Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
0017960f
PZ
275
276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
63b6da39
PZ
281 if (task == TASK_TOMBSTONE)
282 return;
283
a096309b 284again:
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
a096309b
PZ
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
296 return;
0017960f 297 }
a096309b
PZ
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
300 goto again;
301 }
302 func(event, NULL, ctx, data);
0017960f
PZ
303 raw_spin_unlock_irq(&ctx->lock);
304}
305
e5d1367f
SE
306#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
e5d1367f 310
bce38cd5
SE
311/*
312 * branch priv levels that need permission checks
313 */
314#define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
317
0b3fcf17
SE
318enum event_type_t {
319 EVENT_FLEXIBLE = 0x1,
320 EVENT_PINNED = 0x2,
3cbaa590 321 EVENT_TIME = 0x4,
0b3fcf17
SE
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323};
324
e5d1367f
SE
325/*
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 */
9107c89e
PZ
329
330static void perf_sched_delayed(struct work_struct *work);
331DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333static DEFINE_MUTEX(perf_sched_mutex);
334static atomic_t perf_sched_count;
335
e5d1367f 336static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 337static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 338
cdd6c482
IM
339static atomic_t nr_mmap_events __read_mostly;
340static atomic_t nr_comm_events __read_mostly;
341static atomic_t nr_task_events __read_mostly;
948b26b6 342static atomic_t nr_freq_events __read_mostly;
45ac1403 343static atomic_t nr_switch_events __read_mostly;
9ee318a7 344
108b02cf
PZ
345static LIST_HEAD(pmus);
346static DEFINE_MUTEX(pmus_lock);
347static struct srcu_struct pmus_srcu;
348
0764771d 349/*
cdd6c482 350 * perf event paranoia level:
0fbdea19
IM
351 * -1 - not paranoid at all
352 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 353 * 1 - disallow cpu events for unpriv
0fbdea19 354 * 2 - disallow kernel profiling for unpriv
0764771d 355 */
0161028b 356int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 357
20443384
FW
358/* Minimum for 512 kiB + 1 user control page */
359int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
360
361/*
cdd6c482 362 * max perf event sample rate
df58ab24 363 */
14c63f17
DH
364#define DEFAULT_MAX_SAMPLE_RATE 100000
365#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366#define DEFAULT_CPU_TIME_MAX_PERCENT 25
367
368int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
369
370static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
372
d9494cb4
PZ
373static int perf_sample_allowed_ns __read_mostly =
374 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 375
18ab2cd3 376static void update_perf_cpu_limits(void)
14c63f17
DH
377{
378 u64 tmp = perf_sample_period_ns;
379
380 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
381 tmp = div_u64(tmp, 100);
382 if (!tmp)
383 tmp = 1;
384
385 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 386}
163ec435 387
9e630205
SE
388static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389
163ec435
PZ
390int perf_proc_update_handler(struct ctl_table *table, int write,
391 void __user *buffer, size_t *lenp,
392 loff_t *ppos)
393{
723478c8 394 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
395
396 if (ret || !write)
397 return ret;
398
399 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
400 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401 update_perf_cpu_limits();
402
403 return 0;
404}
405
406int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407
408int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409 void __user *buffer, size_t *lenp,
410 loff_t *ppos)
411{
412 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413
414 if (ret || !write)
415 return ret;
416
b303e7c1
PZ
417 if (sysctl_perf_cpu_time_max_percent == 100 ||
418 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
419 printk(KERN_WARNING
420 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421 WRITE_ONCE(perf_sample_allowed_ns, 0);
422 } else {
423 update_perf_cpu_limits();
424 }
163ec435
PZ
425
426 return 0;
427}
1ccd1549 428
14c63f17
DH
429/*
430 * perf samples are done in some very critical code paths (NMIs).
431 * If they take too much CPU time, the system can lock up and not
432 * get any real work done. This will drop the sample rate when
433 * we detect that events are taking too long.
434 */
435#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 436static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 437
91a612ee
PZ
438static u64 __report_avg;
439static u64 __report_allowed;
440
6a02ad66 441static void perf_duration_warn(struct irq_work *w)
14c63f17 442{
6a02ad66 443 printk_ratelimited(KERN_WARNING
91a612ee
PZ
444 "perf: interrupt took too long (%lld > %lld), lowering "
445 "kernel.perf_event_max_sample_rate to %d\n",
446 __report_avg, __report_allowed,
447 sysctl_perf_event_sample_rate);
6a02ad66
PZ
448}
449
450static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451
452void perf_sample_event_took(u64 sample_len_ns)
453{
91a612ee
PZ
454 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455 u64 running_len;
456 u64 avg_len;
457 u32 max;
14c63f17 458
91a612ee 459 if (max_len == 0)
14c63f17
DH
460 return;
461
91a612ee
PZ
462 /* Decay the counter by 1 average sample. */
463 running_len = __this_cpu_read(running_sample_length);
464 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465 running_len += sample_len_ns;
466 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
467
468 /*
91a612ee
PZ
469 * Note: this will be biased artifically low until we have
470 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
471 * from having to maintain a count.
472 */
91a612ee
PZ
473 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474 if (avg_len <= max_len)
14c63f17
DH
475 return;
476
91a612ee
PZ
477 __report_avg = avg_len;
478 __report_allowed = max_len;
14c63f17 479
91a612ee
PZ
480 /*
481 * Compute a throttle threshold 25% below the current duration.
482 */
483 avg_len += avg_len / 4;
484 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485 if (avg_len < max)
486 max /= (u32)avg_len;
487 else
488 max = 1;
14c63f17 489
91a612ee
PZ
490 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491 WRITE_ONCE(max_samples_per_tick, max);
492
493 sysctl_perf_event_sample_rate = max * HZ;
494 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 495
cd578abb 496 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 497 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 498 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 499 __report_avg, __report_allowed,
cd578abb
PZ
500 sysctl_perf_event_sample_rate);
501 }
14c63f17
DH
502}
503
cdd6c482 504static atomic64_t perf_event_id;
a96bbc16 505
0b3fcf17
SE
506static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507 enum event_type_t event_type);
508
509static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
510 enum event_type_t event_type,
511 struct task_struct *task);
512
513static void update_context_time(struct perf_event_context *ctx);
514static u64 perf_event_time(struct perf_event *event);
0b3fcf17 515
cdd6c482 516void __weak perf_event_print_debug(void) { }
0793a61d 517
84c79910 518extern __weak const char *perf_pmu_name(void)
0793a61d 519{
84c79910 520 return "pmu";
0793a61d
TG
521}
522
0b3fcf17
SE
523static inline u64 perf_clock(void)
524{
525 return local_clock();
526}
527
34f43927
PZ
528static inline u64 perf_event_clock(struct perf_event *event)
529{
530 return event->clock();
531}
532
e5d1367f
SE
533#ifdef CONFIG_CGROUP_PERF
534
e5d1367f
SE
535static inline bool
536perf_cgroup_match(struct perf_event *event)
537{
538 struct perf_event_context *ctx = event->ctx;
539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540
ef824fa1
TH
541 /* @event doesn't care about cgroup */
542 if (!event->cgrp)
543 return true;
544
545 /* wants specific cgroup scope but @cpuctx isn't associated with any */
546 if (!cpuctx->cgrp)
547 return false;
548
549 /*
550 * Cgroup scoping is recursive. An event enabled for a cgroup is
551 * also enabled for all its descendant cgroups. If @cpuctx's
552 * cgroup is a descendant of @event's (the test covers identity
553 * case), it's a match.
554 */
555 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556 event->cgrp->css.cgroup);
e5d1367f
SE
557}
558
e5d1367f
SE
559static inline void perf_detach_cgroup(struct perf_event *event)
560{
4e2ba650 561 css_put(&event->cgrp->css);
e5d1367f
SE
562 event->cgrp = NULL;
563}
564
565static inline int is_cgroup_event(struct perf_event *event)
566{
567 return event->cgrp != NULL;
568}
569
570static inline u64 perf_cgroup_event_time(struct perf_event *event)
571{
572 struct perf_cgroup_info *t;
573
574 t = per_cpu_ptr(event->cgrp->info, event->cpu);
575 return t->time;
576}
577
578static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579{
580 struct perf_cgroup_info *info;
581 u64 now;
582
583 now = perf_clock();
584
585 info = this_cpu_ptr(cgrp->info);
586
587 info->time += now - info->timestamp;
588 info->timestamp = now;
589}
590
591static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592{
593 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594 if (cgrp_out)
595 __update_cgrp_time(cgrp_out);
596}
597
598static inline void update_cgrp_time_from_event(struct perf_event *event)
599{
3f7cce3c
SE
600 struct perf_cgroup *cgrp;
601
e5d1367f 602 /*
3f7cce3c
SE
603 * ensure we access cgroup data only when needed and
604 * when we know the cgroup is pinned (css_get)
e5d1367f 605 */
3f7cce3c 606 if (!is_cgroup_event(event))
e5d1367f
SE
607 return;
608
614e4c4e 609 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
610 /*
611 * Do not update time when cgroup is not active
612 */
613 if (cgrp == event->cgrp)
614 __update_cgrp_time(event->cgrp);
e5d1367f
SE
615}
616
617static inline void
3f7cce3c
SE
618perf_cgroup_set_timestamp(struct task_struct *task,
619 struct perf_event_context *ctx)
e5d1367f
SE
620{
621 struct perf_cgroup *cgrp;
622 struct perf_cgroup_info *info;
623
3f7cce3c
SE
624 /*
625 * ctx->lock held by caller
626 * ensure we do not access cgroup data
627 * unless we have the cgroup pinned (css_get)
628 */
629 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
630 return;
631
614e4c4e 632 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 633 info = this_cpu_ptr(cgrp->info);
3f7cce3c 634 info->timestamp = ctx->timestamp;
e5d1367f
SE
635}
636
637#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
638#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
639
640/*
641 * reschedule events based on the cgroup constraint of task.
642 *
643 * mode SWOUT : schedule out everything
644 * mode SWIN : schedule in based on cgroup for next
645 */
18ab2cd3 646static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
647{
648 struct perf_cpu_context *cpuctx;
649 struct pmu *pmu;
650 unsigned long flags;
651
652 /*
653 * disable interrupts to avoid geting nr_cgroup
654 * changes via __perf_event_disable(). Also
655 * avoids preemption.
656 */
657 local_irq_save(flags);
658
659 /*
660 * we reschedule only in the presence of cgroup
661 * constrained events.
662 */
e5d1367f
SE
663
664 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 665 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
666 if (cpuctx->unique_pmu != pmu)
667 continue; /* ensure we process each cpuctx once */
e5d1367f 668
e5d1367f
SE
669 /*
670 * perf_cgroup_events says at least one
671 * context on this CPU has cgroup events.
672 *
673 * ctx->nr_cgroups reports the number of cgroup
674 * events for a context.
675 */
676 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
677 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
679
680 if (mode & PERF_CGROUP_SWOUT) {
681 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682 /*
683 * must not be done before ctxswout due
684 * to event_filter_match() in event_sched_out()
685 */
686 cpuctx->cgrp = NULL;
687 }
688
689 if (mode & PERF_CGROUP_SWIN) {
e566b76e 690 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
691 /*
692 * set cgrp before ctxsw in to allow
693 * event_filter_match() to not have to pass
694 * task around
614e4c4e
SE
695 * we pass the cpuctx->ctx to perf_cgroup_from_task()
696 * because cgorup events are only per-cpu
e5d1367f 697 */
614e4c4e 698 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
699 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700 }
facc4307
PZ
701 perf_pmu_enable(cpuctx->ctx.pmu);
702 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 703 }
e5d1367f
SE
704 }
705
e5d1367f
SE
706 local_irq_restore(flags);
707}
708
a8d757ef
SE
709static inline void perf_cgroup_sched_out(struct task_struct *task,
710 struct task_struct *next)
e5d1367f 711{
a8d757ef
SE
712 struct perf_cgroup *cgrp1;
713 struct perf_cgroup *cgrp2 = NULL;
714
ddaaf4e2 715 rcu_read_lock();
a8d757ef
SE
716 /*
717 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
718 * we do not need to pass the ctx here because we know
719 * we are holding the rcu lock
a8d757ef 720 */
614e4c4e 721 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 722 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
723
724 /*
725 * only schedule out current cgroup events if we know
726 * that we are switching to a different cgroup. Otherwise,
727 * do no touch the cgroup events.
728 */
729 if (cgrp1 != cgrp2)
730 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
731
732 rcu_read_unlock();
e5d1367f
SE
733}
734
a8d757ef
SE
735static inline void perf_cgroup_sched_in(struct task_struct *prev,
736 struct task_struct *task)
e5d1367f 737{
a8d757ef
SE
738 struct perf_cgroup *cgrp1;
739 struct perf_cgroup *cgrp2 = NULL;
740
ddaaf4e2 741 rcu_read_lock();
a8d757ef
SE
742 /*
743 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
744 * we do not need to pass the ctx here because we know
745 * we are holding the rcu lock
a8d757ef 746 */
614e4c4e 747 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 748 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
749
750 /*
751 * only need to schedule in cgroup events if we are changing
752 * cgroup during ctxsw. Cgroup events were not scheduled
753 * out of ctxsw out if that was not the case.
754 */
755 if (cgrp1 != cgrp2)
756 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
757
758 rcu_read_unlock();
e5d1367f
SE
759}
760
761static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762 struct perf_event_attr *attr,
763 struct perf_event *group_leader)
764{
765 struct perf_cgroup *cgrp;
766 struct cgroup_subsys_state *css;
2903ff01
AV
767 struct fd f = fdget(fd);
768 int ret = 0;
e5d1367f 769
2903ff01 770 if (!f.file)
e5d1367f
SE
771 return -EBADF;
772
b583043e 773 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 774 &perf_event_cgrp_subsys);
3db272c0
LZ
775 if (IS_ERR(css)) {
776 ret = PTR_ERR(css);
777 goto out;
778 }
e5d1367f
SE
779
780 cgrp = container_of(css, struct perf_cgroup, css);
781 event->cgrp = cgrp;
782
783 /*
784 * all events in a group must monitor
785 * the same cgroup because a task belongs
786 * to only one perf cgroup at a time
787 */
788 if (group_leader && group_leader->cgrp != cgrp) {
789 perf_detach_cgroup(event);
790 ret = -EINVAL;
e5d1367f 791 }
3db272c0 792out:
2903ff01 793 fdput(f);
e5d1367f
SE
794 return ret;
795}
796
797static inline void
798perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799{
800 struct perf_cgroup_info *t;
801 t = per_cpu_ptr(event->cgrp->info, event->cpu);
802 event->shadow_ctx_time = now - t->timestamp;
803}
804
805static inline void
806perf_cgroup_defer_enabled(struct perf_event *event)
807{
808 /*
809 * when the current task's perf cgroup does not match
810 * the event's, we need to remember to call the
811 * perf_mark_enable() function the first time a task with
812 * a matching perf cgroup is scheduled in.
813 */
814 if (is_cgroup_event(event) && !perf_cgroup_match(event))
815 event->cgrp_defer_enabled = 1;
816}
817
818static inline void
819perf_cgroup_mark_enabled(struct perf_event *event,
820 struct perf_event_context *ctx)
821{
822 struct perf_event *sub;
823 u64 tstamp = perf_event_time(event);
824
825 if (!event->cgrp_defer_enabled)
826 return;
827
828 event->cgrp_defer_enabled = 0;
829
830 event->tstamp_enabled = tstamp - event->total_time_enabled;
831 list_for_each_entry(sub, &event->sibling_list, group_entry) {
832 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834 sub->cgrp_defer_enabled = 0;
835 }
836 }
837}
838#else /* !CONFIG_CGROUP_PERF */
839
840static inline bool
841perf_cgroup_match(struct perf_event *event)
842{
843 return true;
844}
845
846static inline void perf_detach_cgroup(struct perf_event *event)
847{}
848
849static inline int is_cgroup_event(struct perf_event *event)
850{
851 return 0;
852}
853
854static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855{
856 return 0;
857}
858
859static inline void update_cgrp_time_from_event(struct perf_event *event)
860{
861}
862
863static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864{
865}
866
a8d757ef
SE
867static inline void perf_cgroup_sched_out(struct task_struct *task,
868 struct task_struct *next)
e5d1367f
SE
869{
870}
871
a8d757ef
SE
872static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 struct task_struct *task)
e5d1367f
SE
874{
875}
876
877static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878 struct perf_event_attr *attr,
879 struct perf_event *group_leader)
880{
881 return -EINVAL;
882}
883
884static inline void
3f7cce3c
SE
885perf_cgroup_set_timestamp(struct task_struct *task,
886 struct perf_event_context *ctx)
e5d1367f
SE
887{
888}
889
890void
891perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892{
893}
894
895static inline void
896perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897{
898}
899
900static inline u64 perf_cgroup_event_time(struct perf_event *event)
901{
902 return 0;
903}
904
905static inline void
906perf_cgroup_defer_enabled(struct perf_event *event)
907{
908}
909
910static inline void
911perf_cgroup_mark_enabled(struct perf_event *event,
912 struct perf_event_context *ctx)
913{
914}
915#endif
916
9e630205
SE
917/*
918 * set default to be dependent on timer tick just
919 * like original code
920 */
921#define PERF_CPU_HRTIMER (1000 / HZ)
922/*
923 * function must be called with interrupts disbled
924 */
272325c4 925static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
926{
927 struct perf_cpu_context *cpuctx;
9e630205
SE
928 int rotations = 0;
929
930 WARN_ON(!irqs_disabled());
931
932 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
933 rotations = perf_rotate_context(cpuctx);
934
4cfafd30
PZ
935 raw_spin_lock(&cpuctx->hrtimer_lock);
936 if (rotations)
9e630205 937 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
938 else
939 cpuctx->hrtimer_active = 0;
940 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 941
4cfafd30 942 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
943}
944
272325c4 945static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 946{
272325c4 947 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 948 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 949 u64 interval;
9e630205
SE
950
951 /* no multiplexing needed for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
953 return;
954
62b85639
SE
955 /*
956 * check default is sane, if not set then force to
957 * default interval (1/tick)
958 */
272325c4
PZ
959 interval = pmu->hrtimer_interval_ms;
960 if (interval < 1)
961 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 962
272325c4 963 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 964
4cfafd30
PZ
965 raw_spin_lock_init(&cpuctx->hrtimer_lock);
966 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 967 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
968}
969
272325c4 970static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 971{
272325c4 972 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 973 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 974 unsigned long flags;
9e630205
SE
975
976 /* not for SW PMU */
977 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 978 return 0;
9e630205 979
4cfafd30
PZ
980 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981 if (!cpuctx->hrtimer_active) {
982 cpuctx->hrtimer_active = 1;
983 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985 }
986 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 987
272325c4 988 return 0;
9e630205
SE
989}
990
33696fc0 991void perf_pmu_disable(struct pmu *pmu)
9e35ad38 992{
33696fc0
PZ
993 int *count = this_cpu_ptr(pmu->pmu_disable_count);
994 if (!(*count)++)
995 pmu->pmu_disable(pmu);
9e35ad38 996}
9e35ad38 997
33696fc0 998void perf_pmu_enable(struct pmu *pmu)
9e35ad38 999{
33696fc0
PZ
1000 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001 if (!--(*count))
1002 pmu->pmu_enable(pmu);
9e35ad38 1003}
9e35ad38 1004
2fde4f94 1005static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1006
1007/*
2fde4f94
MR
1008 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009 * perf_event_task_tick() are fully serialized because they're strictly cpu
1010 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1012 */
2fde4f94 1013static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1014{
2fde4f94 1015 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1016
e9d2b064 1017 WARN_ON(!irqs_disabled());
b5ab4cd5 1018
2fde4f94
MR
1019 WARN_ON(!list_empty(&ctx->active_ctx_list));
1020
1021 list_add(&ctx->active_ctx_list, head);
1022}
1023
1024static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025{
1026 WARN_ON(!irqs_disabled());
1027
1028 WARN_ON(list_empty(&ctx->active_ctx_list));
1029
1030 list_del_init(&ctx->active_ctx_list);
9e35ad38 1031}
9e35ad38 1032
cdd6c482 1033static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1034{
e5289d4a 1035 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1036}
1037
4af57ef2
YZ
1038static void free_ctx(struct rcu_head *head)
1039{
1040 struct perf_event_context *ctx;
1041
1042 ctx = container_of(head, struct perf_event_context, rcu_head);
1043 kfree(ctx->task_ctx_data);
1044 kfree(ctx);
1045}
1046
cdd6c482 1047static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1048{
564c2b21
PM
1049 if (atomic_dec_and_test(&ctx->refcount)) {
1050 if (ctx->parent_ctx)
1051 put_ctx(ctx->parent_ctx);
63b6da39 1052 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1053 put_task_struct(ctx->task);
4af57ef2 1054 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1055 }
a63eaf34
PM
1056}
1057
f63a8daa
PZ
1058/*
1059 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060 * perf_pmu_migrate_context() we need some magic.
1061 *
1062 * Those places that change perf_event::ctx will hold both
1063 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064 *
8b10c5e2
PZ
1065 * Lock ordering is by mutex address. There are two other sites where
1066 * perf_event_context::mutex nests and those are:
1067 *
1068 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1069 * perf_event_exit_event()
1070 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1071 *
1072 * - perf_event_init_context() [ parent, 0 ]
1073 * inherit_task_group()
1074 * inherit_group()
1075 * inherit_event()
1076 * perf_event_alloc()
1077 * perf_init_event()
1078 * perf_try_init_event() [ child , 1 ]
1079 *
1080 * While it appears there is an obvious deadlock here -- the parent and child
1081 * nesting levels are inverted between the two. This is in fact safe because
1082 * life-time rules separate them. That is an exiting task cannot fork, and a
1083 * spawning task cannot (yet) exit.
1084 *
1085 * But remember that that these are parent<->child context relations, and
1086 * migration does not affect children, therefore these two orderings should not
1087 * interact.
f63a8daa
PZ
1088 *
1089 * The change in perf_event::ctx does not affect children (as claimed above)
1090 * because the sys_perf_event_open() case will install a new event and break
1091 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092 * concerned with cpuctx and that doesn't have children.
1093 *
1094 * The places that change perf_event::ctx will issue:
1095 *
1096 * perf_remove_from_context();
1097 * synchronize_rcu();
1098 * perf_install_in_context();
1099 *
1100 * to affect the change. The remove_from_context() + synchronize_rcu() should
1101 * quiesce the event, after which we can install it in the new location. This
1102 * means that only external vectors (perf_fops, prctl) can perturb the event
1103 * while in transit. Therefore all such accessors should also acquire
1104 * perf_event_context::mutex to serialize against this.
1105 *
1106 * However; because event->ctx can change while we're waiting to acquire
1107 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108 * function.
1109 *
1110 * Lock order:
79c9ce57 1111 * cred_guard_mutex
f63a8daa
PZ
1112 * task_struct::perf_event_mutex
1113 * perf_event_context::mutex
f63a8daa 1114 * perf_event::child_mutex;
07c4a776 1115 * perf_event_context::lock
f63a8daa
PZ
1116 * perf_event::mmap_mutex
1117 * mmap_sem
1118 */
a83fe28e
PZ
1119static struct perf_event_context *
1120perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1121{
1122 struct perf_event_context *ctx;
1123
1124again:
1125 rcu_read_lock();
1126 ctx = ACCESS_ONCE(event->ctx);
1127 if (!atomic_inc_not_zero(&ctx->refcount)) {
1128 rcu_read_unlock();
1129 goto again;
1130 }
1131 rcu_read_unlock();
1132
a83fe28e 1133 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1134 if (event->ctx != ctx) {
1135 mutex_unlock(&ctx->mutex);
1136 put_ctx(ctx);
1137 goto again;
1138 }
1139
1140 return ctx;
1141}
1142
a83fe28e
PZ
1143static inline struct perf_event_context *
1144perf_event_ctx_lock(struct perf_event *event)
1145{
1146 return perf_event_ctx_lock_nested(event, 0);
1147}
1148
f63a8daa
PZ
1149static void perf_event_ctx_unlock(struct perf_event *event,
1150 struct perf_event_context *ctx)
1151{
1152 mutex_unlock(&ctx->mutex);
1153 put_ctx(ctx);
1154}
1155
211de6eb
PZ
1156/*
1157 * This must be done under the ctx->lock, such as to serialize against
1158 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159 * calling scheduler related locks and ctx->lock nests inside those.
1160 */
1161static __must_check struct perf_event_context *
1162unclone_ctx(struct perf_event_context *ctx)
71a851b4 1163{
211de6eb
PZ
1164 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165
1166 lockdep_assert_held(&ctx->lock);
1167
1168 if (parent_ctx)
71a851b4 1169 ctx->parent_ctx = NULL;
5a3126d4 1170 ctx->generation++;
211de6eb
PZ
1171
1172 return parent_ctx;
71a851b4
PZ
1173}
1174
6844c09d
ACM
1175static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176{
1177 /*
1178 * only top level events have the pid namespace they were created in
1179 */
1180 if (event->parent)
1181 event = event->parent;
1182
1183 return task_tgid_nr_ns(p, event->ns);
1184}
1185
1186static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187{
1188 /*
1189 * only top level events have the pid namespace they were created in
1190 */
1191 if (event->parent)
1192 event = event->parent;
1193
1194 return task_pid_nr_ns(p, event->ns);
1195}
1196
7f453c24 1197/*
cdd6c482 1198 * If we inherit events we want to return the parent event id
7f453c24
PZ
1199 * to userspace.
1200 */
cdd6c482 1201static u64 primary_event_id(struct perf_event *event)
7f453c24 1202{
cdd6c482 1203 u64 id = event->id;
7f453c24 1204
cdd6c482
IM
1205 if (event->parent)
1206 id = event->parent->id;
7f453c24
PZ
1207
1208 return id;
1209}
1210
25346b93 1211/*
cdd6c482 1212 * Get the perf_event_context for a task and lock it.
63b6da39 1213 *
25346b93
PM
1214 * This has to cope with with the fact that until it is locked,
1215 * the context could get moved to another task.
1216 */
cdd6c482 1217static struct perf_event_context *
8dc85d54 1218perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1219{
cdd6c482 1220 struct perf_event_context *ctx;
25346b93 1221
9ed6060d 1222retry:
058ebd0e
PZ
1223 /*
1224 * One of the few rules of preemptible RCU is that one cannot do
1225 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1226 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1227 * rcu_read_unlock_special().
1228 *
1229 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1230 * side critical section has interrupts disabled.
058ebd0e 1231 */
2fd59077 1232 local_irq_save(*flags);
058ebd0e 1233 rcu_read_lock();
8dc85d54 1234 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1235 if (ctx) {
1236 /*
1237 * If this context is a clone of another, it might
1238 * get swapped for another underneath us by
cdd6c482 1239 * perf_event_task_sched_out, though the
25346b93
PM
1240 * rcu_read_lock() protects us from any context
1241 * getting freed. Lock the context and check if it
1242 * got swapped before we could get the lock, and retry
1243 * if so. If we locked the right context, then it
1244 * can't get swapped on us any more.
1245 */
2fd59077 1246 raw_spin_lock(&ctx->lock);
8dc85d54 1247 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1248 raw_spin_unlock(&ctx->lock);
058ebd0e 1249 rcu_read_unlock();
2fd59077 1250 local_irq_restore(*flags);
25346b93
PM
1251 goto retry;
1252 }
b49a9e7e 1253
63b6da39
PZ
1254 if (ctx->task == TASK_TOMBSTONE ||
1255 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1256 raw_spin_unlock(&ctx->lock);
b49a9e7e 1257 ctx = NULL;
828b6f0e
PZ
1258 } else {
1259 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1260 }
25346b93
PM
1261 }
1262 rcu_read_unlock();
2fd59077
PM
1263 if (!ctx)
1264 local_irq_restore(*flags);
25346b93
PM
1265 return ctx;
1266}
1267
1268/*
1269 * Get the context for a task and increment its pin_count so it
1270 * can't get swapped to another task. This also increments its
1271 * reference count so that the context can't get freed.
1272 */
8dc85d54
PZ
1273static struct perf_event_context *
1274perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1275{
cdd6c482 1276 struct perf_event_context *ctx;
25346b93
PM
1277 unsigned long flags;
1278
8dc85d54 1279 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1280 if (ctx) {
1281 ++ctx->pin_count;
e625cce1 1282 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1283 }
1284 return ctx;
1285}
1286
cdd6c482 1287static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1288{
1289 unsigned long flags;
1290
e625cce1 1291 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1292 --ctx->pin_count;
e625cce1 1293 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1294}
1295
f67218c3
PZ
1296/*
1297 * Update the record of the current time in a context.
1298 */
1299static void update_context_time(struct perf_event_context *ctx)
1300{
1301 u64 now = perf_clock();
1302
1303 ctx->time += now - ctx->timestamp;
1304 ctx->timestamp = now;
1305}
1306
4158755d
SE
1307static u64 perf_event_time(struct perf_event *event)
1308{
1309 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1310
1311 if (is_cgroup_event(event))
1312 return perf_cgroup_event_time(event);
1313
4158755d
SE
1314 return ctx ? ctx->time : 0;
1315}
1316
f67218c3
PZ
1317/*
1318 * Update the total_time_enabled and total_time_running fields for a event.
1319 */
1320static void update_event_times(struct perf_event *event)
1321{
1322 struct perf_event_context *ctx = event->ctx;
1323 u64 run_end;
1324
3cbaa590
PZ
1325 lockdep_assert_held(&ctx->lock);
1326
f67218c3
PZ
1327 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329 return;
3cbaa590 1330
e5d1367f
SE
1331 /*
1332 * in cgroup mode, time_enabled represents
1333 * the time the event was enabled AND active
1334 * tasks were in the monitored cgroup. This is
1335 * independent of the activity of the context as
1336 * there may be a mix of cgroup and non-cgroup events.
1337 *
1338 * That is why we treat cgroup events differently
1339 * here.
1340 */
1341 if (is_cgroup_event(event))
46cd6a7f 1342 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1343 else if (ctx->is_active)
1344 run_end = ctx->time;
acd1d7c1
PZ
1345 else
1346 run_end = event->tstamp_stopped;
1347
1348 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1349
1350 if (event->state == PERF_EVENT_STATE_INACTIVE)
1351 run_end = event->tstamp_stopped;
1352 else
4158755d 1353 run_end = perf_event_time(event);
f67218c3
PZ
1354
1355 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1356
f67218c3
PZ
1357}
1358
96c21a46
PZ
1359/*
1360 * Update total_time_enabled and total_time_running for all events in a group.
1361 */
1362static void update_group_times(struct perf_event *leader)
1363{
1364 struct perf_event *event;
1365
1366 update_event_times(leader);
1367 list_for_each_entry(event, &leader->sibling_list, group_entry)
1368 update_event_times(event);
1369}
1370
889ff015
FW
1371static struct list_head *
1372ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373{
1374 if (event->attr.pinned)
1375 return &ctx->pinned_groups;
1376 else
1377 return &ctx->flexible_groups;
1378}
1379
fccc714b 1380/*
cdd6c482 1381 * Add a event from the lists for its context.
fccc714b
PZ
1382 * Must be called with ctx->mutex and ctx->lock held.
1383 */
04289bb9 1384static void
cdd6c482 1385list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1386{
c994d613
PZ
1387 lockdep_assert_held(&ctx->lock);
1388
8a49542c
PZ
1389 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1391
1392 /*
8a49542c
PZ
1393 * If we're a stand alone event or group leader, we go to the context
1394 * list, group events are kept attached to the group so that
1395 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1396 */
8a49542c 1397 if (event->group_leader == event) {
889ff015
FW
1398 struct list_head *list;
1399
d6f962b5
FW
1400 if (is_software_event(event))
1401 event->group_flags |= PERF_GROUP_SOFTWARE;
1402
889ff015
FW
1403 list = ctx_group_list(event, ctx);
1404 list_add_tail(&event->group_entry, list);
5c148194 1405 }
592903cd 1406
08309379 1407 if (is_cgroup_event(event))
e5d1367f 1408 ctx->nr_cgroups++;
e5d1367f 1409
cdd6c482
IM
1410 list_add_rcu(&event->event_entry, &ctx->event_list);
1411 ctx->nr_events++;
1412 if (event->attr.inherit_stat)
bfbd3381 1413 ctx->nr_stat++;
5a3126d4
PZ
1414
1415 ctx->generation++;
04289bb9
IM
1416}
1417
0231bb53
JO
1418/*
1419 * Initialize event state based on the perf_event_attr::disabled.
1420 */
1421static inline void perf_event__state_init(struct perf_event *event)
1422{
1423 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424 PERF_EVENT_STATE_INACTIVE;
1425}
1426
a723968c 1427static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1428{
1429 int entry = sizeof(u64); /* value */
1430 int size = 0;
1431 int nr = 1;
1432
1433 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434 size += sizeof(u64);
1435
1436 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437 size += sizeof(u64);
1438
1439 if (event->attr.read_format & PERF_FORMAT_ID)
1440 entry += sizeof(u64);
1441
1442 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1443 nr += nr_siblings;
c320c7b7
ACM
1444 size += sizeof(u64);
1445 }
1446
1447 size += entry * nr;
1448 event->read_size = size;
1449}
1450
a723968c 1451static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1452{
1453 struct perf_sample_data *data;
c320c7b7
ACM
1454 u16 size = 0;
1455
c320c7b7
ACM
1456 if (sample_type & PERF_SAMPLE_IP)
1457 size += sizeof(data->ip);
1458
6844c09d
ACM
1459 if (sample_type & PERF_SAMPLE_ADDR)
1460 size += sizeof(data->addr);
1461
1462 if (sample_type & PERF_SAMPLE_PERIOD)
1463 size += sizeof(data->period);
1464
c3feedf2
AK
1465 if (sample_type & PERF_SAMPLE_WEIGHT)
1466 size += sizeof(data->weight);
1467
6844c09d
ACM
1468 if (sample_type & PERF_SAMPLE_READ)
1469 size += event->read_size;
1470
d6be9ad6
SE
1471 if (sample_type & PERF_SAMPLE_DATA_SRC)
1472 size += sizeof(data->data_src.val);
1473
fdfbbd07
AK
1474 if (sample_type & PERF_SAMPLE_TRANSACTION)
1475 size += sizeof(data->txn);
1476
6844c09d
ACM
1477 event->header_size = size;
1478}
1479
a723968c
PZ
1480/*
1481 * Called at perf_event creation and when events are attached/detached from a
1482 * group.
1483 */
1484static void perf_event__header_size(struct perf_event *event)
1485{
1486 __perf_event_read_size(event,
1487 event->group_leader->nr_siblings);
1488 __perf_event_header_size(event, event->attr.sample_type);
1489}
1490
6844c09d
ACM
1491static void perf_event__id_header_size(struct perf_event *event)
1492{
1493 struct perf_sample_data *data;
1494 u64 sample_type = event->attr.sample_type;
1495 u16 size = 0;
1496
c320c7b7
ACM
1497 if (sample_type & PERF_SAMPLE_TID)
1498 size += sizeof(data->tid_entry);
1499
1500 if (sample_type & PERF_SAMPLE_TIME)
1501 size += sizeof(data->time);
1502
ff3d527c
AH
1503 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504 size += sizeof(data->id);
1505
c320c7b7
ACM
1506 if (sample_type & PERF_SAMPLE_ID)
1507 size += sizeof(data->id);
1508
1509 if (sample_type & PERF_SAMPLE_STREAM_ID)
1510 size += sizeof(data->stream_id);
1511
1512 if (sample_type & PERF_SAMPLE_CPU)
1513 size += sizeof(data->cpu_entry);
1514
6844c09d 1515 event->id_header_size = size;
c320c7b7
ACM
1516}
1517
a723968c
PZ
1518static bool perf_event_validate_size(struct perf_event *event)
1519{
1520 /*
1521 * The values computed here will be over-written when we actually
1522 * attach the event.
1523 */
1524 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526 perf_event__id_header_size(event);
1527
1528 /*
1529 * Sum the lot; should not exceed the 64k limit we have on records.
1530 * Conservative limit to allow for callchains and other variable fields.
1531 */
1532 if (event->read_size + event->header_size +
1533 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534 return false;
1535
1536 return true;
1537}
1538
8a49542c
PZ
1539static void perf_group_attach(struct perf_event *event)
1540{
c320c7b7 1541 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1542
74c3337c
PZ
1543 /*
1544 * We can have double attach due to group movement in perf_event_open.
1545 */
1546 if (event->attach_state & PERF_ATTACH_GROUP)
1547 return;
1548
8a49542c
PZ
1549 event->attach_state |= PERF_ATTACH_GROUP;
1550
1551 if (group_leader == event)
1552 return;
1553
652884fe
PZ
1554 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555
8a49542c
PZ
1556 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557 !is_software_event(event))
1558 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559
1560 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561 group_leader->nr_siblings++;
c320c7b7
ACM
1562
1563 perf_event__header_size(group_leader);
1564
1565 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566 perf_event__header_size(pos);
8a49542c
PZ
1567}
1568
a63eaf34 1569/*
cdd6c482 1570 * Remove a event from the lists for its context.
fccc714b 1571 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1572 */
04289bb9 1573static void
cdd6c482 1574list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1575{
68cacd29 1576 struct perf_cpu_context *cpuctx;
652884fe
PZ
1577
1578 WARN_ON_ONCE(event->ctx != ctx);
1579 lockdep_assert_held(&ctx->lock);
1580
8a49542c
PZ
1581 /*
1582 * We can have double detach due to exit/hot-unplug + close.
1583 */
1584 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1585 return;
8a49542c
PZ
1586
1587 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588
68cacd29 1589 if (is_cgroup_event(event)) {
e5d1367f 1590 ctx->nr_cgroups--;
70a01657
PZ
1591 /*
1592 * Because cgroup events are always per-cpu events, this will
1593 * always be called from the right CPU.
1594 */
68cacd29
SE
1595 cpuctx = __get_cpu_context(ctx);
1596 /*
70a01657
PZ
1597 * If there are no more cgroup events then clear cgrp to avoid
1598 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1599 */
1600 if (!ctx->nr_cgroups)
1601 cpuctx->cgrp = NULL;
1602 }
e5d1367f 1603
cdd6c482
IM
1604 ctx->nr_events--;
1605 if (event->attr.inherit_stat)
bfbd3381 1606 ctx->nr_stat--;
8bc20959 1607
cdd6c482 1608 list_del_rcu(&event->event_entry);
04289bb9 1609
8a49542c
PZ
1610 if (event->group_leader == event)
1611 list_del_init(&event->group_entry);
5c148194 1612
96c21a46 1613 update_group_times(event);
b2e74a26
SE
1614
1615 /*
1616 * If event was in error state, then keep it
1617 * that way, otherwise bogus counts will be
1618 * returned on read(). The only way to get out
1619 * of error state is by explicit re-enabling
1620 * of the event
1621 */
1622 if (event->state > PERF_EVENT_STATE_OFF)
1623 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1624
1625 ctx->generation++;
050735b0
PZ
1626}
1627
8a49542c 1628static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1629{
1630 struct perf_event *sibling, *tmp;
8a49542c
PZ
1631 struct list_head *list = NULL;
1632
1633 /*
1634 * We can have double detach due to exit/hot-unplug + close.
1635 */
1636 if (!(event->attach_state & PERF_ATTACH_GROUP))
1637 return;
1638
1639 event->attach_state &= ~PERF_ATTACH_GROUP;
1640
1641 /*
1642 * If this is a sibling, remove it from its group.
1643 */
1644 if (event->group_leader != event) {
1645 list_del_init(&event->group_entry);
1646 event->group_leader->nr_siblings--;
c320c7b7 1647 goto out;
8a49542c
PZ
1648 }
1649
1650 if (!list_empty(&event->group_entry))
1651 list = &event->group_entry;
2e2af50b 1652
04289bb9 1653 /*
cdd6c482
IM
1654 * If this was a group event with sibling events then
1655 * upgrade the siblings to singleton events by adding them
8a49542c 1656 * to whatever list we are on.
04289bb9 1657 */
cdd6c482 1658 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1659 if (list)
1660 list_move_tail(&sibling->group_entry, list);
04289bb9 1661 sibling->group_leader = sibling;
d6f962b5
FW
1662
1663 /* Inherit group flags from the previous leader */
1664 sibling->group_flags = event->group_flags;
652884fe
PZ
1665
1666 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1667 }
c320c7b7
ACM
1668
1669out:
1670 perf_event__header_size(event->group_leader);
1671
1672 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673 perf_event__header_size(tmp);
04289bb9
IM
1674}
1675
fadfe7be
JO
1676static bool is_orphaned_event(struct perf_event *event)
1677{
a69b0ca4 1678 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1679}
1680
66eb579e
MR
1681static inline int pmu_filter_match(struct perf_event *event)
1682{
1683 struct pmu *pmu = event->pmu;
1684 return pmu->filter_match ? pmu->filter_match(event) : 1;
1685}
1686
fa66f07a
SE
1687static inline int
1688event_filter_match(struct perf_event *event)
1689{
e5d1367f 1690 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1691 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1692}
1693
9ffcfa6f
SE
1694static void
1695event_sched_out(struct perf_event *event,
3b6f9e5c 1696 struct perf_cpu_context *cpuctx,
cdd6c482 1697 struct perf_event_context *ctx)
3b6f9e5c 1698{
4158755d 1699 u64 tstamp = perf_event_time(event);
fa66f07a 1700 u64 delta;
652884fe
PZ
1701
1702 WARN_ON_ONCE(event->ctx != ctx);
1703 lockdep_assert_held(&ctx->lock);
1704
fa66f07a
SE
1705 /*
1706 * An event which could not be activated because of
1707 * filter mismatch still needs to have its timings
1708 * maintained, otherwise bogus information is return
1709 * via read() for time_enabled, time_running:
1710 */
1711 if (event->state == PERF_EVENT_STATE_INACTIVE
1712 && !event_filter_match(event)) {
e5d1367f 1713 delta = tstamp - event->tstamp_stopped;
fa66f07a 1714 event->tstamp_running += delta;
4158755d 1715 event->tstamp_stopped = tstamp;
fa66f07a
SE
1716 }
1717
cdd6c482 1718 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1719 return;
3b6f9e5c 1720
44377277
AS
1721 perf_pmu_disable(event->pmu);
1722
28a967c3
PZ
1723 event->tstamp_stopped = tstamp;
1724 event->pmu->del(event, 0);
1725 event->oncpu = -1;
cdd6c482
IM
1726 event->state = PERF_EVENT_STATE_INACTIVE;
1727 if (event->pending_disable) {
1728 event->pending_disable = 0;
1729 event->state = PERF_EVENT_STATE_OFF;
970892a9 1730 }
3b6f9e5c 1731
cdd6c482 1732 if (!is_software_event(event))
3b6f9e5c 1733 cpuctx->active_oncpu--;
2fde4f94
MR
1734 if (!--ctx->nr_active)
1735 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1736 if (event->attr.freq && event->attr.sample_freq)
1737 ctx->nr_freq--;
cdd6c482 1738 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1739 cpuctx->exclusive = 0;
44377277
AS
1740
1741 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1742}
1743
d859e29f 1744static void
cdd6c482 1745group_sched_out(struct perf_event *group_event,
d859e29f 1746 struct perf_cpu_context *cpuctx,
cdd6c482 1747 struct perf_event_context *ctx)
d859e29f 1748{
cdd6c482 1749 struct perf_event *event;
fa66f07a 1750 int state = group_event->state;
d859e29f 1751
cdd6c482 1752 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1753
1754 /*
1755 * Schedule out siblings (if any):
1756 */
cdd6c482
IM
1757 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1758 event_sched_out(event, cpuctx, ctx);
d859e29f 1759
fa66f07a 1760 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1761 cpuctx->exclusive = 0;
1762}
1763
45a0e07a 1764#define DETACH_GROUP 0x01UL
0017960f 1765
0793a61d 1766/*
cdd6c482 1767 * Cross CPU call to remove a performance event
0793a61d 1768 *
cdd6c482 1769 * We disable the event on the hardware level first. After that we
0793a61d
TG
1770 * remove it from the context list.
1771 */
fae3fde6
PZ
1772static void
1773__perf_remove_from_context(struct perf_event *event,
1774 struct perf_cpu_context *cpuctx,
1775 struct perf_event_context *ctx,
1776 void *info)
0793a61d 1777{
45a0e07a 1778 unsigned long flags = (unsigned long)info;
0793a61d 1779
cdd6c482 1780 event_sched_out(event, cpuctx, ctx);
45a0e07a 1781 if (flags & DETACH_GROUP)
46ce0fe9 1782 perf_group_detach(event);
cdd6c482 1783 list_del_event(event, ctx);
39a43640
PZ
1784
1785 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1786 ctx->is_active = 0;
39a43640
PZ
1787 if (ctx->task) {
1788 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1789 cpuctx->task_ctx = NULL;
1790 }
64ce3126 1791 }
0793a61d
TG
1792}
1793
0793a61d 1794/*
cdd6c482 1795 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1796 *
cdd6c482
IM
1797 * If event->ctx is a cloned context, callers must make sure that
1798 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1799 * remains valid. This is OK when called from perf_release since
1800 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1801 * When called from perf_event_exit_task, it's OK because the
c93f7669 1802 * context has been detached from its task.
0793a61d 1803 */
45a0e07a 1804static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1805{
fae3fde6 1806 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1807
45a0e07a 1808 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1809}
1810
d859e29f 1811/*
cdd6c482 1812 * Cross CPU call to disable a performance event
d859e29f 1813 */
fae3fde6
PZ
1814static void __perf_event_disable(struct perf_event *event,
1815 struct perf_cpu_context *cpuctx,
1816 struct perf_event_context *ctx,
1817 void *info)
7b648018 1818{
fae3fde6
PZ
1819 if (event->state < PERF_EVENT_STATE_INACTIVE)
1820 return;
7b648018 1821
fae3fde6
PZ
1822 update_context_time(ctx);
1823 update_cgrp_time_from_event(event);
1824 update_group_times(event);
1825 if (event == event->group_leader)
1826 group_sched_out(event, cpuctx, ctx);
1827 else
1828 event_sched_out(event, cpuctx, ctx);
1829 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1830}
1831
d859e29f 1832/*
cdd6c482 1833 * Disable a event.
c93f7669 1834 *
cdd6c482
IM
1835 * If event->ctx is a cloned context, callers must make sure that
1836 * every task struct that event->ctx->task could possibly point to
c93f7669 1837 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1838 * perf_event_for_each_child or perf_event_for_each because they
1839 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1840 * goes to exit will block in perf_event_exit_event().
1841 *
cdd6c482 1842 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1843 * is the current context on this CPU and preemption is disabled,
cdd6c482 1844 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1845 */
f63a8daa 1846static void _perf_event_disable(struct perf_event *event)
d859e29f 1847{
cdd6c482 1848 struct perf_event_context *ctx = event->ctx;
d859e29f 1849
e625cce1 1850 raw_spin_lock_irq(&ctx->lock);
7b648018 1851 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1852 raw_spin_unlock_irq(&ctx->lock);
7b648018 1853 return;
53cfbf59 1854 }
e625cce1 1855 raw_spin_unlock_irq(&ctx->lock);
7b648018 1856
fae3fde6
PZ
1857 event_function_call(event, __perf_event_disable, NULL);
1858}
1859
1860void perf_event_disable_local(struct perf_event *event)
1861{
1862 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1863}
f63a8daa
PZ
1864
1865/*
1866 * Strictly speaking kernel users cannot create groups and therefore this
1867 * interface does not need the perf_event_ctx_lock() magic.
1868 */
1869void perf_event_disable(struct perf_event *event)
1870{
1871 struct perf_event_context *ctx;
1872
1873 ctx = perf_event_ctx_lock(event);
1874 _perf_event_disable(event);
1875 perf_event_ctx_unlock(event, ctx);
1876}
dcfce4a0 1877EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1878
e5d1367f
SE
1879static void perf_set_shadow_time(struct perf_event *event,
1880 struct perf_event_context *ctx,
1881 u64 tstamp)
1882{
1883 /*
1884 * use the correct time source for the time snapshot
1885 *
1886 * We could get by without this by leveraging the
1887 * fact that to get to this function, the caller
1888 * has most likely already called update_context_time()
1889 * and update_cgrp_time_xx() and thus both timestamp
1890 * are identical (or very close). Given that tstamp is,
1891 * already adjusted for cgroup, we could say that:
1892 * tstamp - ctx->timestamp
1893 * is equivalent to
1894 * tstamp - cgrp->timestamp.
1895 *
1896 * Then, in perf_output_read(), the calculation would
1897 * work with no changes because:
1898 * - event is guaranteed scheduled in
1899 * - no scheduled out in between
1900 * - thus the timestamp would be the same
1901 *
1902 * But this is a bit hairy.
1903 *
1904 * So instead, we have an explicit cgroup call to remain
1905 * within the time time source all along. We believe it
1906 * is cleaner and simpler to understand.
1907 */
1908 if (is_cgroup_event(event))
1909 perf_cgroup_set_shadow_time(event, tstamp);
1910 else
1911 event->shadow_ctx_time = tstamp - ctx->timestamp;
1912}
1913
4fe757dd
PZ
1914#define MAX_INTERRUPTS (~0ULL)
1915
1916static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1917static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1918
235c7fc7 1919static int
9ffcfa6f 1920event_sched_in(struct perf_event *event,
235c7fc7 1921 struct perf_cpu_context *cpuctx,
6e37738a 1922 struct perf_event_context *ctx)
235c7fc7 1923{
4158755d 1924 u64 tstamp = perf_event_time(event);
44377277 1925 int ret = 0;
4158755d 1926
63342411
PZ
1927 lockdep_assert_held(&ctx->lock);
1928
cdd6c482 1929 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1930 return 0;
1931
95ff4ca2
AS
1932 WRITE_ONCE(event->oncpu, smp_processor_id());
1933 /*
1934 * Order event::oncpu write to happen before the ACTIVE state
1935 * is visible.
1936 */
1937 smp_wmb();
1938 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1939
1940 /*
1941 * Unthrottle events, since we scheduled we might have missed several
1942 * ticks already, also for a heavily scheduling task there is little
1943 * guarantee it'll get a tick in a timely manner.
1944 */
1945 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1946 perf_log_throttle(event, 1);
1947 event->hw.interrupts = 0;
1948 }
1949
235c7fc7
IM
1950 /*
1951 * The new state must be visible before we turn it on in the hardware:
1952 */
1953 smp_wmb();
1954
44377277
AS
1955 perf_pmu_disable(event->pmu);
1956
72f669c0
SL
1957 perf_set_shadow_time(event, ctx, tstamp);
1958
ec0d7729
AS
1959 perf_log_itrace_start(event);
1960
a4eaf7f1 1961 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1962 event->state = PERF_EVENT_STATE_INACTIVE;
1963 event->oncpu = -1;
44377277
AS
1964 ret = -EAGAIN;
1965 goto out;
235c7fc7
IM
1966 }
1967
00a2916f
PZ
1968 event->tstamp_running += tstamp - event->tstamp_stopped;
1969
cdd6c482 1970 if (!is_software_event(event))
3b6f9e5c 1971 cpuctx->active_oncpu++;
2fde4f94
MR
1972 if (!ctx->nr_active++)
1973 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1974 if (event->attr.freq && event->attr.sample_freq)
1975 ctx->nr_freq++;
235c7fc7 1976
cdd6c482 1977 if (event->attr.exclusive)
3b6f9e5c
PM
1978 cpuctx->exclusive = 1;
1979
44377277
AS
1980out:
1981 perf_pmu_enable(event->pmu);
1982
1983 return ret;
235c7fc7
IM
1984}
1985
6751b71e 1986static int
cdd6c482 1987group_sched_in(struct perf_event *group_event,
6751b71e 1988 struct perf_cpu_context *cpuctx,
6e37738a 1989 struct perf_event_context *ctx)
6751b71e 1990{
6bde9b6c 1991 struct perf_event *event, *partial_group = NULL;
4a234593 1992 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1993 u64 now = ctx->time;
1994 bool simulate = false;
6751b71e 1995
cdd6c482 1996 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1997 return 0;
1998
fbbe0701 1999 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2000
9ffcfa6f 2001 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2002 pmu->cancel_txn(pmu);
272325c4 2003 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2004 return -EAGAIN;
90151c35 2005 }
6751b71e
PM
2006
2007 /*
2008 * Schedule in siblings as one group (if any):
2009 */
cdd6c482 2010 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2011 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2012 partial_group = event;
6751b71e
PM
2013 goto group_error;
2014 }
2015 }
2016
9ffcfa6f 2017 if (!pmu->commit_txn(pmu))
6e85158c 2018 return 0;
9ffcfa6f 2019
6751b71e
PM
2020group_error:
2021 /*
2022 * Groups can be scheduled in as one unit only, so undo any
2023 * partial group before returning:
d7842da4
SE
2024 * The events up to the failed event are scheduled out normally,
2025 * tstamp_stopped will be updated.
2026 *
2027 * The failed events and the remaining siblings need to have
2028 * their timings updated as if they had gone thru event_sched_in()
2029 * and event_sched_out(). This is required to get consistent timings
2030 * across the group. This also takes care of the case where the group
2031 * could never be scheduled by ensuring tstamp_stopped is set to mark
2032 * the time the event was actually stopped, such that time delta
2033 * calculation in update_event_times() is correct.
6751b71e 2034 */
cdd6c482
IM
2035 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2036 if (event == partial_group)
d7842da4
SE
2037 simulate = true;
2038
2039 if (simulate) {
2040 event->tstamp_running += now - event->tstamp_stopped;
2041 event->tstamp_stopped = now;
2042 } else {
2043 event_sched_out(event, cpuctx, ctx);
2044 }
6751b71e 2045 }
9ffcfa6f 2046 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2047
ad5133b7 2048 pmu->cancel_txn(pmu);
90151c35 2049
272325c4 2050 perf_mux_hrtimer_restart(cpuctx);
9e630205 2051
6751b71e
PM
2052 return -EAGAIN;
2053}
2054
3b6f9e5c 2055/*
cdd6c482 2056 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2057 */
cdd6c482 2058static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2059 struct perf_cpu_context *cpuctx,
2060 int can_add_hw)
2061{
2062 /*
cdd6c482 2063 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2064 */
d6f962b5 2065 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2066 return 1;
2067 /*
2068 * If an exclusive group is already on, no other hardware
cdd6c482 2069 * events can go on.
3b6f9e5c
PM
2070 */
2071 if (cpuctx->exclusive)
2072 return 0;
2073 /*
2074 * If this group is exclusive and there are already
cdd6c482 2075 * events on the CPU, it can't go on.
3b6f9e5c 2076 */
cdd6c482 2077 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2078 return 0;
2079 /*
2080 * Otherwise, try to add it if all previous groups were able
2081 * to go on.
2082 */
2083 return can_add_hw;
2084}
2085
cdd6c482
IM
2086static void add_event_to_ctx(struct perf_event *event,
2087 struct perf_event_context *ctx)
53cfbf59 2088{
4158755d
SE
2089 u64 tstamp = perf_event_time(event);
2090
cdd6c482 2091 list_add_event(event, ctx);
8a49542c 2092 perf_group_attach(event);
4158755d
SE
2093 event->tstamp_enabled = tstamp;
2094 event->tstamp_running = tstamp;
2095 event->tstamp_stopped = tstamp;
53cfbf59
PM
2096}
2097
bd2afa49
PZ
2098static void ctx_sched_out(struct perf_event_context *ctx,
2099 struct perf_cpu_context *cpuctx,
2100 enum event_type_t event_type);
2c29ef0f
PZ
2101static void
2102ctx_sched_in(struct perf_event_context *ctx,
2103 struct perf_cpu_context *cpuctx,
2104 enum event_type_t event_type,
2105 struct task_struct *task);
fe4b04fa 2106
bd2afa49
PZ
2107static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *ctx)
2109{
2110 if (!cpuctx->task_ctx)
2111 return;
2112
2113 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2114 return;
2115
2116 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2117}
2118
dce5855b
PZ
2119static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2120 struct perf_event_context *ctx,
2121 struct task_struct *task)
2122{
2123 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2124 if (ctx)
2125 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2126 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2127 if (ctx)
2128 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2129}
2130
3e349507
PZ
2131static void ctx_resched(struct perf_cpu_context *cpuctx,
2132 struct perf_event_context *task_ctx)
0017960f 2133{
3e349507
PZ
2134 perf_pmu_disable(cpuctx->ctx.pmu);
2135 if (task_ctx)
2136 task_ctx_sched_out(cpuctx, task_ctx);
2137 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2138 perf_event_sched_in(cpuctx, task_ctx, current);
2139 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2140}
2141
0793a61d 2142/*
cdd6c482 2143 * Cross CPU call to install and enable a performance event
682076ae 2144 *
a096309b
PZ
2145 * Very similar to remote_function() + event_function() but cannot assume that
2146 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2147 */
fe4b04fa 2148static int __perf_install_in_context(void *info)
0793a61d 2149{
a096309b
PZ
2150 struct perf_event *event = info;
2151 struct perf_event_context *ctx = event->ctx;
108b02cf 2152 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2153 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2154 bool activate = true;
2155 int ret = 0;
0793a61d 2156
63b6da39 2157 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2158 if (ctx->task) {
b58f6b0d
PZ
2159 raw_spin_lock(&ctx->lock);
2160 task_ctx = ctx;
a096309b
PZ
2161
2162 /* If we're on the wrong CPU, try again */
2163 if (task_cpu(ctx->task) != smp_processor_id()) {
2164 ret = -ESRCH;
63b6da39 2165 goto unlock;
a096309b 2166 }
b58f6b0d 2167
39a43640 2168 /*
a096309b
PZ
2169 * If we're on the right CPU, see if the task we target is
2170 * current, if not we don't have to activate the ctx, a future
2171 * context switch will do that for us.
39a43640 2172 */
a096309b
PZ
2173 if (ctx->task != current)
2174 activate = false;
2175 else
2176 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2177
63b6da39
PZ
2178 } else if (task_ctx) {
2179 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2180 }
b58f6b0d 2181
a096309b
PZ
2182 if (activate) {
2183 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2184 add_event_to_ctx(event, ctx);
2185 ctx_resched(cpuctx, task_ctx);
2186 } else {
2187 add_event_to_ctx(event, ctx);
2188 }
2189
63b6da39 2190unlock:
2c29ef0f 2191 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2192
a096309b 2193 return ret;
0793a61d
TG
2194}
2195
2196/*
a096309b
PZ
2197 * Attach a performance event to a context.
2198 *
2199 * Very similar to event_function_call, see comment there.
0793a61d
TG
2200 */
2201static void
cdd6c482
IM
2202perf_install_in_context(struct perf_event_context *ctx,
2203 struct perf_event *event,
0793a61d
TG
2204 int cpu)
2205{
a096309b 2206 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2207
fe4b04fa
PZ
2208 lockdep_assert_held(&ctx->mutex);
2209
c3f00c70 2210 event->ctx = ctx;
0cda4c02
YZ
2211 if (event->cpu != -1)
2212 event->cpu = cpu;
c3f00c70 2213
a096309b
PZ
2214 if (!task) {
2215 cpu_function_call(cpu, __perf_install_in_context, event);
2216 return;
2217 }
2218
2219 /*
2220 * Should not happen, we validate the ctx is still alive before calling.
2221 */
2222 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2223 return;
2224
39a43640
PZ
2225 /*
2226 * Installing events is tricky because we cannot rely on ctx->is_active
2227 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2228 */
a096309b 2229again:
63b6da39 2230 /*
a096309b
PZ
2231 * Cannot use task_function_call() because we need to run on the task's
2232 * CPU regardless of whether its current or not.
63b6da39 2233 */
a096309b
PZ
2234 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2235 return;
2236
2237 raw_spin_lock_irq(&ctx->lock);
2238 task = ctx->task;
84c4e620 2239 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2240 /*
2241 * Cannot happen because we already checked above (which also
2242 * cannot happen), and we hold ctx->mutex, which serializes us
2243 * against perf_event_exit_task_context().
2244 */
63b6da39
PZ
2245 raw_spin_unlock_irq(&ctx->lock);
2246 return;
2247 }
39a43640 2248 raw_spin_unlock_irq(&ctx->lock);
39a43640 2249 /*
a096309b
PZ
2250 * Since !ctx->is_active doesn't mean anything, we must IPI
2251 * unconditionally.
39a43640 2252 */
a096309b 2253 goto again;
0793a61d
TG
2254}
2255
fa289bec 2256/*
cdd6c482 2257 * Put a event into inactive state and update time fields.
fa289bec
PM
2258 * Enabling the leader of a group effectively enables all
2259 * the group members that aren't explicitly disabled, so we
2260 * have to update their ->tstamp_enabled also.
2261 * Note: this works for group members as well as group leaders
2262 * since the non-leader members' sibling_lists will be empty.
2263 */
1d9b482e 2264static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2265{
cdd6c482 2266 struct perf_event *sub;
4158755d 2267 u64 tstamp = perf_event_time(event);
fa289bec 2268
cdd6c482 2269 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2270 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2271 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2272 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2273 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2274 }
fa289bec
PM
2275}
2276
d859e29f 2277/*
cdd6c482 2278 * Cross CPU call to enable a performance event
d859e29f 2279 */
fae3fde6
PZ
2280static void __perf_event_enable(struct perf_event *event,
2281 struct perf_cpu_context *cpuctx,
2282 struct perf_event_context *ctx,
2283 void *info)
04289bb9 2284{
cdd6c482 2285 struct perf_event *leader = event->group_leader;
fae3fde6 2286 struct perf_event_context *task_ctx;
04289bb9 2287
6e801e01
PZ
2288 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2290 return;
3cbed429 2291
bd2afa49
PZ
2292 if (ctx->is_active)
2293 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2294
1d9b482e 2295 __perf_event_mark_enabled(event);
04289bb9 2296
fae3fde6
PZ
2297 if (!ctx->is_active)
2298 return;
2299
e5d1367f 2300 if (!event_filter_match(event)) {
bd2afa49 2301 if (is_cgroup_event(event))
e5d1367f 2302 perf_cgroup_defer_enabled(event);
bd2afa49 2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2304 return;
e5d1367f 2305 }
f4c4176f 2306
04289bb9 2307 /*
cdd6c482 2308 * If the event is in a group and isn't the group leader,
d859e29f 2309 * then don't put it on unless the group is on.
04289bb9 2310 */
bd2afa49
PZ
2311 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2312 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2313 return;
bd2afa49 2314 }
fe4b04fa 2315
fae3fde6
PZ
2316 task_ctx = cpuctx->task_ctx;
2317 if (ctx->task)
2318 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2319
fae3fde6 2320 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2321}
2322
d859e29f 2323/*
cdd6c482 2324 * Enable a event.
c93f7669 2325 *
cdd6c482
IM
2326 * If event->ctx is a cloned context, callers must make sure that
2327 * every task struct that event->ctx->task could possibly point to
c93f7669 2328 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2329 * perf_event_for_each_child or perf_event_for_each as described
2330 * for perf_event_disable.
d859e29f 2331 */
f63a8daa 2332static void _perf_event_enable(struct perf_event *event)
d859e29f 2333{
cdd6c482 2334 struct perf_event_context *ctx = event->ctx;
d859e29f 2335
7b648018 2336 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2337 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2338 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2339 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2340 return;
2341 }
2342
d859e29f 2343 /*
cdd6c482 2344 * If the event is in error state, clear that first.
7b648018
PZ
2345 *
2346 * That way, if we see the event in error state below, we know that it
2347 * has gone back into error state, as distinct from the task having
2348 * been scheduled away before the cross-call arrived.
d859e29f 2349 */
cdd6c482
IM
2350 if (event->state == PERF_EVENT_STATE_ERROR)
2351 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2352 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2353
fae3fde6 2354 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2355}
f63a8daa
PZ
2356
2357/*
2358 * See perf_event_disable();
2359 */
2360void perf_event_enable(struct perf_event *event)
2361{
2362 struct perf_event_context *ctx;
2363
2364 ctx = perf_event_ctx_lock(event);
2365 _perf_event_enable(event);
2366 perf_event_ctx_unlock(event, ctx);
2367}
dcfce4a0 2368EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2369
375637bc
AS
2370struct stop_event_data {
2371 struct perf_event *event;
2372 unsigned int restart;
2373};
2374
95ff4ca2
AS
2375static int __perf_event_stop(void *info)
2376{
375637bc
AS
2377 struct stop_event_data *sd = info;
2378 struct perf_event *event = sd->event;
95ff4ca2 2379
375637bc 2380 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2381 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2382 return 0;
2383
2384 /* matches smp_wmb() in event_sched_in() */
2385 smp_rmb();
2386
2387 /*
2388 * There is a window with interrupts enabled before we get here,
2389 * so we need to check again lest we try to stop another CPU's event.
2390 */
2391 if (READ_ONCE(event->oncpu) != smp_processor_id())
2392 return -EAGAIN;
2393
2394 event->pmu->stop(event, PERF_EF_UPDATE);
2395
375637bc
AS
2396 /*
2397 * May race with the actual stop (through perf_pmu_output_stop()),
2398 * but it is only used for events with AUX ring buffer, and such
2399 * events will refuse to restart because of rb::aux_mmap_count==0,
2400 * see comments in perf_aux_output_begin().
2401 *
2402 * Since this is happening on a event-local CPU, no trace is lost
2403 * while restarting.
2404 */
2405 if (sd->restart)
2406 event->pmu->start(event, PERF_EF_START);
2407
95ff4ca2
AS
2408 return 0;
2409}
2410
375637bc
AS
2411static int perf_event_restart(struct perf_event *event)
2412{
2413 struct stop_event_data sd = {
2414 .event = event,
2415 .restart = 1,
2416 };
2417 int ret = 0;
2418
2419 do {
2420 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2421 return 0;
2422
2423 /* matches smp_wmb() in event_sched_in() */
2424 smp_rmb();
2425
2426 /*
2427 * We only want to restart ACTIVE events, so if the event goes
2428 * inactive here (event->oncpu==-1), there's nothing more to do;
2429 * fall through with ret==-ENXIO.
2430 */
2431 ret = cpu_function_call(READ_ONCE(event->oncpu),
2432 __perf_event_stop, &sd);
2433 } while (ret == -EAGAIN);
2434
2435 return ret;
2436}
2437
2438/*
2439 * In order to contain the amount of racy and tricky in the address filter
2440 * configuration management, it is a two part process:
2441 *
2442 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2443 * we update the addresses of corresponding vmas in
2444 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2445 * (p2) when an event is scheduled in (pmu::add), it calls
2446 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2447 * if the generation has changed since the previous call.
2448 *
2449 * If (p1) happens while the event is active, we restart it to force (p2).
2450 *
2451 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2452 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2453 * ioctl;
2454 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2455 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2456 * for reading;
2457 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2458 * of exec.
2459 */
2460void perf_event_addr_filters_sync(struct perf_event *event)
2461{
2462 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2463
2464 if (!has_addr_filter(event))
2465 return;
2466
2467 raw_spin_lock(&ifh->lock);
2468 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2469 event->pmu->addr_filters_sync(event);
2470 event->hw.addr_filters_gen = event->addr_filters_gen;
2471 }
2472 raw_spin_unlock(&ifh->lock);
2473}
2474EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2475
f63a8daa 2476static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2477{
2023b359 2478 /*
cdd6c482 2479 * not supported on inherited events
2023b359 2480 */
2e939d1d 2481 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2482 return -EINVAL;
2483
cdd6c482 2484 atomic_add(refresh, &event->event_limit);
f63a8daa 2485 _perf_event_enable(event);
2023b359
PZ
2486
2487 return 0;
79f14641 2488}
f63a8daa
PZ
2489
2490/*
2491 * See perf_event_disable()
2492 */
2493int perf_event_refresh(struct perf_event *event, int refresh)
2494{
2495 struct perf_event_context *ctx;
2496 int ret;
2497
2498 ctx = perf_event_ctx_lock(event);
2499 ret = _perf_event_refresh(event, refresh);
2500 perf_event_ctx_unlock(event, ctx);
2501
2502 return ret;
2503}
26ca5c11 2504EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2505
5b0311e1
FW
2506static void ctx_sched_out(struct perf_event_context *ctx,
2507 struct perf_cpu_context *cpuctx,
2508 enum event_type_t event_type)
235c7fc7 2509{
db24d33e 2510 int is_active = ctx->is_active;
c994d613 2511 struct perf_event *event;
235c7fc7 2512
c994d613 2513 lockdep_assert_held(&ctx->lock);
235c7fc7 2514
39a43640
PZ
2515 if (likely(!ctx->nr_events)) {
2516 /*
2517 * See __perf_remove_from_context().
2518 */
2519 WARN_ON_ONCE(ctx->is_active);
2520 if (ctx->task)
2521 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2522 return;
39a43640
PZ
2523 }
2524
db24d33e 2525 ctx->is_active &= ~event_type;
3cbaa590
PZ
2526 if (!(ctx->is_active & EVENT_ALL))
2527 ctx->is_active = 0;
2528
63e30d3e
PZ
2529 if (ctx->task) {
2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531 if (!ctx->is_active)
2532 cpuctx->task_ctx = NULL;
2533 }
facc4307 2534
8fdc6539
PZ
2535 /*
2536 * Always update time if it was set; not only when it changes.
2537 * Otherwise we can 'forget' to update time for any but the last
2538 * context we sched out. For example:
2539 *
2540 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2541 * ctx_sched_out(.event_type = EVENT_PINNED)
2542 *
2543 * would only update time for the pinned events.
2544 */
3cbaa590
PZ
2545 if (is_active & EVENT_TIME) {
2546 /* update (and stop) ctx time */
2547 update_context_time(ctx);
2548 update_cgrp_time_from_cpuctx(cpuctx);
2549 }
2550
8fdc6539
PZ
2551 is_active ^= ctx->is_active; /* changed bits */
2552
3cbaa590 2553 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2554 return;
5b0311e1 2555
075e0b00 2556 perf_pmu_disable(ctx->pmu);
3cbaa590 2557 if (is_active & EVENT_PINNED) {
889ff015
FW
2558 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2559 group_sched_out(event, cpuctx, ctx);
9ed6060d 2560 }
889ff015 2561
3cbaa590 2562 if (is_active & EVENT_FLEXIBLE) {
889ff015 2563 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2564 group_sched_out(event, cpuctx, ctx);
9ed6060d 2565 }
1b9a644f 2566 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2567}
2568
564c2b21 2569/*
5a3126d4
PZ
2570 * Test whether two contexts are equivalent, i.e. whether they have both been
2571 * cloned from the same version of the same context.
2572 *
2573 * Equivalence is measured using a generation number in the context that is
2574 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2575 * and list_del_event().
564c2b21 2576 */
cdd6c482
IM
2577static int context_equiv(struct perf_event_context *ctx1,
2578 struct perf_event_context *ctx2)
564c2b21 2579{
211de6eb
PZ
2580 lockdep_assert_held(&ctx1->lock);
2581 lockdep_assert_held(&ctx2->lock);
2582
5a3126d4
PZ
2583 /* Pinning disables the swap optimization */
2584 if (ctx1->pin_count || ctx2->pin_count)
2585 return 0;
2586
2587 /* If ctx1 is the parent of ctx2 */
2588 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2589 return 1;
2590
2591 /* If ctx2 is the parent of ctx1 */
2592 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2593 return 1;
2594
2595 /*
2596 * If ctx1 and ctx2 have the same parent; we flatten the parent
2597 * hierarchy, see perf_event_init_context().
2598 */
2599 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2600 ctx1->parent_gen == ctx2->parent_gen)
2601 return 1;
2602
2603 /* Unmatched */
2604 return 0;
564c2b21
PM
2605}
2606
cdd6c482
IM
2607static void __perf_event_sync_stat(struct perf_event *event,
2608 struct perf_event *next_event)
bfbd3381
PZ
2609{
2610 u64 value;
2611
cdd6c482 2612 if (!event->attr.inherit_stat)
bfbd3381
PZ
2613 return;
2614
2615 /*
cdd6c482 2616 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2617 * because we're in the middle of a context switch and have IRQs
2618 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2619 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2620 * don't need to use it.
2621 */
cdd6c482
IM
2622 switch (event->state) {
2623 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2624 event->pmu->read(event);
2625 /* fall-through */
bfbd3381 2626
cdd6c482
IM
2627 case PERF_EVENT_STATE_INACTIVE:
2628 update_event_times(event);
bfbd3381
PZ
2629 break;
2630
2631 default:
2632 break;
2633 }
2634
2635 /*
cdd6c482 2636 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2637 * values when we flip the contexts.
2638 */
e7850595
PZ
2639 value = local64_read(&next_event->count);
2640 value = local64_xchg(&event->count, value);
2641 local64_set(&next_event->count, value);
bfbd3381 2642
cdd6c482
IM
2643 swap(event->total_time_enabled, next_event->total_time_enabled);
2644 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2645
bfbd3381 2646 /*
19d2e755 2647 * Since we swizzled the values, update the user visible data too.
bfbd3381 2648 */
cdd6c482
IM
2649 perf_event_update_userpage(event);
2650 perf_event_update_userpage(next_event);
bfbd3381
PZ
2651}
2652
cdd6c482
IM
2653static void perf_event_sync_stat(struct perf_event_context *ctx,
2654 struct perf_event_context *next_ctx)
bfbd3381 2655{
cdd6c482 2656 struct perf_event *event, *next_event;
bfbd3381
PZ
2657
2658 if (!ctx->nr_stat)
2659 return;
2660
02ffdbc8
PZ
2661 update_context_time(ctx);
2662
cdd6c482
IM
2663 event = list_first_entry(&ctx->event_list,
2664 struct perf_event, event_entry);
bfbd3381 2665
cdd6c482
IM
2666 next_event = list_first_entry(&next_ctx->event_list,
2667 struct perf_event, event_entry);
bfbd3381 2668
cdd6c482
IM
2669 while (&event->event_entry != &ctx->event_list &&
2670 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2671
cdd6c482 2672 __perf_event_sync_stat(event, next_event);
bfbd3381 2673
cdd6c482
IM
2674 event = list_next_entry(event, event_entry);
2675 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2676 }
2677}
2678
fe4b04fa
PZ
2679static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2680 struct task_struct *next)
0793a61d 2681{
8dc85d54 2682 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2683 struct perf_event_context *next_ctx;
5a3126d4 2684 struct perf_event_context *parent, *next_parent;
108b02cf 2685 struct perf_cpu_context *cpuctx;
c93f7669 2686 int do_switch = 1;
0793a61d 2687
108b02cf
PZ
2688 if (likely(!ctx))
2689 return;
10989fb2 2690
108b02cf
PZ
2691 cpuctx = __get_cpu_context(ctx);
2692 if (!cpuctx->task_ctx)
0793a61d
TG
2693 return;
2694
c93f7669 2695 rcu_read_lock();
8dc85d54 2696 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2697 if (!next_ctx)
2698 goto unlock;
2699
2700 parent = rcu_dereference(ctx->parent_ctx);
2701 next_parent = rcu_dereference(next_ctx->parent_ctx);
2702
2703 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2704 if (!parent && !next_parent)
5a3126d4
PZ
2705 goto unlock;
2706
2707 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2708 /*
2709 * Looks like the two contexts are clones, so we might be
2710 * able to optimize the context switch. We lock both
2711 * contexts and check that they are clones under the
2712 * lock (including re-checking that neither has been
2713 * uncloned in the meantime). It doesn't matter which
2714 * order we take the locks because no other cpu could
2715 * be trying to lock both of these tasks.
2716 */
e625cce1
TG
2717 raw_spin_lock(&ctx->lock);
2718 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2719 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2720 WRITE_ONCE(ctx->task, next);
2721 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2722
2723 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2724
63b6da39
PZ
2725 /*
2726 * RCU_INIT_POINTER here is safe because we've not
2727 * modified the ctx and the above modification of
2728 * ctx->task and ctx->task_ctx_data are immaterial
2729 * since those values are always verified under
2730 * ctx->lock which we're now holding.
2731 */
2732 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2733 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2734
c93f7669 2735 do_switch = 0;
bfbd3381 2736
cdd6c482 2737 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2738 }
e625cce1
TG
2739 raw_spin_unlock(&next_ctx->lock);
2740 raw_spin_unlock(&ctx->lock);
564c2b21 2741 }
5a3126d4 2742unlock:
c93f7669 2743 rcu_read_unlock();
564c2b21 2744
c93f7669 2745 if (do_switch) {
facc4307 2746 raw_spin_lock(&ctx->lock);
8833d0e2 2747 task_ctx_sched_out(cpuctx, ctx);
facc4307 2748 raw_spin_unlock(&ctx->lock);
c93f7669 2749 }
0793a61d
TG
2750}
2751
ba532500
YZ
2752void perf_sched_cb_dec(struct pmu *pmu)
2753{
2754 this_cpu_dec(perf_sched_cb_usages);
2755}
2756
2757void perf_sched_cb_inc(struct pmu *pmu)
2758{
2759 this_cpu_inc(perf_sched_cb_usages);
2760}
2761
2762/*
2763 * This function provides the context switch callback to the lower code
2764 * layer. It is invoked ONLY when the context switch callback is enabled.
2765 */
2766static void perf_pmu_sched_task(struct task_struct *prev,
2767 struct task_struct *next,
2768 bool sched_in)
2769{
2770 struct perf_cpu_context *cpuctx;
2771 struct pmu *pmu;
2772 unsigned long flags;
2773
2774 if (prev == next)
2775 return;
2776
2777 local_irq_save(flags);
2778
2779 rcu_read_lock();
2780
2781 list_for_each_entry_rcu(pmu, &pmus, entry) {
2782 if (pmu->sched_task) {
2783 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2784
2785 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2786
2787 perf_pmu_disable(pmu);
2788
2789 pmu->sched_task(cpuctx->task_ctx, sched_in);
2790
2791 perf_pmu_enable(pmu);
2792
2793 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2794 }
2795 }
2796
2797 rcu_read_unlock();
2798
2799 local_irq_restore(flags);
2800}
2801
45ac1403
AH
2802static void perf_event_switch(struct task_struct *task,
2803 struct task_struct *next_prev, bool sched_in);
2804
8dc85d54
PZ
2805#define for_each_task_context_nr(ctxn) \
2806 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2807
2808/*
2809 * Called from scheduler to remove the events of the current task,
2810 * with interrupts disabled.
2811 *
2812 * We stop each event and update the event value in event->count.
2813 *
2814 * This does not protect us against NMI, but disable()
2815 * sets the disabled bit in the control field of event _before_
2816 * accessing the event control register. If a NMI hits, then it will
2817 * not restart the event.
2818 */
ab0cce56
JO
2819void __perf_event_task_sched_out(struct task_struct *task,
2820 struct task_struct *next)
8dc85d54
PZ
2821{
2822 int ctxn;
2823
ba532500
YZ
2824 if (__this_cpu_read(perf_sched_cb_usages))
2825 perf_pmu_sched_task(task, next, false);
2826
45ac1403
AH
2827 if (atomic_read(&nr_switch_events))
2828 perf_event_switch(task, next, false);
2829
8dc85d54
PZ
2830 for_each_task_context_nr(ctxn)
2831 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2832
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch out PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2840}
2841
5b0311e1
FW
2842/*
2843 * Called with IRQs disabled
2844 */
2845static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2846 enum event_type_t event_type)
2847{
2848 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2849}
2850
235c7fc7 2851static void
5b0311e1 2852ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2853 struct perf_cpu_context *cpuctx)
0793a61d 2854{
cdd6c482 2855 struct perf_event *event;
0793a61d 2856
889ff015
FW
2857 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2858 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2859 continue;
5632ab12 2860 if (!event_filter_match(event))
3b6f9e5c
PM
2861 continue;
2862
e5d1367f
SE
2863 /* may need to reset tstamp_enabled */
2864 if (is_cgroup_event(event))
2865 perf_cgroup_mark_enabled(event, ctx);
2866
8c9ed8e1 2867 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2868 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2869
2870 /*
2871 * If this pinned group hasn't been scheduled,
2872 * put it in error state.
2873 */
cdd6c482
IM
2874 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2875 update_group_times(event);
2876 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2877 }
3b6f9e5c 2878 }
5b0311e1
FW
2879}
2880
2881static void
2882ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2883 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2884{
2885 struct perf_event *event;
2886 int can_add_hw = 1;
3b6f9e5c 2887
889ff015
FW
2888 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2889 /* Ignore events in OFF or ERROR state */
2890 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2891 continue;
04289bb9
IM
2892 /*
2893 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2894 * of events:
04289bb9 2895 */
5632ab12 2896 if (!event_filter_match(event))
0793a61d
TG
2897 continue;
2898
e5d1367f
SE
2899 /* may need to reset tstamp_enabled */
2900 if (is_cgroup_event(event))
2901 perf_cgroup_mark_enabled(event, ctx);
2902
9ed6060d 2903 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2904 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2905 can_add_hw = 0;
9ed6060d 2906 }
0793a61d 2907 }
5b0311e1
FW
2908}
2909
2910static void
2911ctx_sched_in(struct perf_event_context *ctx,
2912 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2913 enum event_type_t event_type,
2914 struct task_struct *task)
5b0311e1 2915{
db24d33e 2916 int is_active = ctx->is_active;
c994d613
PZ
2917 u64 now;
2918
2919 lockdep_assert_held(&ctx->lock);
e5d1367f 2920
5b0311e1 2921 if (likely(!ctx->nr_events))
facc4307 2922 return;
5b0311e1 2923
3cbaa590 2924 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2925 if (ctx->task) {
2926 if (!is_active)
2927 cpuctx->task_ctx = ctx;
2928 else
2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930 }
2931
3cbaa590
PZ
2932 is_active ^= ctx->is_active; /* changed bits */
2933
2934 if (is_active & EVENT_TIME) {
2935 /* start ctx time */
2936 now = perf_clock();
2937 ctx->timestamp = now;
2938 perf_cgroup_set_timestamp(task, ctx);
2939 }
2940
5b0311e1
FW
2941 /*
2942 * First go through the list and put on any pinned groups
2943 * in order to give them the best chance of going on.
2944 */
3cbaa590 2945 if (is_active & EVENT_PINNED)
6e37738a 2946 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2947
2948 /* Then walk through the lower prio flexible groups */
3cbaa590 2949 if (is_active & EVENT_FLEXIBLE)
6e37738a 2950 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2951}
2952
329c0e01 2953static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2954 enum event_type_t event_type,
2955 struct task_struct *task)
329c0e01
FW
2956{
2957 struct perf_event_context *ctx = &cpuctx->ctx;
2958
e5d1367f 2959 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2960}
2961
e5d1367f
SE
2962static void perf_event_context_sched_in(struct perf_event_context *ctx,
2963 struct task_struct *task)
235c7fc7 2964{
108b02cf 2965 struct perf_cpu_context *cpuctx;
235c7fc7 2966
108b02cf 2967 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2968 if (cpuctx->task_ctx == ctx)
2969 return;
2970
facc4307 2971 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2972 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2973 /*
2974 * We want to keep the following priority order:
2975 * cpu pinned (that don't need to move), task pinned,
2976 * cpu flexible, task flexible.
2977 */
2978 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2979 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2980 perf_pmu_enable(ctx->pmu);
2981 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2982}
2983
8dc85d54
PZ
2984/*
2985 * Called from scheduler to add the events of the current task
2986 * with interrupts disabled.
2987 *
2988 * We restore the event value and then enable it.
2989 *
2990 * This does not protect us against NMI, but enable()
2991 * sets the enabled bit in the control field of event _before_
2992 * accessing the event control register. If a NMI hits, then it will
2993 * keep the event running.
2994 */
ab0cce56
JO
2995void __perf_event_task_sched_in(struct task_struct *prev,
2996 struct task_struct *task)
8dc85d54
PZ
2997{
2998 struct perf_event_context *ctx;
2999 int ctxn;
3000
7e41d177
PZ
3001 /*
3002 * If cgroup events exist on this CPU, then we need to check if we have
3003 * to switch in PMU state; cgroup event are system-wide mode only.
3004 *
3005 * Since cgroup events are CPU events, we must schedule these in before
3006 * we schedule in the task events.
3007 */
3008 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009 perf_cgroup_sched_in(prev, task);
3010
8dc85d54
PZ
3011 for_each_task_context_nr(ctxn) {
3012 ctx = task->perf_event_ctxp[ctxn];
3013 if (likely(!ctx))
3014 continue;
3015
e5d1367f 3016 perf_event_context_sched_in(ctx, task);
8dc85d54 3017 }
d010b332 3018
45ac1403
AH
3019 if (atomic_read(&nr_switch_events))
3020 perf_event_switch(task, prev, true);
3021
ba532500
YZ
3022 if (__this_cpu_read(perf_sched_cb_usages))
3023 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3024}
3025
abd50713
PZ
3026static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3027{
3028 u64 frequency = event->attr.sample_freq;
3029 u64 sec = NSEC_PER_SEC;
3030 u64 divisor, dividend;
3031
3032 int count_fls, nsec_fls, frequency_fls, sec_fls;
3033
3034 count_fls = fls64(count);
3035 nsec_fls = fls64(nsec);
3036 frequency_fls = fls64(frequency);
3037 sec_fls = 30;
3038
3039 /*
3040 * We got @count in @nsec, with a target of sample_freq HZ
3041 * the target period becomes:
3042 *
3043 * @count * 10^9
3044 * period = -------------------
3045 * @nsec * sample_freq
3046 *
3047 */
3048
3049 /*
3050 * Reduce accuracy by one bit such that @a and @b converge
3051 * to a similar magnitude.
3052 */
fe4b04fa 3053#define REDUCE_FLS(a, b) \
abd50713
PZ
3054do { \
3055 if (a##_fls > b##_fls) { \
3056 a >>= 1; \
3057 a##_fls--; \
3058 } else { \
3059 b >>= 1; \
3060 b##_fls--; \
3061 } \
3062} while (0)
3063
3064 /*
3065 * Reduce accuracy until either term fits in a u64, then proceed with
3066 * the other, so that finally we can do a u64/u64 division.
3067 */
3068 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3069 REDUCE_FLS(nsec, frequency);
3070 REDUCE_FLS(sec, count);
3071 }
3072
3073 if (count_fls + sec_fls > 64) {
3074 divisor = nsec * frequency;
3075
3076 while (count_fls + sec_fls > 64) {
3077 REDUCE_FLS(count, sec);
3078 divisor >>= 1;
3079 }
3080
3081 dividend = count * sec;
3082 } else {
3083 dividend = count * sec;
3084
3085 while (nsec_fls + frequency_fls > 64) {
3086 REDUCE_FLS(nsec, frequency);
3087 dividend >>= 1;
3088 }
3089
3090 divisor = nsec * frequency;
3091 }
3092
f6ab91ad
PZ
3093 if (!divisor)
3094 return dividend;
3095
abd50713
PZ
3096 return div64_u64(dividend, divisor);
3097}
3098
e050e3f0
SE
3099static DEFINE_PER_CPU(int, perf_throttled_count);
3100static DEFINE_PER_CPU(u64, perf_throttled_seq);
3101
f39d47ff 3102static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3103{
cdd6c482 3104 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3105 s64 period, sample_period;
bd2b5b12
PZ
3106 s64 delta;
3107
abd50713 3108 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3109
3110 delta = (s64)(period - hwc->sample_period);
3111 delta = (delta + 7) / 8; /* low pass filter */
3112
3113 sample_period = hwc->sample_period + delta;
3114
3115 if (!sample_period)
3116 sample_period = 1;
3117
bd2b5b12 3118 hwc->sample_period = sample_period;
abd50713 3119
e7850595 3120 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3121 if (disable)
3122 event->pmu->stop(event, PERF_EF_UPDATE);
3123
e7850595 3124 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3125
3126 if (disable)
3127 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3128 }
bd2b5b12
PZ
3129}
3130
e050e3f0
SE
3131/*
3132 * combine freq adjustment with unthrottling to avoid two passes over the
3133 * events. At the same time, make sure, having freq events does not change
3134 * the rate of unthrottling as that would introduce bias.
3135 */
3136static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3137 int needs_unthr)
60db5e09 3138{
cdd6c482
IM
3139 struct perf_event *event;
3140 struct hw_perf_event *hwc;
e050e3f0 3141 u64 now, period = TICK_NSEC;
abd50713 3142 s64 delta;
60db5e09 3143
e050e3f0
SE
3144 /*
3145 * only need to iterate over all events iff:
3146 * - context have events in frequency mode (needs freq adjust)
3147 * - there are events to unthrottle on this cpu
3148 */
3149 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3150 return;
3151
e050e3f0 3152 raw_spin_lock(&ctx->lock);
f39d47ff 3153 perf_pmu_disable(ctx->pmu);
e050e3f0 3154
03541f8b 3155 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3156 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3157 continue;
3158
5632ab12 3159 if (!event_filter_match(event))
5d27c23d
PZ
3160 continue;
3161
44377277
AS
3162 perf_pmu_disable(event->pmu);
3163
cdd6c482 3164 hwc = &event->hw;
6a24ed6c 3165
ae23bff1 3166 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3167 hwc->interrupts = 0;
cdd6c482 3168 perf_log_throttle(event, 1);
a4eaf7f1 3169 event->pmu->start(event, 0);
a78ac325
PZ
3170 }
3171
cdd6c482 3172 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3173 goto next;
60db5e09 3174
e050e3f0
SE
3175 /*
3176 * stop the event and update event->count
3177 */
3178 event->pmu->stop(event, PERF_EF_UPDATE);
3179
e7850595 3180 now = local64_read(&event->count);
abd50713
PZ
3181 delta = now - hwc->freq_count_stamp;
3182 hwc->freq_count_stamp = now;
60db5e09 3183
e050e3f0
SE
3184 /*
3185 * restart the event
3186 * reload only if value has changed
f39d47ff
SE
3187 * we have stopped the event so tell that
3188 * to perf_adjust_period() to avoid stopping it
3189 * twice.
e050e3f0 3190 */
abd50713 3191 if (delta > 0)
f39d47ff 3192 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3193
3194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3195 next:
3196 perf_pmu_enable(event->pmu);
60db5e09 3197 }
e050e3f0 3198
f39d47ff 3199 perf_pmu_enable(ctx->pmu);
e050e3f0 3200 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3201}
3202
235c7fc7 3203/*
cdd6c482 3204 * Round-robin a context's events:
235c7fc7 3205 */
cdd6c482 3206static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3207{
dddd3379
TG
3208 /*
3209 * Rotate the first entry last of non-pinned groups. Rotation might be
3210 * disabled by the inheritance code.
3211 */
3212 if (!ctx->rotate_disable)
3213 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3214}
3215
9e630205 3216static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3217{
8dc85d54 3218 struct perf_event_context *ctx = NULL;
2fde4f94 3219 int rotate = 0;
7fc23a53 3220
b5ab4cd5 3221 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3222 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3223 rotate = 1;
3224 }
235c7fc7 3225
8dc85d54 3226 ctx = cpuctx->task_ctx;
b5ab4cd5 3227 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3228 if (ctx->nr_events != ctx->nr_active)
3229 rotate = 1;
3230 }
9717e6cd 3231
e050e3f0 3232 if (!rotate)
0f5a2601
PZ
3233 goto done;
3234
facc4307 3235 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3236 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3237
e050e3f0
SE
3238 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3239 if (ctx)
3240 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3241
e050e3f0
SE
3242 rotate_ctx(&cpuctx->ctx);
3243 if (ctx)
3244 rotate_ctx(ctx);
235c7fc7 3245
e050e3f0 3246 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3247
0f5a2601
PZ
3248 perf_pmu_enable(cpuctx->ctx.pmu);
3249 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3250done:
9e630205
SE
3251
3252 return rotate;
e9d2b064
PZ
3253}
3254
3255void perf_event_task_tick(void)
3256{
2fde4f94
MR
3257 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3258 struct perf_event_context *ctx, *tmp;
e050e3f0 3259 int throttled;
b5ab4cd5 3260
e9d2b064
PZ
3261 WARN_ON(!irqs_disabled());
3262
e050e3f0
SE
3263 __this_cpu_inc(perf_throttled_seq);
3264 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3265 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3266
2fde4f94 3267 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3268 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3269}
3270
889ff015
FW
3271static int event_enable_on_exec(struct perf_event *event,
3272 struct perf_event_context *ctx)
3273{
3274 if (!event->attr.enable_on_exec)
3275 return 0;
3276
3277 event->attr.enable_on_exec = 0;
3278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3279 return 0;
3280
1d9b482e 3281 __perf_event_mark_enabled(event);
889ff015
FW
3282
3283 return 1;
3284}
3285
57e7986e 3286/*
cdd6c482 3287 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3288 * This expects task == current.
3289 */
c1274499 3290static void perf_event_enable_on_exec(int ctxn)
57e7986e 3291{
c1274499 3292 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3293 struct perf_cpu_context *cpuctx;
cdd6c482 3294 struct perf_event *event;
57e7986e
PM
3295 unsigned long flags;
3296 int enabled = 0;
3297
3298 local_irq_save(flags);
c1274499 3299 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3300 if (!ctx || !ctx->nr_events)
57e7986e
PM
3301 goto out;
3302
3e349507
PZ
3303 cpuctx = __get_cpu_context(ctx);
3304 perf_ctx_lock(cpuctx, ctx);
7fce2509 3305 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3306 list_for_each_entry(event, &ctx->event_list, event_entry)
3307 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3308
3309 /*
3e349507 3310 * Unclone and reschedule this context if we enabled any event.
57e7986e 3311 */
3e349507 3312 if (enabled) {
211de6eb 3313 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3314 ctx_resched(cpuctx, ctx);
3315 }
3316 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3317
9ed6060d 3318out:
57e7986e 3319 local_irq_restore(flags);
211de6eb
PZ
3320
3321 if (clone_ctx)
3322 put_ctx(clone_ctx);
57e7986e
PM
3323}
3324
0492d4c5
PZ
3325struct perf_read_data {
3326 struct perf_event *event;
3327 bool group;
7d88962e 3328 int ret;
0492d4c5
PZ
3329};
3330
0793a61d 3331/*
cdd6c482 3332 * Cross CPU call to read the hardware event
0793a61d 3333 */
cdd6c482 3334static void __perf_event_read(void *info)
0793a61d 3335{
0492d4c5
PZ
3336 struct perf_read_data *data = info;
3337 struct perf_event *sub, *event = data->event;
cdd6c482 3338 struct perf_event_context *ctx = event->ctx;
108b02cf 3339 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3340 struct pmu *pmu = event->pmu;
621a01ea 3341
e1ac3614
PM
3342 /*
3343 * If this is a task context, we need to check whether it is
3344 * the current task context of this cpu. If not it has been
3345 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3346 * event->count would have been updated to a recent sample
3347 * when the event was scheduled out.
e1ac3614
PM
3348 */
3349 if (ctx->task && cpuctx->task_ctx != ctx)
3350 return;
3351
e625cce1 3352 raw_spin_lock(&ctx->lock);
e5d1367f 3353 if (ctx->is_active) {
542e72fc 3354 update_context_time(ctx);
e5d1367f
SE
3355 update_cgrp_time_from_event(event);
3356 }
0492d4c5 3357
cdd6c482 3358 update_event_times(event);
4a00c16e
SB
3359 if (event->state != PERF_EVENT_STATE_ACTIVE)
3360 goto unlock;
0492d4c5 3361
4a00c16e
SB
3362 if (!data->group) {
3363 pmu->read(event);
3364 data->ret = 0;
0492d4c5 3365 goto unlock;
4a00c16e
SB
3366 }
3367
3368 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3369
3370 pmu->read(event);
0492d4c5
PZ
3371
3372 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3373 update_event_times(sub);
4a00c16e
SB
3374 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3375 /*
3376 * Use sibling's PMU rather than @event's since
3377 * sibling could be on different (eg: software) PMU.
3378 */
0492d4c5 3379 sub->pmu->read(sub);
4a00c16e 3380 }
0492d4c5 3381 }
4a00c16e
SB
3382
3383 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3384
3385unlock:
e625cce1 3386 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3387}
3388
b5e58793
PZ
3389static inline u64 perf_event_count(struct perf_event *event)
3390{
eacd3ecc
MF
3391 if (event->pmu->count)
3392 return event->pmu->count(event);
3393
3394 return __perf_event_count(event);
b5e58793
PZ
3395}
3396
ffe8690c
KX
3397/*
3398 * NMI-safe method to read a local event, that is an event that
3399 * is:
3400 * - either for the current task, or for this CPU
3401 * - does not have inherit set, for inherited task events
3402 * will not be local and we cannot read them atomically
3403 * - must not have a pmu::count method
3404 */
3405u64 perf_event_read_local(struct perf_event *event)
3406{
3407 unsigned long flags;
3408 u64 val;
3409
3410 /*
3411 * Disabling interrupts avoids all counter scheduling (context
3412 * switches, timer based rotation and IPIs).
3413 */
3414 local_irq_save(flags);
3415
3416 /* If this is a per-task event, it must be for current */
3417 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3418 event->hw.target != current);
3419
3420 /* If this is a per-CPU event, it must be for this CPU */
3421 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3422 event->cpu != smp_processor_id());
3423
3424 /*
3425 * It must not be an event with inherit set, we cannot read
3426 * all child counters from atomic context.
3427 */
3428 WARN_ON_ONCE(event->attr.inherit);
3429
3430 /*
3431 * It must not have a pmu::count method, those are not
3432 * NMI safe.
3433 */
3434 WARN_ON_ONCE(event->pmu->count);
3435
3436 /*
3437 * If the event is currently on this CPU, its either a per-task event,
3438 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3439 * oncpu == -1).
3440 */
3441 if (event->oncpu == smp_processor_id())
3442 event->pmu->read(event);
3443
3444 val = local64_read(&event->count);
3445 local_irq_restore(flags);
3446
3447 return val;
3448}
3449
7d88962e 3450static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3451{
7d88962e
SB
3452 int ret = 0;
3453
0793a61d 3454 /*
cdd6c482
IM
3455 * If event is enabled and currently active on a CPU, update the
3456 * value in the event structure:
0793a61d 3457 */
cdd6c482 3458 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3459 struct perf_read_data data = {
3460 .event = event,
3461 .group = group,
7d88962e 3462 .ret = 0,
0492d4c5 3463 };
cdd6c482 3464 smp_call_function_single(event->oncpu,
0492d4c5 3465 __perf_event_read, &data, 1);
7d88962e 3466 ret = data.ret;
cdd6c482 3467 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3468 struct perf_event_context *ctx = event->ctx;
3469 unsigned long flags;
3470
e625cce1 3471 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3472 /*
3473 * may read while context is not active
3474 * (e.g., thread is blocked), in that case
3475 * we cannot update context time
3476 */
e5d1367f 3477 if (ctx->is_active) {
c530ccd9 3478 update_context_time(ctx);
e5d1367f
SE
3479 update_cgrp_time_from_event(event);
3480 }
0492d4c5
PZ
3481 if (group)
3482 update_group_times(event);
3483 else
3484 update_event_times(event);
e625cce1 3485 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3486 }
7d88962e
SB
3487
3488 return ret;
0793a61d
TG
3489}
3490
a63eaf34 3491/*
cdd6c482 3492 * Initialize the perf_event context in a task_struct:
a63eaf34 3493 */
eb184479 3494static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3495{
e625cce1 3496 raw_spin_lock_init(&ctx->lock);
a63eaf34 3497 mutex_init(&ctx->mutex);
2fde4f94 3498 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3499 INIT_LIST_HEAD(&ctx->pinned_groups);
3500 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3501 INIT_LIST_HEAD(&ctx->event_list);
3502 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3503}
3504
3505static struct perf_event_context *
3506alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3507{
3508 struct perf_event_context *ctx;
3509
3510 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3511 if (!ctx)
3512 return NULL;
3513
3514 __perf_event_init_context(ctx);
3515 if (task) {
3516 ctx->task = task;
3517 get_task_struct(task);
0793a61d 3518 }
eb184479
PZ
3519 ctx->pmu = pmu;
3520
3521 return ctx;
a63eaf34
PM
3522}
3523
2ebd4ffb
MH
3524static struct task_struct *
3525find_lively_task_by_vpid(pid_t vpid)
3526{
3527 struct task_struct *task;
0793a61d
TG
3528
3529 rcu_read_lock();
2ebd4ffb 3530 if (!vpid)
0793a61d
TG
3531 task = current;
3532 else
2ebd4ffb 3533 task = find_task_by_vpid(vpid);
0793a61d
TG
3534 if (task)
3535 get_task_struct(task);
3536 rcu_read_unlock();
3537
3538 if (!task)
3539 return ERR_PTR(-ESRCH);
3540
2ebd4ffb 3541 return task;
2ebd4ffb
MH
3542}
3543
fe4b04fa
PZ
3544/*
3545 * Returns a matching context with refcount and pincount.
3546 */
108b02cf 3547static struct perf_event_context *
4af57ef2
YZ
3548find_get_context(struct pmu *pmu, struct task_struct *task,
3549 struct perf_event *event)
0793a61d 3550{
211de6eb 3551 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3552 struct perf_cpu_context *cpuctx;
4af57ef2 3553 void *task_ctx_data = NULL;
25346b93 3554 unsigned long flags;
8dc85d54 3555 int ctxn, err;
4af57ef2 3556 int cpu = event->cpu;
0793a61d 3557
22a4ec72 3558 if (!task) {
cdd6c482 3559 /* Must be root to operate on a CPU event: */
0764771d 3560 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3561 return ERR_PTR(-EACCES);
3562
0793a61d 3563 /*
cdd6c482 3564 * We could be clever and allow to attach a event to an
0793a61d
TG
3565 * offline CPU and activate it when the CPU comes up, but
3566 * that's for later.
3567 */
f6325e30 3568 if (!cpu_online(cpu))
0793a61d
TG
3569 return ERR_PTR(-ENODEV);
3570
108b02cf 3571 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3572 ctx = &cpuctx->ctx;
c93f7669 3573 get_ctx(ctx);
fe4b04fa 3574 ++ctx->pin_count;
0793a61d 3575
0793a61d
TG
3576 return ctx;
3577 }
3578
8dc85d54
PZ
3579 err = -EINVAL;
3580 ctxn = pmu->task_ctx_nr;
3581 if (ctxn < 0)
3582 goto errout;
3583
4af57ef2
YZ
3584 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3585 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3586 if (!task_ctx_data) {
3587 err = -ENOMEM;
3588 goto errout;
3589 }
3590 }
3591
9ed6060d 3592retry:
8dc85d54 3593 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3594 if (ctx) {
211de6eb 3595 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3596 ++ctx->pin_count;
4af57ef2
YZ
3597
3598 if (task_ctx_data && !ctx->task_ctx_data) {
3599 ctx->task_ctx_data = task_ctx_data;
3600 task_ctx_data = NULL;
3601 }
e625cce1 3602 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3603
3604 if (clone_ctx)
3605 put_ctx(clone_ctx);
9137fb28 3606 } else {
eb184479 3607 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3608 err = -ENOMEM;
3609 if (!ctx)
3610 goto errout;
eb184479 3611
4af57ef2
YZ
3612 if (task_ctx_data) {
3613 ctx->task_ctx_data = task_ctx_data;
3614 task_ctx_data = NULL;
3615 }
3616
dbe08d82
ON
3617 err = 0;
3618 mutex_lock(&task->perf_event_mutex);
3619 /*
3620 * If it has already passed perf_event_exit_task().
3621 * we must see PF_EXITING, it takes this mutex too.
3622 */
3623 if (task->flags & PF_EXITING)
3624 err = -ESRCH;
3625 else if (task->perf_event_ctxp[ctxn])
3626 err = -EAGAIN;
fe4b04fa 3627 else {
9137fb28 3628 get_ctx(ctx);
fe4b04fa 3629 ++ctx->pin_count;
dbe08d82 3630 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3631 }
dbe08d82
ON
3632 mutex_unlock(&task->perf_event_mutex);
3633
3634 if (unlikely(err)) {
9137fb28 3635 put_ctx(ctx);
dbe08d82
ON
3636
3637 if (err == -EAGAIN)
3638 goto retry;
3639 goto errout;
a63eaf34
PM
3640 }
3641 }
3642
4af57ef2 3643 kfree(task_ctx_data);
0793a61d 3644 return ctx;
c93f7669 3645
9ed6060d 3646errout:
4af57ef2 3647 kfree(task_ctx_data);
c93f7669 3648 return ERR_PTR(err);
0793a61d
TG
3649}
3650
6fb2915d 3651static void perf_event_free_filter(struct perf_event *event);
2541517c 3652static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3653
cdd6c482 3654static void free_event_rcu(struct rcu_head *head)
592903cd 3655{
cdd6c482 3656 struct perf_event *event;
592903cd 3657
cdd6c482
IM
3658 event = container_of(head, struct perf_event, rcu_head);
3659 if (event->ns)
3660 put_pid_ns(event->ns);
6fb2915d 3661 perf_event_free_filter(event);
cdd6c482 3662 kfree(event);
592903cd
PZ
3663}
3664
b69cf536
PZ
3665static void ring_buffer_attach(struct perf_event *event,
3666 struct ring_buffer *rb);
925d519a 3667
4beb31f3 3668static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3669{
4beb31f3
FW
3670 if (event->parent)
3671 return;
3672
4beb31f3
FW
3673 if (is_cgroup_event(event))
3674 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3675}
925d519a 3676
555e0c1e
FW
3677#ifdef CONFIG_NO_HZ_FULL
3678static DEFINE_SPINLOCK(nr_freq_lock);
3679#endif
3680
3681static void unaccount_freq_event_nohz(void)
3682{
3683#ifdef CONFIG_NO_HZ_FULL
3684 spin_lock(&nr_freq_lock);
3685 if (atomic_dec_and_test(&nr_freq_events))
3686 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3687 spin_unlock(&nr_freq_lock);
3688#endif
3689}
3690
3691static void unaccount_freq_event(void)
3692{
3693 if (tick_nohz_full_enabled())
3694 unaccount_freq_event_nohz();
3695 else
3696 atomic_dec(&nr_freq_events);
3697}
3698
4beb31f3
FW
3699static void unaccount_event(struct perf_event *event)
3700{
25432ae9
PZ
3701 bool dec = false;
3702
4beb31f3
FW
3703 if (event->parent)
3704 return;
3705
3706 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3707 dec = true;
4beb31f3
FW
3708 if (event->attr.mmap || event->attr.mmap_data)
3709 atomic_dec(&nr_mmap_events);
3710 if (event->attr.comm)
3711 atomic_dec(&nr_comm_events);
3712 if (event->attr.task)
3713 atomic_dec(&nr_task_events);
948b26b6 3714 if (event->attr.freq)
555e0c1e 3715 unaccount_freq_event();
45ac1403 3716 if (event->attr.context_switch) {
25432ae9 3717 dec = true;
45ac1403
AH
3718 atomic_dec(&nr_switch_events);
3719 }
4beb31f3 3720 if (is_cgroup_event(event))
25432ae9 3721 dec = true;
4beb31f3 3722 if (has_branch_stack(event))
25432ae9
PZ
3723 dec = true;
3724
9107c89e
PZ
3725 if (dec) {
3726 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3727 schedule_delayed_work(&perf_sched_work, HZ);
3728 }
4beb31f3
FW
3729
3730 unaccount_event_cpu(event, event->cpu);
3731}
925d519a 3732
9107c89e
PZ
3733static void perf_sched_delayed(struct work_struct *work)
3734{
3735 mutex_lock(&perf_sched_mutex);
3736 if (atomic_dec_and_test(&perf_sched_count))
3737 static_branch_disable(&perf_sched_events);
3738 mutex_unlock(&perf_sched_mutex);
3739}
3740
bed5b25a
AS
3741/*
3742 * The following implement mutual exclusion of events on "exclusive" pmus
3743 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3744 * at a time, so we disallow creating events that might conflict, namely:
3745 *
3746 * 1) cpu-wide events in the presence of per-task events,
3747 * 2) per-task events in the presence of cpu-wide events,
3748 * 3) two matching events on the same context.
3749 *
3750 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3751 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3752 */
3753static int exclusive_event_init(struct perf_event *event)
3754{
3755 struct pmu *pmu = event->pmu;
3756
3757 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3758 return 0;
3759
3760 /*
3761 * Prevent co-existence of per-task and cpu-wide events on the
3762 * same exclusive pmu.
3763 *
3764 * Negative pmu::exclusive_cnt means there are cpu-wide
3765 * events on this "exclusive" pmu, positive means there are
3766 * per-task events.
3767 *
3768 * Since this is called in perf_event_alloc() path, event::ctx
3769 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3770 * to mean "per-task event", because unlike other attach states it
3771 * never gets cleared.
3772 */
3773 if (event->attach_state & PERF_ATTACH_TASK) {
3774 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3775 return -EBUSY;
3776 } else {
3777 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3778 return -EBUSY;
3779 }
3780
3781 return 0;
3782}
3783
3784static void exclusive_event_destroy(struct perf_event *event)
3785{
3786 struct pmu *pmu = event->pmu;
3787
3788 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3789 return;
3790
3791 /* see comment in exclusive_event_init() */
3792 if (event->attach_state & PERF_ATTACH_TASK)
3793 atomic_dec(&pmu->exclusive_cnt);
3794 else
3795 atomic_inc(&pmu->exclusive_cnt);
3796}
3797
3798static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3799{
3800 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3801 (e1->cpu == e2->cpu ||
3802 e1->cpu == -1 ||
3803 e2->cpu == -1))
3804 return true;
3805 return false;
3806}
3807
3808/* Called under the same ctx::mutex as perf_install_in_context() */
3809static bool exclusive_event_installable(struct perf_event *event,
3810 struct perf_event_context *ctx)
3811{
3812 struct perf_event *iter_event;
3813 struct pmu *pmu = event->pmu;
3814
3815 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3816 return true;
3817
3818 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3819 if (exclusive_event_match(iter_event, event))
3820 return false;
3821 }
3822
3823 return true;
3824}
3825
375637bc
AS
3826static void perf_addr_filters_splice(struct perf_event *event,
3827 struct list_head *head);
3828
683ede43 3829static void _free_event(struct perf_event *event)
f1600952 3830{
e360adbe 3831 irq_work_sync(&event->pending);
925d519a 3832
4beb31f3 3833 unaccount_event(event);
9ee318a7 3834
76369139 3835 if (event->rb) {
9bb5d40c
PZ
3836 /*
3837 * Can happen when we close an event with re-directed output.
3838 *
3839 * Since we have a 0 refcount, perf_mmap_close() will skip
3840 * over us; possibly making our ring_buffer_put() the last.
3841 */
3842 mutex_lock(&event->mmap_mutex);
b69cf536 3843 ring_buffer_attach(event, NULL);
9bb5d40c 3844 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3845 }
3846
e5d1367f
SE
3847 if (is_cgroup_event(event))
3848 perf_detach_cgroup(event);
3849
a0733e69
PZ
3850 if (!event->parent) {
3851 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3852 put_callchain_buffers();
3853 }
3854
3855 perf_event_free_bpf_prog(event);
375637bc
AS
3856 perf_addr_filters_splice(event, NULL);
3857 kfree(event->addr_filters_offs);
a0733e69
PZ
3858
3859 if (event->destroy)
3860 event->destroy(event);
3861
3862 if (event->ctx)
3863 put_ctx(event->ctx);
3864
3865 if (event->pmu) {
3866 exclusive_event_destroy(event);
3867 module_put(event->pmu->module);
3868 }
3869
3870 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3871}
3872
683ede43
PZ
3873/*
3874 * Used to free events which have a known refcount of 1, such as in error paths
3875 * where the event isn't exposed yet and inherited events.
3876 */
3877static void free_event(struct perf_event *event)
0793a61d 3878{
683ede43
PZ
3879 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3880 "unexpected event refcount: %ld; ptr=%p\n",
3881 atomic_long_read(&event->refcount), event)) {
3882 /* leak to avoid use-after-free */
3883 return;
3884 }
0793a61d 3885
683ede43 3886 _free_event(event);
0793a61d
TG
3887}
3888
a66a3052 3889/*
f8697762 3890 * Remove user event from the owner task.
a66a3052 3891 */
f8697762 3892static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3893{
8882135b 3894 struct task_struct *owner;
fb0459d7 3895
8882135b 3896 rcu_read_lock();
8882135b 3897 /*
f47c02c0
PZ
3898 * Matches the smp_store_release() in perf_event_exit_task(). If we
3899 * observe !owner it means the list deletion is complete and we can
3900 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3901 * owner->perf_event_mutex.
3902 */
f47c02c0 3903 owner = lockless_dereference(event->owner);
8882135b
PZ
3904 if (owner) {
3905 /*
3906 * Since delayed_put_task_struct() also drops the last
3907 * task reference we can safely take a new reference
3908 * while holding the rcu_read_lock().
3909 */
3910 get_task_struct(owner);
3911 }
3912 rcu_read_unlock();
3913
3914 if (owner) {
f63a8daa
PZ
3915 /*
3916 * If we're here through perf_event_exit_task() we're already
3917 * holding ctx->mutex which would be an inversion wrt. the
3918 * normal lock order.
3919 *
3920 * However we can safely take this lock because its the child
3921 * ctx->mutex.
3922 */
3923 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3924
8882135b
PZ
3925 /*
3926 * We have to re-check the event->owner field, if it is cleared
3927 * we raced with perf_event_exit_task(), acquiring the mutex
3928 * ensured they're done, and we can proceed with freeing the
3929 * event.
3930 */
f47c02c0 3931 if (event->owner) {
8882135b 3932 list_del_init(&event->owner_entry);
f47c02c0
PZ
3933 smp_store_release(&event->owner, NULL);
3934 }
8882135b
PZ
3935 mutex_unlock(&owner->perf_event_mutex);
3936 put_task_struct(owner);
3937 }
f8697762
JO
3938}
3939
f8697762
JO
3940static void put_event(struct perf_event *event)
3941{
f8697762
JO
3942 if (!atomic_long_dec_and_test(&event->refcount))
3943 return;
3944
c6e5b732
PZ
3945 _free_event(event);
3946}
3947
3948/*
3949 * Kill an event dead; while event:refcount will preserve the event
3950 * object, it will not preserve its functionality. Once the last 'user'
3951 * gives up the object, we'll destroy the thing.
3952 */
3953int perf_event_release_kernel(struct perf_event *event)
3954{
a4f4bb6d 3955 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3956 struct perf_event *child, *tmp;
3957
a4f4bb6d
PZ
3958 /*
3959 * If we got here through err_file: fput(event_file); we will not have
3960 * attached to a context yet.
3961 */
3962 if (!ctx) {
3963 WARN_ON_ONCE(event->attach_state &
3964 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3965 goto no_ctx;
3966 }
3967
f8697762
JO
3968 if (!is_kernel_event(event))
3969 perf_remove_from_owner(event);
8882135b 3970
5fa7c8ec 3971 ctx = perf_event_ctx_lock(event);
a83fe28e 3972 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3973 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3974
a69b0ca4 3975 raw_spin_lock_irq(&ctx->lock);
683ede43 3976 /*
a69b0ca4
PZ
3977 * Mark this even as STATE_DEAD, there is no external reference to it
3978 * anymore.
683ede43 3979 *
a69b0ca4
PZ
3980 * Anybody acquiring event->child_mutex after the below loop _must_
3981 * also see this, most importantly inherit_event() which will avoid
3982 * placing more children on the list.
683ede43 3983 *
c6e5b732
PZ
3984 * Thus this guarantees that we will in fact observe and kill _ALL_
3985 * child events.
683ede43 3986 */
a69b0ca4
PZ
3987 event->state = PERF_EVENT_STATE_DEAD;
3988 raw_spin_unlock_irq(&ctx->lock);
3989
3990 perf_event_ctx_unlock(event, ctx);
683ede43 3991
c6e5b732
PZ
3992again:
3993 mutex_lock(&event->child_mutex);
3994 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3995
c6e5b732
PZ
3996 /*
3997 * Cannot change, child events are not migrated, see the
3998 * comment with perf_event_ctx_lock_nested().
3999 */
4000 ctx = lockless_dereference(child->ctx);
4001 /*
4002 * Since child_mutex nests inside ctx::mutex, we must jump
4003 * through hoops. We start by grabbing a reference on the ctx.
4004 *
4005 * Since the event cannot get freed while we hold the
4006 * child_mutex, the context must also exist and have a !0
4007 * reference count.
4008 */
4009 get_ctx(ctx);
4010
4011 /*
4012 * Now that we have a ctx ref, we can drop child_mutex, and
4013 * acquire ctx::mutex without fear of it going away. Then we
4014 * can re-acquire child_mutex.
4015 */
4016 mutex_unlock(&event->child_mutex);
4017 mutex_lock(&ctx->mutex);
4018 mutex_lock(&event->child_mutex);
4019
4020 /*
4021 * Now that we hold ctx::mutex and child_mutex, revalidate our
4022 * state, if child is still the first entry, it didn't get freed
4023 * and we can continue doing so.
4024 */
4025 tmp = list_first_entry_or_null(&event->child_list,
4026 struct perf_event, child_list);
4027 if (tmp == child) {
4028 perf_remove_from_context(child, DETACH_GROUP);
4029 list_del(&child->child_list);
4030 free_event(child);
4031 /*
4032 * This matches the refcount bump in inherit_event();
4033 * this can't be the last reference.
4034 */
4035 put_event(event);
4036 }
4037
4038 mutex_unlock(&event->child_mutex);
4039 mutex_unlock(&ctx->mutex);
4040 put_ctx(ctx);
4041 goto again;
4042 }
4043 mutex_unlock(&event->child_mutex);
4044
a4f4bb6d
PZ
4045no_ctx:
4046 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4047 return 0;
4048}
4049EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4050
8b10c5e2
PZ
4051/*
4052 * Called when the last reference to the file is gone.
4053 */
a6fa941d
AV
4054static int perf_release(struct inode *inode, struct file *file)
4055{
c6e5b732 4056 perf_event_release_kernel(file->private_data);
a6fa941d 4057 return 0;
fb0459d7 4058}
fb0459d7 4059
59ed446f 4060u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4061{
cdd6c482 4062 struct perf_event *child;
e53c0994
PZ
4063 u64 total = 0;
4064
59ed446f
PZ
4065 *enabled = 0;
4066 *running = 0;
4067
6f10581a 4068 mutex_lock(&event->child_mutex);
01add3ea 4069
7d88962e 4070 (void)perf_event_read(event, false);
01add3ea
SB
4071 total += perf_event_count(event);
4072
59ed446f
PZ
4073 *enabled += event->total_time_enabled +
4074 atomic64_read(&event->child_total_time_enabled);
4075 *running += event->total_time_running +
4076 atomic64_read(&event->child_total_time_running);
4077
4078 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4079 (void)perf_event_read(child, false);
01add3ea 4080 total += perf_event_count(child);
59ed446f
PZ
4081 *enabled += child->total_time_enabled;
4082 *running += child->total_time_running;
4083 }
6f10581a 4084 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4085
4086 return total;
4087}
fb0459d7 4088EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4089
7d88962e 4090static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4091 u64 read_format, u64 *values)
3dab77fb 4092{
fa8c2693
PZ
4093 struct perf_event *sub;
4094 int n = 1; /* skip @nr */
7d88962e 4095 int ret;
f63a8daa 4096
7d88962e
SB
4097 ret = perf_event_read(leader, true);
4098 if (ret)
4099 return ret;
abf4868b 4100
fa8c2693
PZ
4101 /*
4102 * Since we co-schedule groups, {enabled,running} times of siblings
4103 * will be identical to those of the leader, so we only publish one
4104 * set.
4105 */
4106 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4107 values[n++] += leader->total_time_enabled +
4108 atomic64_read(&leader->child_total_time_enabled);
4109 }
3dab77fb 4110
fa8c2693
PZ
4111 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4112 values[n++] += leader->total_time_running +
4113 atomic64_read(&leader->child_total_time_running);
4114 }
4115
4116 /*
4117 * Write {count,id} tuples for every sibling.
4118 */
4119 values[n++] += perf_event_count(leader);
abf4868b
PZ
4120 if (read_format & PERF_FORMAT_ID)
4121 values[n++] = primary_event_id(leader);
3dab77fb 4122
fa8c2693
PZ
4123 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4124 values[n++] += perf_event_count(sub);
4125 if (read_format & PERF_FORMAT_ID)
4126 values[n++] = primary_event_id(sub);
4127 }
7d88962e
SB
4128
4129 return 0;
fa8c2693 4130}
3dab77fb 4131
fa8c2693
PZ
4132static int perf_read_group(struct perf_event *event,
4133 u64 read_format, char __user *buf)
4134{
4135 struct perf_event *leader = event->group_leader, *child;
4136 struct perf_event_context *ctx = leader->ctx;
7d88962e 4137 int ret;
fa8c2693 4138 u64 *values;
3dab77fb 4139
fa8c2693 4140 lockdep_assert_held(&ctx->mutex);
3dab77fb 4141
fa8c2693
PZ
4142 values = kzalloc(event->read_size, GFP_KERNEL);
4143 if (!values)
4144 return -ENOMEM;
3dab77fb 4145
fa8c2693
PZ
4146 values[0] = 1 + leader->nr_siblings;
4147
4148 /*
4149 * By locking the child_mutex of the leader we effectively
4150 * lock the child list of all siblings.. XXX explain how.
4151 */
4152 mutex_lock(&leader->child_mutex);
abf4868b 4153
7d88962e
SB
4154 ret = __perf_read_group_add(leader, read_format, values);
4155 if (ret)
4156 goto unlock;
4157
4158 list_for_each_entry(child, &leader->child_list, child_list) {
4159 ret = __perf_read_group_add(child, read_format, values);
4160 if (ret)
4161 goto unlock;
4162 }
abf4868b 4163
fa8c2693 4164 mutex_unlock(&leader->child_mutex);
abf4868b 4165
7d88962e 4166 ret = event->read_size;
fa8c2693
PZ
4167 if (copy_to_user(buf, values, event->read_size))
4168 ret = -EFAULT;
7d88962e 4169 goto out;
fa8c2693 4170
7d88962e
SB
4171unlock:
4172 mutex_unlock(&leader->child_mutex);
4173out:
fa8c2693 4174 kfree(values);
abf4868b 4175 return ret;
3dab77fb
PZ
4176}
4177
b15f495b 4178static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4179 u64 read_format, char __user *buf)
4180{
59ed446f 4181 u64 enabled, running;
3dab77fb
PZ
4182 u64 values[4];
4183 int n = 0;
4184
59ed446f
PZ
4185 values[n++] = perf_event_read_value(event, &enabled, &running);
4186 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4187 values[n++] = enabled;
4188 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4189 values[n++] = running;
3dab77fb 4190 if (read_format & PERF_FORMAT_ID)
cdd6c482 4191 values[n++] = primary_event_id(event);
3dab77fb
PZ
4192
4193 if (copy_to_user(buf, values, n * sizeof(u64)))
4194 return -EFAULT;
4195
4196 return n * sizeof(u64);
4197}
4198
dc633982
JO
4199static bool is_event_hup(struct perf_event *event)
4200{
4201 bool no_children;
4202
a69b0ca4 4203 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4204 return false;
4205
4206 mutex_lock(&event->child_mutex);
4207 no_children = list_empty(&event->child_list);
4208 mutex_unlock(&event->child_mutex);
4209 return no_children;
4210}
4211
0793a61d 4212/*
cdd6c482 4213 * Read the performance event - simple non blocking version for now
0793a61d
TG
4214 */
4215static ssize_t
b15f495b 4216__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4217{
cdd6c482 4218 u64 read_format = event->attr.read_format;
3dab77fb 4219 int ret;
0793a61d 4220
3b6f9e5c 4221 /*
cdd6c482 4222 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4223 * error state (i.e. because it was pinned but it couldn't be
4224 * scheduled on to the CPU at some point).
4225 */
cdd6c482 4226 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4227 return 0;
4228
c320c7b7 4229 if (count < event->read_size)
3dab77fb
PZ
4230 return -ENOSPC;
4231
cdd6c482 4232 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4233 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4234 ret = perf_read_group(event, read_format, buf);
3dab77fb 4235 else
b15f495b 4236 ret = perf_read_one(event, read_format, buf);
0793a61d 4237
3dab77fb 4238 return ret;
0793a61d
TG
4239}
4240
0793a61d
TG
4241static ssize_t
4242perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4243{
cdd6c482 4244 struct perf_event *event = file->private_data;
f63a8daa
PZ
4245 struct perf_event_context *ctx;
4246 int ret;
0793a61d 4247
f63a8daa 4248 ctx = perf_event_ctx_lock(event);
b15f495b 4249 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4250 perf_event_ctx_unlock(event, ctx);
4251
4252 return ret;
0793a61d
TG
4253}
4254
4255static unsigned int perf_poll(struct file *file, poll_table *wait)
4256{
cdd6c482 4257 struct perf_event *event = file->private_data;
76369139 4258 struct ring_buffer *rb;
61b67684 4259 unsigned int events = POLLHUP;
c7138f37 4260
e708d7ad 4261 poll_wait(file, &event->waitq, wait);
179033b3 4262
dc633982 4263 if (is_event_hup(event))
179033b3 4264 return events;
c7138f37 4265
10c6db11 4266 /*
9bb5d40c
PZ
4267 * Pin the event->rb by taking event->mmap_mutex; otherwise
4268 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4269 */
4270 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4271 rb = event->rb;
4272 if (rb)
76369139 4273 events = atomic_xchg(&rb->poll, 0);
10c6db11 4274 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4275 return events;
4276}
4277
f63a8daa 4278static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4279{
7d88962e 4280 (void)perf_event_read(event, false);
e7850595 4281 local64_set(&event->count, 0);
cdd6c482 4282 perf_event_update_userpage(event);
3df5edad
PZ
4283}
4284
c93f7669 4285/*
cdd6c482
IM
4286 * Holding the top-level event's child_mutex means that any
4287 * descendant process that has inherited this event will block
8ba289b8 4288 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4289 * task existence requirements of perf_event_enable/disable.
c93f7669 4290 */
cdd6c482
IM
4291static void perf_event_for_each_child(struct perf_event *event,
4292 void (*func)(struct perf_event *))
3df5edad 4293{
cdd6c482 4294 struct perf_event *child;
3df5edad 4295
cdd6c482 4296 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4297
cdd6c482
IM
4298 mutex_lock(&event->child_mutex);
4299 func(event);
4300 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4301 func(child);
cdd6c482 4302 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4303}
4304
cdd6c482
IM
4305static void perf_event_for_each(struct perf_event *event,
4306 void (*func)(struct perf_event *))
3df5edad 4307{
cdd6c482
IM
4308 struct perf_event_context *ctx = event->ctx;
4309 struct perf_event *sibling;
3df5edad 4310
f63a8daa
PZ
4311 lockdep_assert_held(&ctx->mutex);
4312
cdd6c482 4313 event = event->group_leader;
75f937f2 4314
cdd6c482 4315 perf_event_for_each_child(event, func);
cdd6c482 4316 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4317 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4318}
4319
fae3fde6
PZ
4320static void __perf_event_period(struct perf_event *event,
4321 struct perf_cpu_context *cpuctx,
4322 struct perf_event_context *ctx,
4323 void *info)
c7999c6f 4324{
fae3fde6 4325 u64 value = *((u64 *)info);
c7999c6f 4326 bool active;
08247e31 4327
cdd6c482 4328 if (event->attr.freq) {
cdd6c482 4329 event->attr.sample_freq = value;
08247e31 4330 } else {
cdd6c482
IM
4331 event->attr.sample_period = value;
4332 event->hw.sample_period = value;
08247e31 4333 }
bad7192b
PZ
4334
4335 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4336 if (active) {
4337 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4338 /*
4339 * We could be throttled; unthrottle now to avoid the tick
4340 * trying to unthrottle while we already re-started the event.
4341 */
4342 if (event->hw.interrupts == MAX_INTERRUPTS) {
4343 event->hw.interrupts = 0;
4344 perf_log_throttle(event, 1);
4345 }
bad7192b
PZ
4346 event->pmu->stop(event, PERF_EF_UPDATE);
4347 }
4348
4349 local64_set(&event->hw.period_left, 0);
4350
4351 if (active) {
4352 event->pmu->start(event, PERF_EF_RELOAD);
4353 perf_pmu_enable(ctx->pmu);
4354 }
c7999c6f
PZ
4355}
4356
4357static int perf_event_period(struct perf_event *event, u64 __user *arg)
4358{
c7999c6f
PZ
4359 u64 value;
4360
4361 if (!is_sampling_event(event))
4362 return -EINVAL;
4363
4364 if (copy_from_user(&value, arg, sizeof(value)))
4365 return -EFAULT;
4366
4367 if (!value)
4368 return -EINVAL;
4369
4370 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4371 return -EINVAL;
4372
fae3fde6 4373 event_function_call(event, __perf_event_period, &value);
08247e31 4374
c7999c6f 4375 return 0;
08247e31
PZ
4376}
4377
ac9721f3
PZ
4378static const struct file_operations perf_fops;
4379
2903ff01 4380static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4381{
2903ff01
AV
4382 struct fd f = fdget(fd);
4383 if (!f.file)
4384 return -EBADF;
ac9721f3 4385
2903ff01
AV
4386 if (f.file->f_op != &perf_fops) {
4387 fdput(f);
4388 return -EBADF;
ac9721f3 4389 }
2903ff01
AV
4390 *p = f;
4391 return 0;
ac9721f3
PZ
4392}
4393
4394static int perf_event_set_output(struct perf_event *event,
4395 struct perf_event *output_event);
6fb2915d 4396static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4397static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4398
f63a8daa 4399static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4400{
cdd6c482 4401 void (*func)(struct perf_event *);
3df5edad 4402 u32 flags = arg;
d859e29f
PM
4403
4404 switch (cmd) {
cdd6c482 4405 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4406 func = _perf_event_enable;
d859e29f 4407 break;
cdd6c482 4408 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4409 func = _perf_event_disable;
79f14641 4410 break;
cdd6c482 4411 case PERF_EVENT_IOC_RESET:
f63a8daa 4412 func = _perf_event_reset;
6de6a7b9 4413 break;
3df5edad 4414
cdd6c482 4415 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4416 return _perf_event_refresh(event, arg);
08247e31 4417
cdd6c482
IM
4418 case PERF_EVENT_IOC_PERIOD:
4419 return perf_event_period(event, (u64 __user *)arg);
08247e31 4420
cf4957f1
JO
4421 case PERF_EVENT_IOC_ID:
4422 {
4423 u64 id = primary_event_id(event);
4424
4425 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4426 return -EFAULT;
4427 return 0;
4428 }
4429
cdd6c482 4430 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4431 {
ac9721f3 4432 int ret;
ac9721f3 4433 if (arg != -1) {
2903ff01
AV
4434 struct perf_event *output_event;
4435 struct fd output;
4436 ret = perf_fget_light(arg, &output);
4437 if (ret)
4438 return ret;
4439 output_event = output.file->private_data;
4440 ret = perf_event_set_output(event, output_event);
4441 fdput(output);
4442 } else {
4443 ret = perf_event_set_output(event, NULL);
ac9721f3 4444 }
ac9721f3
PZ
4445 return ret;
4446 }
a4be7c27 4447
6fb2915d
LZ
4448 case PERF_EVENT_IOC_SET_FILTER:
4449 return perf_event_set_filter(event, (void __user *)arg);
4450
2541517c
AS
4451 case PERF_EVENT_IOC_SET_BPF:
4452 return perf_event_set_bpf_prog(event, arg);
4453
86e7972f
WN
4454 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4455 struct ring_buffer *rb;
4456
4457 rcu_read_lock();
4458 rb = rcu_dereference(event->rb);
4459 if (!rb || !rb->nr_pages) {
4460 rcu_read_unlock();
4461 return -EINVAL;
4462 }
4463 rb_toggle_paused(rb, !!arg);
4464 rcu_read_unlock();
4465 return 0;
4466 }
d859e29f 4467 default:
3df5edad 4468 return -ENOTTY;
d859e29f 4469 }
3df5edad
PZ
4470
4471 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4472 perf_event_for_each(event, func);
3df5edad 4473 else
cdd6c482 4474 perf_event_for_each_child(event, func);
3df5edad
PZ
4475
4476 return 0;
d859e29f
PM
4477}
4478
f63a8daa
PZ
4479static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4480{
4481 struct perf_event *event = file->private_data;
4482 struct perf_event_context *ctx;
4483 long ret;
4484
4485 ctx = perf_event_ctx_lock(event);
4486 ret = _perf_ioctl(event, cmd, arg);
4487 perf_event_ctx_unlock(event, ctx);
4488
4489 return ret;
4490}
4491
b3f20785
PM
4492#ifdef CONFIG_COMPAT
4493static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4494 unsigned long arg)
4495{
4496 switch (_IOC_NR(cmd)) {
4497 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4498 case _IOC_NR(PERF_EVENT_IOC_ID):
4499 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4500 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4501 cmd &= ~IOCSIZE_MASK;
4502 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4503 }
4504 break;
4505 }
4506 return perf_ioctl(file, cmd, arg);
4507}
4508#else
4509# define perf_compat_ioctl NULL
4510#endif
4511
cdd6c482 4512int perf_event_task_enable(void)
771d7cde 4513{
f63a8daa 4514 struct perf_event_context *ctx;
cdd6c482 4515 struct perf_event *event;
771d7cde 4516
cdd6c482 4517 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4518 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4519 ctx = perf_event_ctx_lock(event);
4520 perf_event_for_each_child(event, _perf_event_enable);
4521 perf_event_ctx_unlock(event, ctx);
4522 }
cdd6c482 4523 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4524
4525 return 0;
4526}
4527
cdd6c482 4528int perf_event_task_disable(void)
771d7cde 4529{
f63a8daa 4530 struct perf_event_context *ctx;
cdd6c482 4531 struct perf_event *event;
771d7cde 4532
cdd6c482 4533 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4534 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4535 ctx = perf_event_ctx_lock(event);
4536 perf_event_for_each_child(event, _perf_event_disable);
4537 perf_event_ctx_unlock(event, ctx);
4538 }
cdd6c482 4539 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4540
4541 return 0;
4542}
4543
cdd6c482 4544static int perf_event_index(struct perf_event *event)
194002b2 4545{
a4eaf7f1
PZ
4546 if (event->hw.state & PERF_HES_STOPPED)
4547 return 0;
4548
cdd6c482 4549 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4550 return 0;
4551
35edc2a5 4552 return event->pmu->event_idx(event);
194002b2
PZ
4553}
4554
c4794295 4555static void calc_timer_values(struct perf_event *event,
e3f3541c 4556 u64 *now,
7f310a5d
EM
4557 u64 *enabled,
4558 u64 *running)
c4794295 4559{
e3f3541c 4560 u64 ctx_time;
c4794295 4561
e3f3541c
PZ
4562 *now = perf_clock();
4563 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4564 *enabled = ctx_time - event->tstamp_enabled;
4565 *running = ctx_time - event->tstamp_running;
4566}
4567
fa731587
PZ
4568static void perf_event_init_userpage(struct perf_event *event)
4569{
4570 struct perf_event_mmap_page *userpg;
4571 struct ring_buffer *rb;
4572
4573 rcu_read_lock();
4574 rb = rcu_dereference(event->rb);
4575 if (!rb)
4576 goto unlock;
4577
4578 userpg = rb->user_page;
4579
4580 /* Allow new userspace to detect that bit 0 is deprecated */
4581 userpg->cap_bit0_is_deprecated = 1;
4582 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4583 userpg->data_offset = PAGE_SIZE;
4584 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4585
4586unlock:
4587 rcu_read_unlock();
4588}
4589
c1317ec2
AL
4590void __weak arch_perf_update_userpage(
4591 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4592{
4593}
4594
38ff667b
PZ
4595/*
4596 * Callers need to ensure there can be no nesting of this function, otherwise
4597 * the seqlock logic goes bad. We can not serialize this because the arch
4598 * code calls this from NMI context.
4599 */
cdd6c482 4600void perf_event_update_userpage(struct perf_event *event)
37d81828 4601{
cdd6c482 4602 struct perf_event_mmap_page *userpg;
76369139 4603 struct ring_buffer *rb;
e3f3541c 4604 u64 enabled, running, now;
38ff667b
PZ
4605
4606 rcu_read_lock();
5ec4c599
PZ
4607 rb = rcu_dereference(event->rb);
4608 if (!rb)
4609 goto unlock;
4610
0d641208
EM
4611 /*
4612 * compute total_time_enabled, total_time_running
4613 * based on snapshot values taken when the event
4614 * was last scheduled in.
4615 *
4616 * we cannot simply called update_context_time()
4617 * because of locking issue as we can be called in
4618 * NMI context
4619 */
e3f3541c 4620 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4621
76369139 4622 userpg = rb->user_page;
7b732a75
PZ
4623 /*
4624 * Disable preemption so as to not let the corresponding user-space
4625 * spin too long if we get preempted.
4626 */
4627 preempt_disable();
37d81828 4628 ++userpg->lock;
92f22a38 4629 barrier();
cdd6c482 4630 userpg->index = perf_event_index(event);
b5e58793 4631 userpg->offset = perf_event_count(event);
365a4038 4632 if (userpg->index)
e7850595 4633 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4634
0d641208 4635 userpg->time_enabled = enabled +
cdd6c482 4636 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4637
0d641208 4638 userpg->time_running = running +
cdd6c482 4639 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4640
c1317ec2 4641 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4642
92f22a38 4643 barrier();
37d81828 4644 ++userpg->lock;
7b732a75 4645 preempt_enable();
38ff667b 4646unlock:
7b732a75 4647 rcu_read_unlock();
37d81828
PM
4648}
4649
906010b2
PZ
4650static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4651{
4652 struct perf_event *event = vma->vm_file->private_data;
76369139 4653 struct ring_buffer *rb;
906010b2
PZ
4654 int ret = VM_FAULT_SIGBUS;
4655
4656 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4657 if (vmf->pgoff == 0)
4658 ret = 0;
4659 return ret;
4660 }
4661
4662 rcu_read_lock();
76369139
FW
4663 rb = rcu_dereference(event->rb);
4664 if (!rb)
906010b2
PZ
4665 goto unlock;
4666
4667 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4668 goto unlock;
4669
76369139 4670 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4671 if (!vmf->page)
4672 goto unlock;
4673
4674 get_page(vmf->page);
4675 vmf->page->mapping = vma->vm_file->f_mapping;
4676 vmf->page->index = vmf->pgoff;
4677
4678 ret = 0;
4679unlock:
4680 rcu_read_unlock();
4681
4682 return ret;
4683}
4684
10c6db11
PZ
4685static void ring_buffer_attach(struct perf_event *event,
4686 struct ring_buffer *rb)
4687{
b69cf536 4688 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4689 unsigned long flags;
4690
b69cf536
PZ
4691 if (event->rb) {
4692 /*
4693 * Should be impossible, we set this when removing
4694 * event->rb_entry and wait/clear when adding event->rb_entry.
4695 */
4696 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4697
b69cf536 4698 old_rb = event->rb;
b69cf536
PZ
4699 spin_lock_irqsave(&old_rb->event_lock, flags);
4700 list_del_rcu(&event->rb_entry);
4701 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4702
2f993cf0
ON
4703 event->rcu_batches = get_state_synchronize_rcu();
4704 event->rcu_pending = 1;
b69cf536 4705 }
10c6db11 4706
b69cf536 4707 if (rb) {
2f993cf0
ON
4708 if (event->rcu_pending) {
4709 cond_synchronize_rcu(event->rcu_batches);
4710 event->rcu_pending = 0;
4711 }
4712
b69cf536
PZ
4713 spin_lock_irqsave(&rb->event_lock, flags);
4714 list_add_rcu(&event->rb_entry, &rb->event_list);
4715 spin_unlock_irqrestore(&rb->event_lock, flags);
4716 }
4717
4718 rcu_assign_pointer(event->rb, rb);
4719
4720 if (old_rb) {
4721 ring_buffer_put(old_rb);
4722 /*
4723 * Since we detached before setting the new rb, so that we
4724 * could attach the new rb, we could have missed a wakeup.
4725 * Provide it now.
4726 */
4727 wake_up_all(&event->waitq);
4728 }
10c6db11
PZ
4729}
4730
4731static void ring_buffer_wakeup(struct perf_event *event)
4732{
4733 struct ring_buffer *rb;
4734
4735 rcu_read_lock();
4736 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4737 if (rb) {
4738 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4739 wake_up_all(&event->waitq);
4740 }
10c6db11
PZ
4741 rcu_read_unlock();
4742}
4743
fdc26706 4744struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4745{
76369139 4746 struct ring_buffer *rb;
7b732a75 4747
ac9721f3 4748 rcu_read_lock();
76369139
FW
4749 rb = rcu_dereference(event->rb);
4750 if (rb) {
4751 if (!atomic_inc_not_zero(&rb->refcount))
4752 rb = NULL;
ac9721f3
PZ
4753 }
4754 rcu_read_unlock();
4755
76369139 4756 return rb;
ac9721f3
PZ
4757}
4758
fdc26706 4759void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4760{
76369139 4761 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4762 return;
7b732a75 4763
9bb5d40c 4764 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4765
76369139 4766 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4767}
4768
4769static void perf_mmap_open(struct vm_area_struct *vma)
4770{
cdd6c482 4771 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4772
cdd6c482 4773 atomic_inc(&event->mmap_count);
9bb5d40c 4774 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4775
45bfb2e5
PZ
4776 if (vma->vm_pgoff)
4777 atomic_inc(&event->rb->aux_mmap_count);
4778
1e0fb9ec
AL
4779 if (event->pmu->event_mapped)
4780 event->pmu->event_mapped(event);
7b732a75
PZ
4781}
4782
95ff4ca2
AS
4783static void perf_pmu_output_stop(struct perf_event *event);
4784
9bb5d40c
PZ
4785/*
4786 * A buffer can be mmap()ed multiple times; either directly through the same
4787 * event, or through other events by use of perf_event_set_output().
4788 *
4789 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4790 * the buffer here, where we still have a VM context. This means we need
4791 * to detach all events redirecting to us.
4792 */
7b732a75
PZ
4793static void perf_mmap_close(struct vm_area_struct *vma)
4794{
cdd6c482 4795 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4796
b69cf536 4797 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4798 struct user_struct *mmap_user = rb->mmap_user;
4799 int mmap_locked = rb->mmap_locked;
4800 unsigned long size = perf_data_size(rb);
789f90fc 4801
1e0fb9ec
AL
4802 if (event->pmu->event_unmapped)
4803 event->pmu->event_unmapped(event);
4804
45bfb2e5
PZ
4805 /*
4806 * rb->aux_mmap_count will always drop before rb->mmap_count and
4807 * event->mmap_count, so it is ok to use event->mmap_mutex to
4808 * serialize with perf_mmap here.
4809 */
4810 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4811 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4812 /*
4813 * Stop all AUX events that are writing to this buffer,
4814 * so that we can free its AUX pages and corresponding PMU
4815 * data. Note that after rb::aux_mmap_count dropped to zero,
4816 * they won't start any more (see perf_aux_output_begin()).
4817 */
4818 perf_pmu_output_stop(event);
4819
4820 /* now it's safe to free the pages */
45bfb2e5
PZ
4821 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4822 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4823
95ff4ca2 4824 /* this has to be the last one */
45bfb2e5 4825 rb_free_aux(rb);
95ff4ca2
AS
4826 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4827
45bfb2e5
PZ
4828 mutex_unlock(&event->mmap_mutex);
4829 }
4830
9bb5d40c
PZ
4831 atomic_dec(&rb->mmap_count);
4832
4833 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4834 goto out_put;
9bb5d40c 4835
b69cf536 4836 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4837 mutex_unlock(&event->mmap_mutex);
4838
4839 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4840 if (atomic_read(&rb->mmap_count))
4841 goto out_put;
ac9721f3 4842
9bb5d40c
PZ
4843 /*
4844 * No other mmap()s, detach from all other events that might redirect
4845 * into the now unreachable buffer. Somewhat complicated by the
4846 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4847 */
4848again:
4849 rcu_read_lock();
4850 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4851 if (!atomic_long_inc_not_zero(&event->refcount)) {
4852 /*
4853 * This event is en-route to free_event() which will
4854 * detach it and remove it from the list.
4855 */
4856 continue;
4857 }
4858 rcu_read_unlock();
789f90fc 4859
9bb5d40c
PZ
4860 mutex_lock(&event->mmap_mutex);
4861 /*
4862 * Check we didn't race with perf_event_set_output() which can
4863 * swizzle the rb from under us while we were waiting to
4864 * acquire mmap_mutex.
4865 *
4866 * If we find a different rb; ignore this event, a next
4867 * iteration will no longer find it on the list. We have to
4868 * still restart the iteration to make sure we're not now
4869 * iterating the wrong list.
4870 */
b69cf536
PZ
4871 if (event->rb == rb)
4872 ring_buffer_attach(event, NULL);
4873
cdd6c482 4874 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4875 put_event(event);
ac9721f3 4876
9bb5d40c
PZ
4877 /*
4878 * Restart the iteration; either we're on the wrong list or
4879 * destroyed its integrity by doing a deletion.
4880 */
4881 goto again;
7b732a75 4882 }
9bb5d40c
PZ
4883 rcu_read_unlock();
4884
4885 /*
4886 * It could be there's still a few 0-ref events on the list; they'll
4887 * get cleaned up by free_event() -- they'll also still have their
4888 * ref on the rb and will free it whenever they are done with it.
4889 *
4890 * Aside from that, this buffer is 'fully' detached and unmapped,
4891 * undo the VM accounting.
4892 */
4893
4894 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4895 vma->vm_mm->pinned_vm -= mmap_locked;
4896 free_uid(mmap_user);
4897
b69cf536 4898out_put:
9bb5d40c 4899 ring_buffer_put(rb); /* could be last */
37d81828
PM
4900}
4901
f0f37e2f 4902static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4903 .open = perf_mmap_open,
45bfb2e5 4904 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4905 .fault = perf_mmap_fault,
4906 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4907};
4908
4909static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4910{
cdd6c482 4911 struct perf_event *event = file->private_data;
22a4f650 4912 unsigned long user_locked, user_lock_limit;
789f90fc 4913 struct user_struct *user = current_user();
22a4f650 4914 unsigned long locked, lock_limit;
45bfb2e5 4915 struct ring_buffer *rb = NULL;
7b732a75
PZ
4916 unsigned long vma_size;
4917 unsigned long nr_pages;
45bfb2e5 4918 long user_extra = 0, extra = 0;
d57e34fd 4919 int ret = 0, flags = 0;
37d81828 4920
c7920614
PZ
4921 /*
4922 * Don't allow mmap() of inherited per-task counters. This would
4923 * create a performance issue due to all children writing to the
76369139 4924 * same rb.
c7920614
PZ
4925 */
4926 if (event->cpu == -1 && event->attr.inherit)
4927 return -EINVAL;
4928
43a21ea8 4929 if (!(vma->vm_flags & VM_SHARED))
37d81828 4930 return -EINVAL;
7b732a75
PZ
4931
4932 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4933
4934 if (vma->vm_pgoff == 0) {
4935 nr_pages = (vma_size / PAGE_SIZE) - 1;
4936 } else {
4937 /*
4938 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4939 * mapped, all subsequent mappings should have the same size
4940 * and offset. Must be above the normal perf buffer.
4941 */
4942 u64 aux_offset, aux_size;
4943
4944 if (!event->rb)
4945 return -EINVAL;
4946
4947 nr_pages = vma_size / PAGE_SIZE;
4948
4949 mutex_lock(&event->mmap_mutex);
4950 ret = -EINVAL;
4951
4952 rb = event->rb;
4953 if (!rb)
4954 goto aux_unlock;
4955
4956 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4957 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4958
4959 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4960 goto aux_unlock;
4961
4962 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4963 goto aux_unlock;
4964
4965 /* already mapped with a different offset */
4966 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4967 goto aux_unlock;
4968
4969 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4970 goto aux_unlock;
4971
4972 /* already mapped with a different size */
4973 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4974 goto aux_unlock;
4975
4976 if (!is_power_of_2(nr_pages))
4977 goto aux_unlock;
4978
4979 if (!atomic_inc_not_zero(&rb->mmap_count))
4980 goto aux_unlock;
4981
4982 if (rb_has_aux(rb)) {
4983 atomic_inc(&rb->aux_mmap_count);
4984 ret = 0;
4985 goto unlock;
4986 }
4987
4988 atomic_set(&rb->aux_mmap_count, 1);
4989 user_extra = nr_pages;
4990
4991 goto accounting;
4992 }
7b732a75 4993
7730d865 4994 /*
76369139 4995 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4996 * can do bitmasks instead of modulo.
4997 */
2ed11312 4998 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4999 return -EINVAL;
5000
7b732a75 5001 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5002 return -EINVAL;
5003
cdd6c482 5004 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5005again:
cdd6c482 5006 mutex_lock(&event->mmap_mutex);
76369139 5007 if (event->rb) {
9bb5d40c 5008 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5009 ret = -EINVAL;
9bb5d40c
PZ
5010 goto unlock;
5011 }
5012
5013 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5014 /*
5015 * Raced against perf_mmap_close() through
5016 * perf_event_set_output(). Try again, hope for better
5017 * luck.
5018 */
5019 mutex_unlock(&event->mmap_mutex);
5020 goto again;
5021 }
5022
ebb3c4c4
PZ
5023 goto unlock;
5024 }
5025
789f90fc 5026 user_extra = nr_pages + 1;
45bfb2e5
PZ
5027
5028accounting:
cdd6c482 5029 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5030
5031 /*
5032 * Increase the limit linearly with more CPUs:
5033 */
5034 user_lock_limit *= num_online_cpus();
5035
789f90fc 5036 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5037
789f90fc
PZ
5038 if (user_locked > user_lock_limit)
5039 extra = user_locked - user_lock_limit;
7b732a75 5040
78d7d407 5041 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5042 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5043 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5044
459ec28a
IM
5045 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5046 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5047 ret = -EPERM;
5048 goto unlock;
5049 }
7b732a75 5050
45bfb2e5 5051 WARN_ON(!rb && event->rb);
906010b2 5052
d57e34fd 5053 if (vma->vm_flags & VM_WRITE)
76369139 5054 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5055
76369139 5056 if (!rb) {
45bfb2e5
PZ
5057 rb = rb_alloc(nr_pages,
5058 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5059 event->cpu, flags);
26cb63ad 5060
45bfb2e5
PZ
5061 if (!rb) {
5062 ret = -ENOMEM;
5063 goto unlock;
5064 }
43a21ea8 5065
45bfb2e5
PZ
5066 atomic_set(&rb->mmap_count, 1);
5067 rb->mmap_user = get_current_user();
5068 rb->mmap_locked = extra;
26cb63ad 5069
45bfb2e5 5070 ring_buffer_attach(event, rb);
ac9721f3 5071
45bfb2e5
PZ
5072 perf_event_init_userpage(event);
5073 perf_event_update_userpage(event);
5074 } else {
1a594131
AS
5075 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5076 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5077 if (!ret)
5078 rb->aux_mmap_locked = extra;
5079 }
9a0f05cb 5080
ebb3c4c4 5081unlock:
45bfb2e5
PZ
5082 if (!ret) {
5083 atomic_long_add(user_extra, &user->locked_vm);
5084 vma->vm_mm->pinned_vm += extra;
5085
ac9721f3 5086 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5087 } else if (rb) {
5088 atomic_dec(&rb->mmap_count);
5089 }
5090aux_unlock:
cdd6c482 5091 mutex_unlock(&event->mmap_mutex);
37d81828 5092
9bb5d40c
PZ
5093 /*
5094 * Since pinned accounting is per vm we cannot allow fork() to copy our
5095 * vma.
5096 */
26cb63ad 5097 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5098 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5099
1e0fb9ec
AL
5100 if (event->pmu->event_mapped)
5101 event->pmu->event_mapped(event);
5102
7b732a75 5103 return ret;
37d81828
PM
5104}
5105
3c446b3d
PZ
5106static int perf_fasync(int fd, struct file *filp, int on)
5107{
496ad9aa 5108 struct inode *inode = file_inode(filp);
cdd6c482 5109 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5110 int retval;
5111
5955102c 5112 inode_lock(inode);
cdd6c482 5113 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5114 inode_unlock(inode);
3c446b3d
PZ
5115
5116 if (retval < 0)
5117 return retval;
5118
5119 return 0;
5120}
5121
0793a61d 5122static const struct file_operations perf_fops = {
3326c1ce 5123 .llseek = no_llseek,
0793a61d
TG
5124 .release = perf_release,
5125 .read = perf_read,
5126 .poll = perf_poll,
d859e29f 5127 .unlocked_ioctl = perf_ioctl,
b3f20785 5128 .compat_ioctl = perf_compat_ioctl,
37d81828 5129 .mmap = perf_mmap,
3c446b3d 5130 .fasync = perf_fasync,
0793a61d
TG
5131};
5132
925d519a 5133/*
cdd6c482 5134 * Perf event wakeup
925d519a
PZ
5135 *
5136 * If there's data, ensure we set the poll() state and publish everything
5137 * to user-space before waking everybody up.
5138 */
5139
fed66e2c
PZ
5140static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5141{
5142 /* only the parent has fasync state */
5143 if (event->parent)
5144 event = event->parent;
5145 return &event->fasync;
5146}
5147
cdd6c482 5148void perf_event_wakeup(struct perf_event *event)
925d519a 5149{
10c6db11 5150 ring_buffer_wakeup(event);
4c9e2542 5151
cdd6c482 5152 if (event->pending_kill) {
fed66e2c 5153 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5154 event->pending_kill = 0;
4c9e2542 5155 }
925d519a
PZ
5156}
5157
e360adbe 5158static void perf_pending_event(struct irq_work *entry)
79f14641 5159{
cdd6c482
IM
5160 struct perf_event *event = container_of(entry,
5161 struct perf_event, pending);
d525211f
PZ
5162 int rctx;
5163
5164 rctx = perf_swevent_get_recursion_context();
5165 /*
5166 * If we 'fail' here, that's OK, it means recursion is already disabled
5167 * and we won't recurse 'further'.
5168 */
79f14641 5169
cdd6c482
IM
5170 if (event->pending_disable) {
5171 event->pending_disable = 0;
fae3fde6 5172 perf_event_disable_local(event);
79f14641
PZ
5173 }
5174
cdd6c482
IM
5175 if (event->pending_wakeup) {
5176 event->pending_wakeup = 0;
5177 perf_event_wakeup(event);
79f14641 5178 }
d525211f
PZ
5179
5180 if (rctx >= 0)
5181 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5182}
5183
39447b38
ZY
5184/*
5185 * We assume there is only KVM supporting the callbacks.
5186 * Later on, we might change it to a list if there is
5187 * another virtualization implementation supporting the callbacks.
5188 */
5189struct perf_guest_info_callbacks *perf_guest_cbs;
5190
5191int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5192{
5193 perf_guest_cbs = cbs;
5194 return 0;
5195}
5196EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5197
5198int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5199{
5200 perf_guest_cbs = NULL;
5201 return 0;
5202}
5203EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5204
4018994f
JO
5205static void
5206perf_output_sample_regs(struct perf_output_handle *handle,
5207 struct pt_regs *regs, u64 mask)
5208{
5209 int bit;
5210
5211 for_each_set_bit(bit, (const unsigned long *) &mask,
5212 sizeof(mask) * BITS_PER_BYTE) {
5213 u64 val;
5214
5215 val = perf_reg_value(regs, bit);
5216 perf_output_put(handle, val);
5217 }
5218}
5219
60e2364e 5220static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5221 struct pt_regs *regs,
5222 struct pt_regs *regs_user_copy)
4018994f 5223{
88a7c26a
AL
5224 if (user_mode(regs)) {
5225 regs_user->abi = perf_reg_abi(current);
2565711f 5226 regs_user->regs = regs;
88a7c26a
AL
5227 } else if (current->mm) {
5228 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5229 } else {
5230 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5231 regs_user->regs = NULL;
4018994f
JO
5232 }
5233}
5234
60e2364e
SE
5235static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5236 struct pt_regs *regs)
5237{
5238 regs_intr->regs = regs;
5239 regs_intr->abi = perf_reg_abi(current);
5240}
5241
5242
c5ebcedb
JO
5243/*
5244 * Get remaining task size from user stack pointer.
5245 *
5246 * It'd be better to take stack vma map and limit this more
5247 * precisly, but there's no way to get it safely under interrupt,
5248 * so using TASK_SIZE as limit.
5249 */
5250static u64 perf_ustack_task_size(struct pt_regs *regs)
5251{
5252 unsigned long addr = perf_user_stack_pointer(regs);
5253
5254 if (!addr || addr >= TASK_SIZE)
5255 return 0;
5256
5257 return TASK_SIZE - addr;
5258}
5259
5260static u16
5261perf_sample_ustack_size(u16 stack_size, u16 header_size,
5262 struct pt_regs *regs)
5263{
5264 u64 task_size;
5265
5266 /* No regs, no stack pointer, no dump. */
5267 if (!regs)
5268 return 0;
5269
5270 /*
5271 * Check if we fit in with the requested stack size into the:
5272 * - TASK_SIZE
5273 * If we don't, we limit the size to the TASK_SIZE.
5274 *
5275 * - remaining sample size
5276 * If we don't, we customize the stack size to
5277 * fit in to the remaining sample size.
5278 */
5279
5280 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5281 stack_size = min(stack_size, (u16) task_size);
5282
5283 /* Current header size plus static size and dynamic size. */
5284 header_size += 2 * sizeof(u64);
5285
5286 /* Do we fit in with the current stack dump size? */
5287 if ((u16) (header_size + stack_size) < header_size) {
5288 /*
5289 * If we overflow the maximum size for the sample,
5290 * we customize the stack dump size to fit in.
5291 */
5292 stack_size = USHRT_MAX - header_size - sizeof(u64);
5293 stack_size = round_up(stack_size, sizeof(u64));
5294 }
5295
5296 return stack_size;
5297}
5298
5299static void
5300perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5301 struct pt_regs *regs)
5302{
5303 /* Case of a kernel thread, nothing to dump */
5304 if (!regs) {
5305 u64 size = 0;
5306 perf_output_put(handle, size);
5307 } else {
5308 unsigned long sp;
5309 unsigned int rem;
5310 u64 dyn_size;
5311
5312 /*
5313 * We dump:
5314 * static size
5315 * - the size requested by user or the best one we can fit
5316 * in to the sample max size
5317 * data
5318 * - user stack dump data
5319 * dynamic size
5320 * - the actual dumped size
5321 */
5322
5323 /* Static size. */
5324 perf_output_put(handle, dump_size);
5325
5326 /* Data. */
5327 sp = perf_user_stack_pointer(regs);
5328 rem = __output_copy_user(handle, (void *) sp, dump_size);
5329 dyn_size = dump_size - rem;
5330
5331 perf_output_skip(handle, rem);
5332
5333 /* Dynamic size. */
5334 perf_output_put(handle, dyn_size);
5335 }
5336}
5337
c980d109
ACM
5338static void __perf_event_header__init_id(struct perf_event_header *header,
5339 struct perf_sample_data *data,
5340 struct perf_event *event)
6844c09d
ACM
5341{
5342 u64 sample_type = event->attr.sample_type;
5343
5344 data->type = sample_type;
5345 header->size += event->id_header_size;
5346
5347 if (sample_type & PERF_SAMPLE_TID) {
5348 /* namespace issues */
5349 data->tid_entry.pid = perf_event_pid(event, current);
5350 data->tid_entry.tid = perf_event_tid(event, current);
5351 }
5352
5353 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5354 data->time = perf_event_clock(event);
6844c09d 5355
ff3d527c 5356 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5357 data->id = primary_event_id(event);
5358
5359 if (sample_type & PERF_SAMPLE_STREAM_ID)
5360 data->stream_id = event->id;
5361
5362 if (sample_type & PERF_SAMPLE_CPU) {
5363 data->cpu_entry.cpu = raw_smp_processor_id();
5364 data->cpu_entry.reserved = 0;
5365 }
5366}
5367
76369139
FW
5368void perf_event_header__init_id(struct perf_event_header *header,
5369 struct perf_sample_data *data,
5370 struct perf_event *event)
c980d109
ACM
5371{
5372 if (event->attr.sample_id_all)
5373 __perf_event_header__init_id(header, data, event);
5374}
5375
5376static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5377 struct perf_sample_data *data)
5378{
5379 u64 sample_type = data->type;
5380
5381 if (sample_type & PERF_SAMPLE_TID)
5382 perf_output_put(handle, data->tid_entry);
5383
5384 if (sample_type & PERF_SAMPLE_TIME)
5385 perf_output_put(handle, data->time);
5386
5387 if (sample_type & PERF_SAMPLE_ID)
5388 perf_output_put(handle, data->id);
5389
5390 if (sample_type & PERF_SAMPLE_STREAM_ID)
5391 perf_output_put(handle, data->stream_id);
5392
5393 if (sample_type & PERF_SAMPLE_CPU)
5394 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5395
5396 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5397 perf_output_put(handle, data->id);
c980d109
ACM
5398}
5399
76369139
FW
5400void perf_event__output_id_sample(struct perf_event *event,
5401 struct perf_output_handle *handle,
5402 struct perf_sample_data *sample)
c980d109
ACM
5403{
5404 if (event->attr.sample_id_all)
5405 __perf_event__output_id_sample(handle, sample);
5406}
5407
3dab77fb 5408static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5409 struct perf_event *event,
5410 u64 enabled, u64 running)
3dab77fb 5411{
cdd6c482 5412 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5413 u64 values[4];
5414 int n = 0;
5415
b5e58793 5416 values[n++] = perf_event_count(event);
3dab77fb 5417 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5418 values[n++] = enabled +
cdd6c482 5419 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5420 }
5421 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5422 values[n++] = running +
cdd6c482 5423 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5424 }
5425 if (read_format & PERF_FORMAT_ID)
cdd6c482 5426 values[n++] = primary_event_id(event);
3dab77fb 5427
76369139 5428 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5429}
5430
5431/*
cdd6c482 5432 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5433 */
5434static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5435 struct perf_event *event,
5436 u64 enabled, u64 running)
3dab77fb 5437{
cdd6c482
IM
5438 struct perf_event *leader = event->group_leader, *sub;
5439 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5440 u64 values[5];
5441 int n = 0;
5442
5443 values[n++] = 1 + leader->nr_siblings;
5444
5445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5446 values[n++] = enabled;
3dab77fb
PZ
5447
5448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5449 values[n++] = running;
3dab77fb 5450
cdd6c482 5451 if (leader != event)
3dab77fb
PZ
5452 leader->pmu->read(leader);
5453
b5e58793 5454 values[n++] = perf_event_count(leader);
3dab77fb 5455 if (read_format & PERF_FORMAT_ID)
cdd6c482 5456 values[n++] = primary_event_id(leader);
3dab77fb 5457
76369139 5458 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5459
65abc865 5460 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5461 n = 0;
5462
6f5ab001
JO
5463 if ((sub != event) &&
5464 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5465 sub->pmu->read(sub);
5466
b5e58793 5467 values[n++] = perf_event_count(sub);
3dab77fb 5468 if (read_format & PERF_FORMAT_ID)
cdd6c482 5469 values[n++] = primary_event_id(sub);
3dab77fb 5470
76369139 5471 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5472 }
5473}
5474
eed01528
SE
5475#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5476 PERF_FORMAT_TOTAL_TIME_RUNNING)
5477
3dab77fb 5478static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5479 struct perf_event *event)
3dab77fb 5480{
e3f3541c 5481 u64 enabled = 0, running = 0, now;
eed01528
SE
5482 u64 read_format = event->attr.read_format;
5483
5484 /*
5485 * compute total_time_enabled, total_time_running
5486 * based on snapshot values taken when the event
5487 * was last scheduled in.
5488 *
5489 * we cannot simply called update_context_time()
5490 * because of locking issue as we are called in
5491 * NMI context
5492 */
c4794295 5493 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5494 calc_timer_values(event, &now, &enabled, &running);
eed01528 5495
cdd6c482 5496 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5497 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5498 else
eed01528 5499 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5500}
5501
5622f295
MM
5502void perf_output_sample(struct perf_output_handle *handle,
5503 struct perf_event_header *header,
5504 struct perf_sample_data *data,
cdd6c482 5505 struct perf_event *event)
5622f295
MM
5506{
5507 u64 sample_type = data->type;
5508
5509 perf_output_put(handle, *header);
5510
ff3d527c
AH
5511 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5512 perf_output_put(handle, data->id);
5513
5622f295
MM
5514 if (sample_type & PERF_SAMPLE_IP)
5515 perf_output_put(handle, data->ip);
5516
5517 if (sample_type & PERF_SAMPLE_TID)
5518 perf_output_put(handle, data->tid_entry);
5519
5520 if (sample_type & PERF_SAMPLE_TIME)
5521 perf_output_put(handle, data->time);
5522
5523 if (sample_type & PERF_SAMPLE_ADDR)
5524 perf_output_put(handle, data->addr);
5525
5526 if (sample_type & PERF_SAMPLE_ID)
5527 perf_output_put(handle, data->id);
5528
5529 if (sample_type & PERF_SAMPLE_STREAM_ID)
5530 perf_output_put(handle, data->stream_id);
5531
5532 if (sample_type & PERF_SAMPLE_CPU)
5533 perf_output_put(handle, data->cpu_entry);
5534
5535 if (sample_type & PERF_SAMPLE_PERIOD)
5536 perf_output_put(handle, data->period);
5537
5538 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5539 perf_output_read(handle, event);
5622f295
MM
5540
5541 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5542 if (data->callchain) {
5543 int size = 1;
5544
5545 if (data->callchain)
5546 size += data->callchain->nr;
5547
5548 size *= sizeof(u64);
5549
76369139 5550 __output_copy(handle, data->callchain, size);
5622f295
MM
5551 } else {
5552 u64 nr = 0;
5553 perf_output_put(handle, nr);
5554 }
5555 }
5556
5557 if (sample_type & PERF_SAMPLE_RAW) {
5558 if (data->raw) {
fa128e6a
AS
5559 u32 raw_size = data->raw->size;
5560 u32 real_size = round_up(raw_size + sizeof(u32),
5561 sizeof(u64)) - sizeof(u32);
5562 u64 zero = 0;
5563
5564 perf_output_put(handle, real_size);
5565 __output_copy(handle, data->raw->data, raw_size);
5566 if (real_size - raw_size)
5567 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5568 } else {
5569 struct {
5570 u32 size;
5571 u32 data;
5572 } raw = {
5573 .size = sizeof(u32),
5574 .data = 0,
5575 };
5576 perf_output_put(handle, raw);
5577 }
5578 }
a7ac67ea 5579
bce38cd5
SE
5580 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5581 if (data->br_stack) {
5582 size_t size;
5583
5584 size = data->br_stack->nr
5585 * sizeof(struct perf_branch_entry);
5586
5587 perf_output_put(handle, data->br_stack->nr);
5588 perf_output_copy(handle, data->br_stack->entries, size);
5589 } else {
5590 /*
5591 * we always store at least the value of nr
5592 */
5593 u64 nr = 0;
5594 perf_output_put(handle, nr);
5595 }
5596 }
4018994f
JO
5597
5598 if (sample_type & PERF_SAMPLE_REGS_USER) {
5599 u64 abi = data->regs_user.abi;
5600
5601 /*
5602 * If there are no regs to dump, notice it through
5603 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5604 */
5605 perf_output_put(handle, abi);
5606
5607 if (abi) {
5608 u64 mask = event->attr.sample_regs_user;
5609 perf_output_sample_regs(handle,
5610 data->regs_user.regs,
5611 mask);
5612 }
5613 }
c5ebcedb 5614
a5cdd40c 5615 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5616 perf_output_sample_ustack(handle,
5617 data->stack_user_size,
5618 data->regs_user.regs);
a5cdd40c 5619 }
c3feedf2
AK
5620
5621 if (sample_type & PERF_SAMPLE_WEIGHT)
5622 perf_output_put(handle, data->weight);
d6be9ad6
SE
5623
5624 if (sample_type & PERF_SAMPLE_DATA_SRC)
5625 perf_output_put(handle, data->data_src.val);
a5cdd40c 5626
fdfbbd07
AK
5627 if (sample_type & PERF_SAMPLE_TRANSACTION)
5628 perf_output_put(handle, data->txn);
5629
60e2364e
SE
5630 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5631 u64 abi = data->regs_intr.abi;
5632 /*
5633 * If there are no regs to dump, notice it through
5634 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5635 */
5636 perf_output_put(handle, abi);
5637
5638 if (abi) {
5639 u64 mask = event->attr.sample_regs_intr;
5640
5641 perf_output_sample_regs(handle,
5642 data->regs_intr.regs,
5643 mask);
5644 }
5645 }
5646
a5cdd40c
PZ
5647 if (!event->attr.watermark) {
5648 int wakeup_events = event->attr.wakeup_events;
5649
5650 if (wakeup_events) {
5651 struct ring_buffer *rb = handle->rb;
5652 int events = local_inc_return(&rb->events);
5653
5654 if (events >= wakeup_events) {
5655 local_sub(wakeup_events, &rb->events);
5656 local_inc(&rb->wakeup);
5657 }
5658 }
5659 }
5622f295
MM
5660}
5661
5662void perf_prepare_sample(struct perf_event_header *header,
5663 struct perf_sample_data *data,
cdd6c482 5664 struct perf_event *event,
5622f295 5665 struct pt_regs *regs)
7b732a75 5666{
cdd6c482 5667 u64 sample_type = event->attr.sample_type;
7b732a75 5668
cdd6c482 5669 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5670 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5671
5672 header->misc = 0;
5673 header->misc |= perf_misc_flags(regs);
6fab0192 5674
c980d109 5675 __perf_event_header__init_id(header, data, event);
6844c09d 5676
c320c7b7 5677 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5678 data->ip = perf_instruction_pointer(regs);
5679
b23f3325 5680 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5681 int size = 1;
394ee076 5682
e6dab5ff 5683 data->callchain = perf_callchain(event, regs);
5622f295
MM
5684
5685 if (data->callchain)
5686 size += data->callchain->nr;
5687
5688 header->size += size * sizeof(u64);
394ee076
PZ
5689 }
5690
3a43ce68 5691 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5692 int size = sizeof(u32);
5693
5694 if (data->raw)
5695 size += data->raw->size;
5696 else
5697 size += sizeof(u32);
5698
fa128e6a 5699 header->size += round_up(size, sizeof(u64));
7f453c24 5700 }
bce38cd5
SE
5701
5702 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5703 int size = sizeof(u64); /* nr */
5704 if (data->br_stack) {
5705 size += data->br_stack->nr
5706 * sizeof(struct perf_branch_entry);
5707 }
5708 header->size += size;
5709 }
4018994f 5710
2565711f 5711 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5712 perf_sample_regs_user(&data->regs_user, regs,
5713 &data->regs_user_copy);
2565711f 5714
4018994f
JO
5715 if (sample_type & PERF_SAMPLE_REGS_USER) {
5716 /* regs dump ABI info */
5717 int size = sizeof(u64);
5718
4018994f
JO
5719 if (data->regs_user.regs) {
5720 u64 mask = event->attr.sample_regs_user;
5721 size += hweight64(mask) * sizeof(u64);
5722 }
5723
5724 header->size += size;
5725 }
c5ebcedb
JO
5726
5727 if (sample_type & PERF_SAMPLE_STACK_USER) {
5728 /*
5729 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5730 * processed as the last one or have additional check added
5731 * in case new sample type is added, because we could eat
5732 * up the rest of the sample size.
5733 */
c5ebcedb
JO
5734 u16 stack_size = event->attr.sample_stack_user;
5735 u16 size = sizeof(u64);
5736
c5ebcedb 5737 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5738 data->regs_user.regs);
c5ebcedb
JO
5739
5740 /*
5741 * If there is something to dump, add space for the dump
5742 * itself and for the field that tells the dynamic size,
5743 * which is how many have been actually dumped.
5744 */
5745 if (stack_size)
5746 size += sizeof(u64) + stack_size;
5747
5748 data->stack_user_size = stack_size;
5749 header->size += size;
5750 }
60e2364e
SE
5751
5752 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5753 /* regs dump ABI info */
5754 int size = sizeof(u64);
5755
5756 perf_sample_regs_intr(&data->regs_intr, regs);
5757
5758 if (data->regs_intr.regs) {
5759 u64 mask = event->attr.sample_regs_intr;
5760
5761 size += hweight64(mask) * sizeof(u64);
5762 }
5763
5764 header->size += size;
5765 }
5622f295 5766}
7f453c24 5767
9ecda41a
WN
5768static void __always_inline
5769__perf_event_output(struct perf_event *event,
5770 struct perf_sample_data *data,
5771 struct pt_regs *regs,
5772 int (*output_begin)(struct perf_output_handle *,
5773 struct perf_event *,
5774 unsigned int))
5622f295
MM
5775{
5776 struct perf_output_handle handle;
5777 struct perf_event_header header;
689802b2 5778
927c7a9e
FW
5779 /* protect the callchain buffers */
5780 rcu_read_lock();
5781
cdd6c482 5782 perf_prepare_sample(&header, data, event, regs);
5c148194 5783
9ecda41a 5784 if (output_begin(&handle, event, header.size))
927c7a9e 5785 goto exit;
0322cd6e 5786
cdd6c482 5787 perf_output_sample(&handle, &header, data, event);
f413cdb8 5788
8a057d84 5789 perf_output_end(&handle);
927c7a9e
FW
5790
5791exit:
5792 rcu_read_unlock();
0322cd6e
PZ
5793}
5794
9ecda41a
WN
5795void
5796perf_event_output_forward(struct perf_event *event,
5797 struct perf_sample_data *data,
5798 struct pt_regs *regs)
5799{
5800 __perf_event_output(event, data, regs, perf_output_begin_forward);
5801}
5802
5803void
5804perf_event_output_backward(struct perf_event *event,
5805 struct perf_sample_data *data,
5806 struct pt_regs *regs)
5807{
5808 __perf_event_output(event, data, regs, perf_output_begin_backward);
5809}
5810
5811void
5812perf_event_output(struct perf_event *event,
5813 struct perf_sample_data *data,
5814 struct pt_regs *regs)
5815{
5816 __perf_event_output(event, data, regs, perf_output_begin);
5817}
5818
38b200d6 5819/*
cdd6c482 5820 * read event_id
38b200d6
PZ
5821 */
5822
5823struct perf_read_event {
5824 struct perf_event_header header;
5825
5826 u32 pid;
5827 u32 tid;
38b200d6
PZ
5828};
5829
5830static void
cdd6c482 5831perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5832 struct task_struct *task)
5833{
5834 struct perf_output_handle handle;
c980d109 5835 struct perf_sample_data sample;
dfc65094 5836 struct perf_read_event read_event = {
38b200d6 5837 .header = {
cdd6c482 5838 .type = PERF_RECORD_READ,
38b200d6 5839 .misc = 0,
c320c7b7 5840 .size = sizeof(read_event) + event->read_size,
38b200d6 5841 },
cdd6c482
IM
5842 .pid = perf_event_pid(event, task),
5843 .tid = perf_event_tid(event, task),
38b200d6 5844 };
3dab77fb 5845 int ret;
38b200d6 5846
c980d109 5847 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5848 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5849 if (ret)
5850 return;
5851
dfc65094 5852 perf_output_put(&handle, read_event);
cdd6c482 5853 perf_output_read(&handle, event);
c980d109 5854 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5855
38b200d6
PZ
5856 perf_output_end(&handle);
5857}
5858
52d857a8
JO
5859typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5860
5861static void
5862perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8 5863 perf_event_aux_output_cb output,
b73e4fef 5864 void *data, bool all)
52d857a8
JO
5865{
5866 struct perf_event *event;
5867
5868 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
5869 if (!all) {
5870 if (event->state < PERF_EVENT_STATE_INACTIVE)
5871 continue;
5872 if (!event_filter_match(event))
5873 continue;
5874 }
5875
67516844 5876 output(event, data);
52d857a8
JO
5877 }
5878}
5879
4e93ad60
JO
5880static void
5881perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5882 struct perf_event_context *task_ctx)
5883{
5884 rcu_read_lock();
5885 preempt_disable();
b73e4fef 5886 perf_event_aux_ctx(task_ctx, output, data, false);
4e93ad60
JO
5887 preempt_enable();
5888 rcu_read_unlock();
5889}
5890
52d857a8 5891static void
67516844 5892perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5893 struct perf_event_context *task_ctx)
5894{
5895 struct perf_cpu_context *cpuctx;
5896 struct perf_event_context *ctx;
5897 struct pmu *pmu;
5898 int ctxn;
5899
4e93ad60
JO
5900 /*
5901 * If we have task_ctx != NULL we only notify
5902 * the task context itself. The task_ctx is set
5903 * only for EXIT events before releasing task
5904 * context.
5905 */
5906 if (task_ctx) {
5907 perf_event_aux_task_ctx(output, data, task_ctx);
5908 return;
5909 }
5910
52d857a8
JO
5911 rcu_read_lock();
5912 list_for_each_entry_rcu(pmu, &pmus, entry) {
5913 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5914 if (cpuctx->unique_pmu != pmu)
5915 goto next;
b73e4fef 5916 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
52d857a8
JO
5917 ctxn = pmu->task_ctx_nr;
5918 if (ctxn < 0)
5919 goto next;
5920 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5921 if (ctx)
b73e4fef 5922 perf_event_aux_ctx(ctx, output, data, false);
52d857a8
JO
5923next:
5924 put_cpu_ptr(pmu->pmu_cpu_context);
5925 }
52d857a8 5926 rcu_read_unlock();
95ff4ca2
AS
5927}
5928
375637bc
AS
5929/*
5930 * Clear all file-based filters at exec, they'll have to be
5931 * re-instated when/if these objects are mmapped again.
5932 */
5933static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5934{
5935 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5936 struct perf_addr_filter *filter;
5937 unsigned int restart = 0, count = 0;
5938 unsigned long flags;
5939
5940 if (!has_addr_filter(event))
5941 return;
5942
5943 raw_spin_lock_irqsave(&ifh->lock, flags);
5944 list_for_each_entry(filter, &ifh->list, entry) {
5945 if (filter->inode) {
5946 event->addr_filters_offs[count] = 0;
5947 restart++;
5948 }
5949
5950 count++;
5951 }
5952
5953 if (restart)
5954 event->addr_filters_gen++;
5955 raw_spin_unlock_irqrestore(&ifh->lock, flags);
5956
5957 if (restart)
5958 perf_event_restart(event);
5959}
5960
5961void perf_event_exec(void)
5962{
5963 struct perf_event_context *ctx;
5964 int ctxn;
5965
5966 rcu_read_lock();
5967 for_each_task_context_nr(ctxn) {
5968 ctx = current->perf_event_ctxp[ctxn];
5969 if (!ctx)
5970 continue;
5971
5972 perf_event_enable_on_exec(ctxn);
5973
5974 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5975 true);
5976 }
5977 rcu_read_unlock();
5978}
5979
95ff4ca2
AS
5980struct remote_output {
5981 struct ring_buffer *rb;
5982 int err;
5983};
5984
5985static void __perf_event_output_stop(struct perf_event *event, void *data)
5986{
5987 struct perf_event *parent = event->parent;
5988 struct remote_output *ro = data;
5989 struct ring_buffer *rb = ro->rb;
375637bc
AS
5990 struct stop_event_data sd = {
5991 .event = event,
5992 };
95ff4ca2
AS
5993
5994 if (!has_aux(event))
5995 return;
5996
5997 if (!parent)
5998 parent = event;
5999
6000 /*
6001 * In case of inheritance, it will be the parent that links to the
6002 * ring-buffer, but it will be the child that's actually using it:
6003 */
6004 if (rcu_dereference(parent->rb) == rb)
375637bc 6005 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6006}
6007
6008static int __perf_pmu_output_stop(void *info)
6009{
6010 struct perf_event *event = info;
6011 struct pmu *pmu = event->pmu;
6012 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6013 struct remote_output ro = {
6014 .rb = event->rb,
6015 };
6016
6017 rcu_read_lock();
b73e4fef 6018 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2
AS
6019 if (cpuctx->task_ctx)
6020 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6021 &ro, false);
95ff4ca2
AS
6022 rcu_read_unlock();
6023
6024 return ro.err;
6025}
6026
6027static void perf_pmu_output_stop(struct perf_event *event)
6028{
6029 struct perf_event *iter;
6030 int err, cpu;
6031
6032restart:
6033 rcu_read_lock();
6034 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6035 /*
6036 * For per-CPU events, we need to make sure that neither they
6037 * nor their children are running; for cpu==-1 events it's
6038 * sufficient to stop the event itself if it's active, since
6039 * it can't have children.
6040 */
6041 cpu = iter->cpu;
6042 if (cpu == -1)
6043 cpu = READ_ONCE(iter->oncpu);
6044
6045 if (cpu == -1)
6046 continue;
6047
6048 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6049 if (err == -EAGAIN) {
6050 rcu_read_unlock();
6051 goto restart;
6052 }
6053 }
6054 rcu_read_unlock();
52d857a8
JO
6055}
6056
60313ebe 6057/*
9f498cc5
PZ
6058 * task tracking -- fork/exit
6059 *
13d7a241 6060 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6061 */
6062
9f498cc5 6063struct perf_task_event {
3a80b4a3 6064 struct task_struct *task;
cdd6c482 6065 struct perf_event_context *task_ctx;
60313ebe
PZ
6066
6067 struct {
6068 struct perf_event_header header;
6069
6070 u32 pid;
6071 u32 ppid;
9f498cc5
PZ
6072 u32 tid;
6073 u32 ptid;
393b2ad8 6074 u64 time;
cdd6c482 6075 } event_id;
60313ebe
PZ
6076};
6077
67516844
JO
6078static int perf_event_task_match(struct perf_event *event)
6079{
13d7a241
SE
6080 return event->attr.comm || event->attr.mmap ||
6081 event->attr.mmap2 || event->attr.mmap_data ||
6082 event->attr.task;
67516844
JO
6083}
6084
cdd6c482 6085static void perf_event_task_output(struct perf_event *event,
52d857a8 6086 void *data)
60313ebe 6087{
52d857a8 6088 struct perf_task_event *task_event = data;
60313ebe 6089 struct perf_output_handle handle;
c980d109 6090 struct perf_sample_data sample;
9f498cc5 6091 struct task_struct *task = task_event->task;
c980d109 6092 int ret, size = task_event->event_id.header.size;
8bb39f9a 6093
67516844
JO
6094 if (!perf_event_task_match(event))
6095 return;
6096
c980d109 6097 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6098
c980d109 6099 ret = perf_output_begin(&handle, event,
a7ac67ea 6100 task_event->event_id.header.size);
ef60777c 6101 if (ret)
c980d109 6102 goto out;
60313ebe 6103
cdd6c482
IM
6104 task_event->event_id.pid = perf_event_pid(event, task);
6105 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6106
cdd6c482
IM
6107 task_event->event_id.tid = perf_event_tid(event, task);
6108 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6109
34f43927
PZ
6110 task_event->event_id.time = perf_event_clock(event);
6111
cdd6c482 6112 perf_output_put(&handle, task_event->event_id);
393b2ad8 6113
c980d109
ACM
6114 perf_event__output_id_sample(event, &handle, &sample);
6115
60313ebe 6116 perf_output_end(&handle);
c980d109
ACM
6117out:
6118 task_event->event_id.header.size = size;
60313ebe
PZ
6119}
6120
cdd6c482
IM
6121static void perf_event_task(struct task_struct *task,
6122 struct perf_event_context *task_ctx,
3a80b4a3 6123 int new)
60313ebe 6124{
9f498cc5 6125 struct perf_task_event task_event;
60313ebe 6126
cdd6c482
IM
6127 if (!atomic_read(&nr_comm_events) &&
6128 !atomic_read(&nr_mmap_events) &&
6129 !atomic_read(&nr_task_events))
60313ebe
PZ
6130 return;
6131
9f498cc5 6132 task_event = (struct perf_task_event){
3a80b4a3
PZ
6133 .task = task,
6134 .task_ctx = task_ctx,
cdd6c482 6135 .event_id = {
60313ebe 6136 .header = {
cdd6c482 6137 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6138 .misc = 0,
cdd6c482 6139 .size = sizeof(task_event.event_id),
60313ebe 6140 },
573402db
PZ
6141 /* .pid */
6142 /* .ppid */
9f498cc5
PZ
6143 /* .tid */
6144 /* .ptid */
34f43927 6145 /* .time */
60313ebe
PZ
6146 },
6147 };
6148
67516844 6149 perf_event_aux(perf_event_task_output,
52d857a8
JO
6150 &task_event,
6151 task_ctx);
9f498cc5
PZ
6152}
6153
cdd6c482 6154void perf_event_fork(struct task_struct *task)
9f498cc5 6155{
cdd6c482 6156 perf_event_task(task, NULL, 1);
60313ebe
PZ
6157}
6158
8d1b2d93
PZ
6159/*
6160 * comm tracking
6161 */
6162
6163struct perf_comm_event {
22a4f650
IM
6164 struct task_struct *task;
6165 char *comm;
8d1b2d93
PZ
6166 int comm_size;
6167
6168 struct {
6169 struct perf_event_header header;
6170
6171 u32 pid;
6172 u32 tid;
cdd6c482 6173 } event_id;
8d1b2d93
PZ
6174};
6175
67516844
JO
6176static int perf_event_comm_match(struct perf_event *event)
6177{
6178 return event->attr.comm;
6179}
6180
cdd6c482 6181static void perf_event_comm_output(struct perf_event *event,
52d857a8 6182 void *data)
8d1b2d93 6183{
52d857a8 6184 struct perf_comm_event *comm_event = data;
8d1b2d93 6185 struct perf_output_handle handle;
c980d109 6186 struct perf_sample_data sample;
cdd6c482 6187 int size = comm_event->event_id.header.size;
c980d109
ACM
6188 int ret;
6189
67516844
JO
6190 if (!perf_event_comm_match(event))
6191 return;
6192
c980d109
ACM
6193 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6194 ret = perf_output_begin(&handle, event,
a7ac67ea 6195 comm_event->event_id.header.size);
8d1b2d93
PZ
6196
6197 if (ret)
c980d109 6198 goto out;
8d1b2d93 6199
cdd6c482
IM
6200 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6201 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6202
cdd6c482 6203 perf_output_put(&handle, comm_event->event_id);
76369139 6204 __output_copy(&handle, comm_event->comm,
8d1b2d93 6205 comm_event->comm_size);
c980d109
ACM
6206
6207 perf_event__output_id_sample(event, &handle, &sample);
6208
8d1b2d93 6209 perf_output_end(&handle);
c980d109
ACM
6210out:
6211 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6212}
6213
cdd6c482 6214static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6215{
413ee3b4 6216 char comm[TASK_COMM_LEN];
8d1b2d93 6217 unsigned int size;
8d1b2d93 6218
413ee3b4 6219 memset(comm, 0, sizeof(comm));
96b02d78 6220 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6221 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6222
6223 comm_event->comm = comm;
6224 comm_event->comm_size = size;
6225
cdd6c482 6226 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6227
67516844 6228 perf_event_aux(perf_event_comm_output,
52d857a8
JO
6229 comm_event,
6230 NULL);
8d1b2d93
PZ
6231}
6232
82b89778 6233void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6234{
9ee318a7
PZ
6235 struct perf_comm_event comm_event;
6236
cdd6c482 6237 if (!atomic_read(&nr_comm_events))
9ee318a7 6238 return;
a63eaf34 6239
9ee318a7 6240 comm_event = (struct perf_comm_event){
8d1b2d93 6241 .task = task,
573402db
PZ
6242 /* .comm */
6243 /* .comm_size */
cdd6c482 6244 .event_id = {
573402db 6245 .header = {
cdd6c482 6246 .type = PERF_RECORD_COMM,
82b89778 6247 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6248 /* .size */
6249 },
6250 /* .pid */
6251 /* .tid */
8d1b2d93
PZ
6252 },
6253 };
6254
cdd6c482 6255 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6256}
6257
0a4a9391
PZ
6258/*
6259 * mmap tracking
6260 */
6261
6262struct perf_mmap_event {
089dd79d
PZ
6263 struct vm_area_struct *vma;
6264
6265 const char *file_name;
6266 int file_size;
13d7a241
SE
6267 int maj, min;
6268 u64 ino;
6269 u64 ino_generation;
f972eb63 6270 u32 prot, flags;
0a4a9391
PZ
6271
6272 struct {
6273 struct perf_event_header header;
6274
6275 u32 pid;
6276 u32 tid;
6277 u64 start;
6278 u64 len;
6279 u64 pgoff;
cdd6c482 6280 } event_id;
0a4a9391
PZ
6281};
6282
67516844
JO
6283static int perf_event_mmap_match(struct perf_event *event,
6284 void *data)
6285{
6286 struct perf_mmap_event *mmap_event = data;
6287 struct vm_area_struct *vma = mmap_event->vma;
6288 int executable = vma->vm_flags & VM_EXEC;
6289
6290 return (!executable && event->attr.mmap_data) ||
13d7a241 6291 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6292}
6293
cdd6c482 6294static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6295 void *data)
0a4a9391 6296{
52d857a8 6297 struct perf_mmap_event *mmap_event = data;
0a4a9391 6298 struct perf_output_handle handle;
c980d109 6299 struct perf_sample_data sample;
cdd6c482 6300 int size = mmap_event->event_id.header.size;
c980d109 6301 int ret;
0a4a9391 6302
67516844
JO
6303 if (!perf_event_mmap_match(event, data))
6304 return;
6305
13d7a241
SE
6306 if (event->attr.mmap2) {
6307 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6308 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6309 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6310 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6311 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6312 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6313 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6314 }
6315
c980d109
ACM
6316 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6317 ret = perf_output_begin(&handle, event,
a7ac67ea 6318 mmap_event->event_id.header.size);
0a4a9391 6319 if (ret)
c980d109 6320 goto out;
0a4a9391 6321
cdd6c482
IM
6322 mmap_event->event_id.pid = perf_event_pid(event, current);
6323 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6324
cdd6c482 6325 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6326
6327 if (event->attr.mmap2) {
6328 perf_output_put(&handle, mmap_event->maj);
6329 perf_output_put(&handle, mmap_event->min);
6330 perf_output_put(&handle, mmap_event->ino);
6331 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6332 perf_output_put(&handle, mmap_event->prot);
6333 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6334 }
6335
76369139 6336 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6337 mmap_event->file_size);
c980d109
ACM
6338
6339 perf_event__output_id_sample(event, &handle, &sample);
6340
78d613eb 6341 perf_output_end(&handle);
c980d109
ACM
6342out:
6343 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6344}
6345
cdd6c482 6346static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6347{
089dd79d
PZ
6348 struct vm_area_struct *vma = mmap_event->vma;
6349 struct file *file = vma->vm_file;
13d7a241
SE
6350 int maj = 0, min = 0;
6351 u64 ino = 0, gen = 0;
f972eb63 6352 u32 prot = 0, flags = 0;
0a4a9391
PZ
6353 unsigned int size;
6354 char tmp[16];
6355 char *buf = NULL;
2c42cfbf 6356 char *name;
413ee3b4 6357
0a4a9391 6358 if (file) {
13d7a241
SE
6359 struct inode *inode;
6360 dev_t dev;
3ea2f2b9 6361
2c42cfbf 6362 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6363 if (!buf) {
c7e548b4
ON
6364 name = "//enomem";
6365 goto cpy_name;
0a4a9391 6366 }
413ee3b4 6367 /*
3ea2f2b9 6368 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6369 * need to add enough zero bytes after the string to handle
6370 * the 64bit alignment we do later.
6371 */
9bf39ab2 6372 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6373 if (IS_ERR(name)) {
c7e548b4
ON
6374 name = "//toolong";
6375 goto cpy_name;
0a4a9391 6376 }
13d7a241
SE
6377 inode = file_inode(vma->vm_file);
6378 dev = inode->i_sb->s_dev;
6379 ino = inode->i_ino;
6380 gen = inode->i_generation;
6381 maj = MAJOR(dev);
6382 min = MINOR(dev);
f972eb63
PZ
6383
6384 if (vma->vm_flags & VM_READ)
6385 prot |= PROT_READ;
6386 if (vma->vm_flags & VM_WRITE)
6387 prot |= PROT_WRITE;
6388 if (vma->vm_flags & VM_EXEC)
6389 prot |= PROT_EXEC;
6390
6391 if (vma->vm_flags & VM_MAYSHARE)
6392 flags = MAP_SHARED;
6393 else
6394 flags = MAP_PRIVATE;
6395
6396 if (vma->vm_flags & VM_DENYWRITE)
6397 flags |= MAP_DENYWRITE;
6398 if (vma->vm_flags & VM_MAYEXEC)
6399 flags |= MAP_EXECUTABLE;
6400 if (vma->vm_flags & VM_LOCKED)
6401 flags |= MAP_LOCKED;
6402 if (vma->vm_flags & VM_HUGETLB)
6403 flags |= MAP_HUGETLB;
6404
c7e548b4 6405 goto got_name;
0a4a9391 6406 } else {
fbe26abe
JO
6407 if (vma->vm_ops && vma->vm_ops->name) {
6408 name = (char *) vma->vm_ops->name(vma);
6409 if (name)
6410 goto cpy_name;
6411 }
6412
2c42cfbf 6413 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6414 if (name)
6415 goto cpy_name;
089dd79d 6416
32c5fb7e 6417 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6418 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6419 name = "[heap]";
6420 goto cpy_name;
32c5fb7e
ON
6421 }
6422 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6423 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6424 name = "[stack]";
6425 goto cpy_name;
089dd79d
PZ
6426 }
6427
c7e548b4
ON
6428 name = "//anon";
6429 goto cpy_name;
0a4a9391
PZ
6430 }
6431
c7e548b4
ON
6432cpy_name:
6433 strlcpy(tmp, name, sizeof(tmp));
6434 name = tmp;
0a4a9391 6435got_name:
2c42cfbf
PZ
6436 /*
6437 * Since our buffer works in 8 byte units we need to align our string
6438 * size to a multiple of 8. However, we must guarantee the tail end is
6439 * zero'd out to avoid leaking random bits to userspace.
6440 */
6441 size = strlen(name)+1;
6442 while (!IS_ALIGNED(size, sizeof(u64)))
6443 name[size++] = '\0';
0a4a9391
PZ
6444
6445 mmap_event->file_name = name;
6446 mmap_event->file_size = size;
13d7a241
SE
6447 mmap_event->maj = maj;
6448 mmap_event->min = min;
6449 mmap_event->ino = ino;
6450 mmap_event->ino_generation = gen;
f972eb63
PZ
6451 mmap_event->prot = prot;
6452 mmap_event->flags = flags;
0a4a9391 6453
2fe85427
SE
6454 if (!(vma->vm_flags & VM_EXEC))
6455 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6456
cdd6c482 6457 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6458
67516844 6459 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6460 mmap_event,
6461 NULL);
665c2142 6462
0a4a9391
PZ
6463 kfree(buf);
6464}
6465
375637bc
AS
6466/*
6467 * Whether this @filter depends on a dynamic object which is not loaded
6468 * yet or its load addresses are not known.
6469 */
6470static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6471{
6472 return filter->filter && filter->inode;
6473}
6474
6475/*
6476 * Check whether inode and address range match filter criteria.
6477 */
6478static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6479 struct file *file, unsigned long offset,
6480 unsigned long size)
6481{
6482 if (filter->inode != file->f_inode)
6483 return false;
6484
6485 if (filter->offset > offset + size)
6486 return false;
6487
6488 if (filter->offset + filter->size < offset)
6489 return false;
6490
6491 return true;
6492}
6493
6494static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6495{
6496 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6497 struct vm_area_struct *vma = data;
6498 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6499 struct file *file = vma->vm_file;
6500 struct perf_addr_filter *filter;
6501 unsigned int restart = 0, count = 0;
6502
6503 if (!has_addr_filter(event))
6504 return;
6505
6506 if (!file)
6507 return;
6508
6509 raw_spin_lock_irqsave(&ifh->lock, flags);
6510 list_for_each_entry(filter, &ifh->list, entry) {
6511 if (perf_addr_filter_match(filter, file, off,
6512 vma->vm_end - vma->vm_start)) {
6513 event->addr_filters_offs[count] = vma->vm_start;
6514 restart++;
6515 }
6516
6517 count++;
6518 }
6519
6520 if (restart)
6521 event->addr_filters_gen++;
6522 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6523
6524 if (restart)
6525 perf_event_restart(event);
6526}
6527
6528/*
6529 * Adjust all task's events' filters to the new vma
6530 */
6531static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6532{
6533 struct perf_event_context *ctx;
6534 int ctxn;
6535
6536 rcu_read_lock();
6537 for_each_task_context_nr(ctxn) {
6538 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6539 if (!ctx)
6540 continue;
6541
6542 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6543 }
6544 rcu_read_unlock();
6545}
6546
3af9e859 6547void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6548{
9ee318a7
PZ
6549 struct perf_mmap_event mmap_event;
6550
cdd6c482 6551 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6552 return;
6553
6554 mmap_event = (struct perf_mmap_event){
089dd79d 6555 .vma = vma,
573402db
PZ
6556 /* .file_name */
6557 /* .file_size */
cdd6c482 6558 .event_id = {
573402db 6559 .header = {
cdd6c482 6560 .type = PERF_RECORD_MMAP,
39447b38 6561 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6562 /* .size */
6563 },
6564 /* .pid */
6565 /* .tid */
089dd79d
PZ
6566 .start = vma->vm_start,
6567 .len = vma->vm_end - vma->vm_start,
3a0304e9 6568 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6569 },
13d7a241
SE
6570 /* .maj (attr_mmap2 only) */
6571 /* .min (attr_mmap2 only) */
6572 /* .ino (attr_mmap2 only) */
6573 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6574 /* .prot (attr_mmap2 only) */
6575 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6576 };
6577
375637bc 6578 perf_addr_filters_adjust(vma);
cdd6c482 6579 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6580}
6581
68db7e98
AS
6582void perf_event_aux_event(struct perf_event *event, unsigned long head,
6583 unsigned long size, u64 flags)
6584{
6585 struct perf_output_handle handle;
6586 struct perf_sample_data sample;
6587 struct perf_aux_event {
6588 struct perf_event_header header;
6589 u64 offset;
6590 u64 size;
6591 u64 flags;
6592 } rec = {
6593 .header = {
6594 .type = PERF_RECORD_AUX,
6595 .misc = 0,
6596 .size = sizeof(rec),
6597 },
6598 .offset = head,
6599 .size = size,
6600 .flags = flags,
6601 };
6602 int ret;
6603
6604 perf_event_header__init_id(&rec.header, &sample, event);
6605 ret = perf_output_begin(&handle, event, rec.header.size);
6606
6607 if (ret)
6608 return;
6609
6610 perf_output_put(&handle, rec);
6611 perf_event__output_id_sample(event, &handle, &sample);
6612
6613 perf_output_end(&handle);
6614}
6615
f38b0dbb
KL
6616/*
6617 * Lost/dropped samples logging
6618 */
6619void perf_log_lost_samples(struct perf_event *event, u64 lost)
6620{
6621 struct perf_output_handle handle;
6622 struct perf_sample_data sample;
6623 int ret;
6624
6625 struct {
6626 struct perf_event_header header;
6627 u64 lost;
6628 } lost_samples_event = {
6629 .header = {
6630 .type = PERF_RECORD_LOST_SAMPLES,
6631 .misc = 0,
6632 .size = sizeof(lost_samples_event),
6633 },
6634 .lost = lost,
6635 };
6636
6637 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6638
6639 ret = perf_output_begin(&handle, event,
6640 lost_samples_event.header.size);
6641 if (ret)
6642 return;
6643
6644 perf_output_put(&handle, lost_samples_event);
6645 perf_event__output_id_sample(event, &handle, &sample);
6646 perf_output_end(&handle);
6647}
6648
45ac1403
AH
6649/*
6650 * context_switch tracking
6651 */
6652
6653struct perf_switch_event {
6654 struct task_struct *task;
6655 struct task_struct *next_prev;
6656
6657 struct {
6658 struct perf_event_header header;
6659 u32 next_prev_pid;
6660 u32 next_prev_tid;
6661 } event_id;
6662};
6663
6664static int perf_event_switch_match(struct perf_event *event)
6665{
6666 return event->attr.context_switch;
6667}
6668
6669static void perf_event_switch_output(struct perf_event *event, void *data)
6670{
6671 struct perf_switch_event *se = data;
6672 struct perf_output_handle handle;
6673 struct perf_sample_data sample;
6674 int ret;
6675
6676 if (!perf_event_switch_match(event))
6677 return;
6678
6679 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6680 if (event->ctx->task) {
6681 se->event_id.header.type = PERF_RECORD_SWITCH;
6682 se->event_id.header.size = sizeof(se->event_id.header);
6683 } else {
6684 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6685 se->event_id.header.size = sizeof(se->event_id);
6686 se->event_id.next_prev_pid =
6687 perf_event_pid(event, se->next_prev);
6688 se->event_id.next_prev_tid =
6689 perf_event_tid(event, se->next_prev);
6690 }
6691
6692 perf_event_header__init_id(&se->event_id.header, &sample, event);
6693
6694 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6695 if (ret)
6696 return;
6697
6698 if (event->ctx->task)
6699 perf_output_put(&handle, se->event_id.header);
6700 else
6701 perf_output_put(&handle, se->event_id);
6702
6703 perf_event__output_id_sample(event, &handle, &sample);
6704
6705 perf_output_end(&handle);
6706}
6707
6708static void perf_event_switch(struct task_struct *task,
6709 struct task_struct *next_prev, bool sched_in)
6710{
6711 struct perf_switch_event switch_event;
6712
6713 /* N.B. caller checks nr_switch_events != 0 */
6714
6715 switch_event = (struct perf_switch_event){
6716 .task = task,
6717 .next_prev = next_prev,
6718 .event_id = {
6719 .header = {
6720 /* .type */
6721 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6722 /* .size */
6723 },
6724 /* .next_prev_pid */
6725 /* .next_prev_tid */
6726 },
6727 };
6728
6729 perf_event_aux(perf_event_switch_output,
6730 &switch_event,
6731 NULL);
6732}
6733
a78ac325
PZ
6734/*
6735 * IRQ throttle logging
6736 */
6737
cdd6c482 6738static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6739{
6740 struct perf_output_handle handle;
c980d109 6741 struct perf_sample_data sample;
a78ac325
PZ
6742 int ret;
6743
6744 struct {
6745 struct perf_event_header header;
6746 u64 time;
cca3f454 6747 u64 id;
7f453c24 6748 u64 stream_id;
a78ac325
PZ
6749 } throttle_event = {
6750 .header = {
cdd6c482 6751 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6752 .misc = 0,
6753 .size = sizeof(throttle_event),
6754 },
34f43927 6755 .time = perf_event_clock(event),
cdd6c482
IM
6756 .id = primary_event_id(event),
6757 .stream_id = event->id,
a78ac325
PZ
6758 };
6759
966ee4d6 6760 if (enable)
cdd6c482 6761 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6762
c980d109
ACM
6763 perf_event_header__init_id(&throttle_event.header, &sample, event);
6764
6765 ret = perf_output_begin(&handle, event,
a7ac67ea 6766 throttle_event.header.size);
a78ac325
PZ
6767 if (ret)
6768 return;
6769
6770 perf_output_put(&handle, throttle_event);
c980d109 6771 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6772 perf_output_end(&handle);
6773}
6774
ec0d7729
AS
6775static void perf_log_itrace_start(struct perf_event *event)
6776{
6777 struct perf_output_handle handle;
6778 struct perf_sample_data sample;
6779 struct perf_aux_event {
6780 struct perf_event_header header;
6781 u32 pid;
6782 u32 tid;
6783 } rec;
6784 int ret;
6785
6786 if (event->parent)
6787 event = event->parent;
6788
6789 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6790 event->hw.itrace_started)
6791 return;
6792
ec0d7729
AS
6793 rec.header.type = PERF_RECORD_ITRACE_START;
6794 rec.header.misc = 0;
6795 rec.header.size = sizeof(rec);
6796 rec.pid = perf_event_pid(event, current);
6797 rec.tid = perf_event_tid(event, current);
6798
6799 perf_event_header__init_id(&rec.header, &sample, event);
6800 ret = perf_output_begin(&handle, event, rec.header.size);
6801
6802 if (ret)
6803 return;
6804
6805 perf_output_put(&handle, rec);
6806 perf_event__output_id_sample(event, &handle, &sample);
6807
6808 perf_output_end(&handle);
6809}
6810
f6c7d5fe 6811/*
cdd6c482 6812 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6813 */
6814
a8b0ca17 6815static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6816 int throttle, struct perf_sample_data *data,
6817 struct pt_regs *regs)
f6c7d5fe 6818{
cdd6c482
IM
6819 int events = atomic_read(&event->event_limit);
6820 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6821 u64 seq;
79f14641
PZ
6822 int ret = 0;
6823
96398826
PZ
6824 /*
6825 * Non-sampling counters might still use the PMI to fold short
6826 * hardware counters, ignore those.
6827 */
6828 if (unlikely(!is_sampling_event(event)))
6829 return 0;
6830
e050e3f0
SE
6831 seq = __this_cpu_read(perf_throttled_seq);
6832 if (seq != hwc->interrupts_seq) {
6833 hwc->interrupts_seq = seq;
6834 hwc->interrupts = 1;
6835 } else {
6836 hwc->interrupts++;
6837 if (unlikely(throttle
6838 && hwc->interrupts >= max_samples_per_tick)) {
6839 __this_cpu_inc(perf_throttled_count);
555e0c1e 6840 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6841 hwc->interrupts = MAX_INTERRUPTS;
6842 perf_log_throttle(event, 0);
a78ac325
PZ
6843 ret = 1;
6844 }
e050e3f0 6845 }
60db5e09 6846
cdd6c482 6847 if (event->attr.freq) {
def0a9b2 6848 u64 now = perf_clock();
abd50713 6849 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6850
abd50713 6851 hwc->freq_time_stamp = now;
bd2b5b12 6852
abd50713 6853 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6854 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6855 }
6856
2023b359
PZ
6857 /*
6858 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6859 * events
2023b359
PZ
6860 */
6861
cdd6c482
IM
6862 event->pending_kill = POLL_IN;
6863 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6864 ret = 1;
cdd6c482 6865 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6866 event->pending_disable = 1;
6867 irq_work_queue(&event->pending);
79f14641
PZ
6868 }
6869
1879445d 6870 event->overflow_handler(event, data, regs);
453f19ee 6871
fed66e2c 6872 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6873 event->pending_wakeup = 1;
6874 irq_work_queue(&event->pending);
f506b3dc
PZ
6875 }
6876
79f14641 6877 return ret;
f6c7d5fe
PZ
6878}
6879
a8b0ca17 6880int perf_event_overflow(struct perf_event *event,
5622f295
MM
6881 struct perf_sample_data *data,
6882 struct pt_regs *regs)
850bc73f 6883{
a8b0ca17 6884 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6885}
6886
15dbf27c 6887/*
cdd6c482 6888 * Generic software event infrastructure
15dbf27c
PZ
6889 */
6890
b28ab83c
PZ
6891struct swevent_htable {
6892 struct swevent_hlist *swevent_hlist;
6893 struct mutex hlist_mutex;
6894 int hlist_refcount;
6895
6896 /* Recursion avoidance in each contexts */
6897 int recursion[PERF_NR_CONTEXTS];
6898};
6899
6900static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6901
7b4b6658 6902/*
cdd6c482
IM
6903 * We directly increment event->count and keep a second value in
6904 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6905 * is kept in the range [-sample_period, 0] so that we can use the
6906 * sign as trigger.
6907 */
6908
ab573844 6909u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6910{
cdd6c482 6911 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6912 u64 period = hwc->last_period;
6913 u64 nr, offset;
6914 s64 old, val;
6915
6916 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6917
6918again:
e7850595 6919 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6920 if (val < 0)
6921 return 0;
15dbf27c 6922
7b4b6658
PZ
6923 nr = div64_u64(period + val, period);
6924 offset = nr * period;
6925 val -= offset;
e7850595 6926 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6927 goto again;
15dbf27c 6928
7b4b6658 6929 return nr;
15dbf27c
PZ
6930}
6931
0cff784a 6932static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6933 struct perf_sample_data *data,
5622f295 6934 struct pt_regs *regs)
15dbf27c 6935{
cdd6c482 6936 struct hw_perf_event *hwc = &event->hw;
850bc73f 6937 int throttle = 0;
15dbf27c 6938
0cff784a
PZ
6939 if (!overflow)
6940 overflow = perf_swevent_set_period(event);
15dbf27c 6941
7b4b6658
PZ
6942 if (hwc->interrupts == MAX_INTERRUPTS)
6943 return;
15dbf27c 6944
7b4b6658 6945 for (; overflow; overflow--) {
a8b0ca17 6946 if (__perf_event_overflow(event, throttle,
5622f295 6947 data, regs)) {
7b4b6658
PZ
6948 /*
6949 * We inhibit the overflow from happening when
6950 * hwc->interrupts == MAX_INTERRUPTS.
6951 */
6952 break;
6953 }
cf450a73 6954 throttle = 1;
7b4b6658 6955 }
15dbf27c
PZ
6956}
6957
a4eaf7f1 6958static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6959 struct perf_sample_data *data,
5622f295 6960 struct pt_regs *regs)
7b4b6658 6961{
cdd6c482 6962 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6963
e7850595 6964 local64_add(nr, &event->count);
d6d020e9 6965
0cff784a
PZ
6966 if (!regs)
6967 return;
6968
6c7e550f 6969 if (!is_sampling_event(event))
7b4b6658 6970 return;
d6d020e9 6971
5d81e5cf
AV
6972 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6973 data->period = nr;
6974 return perf_swevent_overflow(event, 1, data, regs);
6975 } else
6976 data->period = event->hw.last_period;
6977
0cff784a 6978 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6979 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6980
e7850595 6981 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6982 return;
df1a132b 6983
a8b0ca17 6984 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6985}
6986
f5ffe02e
FW
6987static int perf_exclude_event(struct perf_event *event,
6988 struct pt_regs *regs)
6989{
a4eaf7f1 6990 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6991 return 1;
a4eaf7f1 6992
f5ffe02e
FW
6993 if (regs) {
6994 if (event->attr.exclude_user && user_mode(regs))
6995 return 1;
6996
6997 if (event->attr.exclude_kernel && !user_mode(regs))
6998 return 1;
6999 }
7000
7001 return 0;
7002}
7003
cdd6c482 7004static int perf_swevent_match(struct perf_event *event,
1c432d89 7005 enum perf_type_id type,
6fb2915d
LZ
7006 u32 event_id,
7007 struct perf_sample_data *data,
7008 struct pt_regs *regs)
15dbf27c 7009{
cdd6c482 7010 if (event->attr.type != type)
a21ca2ca 7011 return 0;
f5ffe02e 7012
cdd6c482 7013 if (event->attr.config != event_id)
15dbf27c
PZ
7014 return 0;
7015
f5ffe02e
FW
7016 if (perf_exclude_event(event, regs))
7017 return 0;
15dbf27c
PZ
7018
7019 return 1;
7020}
7021
76e1d904
FW
7022static inline u64 swevent_hash(u64 type, u32 event_id)
7023{
7024 u64 val = event_id | (type << 32);
7025
7026 return hash_64(val, SWEVENT_HLIST_BITS);
7027}
7028
49f135ed
FW
7029static inline struct hlist_head *
7030__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7031{
49f135ed
FW
7032 u64 hash = swevent_hash(type, event_id);
7033
7034 return &hlist->heads[hash];
7035}
76e1d904 7036
49f135ed
FW
7037/* For the read side: events when they trigger */
7038static inline struct hlist_head *
b28ab83c 7039find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7040{
7041 struct swevent_hlist *hlist;
76e1d904 7042
b28ab83c 7043 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7044 if (!hlist)
7045 return NULL;
7046
49f135ed
FW
7047 return __find_swevent_head(hlist, type, event_id);
7048}
7049
7050/* For the event head insertion and removal in the hlist */
7051static inline struct hlist_head *
b28ab83c 7052find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7053{
7054 struct swevent_hlist *hlist;
7055 u32 event_id = event->attr.config;
7056 u64 type = event->attr.type;
7057
7058 /*
7059 * Event scheduling is always serialized against hlist allocation
7060 * and release. Which makes the protected version suitable here.
7061 * The context lock guarantees that.
7062 */
b28ab83c 7063 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7064 lockdep_is_held(&event->ctx->lock));
7065 if (!hlist)
7066 return NULL;
7067
7068 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7069}
7070
7071static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7072 u64 nr,
76e1d904
FW
7073 struct perf_sample_data *data,
7074 struct pt_regs *regs)
15dbf27c 7075{
4a32fea9 7076 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7077 struct perf_event *event;
76e1d904 7078 struct hlist_head *head;
15dbf27c 7079
76e1d904 7080 rcu_read_lock();
b28ab83c 7081 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7082 if (!head)
7083 goto end;
7084
b67bfe0d 7085 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7086 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7087 perf_swevent_event(event, nr, data, regs);
15dbf27c 7088 }
76e1d904
FW
7089end:
7090 rcu_read_unlock();
15dbf27c
PZ
7091}
7092
86038c5e
PZI
7093DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7094
4ed7c92d 7095int perf_swevent_get_recursion_context(void)
96f6d444 7096{
4a32fea9 7097 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7098
b28ab83c 7099 return get_recursion_context(swhash->recursion);
96f6d444 7100}
645e8cc0 7101EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7102
fa9f90be 7103inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7104{
4a32fea9 7105 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7106
b28ab83c 7107 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7108}
15dbf27c 7109
86038c5e 7110void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7111{
a4234bfc 7112 struct perf_sample_data data;
4ed7c92d 7113
86038c5e 7114 if (WARN_ON_ONCE(!regs))
4ed7c92d 7115 return;
a4234bfc 7116
fd0d000b 7117 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7118 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7119}
7120
7121void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7122{
7123 int rctx;
7124
7125 preempt_disable_notrace();
7126 rctx = perf_swevent_get_recursion_context();
7127 if (unlikely(rctx < 0))
7128 goto fail;
7129
7130 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7131
7132 perf_swevent_put_recursion_context(rctx);
86038c5e 7133fail:
1c024eca 7134 preempt_enable_notrace();
b8e83514
PZ
7135}
7136
cdd6c482 7137static void perf_swevent_read(struct perf_event *event)
15dbf27c 7138{
15dbf27c
PZ
7139}
7140
a4eaf7f1 7141static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7142{
4a32fea9 7143 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7144 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7145 struct hlist_head *head;
7146
6c7e550f 7147 if (is_sampling_event(event)) {
7b4b6658 7148 hwc->last_period = hwc->sample_period;
cdd6c482 7149 perf_swevent_set_period(event);
7b4b6658 7150 }
76e1d904 7151
a4eaf7f1
PZ
7152 hwc->state = !(flags & PERF_EF_START);
7153
b28ab83c 7154 head = find_swevent_head(swhash, event);
12ca6ad2 7155 if (WARN_ON_ONCE(!head))
76e1d904
FW
7156 return -EINVAL;
7157
7158 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7159 perf_event_update_userpage(event);
76e1d904 7160
15dbf27c
PZ
7161 return 0;
7162}
7163
a4eaf7f1 7164static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7165{
76e1d904 7166 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7167}
7168
a4eaf7f1 7169static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7170{
a4eaf7f1 7171 event->hw.state = 0;
d6d020e9 7172}
aa9c4c0f 7173
a4eaf7f1 7174static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7175{
a4eaf7f1 7176 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7177}
7178
49f135ed
FW
7179/* Deref the hlist from the update side */
7180static inline struct swevent_hlist *
b28ab83c 7181swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7182{
b28ab83c
PZ
7183 return rcu_dereference_protected(swhash->swevent_hlist,
7184 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7185}
7186
b28ab83c 7187static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7188{
b28ab83c 7189 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7190
49f135ed 7191 if (!hlist)
76e1d904
FW
7192 return;
7193
70691d4a 7194 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7195 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7196}
7197
3b364d7b 7198static void swevent_hlist_put_cpu(int cpu)
76e1d904 7199{
b28ab83c 7200 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7201
b28ab83c 7202 mutex_lock(&swhash->hlist_mutex);
76e1d904 7203
b28ab83c
PZ
7204 if (!--swhash->hlist_refcount)
7205 swevent_hlist_release(swhash);
76e1d904 7206
b28ab83c 7207 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7208}
7209
3b364d7b 7210static void swevent_hlist_put(void)
76e1d904
FW
7211{
7212 int cpu;
7213
76e1d904 7214 for_each_possible_cpu(cpu)
3b364d7b 7215 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7216}
7217
3b364d7b 7218static int swevent_hlist_get_cpu(int cpu)
76e1d904 7219{
b28ab83c 7220 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7221 int err = 0;
7222
b28ab83c 7223 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7224 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7225 struct swevent_hlist *hlist;
7226
7227 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7228 if (!hlist) {
7229 err = -ENOMEM;
7230 goto exit;
7231 }
b28ab83c 7232 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7233 }
b28ab83c 7234 swhash->hlist_refcount++;
9ed6060d 7235exit:
b28ab83c 7236 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7237
7238 return err;
7239}
7240
3b364d7b 7241static int swevent_hlist_get(void)
76e1d904 7242{
3b364d7b 7243 int err, cpu, failed_cpu;
76e1d904 7244
76e1d904
FW
7245 get_online_cpus();
7246 for_each_possible_cpu(cpu) {
3b364d7b 7247 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7248 if (err) {
7249 failed_cpu = cpu;
7250 goto fail;
7251 }
7252 }
7253 put_online_cpus();
7254
7255 return 0;
9ed6060d 7256fail:
76e1d904
FW
7257 for_each_possible_cpu(cpu) {
7258 if (cpu == failed_cpu)
7259 break;
3b364d7b 7260 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7261 }
7262
7263 put_online_cpus();
7264 return err;
7265}
7266
c5905afb 7267struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7268
b0a873eb
PZ
7269static void sw_perf_event_destroy(struct perf_event *event)
7270{
7271 u64 event_id = event->attr.config;
95476b64 7272
b0a873eb
PZ
7273 WARN_ON(event->parent);
7274
c5905afb 7275 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7276 swevent_hlist_put();
b0a873eb
PZ
7277}
7278
7279static int perf_swevent_init(struct perf_event *event)
7280{
8176cced 7281 u64 event_id = event->attr.config;
b0a873eb
PZ
7282
7283 if (event->attr.type != PERF_TYPE_SOFTWARE)
7284 return -ENOENT;
7285
2481c5fa
SE
7286 /*
7287 * no branch sampling for software events
7288 */
7289 if (has_branch_stack(event))
7290 return -EOPNOTSUPP;
7291
b0a873eb
PZ
7292 switch (event_id) {
7293 case PERF_COUNT_SW_CPU_CLOCK:
7294 case PERF_COUNT_SW_TASK_CLOCK:
7295 return -ENOENT;
7296
7297 default:
7298 break;
7299 }
7300
ce677831 7301 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7302 return -ENOENT;
7303
7304 if (!event->parent) {
7305 int err;
7306
3b364d7b 7307 err = swevent_hlist_get();
b0a873eb
PZ
7308 if (err)
7309 return err;
7310
c5905afb 7311 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7312 event->destroy = sw_perf_event_destroy;
7313 }
7314
7315 return 0;
7316}
7317
7318static struct pmu perf_swevent = {
89a1e187 7319 .task_ctx_nr = perf_sw_context,
95476b64 7320
34f43927
PZ
7321 .capabilities = PERF_PMU_CAP_NO_NMI,
7322
b0a873eb 7323 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7324 .add = perf_swevent_add,
7325 .del = perf_swevent_del,
7326 .start = perf_swevent_start,
7327 .stop = perf_swevent_stop,
1c024eca 7328 .read = perf_swevent_read,
1c024eca
PZ
7329};
7330
b0a873eb
PZ
7331#ifdef CONFIG_EVENT_TRACING
7332
1c024eca
PZ
7333static int perf_tp_filter_match(struct perf_event *event,
7334 struct perf_sample_data *data)
7335{
7336 void *record = data->raw->data;
7337
b71b437e
PZ
7338 /* only top level events have filters set */
7339 if (event->parent)
7340 event = event->parent;
7341
1c024eca
PZ
7342 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7343 return 1;
7344 return 0;
7345}
7346
7347static int perf_tp_event_match(struct perf_event *event,
7348 struct perf_sample_data *data,
7349 struct pt_regs *regs)
7350{
a0f7d0f7
FW
7351 if (event->hw.state & PERF_HES_STOPPED)
7352 return 0;
580d607c
PZ
7353 /*
7354 * All tracepoints are from kernel-space.
7355 */
7356 if (event->attr.exclude_kernel)
1c024eca
PZ
7357 return 0;
7358
7359 if (!perf_tp_filter_match(event, data))
7360 return 0;
7361
7362 return 1;
7363}
7364
7365void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7366 struct pt_regs *regs, struct hlist_head *head, int rctx,
7367 struct task_struct *task)
95476b64
FW
7368{
7369 struct perf_sample_data data;
1c024eca 7370 struct perf_event *event;
1c024eca 7371
95476b64
FW
7372 struct perf_raw_record raw = {
7373 .size = entry_size,
7374 .data = record,
7375 };
7376
fd0d000b 7377 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7378 data.raw = &raw;
7379
b67bfe0d 7380 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7381 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7382 perf_swevent_event(event, count, &data, regs);
4f41c013 7383 }
ecc55f84 7384
e6dab5ff
AV
7385 /*
7386 * If we got specified a target task, also iterate its context and
7387 * deliver this event there too.
7388 */
7389 if (task && task != current) {
7390 struct perf_event_context *ctx;
7391 struct trace_entry *entry = record;
7392
7393 rcu_read_lock();
7394 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7395 if (!ctx)
7396 goto unlock;
7397
7398 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7399 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7400 continue;
7401 if (event->attr.config != entry->type)
7402 continue;
7403 if (perf_tp_event_match(event, &data, regs))
7404 perf_swevent_event(event, count, &data, regs);
7405 }
7406unlock:
7407 rcu_read_unlock();
7408 }
7409
ecc55f84 7410 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7411}
7412EXPORT_SYMBOL_GPL(perf_tp_event);
7413
cdd6c482 7414static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7415{
1c024eca 7416 perf_trace_destroy(event);
e077df4f
PZ
7417}
7418
b0a873eb 7419static int perf_tp_event_init(struct perf_event *event)
e077df4f 7420{
76e1d904
FW
7421 int err;
7422
b0a873eb
PZ
7423 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7424 return -ENOENT;
7425
2481c5fa
SE
7426 /*
7427 * no branch sampling for tracepoint events
7428 */
7429 if (has_branch_stack(event))
7430 return -EOPNOTSUPP;
7431
1c024eca
PZ
7432 err = perf_trace_init(event);
7433 if (err)
b0a873eb 7434 return err;
e077df4f 7435
cdd6c482 7436 event->destroy = tp_perf_event_destroy;
e077df4f 7437
b0a873eb
PZ
7438 return 0;
7439}
7440
7441static struct pmu perf_tracepoint = {
89a1e187
PZ
7442 .task_ctx_nr = perf_sw_context,
7443
b0a873eb 7444 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7445 .add = perf_trace_add,
7446 .del = perf_trace_del,
7447 .start = perf_swevent_start,
7448 .stop = perf_swevent_stop,
b0a873eb 7449 .read = perf_swevent_read,
b0a873eb
PZ
7450};
7451
7452static inline void perf_tp_register(void)
7453{
2e80a82a 7454 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7455}
6fb2915d 7456
6fb2915d
LZ
7457static void perf_event_free_filter(struct perf_event *event)
7458{
7459 ftrace_profile_free_filter(event);
7460}
7461
2541517c
AS
7462static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7463{
7464 struct bpf_prog *prog;
7465
7466 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7467 return -EINVAL;
7468
7469 if (event->tp_event->prog)
7470 return -EEXIST;
7471
04a22fae
WN
7472 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7473 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7474 return -EINVAL;
7475
7476 prog = bpf_prog_get(prog_fd);
7477 if (IS_ERR(prog))
7478 return PTR_ERR(prog);
7479
6c373ca8 7480 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7481 /* valid fd, but invalid bpf program type */
7482 bpf_prog_put(prog);
7483 return -EINVAL;
7484 }
7485
7486 event->tp_event->prog = prog;
7487
7488 return 0;
7489}
7490
7491static void perf_event_free_bpf_prog(struct perf_event *event)
7492{
7493 struct bpf_prog *prog;
7494
7495 if (!event->tp_event)
7496 return;
7497
7498 prog = event->tp_event->prog;
7499 if (prog) {
7500 event->tp_event->prog = NULL;
7501 bpf_prog_put(prog);
7502 }
7503}
7504
e077df4f 7505#else
6fb2915d 7506
b0a873eb 7507static inline void perf_tp_register(void)
e077df4f 7508{
e077df4f 7509}
6fb2915d 7510
6fb2915d
LZ
7511static void perf_event_free_filter(struct perf_event *event)
7512{
7513}
7514
2541517c
AS
7515static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7516{
7517 return -ENOENT;
7518}
7519
7520static void perf_event_free_bpf_prog(struct perf_event *event)
7521{
7522}
07b139c8 7523#endif /* CONFIG_EVENT_TRACING */
e077df4f 7524
24f1e32c 7525#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7526void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7527{
f5ffe02e
FW
7528 struct perf_sample_data sample;
7529 struct pt_regs *regs = data;
7530
fd0d000b 7531 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7532
a4eaf7f1 7533 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7534 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7535}
7536#endif
7537
375637bc
AS
7538/*
7539 * Allocate a new address filter
7540 */
7541static struct perf_addr_filter *
7542perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7543{
7544 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7545 struct perf_addr_filter *filter;
7546
7547 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7548 if (!filter)
7549 return NULL;
7550
7551 INIT_LIST_HEAD(&filter->entry);
7552 list_add_tail(&filter->entry, filters);
7553
7554 return filter;
7555}
7556
7557static void free_filters_list(struct list_head *filters)
7558{
7559 struct perf_addr_filter *filter, *iter;
7560
7561 list_for_each_entry_safe(filter, iter, filters, entry) {
7562 if (filter->inode)
7563 iput(filter->inode);
7564 list_del(&filter->entry);
7565 kfree(filter);
7566 }
7567}
7568
7569/*
7570 * Free existing address filters and optionally install new ones
7571 */
7572static void perf_addr_filters_splice(struct perf_event *event,
7573 struct list_head *head)
7574{
7575 unsigned long flags;
7576 LIST_HEAD(list);
7577
7578 if (!has_addr_filter(event))
7579 return;
7580
7581 /* don't bother with children, they don't have their own filters */
7582 if (event->parent)
7583 return;
7584
7585 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7586
7587 list_splice_init(&event->addr_filters.list, &list);
7588 if (head)
7589 list_splice(head, &event->addr_filters.list);
7590
7591 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7592
7593 free_filters_list(&list);
7594}
7595
7596/*
7597 * Scan through mm's vmas and see if one of them matches the
7598 * @filter; if so, adjust filter's address range.
7599 * Called with mm::mmap_sem down for reading.
7600 */
7601static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7602 struct mm_struct *mm)
7603{
7604 struct vm_area_struct *vma;
7605
7606 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7607 struct file *file = vma->vm_file;
7608 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7609 unsigned long vma_size = vma->vm_end - vma->vm_start;
7610
7611 if (!file)
7612 continue;
7613
7614 if (!perf_addr_filter_match(filter, file, off, vma_size))
7615 continue;
7616
7617 return vma->vm_start;
7618 }
7619
7620 return 0;
7621}
7622
7623/*
7624 * Update event's address range filters based on the
7625 * task's existing mappings, if any.
7626 */
7627static void perf_event_addr_filters_apply(struct perf_event *event)
7628{
7629 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7630 struct task_struct *task = READ_ONCE(event->ctx->task);
7631 struct perf_addr_filter *filter;
7632 struct mm_struct *mm = NULL;
7633 unsigned int count = 0;
7634 unsigned long flags;
7635
7636 /*
7637 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7638 * will stop on the parent's child_mutex that our caller is also holding
7639 */
7640 if (task == TASK_TOMBSTONE)
7641 return;
7642
7643 mm = get_task_mm(event->ctx->task);
7644 if (!mm)
7645 goto restart;
7646
7647 down_read(&mm->mmap_sem);
7648
7649 raw_spin_lock_irqsave(&ifh->lock, flags);
7650 list_for_each_entry(filter, &ifh->list, entry) {
7651 event->addr_filters_offs[count] = 0;
7652
7653 if (perf_addr_filter_needs_mmap(filter))
7654 event->addr_filters_offs[count] =
7655 perf_addr_filter_apply(filter, mm);
7656
7657 count++;
7658 }
7659
7660 event->addr_filters_gen++;
7661 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7662
7663 up_read(&mm->mmap_sem);
7664
7665 mmput(mm);
7666
7667restart:
7668 perf_event_restart(event);
7669}
7670
7671/*
7672 * Address range filtering: limiting the data to certain
7673 * instruction address ranges. Filters are ioctl()ed to us from
7674 * userspace as ascii strings.
7675 *
7676 * Filter string format:
7677 *
7678 * ACTION RANGE_SPEC
7679 * where ACTION is one of the
7680 * * "filter": limit the trace to this region
7681 * * "start": start tracing from this address
7682 * * "stop": stop tracing at this address/region;
7683 * RANGE_SPEC is
7684 * * for kernel addresses: <start address>[/<size>]
7685 * * for object files: <start address>[/<size>]@</path/to/object/file>
7686 *
7687 * if <size> is not specified, the range is treated as a single address.
7688 */
7689enum {
7690 IF_ACT_FILTER,
7691 IF_ACT_START,
7692 IF_ACT_STOP,
7693 IF_SRC_FILE,
7694 IF_SRC_KERNEL,
7695 IF_SRC_FILEADDR,
7696 IF_SRC_KERNELADDR,
7697};
7698
7699enum {
7700 IF_STATE_ACTION = 0,
7701 IF_STATE_SOURCE,
7702 IF_STATE_END,
7703};
7704
7705static const match_table_t if_tokens = {
7706 { IF_ACT_FILTER, "filter" },
7707 { IF_ACT_START, "start" },
7708 { IF_ACT_STOP, "stop" },
7709 { IF_SRC_FILE, "%u/%u@%s" },
7710 { IF_SRC_KERNEL, "%u/%u" },
7711 { IF_SRC_FILEADDR, "%u@%s" },
7712 { IF_SRC_KERNELADDR, "%u" },
7713};
7714
7715/*
7716 * Address filter string parser
7717 */
7718static int
7719perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7720 struct list_head *filters)
7721{
7722 struct perf_addr_filter *filter = NULL;
7723 char *start, *orig, *filename = NULL;
7724 struct path path;
7725 substring_t args[MAX_OPT_ARGS];
7726 int state = IF_STATE_ACTION, token;
7727 unsigned int kernel = 0;
7728 int ret = -EINVAL;
7729
7730 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7731 if (!fstr)
7732 return -ENOMEM;
7733
7734 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7735 ret = -EINVAL;
7736
7737 if (!*start)
7738 continue;
7739
7740 /* filter definition begins */
7741 if (state == IF_STATE_ACTION) {
7742 filter = perf_addr_filter_new(event, filters);
7743 if (!filter)
7744 goto fail;
7745 }
7746
7747 token = match_token(start, if_tokens, args);
7748 switch (token) {
7749 case IF_ACT_FILTER:
7750 case IF_ACT_START:
7751 filter->filter = 1;
7752
7753 case IF_ACT_STOP:
7754 if (state != IF_STATE_ACTION)
7755 goto fail;
7756
7757 state = IF_STATE_SOURCE;
7758 break;
7759
7760 case IF_SRC_KERNELADDR:
7761 case IF_SRC_KERNEL:
7762 kernel = 1;
7763
7764 case IF_SRC_FILEADDR:
7765 case IF_SRC_FILE:
7766 if (state != IF_STATE_SOURCE)
7767 goto fail;
7768
7769 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7770 filter->range = 1;
7771
7772 *args[0].to = 0;
7773 ret = kstrtoul(args[0].from, 0, &filter->offset);
7774 if (ret)
7775 goto fail;
7776
7777 if (filter->range) {
7778 *args[1].to = 0;
7779 ret = kstrtoul(args[1].from, 0, &filter->size);
7780 if (ret)
7781 goto fail;
7782 }
7783
7784 if (token == IF_SRC_FILE) {
7785 filename = match_strdup(&args[2]);
7786 if (!filename) {
7787 ret = -ENOMEM;
7788 goto fail;
7789 }
7790 }
7791
7792 state = IF_STATE_END;
7793 break;
7794
7795 default:
7796 goto fail;
7797 }
7798
7799 /*
7800 * Filter definition is fully parsed, validate and install it.
7801 * Make sure that it doesn't contradict itself or the event's
7802 * attribute.
7803 */
7804 if (state == IF_STATE_END) {
7805 if (kernel && event->attr.exclude_kernel)
7806 goto fail;
7807
7808 if (!kernel) {
7809 if (!filename)
7810 goto fail;
7811
7812 /* look up the path and grab its inode */
7813 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7814 if (ret)
7815 goto fail_free_name;
7816
7817 filter->inode = igrab(d_inode(path.dentry));
7818 path_put(&path);
7819 kfree(filename);
7820 filename = NULL;
7821
7822 ret = -EINVAL;
7823 if (!filter->inode ||
7824 !S_ISREG(filter->inode->i_mode))
7825 /* free_filters_list() will iput() */
7826 goto fail;
7827 }
7828
7829 /* ready to consume more filters */
7830 state = IF_STATE_ACTION;
7831 filter = NULL;
7832 }
7833 }
7834
7835 if (state != IF_STATE_ACTION)
7836 goto fail;
7837
7838 kfree(orig);
7839
7840 return 0;
7841
7842fail_free_name:
7843 kfree(filename);
7844fail:
7845 free_filters_list(filters);
7846 kfree(orig);
7847
7848 return ret;
7849}
7850
7851static int
7852perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7853{
7854 LIST_HEAD(filters);
7855 int ret;
7856
7857 /*
7858 * Since this is called in perf_ioctl() path, we're already holding
7859 * ctx::mutex.
7860 */
7861 lockdep_assert_held(&event->ctx->mutex);
7862
7863 if (WARN_ON_ONCE(event->parent))
7864 return -EINVAL;
7865
7866 /*
7867 * For now, we only support filtering in per-task events; doing so
7868 * for CPU-wide events requires additional context switching trickery,
7869 * since same object code will be mapped at different virtual
7870 * addresses in different processes.
7871 */
7872 if (!event->ctx->task)
7873 return -EOPNOTSUPP;
7874
7875 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7876 if (ret)
7877 return ret;
7878
7879 ret = event->pmu->addr_filters_validate(&filters);
7880 if (ret) {
7881 free_filters_list(&filters);
7882 return ret;
7883 }
7884
7885 /* remove existing filters, if any */
7886 perf_addr_filters_splice(event, &filters);
7887
7888 /* install new filters */
7889 perf_event_for_each_child(event, perf_event_addr_filters_apply);
7890
7891 return ret;
7892}
7893
c796bbbe
AS
7894static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7895{
7896 char *filter_str;
7897 int ret = -EINVAL;
7898
375637bc
AS
7899 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7900 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7901 !has_addr_filter(event))
c796bbbe
AS
7902 return -EINVAL;
7903
7904 filter_str = strndup_user(arg, PAGE_SIZE);
7905 if (IS_ERR(filter_str))
7906 return PTR_ERR(filter_str);
7907
7908 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7909 event->attr.type == PERF_TYPE_TRACEPOINT)
7910 ret = ftrace_profile_set_filter(event, event->attr.config,
7911 filter_str);
375637bc
AS
7912 else if (has_addr_filter(event))
7913 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
7914
7915 kfree(filter_str);
7916 return ret;
7917}
7918
b0a873eb
PZ
7919/*
7920 * hrtimer based swevent callback
7921 */
f29ac756 7922
b0a873eb 7923static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7924{
b0a873eb
PZ
7925 enum hrtimer_restart ret = HRTIMER_RESTART;
7926 struct perf_sample_data data;
7927 struct pt_regs *regs;
7928 struct perf_event *event;
7929 u64 period;
f29ac756 7930
b0a873eb 7931 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7932
7933 if (event->state != PERF_EVENT_STATE_ACTIVE)
7934 return HRTIMER_NORESTART;
7935
b0a873eb 7936 event->pmu->read(event);
f344011c 7937
fd0d000b 7938 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7939 regs = get_irq_regs();
7940
7941 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7942 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7943 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7944 ret = HRTIMER_NORESTART;
7945 }
24f1e32c 7946
b0a873eb
PZ
7947 period = max_t(u64, 10000, event->hw.sample_period);
7948 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7949
b0a873eb 7950 return ret;
f29ac756
PZ
7951}
7952
b0a873eb 7953static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7954{
b0a873eb 7955 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7956 s64 period;
7957
7958 if (!is_sampling_event(event))
7959 return;
f5ffe02e 7960
5d508e82
FBH
7961 period = local64_read(&hwc->period_left);
7962 if (period) {
7963 if (period < 0)
7964 period = 10000;
fa407f35 7965
5d508e82
FBH
7966 local64_set(&hwc->period_left, 0);
7967 } else {
7968 period = max_t(u64, 10000, hwc->sample_period);
7969 }
3497d206
TG
7970 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7971 HRTIMER_MODE_REL_PINNED);
24f1e32c 7972}
b0a873eb
PZ
7973
7974static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7975{
b0a873eb
PZ
7976 struct hw_perf_event *hwc = &event->hw;
7977
6c7e550f 7978 if (is_sampling_event(event)) {
b0a873eb 7979 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7980 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7981
7982 hrtimer_cancel(&hwc->hrtimer);
7983 }
24f1e32c
FW
7984}
7985
ba3dd36c
PZ
7986static void perf_swevent_init_hrtimer(struct perf_event *event)
7987{
7988 struct hw_perf_event *hwc = &event->hw;
7989
7990 if (!is_sampling_event(event))
7991 return;
7992
7993 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7994 hwc->hrtimer.function = perf_swevent_hrtimer;
7995
7996 /*
7997 * Since hrtimers have a fixed rate, we can do a static freq->period
7998 * mapping and avoid the whole period adjust feedback stuff.
7999 */
8000 if (event->attr.freq) {
8001 long freq = event->attr.sample_freq;
8002
8003 event->attr.sample_period = NSEC_PER_SEC / freq;
8004 hwc->sample_period = event->attr.sample_period;
8005 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8006 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8007 event->attr.freq = 0;
8008 }
8009}
8010
b0a873eb
PZ
8011/*
8012 * Software event: cpu wall time clock
8013 */
8014
8015static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8016{
b0a873eb
PZ
8017 s64 prev;
8018 u64 now;
8019
a4eaf7f1 8020 now = local_clock();
b0a873eb
PZ
8021 prev = local64_xchg(&event->hw.prev_count, now);
8022 local64_add(now - prev, &event->count);
24f1e32c 8023}
24f1e32c 8024
a4eaf7f1 8025static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8026{
a4eaf7f1 8027 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8028 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8029}
8030
a4eaf7f1 8031static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8032{
b0a873eb
PZ
8033 perf_swevent_cancel_hrtimer(event);
8034 cpu_clock_event_update(event);
8035}
f29ac756 8036
a4eaf7f1
PZ
8037static int cpu_clock_event_add(struct perf_event *event, int flags)
8038{
8039 if (flags & PERF_EF_START)
8040 cpu_clock_event_start(event, flags);
6a694a60 8041 perf_event_update_userpage(event);
a4eaf7f1
PZ
8042
8043 return 0;
8044}
8045
8046static void cpu_clock_event_del(struct perf_event *event, int flags)
8047{
8048 cpu_clock_event_stop(event, flags);
8049}
8050
b0a873eb
PZ
8051static void cpu_clock_event_read(struct perf_event *event)
8052{
8053 cpu_clock_event_update(event);
8054}
f344011c 8055
b0a873eb
PZ
8056static int cpu_clock_event_init(struct perf_event *event)
8057{
8058 if (event->attr.type != PERF_TYPE_SOFTWARE)
8059 return -ENOENT;
8060
8061 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8062 return -ENOENT;
8063
2481c5fa
SE
8064 /*
8065 * no branch sampling for software events
8066 */
8067 if (has_branch_stack(event))
8068 return -EOPNOTSUPP;
8069
ba3dd36c
PZ
8070 perf_swevent_init_hrtimer(event);
8071
b0a873eb 8072 return 0;
f29ac756
PZ
8073}
8074
b0a873eb 8075static struct pmu perf_cpu_clock = {
89a1e187
PZ
8076 .task_ctx_nr = perf_sw_context,
8077
34f43927
PZ
8078 .capabilities = PERF_PMU_CAP_NO_NMI,
8079
b0a873eb 8080 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8081 .add = cpu_clock_event_add,
8082 .del = cpu_clock_event_del,
8083 .start = cpu_clock_event_start,
8084 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8085 .read = cpu_clock_event_read,
8086};
8087
8088/*
8089 * Software event: task time clock
8090 */
8091
8092static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8093{
b0a873eb
PZ
8094 u64 prev;
8095 s64 delta;
5c92d124 8096
b0a873eb
PZ
8097 prev = local64_xchg(&event->hw.prev_count, now);
8098 delta = now - prev;
8099 local64_add(delta, &event->count);
8100}
5c92d124 8101
a4eaf7f1 8102static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8103{
a4eaf7f1 8104 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8105 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8106}
8107
a4eaf7f1 8108static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8109{
8110 perf_swevent_cancel_hrtimer(event);
8111 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8112}
8113
8114static int task_clock_event_add(struct perf_event *event, int flags)
8115{
8116 if (flags & PERF_EF_START)
8117 task_clock_event_start(event, flags);
6a694a60 8118 perf_event_update_userpage(event);
b0a873eb 8119
a4eaf7f1
PZ
8120 return 0;
8121}
8122
8123static void task_clock_event_del(struct perf_event *event, int flags)
8124{
8125 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8126}
8127
8128static void task_clock_event_read(struct perf_event *event)
8129{
768a06e2
PZ
8130 u64 now = perf_clock();
8131 u64 delta = now - event->ctx->timestamp;
8132 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8133
8134 task_clock_event_update(event, time);
8135}
8136
8137static int task_clock_event_init(struct perf_event *event)
6fb2915d 8138{
b0a873eb
PZ
8139 if (event->attr.type != PERF_TYPE_SOFTWARE)
8140 return -ENOENT;
8141
8142 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8143 return -ENOENT;
8144
2481c5fa
SE
8145 /*
8146 * no branch sampling for software events
8147 */
8148 if (has_branch_stack(event))
8149 return -EOPNOTSUPP;
8150
ba3dd36c
PZ
8151 perf_swevent_init_hrtimer(event);
8152
b0a873eb 8153 return 0;
6fb2915d
LZ
8154}
8155
b0a873eb 8156static struct pmu perf_task_clock = {
89a1e187
PZ
8157 .task_ctx_nr = perf_sw_context,
8158
34f43927
PZ
8159 .capabilities = PERF_PMU_CAP_NO_NMI,
8160
b0a873eb 8161 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8162 .add = task_clock_event_add,
8163 .del = task_clock_event_del,
8164 .start = task_clock_event_start,
8165 .stop = task_clock_event_stop,
b0a873eb
PZ
8166 .read = task_clock_event_read,
8167};
6fb2915d 8168
ad5133b7 8169static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8170{
e077df4f 8171}
6fb2915d 8172
fbbe0701
SB
8173static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8174{
8175}
8176
ad5133b7 8177static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8178{
ad5133b7 8179 return 0;
6fb2915d
LZ
8180}
8181
18ab2cd3 8182static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8183
8184static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8185{
fbbe0701
SB
8186 __this_cpu_write(nop_txn_flags, flags);
8187
8188 if (flags & ~PERF_PMU_TXN_ADD)
8189 return;
8190
ad5133b7 8191 perf_pmu_disable(pmu);
6fb2915d
LZ
8192}
8193
ad5133b7
PZ
8194static int perf_pmu_commit_txn(struct pmu *pmu)
8195{
fbbe0701
SB
8196 unsigned int flags = __this_cpu_read(nop_txn_flags);
8197
8198 __this_cpu_write(nop_txn_flags, 0);
8199
8200 if (flags & ~PERF_PMU_TXN_ADD)
8201 return 0;
8202
ad5133b7
PZ
8203 perf_pmu_enable(pmu);
8204 return 0;
8205}
e077df4f 8206
ad5133b7 8207static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8208{
fbbe0701
SB
8209 unsigned int flags = __this_cpu_read(nop_txn_flags);
8210
8211 __this_cpu_write(nop_txn_flags, 0);
8212
8213 if (flags & ~PERF_PMU_TXN_ADD)
8214 return;
8215
ad5133b7 8216 perf_pmu_enable(pmu);
24f1e32c
FW
8217}
8218
35edc2a5
PZ
8219static int perf_event_idx_default(struct perf_event *event)
8220{
c719f560 8221 return 0;
35edc2a5
PZ
8222}
8223
8dc85d54
PZ
8224/*
8225 * Ensures all contexts with the same task_ctx_nr have the same
8226 * pmu_cpu_context too.
8227 */
9e317041 8228static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8229{
8dc85d54 8230 struct pmu *pmu;
b326e956 8231
8dc85d54
PZ
8232 if (ctxn < 0)
8233 return NULL;
24f1e32c 8234
8dc85d54
PZ
8235 list_for_each_entry(pmu, &pmus, entry) {
8236 if (pmu->task_ctx_nr == ctxn)
8237 return pmu->pmu_cpu_context;
8238 }
24f1e32c 8239
8dc85d54 8240 return NULL;
24f1e32c
FW
8241}
8242
51676957 8243static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8244{
51676957
PZ
8245 int cpu;
8246
8247 for_each_possible_cpu(cpu) {
8248 struct perf_cpu_context *cpuctx;
8249
8250 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8251
3f1f3320
PZ
8252 if (cpuctx->unique_pmu == old_pmu)
8253 cpuctx->unique_pmu = pmu;
51676957
PZ
8254 }
8255}
8256
8257static void free_pmu_context(struct pmu *pmu)
8258{
8259 struct pmu *i;
f5ffe02e 8260
8dc85d54 8261 mutex_lock(&pmus_lock);
0475f9ea 8262 /*
8dc85d54 8263 * Like a real lame refcount.
0475f9ea 8264 */
51676957
PZ
8265 list_for_each_entry(i, &pmus, entry) {
8266 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8267 update_pmu_context(i, pmu);
8dc85d54 8268 goto out;
51676957 8269 }
8dc85d54 8270 }
d6d020e9 8271
51676957 8272 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8273out:
8274 mutex_unlock(&pmus_lock);
24f1e32c 8275}
6e855cd4
AS
8276
8277/*
8278 * Let userspace know that this PMU supports address range filtering:
8279 */
8280static ssize_t nr_addr_filters_show(struct device *dev,
8281 struct device_attribute *attr,
8282 char *page)
8283{
8284 struct pmu *pmu = dev_get_drvdata(dev);
8285
8286 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8287}
8288DEVICE_ATTR_RO(nr_addr_filters);
8289
2e80a82a 8290static struct idr pmu_idr;
d6d020e9 8291
abe43400
PZ
8292static ssize_t
8293type_show(struct device *dev, struct device_attribute *attr, char *page)
8294{
8295 struct pmu *pmu = dev_get_drvdata(dev);
8296
8297 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8298}
90826ca7 8299static DEVICE_ATTR_RO(type);
abe43400 8300
62b85639
SE
8301static ssize_t
8302perf_event_mux_interval_ms_show(struct device *dev,
8303 struct device_attribute *attr,
8304 char *page)
8305{
8306 struct pmu *pmu = dev_get_drvdata(dev);
8307
8308 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8309}
8310
272325c4
PZ
8311static DEFINE_MUTEX(mux_interval_mutex);
8312
62b85639
SE
8313static ssize_t
8314perf_event_mux_interval_ms_store(struct device *dev,
8315 struct device_attribute *attr,
8316 const char *buf, size_t count)
8317{
8318 struct pmu *pmu = dev_get_drvdata(dev);
8319 int timer, cpu, ret;
8320
8321 ret = kstrtoint(buf, 0, &timer);
8322 if (ret)
8323 return ret;
8324
8325 if (timer < 1)
8326 return -EINVAL;
8327
8328 /* same value, noting to do */
8329 if (timer == pmu->hrtimer_interval_ms)
8330 return count;
8331
272325c4 8332 mutex_lock(&mux_interval_mutex);
62b85639
SE
8333 pmu->hrtimer_interval_ms = timer;
8334
8335 /* update all cpuctx for this PMU */
272325c4
PZ
8336 get_online_cpus();
8337 for_each_online_cpu(cpu) {
62b85639
SE
8338 struct perf_cpu_context *cpuctx;
8339 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8340 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8341
272325c4
PZ
8342 cpu_function_call(cpu,
8343 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8344 }
272325c4
PZ
8345 put_online_cpus();
8346 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8347
8348 return count;
8349}
90826ca7 8350static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8351
90826ca7
GKH
8352static struct attribute *pmu_dev_attrs[] = {
8353 &dev_attr_type.attr,
8354 &dev_attr_perf_event_mux_interval_ms.attr,
8355 NULL,
abe43400 8356};
90826ca7 8357ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8358
8359static int pmu_bus_running;
8360static struct bus_type pmu_bus = {
8361 .name = "event_source",
90826ca7 8362 .dev_groups = pmu_dev_groups,
abe43400
PZ
8363};
8364
8365static void pmu_dev_release(struct device *dev)
8366{
8367 kfree(dev);
8368}
8369
8370static int pmu_dev_alloc(struct pmu *pmu)
8371{
8372 int ret = -ENOMEM;
8373
8374 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8375 if (!pmu->dev)
8376 goto out;
8377
0c9d42ed 8378 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8379 device_initialize(pmu->dev);
8380 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8381 if (ret)
8382 goto free_dev;
8383
8384 dev_set_drvdata(pmu->dev, pmu);
8385 pmu->dev->bus = &pmu_bus;
8386 pmu->dev->release = pmu_dev_release;
8387 ret = device_add(pmu->dev);
8388 if (ret)
8389 goto free_dev;
8390
6e855cd4
AS
8391 /* For PMUs with address filters, throw in an extra attribute: */
8392 if (pmu->nr_addr_filters)
8393 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8394
8395 if (ret)
8396 goto del_dev;
8397
abe43400
PZ
8398out:
8399 return ret;
8400
6e855cd4
AS
8401del_dev:
8402 device_del(pmu->dev);
8403
abe43400
PZ
8404free_dev:
8405 put_device(pmu->dev);
8406 goto out;
8407}
8408
547e9fd7 8409static struct lock_class_key cpuctx_mutex;
facc4307 8410static struct lock_class_key cpuctx_lock;
547e9fd7 8411
03d8e80b 8412int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8413{
108b02cf 8414 int cpu, ret;
24f1e32c 8415
b0a873eb 8416 mutex_lock(&pmus_lock);
33696fc0
PZ
8417 ret = -ENOMEM;
8418 pmu->pmu_disable_count = alloc_percpu(int);
8419 if (!pmu->pmu_disable_count)
8420 goto unlock;
f29ac756 8421
2e80a82a
PZ
8422 pmu->type = -1;
8423 if (!name)
8424 goto skip_type;
8425 pmu->name = name;
8426
8427 if (type < 0) {
0e9c3be2
TH
8428 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8429 if (type < 0) {
8430 ret = type;
2e80a82a
PZ
8431 goto free_pdc;
8432 }
8433 }
8434 pmu->type = type;
8435
abe43400
PZ
8436 if (pmu_bus_running) {
8437 ret = pmu_dev_alloc(pmu);
8438 if (ret)
8439 goto free_idr;
8440 }
8441
2e80a82a 8442skip_type:
26657848
PZ
8443 if (pmu->task_ctx_nr == perf_hw_context) {
8444 static int hw_context_taken = 0;
8445
5101ef20
MR
8446 /*
8447 * Other than systems with heterogeneous CPUs, it never makes
8448 * sense for two PMUs to share perf_hw_context. PMUs which are
8449 * uncore must use perf_invalid_context.
8450 */
8451 if (WARN_ON_ONCE(hw_context_taken &&
8452 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8453 pmu->task_ctx_nr = perf_invalid_context;
8454
8455 hw_context_taken = 1;
8456 }
8457
8dc85d54
PZ
8458 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8459 if (pmu->pmu_cpu_context)
8460 goto got_cpu_context;
f29ac756 8461
c4814202 8462 ret = -ENOMEM;
108b02cf
PZ
8463 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8464 if (!pmu->pmu_cpu_context)
abe43400 8465 goto free_dev;
f344011c 8466
108b02cf
PZ
8467 for_each_possible_cpu(cpu) {
8468 struct perf_cpu_context *cpuctx;
8469
8470 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8471 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8472 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8473 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8474 cpuctx->ctx.pmu = pmu;
9e630205 8475
272325c4 8476 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8477
3f1f3320 8478 cpuctx->unique_pmu = pmu;
108b02cf 8479 }
76e1d904 8480
8dc85d54 8481got_cpu_context:
ad5133b7
PZ
8482 if (!pmu->start_txn) {
8483 if (pmu->pmu_enable) {
8484 /*
8485 * If we have pmu_enable/pmu_disable calls, install
8486 * transaction stubs that use that to try and batch
8487 * hardware accesses.
8488 */
8489 pmu->start_txn = perf_pmu_start_txn;
8490 pmu->commit_txn = perf_pmu_commit_txn;
8491 pmu->cancel_txn = perf_pmu_cancel_txn;
8492 } else {
fbbe0701 8493 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8494 pmu->commit_txn = perf_pmu_nop_int;
8495 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8496 }
5c92d124 8497 }
15dbf27c 8498
ad5133b7
PZ
8499 if (!pmu->pmu_enable) {
8500 pmu->pmu_enable = perf_pmu_nop_void;
8501 pmu->pmu_disable = perf_pmu_nop_void;
8502 }
8503
35edc2a5
PZ
8504 if (!pmu->event_idx)
8505 pmu->event_idx = perf_event_idx_default;
8506
b0a873eb 8507 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8508 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8509 ret = 0;
8510unlock:
b0a873eb
PZ
8511 mutex_unlock(&pmus_lock);
8512
33696fc0 8513 return ret;
108b02cf 8514
abe43400
PZ
8515free_dev:
8516 device_del(pmu->dev);
8517 put_device(pmu->dev);
8518
2e80a82a
PZ
8519free_idr:
8520 if (pmu->type >= PERF_TYPE_MAX)
8521 idr_remove(&pmu_idr, pmu->type);
8522
108b02cf
PZ
8523free_pdc:
8524 free_percpu(pmu->pmu_disable_count);
8525 goto unlock;
f29ac756 8526}
c464c76e 8527EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8528
b0a873eb 8529void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8530{
b0a873eb
PZ
8531 mutex_lock(&pmus_lock);
8532 list_del_rcu(&pmu->entry);
8533 mutex_unlock(&pmus_lock);
5c92d124 8534
0475f9ea 8535 /*
cde8e884
PZ
8536 * We dereference the pmu list under both SRCU and regular RCU, so
8537 * synchronize against both of those.
0475f9ea 8538 */
b0a873eb 8539 synchronize_srcu(&pmus_srcu);
cde8e884 8540 synchronize_rcu();
d6d020e9 8541
33696fc0 8542 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8543 if (pmu->type >= PERF_TYPE_MAX)
8544 idr_remove(&pmu_idr, pmu->type);
6e855cd4
AS
8545 if (pmu->nr_addr_filters)
8546 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
abe43400
PZ
8547 device_del(pmu->dev);
8548 put_device(pmu->dev);
51676957 8549 free_pmu_context(pmu);
b0a873eb 8550}
c464c76e 8551EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8552
cc34b98b
MR
8553static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8554{
ccd41c86 8555 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8556 int ret;
8557
8558 if (!try_module_get(pmu->module))
8559 return -ENODEV;
ccd41c86
PZ
8560
8561 if (event->group_leader != event) {
8b10c5e2
PZ
8562 /*
8563 * This ctx->mutex can nest when we're called through
8564 * inheritance. See the perf_event_ctx_lock_nested() comment.
8565 */
8566 ctx = perf_event_ctx_lock_nested(event->group_leader,
8567 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8568 BUG_ON(!ctx);
8569 }
8570
cc34b98b
MR
8571 event->pmu = pmu;
8572 ret = pmu->event_init(event);
ccd41c86
PZ
8573
8574 if (ctx)
8575 perf_event_ctx_unlock(event->group_leader, ctx);
8576
cc34b98b
MR
8577 if (ret)
8578 module_put(pmu->module);
8579
8580 return ret;
8581}
8582
18ab2cd3 8583static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8584{
8585 struct pmu *pmu = NULL;
8586 int idx;
940c5b29 8587 int ret;
b0a873eb
PZ
8588
8589 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8590
8591 rcu_read_lock();
8592 pmu = idr_find(&pmu_idr, event->attr.type);
8593 rcu_read_unlock();
940c5b29 8594 if (pmu) {
cc34b98b 8595 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8596 if (ret)
8597 pmu = ERR_PTR(ret);
2e80a82a 8598 goto unlock;
940c5b29 8599 }
2e80a82a 8600
b0a873eb 8601 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8602 ret = perf_try_init_event(pmu, event);
b0a873eb 8603 if (!ret)
e5f4d339 8604 goto unlock;
76e1d904 8605
b0a873eb
PZ
8606 if (ret != -ENOENT) {
8607 pmu = ERR_PTR(ret);
e5f4d339 8608 goto unlock;
f344011c 8609 }
5c92d124 8610 }
e5f4d339
PZ
8611 pmu = ERR_PTR(-ENOENT);
8612unlock:
b0a873eb 8613 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8614
4aeb0b42 8615 return pmu;
5c92d124
IM
8616}
8617
4beb31f3
FW
8618static void account_event_cpu(struct perf_event *event, int cpu)
8619{
8620 if (event->parent)
8621 return;
8622
4beb31f3
FW
8623 if (is_cgroup_event(event))
8624 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8625}
8626
555e0c1e
FW
8627/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8628static void account_freq_event_nohz(void)
8629{
8630#ifdef CONFIG_NO_HZ_FULL
8631 /* Lock so we don't race with concurrent unaccount */
8632 spin_lock(&nr_freq_lock);
8633 if (atomic_inc_return(&nr_freq_events) == 1)
8634 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8635 spin_unlock(&nr_freq_lock);
8636#endif
8637}
8638
8639static void account_freq_event(void)
8640{
8641 if (tick_nohz_full_enabled())
8642 account_freq_event_nohz();
8643 else
8644 atomic_inc(&nr_freq_events);
8645}
8646
8647
766d6c07
FW
8648static void account_event(struct perf_event *event)
8649{
25432ae9
PZ
8650 bool inc = false;
8651
4beb31f3
FW
8652 if (event->parent)
8653 return;
8654
766d6c07 8655 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8656 inc = true;
766d6c07
FW
8657 if (event->attr.mmap || event->attr.mmap_data)
8658 atomic_inc(&nr_mmap_events);
8659 if (event->attr.comm)
8660 atomic_inc(&nr_comm_events);
8661 if (event->attr.task)
8662 atomic_inc(&nr_task_events);
555e0c1e
FW
8663 if (event->attr.freq)
8664 account_freq_event();
45ac1403
AH
8665 if (event->attr.context_switch) {
8666 atomic_inc(&nr_switch_events);
25432ae9 8667 inc = true;
45ac1403 8668 }
4beb31f3 8669 if (has_branch_stack(event))
25432ae9 8670 inc = true;
4beb31f3 8671 if (is_cgroup_event(event))
25432ae9
PZ
8672 inc = true;
8673
9107c89e
PZ
8674 if (inc) {
8675 if (atomic_inc_not_zero(&perf_sched_count))
8676 goto enabled;
8677
8678 mutex_lock(&perf_sched_mutex);
8679 if (!atomic_read(&perf_sched_count)) {
8680 static_branch_enable(&perf_sched_events);
8681 /*
8682 * Guarantee that all CPUs observe they key change and
8683 * call the perf scheduling hooks before proceeding to
8684 * install events that need them.
8685 */
8686 synchronize_sched();
8687 }
8688 /*
8689 * Now that we have waited for the sync_sched(), allow further
8690 * increments to by-pass the mutex.
8691 */
8692 atomic_inc(&perf_sched_count);
8693 mutex_unlock(&perf_sched_mutex);
8694 }
8695enabled:
4beb31f3
FW
8696
8697 account_event_cpu(event, event->cpu);
766d6c07
FW
8698}
8699
0793a61d 8700/*
cdd6c482 8701 * Allocate and initialize a event structure
0793a61d 8702 */
cdd6c482 8703static struct perf_event *
c3f00c70 8704perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8705 struct task_struct *task,
8706 struct perf_event *group_leader,
8707 struct perf_event *parent_event,
4dc0da86 8708 perf_overflow_handler_t overflow_handler,
79dff51e 8709 void *context, int cgroup_fd)
0793a61d 8710{
51b0fe39 8711 struct pmu *pmu;
cdd6c482
IM
8712 struct perf_event *event;
8713 struct hw_perf_event *hwc;
90983b16 8714 long err = -EINVAL;
0793a61d 8715
66832eb4
ON
8716 if ((unsigned)cpu >= nr_cpu_ids) {
8717 if (!task || cpu != -1)
8718 return ERR_PTR(-EINVAL);
8719 }
8720
c3f00c70 8721 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8722 if (!event)
d5d2bc0d 8723 return ERR_PTR(-ENOMEM);
0793a61d 8724
04289bb9 8725 /*
cdd6c482 8726 * Single events are their own group leaders, with an
04289bb9
IM
8727 * empty sibling list:
8728 */
8729 if (!group_leader)
cdd6c482 8730 group_leader = event;
04289bb9 8731
cdd6c482
IM
8732 mutex_init(&event->child_mutex);
8733 INIT_LIST_HEAD(&event->child_list);
fccc714b 8734
cdd6c482
IM
8735 INIT_LIST_HEAD(&event->group_entry);
8736 INIT_LIST_HEAD(&event->event_entry);
8737 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8738 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8739 INIT_LIST_HEAD(&event->active_entry);
375637bc 8740 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
8741 INIT_HLIST_NODE(&event->hlist_entry);
8742
10c6db11 8743
cdd6c482 8744 init_waitqueue_head(&event->waitq);
e360adbe 8745 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8746
cdd6c482 8747 mutex_init(&event->mmap_mutex);
375637bc 8748 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 8749
a6fa941d 8750 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8751 event->cpu = cpu;
8752 event->attr = *attr;
8753 event->group_leader = group_leader;
8754 event->pmu = NULL;
cdd6c482 8755 event->oncpu = -1;
a96bbc16 8756
cdd6c482 8757 event->parent = parent_event;
b84fbc9f 8758
17cf22c3 8759 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8760 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8761
cdd6c482 8762 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8763
d580ff86
PZ
8764 if (task) {
8765 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8766 /*
50f16a8b
PZ
8767 * XXX pmu::event_init needs to know what task to account to
8768 * and we cannot use the ctx information because we need the
8769 * pmu before we get a ctx.
d580ff86 8770 */
50f16a8b 8771 event->hw.target = task;
d580ff86
PZ
8772 }
8773
34f43927
PZ
8774 event->clock = &local_clock;
8775 if (parent_event)
8776 event->clock = parent_event->clock;
8777
4dc0da86 8778 if (!overflow_handler && parent_event) {
b326e956 8779 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8780 context = parent_event->overflow_handler_context;
8781 }
66832eb4 8782
1879445d
WN
8783 if (overflow_handler) {
8784 event->overflow_handler = overflow_handler;
8785 event->overflow_handler_context = context;
9ecda41a
WN
8786 } else if (is_write_backward(event)){
8787 event->overflow_handler = perf_event_output_backward;
8788 event->overflow_handler_context = NULL;
1879445d 8789 } else {
9ecda41a 8790 event->overflow_handler = perf_event_output_forward;
1879445d
WN
8791 event->overflow_handler_context = NULL;
8792 }
97eaf530 8793
0231bb53 8794 perf_event__state_init(event);
a86ed508 8795
4aeb0b42 8796 pmu = NULL;
b8e83514 8797
cdd6c482 8798 hwc = &event->hw;
bd2b5b12 8799 hwc->sample_period = attr->sample_period;
0d48696f 8800 if (attr->freq && attr->sample_freq)
bd2b5b12 8801 hwc->sample_period = 1;
eced1dfc 8802 hwc->last_period = hwc->sample_period;
bd2b5b12 8803
e7850595 8804 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8805
2023b359 8806 /*
cdd6c482 8807 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8808 */
3dab77fb 8809 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8810 goto err_ns;
a46a2300
YZ
8811
8812 if (!has_branch_stack(event))
8813 event->attr.branch_sample_type = 0;
2023b359 8814
79dff51e
MF
8815 if (cgroup_fd != -1) {
8816 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8817 if (err)
8818 goto err_ns;
8819 }
8820
b0a873eb 8821 pmu = perf_init_event(event);
4aeb0b42 8822 if (!pmu)
90983b16
FW
8823 goto err_ns;
8824 else if (IS_ERR(pmu)) {
4aeb0b42 8825 err = PTR_ERR(pmu);
90983b16 8826 goto err_ns;
621a01ea 8827 }
d5d2bc0d 8828
bed5b25a
AS
8829 err = exclusive_event_init(event);
8830 if (err)
8831 goto err_pmu;
8832
375637bc
AS
8833 if (has_addr_filter(event)) {
8834 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8835 sizeof(unsigned long),
8836 GFP_KERNEL);
8837 if (!event->addr_filters_offs)
8838 goto err_per_task;
8839
8840 /* force hw sync on the address filters */
8841 event->addr_filters_gen = 1;
8842 }
8843
cdd6c482 8844 if (!event->parent) {
927c7a9e
FW
8845 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8846 err = get_callchain_buffers();
90983b16 8847 if (err)
375637bc 8848 goto err_addr_filters;
d010b332 8849 }
f344011c 8850 }
9ee318a7 8851
927a5570
AS
8852 /* symmetric to unaccount_event() in _free_event() */
8853 account_event(event);
8854
cdd6c482 8855 return event;
90983b16 8856
375637bc
AS
8857err_addr_filters:
8858 kfree(event->addr_filters_offs);
8859
bed5b25a
AS
8860err_per_task:
8861 exclusive_event_destroy(event);
8862
90983b16
FW
8863err_pmu:
8864 if (event->destroy)
8865 event->destroy(event);
c464c76e 8866 module_put(pmu->module);
90983b16 8867err_ns:
79dff51e
MF
8868 if (is_cgroup_event(event))
8869 perf_detach_cgroup(event);
90983b16
FW
8870 if (event->ns)
8871 put_pid_ns(event->ns);
8872 kfree(event);
8873
8874 return ERR_PTR(err);
0793a61d
TG
8875}
8876
cdd6c482
IM
8877static int perf_copy_attr(struct perf_event_attr __user *uattr,
8878 struct perf_event_attr *attr)
974802ea 8879{
974802ea 8880 u32 size;
cdf8073d 8881 int ret;
974802ea
PZ
8882
8883 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8884 return -EFAULT;
8885
8886 /*
8887 * zero the full structure, so that a short copy will be nice.
8888 */
8889 memset(attr, 0, sizeof(*attr));
8890
8891 ret = get_user(size, &uattr->size);
8892 if (ret)
8893 return ret;
8894
8895 if (size > PAGE_SIZE) /* silly large */
8896 goto err_size;
8897
8898 if (!size) /* abi compat */
8899 size = PERF_ATTR_SIZE_VER0;
8900
8901 if (size < PERF_ATTR_SIZE_VER0)
8902 goto err_size;
8903
8904 /*
8905 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8906 * ensure all the unknown bits are 0 - i.e. new
8907 * user-space does not rely on any kernel feature
8908 * extensions we dont know about yet.
974802ea
PZ
8909 */
8910 if (size > sizeof(*attr)) {
cdf8073d
IS
8911 unsigned char __user *addr;
8912 unsigned char __user *end;
8913 unsigned char val;
974802ea 8914
cdf8073d
IS
8915 addr = (void __user *)uattr + sizeof(*attr);
8916 end = (void __user *)uattr + size;
974802ea 8917
cdf8073d 8918 for (; addr < end; addr++) {
974802ea
PZ
8919 ret = get_user(val, addr);
8920 if (ret)
8921 return ret;
8922 if (val)
8923 goto err_size;
8924 }
b3e62e35 8925 size = sizeof(*attr);
974802ea
PZ
8926 }
8927
8928 ret = copy_from_user(attr, uattr, size);
8929 if (ret)
8930 return -EFAULT;
8931
cd757645 8932 if (attr->__reserved_1)
974802ea
PZ
8933 return -EINVAL;
8934
8935 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8936 return -EINVAL;
8937
8938 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8939 return -EINVAL;
8940
bce38cd5
SE
8941 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8942 u64 mask = attr->branch_sample_type;
8943
8944 /* only using defined bits */
8945 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8946 return -EINVAL;
8947
8948 /* at least one branch bit must be set */
8949 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8950 return -EINVAL;
8951
bce38cd5
SE
8952 /* propagate priv level, when not set for branch */
8953 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8954
8955 /* exclude_kernel checked on syscall entry */
8956 if (!attr->exclude_kernel)
8957 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8958
8959 if (!attr->exclude_user)
8960 mask |= PERF_SAMPLE_BRANCH_USER;
8961
8962 if (!attr->exclude_hv)
8963 mask |= PERF_SAMPLE_BRANCH_HV;
8964 /*
8965 * adjust user setting (for HW filter setup)
8966 */
8967 attr->branch_sample_type = mask;
8968 }
e712209a
SE
8969 /* privileged levels capture (kernel, hv): check permissions */
8970 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8971 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8972 return -EACCES;
bce38cd5 8973 }
4018994f 8974
c5ebcedb 8975 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8976 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8977 if (ret)
8978 return ret;
8979 }
8980
8981 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8982 if (!arch_perf_have_user_stack_dump())
8983 return -ENOSYS;
8984
8985 /*
8986 * We have __u32 type for the size, but so far
8987 * we can only use __u16 as maximum due to the
8988 * __u16 sample size limit.
8989 */
8990 if (attr->sample_stack_user >= USHRT_MAX)
8991 ret = -EINVAL;
8992 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8993 ret = -EINVAL;
8994 }
4018994f 8995
60e2364e
SE
8996 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8997 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8998out:
8999 return ret;
9000
9001err_size:
9002 put_user(sizeof(*attr), &uattr->size);
9003 ret = -E2BIG;
9004 goto out;
9005}
9006
ac9721f3
PZ
9007static int
9008perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9009{
b69cf536 9010 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9011 int ret = -EINVAL;
9012
ac9721f3 9013 if (!output_event)
a4be7c27
PZ
9014 goto set;
9015
ac9721f3
PZ
9016 /* don't allow circular references */
9017 if (event == output_event)
a4be7c27
PZ
9018 goto out;
9019
0f139300
PZ
9020 /*
9021 * Don't allow cross-cpu buffers
9022 */
9023 if (output_event->cpu != event->cpu)
9024 goto out;
9025
9026 /*
76369139 9027 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9028 */
9029 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9030 goto out;
9031
34f43927
PZ
9032 /*
9033 * Mixing clocks in the same buffer is trouble you don't need.
9034 */
9035 if (output_event->clock != event->clock)
9036 goto out;
9037
9ecda41a
WN
9038 /*
9039 * Either writing ring buffer from beginning or from end.
9040 * Mixing is not allowed.
9041 */
9042 if (is_write_backward(output_event) != is_write_backward(event))
9043 goto out;
9044
45bfb2e5
PZ
9045 /*
9046 * If both events generate aux data, they must be on the same PMU
9047 */
9048 if (has_aux(event) && has_aux(output_event) &&
9049 event->pmu != output_event->pmu)
9050 goto out;
9051
a4be7c27 9052set:
cdd6c482 9053 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9054 /* Can't redirect output if we've got an active mmap() */
9055 if (atomic_read(&event->mmap_count))
9056 goto unlock;
a4be7c27 9057
ac9721f3 9058 if (output_event) {
76369139
FW
9059 /* get the rb we want to redirect to */
9060 rb = ring_buffer_get(output_event);
9061 if (!rb)
ac9721f3 9062 goto unlock;
a4be7c27
PZ
9063 }
9064
b69cf536 9065 ring_buffer_attach(event, rb);
9bb5d40c 9066
a4be7c27 9067 ret = 0;
ac9721f3
PZ
9068unlock:
9069 mutex_unlock(&event->mmap_mutex);
9070
a4be7c27 9071out:
a4be7c27
PZ
9072 return ret;
9073}
9074
f63a8daa
PZ
9075static void mutex_lock_double(struct mutex *a, struct mutex *b)
9076{
9077 if (b < a)
9078 swap(a, b);
9079
9080 mutex_lock(a);
9081 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9082}
9083
34f43927
PZ
9084static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9085{
9086 bool nmi_safe = false;
9087
9088 switch (clk_id) {
9089 case CLOCK_MONOTONIC:
9090 event->clock = &ktime_get_mono_fast_ns;
9091 nmi_safe = true;
9092 break;
9093
9094 case CLOCK_MONOTONIC_RAW:
9095 event->clock = &ktime_get_raw_fast_ns;
9096 nmi_safe = true;
9097 break;
9098
9099 case CLOCK_REALTIME:
9100 event->clock = &ktime_get_real_ns;
9101 break;
9102
9103 case CLOCK_BOOTTIME:
9104 event->clock = &ktime_get_boot_ns;
9105 break;
9106
9107 case CLOCK_TAI:
9108 event->clock = &ktime_get_tai_ns;
9109 break;
9110
9111 default:
9112 return -EINVAL;
9113 }
9114
9115 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9116 return -EINVAL;
9117
9118 return 0;
9119}
9120
0793a61d 9121/**
cdd6c482 9122 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9123 *
cdd6c482 9124 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9125 * @pid: target pid
9f66a381 9126 * @cpu: target cpu
cdd6c482 9127 * @group_fd: group leader event fd
0793a61d 9128 */
cdd6c482
IM
9129SYSCALL_DEFINE5(perf_event_open,
9130 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9131 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9132{
b04243ef
PZ
9133 struct perf_event *group_leader = NULL, *output_event = NULL;
9134 struct perf_event *event, *sibling;
cdd6c482 9135 struct perf_event_attr attr;
f63a8daa 9136 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9137 struct file *event_file = NULL;
2903ff01 9138 struct fd group = {NULL, 0};
38a81da2 9139 struct task_struct *task = NULL;
89a1e187 9140 struct pmu *pmu;
ea635c64 9141 int event_fd;
b04243ef 9142 int move_group = 0;
dc86cabe 9143 int err;
a21b0b35 9144 int f_flags = O_RDWR;
79dff51e 9145 int cgroup_fd = -1;
0793a61d 9146
2743a5b0 9147 /* for future expandability... */
e5d1367f 9148 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9149 return -EINVAL;
9150
dc86cabe
IM
9151 err = perf_copy_attr(attr_uptr, &attr);
9152 if (err)
9153 return err;
eab656ae 9154
0764771d
PZ
9155 if (!attr.exclude_kernel) {
9156 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9157 return -EACCES;
9158 }
9159
df58ab24 9160 if (attr.freq) {
cdd6c482 9161 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9162 return -EINVAL;
0819b2e3
PZ
9163 } else {
9164 if (attr.sample_period & (1ULL << 63))
9165 return -EINVAL;
df58ab24
PZ
9166 }
9167
e5d1367f
SE
9168 /*
9169 * In cgroup mode, the pid argument is used to pass the fd
9170 * opened to the cgroup directory in cgroupfs. The cpu argument
9171 * designates the cpu on which to monitor threads from that
9172 * cgroup.
9173 */
9174 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9175 return -EINVAL;
9176
a21b0b35
YD
9177 if (flags & PERF_FLAG_FD_CLOEXEC)
9178 f_flags |= O_CLOEXEC;
9179
9180 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9181 if (event_fd < 0)
9182 return event_fd;
9183
ac9721f3 9184 if (group_fd != -1) {
2903ff01
AV
9185 err = perf_fget_light(group_fd, &group);
9186 if (err)
d14b12d7 9187 goto err_fd;
2903ff01 9188 group_leader = group.file->private_data;
ac9721f3
PZ
9189 if (flags & PERF_FLAG_FD_OUTPUT)
9190 output_event = group_leader;
9191 if (flags & PERF_FLAG_FD_NO_GROUP)
9192 group_leader = NULL;
9193 }
9194
e5d1367f 9195 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9196 task = find_lively_task_by_vpid(pid);
9197 if (IS_ERR(task)) {
9198 err = PTR_ERR(task);
9199 goto err_group_fd;
9200 }
9201 }
9202
1f4ee503
PZ
9203 if (task && group_leader &&
9204 group_leader->attr.inherit != attr.inherit) {
9205 err = -EINVAL;
9206 goto err_task;
9207 }
9208
fbfc623f
YZ
9209 get_online_cpus();
9210
79c9ce57
PZ
9211 if (task) {
9212 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9213 if (err)
9214 goto err_cpus;
9215
9216 /*
9217 * Reuse ptrace permission checks for now.
9218 *
9219 * We must hold cred_guard_mutex across this and any potential
9220 * perf_install_in_context() call for this new event to
9221 * serialize against exec() altering our credentials (and the
9222 * perf_event_exit_task() that could imply).
9223 */
9224 err = -EACCES;
9225 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9226 goto err_cred;
9227 }
9228
79dff51e
MF
9229 if (flags & PERF_FLAG_PID_CGROUP)
9230 cgroup_fd = pid;
9231
4dc0da86 9232 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9233 NULL, NULL, cgroup_fd);
d14b12d7
SE
9234 if (IS_ERR(event)) {
9235 err = PTR_ERR(event);
79c9ce57 9236 goto err_cred;
d14b12d7
SE
9237 }
9238
53b25335
VW
9239 if (is_sampling_event(event)) {
9240 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9241 err = -ENOTSUPP;
9242 goto err_alloc;
9243 }
9244 }
9245
89a1e187
PZ
9246 /*
9247 * Special case software events and allow them to be part of
9248 * any hardware group.
9249 */
9250 pmu = event->pmu;
b04243ef 9251
34f43927
PZ
9252 if (attr.use_clockid) {
9253 err = perf_event_set_clock(event, attr.clockid);
9254 if (err)
9255 goto err_alloc;
9256 }
9257
b04243ef
PZ
9258 if (group_leader &&
9259 (is_software_event(event) != is_software_event(group_leader))) {
9260 if (is_software_event(event)) {
9261 /*
9262 * If event and group_leader are not both a software
9263 * event, and event is, then group leader is not.
9264 *
9265 * Allow the addition of software events to !software
9266 * groups, this is safe because software events never
9267 * fail to schedule.
9268 */
9269 pmu = group_leader->pmu;
9270 } else if (is_software_event(group_leader) &&
9271 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9272 /*
9273 * In case the group is a pure software group, and we
9274 * try to add a hardware event, move the whole group to
9275 * the hardware context.
9276 */
9277 move_group = 1;
9278 }
9279 }
89a1e187
PZ
9280
9281 /*
9282 * Get the target context (task or percpu):
9283 */
4af57ef2 9284 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9285 if (IS_ERR(ctx)) {
9286 err = PTR_ERR(ctx);
c6be5a5c 9287 goto err_alloc;
89a1e187
PZ
9288 }
9289
bed5b25a
AS
9290 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9291 err = -EBUSY;
9292 goto err_context;
9293 }
9294
ccff286d 9295 /*
cdd6c482 9296 * Look up the group leader (we will attach this event to it):
04289bb9 9297 */
ac9721f3 9298 if (group_leader) {
dc86cabe 9299 err = -EINVAL;
04289bb9 9300
04289bb9 9301 /*
ccff286d
IM
9302 * Do not allow a recursive hierarchy (this new sibling
9303 * becoming part of another group-sibling):
9304 */
9305 if (group_leader->group_leader != group_leader)
c3f00c70 9306 goto err_context;
34f43927
PZ
9307
9308 /* All events in a group should have the same clock */
9309 if (group_leader->clock != event->clock)
9310 goto err_context;
9311
ccff286d
IM
9312 /*
9313 * Do not allow to attach to a group in a different
9314 * task or CPU context:
04289bb9 9315 */
b04243ef 9316 if (move_group) {
c3c87e77
PZ
9317 /*
9318 * Make sure we're both on the same task, or both
9319 * per-cpu events.
9320 */
9321 if (group_leader->ctx->task != ctx->task)
9322 goto err_context;
9323
9324 /*
9325 * Make sure we're both events for the same CPU;
9326 * grouping events for different CPUs is broken; since
9327 * you can never concurrently schedule them anyhow.
9328 */
9329 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9330 goto err_context;
9331 } else {
9332 if (group_leader->ctx != ctx)
9333 goto err_context;
9334 }
9335
3b6f9e5c
PM
9336 /*
9337 * Only a group leader can be exclusive or pinned
9338 */
0d48696f 9339 if (attr.exclusive || attr.pinned)
c3f00c70 9340 goto err_context;
ac9721f3
PZ
9341 }
9342
9343 if (output_event) {
9344 err = perf_event_set_output(event, output_event);
9345 if (err)
c3f00c70 9346 goto err_context;
ac9721f3 9347 }
0793a61d 9348
a21b0b35
YD
9349 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9350 f_flags);
ea635c64
AV
9351 if (IS_ERR(event_file)) {
9352 err = PTR_ERR(event_file);
201c2f85 9353 event_file = NULL;
c3f00c70 9354 goto err_context;
ea635c64 9355 }
9b51f66d 9356
b04243ef 9357 if (move_group) {
f63a8daa 9358 gctx = group_leader->ctx;
f55fc2a5 9359 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9360 if (gctx->task == TASK_TOMBSTONE) {
9361 err = -ESRCH;
9362 goto err_locked;
9363 }
f55fc2a5
PZ
9364 } else {
9365 mutex_lock(&ctx->mutex);
9366 }
9367
84c4e620
PZ
9368 if (ctx->task == TASK_TOMBSTONE) {
9369 err = -ESRCH;
9370 goto err_locked;
9371 }
9372
a723968c
PZ
9373 if (!perf_event_validate_size(event)) {
9374 err = -E2BIG;
9375 goto err_locked;
9376 }
9377
f55fc2a5
PZ
9378 /*
9379 * Must be under the same ctx::mutex as perf_install_in_context(),
9380 * because we need to serialize with concurrent event creation.
9381 */
9382 if (!exclusive_event_installable(event, ctx)) {
9383 /* exclusive and group stuff are assumed mutually exclusive */
9384 WARN_ON_ONCE(move_group);
f63a8daa 9385
f55fc2a5
PZ
9386 err = -EBUSY;
9387 goto err_locked;
9388 }
f63a8daa 9389
f55fc2a5
PZ
9390 WARN_ON_ONCE(ctx->parent_ctx);
9391
79c9ce57
PZ
9392 /*
9393 * This is the point on no return; we cannot fail hereafter. This is
9394 * where we start modifying current state.
9395 */
9396
f55fc2a5 9397 if (move_group) {
f63a8daa
PZ
9398 /*
9399 * See perf_event_ctx_lock() for comments on the details
9400 * of swizzling perf_event::ctx.
9401 */
45a0e07a 9402 perf_remove_from_context(group_leader, 0);
0231bb53 9403
b04243ef
PZ
9404 list_for_each_entry(sibling, &group_leader->sibling_list,
9405 group_entry) {
45a0e07a 9406 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9407 put_ctx(gctx);
9408 }
b04243ef 9409
f63a8daa
PZ
9410 /*
9411 * Wait for everybody to stop referencing the events through
9412 * the old lists, before installing it on new lists.
9413 */
0cda4c02 9414 synchronize_rcu();
f63a8daa 9415
8f95b435
PZI
9416 /*
9417 * Install the group siblings before the group leader.
9418 *
9419 * Because a group leader will try and install the entire group
9420 * (through the sibling list, which is still in-tact), we can
9421 * end up with siblings installed in the wrong context.
9422 *
9423 * By installing siblings first we NO-OP because they're not
9424 * reachable through the group lists.
9425 */
b04243ef
PZ
9426 list_for_each_entry(sibling, &group_leader->sibling_list,
9427 group_entry) {
8f95b435 9428 perf_event__state_init(sibling);
9fc81d87 9429 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9430 get_ctx(ctx);
9431 }
8f95b435
PZI
9432
9433 /*
9434 * Removing from the context ends up with disabled
9435 * event. What we want here is event in the initial
9436 * startup state, ready to be add into new context.
9437 */
9438 perf_event__state_init(group_leader);
9439 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9440 get_ctx(ctx);
b04243ef 9441
f55fc2a5
PZ
9442 /*
9443 * Now that all events are installed in @ctx, nothing
9444 * references @gctx anymore, so drop the last reference we have
9445 * on it.
9446 */
9447 put_ctx(gctx);
bed5b25a
AS
9448 }
9449
f73e22ab
PZ
9450 /*
9451 * Precalculate sample_data sizes; do while holding ctx::mutex such
9452 * that we're serialized against further additions and before
9453 * perf_install_in_context() which is the point the event is active and
9454 * can use these values.
9455 */
9456 perf_event__header_size(event);
9457 perf_event__id_header_size(event);
9458
78cd2c74
PZ
9459 event->owner = current;
9460
e2d37cd2 9461 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9462 perf_unpin_context(ctx);
f63a8daa 9463
f55fc2a5 9464 if (move_group)
f63a8daa 9465 mutex_unlock(&gctx->mutex);
d859e29f 9466 mutex_unlock(&ctx->mutex);
9b51f66d 9467
79c9ce57
PZ
9468 if (task) {
9469 mutex_unlock(&task->signal->cred_guard_mutex);
9470 put_task_struct(task);
9471 }
9472
fbfc623f
YZ
9473 put_online_cpus();
9474
cdd6c482
IM
9475 mutex_lock(&current->perf_event_mutex);
9476 list_add_tail(&event->owner_entry, &current->perf_event_list);
9477 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9478
8a49542c
PZ
9479 /*
9480 * Drop the reference on the group_event after placing the
9481 * new event on the sibling_list. This ensures destruction
9482 * of the group leader will find the pointer to itself in
9483 * perf_group_detach().
9484 */
2903ff01 9485 fdput(group);
ea635c64
AV
9486 fd_install(event_fd, event_file);
9487 return event_fd;
0793a61d 9488
f55fc2a5
PZ
9489err_locked:
9490 if (move_group)
9491 mutex_unlock(&gctx->mutex);
9492 mutex_unlock(&ctx->mutex);
9493/* err_file: */
9494 fput(event_file);
c3f00c70 9495err_context:
fe4b04fa 9496 perf_unpin_context(ctx);
ea635c64 9497 put_ctx(ctx);
c6be5a5c 9498err_alloc:
13005627
PZ
9499 /*
9500 * If event_file is set, the fput() above will have called ->release()
9501 * and that will take care of freeing the event.
9502 */
9503 if (!event_file)
9504 free_event(event);
79c9ce57
PZ
9505err_cred:
9506 if (task)
9507 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9508err_cpus:
fbfc623f 9509 put_online_cpus();
1f4ee503 9510err_task:
e7d0bc04
PZ
9511 if (task)
9512 put_task_struct(task);
89a1e187 9513err_group_fd:
2903ff01 9514 fdput(group);
ea635c64
AV
9515err_fd:
9516 put_unused_fd(event_fd);
dc86cabe 9517 return err;
0793a61d
TG
9518}
9519
fb0459d7
AV
9520/**
9521 * perf_event_create_kernel_counter
9522 *
9523 * @attr: attributes of the counter to create
9524 * @cpu: cpu in which the counter is bound
38a81da2 9525 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9526 */
9527struct perf_event *
9528perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9529 struct task_struct *task,
4dc0da86
AK
9530 perf_overflow_handler_t overflow_handler,
9531 void *context)
fb0459d7 9532{
fb0459d7 9533 struct perf_event_context *ctx;
c3f00c70 9534 struct perf_event *event;
fb0459d7 9535 int err;
d859e29f 9536
fb0459d7
AV
9537 /*
9538 * Get the target context (task or percpu):
9539 */
d859e29f 9540
4dc0da86 9541 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9542 overflow_handler, context, -1);
c3f00c70
PZ
9543 if (IS_ERR(event)) {
9544 err = PTR_ERR(event);
9545 goto err;
9546 }
d859e29f 9547
f8697762 9548 /* Mark owner so we could distinguish it from user events. */
63b6da39 9549 event->owner = TASK_TOMBSTONE;
f8697762 9550
4af57ef2 9551 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9552 if (IS_ERR(ctx)) {
9553 err = PTR_ERR(ctx);
c3f00c70 9554 goto err_free;
d859e29f 9555 }
fb0459d7 9556
fb0459d7
AV
9557 WARN_ON_ONCE(ctx->parent_ctx);
9558 mutex_lock(&ctx->mutex);
84c4e620
PZ
9559 if (ctx->task == TASK_TOMBSTONE) {
9560 err = -ESRCH;
9561 goto err_unlock;
9562 }
9563
bed5b25a 9564 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9565 err = -EBUSY;
84c4e620 9566 goto err_unlock;
bed5b25a
AS
9567 }
9568
fb0459d7 9569 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9570 perf_unpin_context(ctx);
fb0459d7
AV
9571 mutex_unlock(&ctx->mutex);
9572
fb0459d7
AV
9573 return event;
9574
84c4e620
PZ
9575err_unlock:
9576 mutex_unlock(&ctx->mutex);
9577 perf_unpin_context(ctx);
9578 put_ctx(ctx);
c3f00c70
PZ
9579err_free:
9580 free_event(event);
9581err:
c6567f64 9582 return ERR_PTR(err);
9b51f66d 9583}
fb0459d7 9584EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9585
0cda4c02
YZ
9586void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9587{
9588 struct perf_event_context *src_ctx;
9589 struct perf_event_context *dst_ctx;
9590 struct perf_event *event, *tmp;
9591 LIST_HEAD(events);
9592
9593 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9594 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9595
f63a8daa
PZ
9596 /*
9597 * See perf_event_ctx_lock() for comments on the details
9598 * of swizzling perf_event::ctx.
9599 */
9600 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9601 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9602 event_entry) {
45a0e07a 9603 perf_remove_from_context(event, 0);
9a545de0 9604 unaccount_event_cpu(event, src_cpu);
0cda4c02 9605 put_ctx(src_ctx);
9886167d 9606 list_add(&event->migrate_entry, &events);
0cda4c02 9607 }
0cda4c02 9608
8f95b435
PZI
9609 /*
9610 * Wait for the events to quiesce before re-instating them.
9611 */
0cda4c02
YZ
9612 synchronize_rcu();
9613
8f95b435
PZI
9614 /*
9615 * Re-instate events in 2 passes.
9616 *
9617 * Skip over group leaders and only install siblings on this first
9618 * pass, siblings will not get enabled without a leader, however a
9619 * leader will enable its siblings, even if those are still on the old
9620 * context.
9621 */
9622 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9623 if (event->group_leader == event)
9624 continue;
9625
9626 list_del(&event->migrate_entry);
9627 if (event->state >= PERF_EVENT_STATE_OFF)
9628 event->state = PERF_EVENT_STATE_INACTIVE;
9629 account_event_cpu(event, dst_cpu);
9630 perf_install_in_context(dst_ctx, event, dst_cpu);
9631 get_ctx(dst_ctx);
9632 }
9633
9634 /*
9635 * Once all the siblings are setup properly, install the group leaders
9636 * to make it go.
9637 */
9886167d
PZ
9638 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9639 list_del(&event->migrate_entry);
0cda4c02
YZ
9640 if (event->state >= PERF_EVENT_STATE_OFF)
9641 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9642 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9643 perf_install_in_context(dst_ctx, event, dst_cpu);
9644 get_ctx(dst_ctx);
9645 }
9646 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9647 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9648}
9649EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9650
cdd6c482 9651static void sync_child_event(struct perf_event *child_event,
38b200d6 9652 struct task_struct *child)
d859e29f 9653{
cdd6c482 9654 struct perf_event *parent_event = child_event->parent;
8bc20959 9655 u64 child_val;
d859e29f 9656
cdd6c482
IM
9657 if (child_event->attr.inherit_stat)
9658 perf_event_read_event(child_event, child);
38b200d6 9659
b5e58793 9660 child_val = perf_event_count(child_event);
d859e29f
PM
9661
9662 /*
9663 * Add back the child's count to the parent's count:
9664 */
a6e6dea6 9665 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9666 atomic64_add(child_event->total_time_enabled,
9667 &parent_event->child_total_time_enabled);
9668 atomic64_add(child_event->total_time_running,
9669 &parent_event->child_total_time_running);
d859e29f
PM
9670}
9671
9b51f66d 9672static void
8ba289b8
PZ
9673perf_event_exit_event(struct perf_event *child_event,
9674 struct perf_event_context *child_ctx,
9675 struct task_struct *child)
9b51f66d 9676{
8ba289b8
PZ
9677 struct perf_event *parent_event = child_event->parent;
9678
1903d50c
PZ
9679 /*
9680 * Do not destroy the 'original' grouping; because of the context
9681 * switch optimization the original events could've ended up in a
9682 * random child task.
9683 *
9684 * If we were to destroy the original group, all group related
9685 * operations would cease to function properly after this random
9686 * child dies.
9687 *
9688 * Do destroy all inherited groups, we don't care about those
9689 * and being thorough is better.
9690 */
32132a3d
PZ
9691 raw_spin_lock_irq(&child_ctx->lock);
9692 WARN_ON_ONCE(child_ctx->is_active);
9693
8ba289b8 9694 if (parent_event)
32132a3d
PZ
9695 perf_group_detach(child_event);
9696 list_del_event(child_event, child_ctx);
a69b0ca4 9697 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9698 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9699
9b51f66d 9700 /*
8ba289b8 9701 * Parent events are governed by their filedesc, retain them.
9b51f66d 9702 */
8ba289b8 9703 if (!parent_event) {
179033b3 9704 perf_event_wakeup(child_event);
8ba289b8 9705 return;
4bcf349a 9706 }
8ba289b8
PZ
9707 /*
9708 * Child events can be cleaned up.
9709 */
9710
9711 sync_child_event(child_event, child);
9712
9713 /*
9714 * Remove this event from the parent's list
9715 */
9716 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9717 mutex_lock(&parent_event->child_mutex);
9718 list_del_init(&child_event->child_list);
9719 mutex_unlock(&parent_event->child_mutex);
9720
9721 /*
9722 * Kick perf_poll() for is_event_hup().
9723 */
9724 perf_event_wakeup(parent_event);
9725 free_event(child_event);
9726 put_event(parent_event);
9b51f66d
IM
9727}
9728
8dc85d54 9729static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9730{
211de6eb 9731 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9732 struct perf_event *child_event, *next;
63b6da39
PZ
9733
9734 WARN_ON_ONCE(child != current);
9b51f66d 9735
6a3351b6 9736 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9737 if (!child_ctx)
9b51f66d
IM
9738 return;
9739
ad3a37de 9740 /*
6a3351b6
PZ
9741 * In order to reduce the amount of tricky in ctx tear-down, we hold
9742 * ctx::mutex over the entire thing. This serializes against almost
9743 * everything that wants to access the ctx.
9744 *
9745 * The exception is sys_perf_event_open() /
9746 * perf_event_create_kernel_count() which does find_get_context()
9747 * without ctx::mutex (it cannot because of the move_group double mutex
9748 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9749 */
6a3351b6 9750 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9751
9752 /*
6a3351b6
PZ
9753 * In a single ctx::lock section, de-schedule the events and detach the
9754 * context from the task such that we cannot ever get it scheduled back
9755 * in.
c93f7669 9756 */
6a3351b6 9757 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9758 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9759
71a851b4 9760 /*
63b6da39
PZ
9761 * Now that the context is inactive, destroy the task <-> ctx relation
9762 * and mark the context dead.
71a851b4 9763 */
63b6da39
PZ
9764 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9765 put_ctx(child_ctx); /* cannot be last */
9766 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9767 put_task_struct(current); /* cannot be last */
4a1c0f26 9768
211de6eb 9769 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9770 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9771
211de6eb
PZ
9772 if (clone_ctx)
9773 put_ctx(clone_ctx);
4a1c0f26 9774
9f498cc5 9775 /*
cdd6c482
IM
9776 * Report the task dead after unscheduling the events so that we
9777 * won't get any samples after PERF_RECORD_EXIT. We can however still
9778 * get a few PERF_RECORD_READ events.
9f498cc5 9779 */
cdd6c482 9780 perf_event_task(child, child_ctx, 0);
a63eaf34 9781
ebf905fc 9782 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9783 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9784
a63eaf34
PM
9785 mutex_unlock(&child_ctx->mutex);
9786
9787 put_ctx(child_ctx);
9b51f66d
IM
9788}
9789
8dc85d54
PZ
9790/*
9791 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
9792 *
9793 * Can be called with cred_guard_mutex held when called from
9794 * install_exec_creds().
8dc85d54
PZ
9795 */
9796void perf_event_exit_task(struct task_struct *child)
9797{
8882135b 9798 struct perf_event *event, *tmp;
8dc85d54
PZ
9799 int ctxn;
9800
8882135b
PZ
9801 mutex_lock(&child->perf_event_mutex);
9802 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9803 owner_entry) {
9804 list_del_init(&event->owner_entry);
9805
9806 /*
9807 * Ensure the list deletion is visible before we clear
9808 * the owner, closes a race against perf_release() where
9809 * we need to serialize on the owner->perf_event_mutex.
9810 */
f47c02c0 9811 smp_store_release(&event->owner, NULL);
8882135b
PZ
9812 }
9813 mutex_unlock(&child->perf_event_mutex);
9814
8dc85d54
PZ
9815 for_each_task_context_nr(ctxn)
9816 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9817
9818 /*
9819 * The perf_event_exit_task_context calls perf_event_task
9820 * with child's task_ctx, which generates EXIT events for
9821 * child contexts and sets child->perf_event_ctxp[] to NULL.
9822 * At this point we need to send EXIT events to cpu contexts.
9823 */
9824 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9825}
9826
889ff015
FW
9827static void perf_free_event(struct perf_event *event,
9828 struct perf_event_context *ctx)
9829{
9830 struct perf_event *parent = event->parent;
9831
9832 if (WARN_ON_ONCE(!parent))
9833 return;
9834
9835 mutex_lock(&parent->child_mutex);
9836 list_del_init(&event->child_list);
9837 mutex_unlock(&parent->child_mutex);
9838
a6fa941d 9839 put_event(parent);
889ff015 9840
652884fe 9841 raw_spin_lock_irq(&ctx->lock);
8a49542c 9842 perf_group_detach(event);
889ff015 9843 list_del_event(event, ctx);
652884fe 9844 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9845 free_event(event);
9846}
9847
bbbee908 9848/*
652884fe 9849 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9850 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9851 *
9852 * Not all locks are strictly required, but take them anyway to be nice and
9853 * help out with the lockdep assertions.
bbbee908 9854 */
cdd6c482 9855void perf_event_free_task(struct task_struct *task)
bbbee908 9856{
8dc85d54 9857 struct perf_event_context *ctx;
cdd6c482 9858 struct perf_event *event, *tmp;
8dc85d54 9859 int ctxn;
bbbee908 9860
8dc85d54
PZ
9861 for_each_task_context_nr(ctxn) {
9862 ctx = task->perf_event_ctxp[ctxn];
9863 if (!ctx)
9864 continue;
bbbee908 9865
8dc85d54 9866 mutex_lock(&ctx->mutex);
bbbee908 9867again:
8dc85d54
PZ
9868 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9869 group_entry)
9870 perf_free_event(event, ctx);
bbbee908 9871
8dc85d54
PZ
9872 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9873 group_entry)
9874 perf_free_event(event, ctx);
bbbee908 9875
8dc85d54
PZ
9876 if (!list_empty(&ctx->pinned_groups) ||
9877 !list_empty(&ctx->flexible_groups))
9878 goto again;
bbbee908 9879
8dc85d54 9880 mutex_unlock(&ctx->mutex);
bbbee908 9881
8dc85d54
PZ
9882 put_ctx(ctx);
9883 }
889ff015
FW
9884}
9885
4e231c79
PZ
9886void perf_event_delayed_put(struct task_struct *task)
9887{
9888 int ctxn;
9889
9890 for_each_task_context_nr(ctxn)
9891 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9892}
9893
e03e7ee3 9894struct file *perf_event_get(unsigned int fd)
ffe8690c 9895{
e03e7ee3 9896 struct file *file;
ffe8690c 9897
e03e7ee3
AS
9898 file = fget_raw(fd);
9899 if (!file)
9900 return ERR_PTR(-EBADF);
ffe8690c 9901
e03e7ee3
AS
9902 if (file->f_op != &perf_fops) {
9903 fput(file);
9904 return ERR_PTR(-EBADF);
9905 }
ffe8690c 9906
e03e7ee3 9907 return file;
ffe8690c
KX
9908}
9909
9910const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9911{
9912 if (!event)
9913 return ERR_PTR(-EINVAL);
9914
9915 return &event->attr;
9916}
9917
97dee4f3
PZ
9918/*
9919 * inherit a event from parent task to child task:
9920 */
9921static struct perf_event *
9922inherit_event(struct perf_event *parent_event,
9923 struct task_struct *parent,
9924 struct perf_event_context *parent_ctx,
9925 struct task_struct *child,
9926 struct perf_event *group_leader,
9927 struct perf_event_context *child_ctx)
9928{
1929def9 9929 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9930 struct perf_event *child_event;
cee010ec 9931 unsigned long flags;
97dee4f3
PZ
9932
9933 /*
9934 * Instead of creating recursive hierarchies of events,
9935 * we link inherited events back to the original parent,
9936 * which has a filp for sure, which we use as the reference
9937 * count:
9938 */
9939 if (parent_event->parent)
9940 parent_event = parent_event->parent;
9941
9942 child_event = perf_event_alloc(&parent_event->attr,
9943 parent_event->cpu,
d580ff86 9944 child,
97dee4f3 9945 group_leader, parent_event,
79dff51e 9946 NULL, NULL, -1);
97dee4f3
PZ
9947 if (IS_ERR(child_event))
9948 return child_event;
a6fa941d 9949
c6e5b732
PZ
9950 /*
9951 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9952 * must be under the same lock in order to serialize against
9953 * perf_event_release_kernel(), such that either we must observe
9954 * is_orphaned_event() or they will observe us on the child_list.
9955 */
9956 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9957 if (is_orphaned_event(parent_event) ||
9958 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9959 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9960 free_event(child_event);
9961 return NULL;
9962 }
9963
97dee4f3
PZ
9964 get_ctx(child_ctx);
9965
9966 /*
9967 * Make the child state follow the state of the parent event,
9968 * not its attr.disabled bit. We hold the parent's mutex,
9969 * so we won't race with perf_event_{en, dis}able_family.
9970 */
1929def9 9971 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9972 child_event->state = PERF_EVENT_STATE_INACTIVE;
9973 else
9974 child_event->state = PERF_EVENT_STATE_OFF;
9975
9976 if (parent_event->attr.freq) {
9977 u64 sample_period = parent_event->hw.sample_period;
9978 struct hw_perf_event *hwc = &child_event->hw;
9979
9980 hwc->sample_period = sample_period;
9981 hwc->last_period = sample_period;
9982
9983 local64_set(&hwc->period_left, sample_period);
9984 }
9985
9986 child_event->ctx = child_ctx;
9987 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9988 child_event->overflow_handler_context
9989 = parent_event->overflow_handler_context;
97dee4f3 9990
614b6780
TG
9991 /*
9992 * Precalculate sample_data sizes
9993 */
9994 perf_event__header_size(child_event);
6844c09d 9995 perf_event__id_header_size(child_event);
614b6780 9996
97dee4f3
PZ
9997 /*
9998 * Link it up in the child's context:
9999 */
cee010ec 10000 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10001 add_event_to_ctx(child_event, child_ctx);
cee010ec 10002 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10003
97dee4f3
PZ
10004 /*
10005 * Link this into the parent event's child list
10006 */
97dee4f3
PZ
10007 list_add_tail(&child_event->child_list, &parent_event->child_list);
10008 mutex_unlock(&parent_event->child_mutex);
10009
10010 return child_event;
10011}
10012
10013static int inherit_group(struct perf_event *parent_event,
10014 struct task_struct *parent,
10015 struct perf_event_context *parent_ctx,
10016 struct task_struct *child,
10017 struct perf_event_context *child_ctx)
10018{
10019 struct perf_event *leader;
10020 struct perf_event *sub;
10021 struct perf_event *child_ctr;
10022
10023 leader = inherit_event(parent_event, parent, parent_ctx,
10024 child, NULL, child_ctx);
10025 if (IS_ERR(leader))
10026 return PTR_ERR(leader);
10027 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10028 child_ctr = inherit_event(sub, parent, parent_ctx,
10029 child, leader, child_ctx);
10030 if (IS_ERR(child_ctr))
10031 return PTR_ERR(child_ctr);
10032 }
10033 return 0;
889ff015
FW
10034}
10035
10036static int
10037inherit_task_group(struct perf_event *event, struct task_struct *parent,
10038 struct perf_event_context *parent_ctx,
8dc85d54 10039 struct task_struct *child, int ctxn,
889ff015
FW
10040 int *inherited_all)
10041{
10042 int ret;
8dc85d54 10043 struct perf_event_context *child_ctx;
889ff015
FW
10044
10045 if (!event->attr.inherit) {
10046 *inherited_all = 0;
10047 return 0;
bbbee908
PZ
10048 }
10049
fe4b04fa 10050 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10051 if (!child_ctx) {
10052 /*
10053 * This is executed from the parent task context, so
10054 * inherit events that have been marked for cloning.
10055 * First allocate and initialize a context for the
10056 * child.
10057 */
bbbee908 10058
734df5ab 10059 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10060 if (!child_ctx)
10061 return -ENOMEM;
bbbee908 10062
8dc85d54 10063 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10064 }
10065
10066 ret = inherit_group(event, parent, parent_ctx,
10067 child, child_ctx);
10068
10069 if (ret)
10070 *inherited_all = 0;
10071
10072 return ret;
bbbee908
PZ
10073}
10074
9b51f66d 10075/*
cdd6c482 10076 * Initialize the perf_event context in task_struct
9b51f66d 10077 */
985c8dcb 10078static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10079{
889ff015 10080 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10081 struct perf_event_context *cloned_ctx;
10082 struct perf_event *event;
9b51f66d 10083 struct task_struct *parent = current;
564c2b21 10084 int inherited_all = 1;
dddd3379 10085 unsigned long flags;
6ab423e0 10086 int ret = 0;
9b51f66d 10087
8dc85d54 10088 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10089 return 0;
10090
ad3a37de 10091 /*
25346b93
PM
10092 * If the parent's context is a clone, pin it so it won't get
10093 * swapped under us.
ad3a37de 10094 */
8dc85d54 10095 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10096 if (!parent_ctx)
10097 return 0;
25346b93 10098
ad3a37de
PM
10099 /*
10100 * No need to check if parent_ctx != NULL here; since we saw
10101 * it non-NULL earlier, the only reason for it to become NULL
10102 * is if we exit, and since we're currently in the middle of
10103 * a fork we can't be exiting at the same time.
10104 */
ad3a37de 10105
9b51f66d
IM
10106 /*
10107 * Lock the parent list. No need to lock the child - not PID
10108 * hashed yet and not running, so nobody can access it.
10109 */
d859e29f 10110 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10111
10112 /*
10113 * We dont have to disable NMIs - we are only looking at
10114 * the list, not manipulating it:
10115 */
889ff015 10116 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10117 ret = inherit_task_group(event, parent, parent_ctx,
10118 child, ctxn, &inherited_all);
889ff015
FW
10119 if (ret)
10120 break;
10121 }
b93f7978 10122
dddd3379
TG
10123 /*
10124 * We can't hold ctx->lock when iterating the ->flexible_group list due
10125 * to allocations, but we need to prevent rotation because
10126 * rotate_ctx() will change the list from interrupt context.
10127 */
10128 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10129 parent_ctx->rotate_disable = 1;
10130 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10131
889ff015 10132 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10133 ret = inherit_task_group(event, parent, parent_ctx,
10134 child, ctxn, &inherited_all);
889ff015 10135 if (ret)
9b51f66d 10136 break;
564c2b21
PM
10137 }
10138
dddd3379
TG
10139 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10140 parent_ctx->rotate_disable = 0;
dddd3379 10141
8dc85d54 10142 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10143
05cbaa28 10144 if (child_ctx && inherited_all) {
564c2b21
PM
10145 /*
10146 * Mark the child context as a clone of the parent
10147 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10148 *
10149 * Note that if the parent is a clone, the holding of
10150 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10151 */
c5ed5145 10152 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10153 if (cloned_ctx) {
10154 child_ctx->parent_ctx = cloned_ctx;
25346b93 10155 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10156 } else {
10157 child_ctx->parent_ctx = parent_ctx;
10158 child_ctx->parent_gen = parent_ctx->generation;
10159 }
10160 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10161 }
10162
c5ed5145 10163 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10164 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10165
25346b93 10166 perf_unpin_context(parent_ctx);
fe4b04fa 10167 put_ctx(parent_ctx);
ad3a37de 10168
6ab423e0 10169 return ret;
9b51f66d
IM
10170}
10171
8dc85d54
PZ
10172/*
10173 * Initialize the perf_event context in task_struct
10174 */
10175int perf_event_init_task(struct task_struct *child)
10176{
10177 int ctxn, ret;
10178
8550d7cb
ON
10179 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10180 mutex_init(&child->perf_event_mutex);
10181 INIT_LIST_HEAD(&child->perf_event_list);
10182
8dc85d54
PZ
10183 for_each_task_context_nr(ctxn) {
10184 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10185 if (ret) {
10186 perf_event_free_task(child);
8dc85d54 10187 return ret;
6c72e350 10188 }
8dc85d54
PZ
10189 }
10190
10191 return 0;
10192}
10193
220b140b
PM
10194static void __init perf_event_init_all_cpus(void)
10195{
b28ab83c 10196 struct swevent_htable *swhash;
220b140b 10197 int cpu;
220b140b
PM
10198
10199 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10200 swhash = &per_cpu(swevent_htable, cpu);
10201 mutex_init(&swhash->hlist_mutex);
2fde4f94 10202 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
10203 }
10204}
10205
0db0628d 10206static void perf_event_init_cpu(int cpu)
0793a61d 10207{
108b02cf 10208 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10209
b28ab83c 10210 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10211 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10212 struct swevent_hlist *hlist;
10213
b28ab83c
PZ
10214 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10215 WARN_ON(!hlist);
10216 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10217 }
b28ab83c 10218 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
10219}
10220
2965faa5 10221#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10222static void __perf_event_exit_context(void *__info)
0793a61d 10223{
108b02cf 10224 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10225 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10226 struct perf_event *event;
0793a61d 10227
fae3fde6
PZ
10228 raw_spin_lock(&ctx->lock);
10229 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10230 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10231 raw_spin_unlock(&ctx->lock);
0793a61d 10232}
108b02cf
PZ
10233
10234static void perf_event_exit_cpu_context(int cpu)
10235{
10236 struct perf_event_context *ctx;
10237 struct pmu *pmu;
10238 int idx;
10239
10240 idx = srcu_read_lock(&pmus_srcu);
10241 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10242 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10243
10244 mutex_lock(&ctx->mutex);
10245 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10246 mutex_unlock(&ctx->mutex);
10247 }
10248 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
10249}
10250
cdd6c482 10251static void perf_event_exit_cpu(int cpu)
0793a61d 10252{
e3703f8c 10253 perf_event_exit_cpu_context(cpu);
0793a61d
TG
10254}
10255#else
cdd6c482 10256static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
10257#endif
10258
c277443c
PZ
10259static int
10260perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10261{
10262 int cpu;
10263
10264 for_each_online_cpu(cpu)
10265 perf_event_exit_cpu(cpu);
10266
10267 return NOTIFY_OK;
10268}
10269
10270/*
10271 * Run the perf reboot notifier at the very last possible moment so that
10272 * the generic watchdog code runs as long as possible.
10273 */
10274static struct notifier_block perf_reboot_notifier = {
10275 .notifier_call = perf_reboot,
10276 .priority = INT_MIN,
10277};
10278
0db0628d 10279static int
0793a61d
TG
10280perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10281{
10282 unsigned int cpu = (long)hcpu;
10283
4536e4d1 10284 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
10285
10286 case CPU_UP_PREPARE:
1dcaac1c
PZ
10287 /*
10288 * This must be done before the CPU comes alive, because the
10289 * moment we can run tasks we can encounter (software) events.
10290 *
10291 * Specifically, someone can have inherited events on kthreadd
10292 * or a pre-existing worker thread that gets re-bound.
10293 */
cdd6c482 10294 perf_event_init_cpu(cpu);
0793a61d
TG
10295 break;
10296
10297 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
10298 /*
10299 * This must be done before the CPU dies because after that an
10300 * active event might want to IPI the CPU and that'll not work
10301 * so great for dead CPUs.
10302 *
10303 * XXX smp_call_function_single() return -ENXIO without a warn
10304 * so we could possibly deal with this.
10305 *
10306 * This is safe against new events arriving because
10307 * sys_perf_event_open() serializes against hotplug using
10308 * get_online_cpus().
10309 */
cdd6c482 10310 perf_event_exit_cpu(cpu);
0793a61d 10311 break;
0793a61d
TG
10312 default:
10313 break;
10314 }
10315
10316 return NOTIFY_OK;
10317}
10318
cdd6c482 10319void __init perf_event_init(void)
0793a61d 10320{
3c502e7a
JW
10321 int ret;
10322
2e80a82a
PZ
10323 idr_init(&pmu_idr);
10324
220b140b 10325 perf_event_init_all_cpus();
b0a873eb 10326 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10327 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10328 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10329 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
10330 perf_tp_register();
10331 perf_cpu_notifier(perf_cpu_notify);
c277443c 10332 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10333
10334 ret = init_hw_breakpoint();
10335 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10336
b01c3a00
JO
10337 /*
10338 * Build time assertion that we keep the data_head at the intended
10339 * location. IOW, validation we got the __reserved[] size right.
10340 */
10341 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10342 != 1024);
0793a61d 10343}
abe43400 10344
fd979c01
CS
10345ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10346 char *page)
10347{
10348 struct perf_pmu_events_attr *pmu_attr =
10349 container_of(attr, struct perf_pmu_events_attr, attr);
10350
10351 if (pmu_attr->event_str)
10352 return sprintf(page, "%s\n", pmu_attr->event_str);
10353
10354 return 0;
10355}
675965b0 10356EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10357
abe43400
PZ
10358static int __init perf_event_sysfs_init(void)
10359{
10360 struct pmu *pmu;
10361 int ret;
10362
10363 mutex_lock(&pmus_lock);
10364
10365 ret = bus_register(&pmu_bus);
10366 if (ret)
10367 goto unlock;
10368
10369 list_for_each_entry(pmu, &pmus, entry) {
10370 if (!pmu->name || pmu->type < 0)
10371 continue;
10372
10373 ret = pmu_dev_alloc(pmu);
10374 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10375 }
10376 pmu_bus_running = 1;
10377 ret = 0;
10378
10379unlock:
10380 mutex_unlock(&pmus_lock);
10381
10382 return ret;
10383}
10384device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10385
10386#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10387static struct cgroup_subsys_state *
10388perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10389{
10390 struct perf_cgroup *jc;
e5d1367f 10391
1b15d055 10392 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10393 if (!jc)
10394 return ERR_PTR(-ENOMEM);
10395
e5d1367f
SE
10396 jc->info = alloc_percpu(struct perf_cgroup_info);
10397 if (!jc->info) {
10398 kfree(jc);
10399 return ERR_PTR(-ENOMEM);
10400 }
10401
e5d1367f
SE
10402 return &jc->css;
10403}
10404
eb95419b 10405static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10406{
eb95419b
TH
10407 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10408
e5d1367f
SE
10409 free_percpu(jc->info);
10410 kfree(jc);
10411}
10412
10413static int __perf_cgroup_move(void *info)
10414{
10415 struct task_struct *task = info;
ddaaf4e2 10416 rcu_read_lock();
e5d1367f 10417 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10418 rcu_read_unlock();
e5d1367f
SE
10419 return 0;
10420}
10421
1f7dd3e5 10422static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10423{
bb9d97b6 10424 struct task_struct *task;
1f7dd3e5 10425 struct cgroup_subsys_state *css;
bb9d97b6 10426
1f7dd3e5 10427 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10428 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10429}
10430
073219e9 10431struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10432 .css_alloc = perf_cgroup_css_alloc,
10433 .css_free = perf_cgroup_css_free,
bb9d97b6 10434 .attach = perf_cgroup_attach,
e5d1367f
SE
10435};
10436#endif /* CONFIG_CGROUP_PERF */