Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/proc_ns.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
a7165264 184static bool cgrp_dfl_visible;
ddbcc7e8 185
223ffb29 186/* Controllers blocked by the commandline in v1 */
6e5c8307 187static u16 cgroup_no_v1_mask;
223ffb29 188
5533e011 189/* some controllers are not supported in the default hierarchy */
a7165264 190static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 191
f6d635ad
TH
192/* some controllers are implicitly enabled on the default hierarchy */
193static unsigned long cgrp_dfl_implicit_ss_mask;
194
ddbcc7e8
PM
195/* The list of hierarchy roots */
196
9871bf95
TH
197static LIST_HEAD(cgroup_roots);
198static int cgroup_root_count;
ddbcc7e8 199
3417ae1f 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 201static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 202
794611a1 203/*
0cb51d71
TH
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
794611a1 209 */
0cb51d71 210static u64 css_serial_nr_next = 1;
794611a1 211
cb4a3167
AS
212/*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 216 */
6e5c8307
TH
217static u16 have_fork_callback __read_mostly;
218static u16 have_exit_callback __read_mostly;
219static u16 have_free_callback __read_mostly;
ddbcc7e8 220
a79a908f
AK
221/* cgroup namespace for init task */
222struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228};
229
7e47682e 230/* Ditto for the can_fork callback. */
6e5c8307 231static u16 have_canfork_callback __read_mostly;
7e47682e 232
67e9c74b 233static struct file_system_type cgroup2_fs_type;
a14c6874
TH
234static struct cftype cgroup_dfl_base_files[];
235static struct cftype cgroup_legacy_base_files[];
628f7cd4 236
6e5c8307 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
239static int cgroup_apply_control(struct cgroup *cgrp);
240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 241static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
fc5ed1e9
TH
251/**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259static bool cgroup_ssid_enabled(int ssid)
260{
cfe02a8a
AB
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
fc5ed1e9
TH
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265}
266
223ffb29
JW
267static bool cgroup_ssid_no_v1(int ssid)
268{
269 return cgroup_no_v1_mask & (1 << ssid);
270}
271
9e10a130
TH
272/**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325static bool cgroup_on_dfl(const struct cgroup *cgrp)
326{
327 return cgrp->root == &cgrp_dfl_root;
328}
329
6fa4918d
TH
330/* IDR wrappers which synchronize using cgroup_idr_lock */
331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333{
334 int ret;
335
336 idr_preload(gfp_mask);
54504e97 337 spin_lock_bh(&cgroup_idr_lock);
d0164adc 338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 339 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
340 idr_preload_end();
341 return ret;
342}
343
344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345{
346 void *ret;
347
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 ret = idr_replace(idr, ptr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351 return ret;
352}
353
354static void cgroup_idr_remove(struct idr *idr, int id)
355{
54504e97 356 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 357 idr_remove(idr, id);
54504e97 358 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
359}
360
d51f39b0
TH
361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362{
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368}
369
5531dc91
TH
370/* subsystems visibly enabled on a cgroup */
371static u16 cgroup_control(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
382 return root_ss_mask;
383}
384
385/* subsystems enabled on a cgroup */
386static u16 cgroup_ss_mask(struct cgroup *cgrp)
387{
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394}
395
95109b62
TH
396/**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 400 *
ca8bdcaf
TH
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
406 */
407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 408 struct cgroup_subsys *ss)
95109b62 409{
ca8bdcaf 410 if (ss)
aec25020 411 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 412 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 413 else
9d800df1 414 return &cgrp->self;
95109b62 415}
42809dd4 416
aec3dfcb
TH
417/**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
9d800df1 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 421 *
d0f702e6 422 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429{
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
9d800df1 433 return &cgrp->self;
aec3dfcb 434
eeecbd19
TH
435 /*
436 * This function is used while updating css associations and thus
5531dc91 437 * can't test the csses directly. Test ss_mask.
eeecbd19 438 */
5531dc91 439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 440 cgrp = cgroup_parent(cgrp);
5531dc91
TH
441 if (!cgrp)
442 return NULL;
443 }
aec3dfcb
TH
444
445 return cgroup_css(cgrp, ss);
95109b62 446}
42809dd4 447
eeecbd19
TH
448/**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461{
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476out_unlock:
477 rcu_read_unlock();
478 return css;
479}
480
ddbcc7e8 481/* convenient tests for these bits */
54766d4a 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 483{
184faf32 484 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
485}
486
052c3f3a
TH
487static void cgroup_get(struct cgroup *cgrp)
488{
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491}
492
493static bool cgroup_tryget(struct cgroup *cgrp)
494{
495 return css_tryget(&cgrp->self);
496}
497
b4168640 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 499{
2bd59d48 500 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 501 struct cftype *cft = of_cft(of);
2bd59d48
TH
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
9d800df1 514 return &cgrp->self;
59f5296b 515}
b4168640 516EXPORT_SYMBOL_GPL(of_css);
59f5296b 517
e9685a03 518static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 519{
bd89aabc 520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
521}
522
1c6727af
TH
523/**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
aec3dfcb 529 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
530 */
531#define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
aec3dfcb
TH
538/**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546#define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
30159ec7 552/**
3ed80a62 553 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 554 * @ss: the iteration cursor
780cd8b3 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 556 */
780cd8b3 557#define for_each_subsys(ss, ssid) \
3ed80a62
TH
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 560
cb4a3167 561/**
b4e0eeaf 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 565 * @ss_mask: the bitmask
cb4a3167
AS
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 568 * @ss_mask is set.
cb4a3167 569 */
b4e0eeaf
TH
570#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 573 (ssid) = 0; \
b4e0eeaf
TH
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580#define while_each_subsys_mask() \
581 } \
582 } \
583} while (false)
cb4a3167 584
985ed670
TH
585/* iterate across the hierarchies */
586#define for_each_root(root) \
5549c497 587 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 588
f8f22e53
TH
589/* iterate over child cgrps, lock should be held throughout iteration */
590#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 592 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
593 cgroup_is_dead(child); })) \
594 ; \
595 else
7ae1bad9 596
ce3f1d9d
TH
597/* walk live descendants in preorder */
598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606/* walk live descendants in postorder */
607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
81a6a5cd 615static void cgroup_release_agent(struct work_struct *work);
bd89aabc 616static void check_for_release(struct cgroup *cgrp);
81a6a5cd 617
69d0206c
TH
618/*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
817929ec
PM
636};
637
172a2c06
TH
638/*
639 * The default css_set - used by init and its children prior to any
817929ec
PM
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
5024ae29 645struct css_set init_css_set = {
172a2c06
TH
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 653};
817929ec 654
172a2c06 655static int css_set_count = 1; /* 1 for init_css_set */
817929ec 656
0de0942d
TH
657/**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661static bool css_set_populated(struct css_set *cset)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666}
667
842b597e
TH
668/**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
0de0942d
TH
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
842b597e
TH
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
ad2ed2b3 699 check_for_release(cgrp);
6f60eade
TH
700 cgroup_file_notify(&cgrp->events_file);
701
d51f39b0 702 cgrp = cgroup_parent(cgrp);
842b597e
TH
703 } while (cgrp);
704}
705
0de0942d
TH
706/**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714static void css_set_update_populated(struct css_set *cset, bool populated)
715{
716 struct cgrp_cset_link *link;
717
f0d9a5f1 718 lockdep_assert_held(&css_set_lock);
0de0942d
TH
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722}
723
f6d7d049
TH
724/**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
ed27b9f7
TH
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
738 */
739static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742{
f0d9a5f1 743 lockdep_assert_held(&css_set_lock);
f6d7d049 744
20b454a6
TH
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
f6d7d049 748 if (from_cset) {
ed27b9f7
TH
749 struct css_task_iter *it, *pos;
750
f6d7d049 751 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
f6d7d049
TH
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
f6d7d049
TH
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785}
786
7717f7ba
PM
787/*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
472b1053 792#define CSS_SET_HASH_BITS 7
0ac801fe 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 794
0ac801fe 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 796{
0ac801fe 797 unsigned long key = 0UL;
30159ec7
TH
798 struct cgroup_subsys *ss;
799 int i;
472b1053 800
30159ec7 801 for_each_subsys(ss, i)
0ac801fe
LZ
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
472b1053 804
0ac801fe 805 return key;
472b1053
LZ
806}
807
a25eb52e 808static void put_css_set_locked(struct css_set *cset)
b4f48b63 809{
69d0206c 810 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
811 struct cgroup_subsys *ss;
812 int ssid;
5abb8855 813
f0d9a5f1 814 lockdep_assert_held(&css_set_lock);
89c5509b
TH
815
816 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 817 return;
81a6a5cd 818
53254f90
TH
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
2d8f243a 821 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
822 css_put(cset->subsys[ssid]);
823 }
5abb8855 824 hash_del(&cset->hlist);
2c6ab6d2
PM
825 css_set_count--;
826
69d0206c 827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
2ceb231b
TH
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
2c6ab6d2 832 kfree(link);
81a6a5cd 833 }
2c6ab6d2 834
5abb8855 835 kfree_rcu(cset, rcu_head);
b4f48b63
PM
836}
837
a25eb52e 838static void put_css_set(struct css_set *cset)
89c5509b
TH
839{
840 /*
841 * Ensure that the refcount doesn't hit zero while any readers
842 * can see it. Similar to atomic_dec_and_lock(), but for an
843 * rwlock
844 */
845 if (atomic_add_unless(&cset->refcount, -1, 1))
846 return;
847
f0d9a5f1 848 spin_lock_bh(&css_set_lock);
a25eb52e 849 put_css_set_locked(cset);
f0d9a5f1 850 spin_unlock_bh(&css_set_lock);
89c5509b
TH
851}
852
817929ec
PM
853/*
854 * refcounted get/put for css_set objects
855 */
5abb8855 856static inline void get_css_set(struct css_set *cset)
817929ec 857{
5abb8855 858 atomic_inc(&cset->refcount);
817929ec
PM
859}
860
b326f9d0 861/**
7717f7ba 862 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
7717f7ba
PM
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
867 *
6f4b7e63 868 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
870 */
5abb8855
TH
871static bool compare_css_sets(struct css_set *cset,
872 struct css_set *old_cset,
7717f7ba
PM
873 struct cgroup *new_cgrp,
874 struct cgroup_subsys_state *template[])
875{
876 struct list_head *l1, *l2;
877
aec3dfcb
TH
878 /*
879 * On the default hierarchy, there can be csets which are
880 * associated with the same set of cgroups but different csses.
881 * Let's first ensure that csses match.
882 */
883 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 884 return false;
7717f7ba
PM
885
886 /*
887 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
888 * different cgroups in hierarchies. As different cgroups may
889 * share the same effective css, this comparison is always
890 * necessary.
7717f7ba 891 */
69d0206c
TH
892 l1 = &cset->cgrp_links;
893 l2 = &old_cset->cgrp_links;
7717f7ba 894 while (1) {
69d0206c 895 struct cgrp_cset_link *link1, *link2;
5abb8855 896 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
897
898 l1 = l1->next;
899 l2 = l2->next;
900 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
901 if (l1 == &cset->cgrp_links) {
902 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
903 break;
904 } else {
69d0206c 905 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
906 }
907 /* Locate the cgroups associated with these links. */
69d0206c
TH
908 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
909 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
910 cgrp1 = link1->cgrp;
911 cgrp2 = link2->cgrp;
7717f7ba 912 /* Hierarchies should be linked in the same order. */
5abb8855 913 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
914
915 /*
916 * If this hierarchy is the hierarchy of the cgroup
917 * that's changing, then we need to check that this
918 * css_set points to the new cgroup; if it's any other
919 * hierarchy, then this css_set should point to the
920 * same cgroup as the old css_set.
921 */
5abb8855
TH
922 if (cgrp1->root == new_cgrp->root) {
923 if (cgrp1 != new_cgrp)
7717f7ba
PM
924 return false;
925 } else {
5abb8855 926 if (cgrp1 != cgrp2)
7717f7ba
PM
927 return false;
928 }
929 }
930 return true;
931}
932
b326f9d0
TH
933/**
934 * find_existing_css_set - init css array and find the matching css_set
935 * @old_cset: the css_set that we're using before the cgroup transition
936 * @cgrp: the cgroup that we're moving into
937 * @template: out param for the new set of csses, should be clear on entry
817929ec 938 */
5abb8855
TH
939static struct css_set *find_existing_css_set(struct css_set *old_cset,
940 struct cgroup *cgrp,
941 struct cgroup_subsys_state *template[])
b4f48b63 942{
3dd06ffa 943 struct cgroup_root *root = cgrp->root;
30159ec7 944 struct cgroup_subsys *ss;
5abb8855 945 struct css_set *cset;
0ac801fe 946 unsigned long key;
b326f9d0 947 int i;
817929ec 948
aae8aab4
BB
949 /*
950 * Build the set of subsystem state objects that we want to see in the
951 * new css_set. while subsystems can change globally, the entries here
952 * won't change, so no need for locking.
953 */
30159ec7 954 for_each_subsys(ss, i) {
f392e51c 955 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
956 /*
957 * @ss is in this hierarchy, so we want the
958 * effective css from @cgrp.
959 */
960 template[i] = cgroup_e_css(cgrp, ss);
817929ec 961 } else {
aec3dfcb
TH
962 /*
963 * @ss is not in this hierarchy, so we don't want
964 * to change the css.
965 */
5abb8855 966 template[i] = old_cset->subsys[i];
817929ec
PM
967 }
968 }
969
0ac801fe 970 key = css_set_hash(template);
5abb8855
TH
971 hash_for_each_possible(css_set_table, cset, hlist, key) {
972 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
973 continue;
974
975 /* This css_set matches what we need */
5abb8855 976 return cset;
472b1053 977 }
817929ec
PM
978
979 /* No existing cgroup group matched */
980 return NULL;
981}
982
69d0206c 983static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 984{
69d0206c 985 struct cgrp_cset_link *link, *tmp_link;
36553434 986
69d0206c
TH
987 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
988 list_del(&link->cset_link);
36553434
LZ
989 kfree(link);
990 }
991}
992
69d0206c
TH
993/**
994 * allocate_cgrp_cset_links - allocate cgrp_cset_links
995 * @count: the number of links to allocate
996 * @tmp_links: list_head the allocated links are put on
997 *
998 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
999 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1000 */
69d0206c 1001static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1002{
69d0206c 1003 struct cgrp_cset_link *link;
817929ec 1004 int i;
69d0206c
TH
1005
1006 INIT_LIST_HEAD(tmp_links);
1007
817929ec 1008 for (i = 0; i < count; i++) {
f4f4be2b 1009 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1010 if (!link) {
69d0206c 1011 free_cgrp_cset_links(tmp_links);
817929ec
PM
1012 return -ENOMEM;
1013 }
69d0206c 1014 list_add(&link->cset_link, tmp_links);
817929ec
PM
1015 }
1016 return 0;
1017}
1018
c12f65d4
LZ
1019/**
1020 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1021 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1022 * @cset: the css_set to be linked
c12f65d4
LZ
1023 * @cgrp: the destination cgroup
1024 */
69d0206c
TH
1025static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1026 struct cgroup *cgrp)
c12f65d4 1027{
69d0206c 1028 struct cgrp_cset_link *link;
c12f65d4 1029
69d0206c 1030 BUG_ON(list_empty(tmp_links));
6803c006
TH
1031
1032 if (cgroup_on_dfl(cgrp))
1033 cset->dfl_cgrp = cgrp;
1034
69d0206c
TH
1035 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1036 link->cset = cset;
7717f7ba 1037 link->cgrp = cgrp;
842b597e 1038
7717f7ba 1039 /*
389b9c1b
TH
1040 * Always add links to the tail of the lists so that the lists are
1041 * in choronological order.
7717f7ba 1042 */
389b9c1b 1043 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1044 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1045
1046 if (cgroup_parent(cgrp))
1047 cgroup_get(cgrp);
c12f65d4
LZ
1048}
1049
b326f9d0
TH
1050/**
1051 * find_css_set - return a new css_set with one cgroup updated
1052 * @old_cset: the baseline css_set
1053 * @cgrp: the cgroup to be updated
1054 *
1055 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1056 * substituted into the appropriate hierarchy.
817929ec 1057 */
5abb8855
TH
1058static struct css_set *find_css_set(struct css_set *old_cset,
1059 struct cgroup *cgrp)
817929ec 1060{
b326f9d0 1061 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1062 struct css_set *cset;
69d0206c
TH
1063 struct list_head tmp_links;
1064 struct cgrp_cset_link *link;
2d8f243a 1065 struct cgroup_subsys *ss;
0ac801fe 1066 unsigned long key;
2d8f243a 1067 int ssid;
472b1053 1068
b326f9d0
TH
1069 lockdep_assert_held(&cgroup_mutex);
1070
817929ec
PM
1071 /* First see if we already have a cgroup group that matches
1072 * the desired set */
f0d9a5f1 1073 spin_lock_bh(&css_set_lock);
5abb8855
TH
1074 cset = find_existing_css_set(old_cset, cgrp, template);
1075 if (cset)
1076 get_css_set(cset);
f0d9a5f1 1077 spin_unlock_bh(&css_set_lock);
817929ec 1078
5abb8855
TH
1079 if (cset)
1080 return cset;
817929ec 1081
f4f4be2b 1082 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1083 if (!cset)
817929ec
PM
1084 return NULL;
1085
69d0206c 1086 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1087 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1088 kfree(cset);
817929ec
PM
1089 return NULL;
1090 }
1091
5abb8855 1092 atomic_set(&cset->refcount, 1);
69d0206c 1093 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1094 INIT_LIST_HEAD(&cset->tasks);
c7561128 1095 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1096 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1097 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1098 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1099 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1100
1101 /* Copy the set of subsystem state objects generated in
1102 * find_existing_css_set() */
5abb8855 1103 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1104
f0d9a5f1 1105 spin_lock_bh(&css_set_lock);
817929ec 1106 /* Add reference counts and links from the new css_set. */
69d0206c 1107 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1108 struct cgroup *c = link->cgrp;
69d0206c 1109
7717f7ba
PM
1110 if (c->root == cgrp->root)
1111 c = cgrp;
69d0206c 1112 link_css_set(&tmp_links, cset, c);
7717f7ba 1113 }
817929ec 1114
69d0206c 1115 BUG_ON(!list_empty(&tmp_links));
817929ec 1116
817929ec 1117 css_set_count++;
472b1053 1118
2d8f243a 1119 /* Add @cset to the hash table */
5abb8855
TH
1120 key = css_set_hash(cset->subsys);
1121 hash_add(css_set_table, &cset->hlist, key);
472b1053 1122
53254f90
TH
1123 for_each_subsys(ss, ssid) {
1124 struct cgroup_subsys_state *css = cset->subsys[ssid];
1125
2d8f243a 1126 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1127 &css->cgroup->e_csets[ssid]);
1128 css_get(css);
1129 }
2d8f243a 1130
f0d9a5f1 1131 spin_unlock_bh(&css_set_lock);
817929ec 1132
5abb8855 1133 return cset;
b4f48b63
PM
1134}
1135
3dd06ffa 1136static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1137{
3dd06ffa 1138 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1139
3dd06ffa 1140 return root_cgrp->root;
2bd59d48
TH
1141}
1142
3dd06ffa 1143static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1144{
1145 int id;
1146
1147 lockdep_assert_held(&cgroup_mutex);
1148
985ed670 1149 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1150 if (id < 0)
1151 return id;
1152
1153 root->hierarchy_id = id;
1154 return 0;
1155}
1156
3dd06ffa 1157static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1158{
1159 lockdep_assert_held(&cgroup_mutex);
1160
1161 if (root->hierarchy_id) {
1162 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1163 root->hierarchy_id = 0;
1164 }
1165}
1166
3dd06ffa 1167static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1168{
1169 if (root) {
d0f702e6 1170 /* hierarchy ID should already have been released */
f2e85d57
TH
1171 WARN_ON_ONCE(root->hierarchy_id);
1172
1173 idr_destroy(&root->cgroup_idr);
1174 kfree(root);
1175 }
1176}
1177
3dd06ffa 1178static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1179{
3dd06ffa 1180 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1181 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1182
334c3679 1183 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1184
776f02fa 1185 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1186 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1187
f2e85d57 1188 /* Rebind all subsystems back to the default hierarchy */
334c3679 1189 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1190
7717f7ba 1191 /*
f2e85d57
TH
1192 * Release all the links from cset_links to this hierarchy's
1193 * root cgroup
7717f7ba 1194 */
f0d9a5f1 1195 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1196
1197 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1198 list_del(&link->cset_link);
1199 list_del(&link->cgrp_link);
1200 kfree(link);
1201 }
f0d9a5f1
TH
1202
1203 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1204
1205 if (!list_empty(&root->root_list)) {
1206 list_del(&root->root_list);
1207 cgroup_root_count--;
1208 }
1209
1210 cgroup_exit_root_id(root);
1211
1212 mutex_unlock(&cgroup_mutex);
f2e85d57 1213
2bd59d48 1214 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1215 cgroup_free_root(root);
1216}
1217
4f41fc59
SH
1218/*
1219 * look up cgroup associated with current task's cgroup namespace on the
1220 * specified hierarchy
1221 */
1222static struct cgroup *
1223current_cgns_cgroup_from_root(struct cgroup_root *root)
1224{
1225 struct cgroup *res = NULL;
1226 struct css_set *cset;
1227
1228 lockdep_assert_held(&css_set_lock);
1229
1230 rcu_read_lock();
1231
1232 cset = current->nsproxy->cgroup_ns->root_cset;
1233 if (cset == &init_css_set) {
1234 res = &root->cgrp;
1235 } else {
1236 struct cgrp_cset_link *link;
1237
1238 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1239 struct cgroup *c = link->cgrp;
1240
1241 if (c->root == root) {
1242 res = c;
1243 break;
1244 }
1245 }
1246 }
1247 rcu_read_unlock();
1248
1249 BUG_ON(!res);
1250 return res;
1251}
1252
ceb6a081
TH
1253/* look up cgroup associated with given css_set on the specified hierarchy */
1254static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1255 struct cgroup_root *root)
7717f7ba 1256{
7717f7ba
PM
1257 struct cgroup *res = NULL;
1258
96d365e0 1259 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1260 lockdep_assert_held(&css_set_lock);
96d365e0 1261
5abb8855 1262 if (cset == &init_css_set) {
3dd06ffa 1263 res = &root->cgrp;
7717f7ba 1264 } else {
69d0206c
TH
1265 struct cgrp_cset_link *link;
1266
1267 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1268 struct cgroup *c = link->cgrp;
69d0206c 1269
7717f7ba
PM
1270 if (c->root == root) {
1271 res = c;
1272 break;
1273 }
1274 }
1275 }
96d365e0 1276
7717f7ba
PM
1277 BUG_ON(!res);
1278 return res;
1279}
1280
ddbcc7e8 1281/*
ceb6a081 1282 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1283 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1284 */
1285static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1286 struct cgroup_root *root)
ceb6a081
TH
1287{
1288 /*
1289 * No need to lock the task - since we hold cgroup_mutex the
1290 * task can't change groups, so the only thing that can happen
1291 * is that it exits and its css is set back to init_css_set.
1292 */
1293 return cset_cgroup_from_root(task_css_set(task), root);
1294}
1295
ddbcc7e8 1296/*
ddbcc7e8
PM
1297 * A task must hold cgroup_mutex to modify cgroups.
1298 *
1299 * Any task can increment and decrement the count field without lock.
1300 * So in general, code holding cgroup_mutex can't rely on the count
1301 * field not changing. However, if the count goes to zero, then only
956db3ca 1302 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1303 * means that no tasks are currently attached, therefore there is no
1304 * way a task attached to that cgroup can fork (the other way to
1305 * increment the count). So code holding cgroup_mutex can safely
1306 * assume that if the count is zero, it will stay zero. Similarly, if
1307 * a task holds cgroup_mutex on a cgroup with zero count, it
1308 * knows that the cgroup won't be removed, as cgroup_rmdir()
1309 * needs that mutex.
1310 *
ddbcc7e8
PM
1311 * A cgroup can only be deleted if both its 'count' of using tasks
1312 * is zero, and its list of 'children' cgroups is empty. Since all
1313 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1314 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1315 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1316 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1317 *
1318 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1319 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1320 */
1321
2bd59d48 1322static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1323static const struct file_operations proc_cgroupstats_operations;
a424316c 1324
8d7e6fb0
TH
1325static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1326 char *buf)
ddbcc7e8 1327{
3e1d2eed
TH
1328 struct cgroup_subsys *ss = cft->ss;
1329
8d7e6fb0
TH
1330 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1331 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1332 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1333 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1334 cft->name);
8d7e6fb0
TH
1335 else
1336 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1337 return buf;
ddbcc7e8
PM
1338}
1339
f2e85d57
TH
1340/**
1341 * cgroup_file_mode - deduce file mode of a control file
1342 * @cft: the control file in question
1343 *
7dbdb199 1344 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1345 */
1346static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1347{
f2e85d57 1348 umode_t mode = 0;
65dff759 1349
f2e85d57
TH
1350 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1351 mode |= S_IRUGO;
1352
7dbdb199
TH
1353 if (cft->write_u64 || cft->write_s64 || cft->write) {
1354 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1355 mode |= S_IWUGO;
1356 else
1357 mode |= S_IWUSR;
1358 }
f2e85d57
TH
1359
1360 return mode;
65dff759
LZ
1361}
1362
af0ba678 1363/**
8699b776 1364 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1365 * @subtree_control: the new subtree_control mask to consider
5ced2518 1366 * @this_ss_mask: available subsystems
af0ba678
TH
1367 *
1368 * On the default hierarchy, a subsystem may request other subsystems to be
1369 * enabled together through its ->depends_on mask. In such cases, more
1370 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1371 *
0f060deb 1372 * This function calculates which subsystems need to be enabled if
5ced2518 1373 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1374 */
5ced2518 1375static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1376{
6e5c8307 1377 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1378 struct cgroup_subsys *ss;
1379 int ssid;
1380
1381 lockdep_assert_held(&cgroup_mutex);
1382
f6d635ad
TH
1383 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1384
af0ba678 1385 while (true) {
6e5c8307 1386 u16 new_ss_mask = cur_ss_mask;
af0ba678 1387
b4e0eeaf 1388 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1389 new_ss_mask |= ss->depends_on;
b4e0eeaf 1390 } while_each_subsys_mask();
af0ba678
TH
1391
1392 /*
1393 * Mask out subsystems which aren't available. This can
1394 * happen only if some depended-upon subsystems were bound
1395 * to non-default hierarchies.
1396 */
5ced2518 1397 new_ss_mask &= this_ss_mask;
af0ba678
TH
1398
1399 if (new_ss_mask == cur_ss_mask)
1400 break;
1401 cur_ss_mask = new_ss_mask;
1402 }
1403
0f060deb
TH
1404 return cur_ss_mask;
1405}
1406
a9746d8d
TH
1407/**
1408 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1409 * @kn: the kernfs_node being serviced
1410 *
1411 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1412 * the method finishes if locking succeeded. Note that once this function
1413 * returns the cgroup returned by cgroup_kn_lock_live() may become
1414 * inaccessible any time. If the caller intends to continue to access the
1415 * cgroup, it should pin it before invoking this function.
1416 */
1417static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1418{
a9746d8d
TH
1419 struct cgroup *cgrp;
1420
1421 if (kernfs_type(kn) == KERNFS_DIR)
1422 cgrp = kn->priv;
1423 else
1424 cgrp = kn->parent->priv;
1425
1426 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1427
1428 kernfs_unbreak_active_protection(kn);
1429 cgroup_put(cgrp);
ddbcc7e8
PM
1430}
1431
a9746d8d
TH
1432/**
1433 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1434 * @kn: the kernfs_node being serviced
945ba199 1435 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1436 *
1437 * This helper is to be used by a cgroup kernfs method currently servicing
1438 * @kn. It breaks the active protection, performs cgroup locking and
1439 * verifies that the associated cgroup is alive. Returns the cgroup if
1440 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1441 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1442 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1443 *
1444 * Any cgroup kernfs method implementation which requires locking the
1445 * associated cgroup should use this helper. It avoids nesting cgroup
1446 * locking under kernfs active protection and allows all kernfs operations
1447 * including self-removal.
1448 */
945ba199
TH
1449static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1450 bool drain_offline)
05ef1d7c 1451{
a9746d8d
TH
1452 struct cgroup *cgrp;
1453
1454 if (kernfs_type(kn) == KERNFS_DIR)
1455 cgrp = kn->priv;
1456 else
1457 cgrp = kn->parent->priv;
05ef1d7c 1458
2739d3cc 1459 /*
01f6474c 1460 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1461 * active_ref. cgroup liveliness check alone provides enough
1462 * protection against removal. Ensure @cgrp stays accessible and
1463 * break the active_ref protection.
2739d3cc 1464 */
aa32362f
LZ
1465 if (!cgroup_tryget(cgrp))
1466 return NULL;
a9746d8d
TH
1467 kernfs_break_active_protection(kn);
1468
945ba199
TH
1469 if (drain_offline)
1470 cgroup_lock_and_drain_offline(cgrp);
1471 else
1472 mutex_lock(&cgroup_mutex);
05ef1d7c 1473
a9746d8d
TH
1474 if (!cgroup_is_dead(cgrp))
1475 return cgrp;
1476
1477 cgroup_kn_unlock(kn);
1478 return NULL;
ddbcc7e8 1479}
05ef1d7c 1480
2739d3cc 1481static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1482{
2bd59d48 1483 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1484
01f6474c 1485 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1486
1487 if (cft->file_offset) {
1488 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1489 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1490
1491 spin_lock_irq(&cgroup_file_kn_lock);
1492 cfile->kn = NULL;
1493 spin_unlock_irq(&cgroup_file_kn_lock);
1494 }
1495
2bd59d48 1496 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1497}
1498
13af07df 1499/**
4df8dc90
TH
1500 * css_clear_dir - remove subsys files in a cgroup directory
1501 * @css: taget css
13af07df 1502 */
334c3679 1503static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1504{
334c3679 1505 struct cgroup *cgrp = css->cgroup;
4df8dc90 1506 struct cftype *cfts;
05ef1d7c 1507
88cb04b9
TH
1508 if (!(css->flags & CSS_VISIBLE))
1509 return;
1510
1511 css->flags &= ~CSS_VISIBLE;
1512
4df8dc90
TH
1513 list_for_each_entry(cfts, &css->ss->cfts, node)
1514 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1515}
1516
ccdca218 1517/**
4df8dc90
TH
1518 * css_populate_dir - create subsys files in a cgroup directory
1519 * @css: target css
ccdca218
TH
1520 *
1521 * On failure, no file is added.
1522 */
334c3679 1523static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1524{
334c3679 1525 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1526 struct cftype *cfts, *failed_cfts;
1527 int ret;
ccdca218 1528
03970d3c 1529 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1530 return 0;
1531
4df8dc90
TH
1532 if (!css->ss) {
1533 if (cgroup_on_dfl(cgrp))
1534 cfts = cgroup_dfl_base_files;
1535 else
1536 cfts = cgroup_legacy_base_files;
ccdca218 1537
4df8dc90
TH
1538 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1539 }
ccdca218 1540
4df8dc90
TH
1541 list_for_each_entry(cfts, &css->ss->cfts, node) {
1542 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1543 if (ret < 0) {
1544 failed_cfts = cfts;
1545 goto err;
ccdca218
TH
1546 }
1547 }
88cb04b9
TH
1548
1549 css->flags |= CSS_VISIBLE;
1550
ccdca218
TH
1551 return 0;
1552err:
4df8dc90
TH
1553 list_for_each_entry(cfts, &css->ss->cfts, node) {
1554 if (cfts == failed_cfts)
1555 break;
1556 cgroup_addrm_files(css, cgrp, cfts, false);
1557 }
ccdca218
TH
1558 return ret;
1559}
1560
6e5c8307 1561static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1562{
1ada4838 1563 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1564 struct cgroup_subsys *ss;
2d8f243a 1565 int ssid, i, ret;
ddbcc7e8 1566
ace2bee8 1567 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1568
b4e0eeaf 1569 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1570 /*
1571 * If @ss has non-root csses attached to it, can't move.
1572 * If @ss is an implicit controller, it is exempt from this
1573 * rule and can be stolen.
1574 */
1575 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1576 !ss->implicit_on_dfl)
3ed80a62 1577 return -EBUSY;
1d5be6b2 1578
5df36032 1579 /* can't move between two non-dummy roots either */
7fd8c565 1580 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1581 return -EBUSY;
b4e0eeaf 1582 } while_each_subsys_mask();
ddbcc7e8 1583
b4e0eeaf 1584 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1585 struct cgroup_root *src_root = ss->root;
1586 struct cgroup *scgrp = &src_root->cgrp;
1587 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1588 struct css_set *cset;
a8a648c4 1589
1ada4838 1590 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1591
334c3679
TH
1592 /* disable from the source */
1593 src_root->subsys_mask &= ~(1 << ssid);
1594 WARN_ON(cgroup_apply_control(scgrp));
1595 cgroup_finalize_control(scgrp, 0);
4df8dc90 1596
334c3679 1597 /* rebind */
1ada4838
TH
1598 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1599 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1600 ss->root = dst_root;
1ada4838 1601 css->cgroup = dcgrp;
73e80ed8 1602
f0d9a5f1 1603 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1604 hash_for_each(css_set_table, i, cset, hlist)
1605 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1606 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1607 spin_unlock_bh(&css_set_lock);
2d8f243a 1608
bd53d617 1609 /* default hierarchy doesn't enable controllers by default */
f392e51c 1610 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1611 if (dst_root == &cgrp_dfl_root) {
1612 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1613 } else {
1ada4838 1614 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1615 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1616 }
a8a648c4 1617
334c3679
TH
1618 ret = cgroup_apply_control(dcgrp);
1619 if (ret)
1620 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1621 ss->name, ret);
1622
5df36032
TH
1623 if (ss->bind)
1624 ss->bind(css);
b4e0eeaf 1625 } while_each_subsys_mask();
ddbcc7e8 1626
1ada4838 1627 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1628 return 0;
1629}
1630
4f41fc59
SH
1631static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1632 struct kernfs_root *kf_root)
1633{
09be4c82 1634 int len = 0;
4f41fc59
SH
1635 char *buf = NULL;
1636 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1637 struct cgroup *ns_cgroup;
1638
1639 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1640 if (!buf)
1641 return -ENOMEM;
1642
1643 spin_lock_bh(&css_set_lock);
1644 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1645 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1646 spin_unlock_bh(&css_set_lock);
1647
1648 if (len >= PATH_MAX)
1649 len = -ERANGE;
1650 else if (len > 0) {
1651 seq_escape(sf, buf, " \t\n\\");
1652 len = 0;
1653 }
1654 kfree(buf);
1655 return len;
1656}
1657
2bd59d48
TH
1658static int cgroup_show_options(struct seq_file *seq,
1659 struct kernfs_root *kf_root)
ddbcc7e8 1660{
3dd06ffa 1661 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1662 struct cgroup_subsys *ss;
b85d2040 1663 int ssid;
ddbcc7e8 1664
d98817d4
TH
1665 if (root != &cgrp_dfl_root)
1666 for_each_subsys(ss, ssid)
1667 if (root->subsys_mask & (1 << ssid))
61e57c0c 1668 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1669 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1670 seq_puts(seq, ",noprefix");
93438629 1671 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1672 seq_puts(seq, ",xattr");
69e943b7
TH
1673
1674 spin_lock(&release_agent_path_lock);
81a6a5cd 1675 if (strlen(root->release_agent_path))
a068acf2
KC
1676 seq_show_option(seq, "release_agent",
1677 root->release_agent_path);
69e943b7
TH
1678 spin_unlock(&release_agent_path_lock);
1679
3dd06ffa 1680 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1681 seq_puts(seq, ",clone_children");
c6d57f33 1682 if (strlen(root->name))
a068acf2 1683 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1684 return 0;
1685}
1686
1687struct cgroup_sb_opts {
6e5c8307 1688 u16 subsys_mask;
69dfa00c 1689 unsigned int flags;
81a6a5cd 1690 char *release_agent;
2260e7fc 1691 bool cpuset_clone_children;
c6d57f33 1692 char *name;
2c6ab6d2
PM
1693 /* User explicitly requested empty subsystem */
1694 bool none;
ddbcc7e8
PM
1695};
1696
cf5d5941 1697static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1698{
32a8cf23
DL
1699 char *token, *o = data;
1700 bool all_ss = false, one_ss = false;
6e5c8307 1701 u16 mask = U16_MAX;
30159ec7 1702 struct cgroup_subsys *ss;
7b9a6ba5 1703 int nr_opts = 0;
30159ec7 1704 int i;
f9ab5b5b
LZ
1705
1706#ifdef CONFIG_CPUSETS
6e5c8307 1707 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1708#endif
ddbcc7e8 1709
c6d57f33 1710 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1711
1712 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1713 nr_opts++;
1714
ddbcc7e8
PM
1715 if (!*token)
1716 return -EINVAL;
32a8cf23 1717 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1718 /* Explicitly have no subsystems */
1719 opts->none = true;
32a8cf23
DL
1720 continue;
1721 }
1722 if (!strcmp(token, "all")) {
1723 /* Mutually exclusive option 'all' + subsystem name */
1724 if (one_ss)
1725 return -EINVAL;
1726 all_ss = true;
1727 continue;
1728 }
1729 if (!strcmp(token, "noprefix")) {
93438629 1730 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1731 continue;
1732 }
1733 if (!strcmp(token, "clone_children")) {
2260e7fc 1734 opts->cpuset_clone_children = true;
32a8cf23
DL
1735 continue;
1736 }
03b1cde6 1737 if (!strcmp(token, "xattr")) {
93438629 1738 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1739 continue;
1740 }
32a8cf23 1741 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1742 /* Specifying two release agents is forbidden */
1743 if (opts->release_agent)
1744 return -EINVAL;
c6d57f33 1745 opts->release_agent =
e400c285 1746 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1747 if (!opts->release_agent)
1748 return -ENOMEM;
32a8cf23
DL
1749 continue;
1750 }
1751 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1752 const char *name = token + 5;
1753 /* Can't specify an empty name */
1754 if (!strlen(name))
1755 return -EINVAL;
1756 /* Must match [\w.-]+ */
1757 for (i = 0; i < strlen(name); i++) {
1758 char c = name[i];
1759 if (isalnum(c))
1760 continue;
1761 if ((c == '.') || (c == '-') || (c == '_'))
1762 continue;
1763 return -EINVAL;
1764 }
1765 /* Specifying two names is forbidden */
1766 if (opts->name)
1767 return -EINVAL;
1768 opts->name = kstrndup(name,
e400c285 1769 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1770 GFP_KERNEL);
1771 if (!opts->name)
1772 return -ENOMEM;
32a8cf23
DL
1773
1774 continue;
1775 }
1776
30159ec7 1777 for_each_subsys(ss, i) {
3e1d2eed 1778 if (strcmp(token, ss->legacy_name))
32a8cf23 1779 continue;
fc5ed1e9 1780 if (!cgroup_ssid_enabled(i))
32a8cf23 1781 continue;
223ffb29
JW
1782 if (cgroup_ssid_no_v1(i))
1783 continue;
32a8cf23
DL
1784
1785 /* Mutually exclusive option 'all' + subsystem name */
1786 if (all_ss)
1787 return -EINVAL;
69dfa00c 1788 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1789 one_ss = true;
1790
1791 break;
1792 }
1793 if (i == CGROUP_SUBSYS_COUNT)
1794 return -ENOENT;
1795 }
1796
7b9a6ba5
TH
1797 /*
1798 * If the 'all' option was specified select all the subsystems,
1799 * otherwise if 'none', 'name=' and a subsystem name options were
1800 * not specified, let's default to 'all'
1801 */
1802 if (all_ss || (!one_ss && !opts->none && !opts->name))
1803 for_each_subsys(ss, i)
223ffb29 1804 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1805 opts->subsys_mask |= (1 << i);
1806
1807 /*
1808 * We either have to specify by name or by subsystems. (So all
1809 * empty hierarchies must have a name).
1810 */
1811 if (!opts->subsys_mask && !opts->name)
1812 return -EINVAL;
1813
f9ab5b5b
LZ
1814 /*
1815 * Option noprefix was introduced just for backward compatibility
1816 * with the old cpuset, so we allow noprefix only if mounting just
1817 * the cpuset subsystem.
1818 */
93438629 1819 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1820 return -EINVAL;
1821
2c6ab6d2 1822 /* Can't specify "none" and some subsystems */
a1a71b45 1823 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1824 return -EINVAL;
1825
ddbcc7e8
PM
1826 return 0;
1827}
1828
2bd59d48 1829static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1830{
1831 int ret = 0;
3dd06ffa 1832 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1833 struct cgroup_sb_opts opts;
6e5c8307 1834 u16 added_mask, removed_mask;
ddbcc7e8 1835
aa6ec29b
TH
1836 if (root == &cgrp_dfl_root) {
1837 pr_err("remount is not allowed\n");
873fe09e
TH
1838 return -EINVAL;
1839 }
1840
334c3679 1841 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1842
1843 /* See what subsystems are wanted */
1844 ret = parse_cgroupfs_options(data, &opts);
1845 if (ret)
1846 goto out_unlock;
1847
f392e51c 1848 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1849 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1850 task_tgid_nr(current), current->comm);
8b5a5a9d 1851
f392e51c
TH
1852 added_mask = opts.subsys_mask & ~root->subsys_mask;
1853 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1854
cf5d5941 1855 /* Don't allow flags or name to change at remount */
7450e90b 1856 if ((opts.flags ^ root->flags) ||
cf5d5941 1857 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1858 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1859 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1860 ret = -EINVAL;
1861 goto out_unlock;
1862 }
1863
f172e67c 1864 /* remounting is not allowed for populated hierarchies */
d5c419b6 1865 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1866 ret = -EBUSY;
0670e08b 1867 goto out_unlock;
cf5d5941 1868 }
ddbcc7e8 1869
5df36032 1870 ret = rebind_subsystems(root, added_mask);
3126121f 1871 if (ret)
0670e08b 1872 goto out_unlock;
ddbcc7e8 1873
334c3679 1874 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1875
69e943b7
TH
1876 if (opts.release_agent) {
1877 spin_lock(&release_agent_path_lock);
81a6a5cd 1878 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1879 spin_unlock(&release_agent_path_lock);
1880 }
ddbcc7e8 1881 out_unlock:
66bdc9cf 1882 kfree(opts.release_agent);
c6d57f33 1883 kfree(opts.name);
ddbcc7e8 1884 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1885 return ret;
1886}
1887
afeb0f9f
TH
1888/*
1889 * To reduce the fork() overhead for systems that are not actually using
1890 * their cgroups capability, we don't maintain the lists running through
1891 * each css_set to its tasks until we see the list actually used - in other
1892 * words after the first mount.
1893 */
1894static bool use_task_css_set_links __read_mostly;
1895
1896static void cgroup_enable_task_cg_lists(void)
1897{
1898 struct task_struct *p, *g;
1899
f0d9a5f1 1900 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1901
1902 if (use_task_css_set_links)
1903 goto out_unlock;
1904
1905 use_task_css_set_links = true;
1906
1907 /*
1908 * We need tasklist_lock because RCU is not safe against
1909 * while_each_thread(). Besides, a forking task that has passed
1910 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1911 * is not guaranteed to have its child immediately visible in the
1912 * tasklist if we walk through it with RCU.
1913 */
1914 read_lock(&tasklist_lock);
1915 do_each_thread(g, p) {
afeb0f9f
TH
1916 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1917 task_css_set(p) != &init_css_set);
1918
1919 /*
1920 * We should check if the process is exiting, otherwise
1921 * it will race with cgroup_exit() in that the list
1922 * entry won't be deleted though the process has exited.
f153ad11
TH
1923 * Do it while holding siglock so that we don't end up
1924 * racing against cgroup_exit().
afeb0f9f 1925 */
f153ad11 1926 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1927 if (!(p->flags & PF_EXITING)) {
1928 struct css_set *cset = task_css_set(p);
1929
0de0942d
TH
1930 if (!css_set_populated(cset))
1931 css_set_update_populated(cset, true);
389b9c1b 1932 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1933 get_css_set(cset);
1934 }
f153ad11 1935 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1936 } while_each_thread(g, p);
1937 read_unlock(&tasklist_lock);
1938out_unlock:
f0d9a5f1 1939 spin_unlock_bh(&css_set_lock);
afeb0f9f 1940}
ddbcc7e8 1941
cc31edce
PM
1942static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943{
2d8f243a
TH
1944 struct cgroup_subsys *ss;
1945 int ssid;
1946
d5c419b6
TH
1947 INIT_LIST_HEAD(&cgrp->self.sibling);
1948 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1949 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1950 INIT_LIST_HEAD(&cgrp->pidlists);
1951 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1952 cgrp->self.cgroup = cgrp;
184faf32 1953 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1954
1955 for_each_subsys(ss, ssid)
1956 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1957
1958 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1959 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1960}
c6d57f33 1961
3dd06ffa 1962static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1963 struct cgroup_sb_opts *opts)
ddbcc7e8 1964{
3dd06ffa 1965 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1966
ddbcc7e8 1967 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1968 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1969 cgrp->root = root;
cc31edce 1970 init_cgroup_housekeeping(cgrp);
4e96ee8e 1971 idr_init(&root->cgroup_idr);
c6d57f33 1972
c6d57f33
PM
1973 root->flags = opts->flags;
1974 if (opts->release_agent)
1975 strcpy(root->release_agent_path, opts->release_agent);
1976 if (opts->name)
1977 strcpy(root->name, opts->name);
2260e7fc 1978 if (opts->cpuset_clone_children)
3dd06ffa 1979 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1980}
1981
6e5c8307 1982static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1983{
d427dfeb 1984 LIST_HEAD(tmp_links);
3dd06ffa 1985 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1986 struct css_set *cset;
d427dfeb 1987 int i, ret;
2c6ab6d2 1988
d427dfeb 1989 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1990
cf780b7d 1991 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1992 if (ret < 0)
2bd59d48 1993 goto out;
d427dfeb 1994 root_cgrp->id = ret;
b11cfb58 1995 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1996
2aad2a86
TH
1997 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1998 GFP_KERNEL);
9d755d33
TH
1999 if (ret)
2000 goto out;
2001
d427dfeb 2002 /*
f0d9a5f1 2003 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2004 * but that's OK - it can only be increased by someone holding
04313591
TH
2005 * cgroup_lock, and that's us. Later rebinding may disable
2006 * controllers on the default hierarchy and thus create new csets,
2007 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2008 */
04313591 2009 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2010 if (ret)
9d755d33 2011 goto cancel_ref;
ddbcc7e8 2012
985ed670 2013 ret = cgroup_init_root_id(root);
ddbcc7e8 2014 if (ret)
9d755d33 2015 goto cancel_ref;
ddbcc7e8 2016
2bd59d48
TH
2017 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2018 KERNFS_ROOT_CREATE_DEACTIVATED,
2019 root_cgrp);
2020 if (IS_ERR(root->kf_root)) {
2021 ret = PTR_ERR(root->kf_root);
2022 goto exit_root_id;
2023 }
2024 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2025
334c3679 2026 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2027 if (ret)
2bd59d48 2028 goto destroy_root;
ddbcc7e8 2029
5df36032 2030 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2031 if (ret)
2bd59d48 2032 goto destroy_root;
ddbcc7e8 2033
d427dfeb
TH
2034 /*
2035 * There must be no failure case after here, since rebinding takes
2036 * care of subsystems' refcounts, which are explicitly dropped in
2037 * the failure exit path.
2038 */
2039 list_add(&root->root_list, &cgroup_roots);
2040 cgroup_root_count++;
0df6a63f 2041
d427dfeb 2042 /*
3dd06ffa 2043 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2044 * objects.
2045 */
f0d9a5f1 2046 spin_lock_bh(&css_set_lock);
0de0942d 2047 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2048 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2049 if (css_set_populated(cset))
2050 cgroup_update_populated(root_cgrp, true);
2051 }
f0d9a5f1 2052 spin_unlock_bh(&css_set_lock);
ddbcc7e8 2053
d5c419b6 2054 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2055 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2056
2bd59d48 2057 kernfs_activate(root_cgrp->kn);
d427dfeb 2058 ret = 0;
2bd59d48 2059 goto out;
d427dfeb 2060
2bd59d48
TH
2061destroy_root:
2062 kernfs_destroy_root(root->kf_root);
2063 root->kf_root = NULL;
2064exit_root_id:
d427dfeb 2065 cgroup_exit_root_id(root);
9d755d33 2066cancel_ref:
9a1049da 2067 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2068out:
d427dfeb
TH
2069 free_cgrp_cset_links(&tmp_links);
2070 return ret;
ddbcc7e8
PM
2071}
2072
f7e83571 2073static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2074 int flags, const char *unused_dev_name,
f7e83571 2075 void *data)
ddbcc7e8 2076{
67e9c74b 2077 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2078 struct super_block *pinned_sb = NULL;
ed82571b 2079 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2080 struct cgroup_subsys *ss;
3dd06ffa 2081 struct cgroup_root *root;
ddbcc7e8 2082 struct cgroup_sb_opts opts;
2bd59d48 2083 struct dentry *dentry;
8e30e2b8 2084 int ret;
970317aa 2085 int i;
c6b3d5bc 2086 bool new_sb;
ddbcc7e8 2087
ed82571b
SH
2088 get_cgroup_ns(ns);
2089
2090 /* Check if the caller has permission to mount. */
2091 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2092 put_cgroup_ns(ns);
2093 return ERR_PTR(-EPERM);
2094 }
2095
56fde9e0
TH
2096 /*
2097 * The first time anyone tries to mount a cgroup, enable the list
2098 * linking each css_set to its tasks and fix up all existing tasks.
2099 */
2100 if (!use_task_css_set_links)
2101 cgroup_enable_task_cg_lists();
e37a06f1 2102
67e9c74b
TH
2103 if (is_v2) {
2104 if (data) {
2105 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2106 put_cgroup_ns(ns);
67e9c74b
TH
2107 return ERR_PTR(-EINVAL);
2108 }
a7165264 2109 cgrp_dfl_visible = true;
67e9c74b
TH
2110 root = &cgrp_dfl_root;
2111 cgroup_get(&root->cgrp);
2112 goto out_mount;
2113 }
2114
334c3679 2115 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2116
2117 /* First find the desired set of subsystems */
ddbcc7e8 2118 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2119 if (ret)
8e30e2b8 2120 goto out_unlock;
a015edd2 2121
970317aa
LZ
2122 /*
2123 * Destruction of cgroup root is asynchronous, so subsystems may
2124 * still be dying after the previous unmount. Let's drain the
2125 * dying subsystems. We just need to ensure that the ones
2126 * unmounted previously finish dying and don't care about new ones
2127 * starting. Testing ref liveliness is good enough.
2128 */
2129 for_each_subsys(ss, i) {
2130 if (!(opts.subsys_mask & (1 << i)) ||
2131 ss->root == &cgrp_dfl_root)
2132 continue;
2133
2134 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2135 mutex_unlock(&cgroup_mutex);
2136 msleep(10);
2137 ret = restart_syscall();
2138 goto out_free;
2139 }
2140 cgroup_put(&ss->root->cgrp);
2141 }
2142
985ed670 2143 for_each_root(root) {
2bd59d48 2144 bool name_match = false;
3126121f 2145
3dd06ffa 2146 if (root == &cgrp_dfl_root)
985ed670 2147 continue;
3126121f 2148
cf5d5941 2149 /*
2bd59d48
TH
2150 * If we asked for a name then it must match. Also, if
2151 * name matches but sybsys_mask doesn't, we should fail.
2152 * Remember whether name matched.
cf5d5941 2153 */
2bd59d48
TH
2154 if (opts.name) {
2155 if (strcmp(opts.name, root->name))
2156 continue;
2157 name_match = true;
2158 }
ddbcc7e8 2159
c6d57f33 2160 /*
2bd59d48
TH
2161 * If we asked for subsystems (or explicitly for no
2162 * subsystems) then they must match.
c6d57f33 2163 */
2bd59d48 2164 if ((opts.subsys_mask || opts.none) &&
f392e51c 2165 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2166 if (!name_match)
2167 continue;
2168 ret = -EBUSY;
2169 goto out_unlock;
2170 }
873fe09e 2171
7b9a6ba5
TH
2172 if (root->flags ^ opts.flags)
2173 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2174
776f02fa 2175 /*
3a32bd72
LZ
2176 * We want to reuse @root whose lifetime is governed by its
2177 * ->cgrp. Let's check whether @root is alive and keep it
2178 * that way. As cgroup_kill_sb() can happen anytime, we
2179 * want to block it by pinning the sb so that @root doesn't
2180 * get killed before mount is complete.
2181 *
2182 * With the sb pinned, tryget_live can reliably indicate
2183 * whether @root can be reused. If it's being killed,
2184 * drain it. We can use wait_queue for the wait but this
2185 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2186 */
3a32bd72
LZ
2187 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2188 if (IS_ERR(pinned_sb) ||
2189 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2190 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2191 if (!IS_ERR_OR_NULL(pinned_sb))
2192 deactivate_super(pinned_sb);
776f02fa 2193 msleep(10);
a015edd2
TH
2194 ret = restart_syscall();
2195 goto out_free;
776f02fa 2196 }
ddbcc7e8 2197
776f02fa 2198 ret = 0;
2bd59d48 2199 goto out_unlock;
ddbcc7e8 2200 }
ddbcc7e8 2201
817929ec 2202 /*
172a2c06
TH
2203 * No such thing, create a new one. name= matching without subsys
2204 * specification is allowed for already existing hierarchies but we
2205 * can't create new one without subsys specification.
817929ec 2206 */
172a2c06
TH
2207 if (!opts.subsys_mask && !opts.none) {
2208 ret = -EINVAL;
2209 goto out_unlock;
817929ec 2210 }
817929ec 2211
ed82571b
SH
2212 /*
2213 * We know this subsystem has not yet been bound. Users in a non-init
2214 * user namespace may only mount hierarchies with no bound subsystems,
2215 * i.e. 'none,name=user1'
2216 */
2217 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2218 ret = -EPERM;
2219 goto out_unlock;
2220 }
2221
172a2c06
TH
2222 root = kzalloc(sizeof(*root), GFP_KERNEL);
2223 if (!root) {
2224 ret = -ENOMEM;
2bd59d48 2225 goto out_unlock;
839ec545 2226 }
e5f6a860 2227
172a2c06
TH
2228 init_cgroup_root(root, &opts);
2229
35585573 2230 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2231 if (ret)
2232 cgroup_free_root(root);
fa3ca07e 2233
8e30e2b8 2234out_unlock:
ddbcc7e8 2235 mutex_unlock(&cgroup_mutex);
a015edd2 2236out_free:
c6d57f33
PM
2237 kfree(opts.release_agent);
2238 kfree(opts.name);
03b1cde6 2239
ed82571b
SH
2240 if (ret) {
2241 put_cgroup_ns(ns);
8e30e2b8 2242 return ERR_PTR(ret);
ed82571b 2243 }
67e9c74b 2244out_mount:
c9482a5b 2245 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2246 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2247 &new_sb);
ed82571b
SH
2248
2249 /*
2250 * In non-init cgroup namespace, instead of root cgroup's
2251 * dentry, we return the dentry corresponding to the
2252 * cgroupns->root_cgrp.
2253 */
2254 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2255 struct dentry *nsdentry;
2256 struct cgroup *cgrp;
2257
2258 mutex_lock(&cgroup_mutex);
2259 spin_lock_bh(&css_set_lock);
2260
2261 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2262
2263 spin_unlock_bh(&css_set_lock);
2264 mutex_unlock(&cgroup_mutex);
2265
2266 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2267 dput(dentry);
2268 dentry = nsdentry;
2269 }
2270
c6b3d5bc 2271 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2272 cgroup_put(&root->cgrp);
3a32bd72
LZ
2273
2274 /*
2275 * If @pinned_sb, we're reusing an existing root and holding an
2276 * extra ref on its sb. Mount is complete. Put the extra ref.
2277 */
2278 if (pinned_sb) {
2279 WARN_ON(new_sb);
2280 deactivate_super(pinned_sb);
2281 }
2282
ed82571b 2283 put_cgroup_ns(ns);
2bd59d48
TH
2284 return dentry;
2285}
2286
2287static void cgroup_kill_sb(struct super_block *sb)
2288{
2289 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2290 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2291
9d755d33
TH
2292 /*
2293 * If @root doesn't have any mounts or children, start killing it.
2294 * This prevents new mounts by disabling percpu_ref_tryget_live().
2295 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2296 *
2297 * And don't kill the default root.
9d755d33 2298 */
3c606d35 2299 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2300 root == &cgrp_dfl_root)
9d755d33
TH
2301 cgroup_put(&root->cgrp);
2302 else
2303 percpu_ref_kill(&root->cgrp.self.refcnt);
2304
2bd59d48 2305 kernfs_kill_sb(sb);
ddbcc7e8
PM
2306}
2307
2308static struct file_system_type cgroup_fs_type = {
2309 .name = "cgroup",
f7e83571 2310 .mount = cgroup_mount,
ddbcc7e8 2311 .kill_sb = cgroup_kill_sb,
1c53753e 2312 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2313};
2314
67e9c74b
TH
2315static struct file_system_type cgroup2_fs_type = {
2316 .name = "cgroup2",
2317 .mount = cgroup_mount,
2318 .kill_sb = cgroup_kill_sb,
1c53753e 2319 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2320};
2321
a79a908f
AK
2322static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2323 struct cgroup_namespace *ns)
2324{
2325 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2326 int ret;
2327
2328 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2329 if (ret < 0 || ret >= buflen)
2330 return NULL;
2331 return buf;
2332}
2333
2334char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2335 struct cgroup_namespace *ns)
2336{
2337 char *ret;
2338
2339 mutex_lock(&cgroup_mutex);
2340 spin_lock_bh(&css_set_lock);
2341
2342 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2343
2344 spin_unlock_bh(&css_set_lock);
2345 mutex_unlock(&cgroup_mutex);
2346
2347 return ret;
2348}
2349EXPORT_SYMBOL_GPL(cgroup_path_ns);
2350
857a2beb 2351/**
913ffdb5 2352 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2353 * @task: target task
857a2beb
TH
2354 * @buf: the buffer to write the path into
2355 * @buflen: the length of the buffer
2356 *
913ffdb5
TH
2357 * Determine @task's cgroup on the first (the one with the lowest non-zero
2358 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2359 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2360 * cgroup controller callbacks.
2361 *
e61734c5 2362 * Return value is the same as kernfs_path().
857a2beb 2363 */
e61734c5 2364char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2365{
3dd06ffa 2366 struct cgroup_root *root;
913ffdb5 2367 struct cgroup *cgrp;
e61734c5
TH
2368 int hierarchy_id = 1;
2369 char *path = NULL;
857a2beb
TH
2370
2371 mutex_lock(&cgroup_mutex);
f0d9a5f1 2372 spin_lock_bh(&css_set_lock);
857a2beb 2373
913ffdb5
TH
2374 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2375
857a2beb
TH
2376 if (root) {
2377 cgrp = task_cgroup_from_root(task, root);
a79a908f 2378 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2379 } else {
2380 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2381 if (strlcpy(buf, "/", buflen) < buflen)
2382 path = buf;
857a2beb
TH
2383 }
2384
f0d9a5f1 2385 spin_unlock_bh(&css_set_lock);
857a2beb 2386 mutex_unlock(&cgroup_mutex);
e61734c5 2387 return path;
857a2beb 2388}
913ffdb5 2389EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2390
b3dc094e 2391/* used to track tasks and other necessary states during migration */
2f7ee569 2392struct cgroup_taskset {
b3dc094e
TH
2393 /* the src and dst cset list running through cset->mg_node */
2394 struct list_head src_csets;
2395 struct list_head dst_csets;
2396
1f7dd3e5
TH
2397 /* the subsys currently being processed */
2398 int ssid;
2399
b3dc094e
TH
2400 /*
2401 * Fields for cgroup_taskset_*() iteration.
2402 *
2403 * Before migration is committed, the target migration tasks are on
2404 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2405 * the csets on ->dst_csets. ->csets point to either ->src_csets
2406 * or ->dst_csets depending on whether migration is committed.
2407 *
2408 * ->cur_csets and ->cur_task point to the current task position
2409 * during iteration.
2410 */
2411 struct list_head *csets;
2412 struct css_set *cur_cset;
2413 struct task_struct *cur_task;
2f7ee569
TH
2414};
2415
adaae5dc
TH
2416#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2417 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2418 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2419 .csets = &tset.src_csets, \
2420}
2421
2422/**
2423 * cgroup_taskset_add - try to add a migration target task to a taskset
2424 * @task: target task
2425 * @tset: target taskset
2426 *
2427 * Add @task, which is a migration target, to @tset. This function becomes
2428 * noop if @task doesn't need to be migrated. @task's css_set should have
2429 * been added as a migration source and @task->cg_list will be moved from
2430 * the css_set's tasks list to mg_tasks one.
2431 */
2432static void cgroup_taskset_add(struct task_struct *task,
2433 struct cgroup_taskset *tset)
2434{
2435 struct css_set *cset;
2436
f0d9a5f1 2437 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2438
2439 /* @task either already exited or can't exit until the end */
2440 if (task->flags & PF_EXITING)
2441 return;
2442
2443 /* leave @task alone if post_fork() hasn't linked it yet */
2444 if (list_empty(&task->cg_list))
2445 return;
2446
2447 cset = task_css_set(task);
2448 if (!cset->mg_src_cgrp)
2449 return;
2450
2451 list_move_tail(&task->cg_list, &cset->mg_tasks);
2452 if (list_empty(&cset->mg_node))
2453 list_add_tail(&cset->mg_node, &tset->src_csets);
2454 if (list_empty(&cset->mg_dst_cset->mg_node))
2455 list_move_tail(&cset->mg_dst_cset->mg_node,
2456 &tset->dst_csets);
2457}
2458
2f7ee569
TH
2459/**
2460 * cgroup_taskset_first - reset taskset and return the first task
2461 * @tset: taskset of interest
1f7dd3e5 2462 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2463 *
2464 * @tset iteration is initialized and the first task is returned.
2465 */
1f7dd3e5
TH
2466struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2467 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2468{
b3dc094e
TH
2469 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2470 tset->cur_task = NULL;
2471
1f7dd3e5 2472 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2473}
2f7ee569
TH
2474
2475/**
2476 * cgroup_taskset_next - iterate to the next task in taskset
2477 * @tset: taskset of interest
1f7dd3e5 2478 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2479 *
2480 * Return the next task in @tset. Iteration must have been initialized
2481 * with cgroup_taskset_first().
2482 */
1f7dd3e5
TH
2483struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2484 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2485{
b3dc094e
TH
2486 struct css_set *cset = tset->cur_cset;
2487 struct task_struct *task = tset->cur_task;
2f7ee569 2488
b3dc094e
TH
2489 while (&cset->mg_node != tset->csets) {
2490 if (!task)
2491 task = list_first_entry(&cset->mg_tasks,
2492 struct task_struct, cg_list);
2493 else
2494 task = list_next_entry(task, cg_list);
2f7ee569 2495
b3dc094e
TH
2496 if (&task->cg_list != &cset->mg_tasks) {
2497 tset->cur_cset = cset;
2498 tset->cur_task = task;
1f7dd3e5
TH
2499
2500 /*
2501 * This function may be called both before and
2502 * after cgroup_taskset_migrate(). The two cases
2503 * can be distinguished by looking at whether @cset
2504 * has its ->mg_dst_cset set.
2505 */
2506 if (cset->mg_dst_cset)
2507 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2508 else
2509 *dst_cssp = cset->subsys[tset->ssid];
2510
b3dc094e
TH
2511 return task;
2512 }
2f7ee569 2513
b3dc094e
TH
2514 cset = list_next_entry(cset, mg_node);
2515 task = NULL;
2516 }
2f7ee569 2517
b3dc094e 2518 return NULL;
2f7ee569 2519}
2f7ee569 2520
adaae5dc 2521/**
37ff9f8f 2522 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2523 * @tset: taget taskset
37ff9f8f 2524 * @root: cgroup root the migration is taking place on
adaae5dc 2525 *
37ff9f8f
TH
2526 * Migrate tasks in @tset as setup by migration preparation functions.
2527 * This function fails iff one of the ->can_attach callbacks fails and
2528 * guarantees that either all or none of the tasks in @tset are migrated.
2529 * @tset is consumed regardless of success.
adaae5dc
TH
2530 */
2531static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2532 struct cgroup_root *root)
adaae5dc 2533{
37ff9f8f 2534 struct cgroup_subsys *ss;
adaae5dc
TH
2535 struct task_struct *task, *tmp_task;
2536 struct css_set *cset, *tmp_cset;
37ff9f8f 2537 int ssid, failed_ssid, ret;
adaae5dc
TH
2538
2539 /* methods shouldn't be called if no task is actually migrating */
2540 if (list_empty(&tset->src_csets))
2541 return 0;
2542
2543 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2544 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2545 if (ss->can_attach) {
2546 tset->ssid = ssid;
2547 ret = ss->can_attach(tset);
adaae5dc 2548 if (ret) {
37ff9f8f 2549 failed_ssid = ssid;
adaae5dc
TH
2550 goto out_cancel_attach;
2551 }
2552 }
37ff9f8f 2553 } while_each_subsys_mask();
adaae5dc
TH
2554
2555 /*
2556 * Now that we're guaranteed success, proceed to move all tasks to
2557 * the new cgroup. There are no failure cases after here, so this
2558 * is the commit point.
2559 */
f0d9a5f1 2560 spin_lock_bh(&css_set_lock);
adaae5dc 2561 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2562 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2563 struct css_set *from_cset = task_css_set(task);
2564 struct css_set *to_cset = cset->mg_dst_cset;
2565
2566 get_css_set(to_cset);
2567 css_set_move_task(task, from_cset, to_cset, true);
2568 put_css_set_locked(from_cset);
2569 }
adaae5dc 2570 }
f0d9a5f1 2571 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2572
2573 /*
2574 * Migration is committed, all target tasks are now on dst_csets.
2575 * Nothing is sensitive to fork() after this point. Notify
2576 * controllers that migration is complete.
2577 */
2578 tset->csets = &tset->dst_csets;
2579
37ff9f8f
TH
2580 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2581 if (ss->attach) {
2582 tset->ssid = ssid;
2583 ss->attach(tset);
1f7dd3e5 2584 }
37ff9f8f 2585 } while_each_subsys_mask();
adaae5dc
TH
2586
2587 ret = 0;
2588 goto out_release_tset;
2589
2590out_cancel_attach:
37ff9f8f
TH
2591 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2592 if (ssid == failed_ssid)
adaae5dc 2593 break;
37ff9f8f
TH
2594 if (ss->cancel_attach) {
2595 tset->ssid = ssid;
2596 ss->cancel_attach(tset);
1f7dd3e5 2597 }
37ff9f8f 2598 } while_each_subsys_mask();
adaae5dc 2599out_release_tset:
f0d9a5f1 2600 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2601 list_splice_init(&tset->dst_csets, &tset->src_csets);
2602 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2603 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2604 list_del_init(&cset->mg_node);
2605 }
f0d9a5f1 2606 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2607 return ret;
2608}
2609
6c694c88
TH
2610/**
2611 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2612 * @dst_cgrp: destination cgroup to test
2613 *
2614 * On the default hierarchy, except for the root, subtree_control must be
2615 * zero for migration destination cgroups with tasks so that child cgroups
2616 * don't compete against tasks.
2617 */
2618static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2619{
2620 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2621 !dst_cgrp->subtree_control;
2622}
2623
a043e3b2 2624/**
1958d2d5
TH
2625 * cgroup_migrate_finish - cleanup after attach
2626 * @preloaded_csets: list of preloaded css_sets
74a1166d 2627 *
1958d2d5
TH
2628 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2629 * those functions for details.
74a1166d 2630 */
1958d2d5 2631static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2632{
1958d2d5 2633 struct css_set *cset, *tmp_cset;
74a1166d 2634
1958d2d5
TH
2635 lockdep_assert_held(&cgroup_mutex);
2636
f0d9a5f1 2637 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2638 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2639 cset->mg_src_cgrp = NULL;
e4857982 2640 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2641 cset->mg_dst_cset = NULL;
2642 list_del_init(&cset->mg_preload_node);
a25eb52e 2643 put_css_set_locked(cset);
1958d2d5 2644 }
f0d9a5f1 2645 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2646}
2647
2648/**
2649 * cgroup_migrate_add_src - add a migration source css_set
2650 * @src_cset: the source css_set to add
2651 * @dst_cgrp: the destination cgroup
2652 * @preloaded_csets: list of preloaded css_sets
2653 *
2654 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2655 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2656 * up by cgroup_migrate_finish().
2657 *
1ed13287
TH
2658 * This function may be called without holding cgroup_threadgroup_rwsem
2659 * even if the target is a process. Threads may be created and destroyed
2660 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2661 * into play and the preloaded css_sets are guaranteed to cover all
2662 * migrations.
1958d2d5
TH
2663 */
2664static void cgroup_migrate_add_src(struct css_set *src_cset,
2665 struct cgroup *dst_cgrp,
2666 struct list_head *preloaded_csets)
2667{
2668 struct cgroup *src_cgrp;
2669
2670 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2671 lockdep_assert_held(&css_set_lock);
1958d2d5 2672
2b021cbf
TH
2673 /*
2674 * If ->dead, @src_set is associated with one or more dead cgroups
2675 * and doesn't contain any migratable tasks. Ignore it early so
2676 * that the rest of migration path doesn't get confused by it.
2677 */
2678 if (src_cset->dead)
2679 return;
2680
1958d2d5
TH
2681 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2682
1958d2d5
TH
2683 if (!list_empty(&src_cset->mg_preload_node))
2684 return;
2685
2686 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2687 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2688 WARN_ON(!list_empty(&src_cset->mg_tasks));
2689 WARN_ON(!list_empty(&src_cset->mg_node));
2690
2691 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2692 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2693 get_css_set(src_cset);
2694 list_add(&src_cset->mg_preload_node, preloaded_csets);
2695}
2696
2697/**
2698 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2699 * @preloaded_csets: list of preloaded source css_sets
2700 *
e4857982
TH
2701 * Tasks are about to be moved and all the source css_sets have been
2702 * preloaded to @preloaded_csets. This function looks up and pins all
2703 * destination css_sets, links each to its source, and append them to
2704 * @preloaded_csets.
1958d2d5
TH
2705 *
2706 * This function must be called after cgroup_migrate_add_src() has been
2707 * called on each migration source css_set. After migration is performed
2708 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2709 * @preloaded_csets.
2710 */
e4857982 2711static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2712{
2713 LIST_HEAD(csets);
f817de98 2714 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2715
2716 lockdep_assert_held(&cgroup_mutex);
2717
2718 /* look up the dst cset for each src cset and link it to src */
f817de98 2719 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2720 struct css_set *dst_cset;
2721
e4857982 2722 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2723 if (!dst_cset)
2724 goto err;
2725
2726 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2727
2728 /*
2729 * If src cset equals dst, it's noop. Drop the src.
2730 * cgroup_migrate() will skip the cset too. Note that we
2731 * can't handle src == dst as some nodes are used by both.
2732 */
2733 if (src_cset == dst_cset) {
2734 src_cset->mg_src_cgrp = NULL;
e4857982 2735 src_cset->mg_dst_cgrp = NULL;
f817de98 2736 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2737 put_css_set(src_cset);
2738 put_css_set(dst_cset);
f817de98
TH
2739 continue;
2740 }
2741
1958d2d5
TH
2742 src_cset->mg_dst_cset = dst_cset;
2743
2744 if (list_empty(&dst_cset->mg_preload_node))
2745 list_add(&dst_cset->mg_preload_node, &csets);
2746 else
a25eb52e 2747 put_css_set(dst_cset);
1958d2d5
TH
2748 }
2749
f817de98 2750 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2751 return 0;
2752err:
2753 cgroup_migrate_finish(&csets);
2754 return -ENOMEM;
2755}
2756
2757/**
2758 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2759 * @leader: the leader of the process or the task to migrate
2760 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2761 * @root: cgroup root migration is taking place on
1958d2d5 2762 *
37ff9f8f
TH
2763 * Migrate a process or task denoted by @leader. If migrating a process,
2764 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2765 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2766 * cgroup_migrate_prepare_dst() on the targets before invoking this
2767 * function and following up with cgroup_migrate_finish().
2768 *
2769 * As long as a controller's ->can_attach() doesn't fail, this function is
2770 * guaranteed to succeed. This means that, excluding ->can_attach()
2771 * failure, when migrating multiple targets, the success or failure can be
2772 * decided for all targets by invoking group_migrate_prepare_dst() before
2773 * actually starting migrating.
2774 */
9af2ec45 2775static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2776 struct cgroup_root *root)
74a1166d 2777{
adaae5dc
TH
2778 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2779 struct task_struct *task;
74a1166d 2780
fb5d2b4c
MSB
2781 /*
2782 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2783 * already PF_EXITING could be freed from underneath us unless we
2784 * take an rcu_read_lock.
2785 */
f0d9a5f1 2786 spin_lock_bh(&css_set_lock);
fb5d2b4c 2787 rcu_read_lock();
9db8de37 2788 task = leader;
74a1166d 2789 do {
adaae5dc 2790 cgroup_taskset_add(task, &tset);
081aa458
LZ
2791 if (!threadgroup)
2792 break;
9db8de37 2793 } while_each_thread(leader, task);
fb5d2b4c 2794 rcu_read_unlock();
f0d9a5f1 2795 spin_unlock_bh(&css_set_lock);
74a1166d 2796
37ff9f8f 2797 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2798}
2799
1958d2d5
TH
2800/**
2801 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2802 * @dst_cgrp: the cgroup to attach to
2803 * @leader: the task or the leader of the threadgroup to be attached
2804 * @threadgroup: attach the whole threadgroup?
2805 *
1ed13287 2806 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2807 */
2808static int cgroup_attach_task(struct cgroup *dst_cgrp,
2809 struct task_struct *leader, bool threadgroup)
2810{
2811 LIST_HEAD(preloaded_csets);
2812 struct task_struct *task;
2813 int ret;
2814
6c694c88
TH
2815 if (!cgroup_may_migrate_to(dst_cgrp))
2816 return -EBUSY;
2817
1958d2d5 2818 /* look up all src csets */
f0d9a5f1 2819 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2820 rcu_read_lock();
2821 task = leader;
2822 do {
2823 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2824 &preloaded_csets);
2825 if (!threadgroup)
2826 break;
2827 } while_each_thread(leader, task);
2828 rcu_read_unlock();
f0d9a5f1 2829 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2830
2831 /* prepare dst csets and commit */
e4857982 2832 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2833 if (!ret)
37ff9f8f 2834 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2835
2836 cgroup_migrate_finish(&preloaded_csets);
2837 return ret;
74a1166d
BB
2838}
2839
187fe840
TH
2840static int cgroup_procs_write_permission(struct task_struct *task,
2841 struct cgroup *dst_cgrp,
2842 struct kernfs_open_file *of)
dedf22e9
TH
2843{
2844 const struct cred *cred = current_cred();
2845 const struct cred *tcred = get_task_cred(task);
2846 int ret = 0;
2847
2848 /*
2849 * even if we're attaching all tasks in the thread group, we only
2850 * need to check permissions on one of them.
2851 */
2852 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2853 !uid_eq(cred->euid, tcred->uid) &&
2854 !uid_eq(cred->euid, tcred->suid))
2855 ret = -EACCES;
2856
187fe840
TH
2857 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2858 struct super_block *sb = of->file->f_path.dentry->d_sb;
2859 struct cgroup *cgrp;
2860 struct inode *inode;
2861
f0d9a5f1 2862 spin_lock_bh(&css_set_lock);
187fe840 2863 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2864 spin_unlock_bh(&css_set_lock);
187fe840
TH
2865
2866 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2867 cgrp = cgroup_parent(cgrp);
2868
2869 ret = -ENOMEM;
6f60eade 2870 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2871 if (inode) {
2872 ret = inode_permission(inode, MAY_WRITE);
2873 iput(inode);
2874 }
2875 }
2876
dedf22e9
TH
2877 put_cred(tcred);
2878 return ret;
2879}
2880
74a1166d
BB
2881/*
2882 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2883 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2884 * cgroup_mutex and threadgroup.
bbcb81d0 2885 */
acbef755
TH
2886static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2887 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2888{
bbcb81d0 2889 struct task_struct *tsk;
5cf1cacb 2890 struct cgroup_subsys *ss;
e76ecaee 2891 struct cgroup *cgrp;
acbef755 2892 pid_t pid;
5cf1cacb 2893 int ssid, ret;
bbcb81d0 2894
acbef755
TH
2895 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2896 return -EINVAL;
2897
945ba199 2898 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2899 if (!cgrp)
74a1166d
BB
2900 return -ENODEV;
2901
3014dde7 2902 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2903 rcu_read_lock();
bbcb81d0 2904 if (pid) {
73507f33 2905 tsk = find_task_by_vpid(pid);
74a1166d 2906 if (!tsk) {
dd4b0a46 2907 ret = -ESRCH;
3014dde7 2908 goto out_unlock_rcu;
bbcb81d0 2909 }
dedf22e9 2910 } else {
b78949eb 2911 tsk = current;
dedf22e9 2912 }
cd3d0952
TH
2913
2914 if (threadgroup)
b78949eb 2915 tsk = tsk->group_leader;
c4c27fbd
MG
2916
2917 /*
14a40ffc 2918 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2919 * trapped in a cpuset, or RT worker may be born in a cgroup
2920 * with no rt_runtime allocated. Just say no.
2921 */
14a40ffc 2922 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2923 ret = -EINVAL;
3014dde7 2924 goto out_unlock_rcu;
c4c27fbd
MG
2925 }
2926
b78949eb
MSB
2927 get_task_struct(tsk);
2928 rcu_read_unlock();
2929
187fe840 2930 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2931 if (!ret)
2932 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2933
f9f9e7b7 2934 put_task_struct(tsk);
3014dde7
TH
2935 goto out_unlock_threadgroup;
2936
2937out_unlock_rcu:
2938 rcu_read_unlock();
2939out_unlock_threadgroup:
2940 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2941 for_each_subsys(ss, ssid)
2942 if (ss->post_attach)
2943 ss->post_attach();
e76ecaee 2944 cgroup_kn_unlock(of->kn);
acbef755 2945 return ret ?: nbytes;
bbcb81d0
PM
2946}
2947
7ae1bad9
TH
2948/**
2949 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2950 * @from: attach to all cgroups of a given task
2951 * @tsk: the task to be attached
2952 */
2953int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2954{
3dd06ffa 2955 struct cgroup_root *root;
7ae1bad9
TH
2956 int retval = 0;
2957
47cfcd09 2958 mutex_lock(&cgroup_mutex);
985ed670 2959 for_each_root(root) {
96d365e0
TH
2960 struct cgroup *from_cgrp;
2961
3dd06ffa 2962 if (root == &cgrp_dfl_root)
985ed670
TH
2963 continue;
2964
f0d9a5f1 2965 spin_lock_bh(&css_set_lock);
96d365e0 2966 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2967 spin_unlock_bh(&css_set_lock);
7ae1bad9 2968
6f4b7e63 2969 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2970 if (retval)
2971 break;
2972 }
47cfcd09 2973 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2974
2975 return retval;
2976}
2977EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2978
acbef755
TH
2979static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2980 char *buf, size_t nbytes, loff_t off)
74a1166d 2981{
acbef755 2982 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2983}
2984
acbef755
TH
2985static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2986 char *buf, size_t nbytes, loff_t off)
af351026 2987{
acbef755 2988 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2989}
2990
451af504
TH
2991static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2992 char *buf, size_t nbytes, loff_t off)
e788e066 2993{
e76ecaee 2994 struct cgroup *cgrp;
5f469907 2995
e76ecaee 2996 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2997
945ba199 2998 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2999 if (!cgrp)
e788e066 3000 return -ENODEV;
69e943b7 3001 spin_lock(&release_agent_path_lock);
e76ecaee
TH
3002 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3003 sizeof(cgrp->root->release_agent_path));
69e943b7 3004 spin_unlock(&release_agent_path_lock);
e76ecaee 3005 cgroup_kn_unlock(of->kn);
451af504 3006 return nbytes;
e788e066
PM
3007}
3008
2da8ca82 3009static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 3010{
2da8ca82 3011 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 3012
46cfeb04 3013 spin_lock(&release_agent_path_lock);
e788e066 3014 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 3015 spin_unlock(&release_agent_path_lock);
e788e066 3016 seq_putc(seq, '\n');
e788e066
PM
3017 return 0;
3018}
3019
2da8ca82 3020static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 3021{
c1d5d42e 3022 seq_puts(seq, "0\n");
e788e066
PM
3023 return 0;
3024}
3025
6e5c8307 3026static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 3027{
f8f22e53
TH
3028 struct cgroup_subsys *ss;
3029 bool printed = false;
3030 int ssid;
a742c59d 3031
b4e0eeaf 3032 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
3033 if (printed)
3034 seq_putc(seq, ' ');
3035 seq_printf(seq, "%s", ss->name);
3036 printed = true;
b4e0eeaf 3037 } while_each_subsys_mask();
f8f22e53
TH
3038 if (printed)
3039 seq_putc(seq, '\n');
355e0c48
PM
3040}
3041
f8f22e53
TH
3042/* show controllers which are enabled from the parent */
3043static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3044{
f8f22e53
TH
3045 struct cgroup *cgrp = seq_css(seq)->cgroup;
3046
5531dc91 3047 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3048 return 0;
ddbcc7e8
PM
3049}
3050
f8f22e53
TH
3051/* show controllers which are enabled for a given cgroup's children */
3052static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3053{
f8f22e53
TH
3054 struct cgroup *cgrp = seq_css(seq)->cgroup;
3055
667c2491 3056 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3057 return 0;
3058}
3059
3060/**
3061 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3062 * @cgrp: root of the subtree to update csses for
3063 *
54962604
TH
3064 * @cgrp's control masks have changed and its subtree's css associations
3065 * need to be updated accordingly. This function looks up all css_sets
3066 * which are attached to the subtree, creates the matching updated css_sets
3067 * and migrates the tasks to the new ones.
f8f22e53
TH
3068 */
3069static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3070{
3071 LIST_HEAD(preloaded_csets);
10265075 3072 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3073 struct cgroup_subsys_state *d_css;
3074 struct cgroup *dsct;
f8f22e53
TH
3075 struct css_set *src_cset;
3076 int ret;
3077
f8f22e53
TH
3078 lockdep_assert_held(&cgroup_mutex);
3079
3014dde7
TH
3080 percpu_down_write(&cgroup_threadgroup_rwsem);
3081
f8f22e53 3082 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 3083 spin_lock_bh(&css_set_lock);
54962604 3084 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3085 struct cgrp_cset_link *link;
3086
54962604 3087 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3088 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3089 &preloaded_csets);
3090 }
f0d9a5f1 3091 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
3092
3093 /* NULL dst indicates self on default hierarchy */
e4857982 3094 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3095 if (ret)
3096 goto out_finish;
3097
f0d9a5f1 3098 spin_lock_bh(&css_set_lock);
f8f22e53 3099 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3100 struct task_struct *task, *ntask;
f8f22e53
TH
3101
3102 /* src_csets precede dst_csets, break on the first dst_cset */
3103 if (!src_cset->mg_src_cgrp)
3104 break;
3105
10265075
TH
3106 /* all tasks in src_csets need to be migrated */
3107 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3108 cgroup_taskset_add(task, &tset);
f8f22e53 3109 }
f0d9a5f1 3110 spin_unlock_bh(&css_set_lock);
f8f22e53 3111
37ff9f8f 3112 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3113out_finish:
3114 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3115 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3116 return ret;
3117}
3118
1b9b96a1 3119/**
945ba199 3120 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3121 * @cgrp: root of the target subtree
1b9b96a1
TH
3122 *
3123 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3124 * controller while the previous css is still around. This function grabs
3125 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3126 */
945ba199
TH
3127static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3128 __acquires(&cgroup_mutex)
1b9b96a1
TH
3129{
3130 struct cgroup *dsct;
ce3f1d9d 3131 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3132 struct cgroup_subsys *ss;
3133 int ssid;
3134
945ba199
TH
3135restart:
3136 mutex_lock(&cgroup_mutex);
1b9b96a1 3137
ce3f1d9d 3138 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3139 for_each_subsys(ss, ssid) {
3140 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3141 DEFINE_WAIT(wait);
3142
ce3f1d9d 3143 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3144 continue;
3145
3146 cgroup_get(dsct);
3147 prepare_to_wait(&dsct->offline_waitq, &wait,
3148 TASK_UNINTERRUPTIBLE);
3149
3150 mutex_unlock(&cgroup_mutex);
3151 schedule();
3152 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3153
3154 cgroup_put(dsct);
945ba199 3155 goto restart;
1b9b96a1
TH
3156 }
3157 }
1b9b96a1
TH
3158}
3159
15a27c36
TH
3160/**
3161 * cgroup_save_control - save control masks of a subtree
3162 * @cgrp: root of the target subtree
3163 *
3164 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3165 * prefixed fields for @cgrp's subtree including @cgrp itself.
3166 */
3167static void cgroup_save_control(struct cgroup *cgrp)
3168{
3169 struct cgroup *dsct;
3170 struct cgroup_subsys_state *d_css;
3171
3172 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3173 dsct->old_subtree_control = dsct->subtree_control;
3174 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3175 }
3176}
3177
3178/**
3179 * cgroup_propagate_control - refresh control masks of a subtree
3180 * @cgrp: root of the target subtree
3181 *
3182 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3183 * ->subtree_control and propagate controller availability through the
3184 * subtree so that descendants don't have unavailable controllers enabled.
3185 */
3186static void cgroup_propagate_control(struct cgroup *cgrp)
3187{
3188 struct cgroup *dsct;
3189 struct cgroup_subsys_state *d_css;
3190
3191 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3192 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3193 dsct->subtree_ss_mask =
3194 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3195 cgroup_ss_mask(dsct));
15a27c36
TH
3196 }
3197}
3198
3199/**
3200 * cgroup_restore_control - restore control masks of a subtree
3201 * @cgrp: root of the target subtree
3202 *
3203 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3204 * prefixed fields for @cgrp's subtree including @cgrp itself.
3205 */
3206static void cgroup_restore_control(struct cgroup *cgrp)
3207{
3208 struct cgroup *dsct;
3209 struct cgroup_subsys_state *d_css;
3210
3211 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3212 dsct->subtree_control = dsct->old_subtree_control;
3213 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3214 }
3215}
3216
f6d635ad
TH
3217static bool css_visible(struct cgroup_subsys_state *css)
3218{
3219 struct cgroup_subsys *ss = css->ss;
3220 struct cgroup *cgrp = css->cgroup;
3221
3222 if (cgroup_control(cgrp) & (1 << ss->id))
3223 return true;
3224 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3225 return false;
3226 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3227}
3228
bdb53bd7
TH
3229/**
3230 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3231 * @cgrp: root of the target subtree
bdb53bd7 3232 *
ce3f1d9d 3233 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3234 * visible. A css is created invisible if it's being implicitly enabled
3235 * through dependency. An invisible css is made visible when the userland
3236 * explicitly enables it.
3237 *
3238 * Returns 0 on success, -errno on failure. On failure, csses which have
3239 * been processed already aren't cleaned up. The caller is responsible for
3240 * cleaning up with cgroup_apply_control_disble().
3241 */
3242static int cgroup_apply_control_enable(struct cgroup *cgrp)
3243{
3244 struct cgroup *dsct;
ce3f1d9d 3245 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3246 struct cgroup_subsys *ss;
3247 int ssid, ret;
3248
ce3f1d9d 3249 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3250 for_each_subsys(ss, ssid) {
3251 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3252
945ba199
TH
3253 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3254
bdb53bd7
TH
3255 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3256 continue;
3257
3258 if (!css) {
3259 css = css_create(dsct, ss);
3260 if (IS_ERR(css))
3261 return PTR_ERR(css);
3262 }
3263
f6d635ad 3264 if (css_visible(css)) {
334c3679 3265 ret = css_populate_dir(css);
bdb53bd7
TH
3266 if (ret)
3267 return ret;
3268 }
3269 }
3270 }
3271
3272 return 0;
3273}
3274
12b3bb6a
TH
3275/**
3276 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3277 * @cgrp: root of the target subtree
12b3bb6a 3278 *
ce3f1d9d 3279 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3280 * cgroup_ss_mask() and cgroup_visible_mask().
3281 *
3282 * A css is hidden when the userland requests it to be disabled while other
3283 * subsystems are still depending on it. The css must not actively control
3284 * resources and be in the vanilla state if it's made visible again later.
3285 * Controllers which may be depended upon should provide ->css_reset() for
3286 * this purpose.
3287 */
3288static void cgroup_apply_control_disable(struct cgroup *cgrp)
3289{
3290 struct cgroup *dsct;
ce3f1d9d 3291 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3292 struct cgroup_subsys *ss;
3293 int ssid;
3294
ce3f1d9d 3295 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3296 for_each_subsys(ss, ssid) {
3297 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3298
945ba199
TH
3299 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3300
12b3bb6a
TH
3301 if (!css)
3302 continue;
3303
334c3679
TH
3304 if (css->parent &&
3305 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3306 kill_css(css);
f6d635ad 3307 } else if (!css_visible(css)) {
334c3679 3308 css_clear_dir(css);
12b3bb6a
TH
3309 if (ss->css_reset)
3310 ss->css_reset(css);
3311 }
3312 }
3313 }
3314}
3315
f7b2814b
TH
3316/**
3317 * cgroup_apply_control - apply control mask updates to the subtree
3318 * @cgrp: root of the target subtree
3319 *
3320 * subsystems can be enabled and disabled in a subtree using the following
3321 * steps.
3322 *
3323 * 1. Call cgroup_save_control() to stash the current state.
3324 * 2. Update ->subtree_control masks in the subtree as desired.
3325 * 3. Call cgroup_apply_control() to apply the changes.
3326 * 4. Optionally perform other related operations.
3327 * 5. Call cgroup_finalize_control() to finish up.
3328 *
3329 * This function implements step 3 and propagates the mask changes
3330 * throughout @cgrp's subtree, updates csses accordingly and perform
3331 * process migrations.
3332 */
3333static int cgroup_apply_control(struct cgroup *cgrp)
3334{
3335 int ret;
3336
3337 cgroup_propagate_control(cgrp);
3338
3339 ret = cgroup_apply_control_enable(cgrp);
3340 if (ret)
3341 return ret;
3342
3343 /*
3344 * At this point, cgroup_e_css() results reflect the new csses
3345 * making the following cgroup_update_dfl_csses() properly update
3346 * css associations of all tasks in the subtree.
3347 */
3348 ret = cgroup_update_dfl_csses(cgrp);
3349 if (ret)
3350 return ret;
3351
3352 return 0;
3353}
3354
3355/**
3356 * cgroup_finalize_control - finalize control mask update
3357 * @cgrp: root of the target subtree
3358 * @ret: the result of the update
3359 *
3360 * Finalize control mask update. See cgroup_apply_control() for more info.
3361 */
3362static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3363{
3364 if (ret) {
3365 cgroup_restore_control(cgrp);
3366 cgroup_propagate_control(cgrp);
3367 }
3368
3369 cgroup_apply_control_disable(cgrp);
3370}
3371
f8f22e53 3372/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3373static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3374 char *buf, size_t nbytes,
3375 loff_t off)
f8f22e53 3376{
6e5c8307 3377 u16 enable = 0, disable = 0;
a9746d8d 3378 struct cgroup *cgrp, *child;
f8f22e53 3379 struct cgroup_subsys *ss;
451af504 3380 char *tok;
f8f22e53
TH
3381 int ssid, ret;
3382
3383 /*
d37167ab
TH
3384 * Parse input - space separated list of subsystem names prefixed
3385 * with either + or -.
f8f22e53 3386 */
451af504
TH
3387 buf = strstrip(buf);
3388 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3389 if (tok[0] == '\0')
3390 continue;
a7165264 3391 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3392 if (!cgroup_ssid_enabled(ssid) ||
3393 strcmp(tok + 1, ss->name))
f8f22e53
TH
3394 continue;
3395
3396 if (*tok == '+') {
7d331fa9
TH
3397 enable |= 1 << ssid;
3398 disable &= ~(1 << ssid);
f8f22e53 3399 } else if (*tok == '-') {
7d331fa9
TH
3400 disable |= 1 << ssid;
3401 enable &= ~(1 << ssid);
f8f22e53
TH
3402 } else {
3403 return -EINVAL;
3404 }
3405 break;
b4e0eeaf 3406 } while_each_subsys_mask();
f8f22e53
TH
3407 if (ssid == CGROUP_SUBSYS_COUNT)
3408 return -EINVAL;
3409 }
3410
945ba199 3411 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3412 if (!cgrp)
3413 return -ENODEV;
f8f22e53
TH
3414
3415 for_each_subsys(ss, ssid) {
3416 if (enable & (1 << ssid)) {
667c2491 3417 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3418 enable &= ~(1 << ssid);
3419 continue;
3420 }
3421
5531dc91 3422 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3423 ret = -ENOENT;
3424 goto out_unlock;
3425 }
f8f22e53 3426 } else if (disable & (1 << ssid)) {
667c2491 3427 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3428 disable &= ~(1 << ssid);
3429 continue;
3430 }
3431
3432 /* a child has it enabled? */
3433 cgroup_for_each_live_child(child, cgrp) {
667c2491 3434 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3435 ret = -EBUSY;
ddab2b6e 3436 goto out_unlock;
f8f22e53
TH
3437 }
3438 }
3439 }
3440 }
3441
3442 if (!enable && !disable) {
3443 ret = 0;
ddab2b6e 3444 goto out_unlock;
f8f22e53
TH
3445 }
3446
3447 /*
667c2491 3448 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3449 * with tasks so that child cgroups don't compete against tasks.
3450 */
d51f39b0 3451 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3452 ret = -EBUSY;
3453 goto out_unlock;
3454 }
3455
15a27c36
TH
3456 /* save and update control masks and prepare csses */
3457 cgroup_save_control(cgrp);
f63070d3 3458
15a27c36
TH
3459 cgrp->subtree_control |= enable;
3460 cgrp->subtree_control &= ~disable;
c29adf24 3461
f7b2814b 3462 ret = cgroup_apply_control(cgrp);
f8f22e53 3463
f7b2814b 3464 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3465
3466 kernfs_activate(cgrp->kn);
3467 ret = 0;
3468out_unlock:
a9746d8d 3469 cgroup_kn_unlock(of->kn);
451af504 3470 return ret ?: nbytes;
f8f22e53
TH
3471}
3472
4a07c222 3473static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3474{
4a07c222 3475 seq_printf(seq, "populated %d\n",
27bd4dbb 3476 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3477 return 0;
3478}
3479
2bd59d48
TH
3480static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3481 size_t nbytes, loff_t off)
355e0c48 3482{
2bd59d48
TH
3483 struct cgroup *cgrp = of->kn->parent->priv;
3484 struct cftype *cft = of->kn->priv;
3485 struct cgroup_subsys_state *css;
a742c59d 3486 int ret;
355e0c48 3487
b4168640
TH
3488 if (cft->write)
3489 return cft->write(of, buf, nbytes, off);
3490
2bd59d48
TH
3491 /*
3492 * kernfs guarantees that a file isn't deleted with operations in
3493 * flight, which means that the matching css is and stays alive and
3494 * doesn't need to be pinned. The RCU locking is not necessary
3495 * either. It's just for the convenience of using cgroup_css().
3496 */
3497 rcu_read_lock();
3498 css = cgroup_css(cgrp, cft->ss);
3499 rcu_read_unlock();
a742c59d 3500
451af504 3501 if (cft->write_u64) {
a742c59d
TH
3502 unsigned long long v;
3503 ret = kstrtoull(buf, 0, &v);
3504 if (!ret)
3505 ret = cft->write_u64(css, cft, v);
3506 } else if (cft->write_s64) {
3507 long long v;
3508 ret = kstrtoll(buf, 0, &v);
3509 if (!ret)
3510 ret = cft->write_s64(css, cft, v);
e73d2c61 3511 } else {
a742c59d 3512 ret = -EINVAL;
e73d2c61 3513 }
2bd59d48 3514
a742c59d 3515 return ret ?: nbytes;
355e0c48
PM
3516}
3517
6612f05b 3518static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3519{
2bd59d48 3520 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3521}
3522
6612f05b 3523static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3524{
2bd59d48 3525 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3526}
3527
6612f05b 3528static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3529{
2bd59d48 3530 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3531}
3532
91796569 3533static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3534{
7da11279
TH
3535 struct cftype *cft = seq_cft(m);
3536 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3537
2da8ca82
TH
3538 if (cft->seq_show)
3539 return cft->seq_show(m, arg);
e73d2c61 3540
f4c753b7 3541 if (cft->read_u64)
896f5199
TH
3542 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3543 else if (cft->read_s64)
3544 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3545 else
3546 return -EINVAL;
3547 return 0;
91796569
PM
3548}
3549
2bd59d48
TH
3550static struct kernfs_ops cgroup_kf_single_ops = {
3551 .atomic_write_len = PAGE_SIZE,
3552 .write = cgroup_file_write,
3553 .seq_show = cgroup_seqfile_show,
91796569
PM
3554};
3555
2bd59d48
TH
3556static struct kernfs_ops cgroup_kf_ops = {
3557 .atomic_write_len = PAGE_SIZE,
3558 .write = cgroup_file_write,
3559 .seq_start = cgroup_seqfile_start,
3560 .seq_next = cgroup_seqfile_next,
3561 .seq_stop = cgroup_seqfile_stop,
3562 .seq_show = cgroup_seqfile_show,
3563};
ddbcc7e8
PM
3564
3565/*
3566 * cgroup_rename - Only allow simple rename of directories in place.
3567 */
2bd59d48
TH
3568static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3569 const char *new_name_str)
ddbcc7e8 3570{
2bd59d48 3571 struct cgroup *cgrp = kn->priv;
65dff759 3572 int ret;
65dff759 3573
2bd59d48 3574 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3575 return -ENOTDIR;
2bd59d48 3576 if (kn->parent != new_parent)
ddbcc7e8 3577 return -EIO;
65dff759 3578
6db8e85c
TH
3579 /*
3580 * This isn't a proper migration and its usefulness is very
aa6ec29b 3581 * limited. Disallow on the default hierarchy.
6db8e85c 3582 */
aa6ec29b 3583 if (cgroup_on_dfl(cgrp))
6db8e85c 3584 return -EPERM;
099fca32 3585
e1b2dc17 3586 /*
8353da1f 3587 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3588 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3589 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3590 */
3591 kernfs_break_active_protection(new_parent);
3592 kernfs_break_active_protection(kn);
099fca32 3593
2bd59d48 3594 mutex_lock(&cgroup_mutex);
099fca32 3595
2bd59d48 3596 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3597
2bd59d48 3598 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3599
3600 kernfs_unbreak_active_protection(kn);
3601 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3602 return ret;
099fca32
LZ
3603}
3604
49957f8e
TH
3605/* set uid and gid of cgroup dirs and files to that of the creator */
3606static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3607{
3608 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3609 .ia_uid = current_fsuid(),
3610 .ia_gid = current_fsgid(), };
3611
3612 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3613 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3614 return 0;
3615
3616 return kernfs_setattr(kn, &iattr);
3617}
3618
4df8dc90
TH
3619static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3620 struct cftype *cft)
ddbcc7e8 3621{
8d7e6fb0 3622 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3623 struct kernfs_node *kn;
3624 struct lock_class_key *key = NULL;
49957f8e 3625 int ret;
05ef1d7c 3626
2bd59d48
TH
3627#ifdef CONFIG_DEBUG_LOCK_ALLOC
3628 key = &cft->lockdep_key;
3629#endif
3630 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3631 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3632 NULL, key);
49957f8e
TH
3633 if (IS_ERR(kn))
3634 return PTR_ERR(kn);
3635
3636 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3637 if (ret) {
49957f8e 3638 kernfs_remove(kn);
f8f22e53
TH
3639 return ret;
3640 }
3641
6f60eade
TH
3642 if (cft->file_offset) {
3643 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3644
34c06254 3645 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3646 cfile->kn = kn;
34c06254 3647 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3648 }
3649
f8f22e53 3650 return 0;
ddbcc7e8
PM
3651}
3652
b1f28d31
TH
3653/**
3654 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3655 * @css: the target css
3656 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3657 * @cfts: array of cftypes to be added
3658 * @is_add: whether to add or remove
3659 *
3660 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3661 * For removals, this function never fails.
b1f28d31 3662 */
4df8dc90
TH
3663static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3664 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3665 bool is_add)
ddbcc7e8 3666{
6732ed85 3667 struct cftype *cft, *cft_end = NULL;
b598dde3 3668 int ret = 0;
b1f28d31 3669
01f6474c 3670 lockdep_assert_held(&cgroup_mutex);
db0416b6 3671
6732ed85
TH
3672restart:
3673 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3674 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3675 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3676 continue;
05ebb6e6 3677 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3678 continue;
d51f39b0 3679 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3680 continue;
d51f39b0 3681 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3682 continue;
3683
2739d3cc 3684 if (is_add) {
4df8dc90 3685 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3686 if (ret) {
ed3d261b
JP
3687 pr_warn("%s: failed to add %s, err=%d\n",
3688 __func__, cft->name, ret);
6732ed85
TH
3689 cft_end = cft;
3690 is_add = false;
3691 goto restart;
b1f28d31 3692 }
2739d3cc
LZ
3693 } else {
3694 cgroup_rm_file(cgrp, cft);
db0416b6 3695 }
ddbcc7e8 3696 }
b598dde3 3697 return ret;
ddbcc7e8
PM
3698}
3699
21a2d343 3700static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3701{
3702 LIST_HEAD(pending);
2bb566cb 3703 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3704 struct cgroup *root = &ss->root->cgrp;
492eb21b 3705 struct cgroup_subsys_state *css;
9ccece80 3706 int ret = 0;
8e3f6541 3707
01f6474c 3708 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3709
e8c82d20 3710 /* add/rm files for all cgroups created before */
ca8bdcaf 3711 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3712 struct cgroup *cgrp = css->cgroup;
3713
88cb04b9 3714 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3715 continue;
3716
4df8dc90 3717 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3718 if (ret)
3719 break;
8e3f6541 3720 }
21a2d343
TH
3721
3722 if (is_add && !ret)
3723 kernfs_activate(root->kn);
9ccece80 3724 return ret;
8e3f6541
TH
3725}
3726
2da440a2 3727static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3728{
2bb566cb 3729 struct cftype *cft;
8e3f6541 3730
2bd59d48
TH
3731 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3732 /* free copy for custom atomic_write_len, see init_cftypes() */
3733 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3734 kfree(cft->kf_ops);
3735 cft->kf_ops = NULL;
2da440a2 3736 cft->ss = NULL;
a8ddc821
TH
3737
3738 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3739 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3740 }
2da440a2
TH
3741}
3742
2bd59d48 3743static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3744{
3745 struct cftype *cft;
3746
2bd59d48
TH
3747 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3748 struct kernfs_ops *kf_ops;
3749
0adb0704
TH
3750 WARN_ON(cft->ss || cft->kf_ops);
3751
2bd59d48
TH
3752 if (cft->seq_start)
3753 kf_ops = &cgroup_kf_ops;
3754 else
3755 kf_ops = &cgroup_kf_single_ops;
3756
3757 /*
3758 * Ugh... if @cft wants a custom max_write_len, we need to
3759 * make a copy of kf_ops to set its atomic_write_len.
3760 */
3761 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3762 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3763 if (!kf_ops) {
3764 cgroup_exit_cftypes(cfts);
3765 return -ENOMEM;
3766 }
3767 kf_ops->atomic_write_len = cft->max_write_len;
3768 }
8e3f6541 3769
2bd59d48 3770 cft->kf_ops = kf_ops;
2bb566cb 3771 cft->ss = ss;
2bd59d48 3772 }
2bb566cb 3773
2bd59d48 3774 return 0;
2da440a2
TH
3775}
3776
21a2d343
TH
3777static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3778{
01f6474c 3779 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3780
3781 if (!cfts || !cfts[0].ss)
3782 return -ENOENT;
3783
3784 list_del(&cfts->node);
3785 cgroup_apply_cftypes(cfts, false);
3786 cgroup_exit_cftypes(cfts);
3787 return 0;
8e3f6541 3788}
8e3f6541 3789
79578621
TH
3790/**
3791 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3792 * @cfts: zero-length name terminated array of cftypes
3793 *
2bb566cb
TH
3794 * Unregister @cfts. Files described by @cfts are removed from all
3795 * existing cgroups and all future cgroups won't have them either. This
3796 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3797 *
3798 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3799 * registered.
79578621 3800 */
2bb566cb 3801int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3802{
21a2d343 3803 int ret;
79578621 3804
01f6474c 3805 mutex_lock(&cgroup_mutex);
21a2d343 3806 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3807 mutex_unlock(&cgroup_mutex);
21a2d343 3808 return ret;
80b13586
TH
3809}
3810
8e3f6541
TH
3811/**
3812 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3813 * @ss: target cgroup subsystem
3814 * @cfts: zero-length name terminated array of cftypes
3815 *
3816 * Register @cfts to @ss. Files described by @cfts are created for all
3817 * existing cgroups to which @ss is attached and all future cgroups will
3818 * have them too. This function can be called anytime whether @ss is
3819 * attached or not.
3820 *
3821 * Returns 0 on successful registration, -errno on failure. Note that this
3822 * function currently returns 0 as long as @cfts registration is successful
3823 * even if some file creation attempts on existing cgroups fail.
3824 */
2cf669a5 3825static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3826{
9ccece80 3827 int ret;
8e3f6541 3828
fc5ed1e9 3829 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3830 return 0;
3831
dc5736ed
LZ
3832 if (!cfts || cfts[0].name[0] == '\0')
3833 return 0;
2bb566cb 3834
2bd59d48
TH
3835 ret = cgroup_init_cftypes(ss, cfts);
3836 if (ret)
3837 return ret;
79578621 3838
01f6474c 3839 mutex_lock(&cgroup_mutex);
21a2d343 3840
0adb0704 3841 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3842 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3843 if (ret)
21a2d343 3844 cgroup_rm_cftypes_locked(cfts);
79578621 3845
01f6474c 3846 mutex_unlock(&cgroup_mutex);
9ccece80 3847 return ret;
79578621
TH
3848}
3849
a8ddc821
TH
3850/**
3851 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3852 * @ss: target cgroup subsystem
3853 * @cfts: zero-length name terminated array of cftypes
3854 *
3855 * Similar to cgroup_add_cftypes() but the added files are only used for
3856 * the default hierarchy.
3857 */
3858int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3859{
3860 struct cftype *cft;
3861
3862 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3863 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3864 return cgroup_add_cftypes(ss, cfts);
3865}
3866
3867/**
3868 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3869 * @ss: target cgroup subsystem
3870 * @cfts: zero-length name terminated array of cftypes
3871 *
3872 * Similar to cgroup_add_cftypes() but the added files are only used for
3873 * the legacy hierarchies.
3874 */
2cf669a5
TH
3875int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3876{
a8ddc821
TH
3877 struct cftype *cft;
3878
e4b7037c
TH
3879 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3880 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3881 return cgroup_add_cftypes(ss, cfts);
3882}
3883
34c06254
TH
3884/**
3885 * cgroup_file_notify - generate a file modified event for a cgroup_file
3886 * @cfile: target cgroup_file
3887 *
3888 * @cfile must have been obtained by setting cftype->file_offset.
3889 */
3890void cgroup_file_notify(struct cgroup_file *cfile)
3891{
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3895 if (cfile->kn)
3896 kernfs_notify(cfile->kn);
3897 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3898}
3899
a043e3b2
LZ
3900/**
3901 * cgroup_task_count - count the number of tasks in a cgroup.
3902 * @cgrp: the cgroup in question
3903 *
3904 * Return the number of tasks in the cgroup.
3905 */
07bc356e 3906static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3907{
3908 int count = 0;
69d0206c 3909 struct cgrp_cset_link *link;
817929ec 3910
f0d9a5f1 3911 spin_lock_bh(&css_set_lock);
69d0206c
TH
3912 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3913 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3914 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3915 return count;
3916}
3917
53fa5261 3918/**
492eb21b 3919 * css_next_child - find the next child of a given css
c2931b70
TH
3920 * @pos: the current position (%NULL to initiate traversal)
3921 * @parent: css whose children to walk
53fa5261 3922 *
c2931b70 3923 * This function returns the next child of @parent and should be called
87fb54f1 3924 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3925 * that @parent and @pos are accessible. The next sibling is guaranteed to
3926 * be returned regardless of their states.
3927 *
3928 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3929 * css which finished ->css_online() is guaranteed to be visible in the
3930 * future iterations and will stay visible until the last reference is put.
3931 * A css which hasn't finished ->css_online() or already finished
3932 * ->css_offline() may show up during traversal. It's each subsystem's
3933 * responsibility to synchronize against on/offlining.
53fa5261 3934 */
c2931b70
TH
3935struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3936 struct cgroup_subsys_state *parent)
53fa5261 3937{
c2931b70 3938 struct cgroup_subsys_state *next;
53fa5261 3939
8353da1f 3940 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3941
3942 /*
de3f0341
TH
3943 * @pos could already have been unlinked from the sibling list.
3944 * Once a cgroup is removed, its ->sibling.next is no longer
3945 * updated when its next sibling changes. CSS_RELEASED is set when
3946 * @pos is taken off list, at which time its next pointer is valid,
3947 * and, as releases are serialized, the one pointed to by the next
3948 * pointer is guaranteed to not have started release yet. This
3949 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3950 * critical section, the one pointed to by its next pointer is
3951 * guaranteed to not have finished its RCU grace period even if we
3952 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3953 *
de3f0341
TH
3954 * If @pos has CSS_RELEASED set, its next pointer can't be
3955 * dereferenced; however, as each css is given a monotonically
3956 * increasing unique serial number and always appended to the
3957 * sibling list, the next one can be found by walking the parent's
3958 * children until the first css with higher serial number than
3959 * @pos's. While this path can be slower, it happens iff iteration
3960 * races against release and the race window is very small.
53fa5261 3961 */
3b287a50 3962 if (!pos) {
c2931b70
TH
3963 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3964 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3965 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3966 } else {
c2931b70 3967 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3968 if (next->serial_nr > pos->serial_nr)
3969 break;
53fa5261
TH
3970 }
3971
3b281afb
TH
3972 /*
3973 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3974 * the next sibling.
3b281afb 3975 */
c2931b70
TH
3976 if (&next->sibling != &parent->children)
3977 return next;
3b281afb 3978 return NULL;
53fa5261 3979}
53fa5261 3980
574bd9f7 3981/**
492eb21b 3982 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3983 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3984 * @root: css whose descendants to walk
574bd9f7 3985 *
492eb21b 3986 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3987 * to visit for pre-order traversal of @root's descendants. @root is
3988 * included in the iteration and the first node to be visited.
75501a6d 3989 *
87fb54f1
TH
3990 * While this function requires cgroup_mutex or RCU read locking, it
3991 * doesn't require the whole traversal to be contained in a single critical
3992 * section. This function will return the correct next descendant as long
3993 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3994 *
3995 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3996 * css which finished ->css_online() is guaranteed to be visible in the
3997 * future iterations and will stay visible until the last reference is put.
3998 * A css which hasn't finished ->css_online() or already finished
3999 * ->css_offline() may show up during traversal. It's each subsystem's
4000 * responsibility to synchronize against on/offlining.
574bd9f7 4001 */
492eb21b
TH
4002struct cgroup_subsys_state *
4003css_next_descendant_pre(struct cgroup_subsys_state *pos,
4004 struct cgroup_subsys_state *root)
574bd9f7 4005{
492eb21b 4006 struct cgroup_subsys_state *next;
574bd9f7 4007
8353da1f 4008 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4009
bd8815a6 4010 /* if first iteration, visit @root */
7805d000 4011 if (!pos)
bd8815a6 4012 return root;
574bd9f7
TH
4013
4014 /* visit the first child if exists */
492eb21b 4015 next = css_next_child(NULL, pos);
574bd9f7
TH
4016 if (next)
4017 return next;
4018
4019 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4020 while (pos != root) {
5c9d535b 4021 next = css_next_child(pos, pos->parent);
75501a6d 4022 if (next)
574bd9f7 4023 return next;
5c9d535b 4024 pos = pos->parent;
7805d000 4025 }
574bd9f7
TH
4026
4027 return NULL;
4028}
574bd9f7 4029
12a9d2fe 4030/**
492eb21b
TH
4031 * css_rightmost_descendant - return the rightmost descendant of a css
4032 * @pos: css of interest
12a9d2fe 4033 *
492eb21b
TH
4034 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4035 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4036 * subtree of @pos.
75501a6d 4037 *
87fb54f1
TH
4038 * While this function requires cgroup_mutex or RCU read locking, it
4039 * doesn't require the whole traversal to be contained in a single critical
4040 * section. This function will return the correct rightmost descendant as
4041 * long as @pos is accessible.
12a9d2fe 4042 */
492eb21b
TH
4043struct cgroup_subsys_state *
4044css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4045{
492eb21b 4046 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4047
8353da1f 4048 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4049
4050 do {
4051 last = pos;
4052 /* ->prev isn't RCU safe, walk ->next till the end */
4053 pos = NULL;
492eb21b 4054 css_for_each_child(tmp, last)
12a9d2fe
TH
4055 pos = tmp;
4056 } while (pos);
4057
4058 return last;
4059}
12a9d2fe 4060
492eb21b
TH
4061static struct cgroup_subsys_state *
4062css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4063{
492eb21b 4064 struct cgroup_subsys_state *last;
574bd9f7
TH
4065
4066 do {
4067 last = pos;
492eb21b 4068 pos = css_next_child(NULL, pos);
574bd9f7
TH
4069 } while (pos);
4070
4071 return last;
4072}
4073
4074/**
492eb21b 4075 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4076 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4077 * @root: css whose descendants to walk
574bd9f7 4078 *
492eb21b 4079 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4080 * to visit for post-order traversal of @root's descendants. @root is
4081 * included in the iteration and the last node to be visited.
75501a6d 4082 *
87fb54f1
TH
4083 * While this function requires cgroup_mutex or RCU read locking, it
4084 * doesn't require the whole traversal to be contained in a single critical
4085 * section. This function will return the correct next descendant as long
4086 * as both @pos and @cgroup are accessible and @pos is a descendant of
4087 * @cgroup.
c2931b70
TH
4088 *
4089 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4090 * css which finished ->css_online() is guaranteed to be visible in the
4091 * future iterations and will stay visible until the last reference is put.
4092 * A css which hasn't finished ->css_online() or already finished
4093 * ->css_offline() may show up during traversal. It's each subsystem's
4094 * responsibility to synchronize against on/offlining.
574bd9f7 4095 */
492eb21b
TH
4096struct cgroup_subsys_state *
4097css_next_descendant_post(struct cgroup_subsys_state *pos,
4098 struct cgroup_subsys_state *root)
574bd9f7 4099{
492eb21b 4100 struct cgroup_subsys_state *next;
574bd9f7 4101
8353da1f 4102 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4103
58b79a91
TH
4104 /* if first iteration, visit leftmost descendant which may be @root */
4105 if (!pos)
4106 return css_leftmost_descendant(root);
574bd9f7 4107
bd8815a6
TH
4108 /* if we visited @root, we're done */
4109 if (pos == root)
4110 return NULL;
4111
574bd9f7 4112 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4113 next = css_next_child(pos, pos->parent);
75501a6d 4114 if (next)
492eb21b 4115 return css_leftmost_descendant(next);
574bd9f7
TH
4116
4117 /* no sibling left, visit parent */
5c9d535b 4118 return pos->parent;
574bd9f7 4119}
574bd9f7 4120
f3d46500
TH
4121/**
4122 * css_has_online_children - does a css have online children
4123 * @css: the target css
4124 *
4125 * Returns %true if @css has any online children; otherwise, %false. This
4126 * function can be called from any context but the caller is responsible
4127 * for synchronizing against on/offlining as necessary.
4128 */
4129bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4130{
f3d46500
TH
4131 struct cgroup_subsys_state *child;
4132 bool ret = false;
cbc125ef
TH
4133
4134 rcu_read_lock();
f3d46500 4135 css_for_each_child(child, css) {
99bae5f9 4136 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4137 ret = true;
4138 break;
cbc125ef
TH
4139 }
4140 }
4141 rcu_read_unlock();
f3d46500 4142 return ret;
574bd9f7 4143}
574bd9f7 4144
0942eeee 4145/**
ecb9d535 4146 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4147 * @it: the iterator to advance
4148 *
4149 * Advance @it to the next css_set to walk.
d515876e 4150 */
ecb9d535 4151static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4152{
0f0a2b4f 4153 struct list_head *l = it->cset_pos;
d515876e
TH
4154 struct cgrp_cset_link *link;
4155 struct css_set *cset;
4156
f0d9a5f1 4157 lockdep_assert_held(&css_set_lock);
ed27b9f7 4158
d515876e
TH
4159 /* Advance to the next non-empty css_set */
4160 do {
4161 l = l->next;
0f0a2b4f
TH
4162 if (l == it->cset_head) {
4163 it->cset_pos = NULL;
ecb9d535 4164 it->task_pos = NULL;
d515876e
TH
4165 return;
4166 }
3ebb2b6e
TH
4167
4168 if (it->ss) {
4169 cset = container_of(l, struct css_set,
4170 e_cset_node[it->ss->id]);
4171 } else {
4172 link = list_entry(l, struct cgrp_cset_link, cset_link);
4173 cset = link->cset;
4174 }
0de0942d 4175 } while (!css_set_populated(cset));
c7561128 4176
0f0a2b4f 4177 it->cset_pos = l;
c7561128
TH
4178
4179 if (!list_empty(&cset->tasks))
0f0a2b4f 4180 it->task_pos = cset->tasks.next;
c7561128 4181 else
0f0a2b4f
TH
4182 it->task_pos = cset->mg_tasks.next;
4183
4184 it->tasks_head = &cset->tasks;
4185 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4186
4187 /*
4188 * We don't keep css_sets locked across iteration steps and thus
4189 * need to take steps to ensure that iteration can be resumed after
4190 * the lock is re-acquired. Iteration is performed at two levels -
4191 * css_sets and tasks in them.
4192 *
4193 * Once created, a css_set never leaves its cgroup lists, so a
4194 * pinned css_set is guaranteed to stay put and we can resume
4195 * iteration afterwards.
4196 *
4197 * Tasks may leave @cset across iteration steps. This is resolved
4198 * by registering each iterator with the css_set currently being
4199 * walked and making css_set_move_task() advance iterators whose
4200 * next task is leaving.
4201 */
4202 if (it->cur_cset) {
4203 list_del(&it->iters_node);
4204 put_css_set_locked(it->cur_cset);
4205 }
4206 get_css_set(cset);
4207 it->cur_cset = cset;
4208 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4209}
4210
ecb9d535
TH
4211static void css_task_iter_advance(struct css_task_iter *it)
4212{
4213 struct list_head *l = it->task_pos;
4214
f0d9a5f1 4215 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4216 WARN_ON_ONCE(!l);
4217
4218 /*
4219 * Advance iterator to find next entry. cset->tasks is consumed
4220 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4221 * next cset.
4222 */
4223 l = l->next;
4224
4225 if (l == it->tasks_head)
4226 l = it->mg_tasks_head->next;
4227
4228 if (l == it->mg_tasks_head)
4229 css_task_iter_advance_css_set(it);
4230 else
4231 it->task_pos = l;
4232}
4233
0942eeee 4234/**
72ec7029
TH
4235 * css_task_iter_start - initiate task iteration
4236 * @css: the css to walk tasks of
0942eeee
TH
4237 * @it: the task iterator to use
4238 *
72ec7029
TH
4239 * Initiate iteration through the tasks of @css. The caller can call
4240 * css_task_iter_next() to walk through the tasks until the function
4241 * returns NULL. On completion of iteration, css_task_iter_end() must be
4242 * called.
0942eeee 4243 */
72ec7029
TH
4244void css_task_iter_start(struct cgroup_subsys_state *css,
4245 struct css_task_iter *it)
817929ec 4246{
56fde9e0
TH
4247 /* no one should try to iterate before mounting cgroups */
4248 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4249
ed27b9f7
TH
4250 memset(it, 0, sizeof(*it));
4251
f0d9a5f1 4252 spin_lock_bh(&css_set_lock);
c59cd3d8 4253
3ebb2b6e
TH
4254 it->ss = css->ss;
4255
4256 if (it->ss)
4257 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4258 else
4259 it->cset_pos = &css->cgroup->cset_links;
4260
0f0a2b4f 4261 it->cset_head = it->cset_pos;
c59cd3d8 4262
ecb9d535 4263 css_task_iter_advance_css_set(it);
ed27b9f7 4264
f0d9a5f1 4265 spin_unlock_bh(&css_set_lock);
817929ec
PM
4266}
4267
0942eeee 4268/**
72ec7029 4269 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4270 * @it: the task iterator being iterated
4271 *
4272 * The "next" function for task iteration. @it should have been
72ec7029
TH
4273 * initialized via css_task_iter_start(). Returns NULL when the iteration
4274 * reaches the end.
0942eeee 4275 */
72ec7029 4276struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4277{
d5745675 4278 if (it->cur_task) {
ed27b9f7 4279 put_task_struct(it->cur_task);
d5745675
TH
4280 it->cur_task = NULL;
4281 }
ed27b9f7 4282
f0d9a5f1 4283 spin_lock_bh(&css_set_lock);
ed27b9f7 4284
d5745675
TH
4285 if (it->task_pos) {
4286 it->cur_task = list_entry(it->task_pos, struct task_struct,
4287 cg_list);
4288 get_task_struct(it->cur_task);
4289 css_task_iter_advance(it);
4290 }
ed27b9f7 4291
f0d9a5f1 4292 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4293
4294 return it->cur_task;
817929ec
PM
4295}
4296
0942eeee 4297/**
72ec7029 4298 * css_task_iter_end - finish task iteration
0942eeee
TH
4299 * @it: the task iterator to finish
4300 *
72ec7029 4301 * Finish task iteration started by css_task_iter_start().
0942eeee 4302 */
72ec7029 4303void css_task_iter_end(struct css_task_iter *it)
31a7df01 4304{
ed27b9f7 4305 if (it->cur_cset) {
f0d9a5f1 4306 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4307 list_del(&it->iters_node);
4308 put_css_set_locked(it->cur_cset);
f0d9a5f1 4309 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4310 }
4311
4312 if (it->cur_task)
4313 put_task_struct(it->cur_task);
31a7df01
CW
4314}
4315
4316/**
8cc99345
TH
4317 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4318 * @to: cgroup to which the tasks will be moved
4319 * @from: cgroup in which the tasks currently reside
31a7df01 4320 *
eaf797ab
TH
4321 * Locking rules between cgroup_post_fork() and the migration path
4322 * guarantee that, if a task is forking while being migrated, the new child
4323 * is guaranteed to be either visible in the source cgroup after the
4324 * parent's migration is complete or put into the target cgroup. No task
4325 * can slip out of migration through forking.
31a7df01 4326 */
8cc99345 4327int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4328{
952aaa12
TH
4329 LIST_HEAD(preloaded_csets);
4330 struct cgrp_cset_link *link;
72ec7029 4331 struct css_task_iter it;
e406d1cf 4332 struct task_struct *task;
952aaa12 4333 int ret;
31a7df01 4334
6c694c88
TH
4335 if (!cgroup_may_migrate_to(to))
4336 return -EBUSY;
4337
952aaa12 4338 mutex_lock(&cgroup_mutex);
31a7df01 4339
952aaa12 4340 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4341 spin_lock_bh(&css_set_lock);
952aaa12
TH
4342 list_for_each_entry(link, &from->cset_links, cset_link)
4343 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4344 spin_unlock_bh(&css_set_lock);
31a7df01 4345
e4857982 4346 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4347 if (ret)
4348 goto out_err;
8cc99345 4349
952aaa12 4350 /*
2cfa2b19 4351 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4352 * ->can_attach() fails.
4353 */
e406d1cf 4354 do {
9d800df1 4355 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4356 task = css_task_iter_next(&it);
4357 if (task)
4358 get_task_struct(task);
4359 css_task_iter_end(&it);
4360
4361 if (task) {
37ff9f8f 4362 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4363 put_task_struct(task);
4364 }
4365 } while (task && !ret);
952aaa12
TH
4366out_err:
4367 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4368 mutex_unlock(&cgroup_mutex);
e406d1cf 4369 return ret;
8cc99345
TH
4370}
4371
bbcb81d0 4372/*
102a775e 4373 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4374 *
4375 * Reading this file can return large amounts of data if a cgroup has
4376 * *lots* of attached tasks. So it may need several calls to read(),
4377 * but we cannot guarantee that the information we produce is correct
4378 * unless we produce it entirely atomically.
4379 *
bbcb81d0 4380 */
bbcb81d0 4381
24528255
LZ
4382/* which pidlist file are we talking about? */
4383enum cgroup_filetype {
4384 CGROUP_FILE_PROCS,
4385 CGROUP_FILE_TASKS,
4386};
4387
4388/*
4389 * A pidlist is a list of pids that virtually represents the contents of one
4390 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4391 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4392 * to the cgroup.
4393 */
4394struct cgroup_pidlist {
4395 /*
4396 * used to find which pidlist is wanted. doesn't change as long as
4397 * this particular list stays in the list.
4398 */
4399 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4400 /* array of xids */
4401 pid_t *list;
4402 /* how many elements the above list has */
4403 int length;
24528255
LZ
4404 /* each of these stored in a list by its cgroup */
4405 struct list_head links;
4406 /* pointer to the cgroup we belong to, for list removal purposes */
4407 struct cgroup *owner;
b1a21367
TH
4408 /* for delayed destruction */
4409 struct delayed_work destroy_dwork;
24528255
LZ
4410};
4411
d1d9fd33
BB
4412/*
4413 * The following two functions "fix" the issue where there are more pids
4414 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4415 * TODO: replace with a kernel-wide solution to this problem
4416 */
4417#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4418static void *pidlist_allocate(int count)
4419{
4420 if (PIDLIST_TOO_LARGE(count))
4421 return vmalloc(count * sizeof(pid_t));
4422 else
4423 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4424}
b1a21367 4425
d1d9fd33
BB
4426static void pidlist_free(void *p)
4427{
58794514 4428 kvfree(p);
d1d9fd33 4429}
d1d9fd33 4430
b1a21367
TH
4431/*
4432 * Used to destroy all pidlists lingering waiting for destroy timer. None
4433 * should be left afterwards.
4434 */
4435static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4436{
4437 struct cgroup_pidlist *l, *tmp_l;
4438
4439 mutex_lock(&cgrp->pidlist_mutex);
4440 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4441 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4442 mutex_unlock(&cgrp->pidlist_mutex);
4443
4444 flush_workqueue(cgroup_pidlist_destroy_wq);
4445 BUG_ON(!list_empty(&cgrp->pidlists));
4446}
4447
4448static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4449{
4450 struct delayed_work *dwork = to_delayed_work(work);
4451 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4452 destroy_dwork);
4453 struct cgroup_pidlist *tofree = NULL;
4454
4455 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4456
4457 /*
04502365
TH
4458 * Destroy iff we didn't get queued again. The state won't change
4459 * as destroy_dwork can only be queued while locked.
b1a21367 4460 */
04502365 4461 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4462 list_del(&l->links);
4463 pidlist_free(l->list);
4464 put_pid_ns(l->key.ns);
4465 tofree = l;
4466 }
4467
b1a21367
TH
4468 mutex_unlock(&l->owner->pidlist_mutex);
4469 kfree(tofree);
4470}
4471
bbcb81d0 4472/*
102a775e 4473 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4474 * Returns the number of unique elements.
bbcb81d0 4475 */
6ee211ad 4476static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4477{
102a775e 4478 int src, dest = 1;
102a775e
BB
4479
4480 /*
4481 * we presume the 0th element is unique, so i starts at 1. trivial
4482 * edge cases first; no work needs to be done for either
4483 */
4484 if (length == 0 || length == 1)
4485 return length;
4486 /* src and dest walk down the list; dest counts unique elements */
4487 for (src = 1; src < length; src++) {
4488 /* find next unique element */
4489 while (list[src] == list[src-1]) {
4490 src++;
4491 if (src == length)
4492 goto after;
4493 }
4494 /* dest always points to where the next unique element goes */
4495 list[dest] = list[src];
4496 dest++;
4497 }
4498after:
102a775e
BB
4499 return dest;
4500}
4501
afb2bc14
TH
4502/*
4503 * The two pid files - task and cgroup.procs - guaranteed that the result
4504 * is sorted, which forced this whole pidlist fiasco. As pid order is
4505 * different per namespace, each namespace needs differently sorted list,
4506 * making it impossible to use, for example, single rbtree of member tasks
4507 * sorted by task pointer. As pidlists can be fairly large, allocating one
4508 * per open file is dangerous, so cgroup had to implement shared pool of
4509 * pidlists keyed by cgroup and namespace.
4510 *
4511 * All this extra complexity was caused by the original implementation
4512 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4513 * want to do away with it. Explicitly scramble sort order if on the
4514 * default hierarchy so that no such expectation exists in the new
4515 * interface.
afb2bc14
TH
4516 *
4517 * Scrambling is done by swapping every two consecutive bits, which is
4518 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4519 */
4520static pid_t pid_fry(pid_t pid)
4521{
4522 unsigned a = pid & 0x55555555;
4523 unsigned b = pid & 0xAAAAAAAA;
4524
4525 return (a << 1) | (b >> 1);
4526}
4527
4528static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4529{
aa6ec29b 4530 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4531 return pid_fry(pid);
4532 else
4533 return pid;
4534}
4535
102a775e
BB
4536static int cmppid(const void *a, const void *b)
4537{
4538 return *(pid_t *)a - *(pid_t *)b;
4539}
4540
afb2bc14
TH
4541static int fried_cmppid(const void *a, const void *b)
4542{
4543 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4544}
4545
e6b81710
TH
4546static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4547 enum cgroup_filetype type)
4548{
4549 struct cgroup_pidlist *l;
4550 /* don't need task_nsproxy() if we're looking at ourself */
4551 struct pid_namespace *ns = task_active_pid_ns(current);
4552
4553 lockdep_assert_held(&cgrp->pidlist_mutex);
4554
4555 list_for_each_entry(l, &cgrp->pidlists, links)
4556 if (l->key.type == type && l->key.ns == ns)
4557 return l;
4558 return NULL;
4559}
4560
72a8cb30
BB
4561/*
4562 * find the appropriate pidlist for our purpose (given procs vs tasks)
4563 * returns with the lock on that pidlist already held, and takes care
4564 * of the use count, or returns NULL with no locks held if we're out of
4565 * memory.
4566 */
e6b81710
TH
4567static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4568 enum cgroup_filetype type)
72a8cb30
BB
4569{
4570 struct cgroup_pidlist *l;
b70cc5fd 4571
e6b81710
TH
4572 lockdep_assert_held(&cgrp->pidlist_mutex);
4573
4574 l = cgroup_pidlist_find(cgrp, type);
4575 if (l)
4576 return l;
4577
72a8cb30 4578 /* entry not found; create a new one */
f4f4be2b 4579 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4580 if (!l)
72a8cb30 4581 return l;
e6b81710 4582
b1a21367 4583 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4584 l->key.type = type;
e6b81710
TH
4585 /* don't need task_nsproxy() if we're looking at ourself */
4586 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4587 l->owner = cgrp;
4588 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4589 return l;
4590}
4591
102a775e
BB
4592/*
4593 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4594 */
72a8cb30
BB
4595static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4596 struct cgroup_pidlist **lp)
102a775e
BB
4597{
4598 pid_t *array;
4599 int length;
4600 int pid, n = 0; /* used for populating the array */
72ec7029 4601 struct css_task_iter it;
817929ec 4602 struct task_struct *tsk;
102a775e
BB
4603 struct cgroup_pidlist *l;
4604
4bac00d1
TH
4605 lockdep_assert_held(&cgrp->pidlist_mutex);
4606
102a775e
BB
4607 /*
4608 * If cgroup gets more users after we read count, we won't have
4609 * enough space - tough. This race is indistinguishable to the
4610 * caller from the case that the additional cgroup users didn't
4611 * show up until sometime later on.
4612 */
4613 length = cgroup_task_count(cgrp);
d1d9fd33 4614 array = pidlist_allocate(length);
102a775e
BB
4615 if (!array)
4616 return -ENOMEM;
4617 /* now, populate the array */
9d800df1 4618 css_task_iter_start(&cgrp->self, &it);
72ec7029 4619 while ((tsk = css_task_iter_next(&it))) {
102a775e 4620 if (unlikely(n == length))
817929ec 4621 break;
102a775e 4622 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4623 if (type == CGROUP_FILE_PROCS)
4624 pid = task_tgid_vnr(tsk);
4625 else
4626 pid = task_pid_vnr(tsk);
102a775e
BB
4627 if (pid > 0) /* make sure to only use valid results */
4628 array[n++] = pid;
817929ec 4629 }
72ec7029 4630 css_task_iter_end(&it);
102a775e
BB
4631 length = n;
4632 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4633 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4634 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4635 else
4636 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4637 if (type == CGROUP_FILE_PROCS)
6ee211ad 4638 length = pidlist_uniq(array, length);
e6b81710 4639
e6b81710 4640 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4641 if (!l) {
d1d9fd33 4642 pidlist_free(array);
72a8cb30 4643 return -ENOMEM;
102a775e 4644 }
e6b81710
TH
4645
4646 /* store array, freeing old if necessary */
d1d9fd33 4647 pidlist_free(l->list);
102a775e
BB
4648 l->list = array;
4649 l->length = length;
72a8cb30 4650 *lp = l;
102a775e 4651 return 0;
bbcb81d0
PM
4652}
4653
846c7bb0 4654/**
a043e3b2 4655 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4656 * @stats: cgroupstats to fill information into
4657 * @dentry: A dentry entry belonging to the cgroup for which stats have
4658 * been requested.
a043e3b2
LZ
4659 *
4660 * Build and fill cgroupstats so that taskstats can export it to user
4661 * space.
846c7bb0
BS
4662 */
4663int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4664{
2bd59d48 4665 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4666 struct cgroup *cgrp;
72ec7029 4667 struct css_task_iter it;
846c7bb0 4668 struct task_struct *tsk;
33d283be 4669
2bd59d48
TH
4670 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4671 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4672 kernfs_type(kn) != KERNFS_DIR)
4673 return -EINVAL;
4674
bad34660
LZ
4675 mutex_lock(&cgroup_mutex);
4676
846c7bb0 4677 /*
2bd59d48 4678 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4679 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4680 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4681 */
2bd59d48
TH
4682 rcu_read_lock();
4683 cgrp = rcu_dereference(kn->priv);
bad34660 4684 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4685 rcu_read_unlock();
bad34660 4686 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4687 return -ENOENT;
4688 }
bad34660 4689 rcu_read_unlock();
846c7bb0 4690
9d800df1 4691 css_task_iter_start(&cgrp->self, &it);
72ec7029 4692 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4693 switch (tsk->state) {
4694 case TASK_RUNNING:
4695 stats->nr_running++;
4696 break;
4697 case TASK_INTERRUPTIBLE:
4698 stats->nr_sleeping++;
4699 break;
4700 case TASK_UNINTERRUPTIBLE:
4701 stats->nr_uninterruptible++;
4702 break;
4703 case TASK_STOPPED:
4704 stats->nr_stopped++;
4705 break;
4706 default:
4707 if (delayacct_is_task_waiting_on_io(tsk))
4708 stats->nr_io_wait++;
4709 break;
4710 }
4711 }
72ec7029 4712 css_task_iter_end(&it);
846c7bb0 4713
bad34660 4714 mutex_unlock(&cgroup_mutex);
2bd59d48 4715 return 0;
846c7bb0
BS
4716}
4717
8f3ff208 4718
bbcb81d0 4719/*
102a775e 4720 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4721 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4722 * in the cgroup->l->list array.
bbcb81d0 4723 */
cc31edce 4724
102a775e 4725static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4726{
cc31edce
PM
4727 /*
4728 * Initially we receive a position value that corresponds to
4729 * one more than the last pid shown (or 0 on the first call or
4730 * after a seek to the start). Use a binary-search to find the
4731 * next pid to display, if any
4732 */
2bd59d48 4733 struct kernfs_open_file *of = s->private;
7da11279 4734 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4735 struct cgroup_pidlist *l;
7da11279 4736 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4737 int index = 0, pid = *pos;
4bac00d1
TH
4738 int *iter, ret;
4739
4740 mutex_lock(&cgrp->pidlist_mutex);
4741
4742 /*
5d22444f 4743 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4744 * after open. If the matching pidlist is around, we can use that.
5d22444f 4745 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4746 * could already have been destroyed.
4747 */
5d22444f
TH
4748 if (of->priv)
4749 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4750
4751 /*
4752 * Either this is the first start() after open or the matching
4753 * pidlist has been destroyed inbetween. Create a new one.
4754 */
5d22444f
TH
4755 if (!of->priv) {
4756 ret = pidlist_array_load(cgrp, type,
4757 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4758 if (ret)
4759 return ERR_PTR(ret);
4760 }
5d22444f 4761 l = of->priv;
cc31edce 4762
cc31edce 4763 if (pid) {
102a775e 4764 int end = l->length;
20777766 4765
cc31edce
PM
4766 while (index < end) {
4767 int mid = (index + end) / 2;
afb2bc14 4768 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4769 index = mid;
4770 break;
afb2bc14 4771 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4772 index = mid + 1;
4773 else
4774 end = mid;
4775 }
4776 }
4777 /* If we're off the end of the array, we're done */
102a775e 4778 if (index >= l->length)
cc31edce
PM
4779 return NULL;
4780 /* Update the abstract position to be the actual pid that we found */
102a775e 4781 iter = l->list + index;
afb2bc14 4782 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4783 return iter;
4784}
4785
102a775e 4786static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4787{
2bd59d48 4788 struct kernfs_open_file *of = s->private;
5d22444f 4789 struct cgroup_pidlist *l = of->priv;
62236858 4790
5d22444f
TH
4791 if (l)
4792 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4793 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4794 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4795}
4796
102a775e 4797static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4798{
2bd59d48 4799 struct kernfs_open_file *of = s->private;
5d22444f 4800 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4801 pid_t *p = v;
4802 pid_t *end = l->list + l->length;
cc31edce
PM
4803 /*
4804 * Advance to the next pid in the array. If this goes off the
4805 * end, we're done
4806 */
4807 p++;
4808 if (p >= end) {
4809 return NULL;
4810 } else {
7da11279 4811 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4812 return p;
4813 }
4814}
4815
102a775e 4816static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4817{
94ff212d
JP
4818 seq_printf(s, "%d\n", *(int *)v);
4819
4820 return 0;
cc31edce 4821}
bbcb81d0 4822
182446d0
TH
4823static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4824 struct cftype *cft)
81a6a5cd 4825{
182446d0 4826 return notify_on_release(css->cgroup);
81a6a5cd
PM
4827}
4828
182446d0
TH
4829static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4830 struct cftype *cft, u64 val)
6379c106 4831{
6379c106 4832 if (val)
182446d0 4833 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4834 else
182446d0 4835 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4836 return 0;
4837}
4838
182446d0
TH
4839static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4840 struct cftype *cft)
97978e6d 4841{
182446d0 4842 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4843}
4844
182446d0
TH
4845static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4846 struct cftype *cft, u64 val)
97978e6d
DL
4847{
4848 if (val)
182446d0 4849 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4850 else
182446d0 4851 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4852 return 0;
4853}
4854
a14c6874
TH
4855/* cgroup core interface files for the default hierarchy */
4856static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4857 {
d5c56ced 4858 .name = "cgroup.procs",
6f60eade 4859 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4860 .seq_start = cgroup_pidlist_start,
4861 .seq_next = cgroup_pidlist_next,
4862 .seq_stop = cgroup_pidlist_stop,
4863 .seq_show = cgroup_pidlist_show,
5d22444f 4864 .private = CGROUP_FILE_PROCS,
acbef755 4865 .write = cgroup_procs_write,
102a775e 4866 },
f8f22e53
TH
4867 {
4868 .name = "cgroup.controllers",
f8f22e53
TH
4869 .seq_show = cgroup_controllers_show,
4870 },
4871 {
4872 .name = "cgroup.subtree_control",
f8f22e53 4873 .seq_show = cgroup_subtree_control_show,
451af504 4874 .write = cgroup_subtree_control_write,
f8f22e53 4875 },
842b597e 4876 {
4a07c222 4877 .name = "cgroup.events",
a14c6874 4878 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4879 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4880 .seq_show = cgroup_events_show,
842b597e 4881 },
a14c6874
TH
4882 { } /* terminate */
4883};
d5c56ced 4884
a14c6874
TH
4885/* cgroup core interface files for the legacy hierarchies */
4886static struct cftype cgroup_legacy_base_files[] = {
4887 {
4888 .name = "cgroup.procs",
4889 .seq_start = cgroup_pidlist_start,
4890 .seq_next = cgroup_pidlist_next,
4891 .seq_stop = cgroup_pidlist_stop,
4892 .seq_show = cgroup_pidlist_show,
4893 .private = CGROUP_FILE_PROCS,
4894 .write = cgroup_procs_write,
a14c6874
TH
4895 },
4896 {
4897 .name = "cgroup.clone_children",
4898 .read_u64 = cgroup_clone_children_read,
4899 .write_u64 = cgroup_clone_children_write,
4900 },
4901 {
4902 .name = "cgroup.sane_behavior",
4903 .flags = CFTYPE_ONLY_ON_ROOT,
4904 .seq_show = cgroup_sane_behavior_show,
4905 },
d5c56ced
TH
4906 {
4907 .name = "tasks",
6612f05b
TH
4908 .seq_start = cgroup_pidlist_start,
4909 .seq_next = cgroup_pidlist_next,
4910 .seq_stop = cgroup_pidlist_stop,
4911 .seq_show = cgroup_pidlist_show,
5d22444f 4912 .private = CGROUP_FILE_TASKS,
acbef755 4913 .write = cgroup_tasks_write,
d5c56ced
TH
4914 },
4915 {
4916 .name = "notify_on_release",
d5c56ced
TH
4917 .read_u64 = cgroup_read_notify_on_release,
4918 .write_u64 = cgroup_write_notify_on_release,
4919 },
6e6ff25b
TH
4920 {
4921 .name = "release_agent",
a14c6874 4922 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4923 .seq_show = cgroup_release_agent_show,
451af504 4924 .write = cgroup_release_agent_write,
5f469907 4925 .max_write_len = PATH_MAX - 1,
6e6ff25b 4926 },
db0416b6 4927 { } /* terminate */
bbcb81d0
PM
4928};
4929
0c21ead1
TH
4930/*
4931 * css destruction is four-stage process.
4932 *
4933 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4934 * Implemented in kill_css().
4935 *
4936 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4937 * and thus css_tryget_online() is guaranteed to fail, the css can be
4938 * offlined by invoking offline_css(). After offlining, the base ref is
4939 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4940 *
4941 * 3. When the percpu_ref reaches zero, the only possible remaining
4942 * accessors are inside RCU read sections. css_release() schedules the
4943 * RCU callback.
4944 *
4945 * 4. After the grace period, the css can be freed. Implemented in
4946 * css_free_work_fn().
4947 *
4948 * It is actually hairier because both step 2 and 4 require process context
4949 * and thus involve punting to css->destroy_work adding two additional
4950 * steps to the already complex sequence.
4951 */
35ef10da 4952static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4953{
4954 struct cgroup_subsys_state *css =
35ef10da 4955 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4956 struct cgroup_subsys *ss = css->ss;
0c21ead1 4957 struct cgroup *cgrp = css->cgroup;
48ddbe19 4958
9a1049da
TH
4959 percpu_ref_exit(&css->refcnt);
4960
01e58659 4961 if (ss) {
9d755d33 4962 /* css free path */
8bb5ef79 4963 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4964 int id = css->id;
4965
01e58659
VD
4966 ss->css_free(css);
4967 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4968 cgroup_put(cgrp);
8bb5ef79
TH
4969
4970 if (parent)
4971 css_put(parent);
9d755d33
TH
4972 } else {
4973 /* cgroup free path */
4974 atomic_dec(&cgrp->root->nr_cgrps);
4975 cgroup_pidlist_destroy_all(cgrp);
971ff493 4976 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4977
d51f39b0 4978 if (cgroup_parent(cgrp)) {
9d755d33
TH
4979 /*
4980 * We get a ref to the parent, and put the ref when
4981 * this cgroup is being freed, so it's guaranteed
4982 * that the parent won't be destroyed before its
4983 * children.
4984 */
d51f39b0 4985 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4986 kernfs_put(cgrp->kn);
4987 kfree(cgrp);
4988 } else {
4989 /*
4990 * This is root cgroup's refcnt reaching zero,
4991 * which indicates that the root should be
4992 * released.
4993 */
4994 cgroup_destroy_root(cgrp->root);
4995 }
4996 }
48ddbe19
TH
4997}
4998
0c21ead1 4999static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
5000{
5001 struct cgroup_subsys_state *css =
0c21ead1 5002 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 5003
35ef10da 5004 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 5005 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
5006}
5007
25e15d83 5008static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5009{
5010 struct cgroup_subsys_state *css =
25e15d83 5011 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5012 struct cgroup_subsys *ss = css->ss;
9d755d33 5013 struct cgroup *cgrp = css->cgroup;
15a4c835 5014
1fed1b2e
TH
5015 mutex_lock(&cgroup_mutex);
5016
de3f0341 5017 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5018 list_del_rcu(&css->sibling);
5019
9d755d33
TH
5020 if (ss) {
5021 /* css release path */
01e58659 5022 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5023 if (ss->css_released)
5024 ss->css_released(css);
9d755d33
TH
5025 } else {
5026 /* cgroup release path */
9d755d33
TH
5027 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5028 cgrp->id = -1;
a4189487
LZ
5029
5030 /*
5031 * There are two control paths which try to determine
5032 * cgroup from dentry without going through kernfs -
5033 * cgroupstats_build() and css_tryget_online_from_dir().
5034 * Those are supported by RCU protecting clearing of
5035 * cgrp->kn->priv backpointer.
5036 */
6cd0f5bb
TH
5037 if (cgrp->kn)
5038 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5039 NULL);
9d755d33 5040 }
d3daf28d 5041
1fed1b2e
TH
5042 mutex_unlock(&cgroup_mutex);
5043
0c21ead1 5044 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
5045}
5046
d3daf28d
TH
5047static void css_release(struct percpu_ref *ref)
5048{
5049 struct cgroup_subsys_state *css =
5050 container_of(ref, struct cgroup_subsys_state, refcnt);
5051
25e15d83
TH
5052 INIT_WORK(&css->destroy_work, css_release_work_fn);
5053 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5054}
5055
ddfcadab
TH
5056static void init_and_link_css(struct cgroup_subsys_state *css,
5057 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5058{
0cb51d71
TH
5059 lockdep_assert_held(&cgroup_mutex);
5060
ddfcadab
TH
5061 cgroup_get(cgrp);
5062
d5c419b6 5063 memset(css, 0, sizeof(*css));
bd89aabc 5064 css->cgroup = cgrp;
72c97e54 5065 css->ss = ss;
d5c419b6
TH
5066 INIT_LIST_HEAD(&css->sibling);
5067 INIT_LIST_HEAD(&css->children);
0cb51d71 5068 css->serial_nr = css_serial_nr_next++;
aa226ff4 5069 atomic_set(&css->online_cnt, 0);
0ae78e0b 5070
d51f39b0
TH
5071 if (cgroup_parent(cgrp)) {
5072 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5073 css_get(css->parent);
ddfcadab 5074 }
48ddbe19 5075
ca8bdcaf 5076 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5077}
5078
2a4ac633 5079/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5080static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5081{
623f926b 5082 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5083 int ret = 0;
5084
a31f2d3f
TH
5085 lockdep_assert_held(&cgroup_mutex);
5086
92fb9748 5087 if (ss->css_online)
eb95419b 5088 ret = ss->css_online(css);
ae7f164a 5089 if (!ret) {
eb95419b 5090 css->flags |= CSS_ONLINE;
aec25020 5091 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5092
5093 atomic_inc(&css->online_cnt);
5094 if (css->parent)
5095 atomic_inc(&css->parent->online_cnt);
ae7f164a 5096 }
b1929db4 5097 return ret;
a31f2d3f
TH
5098}
5099
2a4ac633 5100/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5101static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5102{
623f926b 5103 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5104
5105 lockdep_assert_held(&cgroup_mutex);
5106
5107 if (!(css->flags & CSS_ONLINE))
5108 return;
5109
fa06235b
VD
5110 if (ss->css_reset)
5111 ss->css_reset(css);
5112
d7eeac19 5113 if (ss->css_offline)
eb95419b 5114 ss->css_offline(css);
a31f2d3f 5115
eb95419b 5116 css->flags &= ~CSS_ONLINE;
e3297803 5117 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5118
5119 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5120}
5121
c81c925a 5122/**
6cd0f5bb 5123 * css_create - create a cgroup_subsys_state
c81c925a
TH
5124 * @cgrp: the cgroup new css will be associated with
5125 * @ss: the subsys of new css
5126 *
5127 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5128 * css is online and installed in @cgrp. This function doesn't create the
5129 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5130 */
6cd0f5bb
TH
5131static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5132 struct cgroup_subsys *ss)
c81c925a 5133{
d51f39b0 5134 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5135 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5136 struct cgroup_subsys_state *css;
5137 int err;
5138
c81c925a
TH
5139 lockdep_assert_held(&cgroup_mutex);
5140
1fed1b2e 5141 css = ss->css_alloc(parent_css);
c81c925a 5142 if (IS_ERR(css))
6cd0f5bb 5143 return css;
c81c925a 5144
ddfcadab 5145 init_and_link_css(css, ss, cgrp);
a2bed820 5146
2aad2a86 5147 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5148 if (err)
3eb59ec6 5149 goto err_free_css;
c81c925a 5150
cf780b7d 5151 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
5152 if (err < 0)
5153 goto err_free_percpu_ref;
5154 css->id = err;
c81c925a 5155
15a4c835 5156 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5157 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5158 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5159
5160 err = online_css(css);
5161 if (err)
1fed1b2e 5162 goto err_list_del;
94419627 5163
c81c925a 5164 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5165 cgroup_parent(parent)) {
ed3d261b 5166 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5167 current->comm, current->pid, ss->name);
c81c925a 5168 if (!strcmp(ss->name, "memory"))
ed3d261b 5169 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5170 ss->warned_broken_hierarchy = true;
5171 }
5172
6cd0f5bb 5173 return css;
c81c925a 5174
1fed1b2e
TH
5175err_list_del:
5176 list_del_rcu(&css->sibling);
15a4c835 5177 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5178err_free_percpu_ref:
9a1049da 5179 percpu_ref_exit(&css->refcnt);
3eb59ec6 5180err_free_css:
a2bed820 5181 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5182 return ERR_PTR(err);
c81c925a
TH
5183}
5184
a5bca215 5185static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5186{
a5bca215 5187 struct cgroup_root *root = parent->root;
a5bca215
TH
5188 struct cgroup *cgrp, *tcgrp;
5189 int level = parent->level + 1;
03970d3c 5190 int ret;
ddbcc7e8 5191
0a950f65 5192 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5193 cgrp = kzalloc(sizeof(*cgrp) +
5194 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5195 if (!cgrp)
5196 return ERR_PTR(-ENOMEM);
0ab02ca8 5197
2aad2a86 5198 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5199 if (ret)
5200 goto out_free_cgrp;
5201
0ab02ca8
LZ
5202 /*
5203 * Temporarily set the pointer to NULL, so idr_find() won't return
5204 * a half-baked cgroup.
5205 */
cf780b7d 5206 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5207 if (cgrp->id < 0) {
ba0f4d76 5208 ret = -ENOMEM;
9d755d33 5209 goto out_cancel_ref;
976c06bc
TH
5210 }
5211
cc31edce 5212 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5213
9d800df1 5214 cgrp->self.parent = &parent->self;
ba0f4d76 5215 cgrp->root = root;
b11cfb58
TH
5216 cgrp->level = level;
5217
5218 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5219 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5220
b6abdb0e
LZ
5221 if (notify_on_release(parent))
5222 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5223
2260e7fc
TH
5224 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5225 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5226
0cb51d71 5227 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5228
4e139afc 5229 /* allocation complete, commit to creation */
d5c419b6 5230 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5231 atomic_inc(&root->nr_cgrps);
59f5296b 5232 cgroup_get(parent);
415cf07a 5233
0d80255e
TH
5234 /*
5235 * @cgrp is now fully operational. If something fails after this
5236 * point, it'll be released via the normal destruction path.
5237 */
6fa4918d 5238 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5239
bd53d617
TH
5240 /*
5241 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5242 * subtree_control from the parent. Each is configured manually.
bd53d617 5243 */
03970d3c 5244 if (!cgroup_on_dfl(cgrp))
5531dc91 5245 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5246
5247 cgroup_propagate_control(cgrp);
5248
5249 /* @cgrp doesn't have dir yet so the following will only create csses */
5250 ret = cgroup_apply_control_enable(cgrp);
5251 if (ret)
5252 goto out_destroy;
2bd59d48 5253
a5bca215
TH
5254 return cgrp;
5255
5256out_cancel_ref:
5257 percpu_ref_exit(&cgrp->self.refcnt);
5258out_free_cgrp:
5259 kfree(cgrp);
5260 return ERR_PTR(ret);
5261out_destroy:
5262 cgroup_destroy_locked(cgrp);
5263 return ERR_PTR(ret);
5264}
5265
5266static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5267 umode_t mode)
5268{
5269 struct cgroup *parent, *cgrp;
a5bca215 5270 struct kernfs_node *kn;
03970d3c 5271 int ret;
a5bca215
TH
5272
5273 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5274 if (strchr(name, '\n'))
5275 return -EINVAL;
5276
945ba199 5277 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5278 if (!parent)
5279 return -ENODEV;
5280
5281 cgrp = cgroup_create(parent);
5282 if (IS_ERR(cgrp)) {
5283 ret = PTR_ERR(cgrp);
5284 goto out_unlock;
5285 }
5286
195e9b6c
TH
5287 /* create the directory */
5288 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5289 if (IS_ERR(kn)) {
5290 ret = PTR_ERR(kn);
5291 goto out_destroy;
5292 }
5293 cgrp->kn = kn;
5294
5295 /*
5296 * This extra ref will be put in cgroup_free_fn() and guarantees
5297 * that @cgrp->kn is always accessible.
5298 */
5299 kernfs_get(kn);
5300
5301 ret = cgroup_kn_set_ugid(kn);
5302 if (ret)
5303 goto out_destroy;
5304
334c3679 5305 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5306 if (ret)
5307 goto out_destroy;
5308
03970d3c
TH
5309 ret = cgroup_apply_control_enable(cgrp);
5310 if (ret)
5311 goto out_destroy;
195e9b6c
TH
5312
5313 /* let's create and online css's */
2bd59d48 5314 kernfs_activate(kn);
ddbcc7e8 5315
ba0f4d76
TH
5316 ret = 0;
5317 goto out_unlock;
ddbcc7e8 5318
a5bca215
TH
5319out_destroy:
5320 cgroup_destroy_locked(cgrp);
ba0f4d76 5321out_unlock:
a9746d8d 5322 cgroup_kn_unlock(parent_kn);
ba0f4d76 5323 return ret;
ddbcc7e8
PM
5324}
5325
223dbc38
TH
5326/*
5327 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5328 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5329 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5330 */
5331static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5332{
223dbc38
TH
5333 struct cgroup_subsys_state *css =
5334 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5335
f20104de 5336 mutex_lock(&cgroup_mutex);
09a503ea 5337
aa226ff4
TH
5338 do {
5339 offline_css(css);
5340 css_put(css);
5341 /* @css can't go away while we're holding cgroup_mutex */
5342 css = css->parent;
5343 } while (css && atomic_dec_and_test(&css->online_cnt));
5344
5345 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5346}
5347
223dbc38
TH
5348/* css kill confirmation processing requires process context, bounce */
5349static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5350{
5351 struct cgroup_subsys_state *css =
5352 container_of(ref, struct cgroup_subsys_state, refcnt);
5353
aa226ff4
TH
5354 if (atomic_dec_and_test(&css->online_cnt)) {
5355 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5356 queue_work(cgroup_destroy_wq, &css->destroy_work);
5357 }
d3daf28d
TH
5358}
5359
f392e51c
TH
5360/**
5361 * kill_css - destroy a css
5362 * @css: css to destroy
5363 *
5364 * This function initiates destruction of @css by removing cgroup interface
5365 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5366 * asynchronously once css_tryget_online() is guaranteed to fail and when
5367 * the reference count reaches zero, @css will be released.
f392e51c
TH
5368 */
5369static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5370{
01f6474c 5371 lockdep_assert_held(&cgroup_mutex);
94419627 5372
2bd59d48
TH
5373 /*
5374 * This must happen before css is disassociated with its cgroup.
5375 * See seq_css() for details.
5376 */
334c3679 5377 css_clear_dir(css);
3c14f8b4 5378
edae0c33
TH
5379 /*
5380 * Killing would put the base ref, but we need to keep it alive
5381 * until after ->css_offline().
5382 */
5383 css_get(css);
5384
5385 /*
5386 * cgroup core guarantees that, by the time ->css_offline() is
5387 * invoked, no new css reference will be given out via
ec903c0c 5388 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5389 * proceed to offlining css's because percpu_ref_kill() doesn't
5390 * guarantee that the ref is seen as killed on all CPUs on return.
5391 *
5392 * Use percpu_ref_kill_and_confirm() to get notifications as each
5393 * css is confirmed to be seen as killed on all CPUs.
5394 */
5395 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5396}
5397
5398/**
5399 * cgroup_destroy_locked - the first stage of cgroup destruction
5400 * @cgrp: cgroup to be destroyed
5401 *
5402 * css's make use of percpu refcnts whose killing latency shouldn't be
5403 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5404 * guarantee that css_tryget_online() won't succeed by the time
5405 * ->css_offline() is invoked. To satisfy all the requirements,
5406 * destruction is implemented in the following two steps.
d3daf28d
TH
5407 *
5408 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5409 * userland visible parts and start killing the percpu refcnts of
5410 * css's. Set up so that the next stage will be kicked off once all
5411 * the percpu refcnts are confirmed to be killed.
5412 *
5413 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5414 * rest of destruction. Once all cgroup references are gone, the
5415 * cgroup is RCU-freed.
5416 *
5417 * This function implements s1. After this step, @cgrp is gone as far as
5418 * the userland is concerned and a new cgroup with the same name may be
5419 * created. As cgroup doesn't care about the names internally, this
5420 * doesn't cause any problem.
5421 */
42809dd4
TH
5422static int cgroup_destroy_locked(struct cgroup *cgrp)
5423 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5424{
2bd59d48 5425 struct cgroup_subsys_state *css;
2b021cbf 5426 struct cgrp_cset_link *link;
1c6727af 5427 int ssid;
ddbcc7e8 5428
42809dd4
TH
5429 lockdep_assert_held(&cgroup_mutex);
5430
91486f61
TH
5431 /*
5432 * Only migration can raise populated from zero and we're already
5433 * holding cgroup_mutex.
5434 */
5435 if (cgroup_is_populated(cgrp))
ddbcc7e8 5436 return -EBUSY;
a043e3b2 5437
bb78a92f 5438 /*
d5c419b6
TH
5439 * Make sure there's no live children. We can't test emptiness of
5440 * ->self.children as dead children linger on it while being
5441 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5442 */
f3d46500 5443 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5444 return -EBUSY;
5445
455050d2 5446 /*
2b021cbf
TH
5447 * Mark @cgrp and the associated csets dead. The former prevents
5448 * further task migration and child creation by disabling
5449 * cgroup_lock_live_group(). The latter makes the csets ignored by
5450 * the migration path.
455050d2 5451 */
184faf32 5452 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5453
2b021cbf
TH
5454 spin_lock_bh(&css_set_lock);
5455 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5456 link->cset->dead = true;
5457 spin_unlock_bh(&css_set_lock);
5458
249f3468 5459 /* initiate massacre of all css's */
1c6727af
TH
5460 for_each_css(css, ssid, cgrp)
5461 kill_css(css);
455050d2 5462
455050d2 5463 /*
01f6474c
TH
5464 * Remove @cgrp directory along with the base files. @cgrp has an
5465 * extra ref on its kn.
f20104de 5466 */
01f6474c 5467 kernfs_remove(cgrp->kn);
f20104de 5468
d51f39b0 5469 check_for_release(cgroup_parent(cgrp));
2bd59d48 5470
249f3468 5471 /* put the base reference */
9d755d33 5472 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5473
ea15f8cc
TH
5474 return 0;
5475};
5476
2bd59d48 5477static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5478{
a9746d8d 5479 struct cgroup *cgrp;
2bd59d48 5480 int ret = 0;
42809dd4 5481
945ba199 5482 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5483 if (!cgrp)
5484 return 0;
42809dd4 5485
a9746d8d 5486 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5487
a9746d8d 5488 cgroup_kn_unlock(kn);
42809dd4 5489 return ret;
8e3f6541
TH
5490}
5491
2bd59d48
TH
5492static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5493 .remount_fs = cgroup_remount,
5494 .show_options = cgroup_show_options,
5495 .mkdir = cgroup_mkdir,
5496 .rmdir = cgroup_rmdir,
5497 .rename = cgroup_rename,
4f41fc59 5498 .show_path = cgroup_show_path,
2bd59d48
TH
5499};
5500
15a4c835 5501static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5502{
ddbcc7e8 5503 struct cgroup_subsys_state *css;
cfe36bde 5504
a5ae9899 5505 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5506
648bb56d
TH
5507 mutex_lock(&cgroup_mutex);
5508
15a4c835 5509 idr_init(&ss->css_idr);
0adb0704 5510 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5511
3dd06ffa
TH
5512 /* Create the root cgroup state for this subsystem */
5513 ss->root = &cgrp_dfl_root;
5514 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5515 /* We don't handle early failures gracefully */
5516 BUG_ON(IS_ERR(css));
ddfcadab 5517 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5518
5519 /*
5520 * Root csses are never destroyed and we can't initialize
5521 * percpu_ref during early init. Disable refcnting.
5522 */
5523 css->flags |= CSS_NO_REF;
5524
15a4c835 5525 if (early) {
9395a450 5526 /* allocation can't be done safely during early init */
15a4c835
TH
5527 css->id = 1;
5528 } else {
5529 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5530 BUG_ON(css->id < 0);
5531 }
ddbcc7e8 5532
e8d55fde 5533 /* Update the init_css_set to contain a subsys
817929ec 5534 * pointer to this state - since the subsystem is
e8d55fde 5535 * newly registered, all tasks and hence the
3dd06ffa 5536 * init_css_set is in the subsystem's root cgroup. */
aec25020 5537 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5538
cb4a3167
AS
5539 have_fork_callback |= (bool)ss->fork << ss->id;
5540 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5541 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5542 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5543
e8d55fde
LZ
5544 /* At system boot, before all subsystems have been
5545 * registered, no tasks have been forked, so we don't
5546 * need to invoke fork callbacks here. */
5547 BUG_ON(!list_empty(&init_task.tasks));
5548
ae7f164a 5549 BUG_ON(online_css(css));
a8638030 5550
cf5d5941
BB
5551 mutex_unlock(&cgroup_mutex);
5552}
cf5d5941 5553
ddbcc7e8 5554/**
a043e3b2
LZ
5555 * cgroup_init_early - cgroup initialization at system boot
5556 *
5557 * Initialize cgroups at system boot, and initialize any
5558 * subsystems that request early init.
ddbcc7e8
PM
5559 */
5560int __init cgroup_init_early(void)
5561{
7b9a6ba5 5562 static struct cgroup_sb_opts __initdata opts;
30159ec7 5563 struct cgroup_subsys *ss;
ddbcc7e8 5564 int i;
30159ec7 5565
3dd06ffa 5566 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5567 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5568
a4ea1cc9 5569 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5570
3ed80a62 5571 for_each_subsys(ss, i) {
aec25020 5572 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5573 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5574 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5575 ss->id, ss->name);
073219e9
TH
5576 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5577 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5578
aec25020 5579 ss->id = i;
073219e9 5580 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5581 if (!ss->legacy_name)
5582 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5583
5584 if (ss->early_init)
15a4c835 5585 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5586 }
5587 return 0;
5588}
5589
6e5c8307 5590static u16 cgroup_disable_mask __initdata;
a3e72739 5591
ddbcc7e8 5592/**
a043e3b2
LZ
5593 * cgroup_init - cgroup initialization
5594 *
5595 * Register cgroup filesystem and /proc file, and initialize
5596 * any subsystems that didn't request early init.
ddbcc7e8
PM
5597 */
5598int __init cgroup_init(void)
5599{
30159ec7 5600 struct cgroup_subsys *ss;
035f4f51 5601 int ssid;
ddbcc7e8 5602
6e5c8307 5603 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5604 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5605 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5606 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5607
a79a908f
AK
5608 get_user_ns(init_cgroup_ns.user_ns);
5609
54e7b4eb 5610 mutex_lock(&cgroup_mutex);
54e7b4eb 5611
2378d8b8
TH
5612 /*
5613 * Add init_css_set to the hash table so that dfl_root can link to
5614 * it during init.
5615 */
5616 hash_add(css_set_table, &init_css_set.hlist,
5617 css_set_hash(init_css_set.subsys));
82fe9b0d 5618
3dd06ffa 5619 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5620
54e7b4eb
TH
5621 mutex_unlock(&cgroup_mutex);
5622
172a2c06 5623 for_each_subsys(ss, ssid) {
15a4c835
TH
5624 if (ss->early_init) {
5625 struct cgroup_subsys_state *css =
5626 init_css_set.subsys[ss->id];
5627
5628 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5629 GFP_KERNEL);
5630 BUG_ON(css->id < 0);
5631 } else {
5632 cgroup_init_subsys(ss, false);
5633 }
172a2c06 5634
2d8f243a
TH
5635 list_add_tail(&init_css_set.e_cset_node[ssid],
5636 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5637
5638 /*
c731ae1d
LZ
5639 * Setting dfl_root subsys_mask needs to consider the
5640 * disabled flag and cftype registration needs kmalloc,
5641 * both of which aren't available during early_init.
172a2c06 5642 */
a3e72739
TH
5643 if (cgroup_disable_mask & (1 << ssid)) {
5644 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5645 printk(KERN_INFO "Disabling %s control group subsystem\n",
5646 ss->name);
a8ddc821 5647 continue;
a3e72739 5648 }
a8ddc821 5649
223ffb29
JW
5650 if (cgroup_ssid_no_v1(ssid))
5651 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5652 ss->name);
5653
a8ddc821
TH
5654 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5655
f6d635ad
TH
5656 if (ss->implicit_on_dfl)
5657 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5658 else if (!ss->dfl_cftypes)
a7165264 5659 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5660
a8ddc821
TH
5661 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5662 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5663 } else {
5664 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5665 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5666 }
295458e6
VD
5667
5668 if (ss->bind)
5669 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5670 }
5671
2378d8b8
TH
5672 /* init_css_set.subsys[] has been updated, re-hash */
5673 hash_del(&init_css_set.hlist);
5674 hash_add(css_set_table, &init_css_set.hlist,
5675 css_set_hash(init_css_set.subsys));
5676
035f4f51
TH
5677 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5678 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5679 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5680 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5681
2bd59d48 5682 return 0;
ddbcc7e8 5683}
b4f48b63 5684
e5fca243
TH
5685static int __init cgroup_wq_init(void)
5686{
5687 /*
5688 * There isn't much point in executing destruction path in
5689 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5690 * Use 1 for @max_active.
e5fca243
TH
5691 *
5692 * We would prefer to do this in cgroup_init() above, but that
5693 * is called before init_workqueues(): so leave this until after.
5694 */
1a11533f 5695 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5696 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5697
5698 /*
5699 * Used to destroy pidlists and separate to serve as flush domain.
5700 * Cap @max_active to 1 too.
5701 */
5702 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5703 0, 1);
5704 BUG_ON(!cgroup_pidlist_destroy_wq);
5705
e5fca243
TH
5706 return 0;
5707}
5708core_initcall(cgroup_wq_init);
5709
a424316c
PM
5710/*
5711 * proc_cgroup_show()
5712 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5713 * - Used for /proc/<pid>/cgroup.
a424316c 5714 */
006f4ac4
ZL
5715int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5716 struct pid *pid, struct task_struct *tsk)
a424316c 5717{
e61734c5 5718 char *buf, *path;
a424316c 5719 int retval;
3dd06ffa 5720 struct cgroup_root *root;
a424316c
PM
5721
5722 retval = -ENOMEM;
e61734c5 5723 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5724 if (!buf)
5725 goto out;
5726
a424316c 5727 mutex_lock(&cgroup_mutex);
f0d9a5f1 5728 spin_lock_bh(&css_set_lock);
a424316c 5729
985ed670 5730 for_each_root(root) {
a424316c 5731 struct cgroup_subsys *ss;
bd89aabc 5732 struct cgroup *cgrp;
b85d2040 5733 int ssid, count = 0;
a424316c 5734
a7165264 5735 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5736 continue;
5737
2c6ab6d2 5738 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5739 if (root != &cgrp_dfl_root)
5740 for_each_subsys(ss, ssid)
5741 if (root->subsys_mask & (1 << ssid))
5742 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5743 ss->legacy_name);
c6d57f33
PM
5744 if (strlen(root->name))
5745 seq_printf(m, "%sname=%s", count ? "," : "",
5746 root->name);
a424316c 5747 seq_putc(m, ':');
2e91fa7f 5748
7717f7ba 5749 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5750
5751 /*
5752 * On traditional hierarchies, all zombie tasks show up as
5753 * belonging to the root cgroup. On the default hierarchy,
5754 * while a zombie doesn't show up in "cgroup.procs" and
5755 * thus can't be migrated, its /proc/PID/cgroup keeps
5756 * reporting the cgroup it belonged to before exiting. If
5757 * the cgroup is removed before the zombie is reaped,
5758 * " (deleted)" is appended to the cgroup path.
5759 */
5760 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5761 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5762 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5763 if (!path) {
5764 retval = -ENAMETOOLONG;
5765 goto out_unlock;
5766 }
5767 } else {
5768 path = "/";
e61734c5 5769 }
2e91fa7f 5770
e61734c5 5771 seq_puts(m, path);
2e91fa7f
TH
5772
5773 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5774 seq_puts(m, " (deleted)\n");
5775 else
5776 seq_putc(m, '\n');
a424316c
PM
5777 }
5778
006f4ac4 5779 retval = 0;
a424316c 5780out_unlock:
f0d9a5f1 5781 spin_unlock_bh(&css_set_lock);
a424316c 5782 mutex_unlock(&cgroup_mutex);
a424316c
PM
5783 kfree(buf);
5784out:
5785 return retval;
5786}
5787
a424316c
PM
5788/* Display information about each subsystem and each hierarchy */
5789static int proc_cgroupstats_show(struct seq_file *m, void *v)
5790{
30159ec7 5791 struct cgroup_subsys *ss;
a424316c 5792 int i;
a424316c 5793
8bab8dde 5794 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5795 /*
5796 * ideally we don't want subsystems moving around while we do this.
5797 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5798 * subsys/hierarchy state.
5799 */
a424316c 5800 mutex_lock(&cgroup_mutex);
30159ec7
TH
5801
5802 for_each_subsys(ss, i)
2c6ab6d2 5803 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5804 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5805 atomic_read(&ss->root->nr_cgrps),
5806 cgroup_ssid_enabled(i));
30159ec7 5807
a424316c
PM
5808 mutex_unlock(&cgroup_mutex);
5809 return 0;
5810}
5811
5812static int cgroupstats_open(struct inode *inode, struct file *file)
5813{
9dce07f1 5814 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5815}
5816
828c0950 5817static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5818 .open = cgroupstats_open,
5819 .read = seq_read,
5820 .llseek = seq_lseek,
5821 .release = single_release,
5822};
5823
b4f48b63 5824/**
eaf797ab 5825 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5826 * @child: pointer to task_struct of forking parent process.
b4f48b63 5827 *
eaf797ab
TH
5828 * A task is associated with the init_css_set until cgroup_post_fork()
5829 * attaches it to the parent's css_set. Empty cg_list indicates that
5830 * @child isn't holding reference to its css_set.
b4f48b63
PM
5831 */
5832void cgroup_fork(struct task_struct *child)
5833{
eaf797ab 5834 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5835 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5836}
5837
7e47682e
AS
5838/**
5839 * cgroup_can_fork - called on a new task before the process is exposed
5840 * @child: the task in question.
5841 *
5842 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5843 * returns an error, the fork aborts with that error code. This allows for
5844 * a cgroup subsystem to conditionally allow or deny new forks.
5845 */
b53202e6 5846int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5847{
5848 struct cgroup_subsys *ss;
5849 int i, j, ret;
5850
b4e0eeaf 5851 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5852 ret = ss->can_fork(child);
7e47682e
AS
5853 if (ret)
5854 goto out_revert;
b4e0eeaf 5855 } while_each_subsys_mask();
7e47682e
AS
5856
5857 return 0;
5858
5859out_revert:
5860 for_each_subsys(ss, j) {
5861 if (j >= i)
5862 break;
5863 if (ss->cancel_fork)
b53202e6 5864 ss->cancel_fork(child);
7e47682e
AS
5865 }
5866
5867 return ret;
5868}
5869
5870/**
5871 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5872 * @child: the task in question
5873 *
5874 * This calls the cancel_fork() callbacks if a fork failed *after*
5875 * cgroup_can_fork() succeded.
5876 */
b53202e6 5877void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5878{
5879 struct cgroup_subsys *ss;
5880 int i;
5881
5882 for_each_subsys(ss, i)
5883 if (ss->cancel_fork)
b53202e6 5884 ss->cancel_fork(child);
7e47682e
AS
5885}
5886
817929ec 5887/**
a043e3b2
LZ
5888 * cgroup_post_fork - called on a new task after adding it to the task list
5889 * @child: the task in question
5890 *
5edee61e
TH
5891 * Adds the task to the list running through its css_set if necessary and
5892 * call the subsystem fork() callbacks. Has to be after the task is
5893 * visible on the task list in case we race with the first call to
0942eeee 5894 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5895 * list.
a043e3b2 5896 */
b53202e6 5897void cgroup_post_fork(struct task_struct *child)
817929ec 5898{
30159ec7 5899 struct cgroup_subsys *ss;
5edee61e
TH
5900 int i;
5901
3ce3230a 5902 /*
251f8c03 5903 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5904 * function sets use_task_css_set_links before grabbing
5905 * tasklist_lock and we just went through tasklist_lock to add
5906 * @child, it's guaranteed that either we see the set
5907 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5908 * @child during its iteration.
5909 *
5910 * If we won the race, @child is associated with %current's
f0d9a5f1 5911 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5912 * association is stable, and, on completion of the parent's
5913 * migration, @child is visible in the source of migration or
5914 * already in the destination cgroup. This guarantee is necessary
5915 * when implementing operations which need to migrate all tasks of
5916 * a cgroup to another.
5917 *
251f8c03 5918 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5919 * will remain in init_css_set. This is safe because all tasks are
5920 * in the init_css_set before cg_links is enabled and there's no
5921 * operation which transfers all tasks out of init_css_set.
3ce3230a 5922 */
817929ec 5923 if (use_task_css_set_links) {
eaf797ab
TH
5924 struct css_set *cset;
5925
f0d9a5f1 5926 spin_lock_bh(&css_set_lock);
0e1d768f 5927 cset = task_css_set(current);
eaf797ab 5928 if (list_empty(&child->cg_list)) {
eaf797ab 5929 get_css_set(cset);
f6d7d049 5930 css_set_move_task(child, NULL, cset, false);
eaf797ab 5931 }
f0d9a5f1 5932 spin_unlock_bh(&css_set_lock);
817929ec 5933 }
5edee61e
TH
5934
5935 /*
5936 * Call ss->fork(). This must happen after @child is linked on
5937 * css_set; otherwise, @child might change state between ->fork()
5938 * and addition to css_set.
5939 */
b4e0eeaf 5940 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5941 ss->fork(child);
b4e0eeaf 5942 } while_each_subsys_mask();
817929ec 5943}
5edee61e 5944
b4f48b63
PM
5945/**
5946 * cgroup_exit - detach cgroup from exiting task
5947 * @tsk: pointer to task_struct of exiting process
5948 *
5949 * Description: Detach cgroup from @tsk and release it.
5950 *
5951 * Note that cgroups marked notify_on_release force every task in
5952 * them to take the global cgroup_mutex mutex when exiting.
5953 * This could impact scaling on very large systems. Be reluctant to
5954 * use notify_on_release cgroups where very high task exit scaling
5955 * is required on large systems.
5956 *
0e1d768f
TH
5957 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5958 * call cgroup_exit() while the task is still competent to handle
5959 * notify_on_release(), then leave the task attached to the root cgroup in
5960 * each hierarchy for the remainder of its exit. No need to bother with
5961 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5962 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5963 */
1ec41830 5964void cgroup_exit(struct task_struct *tsk)
b4f48b63 5965{
30159ec7 5966 struct cgroup_subsys *ss;
5abb8855 5967 struct css_set *cset;
d41d5a01 5968 int i;
817929ec
PM
5969
5970 /*
0e1d768f 5971 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5972 * with us, we can check css_set and cg_list without synchronization.
817929ec 5973 */
0de0942d
TH
5974 cset = task_css_set(tsk);
5975
817929ec 5976 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5977 spin_lock_bh(&css_set_lock);
f6d7d049 5978 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5979 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5980 } else {
5981 get_css_set(cset);
817929ec
PM
5982 }
5983
cb4a3167 5984 /* see cgroup_post_fork() for details */
b4e0eeaf 5985 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5986 ss->exit(tsk);
b4e0eeaf 5987 } while_each_subsys_mask();
2e91fa7f 5988}
30159ec7 5989
2e91fa7f
TH
5990void cgroup_free(struct task_struct *task)
5991{
5992 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5993 struct cgroup_subsys *ss;
5994 int ssid;
5995
b4e0eeaf 5996 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5997 ss->free(task);
b4e0eeaf 5998 } while_each_subsys_mask();
d41d5a01 5999
2e91fa7f 6000 put_css_set(cset);
b4f48b63 6001}
697f4161 6002
bd89aabc 6003static void check_for_release(struct cgroup *cgrp)
81a6a5cd 6004{
27bd4dbb 6005 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
6006 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6007 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
6008}
6009
81a6a5cd
PM
6010/*
6011 * Notify userspace when a cgroup is released, by running the
6012 * configured release agent with the name of the cgroup (path
6013 * relative to the root of cgroup file system) as the argument.
6014 *
6015 * Most likely, this user command will try to rmdir this cgroup.
6016 *
6017 * This races with the possibility that some other task will be
6018 * attached to this cgroup before it is removed, or that some other
6019 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6020 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6021 * unused, and this cgroup will be reprieved from its death sentence,
6022 * to continue to serve a useful existence. Next time it's released,
6023 * we will get notified again, if it still has 'notify_on_release' set.
6024 *
6025 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6026 * means only wait until the task is successfully execve()'d. The
6027 * separate release agent task is forked by call_usermodehelper(),
6028 * then control in this thread returns here, without waiting for the
6029 * release agent task. We don't bother to wait because the caller of
6030 * this routine has no use for the exit status of the release agent
6031 * task, so no sense holding our caller up for that.
81a6a5cd 6032 */
81a6a5cd
PM
6033static void cgroup_release_agent(struct work_struct *work)
6034{
971ff493
ZL
6035 struct cgroup *cgrp =
6036 container_of(work, struct cgroup, release_agent_work);
6037 char *pathbuf = NULL, *agentbuf = NULL, *path;
6038 char *argv[3], *envp[3];
6039
81a6a5cd 6040 mutex_lock(&cgroup_mutex);
971ff493
ZL
6041
6042 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6043 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6044 if (!pathbuf || !agentbuf)
6045 goto out;
6046
a79a908f
AK
6047 spin_lock_bh(&css_set_lock);
6048 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6049 spin_unlock_bh(&css_set_lock);
971ff493
ZL
6050 if (!path)
6051 goto out;
6052
6053 argv[0] = agentbuf;
6054 argv[1] = path;
6055 argv[2] = NULL;
6056
6057 /* minimal command environment */
6058 envp[0] = "HOME=/";
6059 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6060 envp[2] = NULL;
6061
81a6a5cd 6062 mutex_unlock(&cgroup_mutex);
971ff493 6063 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6064 goto out_free;
971ff493 6065out:
81a6a5cd 6066 mutex_unlock(&cgroup_mutex);
3e2cd91a 6067out_free:
971ff493
ZL
6068 kfree(agentbuf);
6069 kfree(pathbuf);
81a6a5cd 6070}
8bab8dde
PM
6071
6072static int __init cgroup_disable(char *str)
6073{
30159ec7 6074 struct cgroup_subsys *ss;
8bab8dde 6075 char *token;
30159ec7 6076 int i;
8bab8dde
PM
6077
6078 while ((token = strsep(&str, ",")) != NULL) {
6079 if (!*token)
6080 continue;
be45c900 6081
3ed80a62 6082 for_each_subsys(ss, i) {
3e1d2eed
TH
6083 if (strcmp(token, ss->name) &&
6084 strcmp(token, ss->legacy_name))
6085 continue;
a3e72739 6086 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6087 }
6088 }
6089 return 1;
6090}
6091__setup("cgroup_disable=", cgroup_disable);
38460b48 6092
223ffb29
JW
6093static int __init cgroup_no_v1(char *str)
6094{
6095 struct cgroup_subsys *ss;
6096 char *token;
6097 int i;
6098
6099 while ((token = strsep(&str, ",")) != NULL) {
6100 if (!*token)
6101 continue;
6102
6103 if (!strcmp(token, "all")) {
6e5c8307 6104 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6105 break;
6106 }
6107
6108 for_each_subsys(ss, i) {
6109 if (strcmp(token, ss->name) &&
6110 strcmp(token, ss->legacy_name))
6111 continue;
6112
6113 cgroup_no_v1_mask |= 1 << i;
6114 }
6115 }
6116 return 1;
6117}
6118__setup("cgroup_no_v1=", cgroup_no_v1);
6119
b77d7b60 6120/**
ec903c0c 6121 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6122 * @dentry: directory dentry of interest
6123 * @ss: subsystem of interest
b77d7b60 6124 *
5a17f543
TH
6125 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6126 * to get the corresponding css and return it. If such css doesn't exist
6127 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6128 */
ec903c0c
TH
6129struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6130 struct cgroup_subsys *ss)
e5d1367f 6131{
2bd59d48 6132 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6133 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6134 struct cgroup_subsys_state *css = NULL;
e5d1367f 6135 struct cgroup *cgrp;
e5d1367f 6136
35cf0836 6137 /* is @dentry a cgroup dir? */
f17fc25f
TH
6138 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6139 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6140 return ERR_PTR(-EBADF);
6141
5a17f543
TH
6142 rcu_read_lock();
6143
2bd59d48
TH
6144 /*
6145 * This path doesn't originate from kernfs and @kn could already
6146 * have been or be removed at any point. @kn->priv is RCU
a4189487 6147 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6148 */
6149 cgrp = rcu_dereference(kn->priv);
6150 if (cgrp)
6151 css = cgroup_css(cgrp, ss);
5a17f543 6152
ec903c0c 6153 if (!css || !css_tryget_online(css))
5a17f543
TH
6154 css = ERR_PTR(-ENOENT);
6155
6156 rcu_read_unlock();
6157 return css;
e5d1367f 6158}
e5d1367f 6159
1cb650b9
LZ
6160/**
6161 * css_from_id - lookup css by id
6162 * @id: the cgroup id
6163 * @ss: cgroup subsys to be looked into
6164 *
6165 * Returns the css if there's valid one with @id, otherwise returns NULL.
6166 * Should be called under rcu_read_lock().
6167 */
6168struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6169{
6fa4918d 6170 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 6171 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
6172}
6173
16af4396
TH
6174/**
6175 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6176 * @path: path on the default hierarchy
6177 *
6178 * Find the cgroup at @path on the default hierarchy, increment its
6179 * reference count and return it. Returns pointer to the found cgroup on
6180 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6181 * if @path points to a non-directory.
6182 */
6183struct cgroup *cgroup_get_from_path(const char *path)
6184{
6185 struct kernfs_node *kn;
6186 struct cgroup *cgrp;
6187
6188 mutex_lock(&cgroup_mutex);
6189
6190 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6191 if (kn) {
6192 if (kernfs_type(kn) == KERNFS_DIR) {
6193 cgrp = kn->priv;
6194 cgroup_get(cgrp);
6195 } else {
6196 cgrp = ERR_PTR(-ENOTDIR);
6197 }
6198 kernfs_put(kn);
6199 } else {
6200 cgrp = ERR_PTR(-ENOENT);
6201 }
6202
6203 mutex_unlock(&cgroup_mutex);
6204 return cgrp;
6205}
6206EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6207
bd1060a1
TH
6208/*
6209 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6210 * definition in cgroup-defs.h.
6211 */
6212#ifdef CONFIG_SOCK_CGROUP_DATA
6213
6214#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6215
3fa4cc9c 6216DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6217static bool cgroup_sk_alloc_disabled __read_mostly;
6218
6219void cgroup_sk_alloc_disable(void)
6220{
6221 if (cgroup_sk_alloc_disabled)
6222 return;
6223 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6224 cgroup_sk_alloc_disabled = true;
6225}
6226
6227#else
6228
6229#define cgroup_sk_alloc_disabled false
6230
6231#endif
6232
6233void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6234{
6235 if (cgroup_sk_alloc_disabled)
6236 return;
6237
6238 rcu_read_lock();
6239
6240 while (true) {
6241 struct css_set *cset;
6242
6243 cset = task_css_set(current);
6244 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6245 skcd->val = (unsigned long)cset->dfl_cgrp;
6246 break;
6247 }
6248 cpu_relax();
6249 }
6250
6251 rcu_read_unlock();
6252}
6253
6254void cgroup_sk_free(struct sock_cgroup_data *skcd)
6255{
6256 cgroup_put(sock_cgroup_ptr(skcd));
6257}
6258
6259#endif /* CONFIG_SOCK_CGROUP_DATA */
6260
a79a908f
AK
6261/* cgroup namespaces */
6262
6263static struct cgroup_namespace *alloc_cgroup_ns(void)
6264{
6265 struct cgroup_namespace *new_ns;
6266 int ret;
6267
6268 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6269 if (!new_ns)
6270 return ERR_PTR(-ENOMEM);
6271 ret = ns_alloc_inum(&new_ns->ns);
6272 if (ret) {
6273 kfree(new_ns);
6274 return ERR_PTR(ret);
6275 }
6276 atomic_set(&new_ns->count, 1);
6277 new_ns->ns.ops = &cgroupns_operations;
6278 return new_ns;
6279}
6280
6281void free_cgroup_ns(struct cgroup_namespace *ns)
6282{
6283 put_css_set(ns->root_cset);
6284 put_user_ns(ns->user_ns);
6285 ns_free_inum(&ns->ns);
6286 kfree(ns);
6287}
6288EXPORT_SYMBOL(free_cgroup_ns);
6289
6290struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6291 struct user_namespace *user_ns,
6292 struct cgroup_namespace *old_ns)
6293{
fa5ff8a1
TH
6294 struct cgroup_namespace *new_ns;
6295 struct css_set *cset;
a79a908f
AK
6296
6297 BUG_ON(!old_ns);
6298
6299 if (!(flags & CLONE_NEWCGROUP)) {
6300 get_cgroup_ns(old_ns);
6301 return old_ns;
6302 }
6303
6304 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6305 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6306 return ERR_PTR(-EPERM);
a79a908f
AK
6307
6308 mutex_lock(&cgroup_mutex);
6309 spin_lock_bh(&css_set_lock);
6310
6311 cset = task_css_set(current);
6312 get_css_set(cset);
6313
6314 spin_unlock_bh(&css_set_lock);
6315 mutex_unlock(&cgroup_mutex);
6316
a79a908f 6317 new_ns = alloc_cgroup_ns();
d2202557 6318 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6319 put_css_set(cset);
6320 return new_ns;
d2202557 6321 }
a79a908f
AK
6322
6323 new_ns->user_ns = get_user_ns(user_ns);
6324 new_ns->root_cset = cset;
6325
6326 return new_ns;
a79a908f
AK
6327}
6328
6329static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6330{
6331 return container_of(ns, struct cgroup_namespace, ns);
6332}
6333
a0530e08 6334static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6335{
a0530e08
AK
6336 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6337
6338 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6339 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6340 return -EPERM;
6341
6342 /* Don't need to do anything if we are attaching to our own cgroupns. */
6343 if (cgroup_ns == nsproxy->cgroup_ns)
6344 return 0;
6345
6346 get_cgroup_ns(cgroup_ns);
6347 put_cgroup_ns(nsproxy->cgroup_ns);
6348 nsproxy->cgroup_ns = cgroup_ns;
6349
6350 return 0;
a79a908f
AK
6351}
6352
6353static struct ns_common *cgroupns_get(struct task_struct *task)
6354{
6355 struct cgroup_namespace *ns = NULL;
6356 struct nsproxy *nsproxy;
6357
6358 task_lock(task);
6359 nsproxy = task->nsproxy;
6360 if (nsproxy) {
6361 ns = nsproxy->cgroup_ns;
6362 get_cgroup_ns(ns);
6363 }
6364 task_unlock(task);
6365
6366 return ns ? &ns->ns : NULL;
6367}
6368
6369static void cgroupns_put(struct ns_common *ns)
6370{
6371 put_cgroup_ns(to_cg_ns(ns));
6372}
6373
6374const struct proc_ns_operations cgroupns_operations = {
6375 .name = "cgroup",
6376 .type = CLONE_NEWCGROUP,
6377 .get = cgroupns_get,
6378 .put = cgroupns_put,
6379 .install = cgroupns_install,
6380};
6381
6382static __init int cgroup_namespaces_init(void)
6383{
6384 return 0;
6385}
6386subsys_initcall(cgroup_namespaces_init);
6387
fe693435 6388#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6389static struct cgroup_subsys_state *
6390debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6391{
6392 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6393
6394 if (!css)
6395 return ERR_PTR(-ENOMEM);
6396
6397 return css;
6398}
6399
eb95419b 6400static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6401{
eb95419b 6402 kfree(css);
fe693435
PM
6403}
6404
182446d0
TH
6405static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6406 struct cftype *cft)
fe693435 6407{
182446d0 6408 return cgroup_task_count(css->cgroup);
fe693435
PM
6409}
6410
182446d0
TH
6411static u64 current_css_set_read(struct cgroup_subsys_state *css,
6412 struct cftype *cft)
fe693435
PM
6413{
6414 return (u64)(unsigned long)current->cgroups;
6415}
6416
182446d0 6417static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6418 struct cftype *cft)
fe693435
PM
6419{
6420 u64 count;
6421
6422 rcu_read_lock();
a8ad805c 6423 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6424 rcu_read_unlock();
6425 return count;
6426}
6427
2da8ca82 6428static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6429{
69d0206c 6430 struct cgrp_cset_link *link;
5abb8855 6431 struct css_set *cset;
e61734c5
TH
6432 char *name_buf;
6433
6434 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6435 if (!name_buf)
6436 return -ENOMEM;
7717f7ba 6437
f0d9a5f1 6438 spin_lock_bh(&css_set_lock);
7717f7ba 6439 rcu_read_lock();
5abb8855 6440 cset = rcu_dereference(current->cgroups);
69d0206c 6441 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6442 struct cgroup *c = link->cgrp;
7717f7ba 6443
a2dd4247 6444 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6445 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6446 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6447 }
6448 rcu_read_unlock();
f0d9a5f1 6449 spin_unlock_bh(&css_set_lock);
e61734c5 6450 kfree(name_buf);
7717f7ba
PM
6451 return 0;
6452}
6453
6454#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6455static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6456{
2da8ca82 6457 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6458 struct cgrp_cset_link *link;
7717f7ba 6459
f0d9a5f1 6460 spin_lock_bh(&css_set_lock);
182446d0 6461 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6462 struct css_set *cset = link->cset;
7717f7ba
PM
6463 struct task_struct *task;
6464 int count = 0;
c7561128 6465
5abb8855 6466 seq_printf(seq, "css_set %p\n", cset);
c7561128 6467
5abb8855 6468 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6469 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6470 goto overflow;
6471 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6472 }
6473
6474 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6475 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6476 goto overflow;
6477 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6478 }
c7561128
TH
6479 continue;
6480 overflow:
6481 seq_puts(seq, " ...\n");
7717f7ba 6482 }
f0d9a5f1 6483 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6484 return 0;
6485}
6486
182446d0 6487static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6488{
27bd4dbb 6489 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6490 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6491}
6492
6493static struct cftype debug_files[] = {
fe693435
PM
6494 {
6495 .name = "taskcount",
6496 .read_u64 = debug_taskcount_read,
6497 },
6498
6499 {
6500 .name = "current_css_set",
6501 .read_u64 = current_css_set_read,
6502 },
6503
6504 {
6505 .name = "current_css_set_refcount",
6506 .read_u64 = current_css_set_refcount_read,
6507 },
6508
7717f7ba
PM
6509 {
6510 .name = "current_css_set_cg_links",
2da8ca82 6511 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6512 },
6513
6514 {
6515 .name = "cgroup_css_links",
2da8ca82 6516 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6517 },
6518
fe693435
PM
6519 {
6520 .name = "releasable",
6521 .read_u64 = releasable_read,
6522 },
fe693435 6523
4baf6e33
TH
6524 { } /* terminate */
6525};
fe693435 6526
073219e9 6527struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6528 .css_alloc = debug_css_alloc,
6529 .css_free = debug_css_free,
5577964e 6530 .legacy_cftypes = debug_files,
fe693435
PM
6531};
6532#endif /* CONFIG_CGROUP_DEBUG */