591 /* Using ELF notes here is opportunistic.
1592 * I need a well defined structure format
1593 * for the data I pass, and I need tags
1594 * on the data to indicate what information I have
1595 * squirrelled away. ELF notes happen to provide
1596 * all of that, so there is no need to invent something new.
1597 */
e1bebcf4 1598 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
85916f81
MD
1599 if (!buf)
1600 return;
1601 memset(&prstatus, 0, sizeof(prstatus));
1602 prstatus.pr_pid = current->pid;
6cd61c0b 1603 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a 1604 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
e1bebcf4 1605 &prstatus, sizeof(prstatus));
85916f81
MD
1606 final_note(buf);
1607}
1608
cc571658
VG
1609static int __init crash_notes_memory_init(void)
1610{
1611 /* Allocate memory for saving cpu registers. */
1612 crash_notes = alloc_percpu(note_buf_t);
1613 if (!crash_notes) {
e1bebcf4 1614 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
cc571658
VG
1615 return -ENOMEM;
1616 }
1617 return 0;
1618}
c96d6660 1619subsys_initcall(crash_notes_memory_init);
fd59d231 1620
cba63c30
BW
1621
1622/*
1623 * parsing the "crashkernel" commandline
1624 *
1625 * this code is intended to be called from architecture specific code
1626 */
1627
1628
1629/*
1630 * This function parses command lines in the format
1631 *
1632 * crashkernel=ramsize-range:size[,...][@offset]
1633 *
1634 * The function returns 0 on success and -EINVAL on failure.
1635 */
e1bebcf4
FF
1636static int __init parse_crashkernel_mem(char *cmdline,
1637 unsigned long long system_ram,
1638 unsigned long long *crash_size,
1639 unsigned long long *crash_base)
cba63c30
BW
1640{
1641 char *cur = cmdline, *tmp;
1642
1643 /* for each entry of the comma-separated list */
1644 do {
1645 unsigned long long start, end = ULLONG_MAX, size;
1646
1647 /* get the start of the range */
1648 start = memparse(cur, &tmp);
1649 if (cur == tmp) {
e1bebcf4 1650 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1651 return -EINVAL;
1652 }
1653 cur = tmp;
1654 if (*cur != '-') {
e1bebcf4 1655 pr_warn("crashkernel: '-' expected\n");
cba63c30
BW
1656 return -EINVAL;
1657 }
1658 cur++;
1659
1660 /* if no ':' is here, than we read the end */
1661 if (*cur != ':') {
1662 end = memparse(cur, &tmp);
1663 if (cur == tmp) {
e1bebcf4 1664 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1665 return -EINVAL;
1666 }
1667 cur = tmp;
1668 if (end <= start) {
e1bebcf4 1669 pr_warn("crashkernel: end <= start\n");
cba63c30
BW
1670 return -EINVAL;
1671 }
1672 }
1673
1674 if (*cur != ':') {
e1bebcf4 1675 pr_warn("crashkernel: ':' expected\n");
cba63c30
BW
1676 return -EINVAL;
1677 }
1678 cur++;
1679
1680 size = memparse(cur, &tmp);
1681 if (cur == tmp) {
e1bebcf4 1682 pr_warn("Memory value expected\n");
cba63c30
BW
1683 return -EINVAL;
1684 }
1685 cur = tmp;
1686 if (size >= system_ram) {
e1bebcf4 1687 pr_warn("crashkernel: invalid size\n");
cba63c30
BW
1688 return -EINVAL;
1689 }
1690
1691 /* match ? */
be089d79 1692 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1693 *crash_size = size;
1694 break;
1695 }
1696 } while (*cur++ == ',');
1697
1698 if (*crash_size > 0) {
11c7da4b 1699 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1700 cur++;
1701 if (*cur == '@') {
1702 cur++;
1703 *crash_base = memparse(cur, &tmp);
1704 if (cur == tmp) {
e1bebcf4 1705 pr_warn("Memory value expected after '@'\n");
cba63c30
BW
1706 return -EINVAL;
1707 }
1708 }
1709 }
1710
1711 return 0;
1712}
1713
1714/*
1715 * That function parses "simple" (old) crashkernel command lines like
1716 *
e1bebcf4 1717 * crashkernel=size[@offset]
cba63c30
BW
1718 *
1719 * It returns 0 on success and -EINVAL on failure.
1720 */
e1bebcf4
FF
1721static int __init parse_crashkernel_simple(char *cmdline,
1722 unsigned long long *crash_size,
1723 unsigned long long *crash_base)
cba63c30
BW
1724{
1725 char *cur = cmdline;
1726
1727 *crash_size = memparse(cmdline, &cur);
1728 if (cmdline == cur) {
e1bebcf4 1729 pr_warn("crashkernel: memory value expected\n");
cba63c30
BW
1730 return -EINVAL;
1731 }
1732
1733 if (*cur == '@')
1734 *crash_base = memparse(cur+1, &cur);
eaa3be6a 1735 else if (*cur != ' ' && *cur != '\0') {
e1bebcf4 1736 pr_warn("crashkernel: unrecognized char\n");
eaa3be6a
ZD
1737 return -EINVAL;
1738 }
cba63c30
BW
1739
1740 return 0;
1741}
1742
adbc742b
YL
1743#define SUFFIX_HIGH 0
1744#define SUFFIX_LOW 1
1745#define SUFFIX_NULL 2
1746static __initdata char *suffix_tbl[] = {
1747 [SUFFIX_HIGH] = ",high",
1748 [SUFFIX_LOW] = ",low",
1749 [SUFFIX_NULL] = NULL,
1750};
1751
cba63c30 1752/*
adbc742b
YL
1753 * That function parses "suffix" crashkernel command lines like
1754 *
1755 * crashkernel=size,[high|low]
1756 *
1757 * It returns 0 on success and -EINVAL on failure.
cba63c30 1758 */
adbc742b
YL
1759static int __init parse_crashkernel_suffix(char *cmdline,
1760 unsigned long long *crash_size,
adbc742b
YL
1761 const char *suffix)
1762{
1763 char *cur = cmdline;
1764
1765 *crash_size = memparse(cmdline, &cur);
1766 if (cmdline == cur) {
1767 pr_warn("crashkernel: memory value expected\n");
1768 return -EINVAL;
1769 }
1770
1771 /* check with suffix */
1772 if (strncmp(cur, suffix, strlen(suffix))) {
1773 pr_warn("crashkernel: unrecognized char\n");
1774 return -EINVAL;
1775 }
1776 cur += strlen(suffix);
1777 if (*cur != ' ' && *cur != '\0') {
1778 pr_warn("crashkernel: unrecognized char\n");
1779 return -EINVAL;
1780 }
1781
1782 return 0;
1783}
1784
1785static __init char *get_last_crashkernel(char *cmdline,
1786 const char *name,
1787 const char *suffix)
1788{
1789 char *p = cmdline, *ck_cmdline = NULL;
1790
1791 /* find crashkernel and use the last one if there are more */
1792 p = strstr(p, name);
1793 while (p) {
1794 char *end_p = strchr(p, ' ');
1795 char *q;
1796
1797 if (!end_p)
1798 end_p = p + strlen(p);
1799
1800 if (!suffix) {
1801 int i;
1802
1803 /* skip the one with any known suffix */
1804 for (i = 0; suffix_tbl[i]; i++) {
1805 q = end_p - strlen(suffix_tbl[i]);
1806 if (!strncmp(q, suffix_tbl[i],
1807 strlen(suffix_tbl[i])))
1808 goto next;
1809 }
1810 ck_cmdline = p;
1811 } else {
1812 q = end_p - strlen(suffix);
1813 if (!strncmp(q, suffix, strlen(suffix)))
1814 ck_cmdline = p;
1815 }
1816next:
1817 p = strstr(p+1, name);
1818 }
1819
1820 if (!ck_cmdline)
1821 return NULL;
1822
1823 return ck_cmdline;
1824}
1825
0212f915 1826static int __init __parse_crashkernel(char *cmdline,
cba63c30
BW
1827 unsigned long long system_ram,
1828 unsigned long long *crash_size,
0212f915 1829 unsigned long long *crash_base,
adbc742b
YL
1830 const char *name,
1831 const char *suffix)
cba63c30 1832{
cba63c30 1833 char *first_colon, *first_space;
adbc742b 1834 char *ck_cmdline;
cba63c30
BW
1835
1836 BUG_ON(!crash_size || !crash_base);
1837 *crash_size = 0;
1838 *crash_base = 0;
1839
adbc742b 1840 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
cba63c30
BW
1841
1842 if (!ck_cmdline)
1843 return -EINVAL;
1844
0212f915 1845 ck_cmdline += strlen(name);
cba63c30 1846
adbc742b
YL
1847 if (suffix)
1848 return parse_crashkernel_suffix(ck_cmdline, crash_size,
36f3f500 1849 suffix);
cba63c30
BW
1850 /*
1851 * if the commandline contains a ':', then that's the extended
1852 * syntax -- if not, it must be the classic syntax
1853 */
1854 first_colon = strchr(ck_cmdline, ':');
1855 first_space = strchr(ck_cmdline, ' ');
1856 if (first_colon && (!first_space || first_colon < first_space))
1857 return parse_crashkernel_mem(ck_cmdline, system_ram,
1858 crash_size, crash_base);
cba63c30 1859
80c74f6a 1860 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
cba63c30
BW
1861}
1862
adbc742b
YL
1863/*
1864 * That function is the entry point for command line parsing and should be
1865 * called from the arch-specific code.
1866 */
0212f915
YL
1867int __init parse_crashkernel(char *cmdline,
1868 unsigned long long system_ram,
1869 unsigned long long *crash_size,
1870 unsigned long long *crash_base)
1871{
1872 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1873 "crashkernel=", NULL);
0212f915 1874}
55a20ee7
YL
1875
1876int __init parse_crashkernel_high(char *cmdline,
1877 unsigned long long system_ram,
1878 unsigned long long *crash_size,
1879 unsigned long long *crash_base)
1880{
1881 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1882 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
55a20ee7 1883}
0212f915
YL
1884
1885int __init parse_crashkernel_low(char *cmdline,
1886 unsigned long long system_ram,
1887 unsigned long long *crash_size,
1888 unsigned long long *crash_base)
1889{
1890 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1891 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
0212f915 1892}
cba63c30 1893
fa8ff292 1894static void update_vmcoreinfo_note(void)
fd59d231 1895{
fa8ff292 1896 u32 *buf = vmcoreinfo_note;
fd59d231
KO
1897
1898 if (!vmcoreinfo_size)
1899 return;
fd59d231
KO
1900 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1901 vmcoreinfo_size);
fd59d231
KO
1902 final_note(buf);
1903}
1904
fa8ff292
MH
1905void crash_save_vmcoreinfo(void)
1906{
63dca8d5 1907 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
fa8ff292
MH
1908 update_vmcoreinfo_note();
1909}
1910
fd59d231
KO
1911void vmcoreinfo_append_str(const char *fmt, ...)
1912{
1913 va_list args;
1914 char buf[0x50];
310faaa9 1915 size_t r;
fd59d231
KO
1916
1917 va_start(args, fmt);
a19428e5 1918 r = vscnprintf(buf, sizeof(buf), fmt, args);
fd59d231
KO
1919 va_end(args);
1920
31c3a3fe 1921 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
fd59d231
KO
1922
1923 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1924
1925 vmcoreinfo_size += r;
1926}
1927
1928/*
1929 * provide an empty default implementation here -- architecture
1930 * code may override this
1931 */
52f5684c 1932void __weak arch_crash_save_vmcoreinfo(void)
fd59d231
KO
1933{}
1934
52f5684c 1935unsigned long __weak paddr_vmcoreinfo_note(void)
fd59d231
KO
1936{
1937 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1938}
1939
1940static int __init crash_save_vmcoreinfo_init(void)
1941{
bba1f603
KO
1942 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1943 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1944
bcbba6c1
KO
1945 VMCOREINFO_SYMBOL(init_uts_ns);
1946 VMCOREINFO_SYMBOL(node_online_map);
d034cfab 1947#ifdef CONFIG_MMU
bcbba6c1 1948 VMCOREINFO_SYMBOL(swapper_pg_dir);
d034cfab 1949#endif
bcbba6c1 1950 VMCOREINFO_SYMBOL(_stext);
f1c4069e 1951 VMCOREINFO_SYMBOL(vmap_area_list);
fd59d231
KO
1952
1953#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1954 VMCOREINFO_SYMBOL(mem_map);
1955 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1956#endif
1957#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1958 VMCOREINFO_SYMBOL(mem_section);
1959 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1960 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1961 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1962#endif
c76f860c
KO
1963 VMCOREINFO_STRUCT_SIZE(page);
1964 VMCOREINFO_STRUCT_SIZE(pglist_data);
1965 VMCOREINFO_STRUCT_SIZE(zone);
1966 VMCOREINFO_STRUCT_SIZE(free_area);
1967 VMCOREINFO_STRUCT_SIZE(list_head);
1968 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1969 VMCOREINFO_OFFSET(page, flags);
1970 VMCOREINFO_OFFSET(page, _count);
1971 VMCOREINFO_OFFSET(page, mapping);
1972 VMCOREINFO_OFFSET(page, lru);
8d67091e
AK
1973 VMCOREINFO_OFFSET(page, _mapcount);
1974 VMCOREINFO_OFFSET(page, private);
bcbba6c1
KO
1975 VMCOREINFO_OFFSET(pglist_data, node_zones);
1976 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1977#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1978 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1979#endif
bcbba6c1
KO
1980 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1981 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1982 VMCOREINFO_OFFSET(pglist_data, node_id);
1983 VMCOREINFO_OFFSET(zone, free_area);
1984 VMCOREINFO_OFFSET(zone, vm_stat);
1985 VMCOREINFO_OFFSET(zone, spanned_pages);
1986 VMCOREINFO_OFFSET(free_area, free_list);
1987 VMCOREINFO_OFFSET(list_head, next);
1988 VMCOREINFO_OFFSET(list_head, prev);
13ba3fcb
AK
1989 VMCOREINFO_OFFSET(vmap_area, va_start);
1990 VMCOREINFO_OFFSET(vmap_area, list);
bcbba6c1 1991 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1992 log_buf_kexec_setup();
83a08e7c 1993 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1994 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1995 VMCOREINFO_NUMBER(PG_lru);
1996 VMCOREINFO_NUMBER(PG_private);
1997 VMCOREINFO_NUMBER(PG_swapcache);
8d67091e 1998 VMCOREINFO_NUMBER(PG_slab);
0d0bf667
MT
1999#ifdef CONFIG_MEMORY_FAILURE
2000 VMCOREINFO_NUMBER(PG_hwpoison);
2001#endif
b3acc56b 2002 VMCOREINFO_NUMBER(PG_head_mask);
8d67091e 2003 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
3a1122d2 2004#ifdef CONFIG_HUGETLBFS
8f1d26d0 2005 VMCOREINFO_SYMBOL(free_huge_page);
3a1122d2 2006#endif
fd59d231
KO
2007
2008 arch_crash_save_vmcoreinfo();
fa8ff292 2009 update_vmcoreinfo_note();
fd59d231
KO
2010
2011 return 0;
2012}
2013
c96d6660 2014subsys_initcall(crash_save_vmcoreinfo_init);
3ab83521 2015
74ca317c 2016#ifdef CONFIG_KEXEC_FILE
cb105258
VG
2017static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2018 struct kexec_buf *kbuf)
2019{
2020 struct kimage *image = kbuf->image;
2021 unsigned long temp_start, temp_end;
2022
2023 temp_end = min(end, kbuf->buf_max);
2024 temp_start = temp_end - kbuf->memsz;
2025
2026 do {
2027 /* align down start */
2028 temp_start = temp_start & (~(kbuf->buf_align - 1));
2029
2030 if (temp_start < start || temp_start < kbuf->buf_min)
2031 return 0;
2032
2033 temp_end = temp_start + kbuf->memsz - 1;
2034
2035 /*
2036 * Make sure this does not conflict with any of existing
2037 * segments
2038 */
2039 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2040 temp_start = temp_start - PAGE_SIZE;
2041 continue;
2042 }
2043
2044 /* We found a suitable memory range */
2045 break;
2046 } while (1);
2047
2048 /* If we are here, we found a suitable memory range */
669280a1 2049 kbuf->mem = temp_start;
cb105258
VG
2050
2051 /* Success, stop navigating through remaining System RAM ranges */
2052 return 1;
2053}
2054
2055static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2056 struct kexec_buf *kbuf)
2057{
2058 struct kimage *image = kbuf->image;
2059 unsigned long temp_start, temp_end;
2060
2061 temp_start = max(start, kbuf->buf_min);
2062
2063 do {
2064 temp_start = ALIGN(temp_start, kbuf->buf_align);
2065 temp_end = temp_start + kbuf->memsz - 1;
2066
2067 if (temp_end > end || temp_end > kbuf->buf_max)
2068 return 0;
2069 /*
2070 * Make sure this does not conflict with any of existing
2071 * segments
2072 */
2073 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2074 temp_start = temp_start + PAGE_SIZE;
2075 continue;
2076 }
2077
2078 /* We found a suitable memory range */
2079 break;
2080 } while (1);
2081
2082 /* If we are here, we found a suitable memory range */
669280a1 2083 kbuf->mem = temp_start;
cb105258
VG
2084
2085 /* Success, stop navigating through remaining System RAM ranges */
2086 return 1;
2087}
2088
2089static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2090{
2091 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2092 unsigned long sz = end - start + 1;
2093
2094 /* Returning 0 will take to next memory range */
2095 if (sz < kbuf->memsz)
2096 return 0;
2097
2098 if (end < kbuf->buf_min || start > kbuf->buf_max)
2099 return 0;
2100
2101 /*
2102 * Allocate memory top down with-in ram range. Otherwise bottom up
2103 * allocation.
2104 */
2105 if (kbuf->top_down)
2106 return locate_mem_hole_top_down(start, end, kbuf);
2107 return locate_mem_hole_bottom_up(start, end, kbuf);
2108}
2109
2110/*
2111 * Helper function for placing a buffer in a kexec segment. This assumes
2112 * that kexec_mutex is held.
2113 */
2114int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2115 unsigned long memsz, unsigned long buf_align,
2116 unsigned long buf_min, unsigned long buf_max,
2117 bool top_down, unsigned long *load_addr)
2118{
2119
2120 struct kexec_segment *ksegment;
2121 struct kexec_buf buf, *kbuf;
2122 int ret;
2123
2124 /* Currently adding segment this way is allowed only in file mode */
2125 if (!image->file_mode)
2126 return -EINVAL;
2127
2128 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2129 return -EINVAL;
2130
2131 /*
2132 * Make sure we are not trying to add buffer after allocating
2133 * control pages. All segments need to be placed first before
2134 * any control pages are allocated. As control page allocation
2135 * logic goes through list of segments to make sure there are
2136 * no destination overlaps.
2137 */
2138 if (!list_empty(&image->control_pages)) {
2139 WARN_ON(1);
2140 return -EINVAL;
2141 }
2142
2143 memset(&buf, 0, sizeof(struct kexec_buf));
2144 kbuf = &buf;
2145 kbuf->image = image;
2146 kbuf->buffer = buffer;
2147 kbuf->bufsz = bufsz;
2148
2149 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2150 kbuf->buf_align = max(buf_align, PAGE_SIZE);
2151 kbuf->buf_min = buf_min;
2152 kbuf->buf_max = buf_max;
2153 kbuf->top_down = top_down;
2154
2155 /* Walk the RAM ranges and allocate a suitable range for the buffer */
dd5f7260
VG
2156 if (image->type == KEXEC_TYPE_CRASH)
2157 ret = walk_iomem_res("Crash kernel",
2158 IORESOURCE_MEM | IORESOURCE_BUSY,
2159 crashk_res.start, crashk_res.end, kbuf,
2160 locate_mem_hole_callback);
2161 else
2162 ret = walk_system_ram_res(0, -1, kbuf,
2163 locate_mem_hole_callback);
cb105258
VG
2164 if (ret != 1) {
2165 /* A suitable memory range could not be found for buffer */
2166 return -EADDRNOTAVAIL;
2167 }
2168
2169 /* Found a suitable memory range */
669280a1
BH
2170 ksegment = &image->segment[image->nr_segments];
2171 ksegment->kbuf = kbuf->buffer;
2172 ksegment->bufsz = kbuf->bufsz;
2173 ksegment->mem = kbuf->mem;
2174 ksegment->memsz = kbuf->memsz;
2175 image->nr_segments++;
cb105258
VG
2176 *load_addr = ksegment->mem;
2177 return 0;
2178}
2179
12db5562
VG
2180/* Calculate and store the digest of segments */
2181static int kexec_calculate_store_digests(struct kimage *image)
2182{
2183 struct crypto_shash *tfm;
2184 struct shash_desc *desc;
2185 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2186 size_t desc_size, nullsz;
2187 char *digest;
2188 void *zero_buf;
2189 struct kexec_sha_region *sha_regions;
2190 struct purgatory_info *pi = &image->purgatory_info;
2191
2192 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2193 zero_buf_sz = PAGE_SIZE;
2194
2195 tfm = crypto_alloc_shash("sha256", 0, 0);
2196 if (IS_ERR(tfm)) {
2197 ret = PTR_ERR(tfm);
2198 goto out;
2199 }
2200
2201 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2202 desc = kzalloc(desc_size, GFP_KERNEL);
2203 if (!desc) {
2204 ret = -ENOMEM;
2205 goto out_free_tfm;
2206 }
2207
2208 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2209 sha_regions = vzalloc(sha_region_sz);
2210 if (!sha_regions)
2211 goto out_free_desc;
2212
2213 desc->tfm = tfm;
2214 desc->flags = 0;
2215
2216 ret = crypto_shash_init(desc);
2217 if (ret < 0)
2218 goto out_free_sha_regions;
2219
2220 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2221 if (!digest) {
2222 ret = -ENOMEM;
2223 goto out_free_sha_regions;
2224 }
2225
2226 for (j = i = 0; i < image->nr_segments; i++) {
2227 struct kexec_segment *ksegment;
2228
2229 ksegment = &image->segment[i];
2230 /*
2231 * Skip purgatory as it will be modified once we put digest
2232 * info in purgatory.
2233 */
2234 if (ksegment->kbuf == pi->purgatory_buf)
2235 continue;
2236
2237 ret = crypto_shash_update(desc, ksegment->kbuf,
2238 ksegment->bufsz);
2239 if (ret)
2240 break;
2241
2242 /*
2243 * Assume rest of the buffer is filled with zero and
2244 * update digest accordingly.
2245 */
2246 nullsz = ksegment->memsz - ksegment->bufsz;
2247 while (nullsz) {
2248 unsigned long bytes = nullsz;
2249
2250 if (bytes > zero_buf_sz)
2251 bytes = zero_buf_sz;
2252 ret = crypto_shash_update(desc, zero_buf, bytes);
2253 if (ret)
2254 break;
2255 nullsz -= bytes;
2256 }
2257
2258 if (ret)
2259 break;
2260
2261 sha_regions[j].start = ksegment->mem;
2262 sha_regions[j].len = ksegment->memsz;
2263 j++;
2264 }
2265
2266 if (!ret) {
2267 ret = crypto_shash_final(desc, digest);
2268 if (ret)
2269 goto out_free_digest;
2270 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2271 sha_regions, sha_region_sz, 0);
2272 if (ret)
2273 goto out_free_digest;
2274
2275 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2276 digest, SHA256_DIGEST_SIZE, 0);
2277 if (ret)
2278 goto out_free_digest;
2279 }
2280
2281out_free_digest:
2282 kfree(digest);
2283out_free_sha_regions:
2284 vfree(sha_regions);
2285out_free_desc:
2286 kfree(desc);
2287out_free_tfm:
2288 kfree(tfm);
2289out:
2290 return ret;
2291}
2292
2293/* Actually load purgatory. Lot of code taken from kexec-tools */
2294static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2295 unsigned long max, int top_down)
2296{
2297 struct purgatory_info *pi = &image->purgatory_info;
2298 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2299 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2300 unsigned char *buf_addr, *src;
2301 int i, ret = 0, entry_sidx = -1;
2302 const Elf_Shdr *sechdrs_c;
2303 Elf_Shdr *sechdrs = NULL;
2304 void *purgatory_buf = NULL;
2305
2306 /*
2307 * sechdrs_c points to section headers in purgatory and are read
2308 * only. No modifications allowed.
2309 */
2310 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2311
2312 /*
2313 * We can not modify sechdrs_c[] and its fields. It is read only.
2314 * Copy it over to a local copy where one can store some temporary
2315 * data and free it at the end. We need to modify ->sh_addr and
2316 * ->sh_offset fields to keep track of permanent and temporary
2317 * locations of sections.
2318 */
2319 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2320 if (!sechdrs)
2321 return -ENOMEM;
2322
2323 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2324
2325 /*
2326 * We seem to have multiple copies of sections. First copy is which
2327 * is embedded in kernel in read only section. Some of these sections
2328 * will be copied to a temporary buffer and relocated. And these
2329 * sections will finally be copied to their final destination at
2330 * segment load time.
2331 *
2332 * Use ->sh_offset to reflect section address in memory. It will
2333 * point to original read only copy if section is not allocatable.
2334 * Otherwise it will point to temporary copy which will be relocated.
2335 *
2336 * Use ->sh_addr to contain final address of the section where it
2337 * will go during execution time.
2338 */
2339 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2340 if (sechdrs[i].sh_type == SHT_NOBITS)
2341 continue;
2342
2343 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2344 sechdrs[i].sh_offset;
2345 }
2346
2347 /*
2348 * Identify entry point section and make entry relative to section
2349 * start.
2350 */
2351 entry = pi->ehdr->e_entry;
2352 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2353 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2354 continue;
2355
2356 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2357 continue;
2358
2359 /* Make entry section relative */
2360 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2361 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2362 pi->ehdr->e_entry)) {
2363 entry_sidx = i;
2364 entry -= sechdrs[i].sh_addr;
2365 break;
2366 }
2367 }
2368
2369 /* Determine how much memory is needed to load relocatable object. */
2370 buf_align = 1;
2371 bss_align = 1;
2372 buf_sz = 0;
2373 bss_sz = 0;
2374
2375 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2376 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2377 continue;
2378
2379 align = sechdrs[i].sh_addralign;
2380 if (sechdrs[i].sh_type != SHT_NOBITS) {
2381 if (buf_align < align)
2382 buf_align = align;
2383 buf_sz = ALIGN(buf_sz, align);
2384 buf_sz += sechdrs[i].sh_size;
2385 } else {
2386 /* bss section */
2387 if (bss_align < align)
2388 bss_align = align;
2389 bss_sz = ALIGN(bss_sz, align);
2390 bss_sz += sechdrs[i].sh_size;
2391 }
2392 }
2393
2394 /* Determine the bss padding required to align bss properly */
2395 bss_pad = 0;
2396 if (buf_sz & (bss_align - 1))
2397 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2398
2399 memsz = buf_sz + bss_pad + bss_sz;
2400
2401 /* Allocate buffer for purgatory */
2402 purgatory_buf = vzalloc(buf_sz);
2403 if (!purgatory_buf) {
2404 ret = -ENOMEM;
2405 goto out;
2406 }
2407
2408 if (buf_align < bss_align)
2409 buf_align = bss_align;
2410
2411 /* Add buffer to segment list */
2412 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2413 buf_align, min, max, top_down,
2414 &pi->purgatory_load_addr);
2415 if (ret)
2416 goto out;
2417
2418 /* Load SHF_ALLOC sections */
2419 buf_addr = purgatory_buf;
2420 load_addr = curr_load_addr = pi->purgatory_load_addr;
2421 bss_addr = load_addr + buf_sz + bss_pad;
2422
2423 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2424 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2425 continue;
2426
2427 align = sechdrs[i].sh_addralign;
2428 if (sechdrs[i].sh_type != SHT_NOBITS) {
2429 curr_load_addr = ALIGN(curr_load_addr, align);
2430 offset = curr_load_addr - load_addr;
2431 /* We already modifed ->sh_offset to keep src addr */
2432 src = (char *) sechdrs[i].sh_offset;
2433 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2434
2435 /* Store load address and source address of section */
2436 sechdrs[i].sh_addr = curr_load_addr;
2437
2438 /*
2439 * This section got copied to temporary buffer. Update
2440 * ->sh_offset accordingly.
2441 */
2442 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2443
2444 /* Advance to the next address */
2445 curr_load_addr += sechdrs[i].sh_size;
2446 } else {
2447 bss_addr = ALIGN(bss_addr, align);
2448 sechdrs[i].sh_addr = bss_addr;
2449 bss_addr += sechdrs[i].sh_size;
2450 }
2451 }
2452
2453 /* Update entry point based on load address of text section */
2454 if (entry_sidx >= 0)
2455 entry += sechdrs[entry_sidx].sh_addr;
2456
2457 /* Make kernel jump to purgatory after shutdown */
2458 image->start = entry;
2459
2460 /* Used later to get/set symbol values */
2461 pi->sechdrs = sechdrs;
2462
2463 /*
2464 * Used later to identify which section is purgatory and skip it
2465 * from checksumming.
2466 */
2467 pi->purgatory_buf = purgatory_buf;
2468 return ret;
2469out:
2470 vfree(sechdrs);
2471 vfree(purgatory_buf);
2472 return ret;
2473}
2474
2475static int kexec_apply_relocations(struct kimage *image)
2476{
2477 int i, ret;
2478 struct purgatory_info *pi = &image->purgatory_info;
2479 Elf_Shdr *sechdrs = pi->sechdrs;
2480
2481 /* Apply relocations */
2482 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2483 Elf_Shdr *section, *symtab;
2484
2485 if (sechdrs[i].sh_type != SHT_RELA &&
2486 sechdrs[i].sh_type != SHT_REL)
2487 continue;
2488
2489 /*
2490 * For section of type SHT_RELA/SHT_REL,
2491 * ->sh_link contains section header index of associated
2492 * symbol table. And ->sh_info contains section header
2493 * index of section to which relocations apply.
2494 */
2495 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2496 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2497 return -ENOEXEC;
2498
2499 section = &sechdrs[sechdrs[i].sh_info];
2500 symtab = &sechdrs[sechdrs[i].sh_link];
2501
2502 if (!(section->sh_flags & SHF_ALLOC))
2503 continue;
2504
2505 /*
2506 * symtab->sh_link contain section header index of associated
2507 * string table.
2508 */
2509 if (symtab->sh_link >= pi->ehdr->e_shnum)
2510 /* Invalid section number? */
2511 continue;
2512
2513 /*
edb0ec07 2514 * Respective architecture needs to provide support for applying
12db5562
VG
2515 * relocations of type SHT_RELA/SHT_REL.
2516 */
2517 if (sechdrs[i].sh_type == SHT_RELA)
2518 ret = arch_kexec_apply_relocations_add(pi->ehdr,
2519 sechdrs, i);
2520 else if (sechdrs[i].sh_type == SHT_REL)
2521 ret = arch_kexec_apply_relocations(pi->ehdr,
2522 sechdrs, i);
2523 if (ret)
2524 return ret;
2525 }
2526
2527 return 0;
2528}
2529
2530/* Load relocatable purgatory object and relocate it appropriately */
2531int kexec_load_purgatory(struct kimage *image, unsigned long min,
2532 unsigned long max, int top_down,
2533 unsigned long *load_addr)
2534{
2535 struct purgatory_info *pi = &image->purgatory_info;
2536 int ret;
2537
2538 if (kexec_purgatory_size <= 0)
2539 return -EINVAL;
2540
2541 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2542 return -ENOEXEC;
2543
2544 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2545
2546 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2547 || pi->ehdr->e_type != ET_REL
2548 || !elf_check_arch(pi->ehdr)
2549 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2550 return -ENOEXEC;
2551
2552 if (pi->ehdr->e_shoff >= kexec_purgatory_size
2553 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2554 kexec_purgatory_size - pi->ehdr->e_shoff))
2555 return -ENOEXEC;
2556
2557 ret = __kexec_load_purgatory(image, min, max, top_down);
2558 if (ret)
2559 return ret;
2560
2561 ret = kexec_apply_relocations(image);
2562 if (ret)
2563 goto out;
2564
2565 *load_addr = pi->purgatory_load_addr;
2566 return 0;
2567out:
2568 vfree(pi->sechdrs);
2569 vfree(pi->purgatory_buf);
2570 return ret;
2571}
2572
2573static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2574 const char *name)
2575{
2576 Elf_Sym *syms;
2577 Elf_Shdr *sechdrs;
2578 Elf_Ehdr *ehdr;
2579 int i, k;
2580 const char *strtab;
2581
2582 if (!pi->sechdrs || !pi->ehdr)
2583 return NULL;
2584
2585 sechdrs = pi->sechdrs;
2586 ehdr = pi->ehdr;
2587
2588 for (i = 0; i < ehdr->e_shnum; i++) {
2589 if (sechdrs[i].sh_type != SHT_SYMTAB)
2590 continue;
2591
2592 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2593 /* Invalid strtab section number */
2594 continue;
2595 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2596 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2597
2598 /* Go through symbols for a match */
2599 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2600 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2601 continue;
2602
2603 if (strcmp(strtab + syms[k].st_name, name) != 0)
2604 continue;
2605
2606 if (syms[k].st_shndx == SHN_UNDEF ||
2607 syms[k].st_shndx >= ehdr->e_shnum) {
2608 pr_debug("Symbol: %s has bad section index %d.\n",
2609 name, syms[k].st_shndx);
2610 return NULL;
2611 }
2612
2613 /* Found the symbol we are looking for */
2614 return &syms[k];
2615 }
2616 }
2617
2618 return NULL;
2619}
2620
2621void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2622{
2623 struct purgatory_info *pi = &image->purgatory_info;
2624 Elf_Sym *sym;
2625 Elf_Shdr *sechdr;
2626
2627 sym = kexec_purgatory_find_symbol(pi, name);
2628 if (!sym)
2629 return ERR_PTR(-EINVAL);
2630
2631 sechdr = &pi->sechdrs[sym->st_shndx];
2632
2633 /*
2634 * Returns the address where symbol will finally be loaded after
2635 * kexec_load_segment()
2636 */
2637 return (void *)(sechdr->sh_addr + sym->st_value);
2638}
2639
2640/*
2641 * Get or set value of a symbol. If "get_value" is true, symbol value is
2642 * returned in buf otherwise symbol value is set based on value in buf.
2643 */
2644int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2645 void *buf, unsigned int size, bool get_value)
2646{
2647 Elf_Sym *sym;
2648 Elf_Shdr *sechdrs;
2649 struct purgatory_info *pi = &image->purgatory_info;
2650 char *sym_buf;
2651
2652 sym = kexec_purgatory_find_symbol(pi, name);
2653 if (!sym)
2654 return -EINVAL;
2655
2656 if (sym->st_size != size) {
2657 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2658 name, (unsigned long)sym->st_size, size);
2659 return -EINVAL;
2660 }
2661
2662 sechdrs = pi->sechdrs;
2663
2664 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2665 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2666 get_value ? "get" : "set");
2667 return -EINVAL;
2668 }
2669
2670 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2671 sym->st_value;
2672
2673 if (get_value)
2674 memcpy((void *)buf, sym_buf, size);
2675 else
2676 memcpy((void *)sym_buf, buf, size);
2677
2678 return 0;
2679}
74ca317c 2680#endif /* CONFIG_KEXEC_FILE */
cb105258 2681
7ade3fcc
HY
2682/*
2683 * Move into place and start executing a preloaded standalone
2684 * executable. If nothing was preloaded return an error.
3ab83521
HY
2685 */
2686int kernel_kexec(void)
2687{
2688 int error = 0;
2689
8c5a1cf0 2690 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
2691 return -EBUSY;
2692 if (!kexec_image) {
2693 error = -EINVAL;
2694 goto Unlock;
2695 }
2696
3ab83521 2697#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 2698 if (kexec_image->preserve_context) {
bcda53fa 2699 lock_system_sleep();
89081d17
HY
2700 pm_prepare_console();
2701 error = freeze_processes();
2702 if (error) {
2703 error = -EBUSY;
2704 goto Restore_console;
2705 }
2706 suspend_console();
d1616302 2707 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
2708 if (error)
2709 goto Resume_console;
d1616302 2710 /* At this point, dpm_suspend_start() has been called,
cf579dfb
RW
2711 * but *not* dpm_suspend_end(). We *must* call
2712 * dpm_suspend_end() now. Otherwise, drivers for
89081d17
HY
2713 * some devices (e.g. interrupt controllers) become
2714 * desynchronized with the actual state of the
2715 * hardware at resume time, and evil weirdness ensues.
2716 */
cf579dfb 2717 error = dpm_suspend_end(PMSG_FREEZE);
89081d17 2718 if (error)
749b0afc
RW
2719 goto Resume_devices;
2720 error = disable_nonboot_cpus();
2721 if (error)
2722 goto Enable_cpus;
2ed8d2b3 2723 local_irq_disable();
2e711c04 2724 error = syscore_suspend();
770824bd 2725 if (error)
749b0afc 2726 goto Enable_irqs;
7ade3fcc 2727 } else
3ab83521 2728#endif
7ade3fcc 2729 {
4fc9bbf9 2730 kexec_in_progress = true;
ca195b7f 2731 kernel_restart_prepare(NULL);
c97102ba 2732 migrate_to_reboot_cpu();
011e4b02
SB
2733
2734 /*
2735 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2736 * no further code needs to use CPU hotplug (which is true in
2737 * the reboot case). However, the kexec path depends on using
2738 * CPU hotplug again; so re-enable it here.
2739 */
2740 cpu_hotplug_enable();
e1bebcf4 2741 pr_emerg("Starting new kernel\n");
3ab83521
HY
2742 machine_shutdown();
2743 }
2744
2745 machine_kexec(kexec_image);
2746
3ab83521 2747#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 2748 if (kexec_image->preserve_context) {
19234c08 2749 syscore_resume();
749b0afc 2750 Enable_irqs:
3ab83521 2751 local_irq_enable();
749b0afc 2752 Enable_cpus:
89081d17 2753 enable_nonboot_cpus();
cf579dfb 2754 dpm_resume_start(PMSG_RESTORE);
89081d17 2755 Resume_devices:
d1616302 2756 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
2757 Resume_console:
2758 resume_console();
2759 thaw_processes();
2760 Restore_console:
2761 pm_restore_console();
bcda53fa 2762 unlock_system_sleep();
3ab83521 2763 }
7ade3fcc 2764#endif
3ab83521
HY
2765
2766 Unlock:
8c5a1cf0 2767 mutex_unlock(&kexec_mutex);
3ab83521
HY
2768 return error;
2769}