drivers: net: xgene: fix sharing of irqs
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/proc_ns.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
a7165264 184static bool cgrp_dfl_visible;
ddbcc7e8 185
223ffb29 186/* Controllers blocked by the commandline in v1 */
6e5c8307 187static u16 cgroup_no_v1_mask;
223ffb29 188
5533e011 189/* some controllers are not supported in the default hierarchy */
a7165264 190static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 191
f6d635ad
TH
192/* some controllers are implicitly enabled on the default hierarchy */
193static unsigned long cgrp_dfl_implicit_ss_mask;
194
ddbcc7e8
PM
195/* The list of hierarchy roots */
196
9871bf95
TH
197static LIST_HEAD(cgroup_roots);
198static int cgroup_root_count;
ddbcc7e8 199
3417ae1f 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 201static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 202
794611a1 203/*
0cb51d71
TH
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
794611a1 209 */
0cb51d71 210static u64 css_serial_nr_next = 1;
794611a1 211
cb4a3167
AS
212/*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 216 */
6e5c8307
TH
217static u16 have_fork_callback __read_mostly;
218static u16 have_exit_callback __read_mostly;
219static u16 have_free_callback __read_mostly;
ddbcc7e8 220
a79a908f
AK
221/* cgroup namespace for init task */
222struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228};
229
7e47682e 230/* Ditto for the can_fork callback. */
6e5c8307 231static u16 have_canfork_callback __read_mostly;
7e47682e 232
67e9c74b 233static struct file_system_type cgroup2_fs_type;
a14c6874
TH
234static struct cftype cgroup_dfl_base_files[];
235static struct cftype cgroup_legacy_base_files[];
628f7cd4 236
6e5c8307 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
239static int cgroup_apply_control(struct cgroup *cgrp);
240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 241static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
fc5ed1e9
TH
251/**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259static bool cgroup_ssid_enabled(int ssid)
260{
cfe02a8a
AB
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
fc5ed1e9
TH
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265}
266
223ffb29
JW
267static bool cgroup_ssid_no_v1(int ssid)
268{
269 return cgroup_no_v1_mask & (1 << ssid);
270}
271
9e10a130
TH
272/**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325static bool cgroup_on_dfl(const struct cgroup *cgrp)
326{
327 return cgrp->root == &cgrp_dfl_root;
328}
329
6fa4918d
TH
330/* IDR wrappers which synchronize using cgroup_idr_lock */
331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333{
334 int ret;
335
336 idr_preload(gfp_mask);
54504e97 337 spin_lock_bh(&cgroup_idr_lock);
d0164adc 338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 339 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
340 idr_preload_end();
341 return ret;
342}
343
344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345{
346 void *ret;
347
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 ret = idr_replace(idr, ptr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351 return ret;
352}
353
354static void cgroup_idr_remove(struct idr *idr, int id)
355{
54504e97 356 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 357 idr_remove(idr, id);
54504e97 358 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
359}
360
d51f39b0
TH
361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362{
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368}
369
5531dc91
TH
370/* subsystems visibly enabled on a cgroup */
371static u16 cgroup_control(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
382 return root_ss_mask;
383}
384
385/* subsystems enabled on a cgroup */
386static u16 cgroup_ss_mask(struct cgroup *cgrp)
387{
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394}
395
95109b62
TH
396/**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 400 *
ca8bdcaf
TH
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
406 */
407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 408 struct cgroup_subsys *ss)
95109b62 409{
ca8bdcaf 410 if (ss)
aec25020 411 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 412 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 413 else
9d800df1 414 return &cgrp->self;
95109b62 415}
42809dd4 416
aec3dfcb
TH
417/**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
9d800df1 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 421 *
d0f702e6 422 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429{
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
9d800df1 433 return &cgrp->self;
aec3dfcb 434
eeecbd19
TH
435 /*
436 * This function is used while updating css associations and thus
5531dc91 437 * can't test the csses directly. Test ss_mask.
eeecbd19 438 */
5531dc91 439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 440 cgrp = cgroup_parent(cgrp);
5531dc91
TH
441 if (!cgrp)
442 return NULL;
443 }
aec3dfcb
TH
444
445 return cgroup_css(cgrp, ss);
95109b62 446}
42809dd4 447
eeecbd19
TH
448/**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461{
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476out_unlock:
477 rcu_read_unlock();
478 return css;
479}
480
ddbcc7e8 481/* convenient tests for these bits */
54766d4a 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 483{
184faf32 484 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
485}
486
052c3f3a
TH
487static void cgroup_get(struct cgroup *cgrp)
488{
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491}
492
493static bool cgroup_tryget(struct cgroup *cgrp)
494{
495 return css_tryget(&cgrp->self);
496}
497
b4168640 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 499{
2bd59d48 500 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 501 struct cftype *cft = of_cft(of);
2bd59d48
TH
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
9d800df1 514 return &cgrp->self;
59f5296b 515}
b4168640 516EXPORT_SYMBOL_GPL(of_css);
59f5296b 517
e9685a03 518static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 519{
bd89aabc 520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
521}
522
1c6727af
TH
523/**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
aec3dfcb 529 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
530 */
531#define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
aec3dfcb
TH
538/**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546#define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
30159ec7 552/**
3ed80a62 553 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 554 * @ss: the iteration cursor
780cd8b3 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 556 */
780cd8b3 557#define for_each_subsys(ss, ssid) \
3ed80a62
TH
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 560
cb4a3167 561/**
b4e0eeaf 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 565 * @ss_mask: the bitmask
cb4a3167
AS
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 568 * @ss_mask is set.
cb4a3167 569 */
b4e0eeaf
TH
570#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 573 (ssid) = 0; \
b4e0eeaf
TH
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580#define while_each_subsys_mask() \
581 } \
582 } \
583} while (false)
cb4a3167 584
985ed670
TH
585/* iterate across the hierarchies */
586#define for_each_root(root) \
5549c497 587 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 588
f8f22e53
TH
589/* iterate over child cgrps, lock should be held throughout iteration */
590#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 592 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
593 cgroup_is_dead(child); })) \
594 ; \
595 else
7ae1bad9 596
ce3f1d9d
TH
597/* walk live descendants in preorder */
598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606/* walk live descendants in postorder */
607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
81a6a5cd 615static void cgroup_release_agent(struct work_struct *work);
bd89aabc 616static void check_for_release(struct cgroup *cgrp);
81a6a5cd 617
69d0206c
TH
618/*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
817929ec
PM
636};
637
172a2c06
TH
638/*
639 * The default css_set - used by init and its children prior to any
817929ec
PM
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
5024ae29 645struct css_set init_css_set = {
172a2c06
TH
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 653};
817929ec 654
172a2c06 655static int css_set_count = 1; /* 1 for init_css_set */
817929ec 656
0de0942d
TH
657/**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661static bool css_set_populated(struct css_set *cset)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666}
667
842b597e
TH
668/**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
0de0942d
TH
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
842b597e
TH
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
ad2ed2b3 699 check_for_release(cgrp);
6f60eade
TH
700 cgroup_file_notify(&cgrp->events_file);
701
d51f39b0 702 cgrp = cgroup_parent(cgrp);
842b597e
TH
703 } while (cgrp);
704}
705
0de0942d
TH
706/**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714static void css_set_update_populated(struct css_set *cset, bool populated)
715{
716 struct cgrp_cset_link *link;
717
f0d9a5f1 718 lockdep_assert_held(&css_set_lock);
0de0942d
TH
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722}
723
f6d7d049
TH
724/**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
ed27b9f7
TH
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
738 */
739static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742{
f0d9a5f1 743 lockdep_assert_held(&css_set_lock);
f6d7d049 744
20b454a6
TH
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
f6d7d049 748 if (from_cset) {
ed27b9f7
TH
749 struct css_task_iter *it, *pos;
750
f6d7d049 751 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
f6d7d049
TH
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
f6d7d049
TH
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785}
786
7717f7ba
PM
787/*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
472b1053 792#define CSS_SET_HASH_BITS 7
0ac801fe 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 794
0ac801fe 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 796{
0ac801fe 797 unsigned long key = 0UL;
30159ec7
TH
798 struct cgroup_subsys *ss;
799 int i;
472b1053 800
30159ec7 801 for_each_subsys(ss, i)
0ac801fe
LZ
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
472b1053 804
0ac801fe 805 return key;
472b1053
LZ
806}
807
a25eb52e 808static void put_css_set_locked(struct css_set *cset)
b4f48b63 809{
69d0206c 810 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
811 struct cgroup_subsys *ss;
812 int ssid;
5abb8855 813
f0d9a5f1 814 lockdep_assert_held(&css_set_lock);
89c5509b
TH
815
816 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 817 return;
81a6a5cd 818
53254f90
TH
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
2d8f243a 821 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
822 css_put(cset->subsys[ssid]);
823 }
5abb8855 824 hash_del(&cset->hlist);
2c6ab6d2
PM
825 css_set_count--;
826
69d0206c 827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
2ceb231b
TH
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
2c6ab6d2 832 kfree(link);
81a6a5cd 833 }
2c6ab6d2 834
5abb8855 835 kfree_rcu(cset, rcu_head);
b4f48b63
PM
836}
837
a25eb52e 838static void put_css_set(struct css_set *cset)
89c5509b
TH
839{
840 /*
841 * Ensure that the refcount doesn't hit zero while any readers
842 * can see it. Similar to atomic_dec_and_lock(), but for an
843 * rwlock
844 */
845 if (atomic_add_unless(&cset->refcount, -1, 1))
846 return;
847
f0d9a5f1 848 spin_lock_bh(&css_set_lock);
a25eb52e 849 put_css_set_locked(cset);
f0d9a5f1 850 spin_unlock_bh(&css_set_lock);
89c5509b
TH
851}
852
817929ec
PM
853/*
854 * refcounted get/put for css_set objects
855 */
5abb8855 856static inline void get_css_set(struct css_set *cset)
817929ec 857{
5abb8855 858 atomic_inc(&cset->refcount);
817929ec
PM
859}
860
b326f9d0 861/**
7717f7ba 862 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
7717f7ba
PM
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
867 *
6f4b7e63 868 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
870 */
5abb8855
TH
871static bool compare_css_sets(struct css_set *cset,
872 struct css_set *old_cset,
7717f7ba
PM
873 struct cgroup *new_cgrp,
874 struct cgroup_subsys_state *template[])
875{
876 struct list_head *l1, *l2;
877
aec3dfcb
TH
878 /*
879 * On the default hierarchy, there can be csets which are
880 * associated with the same set of cgroups but different csses.
881 * Let's first ensure that csses match.
882 */
883 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 884 return false;
7717f7ba
PM
885
886 /*
887 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
888 * different cgroups in hierarchies. As different cgroups may
889 * share the same effective css, this comparison is always
890 * necessary.
7717f7ba 891 */
69d0206c
TH
892 l1 = &cset->cgrp_links;
893 l2 = &old_cset->cgrp_links;
7717f7ba 894 while (1) {
69d0206c 895 struct cgrp_cset_link *link1, *link2;
5abb8855 896 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
897
898 l1 = l1->next;
899 l2 = l2->next;
900 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
901 if (l1 == &cset->cgrp_links) {
902 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
903 break;
904 } else {
69d0206c 905 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
906 }
907 /* Locate the cgroups associated with these links. */
69d0206c
TH
908 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
909 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
910 cgrp1 = link1->cgrp;
911 cgrp2 = link2->cgrp;
7717f7ba 912 /* Hierarchies should be linked in the same order. */
5abb8855 913 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
914
915 /*
916 * If this hierarchy is the hierarchy of the cgroup
917 * that's changing, then we need to check that this
918 * css_set points to the new cgroup; if it's any other
919 * hierarchy, then this css_set should point to the
920 * same cgroup as the old css_set.
921 */
5abb8855
TH
922 if (cgrp1->root == new_cgrp->root) {
923 if (cgrp1 != new_cgrp)
7717f7ba
PM
924 return false;
925 } else {
5abb8855 926 if (cgrp1 != cgrp2)
7717f7ba
PM
927 return false;
928 }
929 }
930 return true;
931}
932
b326f9d0
TH
933/**
934 * find_existing_css_set - init css array and find the matching css_set
935 * @old_cset: the css_set that we're using before the cgroup transition
936 * @cgrp: the cgroup that we're moving into
937 * @template: out param for the new set of csses, should be clear on entry
817929ec 938 */
5abb8855
TH
939static struct css_set *find_existing_css_set(struct css_set *old_cset,
940 struct cgroup *cgrp,
941 struct cgroup_subsys_state *template[])
b4f48b63 942{
3dd06ffa 943 struct cgroup_root *root = cgrp->root;
30159ec7 944 struct cgroup_subsys *ss;
5abb8855 945 struct css_set *cset;
0ac801fe 946 unsigned long key;
b326f9d0 947 int i;
817929ec 948
aae8aab4
BB
949 /*
950 * Build the set of subsystem state objects that we want to see in the
951 * new css_set. while subsystems can change globally, the entries here
952 * won't change, so no need for locking.
953 */
30159ec7 954 for_each_subsys(ss, i) {
f392e51c 955 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
956 /*
957 * @ss is in this hierarchy, so we want the
958 * effective css from @cgrp.
959 */
960 template[i] = cgroup_e_css(cgrp, ss);
817929ec 961 } else {
aec3dfcb
TH
962 /*
963 * @ss is not in this hierarchy, so we don't want
964 * to change the css.
965 */
5abb8855 966 template[i] = old_cset->subsys[i];
817929ec
PM
967 }
968 }
969
0ac801fe 970 key = css_set_hash(template);
5abb8855
TH
971 hash_for_each_possible(css_set_table, cset, hlist, key) {
972 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
973 continue;
974
975 /* This css_set matches what we need */
5abb8855 976 return cset;
472b1053 977 }
817929ec
PM
978
979 /* No existing cgroup group matched */
980 return NULL;
981}
982
69d0206c 983static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 984{
69d0206c 985 struct cgrp_cset_link *link, *tmp_link;
36553434 986
69d0206c
TH
987 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
988 list_del(&link->cset_link);
36553434
LZ
989 kfree(link);
990 }
991}
992
69d0206c
TH
993/**
994 * allocate_cgrp_cset_links - allocate cgrp_cset_links
995 * @count: the number of links to allocate
996 * @tmp_links: list_head the allocated links are put on
997 *
998 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
999 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1000 */
69d0206c 1001static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1002{
69d0206c 1003 struct cgrp_cset_link *link;
817929ec 1004 int i;
69d0206c
TH
1005
1006 INIT_LIST_HEAD(tmp_links);
1007
817929ec 1008 for (i = 0; i < count; i++) {
f4f4be2b 1009 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1010 if (!link) {
69d0206c 1011 free_cgrp_cset_links(tmp_links);
817929ec
PM
1012 return -ENOMEM;
1013 }
69d0206c 1014 list_add(&link->cset_link, tmp_links);
817929ec
PM
1015 }
1016 return 0;
1017}
1018
c12f65d4
LZ
1019/**
1020 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1021 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1022 * @cset: the css_set to be linked
c12f65d4
LZ
1023 * @cgrp: the destination cgroup
1024 */
69d0206c
TH
1025static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1026 struct cgroup *cgrp)
c12f65d4 1027{
69d0206c 1028 struct cgrp_cset_link *link;
c12f65d4 1029
69d0206c 1030 BUG_ON(list_empty(tmp_links));
6803c006
TH
1031
1032 if (cgroup_on_dfl(cgrp))
1033 cset->dfl_cgrp = cgrp;
1034
69d0206c
TH
1035 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1036 link->cset = cset;
7717f7ba 1037 link->cgrp = cgrp;
842b597e 1038
7717f7ba 1039 /*
389b9c1b
TH
1040 * Always add links to the tail of the lists so that the lists are
1041 * in choronological order.
7717f7ba 1042 */
389b9c1b 1043 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1044 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1045
1046 if (cgroup_parent(cgrp))
1047 cgroup_get(cgrp);
c12f65d4
LZ
1048}
1049
b326f9d0
TH
1050/**
1051 * find_css_set - return a new css_set with one cgroup updated
1052 * @old_cset: the baseline css_set
1053 * @cgrp: the cgroup to be updated
1054 *
1055 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1056 * substituted into the appropriate hierarchy.
817929ec 1057 */
5abb8855
TH
1058static struct css_set *find_css_set(struct css_set *old_cset,
1059 struct cgroup *cgrp)
817929ec 1060{
b326f9d0 1061 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1062 struct css_set *cset;
69d0206c
TH
1063 struct list_head tmp_links;
1064 struct cgrp_cset_link *link;
2d8f243a 1065 struct cgroup_subsys *ss;
0ac801fe 1066 unsigned long key;
2d8f243a 1067 int ssid;
472b1053 1068
b326f9d0
TH
1069 lockdep_assert_held(&cgroup_mutex);
1070
817929ec
PM
1071 /* First see if we already have a cgroup group that matches
1072 * the desired set */
f0d9a5f1 1073 spin_lock_bh(&css_set_lock);
5abb8855
TH
1074 cset = find_existing_css_set(old_cset, cgrp, template);
1075 if (cset)
1076 get_css_set(cset);
f0d9a5f1 1077 spin_unlock_bh(&css_set_lock);
817929ec 1078
5abb8855
TH
1079 if (cset)
1080 return cset;
817929ec 1081
f4f4be2b 1082 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1083 if (!cset)
817929ec
PM
1084 return NULL;
1085
69d0206c 1086 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1087 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1088 kfree(cset);
817929ec
PM
1089 return NULL;
1090 }
1091
5abb8855 1092 atomic_set(&cset->refcount, 1);
69d0206c 1093 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1094 INIT_LIST_HEAD(&cset->tasks);
c7561128 1095 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1096 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1097 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1098 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1099 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1100
1101 /* Copy the set of subsystem state objects generated in
1102 * find_existing_css_set() */
5abb8855 1103 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1104
f0d9a5f1 1105 spin_lock_bh(&css_set_lock);
817929ec 1106 /* Add reference counts and links from the new css_set. */
69d0206c 1107 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1108 struct cgroup *c = link->cgrp;
69d0206c 1109
7717f7ba
PM
1110 if (c->root == cgrp->root)
1111 c = cgrp;
69d0206c 1112 link_css_set(&tmp_links, cset, c);
7717f7ba 1113 }
817929ec 1114
69d0206c 1115 BUG_ON(!list_empty(&tmp_links));
817929ec 1116
817929ec 1117 css_set_count++;
472b1053 1118
2d8f243a 1119 /* Add @cset to the hash table */
5abb8855
TH
1120 key = css_set_hash(cset->subsys);
1121 hash_add(css_set_table, &cset->hlist, key);
472b1053 1122
53254f90
TH
1123 for_each_subsys(ss, ssid) {
1124 struct cgroup_subsys_state *css = cset->subsys[ssid];
1125
2d8f243a 1126 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1127 &css->cgroup->e_csets[ssid]);
1128 css_get(css);
1129 }
2d8f243a 1130
f0d9a5f1 1131 spin_unlock_bh(&css_set_lock);
817929ec 1132
5abb8855 1133 return cset;
b4f48b63
PM
1134}
1135
3dd06ffa 1136static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1137{
3dd06ffa 1138 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1139
3dd06ffa 1140 return root_cgrp->root;
2bd59d48
TH
1141}
1142
3dd06ffa 1143static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1144{
1145 int id;
1146
1147 lockdep_assert_held(&cgroup_mutex);
1148
985ed670 1149 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1150 if (id < 0)
1151 return id;
1152
1153 root->hierarchy_id = id;
1154 return 0;
1155}
1156
3dd06ffa 1157static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1158{
1159 lockdep_assert_held(&cgroup_mutex);
1160
1161 if (root->hierarchy_id) {
1162 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1163 root->hierarchy_id = 0;
1164 }
1165}
1166
3dd06ffa 1167static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1168{
1169 if (root) {
d0f702e6 1170 /* hierarchy ID should already have been released */
f2e85d57
TH
1171 WARN_ON_ONCE(root->hierarchy_id);
1172
1173 idr_destroy(&root->cgroup_idr);
1174 kfree(root);
1175 }
1176}
1177
3dd06ffa 1178static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1179{
3dd06ffa 1180 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1181 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1182
334c3679 1183 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1184
776f02fa 1185 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1186 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1187
f2e85d57 1188 /* Rebind all subsystems back to the default hierarchy */
334c3679 1189 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1190
7717f7ba 1191 /*
f2e85d57
TH
1192 * Release all the links from cset_links to this hierarchy's
1193 * root cgroup
7717f7ba 1194 */
f0d9a5f1 1195 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1196
1197 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1198 list_del(&link->cset_link);
1199 list_del(&link->cgrp_link);
1200 kfree(link);
1201 }
f0d9a5f1
TH
1202
1203 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1204
1205 if (!list_empty(&root->root_list)) {
1206 list_del(&root->root_list);
1207 cgroup_root_count--;
1208 }
1209
1210 cgroup_exit_root_id(root);
1211
1212 mutex_unlock(&cgroup_mutex);
f2e85d57 1213
2bd59d48 1214 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1215 cgroup_free_root(root);
1216}
1217
ceb6a081
TH
1218/* look up cgroup associated with given css_set on the specified hierarchy */
1219static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1220 struct cgroup_root *root)
7717f7ba 1221{
7717f7ba
PM
1222 struct cgroup *res = NULL;
1223
96d365e0 1224 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1225 lockdep_assert_held(&css_set_lock);
96d365e0 1226
5abb8855 1227 if (cset == &init_css_set) {
3dd06ffa 1228 res = &root->cgrp;
7717f7ba 1229 } else {
69d0206c
TH
1230 struct cgrp_cset_link *link;
1231
1232 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1233 struct cgroup *c = link->cgrp;
69d0206c 1234
7717f7ba
PM
1235 if (c->root == root) {
1236 res = c;
1237 break;
1238 }
1239 }
1240 }
96d365e0 1241
7717f7ba
PM
1242 BUG_ON(!res);
1243 return res;
1244}
1245
ddbcc7e8 1246/*
ceb6a081 1247 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1248 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1249 */
1250static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1251 struct cgroup_root *root)
ceb6a081
TH
1252{
1253 /*
1254 * No need to lock the task - since we hold cgroup_mutex the
1255 * task can't change groups, so the only thing that can happen
1256 * is that it exits and its css is set back to init_css_set.
1257 */
1258 return cset_cgroup_from_root(task_css_set(task), root);
1259}
1260
ddbcc7e8 1261/*
ddbcc7e8
PM
1262 * A task must hold cgroup_mutex to modify cgroups.
1263 *
1264 * Any task can increment and decrement the count field without lock.
1265 * So in general, code holding cgroup_mutex can't rely on the count
1266 * field not changing. However, if the count goes to zero, then only
956db3ca 1267 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1268 * means that no tasks are currently attached, therefore there is no
1269 * way a task attached to that cgroup can fork (the other way to
1270 * increment the count). So code holding cgroup_mutex can safely
1271 * assume that if the count is zero, it will stay zero. Similarly, if
1272 * a task holds cgroup_mutex on a cgroup with zero count, it
1273 * knows that the cgroup won't be removed, as cgroup_rmdir()
1274 * needs that mutex.
1275 *
ddbcc7e8
PM
1276 * A cgroup can only be deleted if both its 'count' of using tasks
1277 * is zero, and its list of 'children' cgroups is empty. Since all
1278 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1279 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1280 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1281 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1282 *
1283 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1284 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1285 */
1286
2bd59d48 1287static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1288static const struct file_operations proc_cgroupstats_operations;
a424316c 1289
8d7e6fb0
TH
1290static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1291 char *buf)
ddbcc7e8 1292{
3e1d2eed
TH
1293 struct cgroup_subsys *ss = cft->ss;
1294
8d7e6fb0
TH
1295 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1296 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1297 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1298 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1299 cft->name);
8d7e6fb0
TH
1300 else
1301 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1302 return buf;
ddbcc7e8
PM
1303}
1304
f2e85d57
TH
1305/**
1306 * cgroup_file_mode - deduce file mode of a control file
1307 * @cft: the control file in question
1308 *
7dbdb199 1309 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1310 */
1311static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1312{
f2e85d57 1313 umode_t mode = 0;
65dff759 1314
f2e85d57
TH
1315 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1316 mode |= S_IRUGO;
1317
7dbdb199
TH
1318 if (cft->write_u64 || cft->write_s64 || cft->write) {
1319 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1320 mode |= S_IWUGO;
1321 else
1322 mode |= S_IWUSR;
1323 }
f2e85d57
TH
1324
1325 return mode;
65dff759
LZ
1326}
1327
af0ba678 1328/**
8699b776 1329 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1330 * @subtree_control: the new subtree_control mask to consider
5ced2518 1331 * @this_ss_mask: available subsystems
af0ba678
TH
1332 *
1333 * On the default hierarchy, a subsystem may request other subsystems to be
1334 * enabled together through its ->depends_on mask. In such cases, more
1335 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1336 *
0f060deb 1337 * This function calculates which subsystems need to be enabled if
5ced2518 1338 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1339 */
5ced2518 1340static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1341{
6e5c8307 1342 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1343 struct cgroup_subsys *ss;
1344 int ssid;
1345
1346 lockdep_assert_held(&cgroup_mutex);
1347
f6d635ad
TH
1348 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1349
af0ba678 1350 while (true) {
6e5c8307 1351 u16 new_ss_mask = cur_ss_mask;
af0ba678 1352
b4e0eeaf 1353 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1354 new_ss_mask |= ss->depends_on;
b4e0eeaf 1355 } while_each_subsys_mask();
af0ba678
TH
1356
1357 /*
1358 * Mask out subsystems which aren't available. This can
1359 * happen only if some depended-upon subsystems were bound
1360 * to non-default hierarchies.
1361 */
5ced2518 1362 new_ss_mask &= this_ss_mask;
af0ba678
TH
1363
1364 if (new_ss_mask == cur_ss_mask)
1365 break;
1366 cur_ss_mask = new_ss_mask;
1367 }
1368
0f060deb
TH
1369 return cur_ss_mask;
1370}
1371
a9746d8d
TH
1372/**
1373 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1374 * @kn: the kernfs_node being serviced
1375 *
1376 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1377 * the method finishes if locking succeeded. Note that once this function
1378 * returns the cgroup returned by cgroup_kn_lock_live() may become
1379 * inaccessible any time. If the caller intends to continue to access the
1380 * cgroup, it should pin it before invoking this function.
1381 */
1382static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1383{
a9746d8d
TH
1384 struct cgroup *cgrp;
1385
1386 if (kernfs_type(kn) == KERNFS_DIR)
1387 cgrp = kn->priv;
1388 else
1389 cgrp = kn->parent->priv;
1390
1391 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1392
1393 kernfs_unbreak_active_protection(kn);
1394 cgroup_put(cgrp);
ddbcc7e8
PM
1395}
1396
a9746d8d
TH
1397/**
1398 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1399 * @kn: the kernfs_node being serviced
945ba199 1400 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1401 *
1402 * This helper is to be used by a cgroup kernfs method currently servicing
1403 * @kn. It breaks the active protection, performs cgroup locking and
1404 * verifies that the associated cgroup is alive. Returns the cgroup if
1405 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1406 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1407 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1408 *
1409 * Any cgroup kernfs method implementation which requires locking the
1410 * associated cgroup should use this helper. It avoids nesting cgroup
1411 * locking under kernfs active protection and allows all kernfs operations
1412 * including self-removal.
1413 */
945ba199
TH
1414static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1415 bool drain_offline)
05ef1d7c 1416{
a9746d8d
TH
1417 struct cgroup *cgrp;
1418
1419 if (kernfs_type(kn) == KERNFS_DIR)
1420 cgrp = kn->priv;
1421 else
1422 cgrp = kn->parent->priv;
05ef1d7c 1423
2739d3cc 1424 /*
01f6474c 1425 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1426 * active_ref. cgroup liveliness check alone provides enough
1427 * protection against removal. Ensure @cgrp stays accessible and
1428 * break the active_ref protection.
2739d3cc 1429 */
aa32362f
LZ
1430 if (!cgroup_tryget(cgrp))
1431 return NULL;
a9746d8d
TH
1432 kernfs_break_active_protection(kn);
1433
945ba199
TH
1434 if (drain_offline)
1435 cgroup_lock_and_drain_offline(cgrp);
1436 else
1437 mutex_lock(&cgroup_mutex);
05ef1d7c 1438
a9746d8d
TH
1439 if (!cgroup_is_dead(cgrp))
1440 return cgrp;
1441
1442 cgroup_kn_unlock(kn);
1443 return NULL;
ddbcc7e8 1444}
05ef1d7c 1445
2739d3cc 1446static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1447{
2bd59d48 1448 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1449
01f6474c 1450 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1451
1452 if (cft->file_offset) {
1453 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1454 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1455
1456 spin_lock_irq(&cgroup_file_kn_lock);
1457 cfile->kn = NULL;
1458 spin_unlock_irq(&cgroup_file_kn_lock);
1459 }
1460
2bd59d48 1461 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1462}
1463
13af07df 1464/**
4df8dc90
TH
1465 * css_clear_dir - remove subsys files in a cgroup directory
1466 * @css: taget css
13af07df 1467 */
334c3679 1468static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1469{
334c3679 1470 struct cgroup *cgrp = css->cgroup;
4df8dc90 1471 struct cftype *cfts;
05ef1d7c 1472
88cb04b9
TH
1473 if (!(css->flags & CSS_VISIBLE))
1474 return;
1475
1476 css->flags &= ~CSS_VISIBLE;
1477
4df8dc90
TH
1478 list_for_each_entry(cfts, &css->ss->cfts, node)
1479 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1480}
1481
ccdca218 1482/**
4df8dc90
TH
1483 * css_populate_dir - create subsys files in a cgroup directory
1484 * @css: target css
ccdca218
TH
1485 *
1486 * On failure, no file is added.
1487 */
334c3679 1488static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1489{
334c3679 1490 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1491 struct cftype *cfts, *failed_cfts;
1492 int ret;
ccdca218 1493
03970d3c 1494 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1495 return 0;
1496
4df8dc90
TH
1497 if (!css->ss) {
1498 if (cgroup_on_dfl(cgrp))
1499 cfts = cgroup_dfl_base_files;
1500 else
1501 cfts = cgroup_legacy_base_files;
ccdca218 1502
4df8dc90
TH
1503 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1504 }
ccdca218 1505
4df8dc90
TH
1506 list_for_each_entry(cfts, &css->ss->cfts, node) {
1507 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1508 if (ret < 0) {
1509 failed_cfts = cfts;
1510 goto err;
ccdca218
TH
1511 }
1512 }
88cb04b9
TH
1513
1514 css->flags |= CSS_VISIBLE;
1515
ccdca218
TH
1516 return 0;
1517err:
4df8dc90
TH
1518 list_for_each_entry(cfts, &css->ss->cfts, node) {
1519 if (cfts == failed_cfts)
1520 break;
1521 cgroup_addrm_files(css, cgrp, cfts, false);
1522 }
ccdca218
TH
1523 return ret;
1524}
1525
6e5c8307 1526static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1527{
1ada4838 1528 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1529 struct cgroup_subsys *ss;
2d8f243a 1530 int ssid, i, ret;
ddbcc7e8 1531
ace2bee8 1532 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1533
b4e0eeaf 1534 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1535 /*
1536 * If @ss has non-root csses attached to it, can't move.
1537 * If @ss is an implicit controller, it is exempt from this
1538 * rule and can be stolen.
1539 */
1540 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1541 !ss->implicit_on_dfl)
3ed80a62 1542 return -EBUSY;
1d5be6b2 1543
5df36032 1544 /* can't move between two non-dummy roots either */
7fd8c565 1545 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1546 return -EBUSY;
b4e0eeaf 1547 } while_each_subsys_mask();
ddbcc7e8 1548
b4e0eeaf 1549 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1550 struct cgroup_root *src_root = ss->root;
1551 struct cgroup *scgrp = &src_root->cgrp;
1552 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1553 struct css_set *cset;
a8a648c4 1554
1ada4838 1555 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1556
334c3679
TH
1557 /* disable from the source */
1558 src_root->subsys_mask &= ~(1 << ssid);
1559 WARN_ON(cgroup_apply_control(scgrp));
1560 cgroup_finalize_control(scgrp, 0);
4df8dc90 1561
334c3679 1562 /* rebind */
1ada4838
TH
1563 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1564 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1565 ss->root = dst_root;
1ada4838 1566 css->cgroup = dcgrp;
73e80ed8 1567
f0d9a5f1 1568 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1569 hash_for_each(css_set_table, i, cset, hlist)
1570 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1571 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1572 spin_unlock_bh(&css_set_lock);
2d8f243a 1573
bd53d617 1574 /* default hierarchy doesn't enable controllers by default */
f392e51c 1575 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1576 if (dst_root == &cgrp_dfl_root) {
1577 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1578 } else {
1ada4838 1579 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1580 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1581 }
a8a648c4 1582
334c3679
TH
1583 ret = cgroup_apply_control(dcgrp);
1584 if (ret)
1585 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1586 ss->name, ret);
1587
5df36032
TH
1588 if (ss->bind)
1589 ss->bind(css);
b4e0eeaf 1590 } while_each_subsys_mask();
ddbcc7e8 1591
1ada4838 1592 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1593 return 0;
1594}
1595
2bd59d48
TH
1596static int cgroup_show_options(struct seq_file *seq,
1597 struct kernfs_root *kf_root)
ddbcc7e8 1598{
3dd06ffa 1599 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1600 struct cgroup_subsys *ss;
b85d2040 1601 int ssid;
ddbcc7e8 1602
d98817d4
TH
1603 if (root != &cgrp_dfl_root)
1604 for_each_subsys(ss, ssid)
1605 if (root->subsys_mask & (1 << ssid))
61e57c0c 1606 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1607 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1608 seq_puts(seq, ",noprefix");
93438629 1609 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1610 seq_puts(seq, ",xattr");
69e943b7
TH
1611
1612 spin_lock(&release_agent_path_lock);
81a6a5cd 1613 if (strlen(root->release_agent_path))
a068acf2
KC
1614 seq_show_option(seq, "release_agent",
1615 root->release_agent_path);
69e943b7
TH
1616 spin_unlock(&release_agent_path_lock);
1617
3dd06ffa 1618 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1619 seq_puts(seq, ",clone_children");
c6d57f33 1620 if (strlen(root->name))
a068acf2 1621 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1622 return 0;
1623}
1624
1625struct cgroup_sb_opts {
6e5c8307 1626 u16 subsys_mask;
69dfa00c 1627 unsigned int flags;
81a6a5cd 1628 char *release_agent;
2260e7fc 1629 bool cpuset_clone_children;
c6d57f33 1630 char *name;
2c6ab6d2
PM
1631 /* User explicitly requested empty subsystem */
1632 bool none;
ddbcc7e8
PM
1633};
1634
cf5d5941 1635static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1636{
32a8cf23
DL
1637 char *token, *o = data;
1638 bool all_ss = false, one_ss = false;
6e5c8307 1639 u16 mask = U16_MAX;
30159ec7 1640 struct cgroup_subsys *ss;
7b9a6ba5 1641 int nr_opts = 0;
30159ec7 1642 int i;
f9ab5b5b
LZ
1643
1644#ifdef CONFIG_CPUSETS
6e5c8307 1645 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1646#endif
ddbcc7e8 1647
c6d57f33 1648 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1649
1650 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1651 nr_opts++;
1652
ddbcc7e8
PM
1653 if (!*token)
1654 return -EINVAL;
32a8cf23 1655 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1656 /* Explicitly have no subsystems */
1657 opts->none = true;
32a8cf23
DL
1658 continue;
1659 }
1660 if (!strcmp(token, "all")) {
1661 /* Mutually exclusive option 'all' + subsystem name */
1662 if (one_ss)
1663 return -EINVAL;
1664 all_ss = true;
1665 continue;
1666 }
1667 if (!strcmp(token, "noprefix")) {
93438629 1668 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1669 continue;
1670 }
1671 if (!strcmp(token, "clone_children")) {
2260e7fc 1672 opts->cpuset_clone_children = true;
32a8cf23
DL
1673 continue;
1674 }
03b1cde6 1675 if (!strcmp(token, "xattr")) {
93438629 1676 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1677 continue;
1678 }
32a8cf23 1679 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1680 /* Specifying two release agents is forbidden */
1681 if (opts->release_agent)
1682 return -EINVAL;
c6d57f33 1683 opts->release_agent =
e400c285 1684 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1685 if (!opts->release_agent)
1686 return -ENOMEM;
32a8cf23
DL
1687 continue;
1688 }
1689 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1690 const char *name = token + 5;
1691 /* Can't specify an empty name */
1692 if (!strlen(name))
1693 return -EINVAL;
1694 /* Must match [\w.-]+ */
1695 for (i = 0; i < strlen(name); i++) {
1696 char c = name[i];
1697 if (isalnum(c))
1698 continue;
1699 if ((c == '.') || (c == '-') || (c == '_'))
1700 continue;
1701 return -EINVAL;
1702 }
1703 /* Specifying two names is forbidden */
1704 if (opts->name)
1705 return -EINVAL;
1706 opts->name = kstrndup(name,
e400c285 1707 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1708 GFP_KERNEL);
1709 if (!opts->name)
1710 return -ENOMEM;
32a8cf23
DL
1711
1712 continue;
1713 }
1714
30159ec7 1715 for_each_subsys(ss, i) {
3e1d2eed 1716 if (strcmp(token, ss->legacy_name))
32a8cf23 1717 continue;
fc5ed1e9 1718 if (!cgroup_ssid_enabled(i))
32a8cf23 1719 continue;
223ffb29
JW
1720 if (cgroup_ssid_no_v1(i))
1721 continue;
32a8cf23
DL
1722
1723 /* Mutually exclusive option 'all' + subsystem name */
1724 if (all_ss)
1725 return -EINVAL;
69dfa00c 1726 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1727 one_ss = true;
1728
1729 break;
1730 }
1731 if (i == CGROUP_SUBSYS_COUNT)
1732 return -ENOENT;
1733 }
1734
7b9a6ba5
TH
1735 /*
1736 * If the 'all' option was specified select all the subsystems,
1737 * otherwise if 'none', 'name=' and a subsystem name options were
1738 * not specified, let's default to 'all'
1739 */
1740 if (all_ss || (!one_ss && !opts->none && !opts->name))
1741 for_each_subsys(ss, i)
223ffb29 1742 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1743 opts->subsys_mask |= (1 << i);
1744
1745 /*
1746 * We either have to specify by name or by subsystems. (So all
1747 * empty hierarchies must have a name).
1748 */
1749 if (!opts->subsys_mask && !opts->name)
1750 return -EINVAL;
1751
f9ab5b5b
LZ
1752 /*
1753 * Option noprefix was introduced just for backward compatibility
1754 * with the old cpuset, so we allow noprefix only if mounting just
1755 * the cpuset subsystem.
1756 */
93438629 1757 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1758 return -EINVAL;
1759
2c6ab6d2 1760 /* Can't specify "none" and some subsystems */
a1a71b45 1761 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1762 return -EINVAL;
1763
ddbcc7e8
PM
1764 return 0;
1765}
1766
2bd59d48 1767static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1768{
1769 int ret = 0;
3dd06ffa 1770 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1771 struct cgroup_sb_opts opts;
6e5c8307 1772 u16 added_mask, removed_mask;
ddbcc7e8 1773
aa6ec29b
TH
1774 if (root == &cgrp_dfl_root) {
1775 pr_err("remount is not allowed\n");
873fe09e
TH
1776 return -EINVAL;
1777 }
1778
334c3679 1779 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1780
1781 /* See what subsystems are wanted */
1782 ret = parse_cgroupfs_options(data, &opts);
1783 if (ret)
1784 goto out_unlock;
1785
f392e51c 1786 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1787 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1788 task_tgid_nr(current), current->comm);
8b5a5a9d 1789
f392e51c
TH
1790 added_mask = opts.subsys_mask & ~root->subsys_mask;
1791 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1792
cf5d5941 1793 /* Don't allow flags or name to change at remount */
7450e90b 1794 if ((opts.flags ^ root->flags) ||
cf5d5941 1795 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1796 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1797 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1798 ret = -EINVAL;
1799 goto out_unlock;
1800 }
1801
f172e67c 1802 /* remounting is not allowed for populated hierarchies */
d5c419b6 1803 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1804 ret = -EBUSY;
0670e08b 1805 goto out_unlock;
cf5d5941 1806 }
ddbcc7e8 1807
5df36032 1808 ret = rebind_subsystems(root, added_mask);
3126121f 1809 if (ret)
0670e08b 1810 goto out_unlock;
ddbcc7e8 1811
334c3679 1812 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1813
69e943b7
TH
1814 if (opts.release_agent) {
1815 spin_lock(&release_agent_path_lock);
81a6a5cd 1816 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1817 spin_unlock(&release_agent_path_lock);
1818 }
ddbcc7e8 1819 out_unlock:
66bdc9cf 1820 kfree(opts.release_agent);
c6d57f33 1821 kfree(opts.name);
ddbcc7e8 1822 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1823 return ret;
1824}
1825
afeb0f9f
TH
1826/*
1827 * To reduce the fork() overhead for systems that are not actually using
1828 * their cgroups capability, we don't maintain the lists running through
1829 * each css_set to its tasks until we see the list actually used - in other
1830 * words after the first mount.
1831 */
1832static bool use_task_css_set_links __read_mostly;
1833
1834static void cgroup_enable_task_cg_lists(void)
1835{
1836 struct task_struct *p, *g;
1837
f0d9a5f1 1838 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1839
1840 if (use_task_css_set_links)
1841 goto out_unlock;
1842
1843 use_task_css_set_links = true;
1844
1845 /*
1846 * We need tasklist_lock because RCU is not safe against
1847 * while_each_thread(). Besides, a forking task that has passed
1848 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1849 * is not guaranteed to have its child immediately visible in the
1850 * tasklist if we walk through it with RCU.
1851 */
1852 read_lock(&tasklist_lock);
1853 do_each_thread(g, p) {
afeb0f9f
TH
1854 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1855 task_css_set(p) != &init_css_set);
1856
1857 /*
1858 * We should check if the process is exiting, otherwise
1859 * it will race with cgroup_exit() in that the list
1860 * entry won't be deleted though the process has exited.
f153ad11
TH
1861 * Do it while holding siglock so that we don't end up
1862 * racing against cgroup_exit().
afeb0f9f 1863 */
f153ad11 1864 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1865 if (!(p->flags & PF_EXITING)) {
1866 struct css_set *cset = task_css_set(p);
1867
0de0942d
TH
1868 if (!css_set_populated(cset))
1869 css_set_update_populated(cset, true);
389b9c1b 1870 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1871 get_css_set(cset);
1872 }
f153ad11 1873 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1874 } while_each_thread(g, p);
1875 read_unlock(&tasklist_lock);
1876out_unlock:
f0d9a5f1 1877 spin_unlock_bh(&css_set_lock);
afeb0f9f 1878}
ddbcc7e8 1879
cc31edce
PM
1880static void init_cgroup_housekeeping(struct cgroup *cgrp)
1881{
2d8f243a
TH
1882 struct cgroup_subsys *ss;
1883 int ssid;
1884
d5c419b6
TH
1885 INIT_LIST_HEAD(&cgrp->self.sibling);
1886 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1887 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1888 INIT_LIST_HEAD(&cgrp->pidlists);
1889 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1890 cgrp->self.cgroup = cgrp;
184faf32 1891 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1892
1893 for_each_subsys(ss, ssid)
1894 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1895
1896 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1897 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1898}
c6d57f33 1899
3dd06ffa 1900static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1901 struct cgroup_sb_opts *opts)
ddbcc7e8 1902{
3dd06ffa 1903 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1904
ddbcc7e8 1905 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1906 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1907 cgrp->root = root;
cc31edce 1908 init_cgroup_housekeeping(cgrp);
4e96ee8e 1909 idr_init(&root->cgroup_idr);
c6d57f33 1910
c6d57f33
PM
1911 root->flags = opts->flags;
1912 if (opts->release_agent)
1913 strcpy(root->release_agent_path, opts->release_agent);
1914 if (opts->name)
1915 strcpy(root->name, opts->name);
2260e7fc 1916 if (opts->cpuset_clone_children)
3dd06ffa 1917 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1918}
1919
6e5c8307 1920static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1921{
d427dfeb 1922 LIST_HEAD(tmp_links);
3dd06ffa 1923 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1924 struct css_set *cset;
d427dfeb 1925 int i, ret;
2c6ab6d2 1926
d427dfeb 1927 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1928
cf780b7d 1929 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1930 if (ret < 0)
2bd59d48 1931 goto out;
d427dfeb 1932 root_cgrp->id = ret;
b11cfb58 1933 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1934
2aad2a86
TH
1935 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1936 GFP_KERNEL);
9d755d33
TH
1937 if (ret)
1938 goto out;
1939
d427dfeb 1940 /*
f0d9a5f1 1941 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 1942 * but that's OK - it can only be increased by someone holding
04313591
TH
1943 * cgroup_lock, and that's us. Later rebinding may disable
1944 * controllers on the default hierarchy and thus create new csets,
1945 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 1946 */
04313591 1947 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 1948 if (ret)
9d755d33 1949 goto cancel_ref;
ddbcc7e8 1950
985ed670 1951 ret = cgroup_init_root_id(root);
ddbcc7e8 1952 if (ret)
9d755d33 1953 goto cancel_ref;
ddbcc7e8 1954
2bd59d48
TH
1955 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1956 KERNFS_ROOT_CREATE_DEACTIVATED,
1957 root_cgrp);
1958 if (IS_ERR(root->kf_root)) {
1959 ret = PTR_ERR(root->kf_root);
1960 goto exit_root_id;
1961 }
1962 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1963
334c3679 1964 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 1965 if (ret)
2bd59d48 1966 goto destroy_root;
ddbcc7e8 1967
5df36032 1968 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1969 if (ret)
2bd59d48 1970 goto destroy_root;
ddbcc7e8 1971
d427dfeb
TH
1972 /*
1973 * There must be no failure case after here, since rebinding takes
1974 * care of subsystems' refcounts, which are explicitly dropped in
1975 * the failure exit path.
1976 */
1977 list_add(&root->root_list, &cgroup_roots);
1978 cgroup_root_count++;
0df6a63f 1979
d427dfeb 1980 /*
3dd06ffa 1981 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1982 * objects.
1983 */
f0d9a5f1 1984 spin_lock_bh(&css_set_lock);
0de0942d 1985 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1986 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1987 if (css_set_populated(cset))
1988 cgroup_update_populated(root_cgrp, true);
1989 }
f0d9a5f1 1990 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1991
d5c419b6 1992 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1993 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1994
2bd59d48 1995 kernfs_activate(root_cgrp->kn);
d427dfeb 1996 ret = 0;
2bd59d48 1997 goto out;
d427dfeb 1998
2bd59d48
TH
1999destroy_root:
2000 kernfs_destroy_root(root->kf_root);
2001 root->kf_root = NULL;
2002exit_root_id:
d427dfeb 2003 cgroup_exit_root_id(root);
9d755d33 2004cancel_ref:
9a1049da 2005 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2006out:
d427dfeb
TH
2007 free_cgrp_cset_links(&tmp_links);
2008 return ret;
ddbcc7e8
PM
2009}
2010
f7e83571 2011static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2012 int flags, const char *unused_dev_name,
f7e83571 2013 void *data)
ddbcc7e8 2014{
67e9c74b 2015 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2016 struct super_block *pinned_sb = NULL;
ed82571b 2017 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2018 struct cgroup_subsys *ss;
3dd06ffa 2019 struct cgroup_root *root;
ddbcc7e8 2020 struct cgroup_sb_opts opts;
2bd59d48 2021 struct dentry *dentry;
8e30e2b8 2022 int ret;
970317aa 2023 int i;
c6b3d5bc 2024 bool new_sb;
ddbcc7e8 2025
ed82571b
SH
2026 get_cgroup_ns(ns);
2027
2028 /* Check if the caller has permission to mount. */
2029 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2030 put_cgroup_ns(ns);
2031 return ERR_PTR(-EPERM);
2032 }
2033
56fde9e0
TH
2034 /*
2035 * The first time anyone tries to mount a cgroup, enable the list
2036 * linking each css_set to its tasks and fix up all existing tasks.
2037 */
2038 if (!use_task_css_set_links)
2039 cgroup_enable_task_cg_lists();
e37a06f1 2040
67e9c74b
TH
2041 if (is_v2) {
2042 if (data) {
2043 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2044 put_cgroup_ns(ns);
67e9c74b
TH
2045 return ERR_PTR(-EINVAL);
2046 }
a7165264 2047 cgrp_dfl_visible = true;
67e9c74b
TH
2048 root = &cgrp_dfl_root;
2049 cgroup_get(&root->cgrp);
2050 goto out_mount;
2051 }
2052
334c3679 2053 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2054
2055 /* First find the desired set of subsystems */
ddbcc7e8 2056 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2057 if (ret)
8e30e2b8 2058 goto out_unlock;
a015edd2 2059
970317aa
LZ
2060 /*
2061 * Destruction of cgroup root is asynchronous, so subsystems may
2062 * still be dying after the previous unmount. Let's drain the
2063 * dying subsystems. We just need to ensure that the ones
2064 * unmounted previously finish dying and don't care about new ones
2065 * starting. Testing ref liveliness is good enough.
2066 */
2067 for_each_subsys(ss, i) {
2068 if (!(opts.subsys_mask & (1 << i)) ||
2069 ss->root == &cgrp_dfl_root)
2070 continue;
2071
2072 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2073 mutex_unlock(&cgroup_mutex);
2074 msleep(10);
2075 ret = restart_syscall();
2076 goto out_free;
2077 }
2078 cgroup_put(&ss->root->cgrp);
2079 }
2080
985ed670 2081 for_each_root(root) {
2bd59d48 2082 bool name_match = false;
3126121f 2083
3dd06ffa 2084 if (root == &cgrp_dfl_root)
985ed670 2085 continue;
3126121f 2086
cf5d5941 2087 /*
2bd59d48
TH
2088 * If we asked for a name then it must match. Also, if
2089 * name matches but sybsys_mask doesn't, we should fail.
2090 * Remember whether name matched.
cf5d5941 2091 */
2bd59d48
TH
2092 if (opts.name) {
2093 if (strcmp(opts.name, root->name))
2094 continue;
2095 name_match = true;
2096 }
ddbcc7e8 2097
c6d57f33 2098 /*
2bd59d48
TH
2099 * If we asked for subsystems (or explicitly for no
2100 * subsystems) then they must match.
c6d57f33 2101 */
2bd59d48 2102 if ((opts.subsys_mask || opts.none) &&
f392e51c 2103 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2104 if (!name_match)
2105 continue;
2106 ret = -EBUSY;
2107 goto out_unlock;
2108 }
873fe09e 2109
7b9a6ba5
TH
2110 if (root->flags ^ opts.flags)
2111 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2112
776f02fa 2113 /*
3a32bd72
LZ
2114 * We want to reuse @root whose lifetime is governed by its
2115 * ->cgrp. Let's check whether @root is alive and keep it
2116 * that way. As cgroup_kill_sb() can happen anytime, we
2117 * want to block it by pinning the sb so that @root doesn't
2118 * get killed before mount is complete.
2119 *
2120 * With the sb pinned, tryget_live can reliably indicate
2121 * whether @root can be reused. If it's being killed,
2122 * drain it. We can use wait_queue for the wait but this
2123 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2124 */
3a32bd72
LZ
2125 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2126 if (IS_ERR(pinned_sb) ||
2127 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2128 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2129 if (!IS_ERR_OR_NULL(pinned_sb))
2130 deactivate_super(pinned_sb);
776f02fa 2131 msleep(10);
a015edd2
TH
2132 ret = restart_syscall();
2133 goto out_free;
776f02fa 2134 }
ddbcc7e8 2135
776f02fa 2136 ret = 0;
2bd59d48 2137 goto out_unlock;
ddbcc7e8 2138 }
ddbcc7e8 2139
817929ec 2140 /*
172a2c06
TH
2141 * No such thing, create a new one. name= matching without subsys
2142 * specification is allowed for already existing hierarchies but we
2143 * can't create new one without subsys specification.
817929ec 2144 */
172a2c06
TH
2145 if (!opts.subsys_mask && !opts.none) {
2146 ret = -EINVAL;
2147 goto out_unlock;
817929ec 2148 }
817929ec 2149
ed82571b
SH
2150 /*
2151 * We know this subsystem has not yet been bound. Users in a non-init
2152 * user namespace may only mount hierarchies with no bound subsystems,
2153 * i.e. 'none,name=user1'
2154 */
2155 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2156 ret = -EPERM;
2157 goto out_unlock;
2158 }
2159
172a2c06
TH
2160 root = kzalloc(sizeof(*root), GFP_KERNEL);
2161 if (!root) {
2162 ret = -ENOMEM;
2bd59d48 2163 goto out_unlock;
839ec545 2164 }
e5f6a860 2165
172a2c06
TH
2166 init_cgroup_root(root, &opts);
2167
35585573 2168 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2169 if (ret)
2170 cgroup_free_root(root);
fa3ca07e 2171
8e30e2b8 2172out_unlock:
ddbcc7e8 2173 mutex_unlock(&cgroup_mutex);
a015edd2 2174out_free:
c6d57f33
PM
2175 kfree(opts.release_agent);
2176 kfree(opts.name);
03b1cde6 2177
ed82571b
SH
2178 if (ret) {
2179 put_cgroup_ns(ns);
8e30e2b8 2180 return ERR_PTR(ret);
ed82571b 2181 }
67e9c74b 2182out_mount:
c9482a5b 2183 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2184 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2185 &new_sb);
ed82571b
SH
2186
2187 /*
2188 * In non-init cgroup namespace, instead of root cgroup's
2189 * dentry, we return the dentry corresponding to the
2190 * cgroupns->root_cgrp.
2191 */
2192 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2193 struct dentry *nsdentry;
2194 struct cgroup *cgrp;
2195
2196 mutex_lock(&cgroup_mutex);
2197 spin_lock_bh(&css_set_lock);
2198
2199 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2200
2201 spin_unlock_bh(&css_set_lock);
2202 mutex_unlock(&cgroup_mutex);
2203
2204 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2205 dput(dentry);
2206 dentry = nsdentry;
2207 }
2208
c6b3d5bc 2209 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2210 cgroup_put(&root->cgrp);
3a32bd72
LZ
2211
2212 /*
2213 * If @pinned_sb, we're reusing an existing root and holding an
2214 * extra ref on its sb. Mount is complete. Put the extra ref.
2215 */
2216 if (pinned_sb) {
2217 WARN_ON(new_sb);
2218 deactivate_super(pinned_sb);
2219 }
2220
ed82571b 2221 put_cgroup_ns(ns);
2bd59d48
TH
2222 return dentry;
2223}
2224
2225static void cgroup_kill_sb(struct super_block *sb)
2226{
2227 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2228 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2229
9d755d33
TH
2230 /*
2231 * If @root doesn't have any mounts or children, start killing it.
2232 * This prevents new mounts by disabling percpu_ref_tryget_live().
2233 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2234 *
2235 * And don't kill the default root.
9d755d33 2236 */
3c606d35 2237 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2238 root == &cgrp_dfl_root)
9d755d33
TH
2239 cgroup_put(&root->cgrp);
2240 else
2241 percpu_ref_kill(&root->cgrp.self.refcnt);
2242
2bd59d48 2243 kernfs_kill_sb(sb);
ddbcc7e8
PM
2244}
2245
2246static struct file_system_type cgroup_fs_type = {
2247 .name = "cgroup",
f7e83571 2248 .mount = cgroup_mount,
ddbcc7e8 2249 .kill_sb = cgroup_kill_sb,
1c53753e 2250 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2251};
2252
67e9c74b
TH
2253static struct file_system_type cgroup2_fs_type = {
2254 .name = "cgroup2",
2255 .mount = cgroup_mount,
2256 .kill_sb = cgroup_kill_sb,
1c53753e 2257 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2258};
2259
a79a908f
AK
2260static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2261 struct cgroup_namespace *ns)
2262{
2263 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2264 int ret;
2265
2266 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2267 if (ret < 0 || ret >= buflen)
2268 return NULL;
2269 return buf;
2270}
2271
2272char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2273 struct cgroup_namespace *ns)
2274{
2275 char *ret;
2276
2277 mutex_lock(&cgroup_mutex);
2278 spin_lock_bh(&css_set_lock);
2279
2280 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2281
2282 spin_unlock_bh(&css_set_lock);
2283 mutex_unlock(&cgroup_mutex);
2284
2285 return ret;
2286}
2287EXPORT_SYMBOL_GPL(cgroup_path_ns);
2288
857a2beb 2289/**
913ffdb5 2290 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2291 * @task: target task
857a2beb
TH
2292 * @buf: the buffer to write the path into
2293 * @buflen: the length of the buffer
2294 *
913ffdb5
TH
2295 * Determine @task's cgroup on the first (the one with the lowest non-zero
2296 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2297 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2298 * cgroup controller callbacks.
2299 *
e61734c5 2300 * Return value is the same as kernfs_path().
857a2beb 2301 */
e61734c5 2302char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2303{
3dd06ffa 2304 struct cgroup_root *root;
913ffdb5 2305 struct cgroup *cgrp;
e61734c5
TH
2306 int hierarchy_id = 1;
2307 char *path = NULL;
857a2beb
TH
2308
2309 mutex_lock(&cgroup_mutex);
f0d9a5f1 2310 spin_lock_bh(&css_set_lock);
857a2beb 2311
913ffdb5
TH
2312 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2313
857a2beb
TH
2314 if (root) {
2315 cgrp = task_cgroup_from_root(task, root);
a79a908f 2316 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2317 } else {
2318 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2319 if (strlcpy(buf, "/", buflen) < buflen)
2320 path = buf;
857a2beb
TH
2321 }
2322
f0d9a5f1 2323 spin_unlock_bh(&css_set_lock);
857a2beb 2324 mutex_unlock(&cgroup_mutex);
e61734c5 2325 return path;
857a2beb 2326}
913ffdb5 2327EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2328
b3dc094e 2329/* used to track tasks and other necessary states during migration */
2f7ee569 2330struct cgroup_taskset {
b3dc094e
TH
2331 /* the src and dst cset list running through cset->mg_node */
2332 struct list_head src_csets;
2333 struct list_head dst_csets;
2334
1f7dd3e5
TH
2335 /* the subsys currently being processed */
2336 int ssid;
2337
b3dc094e
TH
2338 /*
2339 * Fields for cgroup_taskset_*() iteration.
2340 *
2341 * Before migration is committed, the target migration tasks are on
2342 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2343 * the csets on ->dst_csets. ->csets point to either ->src_csets
2344 * or ->dst_csets depending on whether migration is committed.
2345 *
2346 * ->cur_csets and ->cur_task point to the current task position
2347 * during iteration.
2348 */
2349 struct list_head *csets;
2350 struct css_set *cur_cset;
2351 struct task_struct *cur_task;
2f7ee569
TH
2352};
2353
adaae5dc
TH
2354#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2355 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2356 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2357 .csets = &tset.src_csets, \
2358}
2359
2360/**
2361 * cgroup_taskset_add - try to add a migration target task to a taskset
2362 * @task: target task
2363 * @tset: target taskset
2364 *
2365 * Add @task, which is a migration target, to @tset. This function becomes
2366 * noop if @task doesn't need to be migrated. @task's css_set should have
2367 * been added as a migration source and @task->cg_list will be moved from
2368 * the css_set's tasks list to mg_tasks one.
2369 */
2370static void cgroup_taskset_add(struct task_struct *task,
2371 struct cgroup_taskset *tset)
2372{
2373 struct css_set *cset;
2374
f0d9a5f1 2375 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2376
2377 /* @task either already exited or can't exit until the end */
2378 if (task->flags & PF_EXITING)
2379 return;
2380
2381 /* leave @task alone if post_fork() hasn't linked it yet */
2382 if (list_empty(&task->cg_list))
2383 return;
2384
2385 cset = task_css_set(task);
2386 if (!cset->mg_src_cgrp)
2387 return;
2388
2389 list_move_tail(&task->cg_list, &cset->mg_tasks);
2390 if (list_empty(&cset->mg_node))
2391 list_add_tail(&cset->mg_node, &tset->src_csets);
2392 if (list_empty(&cset->mg_dst_cset->mg_node))
2393 list_move_tail(&cset->mg_dst_cset->mg_node,
2394 &tset->dst_csets);
2395}
2396
2f7ee569
TH
2397/**
2398 * cgroup_taskset_first - reset taskset and return the first task
2399 * @tset: taskset of interest
1f7dd3e5 2400 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2401 *
2402 * @tset iteration is initialized and the first task is returned.
2403 */
1f7dd3e5
TH
2404struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2405 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2406{
b3dc094e
TH
2407 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2408 tset->cur_task = NULL;
2409
1f7dd3e5 2410 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2411}
2f7ee569
TH
2412
2413/**
2414 * cgroup_taskset_next - iterate to the next task in taskset
2415 * @tset: taskset of interest
1f7dd3e5 2416 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2417 *
2418 * Return the next task in @tset. Iteration must have been initialized
2419 * with cgroup_taskset_first().
2420 */
1f7dd3e5
TH
2421struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2422 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2423{
b3dc094e
TH
2424 struct css_set *cset = tset->cur_cset;
2425 struct task_struct *task = tset->cur_task;
2f7ee569 2426
b3dc094e
TH
2427 while (&cset->mg_node != tset->csets) {
2428 if (!task)
2429 task = list_first_entry(&cset->mg_tasks,
2430 struct task_struct, cg_list);
2431 else
2432 task = list_next_entry(task, cg_list);
2f7ee569 2433
b3dc094e
TH
2434 if (&task->cg_list != &cset->mg_tasks) {
2435 tset->cur_cset = cset;
2436 tset->cur_task = task;
1f7dd3e5
TH
2437
2438 /*
2439 * This function may be called both before and
2440 * after cgroup_taskset_migrate(). The two cases
2441 * can be distinguished by looking at whether @cset
2442 * has its ->mg_dst_cset set.
2443 */
2444 if (cset->mg_dst_cset)
2445 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2446 else
2447 *dst_cssp = cset->subsys[tset->ssid];
2448
b3dc094e
TH
2449 return task;
2450 }
2f7ee569 2451
b3dc094e
TH
2452 cset = list_next_entry(cset, mg_node);
2453 task = NULL;
2454 }
2f7ee569 2455
b3dc094e 2456 return NULL;
2f7ee569 2457}
2f7ee569 2458
adaae5dc 2459/**
37ff9f8f 2460 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2461 * @tset: taget taskset
37ff9f8f 2462 * @root: cgroup root the migration is taking place on
adaae5dc 2463 *
37ff9f8f
TH
2464 * Migrate tasks in @tset as setup by migration preparation functions.
2465 * This function fails iff one of the ->can_attach callbacks fails and
2466 * guarantees that either all or none of the tasks in @tset are migrated.
2467 * @tset is consumed regardless of success.
adaae5dc
TH
2468 */
2469static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2470 struct cgroup_root *root)
adaae5dc 2471{
37ff9f8f 2472 struct cgroup_subsys *ss;
adaae5dc
TH
2473 struct task_struct *task, *tmp_task;
2474 struct css_set *cset, *tmp_cset;
37ff9f8f 2475 int ssid, failed_ssid, ret;
adaae5dc
TH
2476
2477 /* methods shouldn't be called if no task is actually migrating */
2478 if (list_empty(&tset->src_csets))
2479 return 0;
2480
2481 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2482 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2483 if (ss->can_attach) {
2484 tset->ssid = ssid;
2485 ret = ss->can_attach(tset);
adaae5dc 2486 if (ret) {
37ff9f8f 2487 failed_ssid = ssid;
adaae5dc
TH
2488 goto out_cancel_attach;
2489 }
2490 }
37ff9f8f 2491 } while_each_subsys_mask();
adaae5dc
TH
2492
2493 /*
2494 * Now that we're guaranteed success, proceed to move all tasks to
2495 * the new cgroup. There are no failure cases after here, so this
2496 * is the commit point.
2497 */
f0d9a5f1 2498 spin_lock_bh(&css_set_lock);
adaae5dc 2499 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2500 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2501 struct css_set *from_cset = task_css_set(task);
2502 struct css_set *to_cset = cset->mg_dst_cset;
2503
2504 get_css_set(to_cset);
2505 css_set_move_task(task, from_cset, to_cset, true);
2506 put_css_set_locked(from_cset);
2507 }
adaae5dc 2508 }
f0d9a5f1 2509 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2510
2511 /*
2512 * Migration is committed, all target tasks are now on dst_csets.
2513 * Nothing is sensitive to fork() after this point. Notify
2514 * controllers that migration is complete.
2515 */
2516 tset->csets = &tset->dst_csets;
2517
37ff9f8f
TH
2518 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2519 if (ss->attach) {
2520 tset->ssid = ssid;
2521 ss->attach(tset);
1f7dd3e5 2522 }
37ff9f8f 2523 } while_each_subsys_mask();
adaae5dc
TH
2524
2525 ret = 0;
2526 goto out_release_tset;
2527
2528out_cancel_attach:
37ff9f8f
TH
2529 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2530 if (ssid == failed_ssid)
adaae5dc 2531 break;
37ff9f8f
TH
2532 if (ss->cancel_attach) {
2533 tset->ssid = ssid;
2534 ss->cancel_attach(tset);
1f7dd3e5 2535 }
37ff9f8f 2536 } while_each_subsys_mask();
adaae5dc 2537out_release_tset:
f0d9a5f1 2538 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2539 list_splice_init(&tset->dst_csets, &tset->src_csets);
2540 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2541 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2542 list_del_init(&cset->mg_node);
2543 }
f0d9a5f1 2544 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2545 return ret;
2546}
2547
6c694c88
TH
2548/**
2549 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2550 * @dst_cgrp: destination cgroup to test
2551 *
2552 * On the default hierarchy, except for the root, subtree_control must be
2553 * zero for migration destination cgroups with tasks so that child cgroups
2554 * don't compete against tasks.
2555 */
2556static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2557{
2558 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2559 !dst_cgrp->subtree_control;
2560}
2561
a043e3b2 2562/**
1958d2d5
TH
2563 * cgroup_migrate_finish - cleanup after attach
2564 * @preloaded_csets: list of preloaded css_sets
74a1166d 2565 *
1958d2d5
TH
2566 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2567 * those functions for details.
74a1166d 2568 */
1958d2d5 2569static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2570{
1958d2d5 2571 struct css_set *cset, *tmp_cset;
74a1166d 2572
1958d2d5
TH
2573 lockdep_assert_held(&cgroup_mutex);
2574
f0d9a5f1 2575 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2576 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2577 cset->mg_src_cgrp = NULL;
e4857982 2578 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2579 cset->mg_dst_cset = NULL;
2580 list_del_init(&cset->mg_preload_node);
a25eb52e 2581 put_css_set_locked(cset);
1958d2d5 2582 }
f0d9a5f1 2583 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2584}
2585
2586/**
2587 * cgroup_migrate_add_src - add a migration source css_set
2588 * @src_cset: the source css_set to add
2589 * @dst_cgrp: the destination cgroup
2590 * @preloaded_csets: list of preloaded css_sets
2591 *
2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2593 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2594 * up by cgroup_migrate_finish().
2595 *
1ed13287
TH
2596 * This function may be called without holding cgroup_threadgroup_rwsem
2597 * even if the target is a process. Threads may be created and destroyed
2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599 * into play and the preloaded css_sets are guaranteed to cover all
2600 * migrations.
1958d2d5
TH
2601 */
2602static void cgroup_migrate_add_src(struct css_set *src_cset,
2603 struct cgroup *dst_cgrp,
2604 struct list_head *preloaded_csets)
2605{
2606 struct cgroup *src_cgrp;
2607
2608 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2609 lockdep_assert_held(&css_set_lock);
1958d2d5 2610
2b021cbf
TH
2611 /*
2612 * If ->dead, @src_set is associated with one or more dead cgroups
2613 * and doesn't contain any migratable tasks. Ignore it early so
2614 * that the rest of migration path doesn't get confused by it.
2615 */
2616 if (src_cset->dead)
2617 return;
2618
1958d2d5
TH
2619 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2620
1958d2d5
TH
2621 if (!list_empty(&src_cset->mg_preload_node))
2622 return;
2623
2624 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2625 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2626 WARN_ON(!list_empty(&src_cset->mg_tasks));
2627 WARN_ON(!list_empty(&src_cset->mg_node));
2628
2629 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2630 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2631 get_css_set(src_cset);
2632 list_add(&src_cset->mg_preload_node, preloaded_csets);
2633}
2634
2635/**
2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2637 * @preloaded_csets: list of preloaded source css_sets
2638 *
e4857982
TH
2639 * Tasks are about to be moved and all the source css_sets have been
2640 * preloaded to @preloaded_csets. This function looks up and pins all
2641 * destination css_sets, links each to its source, and append them to
2642 * @preloaded_csets.
1958d2d5
TH
2643 *
2644 * This function must be called after cgroup_migrate_add_src() has been
2645 * called on each migration source css_set. After migration is performed
2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2647 * @preloaded_csets.
2648 */
e4857982 2649static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2650{
2651 LIST_HEAD(csets);
f817de98 2652 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2653
2654 lockdep_assert_held(&cgroup_mutex);
2655
2656 /* look up the dst cset for each src cset and link it to src */
f817de98 2657 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2658 struct css_set *dst_cset;
2659
e4857982 2660 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2661 if (!dst_cset)
2662 goto err;
2663
2664 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2665
2666 /*
2667 * If src cset equals dst, it's noop. Drop the src.
2668 * cgroup_migrate() will skip the cset too. Note that we
2669 * can't handle src == dst as some nodes are used by both.
2670 */
2671 if (src_cset == dst_cset) {
2672 src_cset->mg_src_cgrp = NULL;
e4857982 2673 src_cset->mg_dst_cgrp = NULL;
f817de98 2674 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2675 put_css_set(src_cset);
2676 put_css_set(dst_cset);
f817de98
TH
2677 continue;
2678 }
2679
1958d2d5
TH
2680 src_cset->mg_dst_cset = dst_cset;
2681
2682 if (list_empty(&dst_cset->mg_preload_node))
2683 list_add(&dst_cset->mg_preload_node, &csets);
2684 else
a25eb52e 2685 put_css_set(dst_cset);
1958d2d5
TH
2686 }
2687
f817de98 2688 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2689 return 0;
2690err:
2691 cgroup_migrate_finish(&csets);
2692 return -ENOMEM;
2693}
2694
2695/**
2696 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2697 * @leader: the leader of the process or the task to migrate
2698 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2699 * @root: cgroup root migration is taking place on
1958d2d5 2700 *
37ff9f8f
TH
2701 * Migrate a process or task denoted by @leader. If migrating a process,
2702 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2703 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2704 * cgroup_migrate_prepare_dst() on the targets before invoking this
2705 * function and following up with cgroup_migrate_finish().
2706 *
2707 * As long as a controller's ->can_attach() doesn't fail, this function is
2708 * guaranteed to succeed. This means that, excluding ->can_attach()
2709 * failure, when migrating multiple targets, the success or failure can be
2710 * decided for all targets by invoking group_migrate_prepare_dst() before
2711 * actually starting migrating.
2712 */
9af2ec45 2713static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2714 struct cgroup_root *root)
74a1166d 2715{
adaae5dc
TH
2716 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2717 struct task_struct *task;
74a1166d 2718
fb5d2b4c
MSB
2719 /*
2720 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2721 * already PF_EXITING could be freed from underneath us unless we
2722 * take an rcu_read_lock.
2723 */
f0d9a5f1 2724 spin_lock_bh(&css_set_lock);
fb5d2b4c 2725 rcu_read_lock();
9db8de37 2726 task = leader;
74a1166d 2727 do {
adaae5dc 2728 cgroup_taskset_add(task, &tset);
081aa458
LZ
2729 if (!threadgroup)
2730 break;
9db8de37 2731 } while_each_thread(leader, task);
fb5d2b4c 2732 rcu_read_unlock();
f0d9a5f1 2733 spin_unlock_bh(&css_set_lock);
74a1166d 2734
37ff9f8f 2735 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2736}
2737
1958d2d5
TH
2738/**
2739 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2740 * @dst_cgrp: the cgroup to attach to
2741 * @leader: the task or the leader of the threadgroup to be attached
2742 * @threadgroup: attach the whole threadgroup?
2743 *
1ed13287 2744 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2745 */
2746static int cgroup_attach_task(struct cgroup *dst_cgrp,
2747 struct task_struct *leader, bool threadgroup)
2748{
2749 LIST_HEAD(preloaded_csets);
2750 struct task_struct *task;
2751 int ret;
2752
6c694c88
TH
2753 if (!cgroup_may_migrate_to(dst_cgrp))
2754 return -EBUSY;
2755
1958d2d5 2756 /* look up all src csets */
f0d9a5f1 2757 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2758 rcu_read_lock();
2759 task = leader;
2760 do {
2761 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2762 &preloaded_csets);
2763 if (!threadgroup)
2764 break;
2765 } while_each_thread(leader, task);
2766 rcu_read_unlock();
f0d9a5f1 2767 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2768
2769 /* prepare dst csets and commit */
e4857982 2770 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2771 if (!ret)
37ff9f8f 2772 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2773
2774 cgroup_migrate_finish(&preloaded_csets);
2775 return ret;
74a1166d
BB
2776}
2777
187fe840
TH
2778static int cgroup_procs_write_permission(struct task_struct *task,
2779 struct cgroup *dst_cgrp,
2780 struct kernfs_open_file *of)
dedf22e9
TH
2781{
2782 const struct cred *cred = current_cred();
2783 const struct cred *tcred = get_task_cred(task);
2784 int ret = 0;
2785
2786 /*
2787 * even if we're attaching all tasks in the thread group, we only
2788 * need to check permissions on one of them.
2789 */
2790 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2791 !uid_eq(cred->euid, tcred->uid) &&
2792 !uid_eq(cred->euid, tcred->suid))
2793 ret = -EACCES;
2794
187fe840
TH
2795 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2796 struct super_block *sb = of->file->f_path.dentry->d_sb;
2797 struct cgroup *cgrp;
2798 struct inode *inode;
2799
f0d9a5f1 2800 spin_lock_bh(&css_set_lock);
187fe840 2801 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2802 spin_unlock_bh(&css_set_lock);
187fe840
TH
2803
2804 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2805 cgrp = cgroup_parent(cgrp);
2806
2807 ret = -ENOMEM;
6f60eade 2808 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2809 if (inode) {
2810 ret = inode_permission(inode, MAY_WRITE);
2811 iput(inode);
2812 }
2813 }
2814
dedf22e9
TH
2815 put_cred(tcred);
2816 return ret;
2817}
2818
74a1166d
BB
2819/*
2820 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2821 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2822 * cgroup_mutex and threadgroup.
bbcb81d0 2823 */
acbef755
TH
2824static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2825 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2826{
bbcb81d0 2827 struct task_struct *tsk;
5cf1cacb 2828 struct cgroup_subsys *ss;
e76ecaee 2829 struct cgroup *cgrp;
acbef755 2830 pid_t pid;
5cf1cacb 2831 int ssid, ret;
bbcb81d0 2832
acbef755
TH
2833 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2834 return -EINVAL;
2835
945ba199 2836 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2837 if (!cgrp)
74a1166d
BB
2838 return -ENODEV;
2839
3014dde7 2840 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2841 rcu_read_lock();
bbcb81d0 2842 if (pid) {
73507f33 2843 tsk = find_task_by_vpid(pid);
74a1166d 2844 if (!tsk) {
dd4b0a46 2845 ret = -ESRCH;
3014dde7 2846 goto out_unlock_rcu;
bbcb81d0 2847 }
dedf22e9 2848 } else {
b78949eb 2849 tsk = current;
dedf22e9 2850 }
cd3d0952
TH
2851
2852 if (threadgroup)
b78949eb 2853 tsk = tsk->group_leader;
c4c27fbd
MG
2854
2855 /*
14a40ffc 2856 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2857 * trapped in a cpuset, or RT worker may be born in a cgroup
2858 * with no rt_runtime allocated. Just say no.
2859 */
14a40ffc 2860 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2861 ret = -EINVAL;
3014dde7 2862 goto out_unlock_rcu;
c4c27fbd
MG
2863 }
2864
b78949eb
MSB
2865 get_task_struct(tsk);
2866 rcu_read_unlock();
2867
187fe840 2868 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2869 if (!ret)
2870 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2871
f9f9e7b7 2872 put_task_struct(tsk);
3014dde7
TH
2873 goto out_unlock_threadgroup;
2874
2875out_unlock_rcu:
2876 rcu_read_unlock();
2877out_unlock_threadgroup:
2878 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2879 for_each_subsys(ss, ssid)
2880 if (ss->post_attach)
2881 ss->post_attach();
e76ecaee 2882 cgroup_kn_unlock(of->kn);
acbef755 2883 return ret ?: nbytes;
bbcb81d0
PM
2884}
2885
7ae1bad9
TH
2886/**
2887 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2888 * @from: attach to all cgroups of a given task
2889 * @tsk: the task to be attached
2890 */
2891int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2892{
3dd06ffa 2893 struct cgroup_root *root;
7ae1bad9
TH
2894 int retval = 0;
2895
47cfcd09 2896 mutex_lock(&cgroup_mutex);
985ed670 2897 for_each_root(root) {
96d365e0
TH
2898 struct cgroup *from_cgrp;
2899
3dd06ffa 2900 if (root == &cgrp_dfl_root)
985ed670
TH
2901 continue;
2902
f0d9a5f1 2903 spin_lock_bh(&css_set_lock);
96d365e0 2904 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2905 spin_unlock_bh(&css_set_lock);
7ae1bad9 2906
6f4b7e63 2907 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2908 if (retval)
2909 break;
2910 }
47cfcd09 2911 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2912
2913 return retval;
2914}
2915EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2916
acbef755
TH
2917static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2918 char *buf, size_t nbytes, loff_t off)
74a1166d 2919{
acbef755 2920 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2921}
2922
acbef755
TH
2923static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2924 char *buf, size_t nbytes, loff_t off)
af351026 2925{
acbef755 2926 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2927}
2928
451af504
TH
2929static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2930 char *buf, size_t nbytes, loff_t off)
e788e066 2931{
e76ecaee 2932 struct cgroup *cgrp;
5f469907 2933
e76ecaee 2934 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2935
945ba199 2936 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2937 if (!cgrp)
e788e066 2938 return -ENODEV;
69e943b7 2939 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2940 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2941 sizeof(cgrp->root->release_agent_path));
69e943b7 2942 spin_unlock(&release_agent_path_lock);
e76ecaee 2943 cgroup_kn_unlock(of->kn);
451af504 2944 return nbytes;
e788e066
PM
2945}
2946
2da8ca82 2947static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2948{
2da8ca82 2949 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2950
46cfeb04 2951 spin_lock(&release_agent_path_lock);
e788e066 2952 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2953 spin_unlock(&release_agent_path_lock);
e788e066 2954 seq_putc(seq, '\n');
e788e066
PM
2955 return 0;
2956}
2957
2da8ca82 2958static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2959{
c1d5d42e 2960 seq_puts(seq, "0\n");
e788e066
PM
2961 return 0;
2962}
2963
6e5c8307 2964static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2965{
f8f22e53
TH
2966 struct cgroup_subsys *ss;
2967 bool printed = false;
2968 int ssid;
a742c59d 2969
b4e0eeaf 2970 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2971 if (printed)
2972 seq_putc(seq, ' ');
2973 seq_printf(seq, "%s", ss->name);
2974 printed = true;
b4e0eeaf 2975 } while_each_subsys_mask();
f8f22e53
TH
2976 if (printed)
2977 seq_putc(seq, '\n');
355e0c48
PM
2978}
2979
f8f22e53
TH
2980/* show controllers which are enabled from the parent */
2981static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2982{
f8f22e53
TH
2983 struct cgroup *cgrp = seq_css(seq)->cgroup;
2984
5531dc91 2985 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2986 return 0;
ddbcc7e8
PM
2987}
2988
f8f22e53
TH
2989/* show controllers which are enabled for a given cgroup's children */
2990static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2991{
f8f22e53
TH
2992 struct cgroup *cgrp = seq_css(seq)->cgroup;
2993
667c2491 2994 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2995 return 0;
2996}
2997
2998/**
2999 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3000 * @cgrp: root of the subtree to update csses for
3001 *
54962604
TH
3002 * @cgrp's control masks have changed and its subtree's css associations
3003 * need to be updated accordingly. This function looks up all css_sets
3004 * which are attached to the subtree, creates the matching updated css_sets
3005 * and migrates the tasks to the new ones.
f8f22e53
TH
3006 */
3007static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3008{
3009 LIST_HEAD(preloaded_csets);
10265075 3010 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3011 struct cgroup_subsys_state *d_css;
3012 struct cgroup *dsct;
f8f22e53
TH
3013 struct css_set *src_cset;
3014 int ret;
3015
f8f22e53
TH
3016 lockdep_assert_held(&cgroup_mutex);
3017
3014dde7
TH
3018 percpu_down_write(&cgroup_threadgroup_rwsem);
3019
f8f22e53 3020 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 3021 spin_lock_bh(&css_set_lock);
54962604 3022 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3023 struct cgrp_cset_link *link;
3024
54962604 3025 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3026 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3027 &preloaded_csets);
3028 }
f0d9a5f1 3029 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
3030
3031 /* NULL dst indicates self on default hierarchy */
e4857982 3032 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3033 if (ret)
3034 goto out_finish;
3035
f0d9a5f1 3036 spin_lock_bh(&css_set_lock);
f8f22e53 3037 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3038 struct task_struct *task, *ntask;
f8f22e53
TH
3039
3040 /* src_csets precede dst_csets, break on the first dst_cset */
3041 if (!src_cset->mg_src_cgrp)
3042 break;
3043
10265075
TH
3044 /* all tasks in src_csets need to be migrated */
3045 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3046 cgroup_taskset_add(task, &tset);
f8f22e53 3047 }
f0d9a5f1 3048 spin_unlock_bh(&css_set_lock);
f8f22e53 3049
37ff9f8f 3050 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3051out_finish:
3052 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3053 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3054 return ret;
3055}
3056
1b9b96a1 3057/**
945ba199 3058 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3059 * @cgrp: root of the target subtree
1b9b96a1
TH
3060 *
3061 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3062 * controller while the previous css is still around. This function grabs
3063 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3064 */
945ba199
TH
3065static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3066 __acquires(&cgroup_mutex)
1b9b96a1
TH
3067{
3068 struct cgroup *dsct;
ce3f1d9d 3069 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3070 struct cgroup_subsys *ss;
3071 int ssid;
3072
945ba199
TH
3073restart:
3074 mutex_lock(&cgroup_mutex);
1b9b96a1 3075
ce3f1d9d 3076 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3077 for_each_subsys(ss, ssid) {
3078 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3079 DEFINE_WAIT(wait);
3080
ce3f1d9d 3081 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3082 continue;
3083
3084 cgroup_get(dsct);
3085 prepare_to_wait(&dsct->offline_waitq, &wait,
3086 TASK_UNINTERRUPTIBLE);
3087
3088 mutex_unlock(&cgroup_mutex);
3089 schedule();
3090 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3091
3092 cgroup_put(dsct);
945ba199 3093 goto restart;
1b9b96a1
TH
3094 }
3095 }
1b9b96a1
TH
3096}
3097
15a27c36
TH
3098/**
3099 * cgroup_save_control - save control masks of a subtree
3100 * @cgrp: root of the target subtree
3101 *
3102 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3103 * prefixed fields for @cgrp's subtree including @cgrp itself.
3104 */
3105static void cgroup_save_control(struct cgroup *cgrp)
3106{
3107 struct cgroup *dsct;
3108 struct cgroup_subsys_state *d_css;
3109
3110 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3111 dsct->old_subtree_control = dsct->subtree_control;
3112 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3113 }
3114}
3115
3116/**
3117 * cgroup_propagate_control - refresh control masks of a subtree
3118 * @cgrp: root of the target subtree
3119 *
3120 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3121 * ->subtree_control and propagate controller availability through the
3122 * subtree so that descendants don't have unavailable controllers enabled.
3123 */
3124static void cgroup_propagate_control(struct cgroup *cgrp)
3125{
3126 struct cgroup *dsct;
3127 struct cgroup_subsys_state *d_css;
3128
3129 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3131 dsct->subtree_ss_mask =
3132 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3133 cgroup_ss_mask(dsct));
15a27c36
TH
3134 }
3135}
3136
3137/**
3138 * cgroup_restore_control - restore control masks of a subtree
3139 * @cgrp: root of the target subtree
3140 *
3141 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3142 * prefixed fields for @cgrp's subtree including @cgrp itself.
3143 */
3144static void cgroup_restore_control(struct cgroup *cgrp)
3145{
3146 struct cgroup *dsct;
3147 struct cgroup_subsys_state *d_css;
3148
3149 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3150 dsct->subtree_control = dsct->old_subtree_control;
3151 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3152 }
3153}
3154
f6d635ad
TH
3155static bool css_visible(struct cgroup_subsys_state *css)
3156{
3157 struct cgroup_subsys *ss = css->ss;
3158 struct cgroup *cgrp = css->cgroup;
3159
3160 if (cgroup_control(cgrp) & (1 << ss->id))
3161 return true;
3162 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3163 return false;
3164 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3165}
3166
bdb53bd7
TH
3167/**
3168 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3169 * @cgrp: root of the target subtree
bdb53bd7 3170 *
ce3f1d9d 3171 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3172 * visible. A css is created invisible if it's being implicitly enabled
3173 * through dependency. An invisible css is made visible when the userland
3174 * explicitly enables it.
3175 *
3176 * Returns 0 on success, -errno on failure. On failure, csses which have
3177 * been processed already aren't cleaned up. The caller is responsible for
3178 * cleaning up with cgroup_apply_control_disble().
3179 */
3180static int cgroup_apply_control_enable(struct cgroup *cgrp)
3181{
3182 struct cgroup *dsct;
ce3f1d9d 3183 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3184 struct cgroup_subsys *ss;
3185 int ssid, ret;
3186
ce3f1d9d 3187 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3188 for_each_subsys(ss, ssid) {
3189 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3190
945ba199
TH
3191 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3192
bdb53bd7
TH
3193 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3194 continue;
3195
3196 if (!css) {
3197 css = css_create(dsct, ss);
3198 if (IS_ERR(css))
3199 return PTR_ERR(css);
3200 }
3201
f6d635ad 3202 if (css_visible(css)) {
334c3679 3203 ret = css_populate_dir(css);
bdb53bd7
TH
3204 if (ret)
3205 return ret;
3206 }
3207 }
3208 }
3209
3210 return 0;
3211}
3212
12b3bb6a
TH
3213/**
3214 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3215 * @cgrp: root of the target subtree
12b3bb6a 3216 *
ce3f1d9d 3217 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3218 * cgroup_ss_mask() and cgroup_visible_mask().
3219 *
3220 * A css is hidden when the userland requests it to be disabled while other
3221 * subsystems are still depending on it. The css must not actively control
3222 * resources and be in the vanilla state if it's made visible again later.
3223 * Controllers which may be depended upon should provide ->css_reset() for
3224 * this purpose.
3225 */
3226static void cgroup_apply_control_disable(struct cgroup *cgrp)
3227{
3228 struct cgroup *dsct;
ce3f1d9d 3229 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3230 struct cgroup_subsys *ss;
3231 int ssid;
3232
ce3f1d9d 3233 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3234 for_each_subsys(ss, ssid) {
3235 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3236
945ba199
TH
3237 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3238
12b3bb6a
TH
3239 if (!css)
3240 continue;
3241
334c3679
TH
3242 if (css->parent &&
3243 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3244 kill_css(css);
f6d635ad 3245 } else if (!css_visible(css)) {
334c3679 3246 css_clear_dir(css);
12b3bb6a
TH
3247 if (ss->css_reset)
3248 ss->css_reset(css);
3249 }
3250 }
3251 }
3252}
3253
f7b2814b
TH
3254/**
3255 * cgroup_apply_control - apply control mask updates to the subtree
3256 * @cgrp: root of the target subtree
3257 *
3258 * subsystems can be enabled and disabled in a subtree using the following
3259 * steps.
3260 *
3261 * 1. Call cgroup_save_control() to stash the current state.
3262 * 2. Update ->subtree_control masks in the subtree as desired.
3263 * 3. Call cgroup_apply_control() to apply the changes.
3264 * 4. Optionally perform other related operations.
3265 * 5. Call cgroup_finalize_control() to finish up.
3266 *
3267 * This function implements step 3 and propagates the mask changes
3268 * throughout @cgrp's subtree, updates csses accordingly and perform
3269 * process migrations.
3270 */
3271static int cgroup_apply_control(struct cgroup *cgrp)
3272{
3273 int ret;
3274
3275 cgroup_propagate_control(cgrp);
3276
3277 ret = cgroup_apply_control_enable(cgrp);
3278 if (ret)
3279 return ret;
3280
3281 /*
3282 * At this point, cgroup_e_css() results reflect the new csses
3283 * making the following cgroup_update_dfl_csses() properly update
3284 * css associations of all tasks in the subtree.
3285 */
3286 ret = cgroup_update_dfl_csses(cgrp);
3287 if (ret)
3288 return ret;
3289
3290 return 0;
3291}
3292
3293/**
3294 * cgroup_finalize_control - finalize control mask update
3295 * @cgrp: root of the target subtree
3296 * @ret: the result of the update
3297 *
3298 * Finalize control mask update. See cgroup_apply_control() for more info.
3299 */
3300static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3301{
3302 if (ret) {
3303 cgroup_restore_control(cgrp);
3304 cgroup_propagate_control(cgrp);
3305 }
3306
3307 cgroup_apply_control_disable(cgrp);
3308}
3309
f8f22e53 3310/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3311static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3312 char *buf, size_t nbytes,
3313 loff_t off)
f8f22e53 3314{
6e5c8307 3315 u16 enable = 0, disable = 0;
a9746d8d 3316 struct cgroup *cgrp, *child;
f8f22e53 3317 struct cgroup_subsys *ss;
451af504 3318 char *tok;
f8f22e53
TH
3319 int ssid, ret;
3320
3321 /*
d37167ab
TH
3322 * Parse input - space separated list of subsystem names prefixed
3323 * with either + or -.
f8f22e53 3324 */
451af504
TH
3325 buf = strstrip(buf);
3326 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3327 if (tok[0] == '\0')
3328 continue;
a7165264 3329 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3330 if (!cgroup_ssid_enabled(ssid) ||
3331 strcmp(tok + 1, ss->name))
f8f22e53
TH
3332 continue;
3333
3334 if (*tok == '+') {
7d331fa9
TH
3335 enable |= 1 << ssid;
3336 disable &= ~(1 << ssid);
f8f22e53 3337 } else if (*tok == '-') {
7d331fa9
TH
3338 disable |= 1 << ssid;
3339 enable &= ~(1 << ssid);
f8f22e53
TH
3340 } else {
3341 return -EINVAL;
3342 }
3343 break;
b4e0eeaf 3344 } while_each_subsys_mask();
f8f22e53
TH
3345 if (ssid == CGROUP_SUBSYS_COUNT)
3346 return -EINVAL;
3347 }
3348
945ba199 3349 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3350 if (!cgrp)
3351 return -ENODEV;
f8f22e53
TH
3352
3353 for_each_subsys(ss, ssid) {
3354 if (enable & (1 << ssid)) {
667c2491 3355 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3356 enable &= ~(1 << ssid);
3357 continue;
3358 }
3359
5531dc91 3360 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3361 ret = -ENOENT;
3362 goto out_unlock;
3363 }
f8f22e53 3364 } else if (disable & (1 << ssid)) {
667c2491 3365 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3366 disable &= ~(1 << ssid);
3367 continue;
3368 }
3369
3370 /* a child has it enabled? */
3371 cgroup_for_each_live_child(child, cgrp) {
667c2491 3372 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3373 ret = -EBUSY;
ddab2b6e 3374 goto out_unlock;
f8f22e53
TH
3375 }
3376 }
3377 }
3378 }
3379
3380 if (!enable && !disable) {
3381 ret = 0;
ddab2b6e 3382 goto out_unlock;
f8f22e53
TH
3383 }
3384
3385 /*
667c2491 3386 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3387 * with tasks so that child cgroups don't compete against tasks.
3388 */
d51f39b0 3389 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3390 ret = -EBUSY;
3391 goto out_unlock;
3392 }
3393
15a27c36
TH
3394 /* save and update control masks and prepare csses */
3395 cgroup_save_control(cgrp);
f63070d3 3396
15a27c36
TH
3397 cgrp->subtree_control |= enable;
3398 cgrp->subtree_control &= ~disable;
c29adf24 3399
f7b2814b 3400 ret = cgroup_apply_control(cgrp);
f8f22e53 3401
f7b2814b 3402 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3403
3404 kernfs_activate(cgrp->kn);
3405 ret = 0;
3406out_unlock:
a9746d8d 3407 cgroup_kn_unlock(of->kn);
451af504 3408 return ret ?: nbytes;
f8f22e53
TH
3409}
3410
4a07c222 3411static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3412{
4a07c222 3413 seq_printf(seq, "populated %d\n",
27bd4dbb 3414 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3415 return 0;
3416}
3417
2bd59d48
TH
3418static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3419 size_t nbytes, loff_t off)
355e0c48 3420{
2bd59d48
TH
3421 struct cgroup *cgrp = of->kn->parent->priv;
3422 struct cftype *cft = of->kn->priv;
3423 struct cgroup_subsys_state *css;
a742c59d 3424 int ret;
355e0c48 3425
b4168640
TH
3426 if (cft->write)
3427 return cft->write(of, buf, nbytes, off);
3428
2bd59d48
TH
3429 /*
3430 * kernfs guarantees that a file isn't deleted with operations in
3431 * flight, which means that the matching css is and stays alive and
3432 * doesn't need to be pinned. The RCU locking is not necessary
3433 * either. It's just for the convenience of using cgroup_css().
3434 */
3435 rcu_read_lock();
3436 css = cgroup_css(cgrp, cft->ss);
3437 rcu_read_unlock();
a742c59d 3438
451af504 3439 if (cft->write_u64) {
a742c59d
TH
3440 unsigned long long v;
3441 ret = kstrtoull(buf, 0, &v);
3442 if (!ret)
3443 ret = cft->write_u64(css, cft, v);
3444 } else if (cft->write_s64) {
3445 long long v;
3446 ret = kstrtoll(buf, 0, &v);
3447 if (!ret)
3448 ret = cft->write_s64(css, cft, v);
e73d2c61 3449 } else {
a742c59d 3450 ret = -EINVAL;
e73d2c61 3451 }
2bd59d48 3452
a742c59d 3453 return ret ?: nbytes;
355e0c48
PM
3454}
3455
6612f05b 3456static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3457{
2bd59d48 3458 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3459}
3460
6612f05b 3461static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3462{
2bd59d48 3463 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3464}
3465
6612f05b 3466static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3467{
2bd59d48 3468 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3469}
3470
91796569 3471static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3472{
7da11279
TH
3473 struct cftype *cft = seq_cft(m);
3474 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3475
2da8ca82
TH
3476 if (cft->seq_show)
3477 return cft->seq_show(m, arg);
e73d2c61 3478
f4c753b7 3479 if (cft->read_u64)
896f5199
TH
3480 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3481 else if (cft->read_s64)
3482 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3483 else
3484 return -EINVAL;
3485 return 0;
91796569
PM
3486}
3487
2bd59d48
TH
3488static struct kernfs_ops cgroup_kf_single_ops = {
3489 .atomic_write_len = PAGE_SIZE,
3490 .write = cgroup_file_write,
3491 .seq_show = cgroup_seqfile_show,
91796569
PM
3492};
3493
2bd59d48
TH
3494static struct kernfs_ops cgroup_kf_ops = {
3495 .atomic_write_len = PAGE_SIZE,
3496 .write = cgroup_file_write,
3497 .seq_start = cgroup_seqfile_start,
3498 .seq_next = cgroup_seqfile_next,
3499 .seq_stop = cgroup_seqfile_stop,
3500 .seq_show = cgroup_seqfile_show,
3501};
ddbcc7e8
PM
3502
3503/*
3504 * cgroup_rename - Only allow simple rename of directories in place.
3505 */
2bd59d48
TH
3506static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3507 const char *new_name_str)
ddbcc7e8 3508{
2bd59d48 3509 struct cgroup *cgrp = kn->priv;
65dff759 3510 int ret;
65dff759 3511
2bd59d48 3512 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3513 return -ENOTDIR;
2bd59d48 3514 if (kn->parent != new_parent)
ddbcc7e8 3515 return -EIO;
65dff759 3516
6db8e85c
TH
3517 /*
3518 * This isn't a proper migration and its usefulness is very
aa6ec29b 3519 * limited. Disallow on the default hierarchy.
6db8e85c 3520 */
aa6ec29b 3521 if (cgroup_on_dfl(cgrp))
6db8e85c 3522 return -EPERM;
099fca32 3523
e1b2dc17 3524 /*
8353da1f 3525 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3526 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3527 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3528 */
3529 kernfs_break_active_protection(new_parent);
3530 kernfs_break_active_protection(kn);
099fca32 3531
2bd59d48 3532 mutex_lock(&cgroup_mutex);
099fca32 3533
2bd59d48 3534 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3535
2bd59d48 3536 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3537
3538 kernfs_unbreak_active_protection(kn);
3539 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3540 return ret;
099fca32
LZ
3541}
3542
49957f8e
TH
3543/* set uid and gid of cgroup dirs and files to that of the creator */
3544static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3545{
3546 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3547 .ia_uid = current_fsuid(),
3548 .ia_gid = current_fsgid(), };
3549
3550 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3551 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3552 return 0;
3553
3554 return kernfs_setattr(kn, &iattr);
3555}
3556
4df8dc90
TH
3557static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3558 struct cftype *cft)
ddbcc7e8 3559{
8d7e6fb0 3560 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3561 struct kernfs_node *kn;
3562 struct lock_class_key *key = NULL;
49957f8e 3563 int ret;
05ef1d7c 3564
2bd59d48
TH
3565#ifdef CONFIG_DEBUG_LOCK_ALLOC
3566 key = &cft->lockdep_key;
3567#endif
3568 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3569 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3570 NULL, key);
49957f8e
TH
3571 if (IS_ERR(kn))
3572 return PTR_ERR(kn);
3573
3574 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3575 if (ret) {
49957f8e 3576 kernfs_remove(kn);
f8f22e53
TH
3577 return ret;
3578 }
3579
6f60eade
TH
3580 if (cft->file_offset) {
3581 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3582
34c06254 3583 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3584 cfile->kn = kn;
34c06254 3585 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3586 }
3587
f8f22e53 3588 return 0;
ddbcc7e8
PM
3589}
3590
b1f28d31
TH
3591/**
3592 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3593 * @css: the target css
3594 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3595 * @cfts: array of cftypes to be added
3596 * @is_add: whether to add or remove
3597 *
3598 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3599 * For removals, this function never fails.
b1f28d31 3600 */
4df8dc90
TH
3601static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3602 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3603 bool is_add)
ddbcc7e8 3604{
6732ed85 3605 struct cftype *cft, *cft_end = NULL;
b598dde3 3606 int ret = 0;
b1f28d31 3607
01f6474c 3608 lockdep_assert_held(&cgroup_mutex);
db0416b6 3609
6732ed85
TH
3610restart:
3611 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3612 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3613 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3614 continue;
05ebb6e6 3615 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3616 continue;
d51f39b0 3617 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3618 continue;
d51f39b0 3619 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3620 continue;
3621
2739d3cc 3622 if (is_add) {
4df8dc90 3623 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3624 if (ret) {
ed3d261b
JP
3625 pr_warn("%s: failed to add %s, err=%d\n",
3626 __func__, cft->name, ret);
6732ed85
TH
3627 cft_end = cft;
3628 is_add = false;
3629 goto restart;
b1f28d31 3630 }
2739d3cc
LZ
3631 } else {
3632 cgroup_rm_file(cgrp, cft);
db0416b6 3633 }
ddbcc7e8 3634 }
b598dde3 3635 return ret;
ddbcc7e8
PM
3636}
3637
21a2d343 3638static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3639{
3640 LIST_HEAD(pending);
2bb566cb 3641 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3642 struct cgroup *root = &ss->root->cgrp;
492eb21b 3643 struct cgroup_subsys_state *css;
9ccece80 3644 int ret = 0;
8e3f6541 3645
01f6474c 3646 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3647
e8c82d20 3648 /* add/rm files for all cgroups created before */
ca8bdcaf 3649 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3650 struct cgroup *cgrp = css->cgroup;
3651
88cb04b9 3652 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3653 continue;
3654
4df8dc90 3655 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3656 if (ret)
3657 break;
8e3f6541 3658 }
21a2d343
TH
3659
3660 if (is_add && !ret)
3661 kernfs_activate(root->kn);
9ccece80 3662 return ret;
8e3f6541
TH
3663}
3664
2da440a2 3665static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3666{
2bb566cb 3667 struct cftype *cft;
8e3f6541 3668
2bd59d48
TH
3669 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3670 /* free copy for custom atomic_write_len, see init_cftypes() */
3671 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3672 kfree(cft->kf_ops);
3673 cft->kf_ops = NULL;
2da440a2 3674 cft->ss = NULL;
a8ddc821
TH
3675
3676 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3677 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3678 }
2da440a2
TH
3679}
3680
2bd59d48 3681static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3682{
3683 struct cftype *cft;
3684
2bd59d48
TH
3685 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3686 struct kernfs_ops *kf_ops;
3687
0adb0704
TH
3688 WARN_ON(cft->ss || cft->kf_ops);
3689
2bd59d48
TH
3690 if (cft->seq_start)
3691 kf_ops = &cgroup_kf_ops;
3692 else
3693 kf_ops = &cgroup_kf_single_ops;
3694
3695 /*
3696 * Ugh... if @cft wants a custom max_write_len, we need to
3697 * make a copy of kf_ops to set its atomic_write_len.
3698 */
3699 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3700 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3701 if (!kf_ops) {
3702 cgroup_exit_cftypes(cfts);
3703 return -ENOMEM;
3704 }
3705 kf_ops->atomic_write_len = cft->max_write_len;
3706 }
8e3f6541 3707
2bd59d48 3708 cft->kf_ops = kf_ops;
2bb566cb 3709 cft->ss = ss;
2bd59d48 3710 }
2bb566cb 3711
2bd59d48 3712 return 0;
2da440a2
TH
3713}
3714
21a2d343
TH
3715static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3716{
01f6474c 3717 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3718
3719 if (!cfts || !cfts[0].ss)
3720 return -ENOENT;
3721
3722 list_del(&cfts->node);
3723 cgroup_apply_cftypes(cfts, false);
3724 cgroup_exit_cftypes(cfts);
3725 return 0;
8e3f6541 3726}
8e3f6541 3727
79578621
TH
3728/**
3729 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3730 * @cfts: zero-length name terminated array of cftypes
3731 *
2bb566cb
TH
3732 * Unregister @cfts. Files described by @cfts are removed from all
3733 * existing cgroups and all future cgroups won't have them either. This
3734 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3735 *
3736 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3737 * registered.
79578621 3738 */
2bb566cb 3739int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3740{
21a2d343 3741 int ret;
79578621 3742
01f6474c 3743 mutex_lock(&cgroup_mutex);
21a2d343 3744 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3745 mutex_unlock(&cgroup_mutex);
21a2d343 3746 return ret;
80b13586
TH
3747}
3748
8e3f6541
TH
3749/**
3750 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3751 * @ss: target cgroup subsystem
3752 * @cfts: zero-length name terminated array of cftypes
3753 *
3754 * Register @cfts to @ss. Files described by @cfts are created for all
3755 * existing cgroups to which @ss is attached and all future cgroups will
3756 * have them too. This function can be called anytime whether @ss is
3757 * attached or not.
3758 *
3759 * Returns 0 on successful registration, -errno on failure. Note that this
3760 * function currently returns 0 as long as @cfts registration is successful
3761 * even if some file creation attempts on existing cgroups fail.
3762 */
2cf669a5 3763static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3764{
9ccece80 3765 int ret;
8e3f6541 3766
fc5ed1e9 3767 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3768 return 0;
3769
dc5736ed
LZ
3770 if (!cfts || cfts[0].name[0] == '\0')
3771 return 0;
2bb566cb 3772
2bd59d48
TH
3773 ret = cgroup_init_cftypes(ss, cfts);
3774 if (ret)
3775 return ret;
79578621 3776
01f6474c 3777 mutex_lock(&cgroup_mutex);
21a2d343 3778
0adb0704 3779 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3780 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3781 if (ret)
21a2d343 3782 cgroup_rm_cftypes_locked(cfts);
79578621 3783
01f6474c 3784 mutex_unlock(&cgroup_mutex);
9ccece80 3785 return ret;
79578621
TH
3786}
3787
a8ddc821
TH
3788/**
3789 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3790 * @ss: target cgroup subsystem
3791 * @cfts: zero-length name terminated array of cftypes
3792 *
3793 * Similar to cgroup_add_cftypes() but the added files are only used for
3794 * the default hierarchy.
3795 */
3796int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3797{
3798 struct cftype *cft;
3799
3800 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3801 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3802 return cgroup_add_cftypes(ss, cfts);
3803}
3804
3805/**
3806 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3807 * @ss: target cgroup subsystem
3808 * @cfts: zero-length name terminated array of cftypes
3809 *
3810 * Similar to cgroup_add_cftypes() but the added files are only used for
3811 * the legacy hierarchies.
3812 */
2cf669a5
TH
3813int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3814{
a8ddc821
TH
3815 struct cftype *cft;
3816
e4b7037c
TH
3817 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3818 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3819 return cgroup_add_cftypes(ss, cfts);
3820}
3821
34c06254
TH
3822/**
3823 * cgroup_file_notify - generate a file modified event for a cgroup_file
3824 * @cfile: target cgroup_file
3825 *
3826 * @cfile must have been obtained by setting cftype->file_offset.
3827 */
3828void cgroup_file_notify(struct cgroup_file *cfile)
3829{
3830 unsigned long flags;
3831
3832 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3833 if (cfile->kn)
3834 kernfs_notify(cfile->kn);
3835 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3836}
3837
a043e3b2
LZ
3838/**
3839 * cgroup_task_count - count the number of tasks in a cgroup.
3840 * @cgrp: the cgroup in question
3841 *
3842 * Return the number of tasks in the cgroup.
3843 */
07bc356e 3844static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3845{
3846 int count = 0;
69d0206c 3847 struct cgrp_cset_link *link;
817929ec 3848
f0d9a5f1 3849 spin_lock_bh(&css_set_lock);
69d0206c
TH
3850 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3851 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3852 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3853 return count;
3854}
3855
53fa5261 3856/**
492eb21b 3857 * css_next_child - find the next child of a given css
c2931b70
TH
3858 * @pos: the current position (%NULL to initiate traversal)
3859 * @parent: css whose children to walk
53fa5261 3860 *
c2931b70 3861 * This function returns the next child of @parent and should be called
87fb54f1 3862 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3863 * that @parent and @pos are accessible. The next sibling is guaranteed to
3864 * be returned regardless of their states.
3865 *
3866 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3867 * css which finished ->css_online() is guaranteed to be visible in the
3868 * future iterations and will stay visible until the last reference is put.
3869 * A css which hasn't finished ->css_online() or already finished
3870 * ->css_offline() may show up during traversal. It's each subsystem's
3871 * responsibility to synchronize against on/offlining.
53fa5261 3872 */
c2931b70
TH
3873struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3874 struct cgroup_subsys_state *parent)
53fa5261 3875{
c2931b70 3876 struct cgroup_subsys_state *next;
53fa5261 3877
8353da1f 3878 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3879
3880 /*
de3f0341
TH
3881 * @pos could already have been unlinked from the sibling list.
3882 * Once a cgroup is removed, its ->sibling.next is no longer
3883 * updated when its next sibling changes. CSS_RELEASED is set when
3884 * @pos is taken off list, at which time its next pointer is valid,
3885 * and, as releases are serialized, the one pointed to by the next
3886 * pointer is guaranteed to not have started release yet. This
3887 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3888 * critical section, the one pointed to by its next pointer is
3889 * guaranteed to not have finished its RCU grace period even if we
3890 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3891 *
de3f0341
TH
3892 * If @pos has CSS_RELEASED set, its next pointer can't be
3893 * dereferenced; however, as each css is given a monotonically
3894 * increasing unique serial number and always appended to the
3895 * sibling list, the next one can be found by walking the parent's
3896 * children until the first css with higher serial number than
3897 * @pos's. While this path can be slower, it happens iff iteration
3898 * races against release and the race window is very small.
53fa5261 3899 */
3b287a50 3900 if (!pos) {
c2931b70
TH
3901 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3902 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3903 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3904 } else {
c2931b70 3905 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3906 if (next->serial_nr > pos->serial_nr)
3907 break;
53fa5261
TH
3908 }
3909
3b281afb
TH
3910 /*
3911 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3912 * the next sibling.
3b281afb 3913 */
c2931b70
TH
3914 if (&next->sibling != &parent->children)
3915 return next;
3b281afb 3916 return NULL;
53fa5261 3917}
53fa5261 3918
574bd9f7 3919/**
492eb21b 3920 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3921 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3922 * @root: css whose descendants to walk
574bd9f7 3923 *
492eb21b 3924 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3925 * to visit for pre-order traversal of @root's descendants. @root is
3926 * included in the iteration and the first node to be visited.
75501a6d 3927 *
87fb54f1
TH
3928 * While this function requires cgroup_mutex or RCU read locking, it
3929 * doesn't require the whole traversal to be contained in a single critical
3930 * section. This function will return the correct next descendant as long
3931 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3932 *
3933 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3934 * css which finished ->css_online() is guaranteed to be visible in the
3935 * future iterations and will stay visible until the last reference is put.
3936 * A css which hasn't finished ->css_online() or already finished
3937 * ->css_offline() may show up during traversal. It's each subsystem's
3938 * responsibility to synchronize against on/offlining.
574bd9f7 3939 */
492eb21b
TH
3940struct cgroup_subsys_state *
3941css_next_descendant_pre(struct cgroup_subsys_state *pos,
3942 struct cgroup_subsys_state *root)
574bd9f7 3943{
492eb21b 3944 struct cgroup_subsys_state *next;
574bd9f7 3945
8353da1f 3946 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3947
bd8815a6 3948 /* if first iteration, visit @root */
7805d000 3949 if (!pos)
bd8815a6 3950 return root;
574bd9f7
TH
3951
3952 /* visit the first child if exists */
492eb21b 3953 next = css_next_child(NULL, pos);
574bd9f7
TH
3954 if (next)
3955 return next;
3956
3957 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3958 while (pos != root) {
5c9d535b 3959 next = css_next_child(pos, pos->parent);
75501a6d 3960 if (next)
574bd9f7 3961 return next;
5c9d535b 3962 pos = pos->parent;
7805d000 3963 }
574bd9f7
TH
3964
3965 return NULL;
3966}
574bd9f7 3967
12a9d2fe 3968/**
492eb21b
TH
3969 * css_rightmost_descendant - return the rightmost descendant of a css
3970 * @pos: css of interest
12a9d2fe 3971 *
492eb21b
TH
3972 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3973 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3974 * subtree of @pos.
75501a6d 3975 *
87fb54f1
TH
3976 * While this function requires cgroup_mutex or RCU read locking, it
3977 * doesn't require the whole traversal to be contained in a single critical
3978 * section. This function will return the correct rightmost descendant as
3979 * long as @pos is accessible.
12a9d2fe 3980 */
492eb21b
TH
3981struct cgroup_subsys_state *
3982css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3983{
492eb21b 3984 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3985
8353da1f 3986 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3987
3988 do {
3989 last = pos;
3990 /* ->prev isn't RCU safe, walk ->next till the end */
3991 pos = NULL;
492eb21b 3992 css_for_each_child(tmp, last)
12a9d2fe
TH
3993 pos = tmp;
3994 } while (pos);
3995
3996 return last;
3997}
12a9d2fe 3998
492eb21b
TH
3999static struct cgroup_subsys_state *
4000css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4001{
492eb21b 4002 struct cgroup_subsys_state *last;
574bd9f7
TH
4003
4004 do {
4005 last = pos;
492eb21b 4006 pos = css_next_child(NULL, pos);
574bd9f7
TH
4007 } while (pos);
4008
4009 return last;
4010}
4011
4012/**
492eb21b 4013 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4014 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4015 * @root: css whose descendants to walk
574bd9f7 4016 *
492eb21b 4017 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4018 * to visit for post-order traversal of @root's descendants. @root is
4019 * included in the iteration and the last node to be visited.
75501a6d 4020 *
87fb54f1
TH
4021 * While this function requires cgroup_mutex or RCU read locking, it
4022 * doesn't require the whole traversal to be contained in a single critical
4023 * section. This function will return the correct next descendant as long
4024 * as both @pos and @cgroup are accessible and @pos is a descendant of
4025 * @cgroup.
c2931b70
TH
4026 *
4027 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4028 * css which finished ->css_online() is guaranteed to be visible in the
4029 * future iterations and will stay visible until the last reference is put.
4030 * A css which hasn't finished ->css_online() or already finished
4031 * ->css_offline() may show up during traversal. It's each subsystem's
4032 * responsibility to synchronize against on/offlining.
574bd9f7 4033 */
492eb21b
TH
4034struct cgroup_subsys_state *
4035css_next_descendant_post(struct cgroup_subsys_state *pos,
4036 struct cgroup_subsys_state *root)
574bd9f7 4037{
492eb21b 4038 struct cgroup_subsys_state *next;
574bd9f7 4039
8353da1f 4040 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4041
58b79a91
TH
4042 /* if first iteration, visit leftmost descendant which may be @root */
4043 if (!pos)
4044 return css_leftmost_descendant(root);
574bd9f7 4045
bd8815a6
TH
4046 /* if we visited @root, we're done */
4047 if (pos == root)
4048 return NULL;
4049
574bd9f7 4050 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4051 next = css_next_child(pos, pos->parent);
75501a6d 4052 if (next)
492eb21b 4053 return css_leftmost_descendant(next);
574bd9f7
TH
4054
4055 /* no sibling left, visit parent */
5c9d535b 4056 return pos->parent;
574bd9f7 4057}
574bd9f7 4058
f3d46500
TH
4059/**
4060 * css_has_online_children - does a css have online children
4061 * @css: the target css
4062 *
4063 * Returns %true if @css has any online children; otherwise, %false. This
4064 * function can be called from any context but the caller is responsible
4065 * for synchronizing against on/offlining as necessary.
4066 */
4067bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4068{
f3d46500
TH
4069 struct cgroup_subsys_state *child;
4070 bool ret = false;
cbc125ef
TH
4071
4072 rcu_read_lock();
f3d46500 4073 css_for_each_child(child, css) {
99bae5f9 4074 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4075 ret = true;
4076 break;
cbc125ef
TH
4077 }
4078 }
4079 rcu_read_unlock();
f3d46500 4080 return ret;
574bd9f7 4081}
574bd9f7 4082
0942eeee 4083/**
ecb9d535 4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4085 * @it: the iterator to advance
4086 *
4087 * Advance @it to the next css_set to walk.
d515876e 4088 */
ecb9d535 4089static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4090{
0f0a2b4f 4091 struct list_head *l = it->cset_pos;
d515876e
TH
4092 struct cgrp_cset_link *link;
4093 struct css_set *cset;
4094
f0d9a5f1 4095 lockdep_assert_held(&css_set_lock);
ed27b9f7 4096
d515876e
TH
4097 /* Advance to the next non-empty css_set */
4098 do {
4099 l = l->next;
0f0a2b4f
TH
4100 if (l == it->cset_head) {
4101 it->cset_pos = NULL;
ecb9d535 4102 it->task_pos = NULL;
d515876e
TH
4103 return;
4104 }
3ebb2b6e
TH
4105
4106 if (it->ss) {
4107 cset = container_of(l, struct css_set,
4108 e_cset_node[it->ss->id]);
4109 } else {
4110 link = list_entry(l, struct cgrp_cset_link, cset_link);
4111 cset = link->cset;
4112 }
0de0942d 4113 } while (!css_set_populated(cset));
c7561128 4114
0f0a2b4f 4115 it->cset_pos = l;
c7561128
TH
4116
4117 if (!list_empty(&cset->tasks))
0f0a2b4f 4118 it->task_pos = cset->tasks.next;
c7561128 4119 else
0f0a2b4f
TH
4120 it->task_pos = cset->mg_tasks.next;
4121
4122 it->tasks_head = &cset->tasks;
4123 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4124
4125 /*
4126 * We don't keep css_sets locked across iteration steps and thus
4127 * need to take steps to ensure that iteration can be resumed after
4128 * the lock is re-acquired. Iteration is performed at two levels -
4129 * css_sets and tasks in them.
4130 *
4131 * Once created, a css_set never leaves its cgroup lists, so a
4132 * pinned css_set is guaranteed to stay put and we can resume
4133 * iteration afterwards.
4134 *
4135 * Tasks may leave @cset across iteration steps. This is resolved
4136 * by registering each iterator with the css_set currently being
4137 * walked and making css_set_move_task() advance iterators whose
4138 * next task is leaving.
4139 */
4140 if (it->cur_cset) {
4141 list_del(&it->iters_node);
4142 put_css_set_locked(it->cur_cset);
4143 }
4144 get_css_set(cset);
4145 it->cur_cset = cset;
4146 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4147}
4148
ecb9d535
TH
4149static void css_task_iter_advance(struct css_task_iter *it)
4150{
4151 struct list_head *l = it->task_pos;
4152
f0d9a5f1 4153 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4154 WARN_ON_ONCE(!l);
4155
4156 /*
4157 * Advance iterator to find next entry. cset->tasks is consumed
4158 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4159 * next cset.
4160 */
4161 l = l->next;
4162
4163 if (l == it->tasks_head)
4164 l = it->mg_tasks_head->next;
4165
4166 if (l == it->mg_tasks_head)
4167 css_task_iter_advance_css_set(it);
4168 else
4169 it->task_pos = l;
4170}
4171
0942eeee 4172/**
72ec7029
TH
4173 * css_task_iter_start - initiate task iteration
4174 * @css: the css to walk tasks of
0942eeee
TH
4175 * @it: the task iterator to use
4176 *
72ec7029
TH
4177 * Initiate iteration through the tasks of @css. The caller can call
4178 * css_task_iter_next() to walk through the tasks until the function
4179 * returns NULL. On completion of iteration, css_task_iter_end() must be
4180 * called.
0942eeee 4181 */
72ec7029
TH
4182void css_task_iter_start(struct cgroup_subsys_state *css,
4183 struct css_task_iter *it)
817929ec 4184{
56fde9e0
TH
4185 /* no one should try to iterate before mounting cgroups */
4186 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4187
ed27b9f7
TH
4188 memset(it, 0, sizeof(*it));
4189
f0d9a5f1 4190 spin_lock_bh(&css_set_lock);
c59cd3d8 4191
3ebb2b6e
TH
4192 it->ss = css->ss;
4193
4194 if (it->ss)
4195 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4196 else
4197 it->cset_pos = &css->cgroup->cset_links;
4198
0f0a2b4f 4199 it->cset_head = it->cset_pos;
c59cd3d8 4200
ecb9d535 4201 css_task_iter_advance_css_set(it);
ed27b9f7 4202
f0d9a5f1 4203 spin_unlock_bh(&css_set_lock);
817929ec
PM
4204}
4205
0942eeee 4206/**
72ec7029 4207 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4208 * @it: the task iterator being iterated
4209 *
4210 * The "next" function for task iteration. @it should have been
72ec7029
TH
4211 * initialized via css_task_iter_start(). Returns NULL when the iteration
4212 * reaches the end.
0942eeee 4213 */
72ec7029 4214struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4215{
d5745675 4216 if (it->cur_task) {
ed27b9f7 4217 put_task_struct(it->cur_task);
d5745675
TH
4218 it->cur_task = NULL;
4219 }
ed27b9f7 4220
f0d9a5f1 4221 spin_lock_bh(&css_set_lock);
ed27b9f7 4222
d5745675
TH
4223 if (it->task_pos) {
4224 it->cur_task = list_entry(it->task_pos, struct task_struct,
4225 cg_list);
4226 get_task_struct(it->cur_task);
4227 css_task_iter_advance(it);
4228 }
ed27b9f7 4229
f0d9a5f1 4230 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4231
4232 return it->cur_task;
817929ec
PM
4233}
4234
0942eeee 4235/**
72ec7029 4236 * css_task_iter_end - finish task iteration
0942eeee
TH
4237 * @it: the task iterator to finish
4238 *
72ec7029 4239 * Finish task iteration started by css_task_iter_start().
0942eeee 4240 */
72ec7029 4241void css_task_iter_end(struct css_task_iter *it)
31a7df01 4242{
ed27b9f7 4243 if (it->cur_cset) {
f0d9a5f1 4244 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4245 list_del(&it->iters_node);
4246 put_css_set_locked(it->cur_cset);
f0d9a5f1 4247 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4248 }
4249
4250 if (it->cur_task)
4251 put_task_struct(it->cur_task);
31a7df01
CW
4252}
4253
4254/**
8cc99345
TH
4255 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4256 * @to: cgroup to which the tasks will be moved
4257 * @from: cgroup in which the tasks currently reside
31a7df01 4258 *
eaf797ab
TH
4259 * Locking rules between cgroup_post_fork() and the migration path
4260 * guarantee that, if a task is forking while being migrated, the new child
4261 * is guaranteed to be either visible in the source cgroup after the
4262 * parent's migration is complete or put into the target cgroup. No task
4263 * can slip out of migration through forking.
31a7df01 4264 */
8cc99345 4265int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4266{
952aaa12
TH
4267 LIST_HEAD(preloaded_csets);
4268 struct cgrp_cset_link *link;
72ec7029 4269 struct css_task_iter it;
e406d1cf 4270 struct task_struct *task;
952aaa12 4271 int ret;
31a7df01 4272
6c694c88
TH
4273 if (!cgroup_may_migrate_to(to))
4274 return -EBUSY;
4275
952aaa12 4276 mutex_lock(&cgroup_mutex);
31a7df01 4277
952aaa12 4278 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4279 spin_lock_bh(&css_set_lock);
952aaa12
TH
4280 list_for_each_entry(link, &from->cset_links, cset_link)
4281 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4282 spin_unlock_bh(&css_set_lock);
31a7df01 4283
e4857982 4284 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4285 if (ret)
4286 goto out_err;
8cc99345 4287
952aaa12 4288 /*
2cfa2b19 4289 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4290 * ->can_attach() fails.
4291 */
e406d1cf 4292 do {
9d800df1 4293 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4294 task = css_task_iter_next(&it);
4295 if (task)
4296 get_task_struct(task);
4297 css_task_iter_end(&it);
4298
4299 if (task) {
37ff9f8f 4300 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4301 put_task_struct(task);
4302 }
4303 } while (task && !ret);
952aaa12
TH
4304out_err:
4305 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4306 mutex_unlock(&cgroup_mutex);
e406d1cf 4307 return ret;
8cc99345
TH
4308}
4309
bbcb81d0 4310/*
102a775e 4311 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4312 *
4313 * Reading this file can return large amounts of data if a cgroup has
4314 * *lots* of attached tasks. So it may need several calls to read(),
4315 * but we cannot guarantee that the information we produce is correct
4316 * unless we produce it entirely atomically.
4317 *
bbcb81d0 4318 */
bbcb81d0 4319
24528255
LZ
4320/* which pidlist file are we talking about? */
4321enum cgroup_filetype {
4322 CGROUP_FILE_PROCS,
4323 CGROUP_FILE_TASKS,
4324};
4325
4326/*
4327 * A pidlist is a list of pids that virtually represents the contents of one
4328 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4329 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4330 * to the cgroup.
4331 */
4332struct cgroup_pidlist {
4333 /*
4334 * used to find which pidlist is wanted. doesn't change as long as
4335 * this particular list stays in the list.
4336 */
4337 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4338 /* array of xids */
4339 pid_t *list;
4340 /* how many elements the above list has */
4341 int length;
24528255
LZ
4342 /* each of these stored in a list by its cgroup */
4343 struct list_head links;
4344 /* pointer to the cgroup we belong to, for list removal purposes */
4345 struct cgroup *owner;
b1a21367
TH
4346 /* for delayed destruction */
4347 struct delayed_work destroy_dwork;
24528255
LZ
4348};
4349
d1d9fd33
BB
4350/*
4351 * The following two functions "fix" the issue where there are more pids
4352 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4353 * TODO: replace with a kernel-wide solution to this problem
4354 */
4355#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4356static void *pidlist_allocate(int count)
4357{
4358 if (PIDLIST_TOO_LARGE(count))
4359 return vmalloc(count * sizeof(pid_t));
4360 else
4361 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4362}
b1a21367 4363
d1d9fd33
BB
4364static void pidlist_free(void *p)
4365{
58794514 4366 kvfree(p);
d1d9fd33 4367}
d1d9fd33 4368
b1a21367
TH
4369/*
4370 * Used to destroy all pidlists lingering waiting for destroy timer. None
4371 * should be left afterwards.
4372 */
4373static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4374{
4375 struct cgroup_pidlist *l, *tmp_l;
4376
4377 mutex_lock(&cgrp->pidlist_mutex);
4378 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4379 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4380 mutex_unlock(&cgrp->pidlist_mutex);
4381
4382 flush_workqueue(cgroup_pidlist_destroy_wq);
4383 BUG_ON(!list_empty(&cgrp->pidlists));
4384}
4385
4386static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4387{
4388 struct delayed_work *dwork = to_delayed_work(work);
4389 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4390 destroy_dwork);
4391 struct cgroup_pidlist *tofree = NULL;
4392
4393 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4394
4395 /*
04502365
TH
4396 * Destroy iff we didn't get queued again. The state won't change
4397 * as destroy_dwork can only be queued while locked.
b1a21367 4398 */
04502365 4399 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4400 list_del(&l->links);
4401 pidlist_free(l->list);
4402 put_pid_ns(l->key.ns);
4403 tofree = l;
4404 }
4405
b1a21367
TH
4406 mutex_unlock(&l->owner->pidlist_mutex);
4407 kfree(tofree);
4408}
4409
bbcb81d0 4410/*
102a775e 4411 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4412 * Returns the number of unique elements.
bbcb81d0 4413 */
6ee211ad 4414static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4415{
102a775e 4416 int src, dest = 1;
102a775e
BB
4417
4418 /*
4419 * we presume the 0th element is unique, so i starts at 1. trivial
4420 * edge cases first; no work needs to be done for either
4421 */
4422 if (length == 0 || length == 1)
4423 return length;
4424 /* src and dest walk down the list; dest counts unique elements */
4425 for (src = 1; src < length; src++) {
4426 /* find next unique element */
4427 while (list[src] == list[src-1]) {
4428 src++;
4429 if (src == length)
4430 goto after;
4431 }
4432 /* dest always points to where the next unique element goes */
4433 list[dest] = list[src];
4434 dest++;
4435 }
4436after:
102a775e
BB
4437 return dest;
4438}
4439
afb2bc14
TH
4440/*
4441 * The two pid files - task and cgroup.procs - guaranteed that the result
4442 * is sorted, which forced this whole pidlist fiasco. As pid order is
4443 * different per namespace, each namespace needs differently sorted list,
4444 * making it impossible to use, for example, single rbtree of member tasks
4445 * sorted by task pointer. As pidlists can be fairly large, allocating one
4446 * per open file is dangerous, so cgroup had to implement shared pool of
4447 * pidlists keyed by cgroup and namespace.
4448 *
4449 * All this extra complexity was caused by the original implementation
4450 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4451 * want to do away with it. Explicitly scramble sort order if on the
4452 * default hierarchy so that no such expectation exists in the new
4453 * interface.
afb2bc14
TH
4454 *
4455 * Scrambling is done by swapping every two consecutive bits, which is
4456 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4457 */
4458static pid_t pid_fry(pid_t pid)
4459{
4460 unsigned a = pid & 0x55555555;
4461 unsigned b = pid & 0xAAAAAAAA;
4462
4463 return (a << 1) | (b >> 1);
4464}
4465
4466static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4467{
aa6ec29b 4468 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4469 return pid_fry(pid);
4470 else
4471 return pid;
4472}
4473
102a775e
BB
4474static int cmppid(const void *a, const void *b)
4475{
4476 return *(pid_t *)a - *(pid_t *)b;
4477}
4478
afb2bc14
TH
4479static int fried_cmppid(const void *a, const void *b)
4480{
4481 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4482}
4483
e6b81710
TH
4484static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4485 enum cgroup_filetype type)
4486{
4487 struct cgroup_pidlist *l;
4488 /* don't need task_nsproxy() if we're looking at ourself */
4489 struct pid_namespace *ns = task_active_pid_ns(current);
4490
4491 lockdep_assert_held(&cgrp->pidlist_mutex);
4492
4493 list_for_each_entry(l, &cgrp->pidlists, links)
4494 if (l->key.type == type && l->key.ns == ns)
4495 return l;
4496 return NULL;
4497}
4498
72a8cb30
BB
4499/*
4500 * find the appropriate pidlist for our purpose (given procs vs tasks)
4501 * returns with the lock on that pidlist already held, and takes care
4502 * of the use count, or returns NULL with no locks held if we're out of
4503 * memory.
4504 */
e6b81710
TH
4505static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4506 enum cgroup_filetype type)
72a8cb30
BB
4507{
4508 struct cgroup_pidlist *l;
b70cc5fd 4509
e6b81710
TH
4510 lockdep_assert_held(&cgrp->pidlist_mutex);
4511
4512 l = cgroup_pidlist_find(cgrp, type);
4513 if (l)
4514 return l;
4515
72a8cb30 4516 /* entry not found; create a new one */
f4f4be2b 4517 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4518 if (!l)
72a8cb30 4519 return l;
e6b81710 4520
b1a21367 4521 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4522 l->key.type = type;
e6b81710
TH
4523 /* don't need task_nsproxy() if we're looking at ourself */
4524 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4525 l->owner = cgrp;
4526 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4527 return l;
4528}
4529
102a775e
BB
4530/*
4531 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4532 */
72a8cb30
BB
4533static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4534 struct cgroup_pidlist **lp)
102a775e
BB
4535{
4536 pid_t *array;
4537 int length;
4538 int pid, n = 0; /* used for populating the array */
72ec7029 4539 struct css_task_iter it;
817929ec 4540 struct task_struct *tsk;
102a775e
BB
4541 struct cgroup_pidlist *l;
4542
4bac00d1
TH
4543 lockdep_assert_held(&cgrp->pidlist_mutex);
4544
102a775e
BB
4545 /*
4546 * If cgroup gets more users after we read count, we won't have
4547 * enough space - tough. This race is indistinguishable to the
4548 * caller from the case that the additional cgroup users didn't
4549 * show up until sometime later on.
4550 */
4551 length = cgroup_task_count(cgrp);
d1d9fd33 4552 array = pidlist_allocate(length);
102a775e
BB
4553 if (!array)
4554 return -ENOMEM;
4555 /* now, populate the array */
9d800df1 4556 css_task_iter_start(&cgrp->self, &it);
72ec7029 4557 while ((tsk = css_task_iter_next(&it))) {
102a775e 4558 if (unlikely(n == length))
817929ec 4559 break;
102a775e 4560 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4561 if (type == CGROUP_FILE_PROCS)
4562 pid = task_tgid_vnr(tsk);
4563 else
4564 pid = task_pid_vnr(tsk);
102a775e
BB
4565 if (pid > 0) /* make sure to only use valid results */
4566 array[n++] = pid;
817929ec 4567 }
72ec7029 4568 css_task_iter_end(&it);
102a775e
BB
4569 length = n;
4570 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4571 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4572 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4573 else
4574 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4575 if (type == CGROUP_FILE_PROCS)
6ee211ad 4576 length = pidlist_uniq(array, length);
e6b81710 4577
e6b81710 4578 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4579 if (!l) {
d1d9fd33 4580 pidlist_free(array);
72a8cb30 4581 return -ENOMEM;
102a775e 4582 }
e6b81710
TH
4583
4584 /* store array, freeing old if necessary */
d1d9fd33 4585 pidlist_free(l->list);
102a775e
BB
4586 l->list = array;
4587 l->length = length;
72a8cb30 4588 *lp = l;
102a775e 4589 return 0;
bbcb81d0
PM
4590}
4591
846c7bb0 4592/**
a043e3b2 4593 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4594 * @stats: cgroupstats to fill information into
4595 * @dentry: A dentry entry belonging to the cgroup for which stats have
4596 * been requested.
a043e3b2
LZ
4597 *
4598 * Build and fill cgroupstats so that taskstats can export it to user
4599 * space.
846c7bb0
BS
4600 */
4601int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4602{
2bd59d48 4603 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4604 struct cgroup *cgrp;
72ec7029 4605 struct css_task_iter it;
846c7bb0 4606 struct task_struct *tsk;
33d283be 4607
2bd59d48
TH
4608 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4609 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4610 kernfs_type(kn) != KERNFS_DIR)
4611 return -EINVAL;
4612
bad34660
LZ
4613 mutex_lock(&cgroup_mutex);
4614
846c7bb0 4615 /*
2bd59d48 4616 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4617 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4618 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4619 */
2bd59d48
TH
4620 rcu_read_lock();
4621 cgrp = rcu_dereference(kn->priv);
bad34660 4622 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4623 rcu_read_unlock();
bad34660 4624 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4625 return -ENOENT;
4626 }
bad34660 4627 rcu_read_unlock();
846c7bb0 4628
9d800df1 4629 css_task_iter_start(&cgrp->self, &it);
72ec7029 4630 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4631 switch (tsk->state) {
4632 case TASK_RUNNING:
4633 stats->nr_running++;
4634 break;
4635 case TASK_INTERRUPTIBLE:
4636 stats->nr_sleeping++;
4637 break;
4638 case TASK_UNINTERRUPTIBLE:
4639 stats->nr_uninterruptible++;
4640 break;
4641 case TASK_STOPPED:
4642 stats->nr_stopped++;
4643 break;
4644 default:
4645 if (delayacct_is_task_waiting_on_io(tsk))
4646 stats->nr_io_wait++;
4647 break;
4648 }
4649 }
72ec7029 4650 css_task_iter_end(&it);
846c7bb0 4651
bad34660 4652 mutex_unlock(&cgroup_mutex);
2bd59d48 4653 return 0;
846c7bb0
BS
4654}
4655
8f3ff208 4656
bbcb81d0 4657/*
102a775e 4658 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4659 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4660 * in the cgroup->l->list array.
bbcb81d0 4661 */
cc31edce 4662
102a775e 4663static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4664{
cc31edce
PM
4665 /*
4666 * Initially we receive a position value that corresponds to
4667 * one more than the last pid shown (or 0 on the first call or
4668 * after a seek to the start). Use a binary-search to find the
4669 * next pid to display, if any
4670 */
2bd59d48 4671 struct kernfs_open_file *of = s->private;
7da11279 4672 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4673 struct cgroup_pidlist *l;
7da11279 4674 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4675 int index = 0, pid = *pos;
4bac00d1
TH
4676 int *iter, ret;
4677
4678 mutex_lock(&cgrp->pidlist_mutex);
4679
4680 /*
5d22444f 4681 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4682 * after open. If the matching pidlist is around, we can use that.
5d22444f 4683 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4684 * could already have been destroyed.
4685 */
5d22444f
TH
4686 if (of->priv)
4687 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4688
4689 /*
4690 * Either this is the first start() after open or the matching
4691 * pidlist has been destroyed inbetween. Create a new one.
4692 */
5d22444f
TH
4693 if (!of->priv) {
4694 ret = pidlist_array_load(cgrp, type,
4695 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4696 if (ret)
4697 return ERR_PTR(ret);
4698 }
5d22444f 4699 l = of->priv;
cc31edce 4700
cc31edce 4701 if (pid) {
102a775e 4702 int end = l->length;
20777766 4703
cc31edce
PM
4704 while (index < end) {
4705 int mid = (index + end) / 2;
afb2bc14 4706 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4707 index = mid;
4708 break;
afb2bc14 4709 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4710 index = mid + 1;
4711 else
4712 end = mid;
4713 }
4714 }
4715 /* If we're off the end of the array, we're done */
102a775e 4716 if (index >= l->length)
cc31edce
PM
4717 return NULL;
4718 /* Update the abstract position to be the actual pid that we found */
102a775e 4719 iter = l->list + index;
afb2bc14 4720 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4721 return iter;
4722}
4723
102a775e 4724static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4725{
2bd59d48 4726 struct kernfs_open_file *of = s->private;
5d22444f 4727 struct cgroup_pidlist *l = of->priv;
62236858 4728
5d22444f
TH
4729 if (l)
4730 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4731 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4732 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4733}
4734
102a775e 4735static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4736{
2bd59d48 4737 struct kernfs_open_file *of = s->private;
5d22444f 4738 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4739 pid_t *p = v;
4740 pid_t *end = l->list + l->length;
cc31edce
PM
4741 /*
4742 * Advance to the next pid in the array. If this goes off the
4743 * end, we're done
4744 */
4745 p++;
4746 if (p >= end) {
4747 return NULL;
4748 } else {
7da11279 4749 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4750 return p;
4751 }
4752}
4753
102a775e 4754static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4755{
94ff212d
JP
4756 seq_printf(s, "%d\n", *(int *)v);
4757
4758 return 0;
cc31edce 4759}
bbcb81d0 4760
182446d0
TH
4761static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4762 struct cftype *cft)
81a6a5cd 4763{
182446d0 4764 return notify_on_release(css->cgroup);
81a6a5cd
PM
4765}
4766
182446d0
TH
4767static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4768 struct cftype *cft, u64 val)
6379c106 4769{
6379c106 4770 if (val)
182446d0 4771 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4772 else
182446d0 4773 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4774 return 0;
4775}
4776
182446d0
TH
4777static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4778 struct cftype *cft)
97978e6d 4779{
182446d0 4780 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4781}
4782
182446d0
TH
4783static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4784 struct cftype *cft, u64 val)
97978e6d
DL
4785{
4786 if (val)
182446d0 4787 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4788 else
182446d0 4789 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4790 return 0;
4791}
4792
a14c6874
TH
4793/* cgroup core interface files for the default hierarchy */
4794static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4795 {
d5c56ced 4796 .name = "cgroup.procs",
6f60eade 4797 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4798 .seq_start = cgroup_pidlist_start,
4799 .seq_next = cgroup_pidlist_next,
4800 .seq_stop = cgroup_pidlist_stop,
4801 .seq_show = cgroup_pidlist_show,
5d22444f 4802 .private = CGROUP_FILE_PROCS,
acbef755 4803 .write = cgroup_procs_write,
102a775e 4804 },
f8f22e53
TH
4805 {
4806 .name = "cgroup.controllers",
f8f22e53
TH
4807 .seq_show = cgroup_controllers_show,
4808 },
4809 {
4810 .name = "cgroup.subtree_control",
f8f22e53 4811 .seq_show = cgroup_subtree_control_show,
451af504 4812 .write = cgroup_subtree_control_write,
f8f22e53 4813 },
842b597e 4814 {
4a07c222 4815 .name = "cgroup.events",
a14c6874 4816 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4817 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4818 .seq_show = cgroup_events_show,
842b597e 4819 },
a14c6874
TH
4820 { } /* terminate */
4821};
d5c56ced 4822
a14c6874
TH
4823/* cgroup core interface files for the legacy hierarchies */
4824static struct cftype cgroup_legacy_base_files[] = {
4825 {
4826 .name = "cgroup.procs",
4827 .seq_start = cgroup_pidlist_start,
4828 .seq_next = cgroup_pidlist_next,
4829 .seq_stop = cgroup_pidlist_stop,
4830 .seq_show = cgroup_pidlist_show,
4831 .private = CGROUP_FILE_PROCS,
4832 .write = cgroup_procs_write,
a14c6874
TH
4833 },
4834 {
4835 .name = "cgroup.clone_children",
4836 .read_u64 = cgroup_clone_children_read,
4837 .write_u64 = cgroup_clone_children_write,
4838 },
4839 {
4840 .name = "cgroup.sane_behavior",
4841 .flags = CFTYPE_ONLY_ON_ROOT,
4842 .seq_show = cgroup_sane_behavior_show,
4843 },
d5c56ced
TH
4844 {
4845 .name = "tasks",
6612f05b
TH
4846 .seq_start = cgroup_pidlist_start,
4847 .seq_next = cgroup_pidlist_next,
4848 .seq_stop = cgroup_pidlist_stop,
4849 .seq_show = cgroup_pidlist_show,
5d22444f 4850 .private = CGROUP_FILE_TASKS,
acbef755 4851 .write = cgroup_tasks_write,
d5c56ced
TH
4852 },
4853 {
4854 .name = "notify_on_release",
d5c56ced
TH
4855 .read_u64 = cgroup_read_notify_on_release,
4856 .write_u64 = cgroup_write_notify_on_release,
4857 },
6e6ff25b
TH
4858 {
4859 .name = "release_agent",
a14c6874 4860 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4861 .seq_show = cgroup_release_agent_show,
451af504 4862 .write = cgroup_release_agent_write,
5f469907 4863 .max_write_len = PATH_MAX - 1,
6e6ff25b 4864 },
db0416b6 4865 { } /* terminate */
bbcb81d0
PM
4866};
4867
0c21ead1
TH
4868/*
4869 * css destruction is four-stage process.
4870 *
4871 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4872 * Implemented in kill_css().
4873 *
4874 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4875 * and thus css_tryget_online() is guaranteed to fail, the css can be
4876 * offlined by invoking offline_css(). After offlining, the base ref is
4877 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4878 *
4879 * 3. When the percpu_ref reaches zero, the only possible remaining
4880 * accessors are inside RCU read sections. css_release() schedules the
4881 * RCU callback.
4882 *
4883 * 4. After the grace period, the css can be freed. Implemented in
4884 * css_free_work_fn().
4885 *
4886 * It is actually hairier because both step 2 and 4 require process context
4887 * and thus involve punting to css->destroy_work adding two additional
4888 * steps to the already complex sequence.
4889 */
35ef10da 4890static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4891{
4892 struct cgroup_subsys_state *css =
35ef10da 4893 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4894 struct cgroup_subsys *ss = css->ss;
0c21ead1 4895 struct cgroup *cgrp = css->cgroup;
48ddbe19 4896
9a1049da
TH
4897 percpu_ref_exit(&css->refcnt);
4898
01e58659 4899 if (ss) {
9d755d33 4900 /* css free path */
8bb5ef79 4901 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4902 int id = css->id;
4903
01e58659
VD
4904 ss->css_free(css);
4905 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4906 cgroup_put(cgrp);
8bb5ef79
TH
4907
4908 if (parent)
4909 css_put(parent);
9d755d33
TH
4910 } else {
4911 /* cgroup free path */
4912 atomic_dec(&cgrp->root->nr_cgrps);
4913 cgroup_pidlist_destroy_all(cgrp);
971ff493 4914 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4915
d51f39b0 4916 if (cgroup_parent(cgrp)) {
9d755d33
TH
4917 /*
4918 * We get a ref to the parent, and put the ref when
4919 * this cgroup is being freed, so it's guaranteed
4920 * that the parent won't be destroyed before its
4921 * children.
4922 */
d51f39b0 4923 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4924 kernfs_put(cgrp->kn);
4925 kfree(cgrp);
4926 } else {
4927 /*
4928 * This is root cgroup's refcnt reaching zero,
4929 * which indicates that the root should be
4930 * released.
4931 */
4932 cgroup_destroy_root(cgrp->root);
4933 }
4934 }
48ddbe19
TH
4935}
4936
0c21ead1 4937static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4938{
4939 struct cgroup_subsys_state *css =
0c21ead1 4940 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4941
35ef10da 4942 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4943 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4944}
4945
25e15d83 4946static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4947{
4948 struct cgroup_subsys_state *css =
25e15d83 4949 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4950 struct cgroup_subsys *ss = css->ss;
9d755d33 4951 struct cgroup *cgrp = css->cgroup;
15a4c835 4952
1fed1b2e
TH
4953 mutex_lock(&cgroup_mutex);
4954
de3f0341 4955 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4956 list_del_rcu(&css->sibling);
4957
9d755d33
TH
4958 if (ss) {
4959 /* css release path */
01e58659 4960 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4961 if (ss->css_released)
4962 ss->css_released(css);
9d755d33
TH
4963 } else {
4964 /* cgroup release path */
9d755d33
TH
4965 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4966 cgrp->id = -1;
a4189487
LZ
4967
4968 /*
4969 * There are two control paths which try to determine
4970 * cgroup from dentry without going through kernfs -
4971 * cgroupstats_build() and css_tryget_online_from_dir().
4972 * Those are supported by RCU protecting clearing of
4973 * cgrp->kn->priv backpointer.
4974 */
6cd0f5bb
TH
4975 if (cgrp->kn)
4976 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4977 NULL);
9d755d33 4978 }
d3daf28d 4979
1fed1b2e
TH
4980 mutex_unlock(&cgroup_mutex);
4981
0c21ead1 4982 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4983}
4984
d3daf28d
TH
4985static void css_release(struct percpu_ref *ref)
4986{
4987 struct cgroup_subsys_state *css =
4988 container_of(ref, struct cgroup_subsys_state, refcnt);
4989
25e15d83
TH
4990 INIT_WORK(&css->destroy_work, css_release_work_fn);
4991 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4992}
4993
ddfcadab
TH
4994static void init_and_link_css(struct cgroup_subsys_state *css,
4995 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4996{
0cb51d71
TH
4997 lockdep_assert_held(&cgroup_mutex);
4998
ddfcadab
TH
4999 cgroup_get(cgrp);
5000
d5c419b6 5001 memset(css, 0, sizeof(*css));
bd89aabc 5002 css->cgroup = cgrp;
72c97e54 5003 css->ss = ss;
d5c419b6
TH
5004 INIT_LIST_HEAD(&css->sibling);
5005 INIT_LIST_HEAD(&css->children);
0cb51d71 5006 css->serial_nr = css_serial_nr_next++;
aa226ff4 5007 atomic_set(&css->online_cnt, 0);
0ae78e0b 5008
d51f39b0
TH
5009 if (cgroup_parent(cgrp)) {
5010 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5011 css_get(css->parent);
ddfcadab 5012 }
48ddbe19 5013
ca8bdcaf 5014 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5015}
5016
2a4ac633 5017/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5018static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5019{
623f926b 5020 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5021 int ret = 0;
5022
a31f2d3f
TH
5023 lockdep_assert_held(&cgroup_mutex);
5024
92fb9748 5025 if (ss->css_online)
eb95419b 5026 ret = ss->css_online(css);
ae7f164a 5027 if (!ret) {
eb95419b 5028 css->flags |= CSS_ONLINE;
aec25020 5029 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5030
5031 atomic_inc(&css->online_cnt);
5032 if (css->parent)
5033 atomic_inc(&css->parent->online_cnt);
ae7f164a 5034 }
b1929db4 5035 return ret;
a31f2d3f
TH
5036}
5037
2a4ac633 5038/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5039static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5040{
623f926b 5041 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5042
5043 lockdep_assert_held(&cgroup_mutex);
5044
5045 if (!(css->flags & CSS_ONLINE))
5046 return;
5047
fa06235b
VD
5048 if (ss->css_reset)
5049 ss->css_reset(css);
5050
d7eeac19 5051 if (ss->css_offline)
eb95419b 5052 ss->css_offline(css);
a31f2d3f 5053
eb95419b 5054 css->flags &= ~CSS_ONLINE;
e3297803 5055 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5056
5057 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5058}
5059
c81c925a 5060/**
6cd0f5bb 5061 * css_create - create a cgroup_subsys_state
c81c925a
TH
5062 * @cgrp: the cgroup new css will be associated with
5063 * @ss: the subsys of new css
5064 *
5065 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5066 * css is online and installed in @cgrp. This function doesn't create the
5067 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5068 */
6cd0f5bb
TH
5069static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5070 struct cgroup_subsys *ss)
c81c925a 5071{
d51f39b0 5072 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5073 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5074 struct cgroup_subsys_state *css;
5075 int err;
5076
c81c925a
TH
5077 lockdep_assert_held(&cgroup_mutex);
5078
1fed1b2e 5079 css = ss->css_alloc(parent_css);
c81c925a 5080 if (IS_ERR(css))
6cd0f5bb 5081 return css;
c81c925a 5082
ddfcadab 5083 init_and_link_css(css, ss, cgrp);
a2bed820 5084
2aad2a86 5085 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5086 if (err)
3eb59ec6 5087 goto err_free_css;
c81c925a 5088
cf780b7d 5089 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
5090 if (err < 0)
5091 goto err_free_percpu_ref;
5092 css->id = err;
c81c925a 5093
15a4c835 5094 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5095 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5096 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5097
5098 err = online_css(css);
5099 if (err)
1fed1b2e 5100 goto err_list_del;
94419627 5101
c81c925a 5102 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5103 cgroup_parent(parent)) {
ed3d261b 5104 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5105 current->comm, current->pid, ss->name);
c81c925a 5106 if (!strcmp(ss->name, "memory"))
ed3d261b 5107 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5108 ss->warned_broken_hierarchy = true;
5109 }
5110
6cd0f5bb 5111 return css;
c81c925a 5112
1fed1b2e
TH
5113err_list_del:
5114 list_del_rcu(&css->sibling);
15a4c835 5115 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5116err_free_percpu_ref:
9a1049da 5117 percpu_ref_exit(&css->refcnt);
3eb59ec6 5118err_free_css:
a2bed820 5119 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5120 return ERR_PTR(err);
c81c925a
TH
5121}
5122
a5bca215 5123static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5124{
a5bca215 5125 struct cgroup_root *root = parent->root;
a5bca215
TH
5126 struct cgroup *cgrp, *tcgrp;
5127 int level = parent->level + 1;
03970d3c 5128 int ret;
ddbcc7e8 5129
0a950f65 5130 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5131 cgrp = kzalloc(sizeof(*cgrp) +
5132 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5133 if (!cgrp)
5134 return ERR_PTR(-ENOMEM);
0ab02ca8 5135
2aad2a86 5136 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5137 if (ret)
5138 goto out_free_cgrp;
5139
0ab02ca8
LZ
5140 /*
5141 * Temporarily set the pointer to NULL, so idr_find() won't return
5142 * a half-baked cgroup.
5143 */
cf780b7d 5144 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5145 if (cgrp->id < 0) {
ba0f4d76 5146 ret = -ENOMEM;
9d755d33 5147 goto out_cancel_ref;
976c06bc
TH
5148 }
5149
cc31edce 5150 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5151
9d800df1 5152 cgrp->self.parent = &parent->self;
ba0f4d76 5153 cgrp->root = root;
b11cfb58
TH
5154 cgrp->level = level;
5155
5156 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5157 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5158
b6abdb0e
LZ
5159 if (notify_on_release(parent))
5160 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5161
2260e7fc
TH
5162 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5163 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5164
0cb51d71 5165 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5166
4e139afc 5167 /* allocation complete, commit to creation */
d5c419b6 5168 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5169 atomic_inc(&root->nr_cgrps);
59f5296b 5170 cgroup_get(parent);
415cf07a 5171
0d80255e
TH
5172 /*
5173 * @cgrp is now fully operational. If something fails after this
5174 * point, it'll be released via the normal destruction path.
5175 */
6fa4918d 5176 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5177
bd53d617
TH
5178 /*
5179 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5180 * subtree_control from the parent. Each is configured manually.
bd53d617 5181 */
03970d3c 5182 if (!cgroup_on_dfl(cgrp))
5531dc91 5183 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5184
5185 cgroup_propagate_control(cgrp);
5186
5187 /* @cgrp doesn't have dir yet so the following will only create csses */
5188 ret = cgroup_apply_control_enable(cgrp);
5189 if (ret)
5190 goto out_destroy;
2bd59d48 5191
a5bca215
TH
5192 return cgrp;
5193
5194out_cancel_ref:
5195 percpu_ref_exit(&cgrp->self.refcnt);
5196out_free_cgrp:
5197 kfree(cgrp);
5198 return ERR_PTR(ret);
5199out_destroy:
5200 cgroup_destroy_locked(cgrp);
5201 return ERR_PTR(ret);
5202}
5203
5204static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5205 umode_t mode)
5206{
5207 struct cgroup *parent, *cgrp;
a5bca215 5208 struct kernfs_node *kn;
03970d3c 5209 int ret;
a5bca215
TH
5210
5211 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5212 if (strchr(name, '\n'))
5213 return -EINVAL;
5214
945ba199 5215 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5216 if (!parent)
5217 return -ENODEV;
5218
5219 cgrp = cgroup_create(parent);
5220 if (IS_ERR(cgrp)) {
5221 ret = PTR_ERR(cgrp);
5222 goto out_unlock;
5223 }
5224
195e9b6c
TH
5225 /* create the directory */
5226 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5227 if (IS_ERR(kn)) {
5228 ret = PTR_ERR(kn);
5229 goto out_destroy;
5230 }
5231 cgrp->kn = kn;
5232
5233 /*
5234 * This extra ref will be put in cgroup_free_fn() and guarantees
5235 * that @cgrp->kn is always accessible.
5236 */
5237 kernfs_get(kn);
5238
5239 ret = cgroup_kn_set_ugid(kn);
5240 if (ret)
5241 goto out_destroy;
5242
334c3679 5243 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5244 if (ret)
5245 goto out_destroy;
5246
03970d3c
TH
5247 ret = cgroup_apply_control_enable(cgrp);
5248 if (ret)
5249 goto out_destroy;
195e9b6c
TH
5250
5251 /* let's create and online css's */
2bd59d48 5252 kernfs_activate(kn);
ddbcc7e8 5253
ba0f4d76
TH
5254 ret = 0;
5255 goto out_unlock;
ddbcc7e8 5256
a5bca215
TH
5257out_destroy:
5258 cgroup_destroy_locked(cgrp);
ba0f4d76 5259out_unlock:
a9746d8d 5260 cgroup_kn_unlock(parent_kn);
ba0f4d76 5261 return ret;
ddbcc7e8
PM
5262}
5263
223dbc38
TH
5264/*
5265 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5266 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5267 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5268 */
5269static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5270{
223dbc38
TH
5271 struct cgroup_subsys_state *css =
5272 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5273
f20104de 5274 mutex_lock(&cgroup_mutex);
09a503ea 5275
aa226ff4
TH
5276 do {
5277 offline_css(css);
5278 css_put(css);
5279 /* @css can't go away while we're holding cgroup_mutex */
5280 css = css->parent;
5281 } while (css && atomic_dec_and_test(&css->online_cnt));
5282
5283 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5284}
5285
223dbc38
TH
5286/* css kill confirmation processing requires process context, bounce */
5287static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5288{
5289 struct cgroup_subsys_state *css =
5290 container_of(ref, struct cgroup_subsys_state, refcnt);
5291
aa226ff4
TH
5292 if (atomic_dec_and_test(&css->online_cnt)) {
5293 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5294 queue_work(cgroup_destroy_wq, &css->destroy_work);
5295 }
d3daf28d
TH
5296}
5297
f392e51c
TH
5298/**
5299 * kill_css - destroy a css
5300 * @css: css to destroy
5301 *
5302 * This function initiates destruction of @css by removing cgroup interface
5303 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5304 * asynchronously once css_tryget_online() is guaranteed to fail and when
5305 * the reference count reaches zero, @css will be released.
f392e51c
TH
5306 */
5307static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5308{
01f6474c 5309 lockdep_assert_held(&cgroup_mutex);
94419627 5310
2bd59d48
TH
5311 /*
5312 * This must happen before css is disassociated with its cgroup.
5313 * See seq_css() for details.
5314 */
334c3679 5315 css_clear_dir(css);
3c14f8b4 5316
edae0c33
TH
5317 /*
5318 * Killing would put the base ref, but we need to keep it alive
5319 * until after ->css_offline().
5320 */
5321 css_get(css);
5322
5323 /*
5324 * cgroup core guarantees that, by the time ->css_offline() is
5325 * invoked, no new css reference will be given out via
ec903c0c 5326 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5327 * proceed to offlining css's because percpu_ref_kill() doesn't
5328 * guarantee that the ref is seen as killed on all CPUs on return.
5329 *
5330 * Use percpu_ref_kill_and_confirm() to get notifications as each
5331 * css is confirmed to be seen as killed on all CPUs.
5332 */
5333 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5334}
5335
5336/**
5337 * cgroup_destroy_locked - the first stage of cgroup destruction
5338 * @cgrp: cgroup to be destroyed
5339 *
5340 * css's make use of percpu refcnts whose killing latency shouldn't be
5341 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5342 * guarantee that css_tryget_online() won't succeed by the time
5343 * ->css_offline() is invoked. To satisfy all the requirements,
5344 * destruction is implemented in the following two steps.
d3daf28d
TH
5345 *
5346 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5347 * userland visible parts and start killing the percpu refcnts of
5348 * css's. Set up so that the next stage will be kicked off once all
5349 * the percpu refcnts are confirmed to be killed.
5350 *
5351 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5352 * rest of destruction. Once all cgroup references are gone, the
5353 * cgroup is RCU-freed.
5354 *
5355 * This function implements s1. After this step, @cgrp is gone as far as
5356 * the userland is concerned and a new cgroup with the same name may be
5357 * created. As cgroup doesn't care about the names internally, this
5358 * doesn't cause any problem.
5359 */
42809dd4
TH
5360static int cgroup_destroy_locked(struct cgroup *cgrp)
5361 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5362{
2bd59d48 5363 struct cgroup_subsys_state *css;
2b021cbf 5364 struct cgrp_cset_link *link;
1c6727af 5365 int ssid;
ddbcc7e8 5366
42809dd4
TH
5367 lockdep_assert_held(&cgroup_mutex);
5368
91486f61
TH
5369 /*
5370 * Only migration can raise populated from zero and we're already
5371 * holding cgroup_mutex.
5372 */
5373 if (cgroup_is_populated(cgrp))
ddbcc7e8 5374 return -EBUSY;
a043e3b2 5375
bb78a92f 5376 /*
d5c419b6
TH
5377 * Make sure there's no live children. We can't test emptiness of
5378 * ->self.children as dead children linger on it while being
5379 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5380 */
f3d46500 5381 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5382 return -EBUSY;
5383
455050d2 5384 /*
2b021cbf
TH
5385 * Mark @cgrp and the associated csets dead. The former prevents
5386 * further task migration and child creation by disabling
5387 * cgroup_lock_live_group(). The latter makes the csets ignored by
5388 * the migration path.
455050d2 5389 */
184faf32 5390 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5391
2b021cbf
TH
5392 spin_lock_bh(&css_set_lock);
5393 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5394 link->cset->dead = true;
5395 spin_unlock_bh(&css_set_lock);
5396
249f3468 5397 /* initiate massacre of all css's */
1c6727af
TH
5398 for_each_css(css, ssid, cgrp)
5399 kill_css(css);
455050d2 5400
455050d2 5401 /*
01f6474c
TH
5402 * Remove @cgrp directory along with the base files. @cgrp has an
5403 * extra ref on its kn.
f20104de 5404 */
01f6474c 5405 kernfs_remove(cgrp->kn);
f20104de 5406
d51f39b0 5407 check_for_release(cgroup_parent(cgrp));
2bd59d48 5408
249f3468 5409 /* put the base reference */
9d755d33 5410 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5411
ea15f8cc
TH
5412 return 0;
5413};
5414
2bd59d48 5415static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5416{
a9746d8d 5417 struct cgroup *cgrp;
2bd59d48 5418 int ret = 0;
42809dd4 5419
945ba199 5420 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5421 if (!cgrp)
5422 return 0;
42809dd4 5423
a9746d8d 5424 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5425
a9746d8d 5426 cgroup_kn_unlock(kn);
42809dd4 5427 return ret;
8e3f6541
TH
5428}
5429
2bd59d48
TH
5430static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5431 .remount_fs = cgroup_remount,
5432 .show_options = cgroup_show_options,
5433 .mkdir = cgroup_mkdir,
5434 .rmdir = cgroup_rmdir,
5435 .rename = cgroup_rename,
5436};
5437
15a4c835 5438static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5439{
ddbcc7e8 5440 struct cgroup_subsys_state *css;
cfe36bde 5441
a5ae9899 5442 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5443
648bb56d
TH
5444 mutex_lock(&cgroup_mutex);
5445
15a4c835 5446 idr_init(&ss->css_idr);
0adb0704 5447 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5448
3dd06ffa
TH
5449 /* Create the root cgroup state for this subsystem */
5450 ss->root = &cgrp_dfl_root;
5451 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5452 /* We don't handle early failures gracefully */
5453 BUG_ON(IS_ERR(css));
ddfcadab 5454 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5455
5456 /*
5457 * Root csses are never destroyed and we can't initialize
5458 * percpu_ref during early init. Disable refcnting.
5459 */
5460 css->flags |= CSS_NO_REF;
5461
15a4c835 5462 if (early) {
9395a450 5463 /* allocation can't be done safely during early init */
15a4c835
TH
5464 css->id = 1;
5465 } else {
5466 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5467 BUG_ON(css->id < 0);
5468 }
ddbcc7e8 5469
e8d55fde 5470 /* Update the init_css_set to contain a subsys
817929ec 5471 * pointer to this state - since the subsystem is
e8d55fde 5472 * newly registered, all tasks and hence the
3dd06ffa 5473 * init_css_set is in the subsystem's root cgroup. */
aec25020 5474 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5475
cb4a3167
AS
5476 have_fork_callback |= (bool)ss->fork << ss->id;
5477 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5478 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5479 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5480
e8d55fde
LZ
5481 /* At system boot, before all subsystems have been
5482 * registered, no tasks have been forked, so we don't
5483 * need to invoke fork callbacks here. */
5484 BUG_ON(!list_empty(&init_task.tasks));
5485
ae7f164a 5486 BUG_ON(online_css(css));
a8638030 5487
cf5d5941
BB
5488 mutex_unlock(&cgroup_mutex);
5489}
cf5d5941 5490
ddbcc7e8 5491/**
a043e3b2
LZ
5492 * cgroup_init_early - cgroup initialization at system boot
5493 *
5494 * Initialize cgroups at system boot, and initialize any
5495 * subsystems that request early init.
ddbcc7e8
PM
5496 */
5497int __init cgroup_init_early(void)
5498{
7b9a6ba5 5499 static struct cgroup_sb_opts __initdata opts;
30159ec7 5500 struct cgroup_subsys *ss;
ddbcc7e8 5501 int i;
30159ec7 5502
3dd06ffa 5503 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5504 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5505
a4ea1cc9 5506 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5507
3ed80a62 5508 for_each_subsys(ss, i) {
aec25020 5509 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5510 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5511 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5512 ss->id, ss->name);
073219e9
TH
5513 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5514 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5515
aec25020 5516 ss->id = i;
073219e9 5517 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5518 if (!ss->legacy_name)
5519 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5520
5521 if (ss->early_init)
15a4c835 5522 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5523 }
5524 return 0;
5525}
5526
6e5c8307 5527static u16 cgroup_disable_mask __initdata;
a3e72739 5528
ddbcc7e8 5529/**
a043e3b2
LZ
5530 * cgroup_init - cgroup initialization
5531 *
5532 * Register cgroup filesystem and /proc file, and initialize
5533 * any subsystems that didn't request early init.
ddbcc7e8
PM
5534 */
5535int __init cgroup_init(void)
5536{
30159ec7 5537 struct cgroup_subsys *ss;
035f4f51 5538 int ssid;
ddbcc7e8 5539
6e5c8307 5540 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5541 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5542 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5543 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5544
a79a908f
AK
5545 get_user_ns(init_cgroup_ns.user_ns);
5546
54e7b4eb 5547 mutex_lock(&cgroup_mutex);
54e7b4eb 5548
2378d8b8
TH
5549 /*
5550 * Add init_css_set to the hash table so that dfl_root can link to
5551 * it during init.
5552 */
5553 hash_add(css_set_table, &init_css_set.hlist,
5554 css_set_hash(init_css_set.subsys));
82fe9b0d 5555
3dd06ffa 5556 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5557
54e7b4eb
TH
5558 mutex_unlock(&cgroup_mutex);
5559
172a2c06 5560 for_each_subsys(ss, ssid) {
15a4c835
TH
5561 if (ss->early_init) {
5562 struct cgroup_subsys_state *css =
5563 init_css_set.subsys[ss->id];
5564
5565 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5566 GFP_KERNEL);
5567 BUG_ON(css->id < 0);
5568 } else {
5569 cgroup_init_subsys(ss, false);
5570 }
172a2c06 5571
2d8f243a
TH
5572 list_add_tail(&init_css_set.e_cset_node[ssid],
5573 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5574
5575 /*
c731ae1d
LZ
5576 * Setting dfl_root subsys_mask needs to consider the
5577 * disabled flag and cftype registration needs kmalloc,
5578 * both of which aren't available during early_init.
172a2c06 5579 */
a3e72739
TH
5580 if (cgroup_disable_mask & (1 << ssid)) {
5581 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5582 printk(KERN_INFO "Disabling %s control group subsystem\n",
5583 ss->name);
a8ddc821 5584 continue;
a3e72739 5585 }
a8ddc821 5586
223ffb29
JW
5587 if (cgroup_ssid_no_v1(ssid))
5588 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5589 ss->name);
5590
a8ddc821
TH
5591 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5592
f6d635ad
TH
5593 if (ss->implicit_on_dfl)
5594 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5595 else if (!ss->dfl_cftypes)
a7165264 5596 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5597
a8ddc821
TH
5598 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5599 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5600 } else {
5601 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5602 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5603 }
295458e6
VD
5604
5605 if (ss->bind)
5606 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5607 }
5608
2378d8b8
TH
5609 /* init_css_set.subsys[] has been updated, re-hash */
5610 hash_del(&init_css_set.hlist);
5611 hash_add(css_set_table, &init_css_set.hlist,
5612 css_set_hash(init_css_set.subsys));
5613
035f4f51
TH
5614 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5615 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5616 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5617 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5618
2bd59d48 5619 return 0;
ddbcc7e8 5620}
b4f48b63 5621
e5fca243
TH
5622static int __init cgroup_wq_init(void)
5623{
5624 /*
5625 * There isn't much point in executing destruction path in
5626 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5627 * Use 1 for @max_active.
e5fca243
TH
5628 *
5629 * We would prefer to do this in cgroup_init() above, but that
5630 * is called before init_workqueues(): so leave this until after.
5631 */
1a11533f 5632 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5633 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5634
5635 /*
5636 * Used to destroy pidlists and separate to serve as flush domain.
5637 * Cap @max_active to 1 too.
5638 */
5639 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5640 0, 1);
5641 BUG_ON(!cgroup_pidlist_destroy_wq);
5642
e5fca243
TH
5643 return 0;
5644}
5645core_initcall(cgroup_wq_init);
5646
a424316c
PM
5647/*
5648 * proc_cgroup_show()
5649 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5650 * - Used for /proc/<pid>/cgroup.
a424316c 5651 */
006f4ac4
ZL
5652int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5653 struct pid *pid, struct task_struct *tsk)
a424316c 5654{
e61734c5 5655 char *buf, *path;
a424316c 5656 int retval;
3dd06ffa 5657 struct cgroup_root *root;
a424316c
PM
5658
5659 retval = -ENOMEM;
e61734c5 5660 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5661 if (!buf)
5662 goto out;
5663
a424316c 5664 mutex_lock(&cgroup_mutex);
f0d9a5f1 5665 spin_lock_bh(&css_set_lock);
a424316c 5666
985ed670 5667 for_each_root(root) {
a424316c 5668 struct cgroup_subsys *ss;
bd89aabc 5669 struct cgroup *cgrp;
b85d2040 5670 int ssid, count = 0;
a424316c 5671
a7165264 5672 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5673 continue;
5674
2c6ab6d2 5675 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5676 if (root != &cgrp_dfl_root)
5677 for_each_subsys(ss, ssid)
5678 if (root->subsys_mask & (1 << ssid))
5679 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5680 ss->legacy_name);
c6d57f33
PM
5681 if (strlen(root->name))
5682 seq_printf(m, "%sname=%s", count ? "," : "",
5683 root->name);
a424316c 5684 seq_putc(m, ':');
2e91fa7f 5685
7717f7ba 5686 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5687
5688 /*
5689 * On traditional hierarchies, all zombie tasks show up as
5690 * belonging to the root cgroup. On the default hierarchy,
5691 * while a zombie doesn't show up in "cgroup.procs" and
5692 * thus can't be migrated, its /proc/PID/cgroup keeps
5693 * reporting the cgroup it belonged to before exiting. If
5694 * the cgroup is removed before the zombie is reaped,
5695 * " (deleted)" is appended to the cgroup path.
5696 */
5697 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5698 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5699 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5700 if (!path) {
5701 retval = -ENAMETOOLONG;
5702 goto out_unlock;
5703 }
5704 } else {
5705 path = "/";
e61734c5 5706 }
2e91fa7f 5707
e61734c5 5708 seq_puts(m, path);
2e91fa7f
TH
5709
5710 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5711 seq_puts(m, " (deleted)\n");
5712 else
5713 seq_putc(m, '\n');
a424316c
PM
5714 }
5715
006f4ac4 5716 retval = 0;
a424316c 5717out_unlock:
f0d9a5f1 5718 spin_unlock_bh(&css_set_lock);
a424316c 5719 mutex_unlock(&cgroup_mutex);
a424316c
PM
5720 kfree(buf);
5721out:
5722 return retval;
5723}
5724
a424316c
PM
5725/* Display information about each subsystem and each hierarchy */
5726static int proc_cgroupstats_show(struct seq_file *m, void *v)
5727{
30159ec7 5728 struct cgroup_subsys *ss;
a424316c 5729 int i;
a424316c 5730
8bab8dde 5731 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5732 /*
5733 * ideally we don't want subsystems moving around while we do this.
5734 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5735 * subsys/hierarchy state.
5736 */
a424316c 5737 mutex_lock(&cgroup_mutex);
30159ec7
TH
5738
5739 for_each_subsys(ss, i)
2c6ab6d2 5740 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5741 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5742 atomic_read(&ss->root->nr_cgrps),
5743 cgroup_ssid_enabled(i));
30159ec7 5744
a424316c
PM
5745 mutex_unlock(&cgroup_mutex);
5746 return 0;
5747}
5748
5749static int cgroupstats_open(struct inode *inode, struct file *file)
5750{
9dce07f1 5751 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5752}
5753
828c0950 5754static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5755 .open = cgroupstats_open,
5756 .read = seq_read,
5757 .llseek = seq_lseek,
5758 .release = single_release,
5759};
5760
b4f48b63 5761/**
eaf797ab 5762 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5763 * @child: pointer to task_struct of forking parent process.
b4f48b63 5764 *
eaf797ab
TH
5765 * A task is associated with the init_css_set until cgroup_post_fork()
5766 * attaches it to the parent's css_set. Empty cg_list indicates that
5767 * @child isn't holding reference to its css_set.
b4f48b63
PM
5768 */
5769void cgroup_fork(struct task_struct *child)
5770{
eaf797ab 5771 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5772 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5773}
5774
7e47682e
AS
5775/**
5776 * cgroup_can_fork - called on a new task before the process is exposed
5777 * @child: the task in question.
5778 *
5779 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5780 * returns an error, the fork aborts with that error code. This allows for
5781 * a cgroup subsystem to conditionally allow or deny new forks.
5782 */
b53202e6 5783int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5784{
5785 struct cgroup_subsys *ss;
5786 int i, j, ret;
5787
b4e0eeaf 5788 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5789 ret = ss->can_fork(child);
7e47682e
AS
5790 if (ret)
5791 goto out_revert;
b4e0eeaf 5792 } while_each_subsys_mask();
7e47682e
AS
5793
5794 return 0;
5795
5796out_revert:
5797 for_each_subsys(ss, j) {
5798 if (j >= i)
5799 break;
5800 if (ss->cancel_fork)
b53202e6 5801 ss->cancel_fork(child);
7e47682e
AS
5802 }
5803
5804 return ret;
5805}
5806
5807/**
5808 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5809 * @child: the task in question
5810 *
5811 * This calls the cancel_fork() callbacks if a fork failed *after*
5812 * cgroup_can_fork() succeded.
5813 */
b53202e6 5814void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5815{
5816 struct cgroup_subsys *ss;
5817 int i;
5818
5819 for_each_subsys(ss, i)
5820 if (ss->cancel_fork)
b53202e6 5821 ss->cancel_fork(child);
7e47682e
AS
5822}
5823
817929ec 5824/**
a043e3b2
LZ
5825 * cgroup_post_fork - called on a new task after adding it to the task list
5826 * @child: the task in question
5827 *
5edee61e
TH
5828 * Adds the task to the list running through its css_set if necessary and
5829 * call the subsystem fork() callbacks. Has to be after the task is
5830 * visible on the task list in case we race with the first call to
0942eeee 5831 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5832 * list.
a043e3b2 5833 */
b53202e6 5834void cgroup_post_fork(struct task_struct *child)
817929ec 5835{
30159ec7 5836 struct cgroup_subsys *ss;
5edee61e
TH
5837 int i;
5838
3ce3230a 5839 /*
251f8c03 5840 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5841 * function sets use_task_css_set_links before grabbing
5842 * tasklist_lock and we just went through tasklist_lock to add
5843 * @child, it's guaranteed that either we see the set
5844 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5845 * @child during its iteration.
5846 *
5847 * If we won the race, @child is associated with %current's
f0d9a5f1 5848 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5849 * association is stable, and, on completion of the parent's
5850 * migration, @child is visible in the source of migration or
5851 * already in the destination cgroup. This guarantee is necessary
5852 * when implementing operations which need to migrate all tasks of
5853 * a cgroup to another.
5854 *
251f8c03 5855 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5856 * will remain in init_css_set. This is safe because all tasks are
5857 * in the init_css_set before cg_links is enabled and there's no
5858 * operation which transfers all tasks out of init_css_set.
3ce3230a 5859 */
817929ec 5860 if (use_task_css_set_links) {
eaf797ab
TH
5861 struct css_set *cset;
5862
f0d9a5f1 5863 spin_lock_bh(&css_set_lock);
0e1d768f 5864 cset = task_css_set(current);
eaf797ab 5865 if (list_empty(&child->cg_list)) {
eaf797ab 5866 get_css_set(cset);
f6d7d049 5867 css_set_move_task(child, NULL, cset, false);
eaf797ab 5868 }
f0d9a5f1 5869 spin_unlock_bh(&css_set_lock);
817929ec 5870 }
5edee61e
TH
5871
5872 /*
5873 * Call ss->fork(). This must happen after @child is linked on
5874 * css_set; otherwise, @child might change state between ->fork()
5875 * and addition to css_set.
5876 */
b4e0eeaf 5877 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5878 ss->fork(child);
b4e0eeaf 5879 } while_each_subsys_mask();
817929ec 5880}
5edee61e 5881
b4f48b63
PM
5882/**
5883 * cgroup_exit - detach cgroup from exiting task
5884 * @tsk: pointer to task_struct of exiting process
5885 *
5886 * Description: Detach cgroup from @tsk and release it.
5887 *
5888 * Note that cgroups marked notify_on_release force every task in
5889 * them to take the global cgroup_mutex mutex when exiting.
5890 * This could impact scaling on very large systems. Be reluctant to
5891 * use notify_on_release cgroups where very high task exit scaling
5892 * is required on large systems.
5893 *
0e1d768f
TH
5894 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5895 * call cgroup_exit() while the task is still competent to handle
5896 * notify_on_release(), then leave the task attached to the root cgroup in
5897 * each hierarchy for the remainder of its exit. No need to bother with
5898 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5899 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5900 */
1ec41830 5901void cgroup_exit(struct task_struct *tsk)
b4f48b63 5902{
30159ec7 5903 struct cgroup_subsys *ss;
5abb8855 5904 struct css_set *cset;
d41d5a01 5905 int i;
817929ec
PM
5906
5907 /*
0e1d768f 5908 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5909 * with us, we can check css_set and cg_list without synchronization.
817929ec 5910 */
0de0942d
TH
5911 cset = task_css_set(tsk);
5912
817929ec 5913 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5914 spin_lock_bh(&css_set_lock);
f6d7d049 5915 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5916 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5917 } else {
5918 get_css_set(cset);
817929ec
PM
5919 }
5920
cb4a3167 5921 /* see cgroup_post_fork() for details */
b4e0eeaf 5922 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5923 ss->exit(tsk);
b4e0eeaf 5924 } while_each_subsys_mask();
2e91fa7f 5925}
30159ec7 5926
2e91fa7f
TH
5927void cgroup_free(struct task_struct *task)
5928{
5929 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5930 struct cgroup_subsys *ss;
5931 int ssid;
5932
b4e0eeaf 5933 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5934 ss->free(task);
b4e0eeaf 5935 } while_each_subsys_mask();
d41d5a01 5936
2e91fa7f 5937 put_css_set(cset);
b4f48b63 5938}
697f4161 5939
bd89aabc 5940static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5941{
27bd4dbb 5942 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5943 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5944 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5945}
5946
81a6a5cd
PM
5947/*
5948 * Notify userspace when a cgroup is released, by running the
5949 * configured release agent with the name of the cgroup (path
5950 * relative to the root of cgroup file system) as the argument.
5951 *
5952 * Most likely, this user command will try to rmdir this cgroup.
5953 *
5954 * This races with the possibility that some other task will be
5955 * attached to this cgroup before it is removed, or that some other
5956 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5957 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5958 * unused, and this cgroup will be reprieved from its death sentence,
5959 * to continue to serve a useful existence. Next time it's released,
5960 * we will get notified again, if it still has 'notify_on_release' set.
5961 *
5962 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5963 * means only wait until the task is successfully execve()'d. The
5964 * separate release agent task is forked by call_usermodehelper(),
5965 * then control in this thread returns here, without waiting for the
5966 * release agent task. We don't bother to wait because the caller of
5967 * this routine has no use for the exit status of the release agent
5968 * task, so no sense holding our caller up for that.
81a6a5cd 5969 */
81a6a5cd
PM
5970static void cgroup_release_agent(struct work_struct *work)
5971{
971ff493
ZL
5972 struct cgroup *cgrp =
5973 container_of(work, struct cgroup, release_agent_work);
5974 char *pathbuf = NULL, *agentbuf = NULL, *path;
5975 char *argv[3], *envp[3];
5976
81a6a5cd 5977 mutex_lock(&cgroup_mutex);
971ff493
ZL
5978
5979 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5980 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5981 if (!pathbuf || !agentbuf)
5982 goto out;
5983
a79a908f
AK
5984 spin_lock_bh(&css_set_lock);
5985 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
5986 spin_unlock_bh(&css_set_lock);
971ff493
ZL
5987 if (!path)
5988 goto out;
5989
5990 argv[0] = agentbuf;
5991 argv[1] = path;
5992 argv[2] = NULL;
5993
5994 /* minimal command environment */
5995 envp[0] = "HOME=/";
5996 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5997 envp[2] = NULL;
5998
81a6a5cd 5999 mutex_unlock(&cgroup_mutex);
971ff493 6000 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6001 goto out_free;
971ff493 6002out:
81a6a5cd 6003 mutex_unlock(&cgroup_mutex);
3e2cd91a 6004out_free:
971ff493
ZL
6005 kfree(agentbuf);
6006 kfree(pathbuf);
81a6a5cd 6007}
8bab8dde
PM
6008
6009static int __init cgroup_disable(char *str)
6010{
30159ec7 6011 struct cgroup_subsys *ss;
8bab8dde 6012 char *token;
30159ec7 6013 int i;
8bab8dde
PM
6014
6015 while ((token = strsep(&str, ",")) != NULL) {
6016 if (!*token)
6017 continue;
be45c900 6018
3ed80a62 6019 for_each_subsys(ss, i) {
3e1d2eed
TH
6020 if (strcmp(token, ss->name) &&
6021 strcmp(token, ss->legacy_name))
6022 continue;
a3e72739 6023 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6024 }
6025 }
6026 return 1;
6027}
6028__setup("cgroup_disable=", cgroup_disable);
38460b48 6029
223ffb29
JW
6030static int __init cgroup_no_v1(char *str)
6031{
6032 struct cgroup_subsys *ss;
6033 char *token;
6034 int i;
6035
6036 while ((token = strsep(&str, ",")) != NULL) {
6037 if (!*token)
6038 continue;
6039
6040 if (!strcmp(token, "all")) {
6e5c8307 6041 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6042 break;
6043 }
6044
6045 for_each_subsys(ss, i) {
6046 if (strcmp(token, ss->name) &&
6047 strcmp(token, ss->legacy_name))
6048 continue;
6049
6050 cgroup_no_v1_mask |= 1 << i;
6051 }
6052 }
6053 return 1;
6054}
6055__setup("cgroup_no_v1=", cgroup_no_v1);
6056
b77d7b60 6057/**
ec903c0c 6058 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6059 * @dentry: directory dentry of interest
6060 * @ss: subsystem of interest
b77d7b60 6061 *
5a17f543
TH
6062 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6063 * to get the corresponding css and return it. If such css doesn't exist
6064 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6065 */
ec903c0c
TH
6066struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6067 struct cgroup_subsys *ss)
e5d1367f 6068{
2bd59d48 6069 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6070 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6071 struct cgroup_subsys_state *css = NULL;
e5d1367f 6072 struct cgroup *cgrp;
e5d1367f 6073
35cf0836 6074 /* is @dentry a cgroup dir? */
f17fc25f
TH
6075 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6076 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6077 return ERR_PTR(-EBADF);
6078
5a17f543
TH
6079 rcu_read_lock();
6080
2bd59d48
TH
6081 /*
6082 * This path doesn't originate from kernfs and @kn could already
6083 * have been or be removed at any point. @kn->priv is RCU
a4189487 6084 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6085 */
6086 cgrp = rcu_dereference(kn->priv);
6087 if (cgrp)
6088 css = cgroup_css(cgrp, ss);
5a17f543 6089
ec903c0c 6090 if (!css || !css_tryget_online(css))
5a17f543
TH
6091 css = ERR_PTR(-ENOENT);
6092
6093 rcu_read_unlock();
6094 return css;
e5d1367f 6095}
e5d1367f 6096
1cb650b9
LZ
6097/**
6098 * css_from_id - lookup css by id
6099 * @id: the cgroup id
6100 * @ss: cgroup subsys to be looked into
6101 *
6102 * Returns the css if there's valid one with @id, otherwise returns NULL.
6103 * Should be called under rcu_read_lock().
6104 */
6105struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6106{
6fa4918d 6107 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 6108 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
6109}
6110
16af4396
TH
6111/**
6112 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6113 * @path: path on the default hierarchy
6114 *
6115 * Find the cgroup at @path on the default hierarchy, increment its
6116 * reference count and return it. Returns pointer to the found cgroup on
6117 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6118 * if @path points to a non-directory.
6119 */
6120struct cgroup *cgroup_get_from_path(const char *path)
6121{
6122 struct kernfs_node *kn;
6123 struct cgroup *cgrp;
6124
6125 mutex_lock(&cgroup_mutex);
6126
6127 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6128 if (kn) {
6129 if (kernfs_type(kn) == KERNFS_DIR) {
6130 cgrp = kn->priv;
6131 cgroup_get(cgrp);
6132 } else {
6133 cgrp = ERR_PTR(-ENOTDIR);
6134 }
6135 kernfs_put(kn);
6136 } else {
6137 cgrp = ERR_PTR(-ENOENT);
6138 }
6139
6140 mutex_unlock(&cgroup_mutex);
6141 return cgrp;
6142}
6143EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6144
bd1060a1
TH
6145/*
6146 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6147 * definition in cgroup-defs.h.
6148 */
6149#ifdef CONFIG_SOCK_CGROUP_DATA
6150
6151#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6152
3fa4cc9c 6153DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6154static bool cgroup_sk_alloc_disabled __read_mostly;
6155
6156void cgroup_sk_alloc_disable(void)
6157{
6158 if (cgroup_sk_alloc_disabled)
6159 return;
6160 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6161 cgroup_sk_alloc_disabled = true;
6162}
6163
6164#else
6165
6166#define cgroup_sk_alloc_disabled false
6167
6168#endif
6169
6170void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6171{
6172 if (cgroup_sk_alloc_disabled)
6173 return;
6174
6175 rcu_read_lock();
6176
6177 while (true) {
6178 struct css_set *cset;
6179
6180 cset = task_css_set(current);
6181 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6182 skcd->val = (unsigned long)cset->dfl_cgrp;
6183 break;
6184 }
6185 cpu_relax();
6186 }
6187
6188 rcu_read_unlock();
6189}
6190
6191void cgroup_sk_free(struct sock_cgroup_data *skcd)
6192{
6193 cgroup_put(sock_cgroup_ptr(skcd));
6194}
6195
6196#endif /* CONFIG_SOCK_CGROUP_DATA */
6197
a79a908f
AK
6198/* cgroup namespaces */
6199
6200static struct cgroup_namespace *alloc_cgroup_ns(void)
6201{
6202 struct cgroup_namespace *new_ns;
6203 int ret;
6204
6205 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6206 if (!new_ns)
6207 return ERR_PTR(-ENOMEM);
6208 ret = ns_alloc_inum(&new_ns->ns);
6209 if (ret) {
6210 kfree(new_ns);
6211 return ERR_PTR(ret);
6212 }
6213 atomic_set(&new_ns->count, 1);
6214 new_ns->ns.ops = &cgroupns_operations;
6215 return new_ns;
6216}
6217
6218void free_cgroup_ns(struct cgroup_namespace *ns)
6219{
6220 put_css_set(ns->root_cset);
6221 put_user_ns(ns->user_ns);
6222 ns_free_inum(&ns->ns);
6223 kfree(ns);
6224}
6225EXPORT_SYMBOL(free_cgroup_ns);
6226
6227struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6228 struct user_namespace *user_ns,
6229 struct cgroup_namespace *old_ns)
6230{
fa5ff8a1
TH
6231 struct cgroup_namespace *new_ns;
6232 struct css_set *cset;
a79a908f
AK
6233
6234 BUG_ON(!old_ns);
6235
6236 if (!(flags & CLONE_NEWCGROUP)) {
6237 get_cgroup_ns(old_ns);
6238 return old_ns;
6239 }
6240
6241 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6242 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6243 return ERR_PTR(-EPERM);
a79a908f
AK
6244
6245 mutex_lock(&cgroup_mutex);
6246 spin_lock_bh(&css_set_lock);
6247
6248 cset = task_css_set(current);
6249 get_css_set(cset);
6250
6251 spin_unlock_bh(&css_set_lock);
6252 mutex_unlock(&cgroup_mutex);
6253
a79a908f 6254 new_ns = alloc_cgroup_ns();
d2202557 6255 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6256 put_css_set(cset);
6257 return new_ns;
d2202557 6258 }
a79a908f
AK
6259
6260 new_ns->user_ns = get_user_ns(user_ns);
6261 new_ns->root_cset = cset;
6262
6263 return new_ns;
a79a908f
AK
6264}
6265
6266static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6267{
6268 return container_of(ns, struct cgroup_namespace, ns);
6269}
6270
a0530e08 6271static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6272{
a0530e08
AK
6273 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6274
6275 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6276 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6277 return -EPERM;
6278
6279 /* Don't need to do anything if we are attaching to our own cgroupns. */
6280 if (cgroup_ns == nsproxy->cgroup_ns)
6281 return 0;
6282
6283 get_cgroup_ns(cgroup_ns);
6284 put_cgroup_ns(nsproxy->cgroup_ns);
6285 nsproxy->cgroup_ns = cgroup_ns;
6286
6287 return 0;
a79a908f
AK
6288}
6289
6290static struct ns_common *cgroupns_get(struct task_struct *task)
6291{
6292 struct cgroup_namespace *ns = NULL;
6293 struct nsproxy *nsproxy;
6294
6295 task_lock(task);
6296 nsproxy = task->nsproxy;
6297 if (nsproxy) {
6298 ns = nsproxy->cgroup_ns;
6299 get_cgroup_ns(ns);
6300 }
6301 task_unlock(task);
6302
6303 return ns ? &ns->ns : NULL;
6304}
6305
6306static void cgroupns_put(struct ns_common *ns)
6307{
6308 put_cgroup_ns(to_cg_ns(ns));
6309}
6310
6311const struct proc_ns_operations cgroupns_operations = {
6312 .name = "cgroup",
6313 .type = CLONE_NEWCGROUP,
6314 .get = cgroupns_get,
6315 .put = cgroupns_put,
6316 .install = cgroupns_install,
6317};
6318
6319static __init int cgroup_namespaces_init(void)
6320{
6321 return 0;
6322}
6323subsys_initcall(cgroup_namespaces_init);
6324
fe693435 6325#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6326static struct cgroup_subsys_state *
6327debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6328{
6329 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6330
6331 if (!css)
6332 return ERR_PTR(-ENOMEM);
6333
6334 return css;
6335}
6336
eb95419b 6337static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6338{
eb95419b 6339 kfree(css);
fe693435
PM
6340}
6341
182446d0
TH
6342static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6343 struct cftype *cft)
fe693435 6344{
182446d0 6345 return cgroup_task_count(css->cgroup);
fe693435
PM
6346}
6347
182446d0
TH
6348static u64 current_css_set_read(struct cgroup_subsys_state *css,
6349 struct cftype *cft)
fe693435
PM
6350{
6351 return (u64)(unsigned long)current->cgroups;
6352}
6353
182446d0 6354static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6355 struct cftype *cft)
fe693435
PM
6356{
6357 u64 count;
6358
6359 rcu_read_lock();
a8ad805c 6360 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6361 rcu_read_unlock();
6362 return count;
6363}
6364
2da8ca82 6365static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6366{
69d0206c 6367 struct cgrp_cset_link *link;
5abb8855 6368 struct css_set *cset;
e61734c5
TH
6369 char *name_buf;
6370
6371 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6372 if (!name_buf)
6373 return -ENOMEM;
7717f7ba 6374
f0d9a5f1 6375 spin_lock_bh(&css_set_lock);
7717f7ba 6376 rcu_read_lock();
5abb8855 6377 cset = rcu_dereference(current->cgroups);
69d0206c 6378 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6379 struct cgroup *c = link->cgrp;
7717f7ba 6380
a2dd4247 6381 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6382 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6383 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6384 }
6385 rcu_read_unlock();
f0d9a5f1 6386 spin_unlock_bh(&css_set_lock);
e61734c5 6387 kfree(name_buf);
7717f7ba
PM
6388 return 0;
6389}
6390
6391#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6392static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6393{
2da8ca82 6394 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6395 struct cgrp_cset_link *link;
7717f7ba 6396
f0d9a5f1 6397 spin_lock_bh(&css_set_lock);
182446d0 6398 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6399 struct css_set *cset = link->cset;
7717f7ba
PM
6400 struct task_struct *task;
6401 int count = 0;
c7561128 6402
5abb8855 6403 seq_printf(seq, "css_set %p\n", cset);
c7561128 6404
5abb8855 6405 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6406 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6407 goto overflow;
6408 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6409 }
6410
6411 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6412 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6413 goto overflow;
6414 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6415 }
c7561128
TH
6416 continue;
6417 overflow:
6418 seq_puts(seq, " ...\n");
7717f7ba 6419 }
f0d9a5f1 6420 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6421 return 0;
6422}
6423
182446d0 6424static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6425{
27bd4dbb 6426 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6427 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6428}
6429
6430static struct cftype debug_files[] = {
fe693435
PM
6431 {
6432 .name = "taskcount",
6433 .read_u64 = debug_taskcount_read,
6434 },
6435
6436 {
6437 .name = "current_css_set",
6438 .read_u64 = current_css_set_read,
6439 },
6440
6441 {
6442 .name = "current_css_set_refcount",
6443 .read_u64 = current_css_set_refcount_read,
6444 },
6445
7717f7ba
PM
6446 {
6447 .name = "current_css_set_cg_links",
2da8ca82 6448 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6449 },
6450
6451 {
6452 .name = "cgroup_css_links",
2da8ca82 6453 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6454 },
6455
fe693435
PM
6456 {
6457 .name = "releasable",
6458 .read_u64 = releasable_read,
6459 },
fe693435 6460
4baf6e33
TH
6461 { } /* terminate */
6462};
fe693435 6463
073219e9 6464struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6465 .css_alloc = debug_css_alloc,
6466 .css_free = debug_css_free,
5577964e 6467 .legacy_cftypes = debug_files,
fe693435
PM
6468};
6469#endif /* CONFIG_CGROUP_DEBUG */