libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
f6d635ad
TH
189/* some controllers are implicitly enabled on the default hierarchy */
190static unsigned long cgrp_dfl_implicit_ss_mask;
191
ddbcc7e8
PM
192/* The list of hierarchy roots */
193
9871bf95
TH
194static LIST_HEAD(cgroup_roots);
195static int cgroup_root_count;
ddbcc7e8 196
3417ae1f 197/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
794611a1 200/*
0cb51d71
TH
201 * Assign a monotonically increasing serial number to csses. It guarantees
202 * cgroups with bigger numbers are newer than those with smaller numbers.
203 * Also, as csses are always appended to the parent's ->children list, it
204 * guarantees that sibling csses are always sorted in the ascending serial
205 * number order on the list. Protected by cgroup_mutex.
794611a1 206 */
0cb51d71 207static u64 css_serial_nr_next = 1;
794611a1 208
cb4a3167
AS
209/*
210 * These bitmask flags indicate whether tasks in the fork and exit paths have
211 * fork/exit handlers to call. This avoids us having to do extra work in the
212 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 213 */
6e5c8307
TH
214static u16 have_fork_callback __read_mostly;
215static u16 have_exit_callback __read_mostly;
216static u16 have_free_callback __read_mostly;
ddbcc7e8 217
7e47682e 218/* Ditto for the can_fork callback. */
6e5c8307 219static u16 have_canfork_callback __read_mostly;
7e47682e 220
67e9c74b 221static struct file_system_type cgroup2_fs_type;
a14c6874
TH
222static struct cftype cgroup_dfl_base_files[];
223static struct cftype cgroup_legacy_base_files[];
628f7cd4 224
6e5c8307 225static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 226static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
227static int cgroup_apply_control(struct cgroup *cgrp);
228static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 229static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 230static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
231static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
232 struct cgroup_subsys *ss);
9d755d33 233static void css_release(struct percpu_ref *ref);
f8f22e53 234static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
235static int cgroup_addrm_files(struct cgroup_subsys_state *css,
236 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 237 bool is_add);
42809dd4 238
fc5ed1e9
TH
239/**
240 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
241 * @ssid: subsys ID of interest
242 *
243 * cgroup_subsys_enabled() can only be used with literal subsys names which
244 * is fine for individual subsystems but unsuitable for cgroup core. This
245 * is slower static_key_enabled() based test indexed by @ssid.
246 */
247static bool cgroup_ssid_enabled(int ssid)
248{
cfe02a8a
AB
249 if (CGROUP_SUBSYS_COUNT == 0)
250 return false;
251
fc5ed1e9
TH
252 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
253}
254
223ffb29
JW
255static bool cgroup_ssid_no_v1(int ssid)
256{
257 return cgroup_no_v1_mask & (1 << ssid);
258}
259
9e10a130
TH
260/**
261 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
262 * @cgrp: the cgroup of interest
263 *
264 * The default hierarchy is the v2 interface of cgroup and this function
265 * can be used to test whether a cgroup is on the default hierarchy for
266 * cases where a subsystem should behave differnetly depending on the
267 * interface version.
268 *
269 * The set of behaviors which change on the default hierarchy are still
270 * being determined and the mount option is prefixed with __DEVEL__.
271 *
272 * List of changed behaviors:
273 *
274 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
275 * and "name" are disallowed.
276 *
277 * - When mounting an existing superblock, mount options should match.
278 *
279 * - Remount is disallowed.
280 *
281 * - rename(2) is disallowed.
282 *
283 * - "tasks" is removed. Everything should be at process granularity. Use
284 * "cgroup.procs" instead.
285 *
286 * - "cgroup.procs" is not sorted. pids will be unique unless they got
287 * recycled inbetween reads.
288 *
289 * - "release_agent" and "notify_on_release" are removed. Replacement
290 * notification mechanism will be implemented.
291 *
292 * - "cgroup.clone_children" is removed.
293 *
294 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
295 * and its descendants contain no task; otherwise, 1. The file also
296 * generates kernfs notification which can be monitored through poll and
297 * [di]notify when the value of the file changes.
298 *
299 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
300 * take masks of ancestors with non-empty cpus/mems, instead of being
301 * moved to an ancestor.
302 *
303 * - cpuset: a task can be moved into an empty cpuset, and again it takes
304 * masks of ancestors.
305 *
306 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
307 * is not created.
308 *
309 * - blkcg: blk-throttle becomes properly hierarchical.
310 *
311 * - debug: disallowed on the default hierarchy.
312 */
313static bool cgroup_on_dfl(const struct cgroup *cgrp)
314{
315 return cgrp->root == &cgrp_dfl_root;
316}
317
6fa4918d
TH
318/* IDR wrappers which synchronize using cgroup_idr_lock */
319static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
320 gfp_t gfp_mask)
321{
322 int ret;
323
324 idr_preload(gfp_mask);
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
d0164adc 326 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328 idr_preload_end();
329 return ret;
330}
331
332static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
333{
334 void *ret;
335
54504e97 336 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 337 ret = idr_replace(idr, ptr, id);
54504e97 338 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
339 return ret;
340}
341
342static void cgroup_idr_remove(struct idr *idr, int id)
343{
54504e97 344 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 345 idr_remove(idr, id);
54504e97 346 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
347}
348
d51f39b0
TH
349static struct cgroup *cgroup_parent(struct cgroup *cgrp)
350{
351 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
352
353 if (parent_css)
354 return container_of(parent_css, struct cgroup, self);
355 return NULL;
356}
357
5531dc91
TH
358/* subsystems visibly enabled on a cgroup */
359static u16 cgroup_control(struct cgroup *cgrp)
360{
361 struct cgroup *parent = cgroup_parent(cgrp);
362 u16 root_ss_mask = cgrp->root->subsys_mask;
363
364 if (parent)
365 return parent->subtree_control;
366
367 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
368 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
369 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
370 return root_ss_mask;
371}
372
373/* subsystems enabled on a cgroup */
374static u16 cgroup_ss_mask(struct cgroup *cgrp)
375{
376 struct cgroup *parent = cgroup_parent(cgrp);
377
378 if (parent)
379 return parent->subtree_ss_mask;
380
381 return cgrp->root->subsys_mask;
382}
383
95109b62
TH
384/**
385 * cgroup_css - obtain a cgroup's css for the specified subsystem
386 * @cgrp: the cgroup of interest
9d800df1 387 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 388 *
ca8bdcaf
TH
389 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
390 * function must be called either under cgroup_mutex or rcu_read_lock() and
391 * the caller is responsible for pinning the returned css if it wants to
392 * keep accessing it outside the said locks. This function may return
393 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
394 */
395static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 396 struct cgroup_subsys *ss)
95109b62 397{
ca8bdcaf 398 if (ss)
aec25020 399 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 400 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 401 else
9d800df1 402 return &cgrp->self;
95109b62 403}
42809dd4 404
aec3dfcb
TH
405/**
406 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
407 * @cgrp: the cgroup of interest
9d800df1 408 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 409 *
d0f702e6 410 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
411 * as the matching css of the nearest ancestor including self which has @ss
412 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
413 * function is guaranteed to return non-NULL css.
414 */
415static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
416 struct cgroup_subsys *ss)
417{
418 lockdep_assert_held(&cgroup_mutex);
419
420 if (!ss)
9d800df1 421 return &cgrp->self;
aec3dfcb 422
eeecbd19
TH
423 /*
424 * This function is used while updating css associations and thus
5531dc91 425 * can't test the csses directly. Test ss_mask.
eeecbd19 426 */
5531dc91 427 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 428 cgrp = cgroup_parent(cgrp);
5531dc91
TH
429 if (!cgrp)
430 return NULL;
431 }
aec3dfcb
TH
432
433 return cgroup_css(cgrp, ss);
95109b62 434}
42809dd4 435
eeecbd19
TH
436/**
437 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
438 * @cgrp: the cgroup of interest
439 * @ss: the subsystem of interest
440 *
441 * Find and get the effective css of @cgrp for @ss. The effective css is
442 * defined as the matching css of the nearest ancestor including self which
443 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
444 * the root css is returned, so this function always returns a valid css.
445 * The returned css must be put using css_put().
446 */
447struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
448 struct cgroup_subsys *ss)
449{
450 struct cgroup_subsys_state *css;
451
452 rcu_read_lock();
453
454 do {
455 css = cgroup_css(cgrp, ss);
456
457 if (css && css_tryget_online(css))
458 goto out_unlock;
459 cgrp = cgroup_parent(cgrp);
460 } while (cgrp);
461
462 css = init_css_set.subsys[ss->id];
463 css_get(css);
464out_unlock:
465 rcu_read_unlock();
466 return css;
467}
468
ddbcc7e8 469/* convenient tests for these bits */
54766d4a 470static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 471{
184faf32 472 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
473}
474
052c3f3a
TH
475static void cgroup_get(struct cgroup *cgrp)
476{
477 WARN_ON_ONCE(cgroup_is_dead(cgrp));
478 css_get(&cgrp->self);
479}
480
481static bool cgroup_tryget(struct cgroup *cgrp)
482{
483 return css_tryget(&cgrp->self);
484}
485
b4168640 486struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 487{
2bd59d48 488 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 489 struct cftype *cft = of_cft(of);
2bd59d48
TH
490
491 /*
492 * This is open and unprotected implementation of cgroup_css().
493 * seq_css() is only called from a kernfs file operation which has
494 * an active reference on the file. Because all the subsystem
495 * files are drained before a css is disassociated with a cgroup,
496 * the matching css from the cgroup's subsys table is guaranteed to
497 * be and stay valid until the enclosing operation is complete.
498 */
499 if (cft->ss)
500 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
501 else
9d800df1 502 return &cgrp->self;
59f5296b 503}
b4168640 504EXPORT_SYMBOL_GPL(of_css);
59f5296b 505
e9685a03 506static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 507{
bd89aabc 508 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
509}
510
1c6727af
TH
511/**
512 * for_each_css - iterate all css's of a cgroup
513 * @css: the iteration cursor
514 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
515 * @cgrp: the target cgroup to iterate css's of
516 *
aec3dfcb 517 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
518 */
519#define for_each_css(css, ssid, cgrp) \
520 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
521 if (!((css) = rcu_dereference_check( \
522 (cgrp)->subsys[(ssid)], \
523 lockdep_is_held(&cgroup_mutex)))) { } \
524 else
525
aec3dfcb
TH
526/**
527 * for_each_e_css - iterate all effective css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
531 *
532 * Should be called under cgroup_[tree_]mutex.
533 */
534#define for_each_e_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
537 ; \
538 else
539
30159ec7 540/**
3ed80a62 541 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 542 * @ss: the iteration cursor
780cd8b3 543 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 544 */
780cd8b3 545#define for_each_subsys(ss, ssid) \
3ed80a62
TH
546 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
547 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 548
cb4a3167 549/**
b4e0eeaf 550 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
551 * @ss: the iteration cursor
552 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 553 * @ss_mask: the bitmask
cb4a3167
AS
554 *
555 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 556 * @ss_mask is set.
cb4a3167 557 */
b4e0eeaf
TH
558#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
559 unsigned long __ss_mask = (ss_mask); \
560 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 561 (ssid) = 0; \
b4e0eeaf
TH
562 break; \
563 } \
564 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
565 (ss) = cgroup_subsys[ssid]; \
566 {
567
568#define while_each_subsys_mask() \
569 } \
570 } \
571} while (false)
cb4a3167 572
985ed670
TH
573/* iterate across the hierarchies */
574#define for_each_root(root) \
5549c497 575 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 576
f8f22e53
TH
577/* iterate over child cgrps, lock should be held throughout iteration */
578#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 579 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 580 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
581 cgroup_is_dead(child); })) \
582 ; \
583 else
7ae1bad9 584
ce3f1d9d
TH
585/* walk live descendants in preorder */
586#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
587 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
588 if (({ lockdep_assert_held(&cgroup_mutex); \
589 (dsct) = (d_css)->cgroup; \
590 cgroup_is_dead(dsct); })) \
591 ; \
592 else
593
594/* walk live descendants in postorder */
595#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
596 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
597 if (({ lockdep_assert_held(&cgroup_mutex); \
598 (dsct) = (d_css)->cgroup; \
599 cgroup_is_dead(dsct); })) \
600 ; \
601 else
602
81a6a5cd 603static void cgroup_release_agent(struct work_struct *work);
bd89aabc 604static void check_for_release(struct cgroup *cgrp);
81a6a5cd 605
69d0206c
TH
606/*
607 * A cgroup can be associated with multiple css_sets as different tasks may
608 * belong to different cgroups on different hierarchies. In the other
609 * direction, a css_set is naturally associated with multiple cgroups.
610 * This M:N relationship is represented by the following link structure
611 * which exists for each association and allows traversing the associations
612 * from both sides.
613 */
614struct cgrp_cset_link {
615 /* the cgroup and css_set this link associates */
616 struct cgroup *cgrp;
617 struct css_set *cset;
618
619 /* list of cgrp_cset_links anchored at cgrp->cset_links */
620 struct list_head cset_link;
621
622 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
623 struct list_head cgrp_link;
817929ec
PM
624};
625
172a2c06
TH
626/*
627 * The default css_set - used by init and its children prior to any
817929ec
PM
628 * hierarchies being mounted. It contains a pointer to the root state
629 * for each subsystem. Also used to anchor the list of css_sets. Not
630 * reference-counted, to improve performance when child cgroups
631 * haven't been created.
632 */
5024ae29 633struct css_set init_css_set = {
172a2c06
TH
634 .refcount = ATOMIC_INIT(1),
635 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
636 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
637 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
638 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
639 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 640 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 641};
817929ec 642
172a2c06 643static int css_set_count = 1; /* 1 for init_css_set */
817929ec 644
0de0942d
TH
645/**
646 * css_set_populated - does a css_set contain any tasks?
647 * @cset: target css_set
648 */
649static bool css_set_populated(struct css_set *cset)
650{
f0d9a5f1 651 lockdep_assert_held(&css_set_lock);
0de0942d
TH
652
653 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
654}
655
842b597e
TH
656/**
657 * cgroup_update_populated - updated populated count of a cgroup
658 * @cgrp: the target cgroup
659 * @populated: inc or dec populated count
660 *
0de0942d
TH
661 * One of the css_sets associated with @cgrp is either getting its first
662 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
663 * count is propagated towards root so that a given cgroup's populated_cnt
664 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
665 *
666 * @cgrp's interface file "cgroup.populated" is zero if
667 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
668 * changes from or to zero, userland is notified that the content of the
669 * interface file has changed. This can be used to detect when @cgrp and
670 * its descendants become populated or empty.
671 */
672static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
673{
f0d9a5f1 674 lockdep_assert_held(&css_set_lock);
842b597e
TH
675
676 do {
677 bool trigger;
678
679 if (populated)
680 trigger = !cgrp->populated_cnt++;
681 else
682 trigger = !--cgrp->populated_cnt;
683
684 if (!trigger)
685 break;
686
ad2ed2b3 687 check_for_release(cgrp);
6f60eade
TH
688 cgroup_file_notify(&cgrp->events_file);
689
d51f39b0 690 cgrp = cgroup_parent(cgrp);
842b597e
TH
691 } while (cgrp);
692}
693
0de0942d
TH
694/**
695 * css_set_update_populated - update populated state of a css_set
696 * @cset: target css_set
697 * @populated: whether @cset is populated or depopulated
698 *
699 * @cset is either getting the first task or losing the last. Update the
700 * ->populated_cnt of all associated cgroups accordingly.
701 */
702static void css_set_update_populated(struct css_set *cset, bool populated)
703{
704 struct cgrp_cset_link *link;
705
f0d9a5f1 706 lockdep_assert_held(&css_set_lock);
0de0942d
TH
707
708 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
709 cgroup_update_populated(link->cgrp, populated);
710}
711
f6d7d049
TH
712/**
713 * css_set_move_task - move a task from one css_set to another
714 * @task: task being moved
715 * @from_cset: css_set @task currently belongs to (may be NULL)
716 * @to_cset: new css_set @task is being moved to (may be NULL)
717 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
718 *
719 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
720 * css_set, @from_cset can be NULL. If @task is being disassociated
721 * instead of moved, @to_cset can be NULL.
722 *
ed27b9f7
TH
723 * This function automatically handles populated_cnt updates and
724 * css_task_iter adjustments but the caller is responsible for managing
725 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
726 */
727static void css_set_move_task(struct task_struct *task,
728 struct css_set *from_cset, struct css_set *to_cset,
729 bool use_mg_tasks)
730{
f0d9a5f1 731 lockdep_assert_held(&css_set_lock);
f6d7d049 732
20b454a6
TH
733 if (to_cset && !css_set_populated(to_cset))
734 css_set_update_populated(to_cset, true);
735
f6d7d049 736 if (from_cset) {
ed27b9f7
TH
737 struct css_task_iter *it, *pos;
738
f6d7d049 739 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
740
741 /*
742 * @task is leaving, advance task iterators which are
743 * pointing to it so that they can resume at the next
744 * position. Advancing an iterator might remove it from
745 * the list, use safe walk. See css_task_iter_advance*()
746 * for details.
747 */
748 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
749 iters_node)
750 if (it->task_pos == &task->cg_list)
751 css_task_iter_advance(it);
752
f6d7d049
TH
753 list_del_init(&task->cg_list);
754 if (!css_set_populated(from_cset))
755 css_set_update_populated(from_cset, false);
756 } else {
757 WARN_ON_ONCE(!list_empty(&task->cg_list));
758 }
759
760 if (to_cset) {
761 /*
762 * We are synchronized through cgroup_threadgroup_rwsem
763 * against PF_EXITING setting such that we can't race
764 * against cgroup_exit() changing the css_set to
765 * init_css_set and dropping the old one.
766 */
767 WARN_ON_ONCE(task->flags & PF_EXITING);
768
f6d7d049
TH
769 rcu_assign_pointer(task->cgroups, to_cset);
770 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
771 &to_cset->tasks);
772 }
773}
774
7717f7ba
PM
775/*
776 * hash table for cgroup groups. This improves the performance to find
777 * an existing css_set. This hash doesn't (currently) take into
778 * account cgroups in empty hierarchies.
779 */
472b1053 780#define CSS_SET_HASH_BITS 7
0ac801fe 781static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 782
0ac801fe 783static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 784{
0ac801fe 785 unsigned long key = 0UL;
30159ec7
TH
786 struct cgroup_subsys *ss;
787 int i;
472b1053 788
30159ec7 789 for_each_subsys(ss, i)
0ac801fe
LZ
790 key += (unsigned long)css[i];
791 key = (key >> 16) ^ key;
472b1053 792
0ac801fe 793 return key;
472b1053
LZ
794}
795
a25eb52e 796static void put_css_set_locked(struct css_set *cset)
b4f48b63 797{
69d0206c 798 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
799 struct cgroup_subsys *ss;
800 int ssid;
5abb8855 801
f0d9a5f1 802 lockdep_assert_held(&css_set_lock);
89c5509b
TH
803
804 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 805 return;
81a6a5cd 806
53254f90
TH
807 /* This css_set is dead. unlink it and release cgroup and css refs */
808 for_each_subsys(ss, ssid) {
2d8f243a 809 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
810 css_put(cset->subsys[ssid]);
811 }
5abb8855 812 hash_del(&cset->hlist);
2c6ab6d2
PM
813 css_set_count--;
814
69d0206c 815 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
816 list_del(&link->cset_link);
817 list_del(&link->cgrp_link);
2ceb231b
TH
818 if (cgroup_parent(link->cgrp))
819 cgroup_put(link->cgrp);
2c6ab6d2 820 kfree(link);
81a6a5cd 821 }
2c6ab6d2 822
5abb8855 823 kfree_rcu(cset, rcu_head);
b4f48b63
PM
824}
825
a25eb52e 826static void put_css_set(struct css_set *cset)
89c5509b
TH
827{
828 /*
829 * Ensure that the refcount doesn't hit zero while any readers
830 * can see it. Similar to atomic_dec_and_lock(), but for an
831 * rwlock
832 */
833 if (atomic_add_unless(&cset->refcount, -1, 1))
834 return;
835
f0d9a5f1 836 spin_lock_bh(&css_set_lock);
a25eb52e 837 put_css_set_locked(cset);
f0d9a5f1 838 spin_unlock_bh(&css_set_lock);
89c5509b
TH
839}
840
817929ec
PM
841/*
842 * refcounted get/put for css_set objects
843 */
5abb8855 844static inline void get_css_set(struct css_set *cset)
817929ec 845{
5abb8855 846 atomic_inc(&cset->refcount);
817929ec
PM
847}
848
b326f9d0 849/**
7717f7ba 850 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
851 * @cset: candidate css_set being tested
852 * @old_cset: existing css_set for a task
7717f7ba
PM
853 * @new_cgrp: cgroup that's being entered by the task
854 * @template: desired set of css pointers in css_set (pre-calculated)
855 *
6f4b7e63 856 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
857 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
858 */
5abb8855
TH
859static bool compare_css_sets(struct css_set *cset,
860 struct css_set *old_cset,
7717f7ba
PM
861 struct cgroup *new_cgrp,
862 struct cgroup_subsys_state *template[])
863{
864 struct list_head *l1, *l2;
865
aec3dfcb
TH
866 /*
867 * On the default hierarchy, there can be csets which are
868 * associated with the same set of cgroups but different csses.
869 * Let's first ensure that csses match.
870 */
871 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 872 return false;
7717f7ba
PM
873
874 /*
875 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
876 * different cgroups in hierarchies. As different cgroups may
877 * share the same effective css, this comparison is always
878 * necessary.
7717f7ba 879 */
69d0206c
TH
880 l1 = &cset->cgrp_links;
881 l2 = &old_cset->cgrp_links;
7717f7ba 882 while (1) {
69d0206c 883 struct cgrp_cset_link *link1, *link2;
5abb8855 884 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
885
886 l1 = l1->next;
887 l2 = l2->next;
888 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
889 if (l1 == &cset->cgrp_links) {
890 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
891 break;
892 } else {
69d0206c 893 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
894 }
895 /* Locate the cgroups associated with these links. */
69d0206c
TH
896 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
897 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
898 cgrp1 = link1->cgrp;
899 cgrp2 = link2->cgrp;
7717f7ba 900 /* Hierarchies should be linked in the same order. */
5abb8855 901 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
902
903 /*
904 * If this hierarchy is the hierarchy of the cgroup
905 * that's changing, then we need to check that this
906 * css_set points to the new cgroup; if it's any other
907 * hierarchy, then this css_set should point to the
908 * same cgroup as the old css_set.
909 */
5abb8855
TH
910 if (cgrp1->root == new_cgrp->root) {
911 if (cgrp1 != new_cgrp)
7717f7ba
PM
912 return false;
913 } else {
5abb8855 914 if (cgrp1 != cgrp2)
7717f7ba
PM
915 return false;
916 }
917 }
918 return true;
919}
920
b326f9d0
TH
921/**
922 * find_existing_css_set - init css array and find the matching css_set
923 * @old_cset: the css_set that we're using before the cgroup transition
924 * @cgrp: the cgroup that we're moving into
925 * @template: out param for the new set of csses, should be clear on entry
817929ec 926 */
5abb8855
TH
927static struct css_set *find_existing_css_set(struct css_set *old_cset,
928 struct cgroup *cgrp,
929 struct cgroup_subsys_state *template[])
b4f48b63 930{
3dd06ffa 931 struct cgroup_root *root = cgrp->root;
30159ec7 932 struct cgroup_subsys *ss;
5abb8855 933 struct css_set *cset;
0ac801fe 934 unsigned long key;
b326f9d0 935 int i;
817929ec 936
aae8aab4
BB
937 /*
938 * Build the set of subsystem state objects that we want to see in the
939 * new css_set. while subsystems can change globally, the entries here
940 * won't change, so no need for locking.
941 */
30159ec7 942 for_each_subsys(ss, i) {
f392e51c 943 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
944 /*
945 * @ss is in this hierarchy, so we want the
946 * effective css from @cgrp.
947 */
948 template[i] = cgroup_e_css(cgrp, ss);
817929ec 949 } else {
aec3dfcb
TH
950 /*
951 * @ss is not in this hierarchy, so we don't want
952 * to change the css.
953 */
5abb8855 954 template[i] = old_cset->subsys[i];
817929ec
PM
955 }
956 }
957
0ac801fe 958 key = css_set_hash(template);
5abb8855
TH
959 hash_for_each_possible(css_set_table, cset, hlist, key) {
960 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
961 continue;
962
963 /* This css_set matches what we need */
5abb8855 964 return cset;
472b1053 965 }
817929ec
PM
966
967 /* No existing cgroup group matched */
968 return NULL;
969}
970
69d0206c 971static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 972{
69d0206c 973 struct cgrp_cset_link *link, *tmp_link;
36553434 974
69d0206c
TH
975 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
976 list_del(&link->cset_link);
36553434
LZ
977 kfree(link);
978 }
979}
980
69d0206c
TH
981/**
982 * allocate_cgrp_cset_links - allocate cgrp_cset_links
983 * @count: the number of links to allocate
984 * @tmp_links: list_head the allocated links are put on
985 *
986 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
987 * through ->cset_link. Returns 0 on success or -errno.
817929ec 988 */
69d0206c 989static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 990{
69d0206c 991 struct cgrp_cset_link *link;
817929ec 992 int i;
69d0206c
TH
993
994 INIT_LIST_HEAD(tmp_links);
995
817929ec 996 for (i = 0; i < count; i++) {
f4f4be2b 997 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 998 if (!link) {
69d0206c 999 free_cgrp_cset_links(tmp_links);
817929ec
PM
1000 return -ENOMEM;
1001 }
69d0206c 1002 list_add(&link->cset_link, tmp_links);
817929ec
PM
1003 }
1004 return 0;
1005}
1006
c12f65d4
LZ
1007/**
1008 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1009 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1010 * @cset: the css_set to be linked
c12f65d4
LZ
1011 * @cgrp: the destination cgroup
1012 */
69d0206c
TH
1013static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1014 struct cgroup *cgrp)
c12f65d4 1015{
69d0206c 1016 struct cgrp_cset_link *link;
c12f65d4 1017
69d0206c 1018 BUG_ON(list_empty(tmp_links));
6803c006
TH
1019
1020 if (cgroup_on_dfl(cgrp))
1021 cset->dfl_cgrp = cgrp;
1022
69d0206c
TH
1023 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1024 link->cset = cset;
7717f7ba 1025 link->cgrp = cgrp;
842b597e 1026
7717f7ba 1027 /*
389b9c1b
TH
1028 * Always add links to the tail of the lists so that the lists are
1029 * in choronological order.
7717f7ba 1030 */
389b9c1b 1031 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1032 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1033
1034 if (cgroup_parent(cgrp))
1035 cgroup_get(cgrp);
c12f65d4
LZ
1036}
1037
b326f9d0
TH
1038/**
1039 * find_css_set - return a new css_set with one cgroup updated
1040 * @old_cset: the baseline css_set
1041 * @cgrp: the cgroup to be updated
1042 *
1043 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1044 * substituted into the appropriate hierarchy.
817929ec 1045 */
5abb8855
TH
1046static struct css_set *find_css_set(struct css_set *old_cset,
1047 struct cgroup *cgrp)
817929ec 1048{
b326f9d0 1049 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1050 struct css_set *cset;
69d0206c
TH
1051 struct list_head tmp_links;
1052 struct cgrp_cset_link *link;
2d8f243a 1053 struct cgroup_subsys *ss;
0ac801fe 1054 unsigned long key;
2d8f243a 1055 int ssid;
472b1053 1056
b326f9d0
TH
1057 lockdep_assert_held(&cgroup_mutex);
1058
817929ec
PM
1059 /* First see if we already have a cgroup group that matches
1060 * the desired set */
f0d9a5f1 1061 spin_lock_bh(&css_set_lock);
5abb8855
TH
1062 cset = find_existing_css_set(old_cset, cgrp, template);
1063 if (cset)
1064 get_css_set(cset);
f0d9a5f1 1065 spin_unlock_bh(&css_set_lock);
817929ec 1066
5abb8855
TH
1067 if (cset)
1068 return cset;
817929ec 1069
f4f4be2b 1070 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1071 if (!cset)
817929ec
PM
1072 return NULL;
1073
69d0206c 1074 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1075 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1076 kfree(cset);
817929ec
PM
1077 return NULL;
1078 }
1079
5abb8855 1080 atomic_set(&cset->refcount, 1);
69d0206c 1081 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1082 INIT_LIST_HEAD(&cset->tasks);
c7561128 1083 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1084 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1085 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1086 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1087 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1088
1089 /* Copy the set of subsystem state objects generated in
1090 * find_existing_css_set() */
5abb8855 1091 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1092
f0d9a5f1 1093 spin_lock_bh(&css_set_lock);
817929ec 1094 /* Add reference counts and links from the new css_set. */
69d0206c 1095 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1096 struct cgroup *c = link->cgrp;
69d0206c 1097
7717f7ba
PM
1098 if (c->root == cgrp->root)
1099 c = cgrp;
69d0206c 1100 link_css_set(&tmp_links, cset, c);
7717f7ba 1101 }
817929ec 1102
69d0206c 1103 BUG_ON(!list_empty(&tmp_links));
817929ec 1104
817929ec 1105 css_set_count++;
472b1053 1106
2d8f243a 1107 /* Add @cset to the hash table */
5abb8855
TH
1108 key = css_set_hash(cset->subsys);
1109 hash_add(css_set_table, &cset->hlist, key);
472b1053 1110
53254f90
TH
1111 for_each_subsys(ss, ssid) {
1112 struct cgroup_subsys_state *css = cset->subsys[ssid];
1113
2d8f243a 1114 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1115 &css->cgroup->e_csets[ssid]);
1116 css_get(css);
1117 }
2d8f243a 1118
f0d9a5f1 1119 spin_unlock_bh(&css_set_lock);
817929ec 1120
5abb8855 1121 return cset;
b4f48b63
PM
1122}
1123
3dd06ffa 1124static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1125{
3dd06ffa 1126 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1127
3dd06ffa 1128 return root_cgrp->root;
2bd59d48
TH
1129}
1130
3dd06ffa 1131static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1132{
1133 int id;
1134
1135 lockdep_assert_held(&cgroup_mutex);
1136
985ed670 1137 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1138 if (id < 0)
1139 return id;
1140
1141 root->hierarchy_id = id;
1142 return 0;
1143}
1144
3dd06ffa 1145static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1146{
1147 lockdep_assert_held(&cgroup_mutex);
1148
1149 if (root->hierarchy_id) {
1150 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1151 root->hierarchy_id = 0;
1152 }
1153}
1154
3dd06ffa 1155static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1156{
1157 if (root) {
d0f702e6 1158 /* hierarchy ID should already have been released */
f2e85d57
TH
1159 WARN_ON_ONCE(root->hierarchy_id);
1160
1161 idr_destroy(&root->cgroup_idr);
1162 kfree(root);
1163 }
1164}
1165
3dd06ffa 1166static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1167{
3dd06ffa 1168 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1169 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1170
334c3679 1171 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1172
776f02fa 1173 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1174 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1175
f2e85d57 1176 /* Rebind all subsystems back to the default hierarchy */
334c3679 1177 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1178
7717f7ba 1179 /*
f2e85d57
TH
1180 * Release all the links from cset_links to this hierarchy's
1181 * root cgroup
7717f7ba 1182 */
f0d9a5f1 1183 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1184
1185 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1186 list_del(&link->cset_link);
1187 list_del(&link->cgrp_link);
1188 kfree(link);
1189 }
f0d9a5f1
TH
1190
1191 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1192
1193 if (!list_empty(&root->root_list)) {
1194 list_del(&root->root_list);
1195 cgroup_root_count--;
1196 }
1197
1198 cgroup_exit_root_id(root);
1199
1200 mutex_unlock(&cgroup_mutex);
f2e85d57 1201
2bd59d48 1202 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1203 cgroup_free_root(root);
1204}
1205
ceb6a081
TH
1206/* look up cgroup associated with given css_set on the specified hierarchy */
1207static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1208 struct cgroup_root *root)
7717f7ba 1209{
7717f7ba
PM
1210 struct cgroup *res = NULL;
1211
96d365e0 1212 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1213 lockdep_assert_held(&css_set_lock);
96d365e0 1214
5abb8855 1215 if (cset == &init_css_set) {
3dd06ffa 1216 res = &root->cgrp;
7717f7ba 1217 } else {
69d0206c
TH
1218 struct cgrp_cset_link *link;
1219
1220 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1221 struct cgroup *c = link->cgrp;
69d0206c 1222
7717f7ba
PM
1223 if (c->root == root) {
1224 res = c;
1225 break;
1226 }
1227 }
1228 }
96d365e0 1229
7717f7ba
PM
1230 BUG_ON(!res);
1231 return res;
1232}
1233
ddbcc7e8 1234/*
ceb6a081 1235 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1236 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1237 */
1238static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1239 struct cgroup_root *root)
ceb6a081
TH
1240{
1241 /*
1242 * No need to lock the task - since we hold cgroup_mutex the
1243 * task can't change groups, so the only thing that can happen
1244 * is that it exits and its css is set back to init_css_set.
1245 */
1246 return cset_cgroup_from_root(task_css_set(task), root);
1247}
1248
ddbcc7e8 1249/*
ddbcc7e8
PM
1250 * A task must hold cgroup_mutex to modify cgroups.
1251 *
1252 * Any task can increment and decrement the count field without lock.
1253 * So in general, code holding cgroup_mutex can't rely on the count
1254 * field not changing. However, if the count goes to zero, then only
956db3ca 1255 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1256 * means that no tasks are currently attached, therefore there is no
1257 * way a task attached to that cgroup can fork (the other way to
1258 * increment the count). So code holding cgroup_mutex can safely
1259 * assume that if the count is zero, it will stay zero. Similarly, if
1260 * a task holds cgroup_mutex on a cgroup with zero count, it
1261 * knows that the cgroup won't be removed, as cgroup_rmdir()
1262 * needs that mutex.
1263 *
ddbcc7e8
PM
1264 * A cgroup can only be deleted if both its 'count' of using tasks
1265 * is zero, and its list of 'children' cgroups is empty. Since all
1266 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1267 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1268 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1269 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1270 *
1271 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1272 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1273 */
1274
2bd59d48 1275static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1276static const struct file_operations proc_cgroupstats_operations;
a424316c 1277
8d7e6fb0
TH
1278static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1279 char *buf)
ddbcc7e8 1280{
3e1d2eed
TH
1281 struct cgroup_subsys *ss = cft->ss;
1282
8d7e6fb0
TH
1283 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1284 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1285 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1286 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1287 cft->name);
8d7e6fb0
TH
1288 else
1289 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1290 return buf;
ddbcc7e8
PM
1291}
1292
f2e85d57
TH
1293/**
1294 * cgroup_file_mode - deduce file mode of a control file
1295 * @cft: the control file in question
1296 *
7dbdb199 1297 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1298 */
1299static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1300{
f2e85d57 1301 umode_t mode = 0;
65dff759 1302
f2e85d57
TH
1303 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1304 mode |= S_IRUGO;
1305
7dbdb199
TH
1306 if (cft->write_u64 || cft->write_s64 || cft->write) {
1307 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1308 mode |= S_IWUGO;
1309 else
1310 mode |= S_IWUSR;
1311 }
f2e85d57
TH
1312
1313 return mode;
65dff759
LZ
1314}
1315
af0ba678 1316/**
8699b776 1317 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1318 * @subtree_control: the new subtree_control mask to consider
5ced2518 1319 * @this_ss_mask: available subsystems
af0ba678
TH
1320 *
1321 * On the default hierarchy, a subsystem may request other subsystems to be
1322 * enabled together through its ->depends_on mask. In such cases, more
1323 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1324 *
0f060deb 1325 * This function calculates which subsystems need to be enabled if
5ced2518 1326 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1327 */
5ced2518 1328static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1329{
6e5c8307 1330 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1331 struct cgroup_subsys *ss;
1332 int ssid;
1333
1334 lockdep_assert_held(&cgroup_mutex);
1335
f6d635ad
TH
1336 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1337
af0ba678 1338 while (true) {
6e5c8307 1339 u16 new_ss_mask = cur_ss_mask;
af0ba678 1340
b4e0eeaf 1341 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1342 new_ss_mask |= ss->depends_on;
b4e0eeaf 1343 } while_each_subsys_mask();
af0ba678
TH
1344
1345 /*
1346 * Mask out subsystems which aren't available. This can
1347 * happen only if some depended-upon subsystems were bound
1348 * to non-default hierarchies.
1349 */
5ced2518 1350 new_ss_mask &= this_ss_mask;
af0ba678
TH
1351
1352 if (new_ss_mask == cur_ss_mask)
1353 break;
1354 cur_ss_mask = new_ss_mask;
1355 }
1356
0f060deb
TH
1357 return cur_ss_mask;
1358}
1359
a9746d8d
TH
1360/**
1361 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1362 * @kn: the kernfs_node being serviced
1363 *
1364 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1365 * the method finishes if locking succeeded. Note that once this function
1366 * returns the cgroup returned by cgroup_kn_lock_live() may become
1367 * inaccessible any time. If the caller intends to continue to access the
1368 * cgroup, it should pin it before invoking this function.
1369 */
1370static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1371{
a9746d8d
TH
1372 struct cgroup *cgrp;
1373
1374 if (kernfs_type(kn) == KERNFS_DIR)
1375 cgrp = kn->priv;
1376 else
1377 cgrp = kn->parent->priv;
1378
1379 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1380
1381 kernfs_unbreak_active_protection(kn);
1382 cgroup_put(cgrp);
ddbcc7e8
PM
1383}
1384
a9746d8d
TH
1385/**
1386 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1387 * @kn: the kernfs_node being serviced
945ba199 1388 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1389 *
1390 * This helper is to be used by a cgroup kernfs method currently servicing
1391 * @kn. It breaks the active protection, performs cgroup locking and
1392 * verifies that the associated cgroup is alive. Returns the cgroup if
1393 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1394 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1395 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1396 *
1397 * Any cgroup kernfs method implementation which requires locking the
1398 * associated cgroup should use this helper. It avoids nesting cgroup
1399 * locking under kernfs active protection and allows all kernfs operations
1400 * including self-removal.
1401 */
945ba199
TH
1402static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1403 bool drain_offline)
05ef1d7c 1404{
a9746d8d
TH
1405 struct cgroup *cgrp;
1406
1407 if (kernfs_type(kn) == KERNFS_DIR)
1408 cgrp = kn->priv;
1409 else
1410 cgrp = kn->parent->priv;
05ef1d7c 1411
2739d3cc 1412 /*
01f6474c 1413 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1414 * active_ref. cgroup liveliness check alone provides enough
1415 * protection against removal. Ensure @cgrp stays accessible and
1416 * break the active_ref protection.
2739d3cc 1417 */
aa32362f
LZ
1418 if (!cgroup_tryget(cgrp))
1419 return NULL;
a9746d8d
TH
1420 kernfs_break_active_protection(kn);
1421
945ba199
TH
1422 if (drain_offline)
1423 cgroup_lock_and_drain_offline(cgrp);
1424 else
1425 mutex_lock(&cgroup_mutex);
05ef1d7c 1426
a9746d8d
TH
1427 if (!cgroup_is_dead(cgrp))
1428 return cgrp;
1429
1430 cgroup_kn_unlock(kn);
1431 return NULL;
ddbcc7e8 1432}
05ef1d7c 1433
2739d3cc 1434static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1435{
2bd59d48 1436 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1437
01f6474c 1438 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1439
1440 if (cft->file_offset) {
1441 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1442 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1443
1444 spin_lock_irq(&cgroup_file_kn_lock);
1445 cfile->kn = NULL;
1446 spin_unlock_irq(&cgroup_file_kn_lock);
1447 }
1448
2bd59d48 1449 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1450}
1451
13af07df 1452/**
4df8dc90
TH
1453 * css_clear_dir - remove subsys files in a cgroup directory
1454 * @css: taget css
13af07df 1455 */
334c3679 1456static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1457{
334c3679 1458 struct cgroup *cgrp = css->cgroup;
4df8dc90 1459 struct cftype *cfts;
05ef1d7c 1460
88cb04b9
TH
1461 if (!(css->flags & CSS_VISIBLE))
1462 return;
1463
1464 css->flags &= ~CSS_VISIBLE;
1465
4df8dc90
TH
1466 list_for_each_entry(cfts, &css->ss->cfts, node)
1467 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1468}
1469
ccdca218 1470/**
4df8dc90
TH
1471 * css_populate_dir - create subsys files in a cgroup directory
1472 * @css: target css
ccdca218
TH
1473 *
1474 * On failure, no file is added.
1475 */
334c3679 1476static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1477{
334c3679 1478 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1479 struct cftype *cfts, *failed_cfts;
1480 int ret;
ccdca218 1481
03970d3c 1482 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1483 return 0;
1484
4df8dc90
TH
1485 if (!css->ss) {
1486 if (cgroup_on_dfl(cgrp))
1487 cfts = cgroup_dfl_base_files;
1488 else
1489 cfts = cgroup_legacy_base_files;
ccdca218 1490
4df8dc90
TH
1491 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1492 }
ccdca218 1493
4df8dc90
TH
1494 list_for_each_entry(cfts, &css->ss->cfts, node) {
1495 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1496 if (ret < 0) {
1497 failed_cfts = cfts;
1498 goto err;
ccdca218
TH
1499 }
1500 }
88cb04b9
TH
1501
1502 css->flags |= CSS_VISIBLE;
1503
ccdca218
TH
1504 return 0;
1505err:
4df8dc90
TH
1506 list_for_each_entry(cfts, &css->ss->cfts, node) {
1507 if (cfts == failed_cfts)
1508 break;
1509 cgroup_addrm_files(css, cgrp, cfts, false);
1510 }
ccdca218
TH
1511 return ret;
1512}
1513
6e5c8307 1514static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1515{
1ada4838 1516 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1517 struct cgroup_subsys *ss;
2d8f243a 1518 int ssid, i, ret;
ddbcc7e8 1519
ace2bee8 1520 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1521
b4e0eeaf 1522 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1523 /*
1524 * If @ss has non-root csses attached to it, can't move.
1525 * If @ss is an implicit controller, it is exempt from this
1526 * rule and can be stolen.
1527 */
1528 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1529 !ss->implicit_on_dfl)
3ed80a62 1530 return -EBUSY;
1d5be6b2 1531
5df36032 1532 /* can't move between two non-dummy roots either */
7fd8c565 1533 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1534 return -EBUSY;
b4e0eeaf 1535 } while_each_subsys_mask();
ddbcc7e8 1536
b4e0eeaf 1537 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1538 struct cgroup_root *src_root = ss->root;
1539 struct cgroup *scgrp = &src_root->cgrp;
1540 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1541 struct css_set *cset;
a8a648c4 1542
1ada4838 1543 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1544
334c3679
TH
1545 /* disable from the source */
1546 src_root->subsys_mask &= ~(1 << ssid);
1547 WARN_ON(cgroup_apply_control(scgrp));
1548 cgroup_finalize_control(scgrp, 0);
4df8dc90 1549
334c3679 1550 /* rebind */
1ada4838
TH
1551 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1552 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1553 ss->root = dst_root;
1ada4838 1554 css->cgroup = dcgrp;
73e80ed8 1555
f0d9a5f1 1556 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1557 hash_for_each(css_set_table, i, cset, hlist)
1558 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1559 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1560 spin_unlock_bh(&css_set_lock);
2d8f243a 1561
bd53d617 1562 /* default hierarchy doesn't enable controllers by default */
f392e51c 1563 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1564 if (dst_root == &cgrp_dfl_root) {
1565 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1566 } else {
1ada4838 1567 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1568 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1569 }
a8a648c4 1570
334c3679
TH
1571 ret = cgroup_apply_control(dcgrp);
1572 if (ret)
1573 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1574 ss->name, ret);
1575
5df36032
TH
1576 if (ss->bind)
1577 ss->bind(css);
b4e0eeaf 1578 } while_each_subsys_mask();
ddbcc7e8 1579
1ada4838 1580 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1581 return 0;
1582}
1583
2bd59d48
TH
1584static int cgroup_show_options(struct seq_file *seq,
1585 struct kernfs_root *kf_root)
ddbcc7e8 1586{
3dd06ffa 1587 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1588 struct cgroup_subsys *ss;
b85d2040 1589 int ssid;
ddbcc7e8 1590
d98817d4
TH
1591 if (root != &cgrp_dfl_root)
1592 for_each_subsys(ss, ssid)
1593 if (root->subsys_mask & (1 << ssid))
61e57c0c 1594 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1595 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1596 seq_puts(seq, ",noprefix");
93438629 1597 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1598 seq_puts(seq, ",xattr");
69e943b7
TH
1599
1600 spin_lock(&release_agent_path_lock);
81a6a5cd 1601 if (strlen(root->release_agent_path))
a068acf2
KC
1602 seq_show_option(seq, "release_agent",
1603 root->release_agent_path);
69e943b7
TH
1604 spin_unlock(&release_agent_path_lock);
1605
3dd06ffa 1606 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1607 seq_puts(seq, ",clone_children");
c6d57f33 1608 if (strlen(root->name))
a068acf2 1609 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1610 return 0;
1611}
1612
1613struct cgroup_sb_opts {
6e5c8307 1614 u16 subsys_mask;
69dfa00c 1615 unsigned int flags;
81a6a5cd 1616 char *release_agent;
2260e7fc 1617 bool cpuset_clone_children;
c6d57f33 1618 char *name;
2c6ab6d2
PM
1619 /* User explicitly requested empty subsystem */
1620 bool none;
ddbcc7e8
PM
1621};
1622
cf5d5941 1623static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1624{
32a8cf23
DL
1625 char *token, *o = data;
1626 bool all_ss = false, one_ss = false;
6e5c8307 1627 u16 mask = U16_MAX;
30159ec7 1628 struct cgroup_subsys *ss;
7b9a6ba5 1629 int nr_opts = 0;
30159ec7 1630 int i;
f9ab5b5b
LZ
1631
1632#ifdef CONFIG_CPUSETS
6e5c8307 1633 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1634#endif
ddbcc7e8 1635
c6d57f33 1636 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1637
1638 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1639 nr_opts++;
1640
ddbcc7e8
PM
1641 if (!*token)
1642 return -EINVAL;
32a8cf23 1643 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1644 /* Explicitly have no subsystems */
1645 opts->none = true;
32a8cf23
DL
1646 continue;
1647 }
1648 if (!strcmp(token, "all")) {
1649 /* Mutually exclusive option 'all' + subsystem name */
1650 if (one_ss)
1651 return -EINVAL;
1652 all_ss = true;
1653 continue;
1654 }
1655 if (!strcmp(token, "noprefix")) {
93438629 1656 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1657 continue;
1658 }
1659 if (!strcmp(token, "clone_children")) {
2260e7fc 1660 opts->cpuset_clone_children = true;
32a8cf23
DL
1661 continue;
1662 }
03b1cde6 1663 if (!strcmp(token, "xattr")) {
93438629 1664 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1665 continue;
1666 }
32a8cf23 1667 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1668 /* Specifying two release agents is forbidden */
1669 if (opts->release_agent)
1670 return -EINVAL;
c6d57f33 1671 opts->release_agent =
e400c285 1672 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1673 if (!opts->release_agent)
1674 return -ENOMEM;
32a8cf23
DL
1675 continue;
1676 }
1677 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1678 const char *name = token + 5;
1679 /* Can't specify an empty name */
1680 if (!strlen(name))
1681 return -EINVAL;
1682 /* Must match [\w.-]+ */
1683 for (i = 0; i < strlen(name); i++) {
1684 char c = name[i];
1685 if (isalnum(c))
1686 continue;
1687 if ((c == '.') || (c == '-') || (c == '_'))
1688 continue;
1689 return -EINVAL;
1690 }
1691 /* Specifying two names is forbidden */
1692 if (opts->name)
1693 return -EINVAL;
1694 opts->name = kstrndup(name,
e400c285 1695 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1696 GFP_KERNEL);
1697 if (!opts->name)
1698 return -ENOMEM;
32a8cf23
DL
1699
1700 continue;
1701 }
1702
30159ec7 1703 for_each_subsys(ss, i) {
3e1d2eed 1704 if (strcmp(token, ss->legacy_name))
32a8cf23 1705 continue;
fc5ed1e9 1706 if (!cgroup_ssid_enabled(i))
32a8cf23 1707 continue;
223ffb29
JW
1708 if (cgroup_ssid_no_v1(i))
1709 continue;
32a8cf23
DL
1710
1711 /* Mutually exclusive option 'all' + subsystem name */
1712 if (all_ss)
1713 return -EINVAL;
69dfa00c 1714 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1715 one_ss = true;
1716
1717 break;
1718 }
1719 if (i == CGROUP_SUBSYS_COUNT)
1720 return -ENOENT;
1721 }
1722
7b9a6ba5
TH
1723 /*
1724 * If the 'all' option was specified select all the subsystems,
1725 * otherwise if 'none', 'name=' and a subsystem name options were
1726 * not specified, let's default to 'all'
1727 */
1728 if (all_ss || (!one_ss && !opts->none && !opts->name))
1729 for_each_subsys(ss, i)
223ffb29 1730 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1731 opts->subsys_mask |= (1 << i);
1732
1733 /*
1734 * We either have to specify by name or by subsystems. (So all
1735 * empty hierarchies must have a name).
1736 */
1737 if (!opts->subsys_mask && !opts->name)
1738 return -EINVAL;
1739
f9ab5b5b
LZ
1740 /*
1741 * Option noprefix was introduced just for backward compatibility
1742 * with the old cpuset, so we allow noprefix only if mounting just
1743 * the cpuset subsystem.
1744 */
93438629 1745 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1746 return -EINVAL;
1747
2c6ab6d2 1748 /* Can't specify "none" and some subsystems */
a1a71b45 1749 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1750 return -EINVAL;
1751
ddbcc7e8
PM
1752 return 0;
1753}
1754
2bd59d48 1755static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1756{
1757 int ret = 0;
3dd06ffa 1758 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1759 struct cgroup_sb_opts opts;
6e5c8307 1760 u16 added_mask, removed_mask;
ddbcc7e8 1761
aa6ec29b
TH
1762 if (root == &cgrp_dfl_root) {
1763 pr_err("remount is not allowed\n");
873fe09e
TH
1764 return -EINVAL;
1765 }
1766
334c3679 1767 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1768
1769 /* See what subsystems are wanted */
1770 ret = parse_cgroupfs_options(data, &opts);
1771 if (ret)
1772 goto out_unlock;
1773
f392e51c 1774 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1775 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1776 task_tgid_nr(current), current->comm);
8b5a5a9d 1777
f392e51c
TH
1778 added_mask = opts.subsys_mask & ~root->subsys_mask;
1779 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1780
cf5d5941 1781 /* Don't allow flags or name to change at remount */
7450e90b 1782 if ((opts.flags ^ root->flags) ||
cf5d5941 1783 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1784 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1785 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1786 ret = -EINVAL;
1787 goto out_unlock;
1788 }
1789
f172e67c 1790 /* remounting is not allowed for populated hierarchies */
d5c419b6 1791 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1792 ret = -EBUSY;
0670e08b 1793 goto out_unlock;
cf5d5941 1794 }
ddbcc7e8 1795
5df36032 1796 ret = rebind_subsystems(root, added_mask);
3126121f 1797 if (ret)
0670e08b 1798 goto out_unlock;
ddbcc7e8 1799
334c3679 1800 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1801
69e943b7
TH
1802 if (opts.release_agent) {
1803 spin_lock(&release_agent_path_lock);
81a6a5cd 1804 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1805 spin_unlock(&release_agent_path_lock);
1806 }
ddbcc7e8 1807 out_unlock:
66bdc9cf 1808 kfree(opts.release_agent);
c6d57f33 1809 kfree(opts.name);
ddbcc7e8 1810 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1811 return ret;
1812}
1813
afeb0f9f
TH
1814/*
1815 * To reduce the fork() overhead for systems that are not actually using
1816 * their cgroups capability, we don't maintain the lists running through
1817 * each css_set to its tasks until we see the list actually used - in other
1818 * words after the first mount.
1819 */
1820static bool use_task_css_set_links __read_mostly;
1821
1822static void cgroup_enable_task_cg_lists(void)
1823{
1824 struct task_struct *p, *g;
1825
f0d9a5f1 1826 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1827
1828 if (use_task_css_set_links)
1829 goto out_unlock;
1830
1831 use_task_css_set_links = true;
1832
1833 /*
1834 * We need tasklist_lock because RCU is not safe against
1835 * while_each_thread(). Besides, a forking task that has passed
1836 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1837 * is not guaranteed to have its child immediately visible in the
1838 * tasklist if we walk through it with RCU.
1839 */
1840 read_lock(&tasklist_lock);
1841 do_each_thread(g, p) {
afeb0f9f
TH
1842 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1843 task_css_set(p) != &init_css_set);
1844
1845 /*
1846 * We should check if the process is exiting, otherwise
1847 * it will race with cgroup_exit() in that the list
1848 * entry won't be deleted though the process has exited.
f153ad11
TH
1849 * Do it while holding siglock so that we don't end up
1850 * racing against cgroup_exit().
afeb0f9f 1851 */
f153ad11 1852 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1853 if (!(p->flags & PF_EXITING)) {
1854 struct css_set *cset = task_css_set(p);
1855
0de0942d
TH
1856 if (!css_set_populated(cset))
1857 css_set_update_populated(cset, true);
389b9c1b 1858 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1859 get_css_set(cset);
1860 }
f153ad11 1861 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1862 } while_each_thread(g, p);
1863 read_unlock(&tasklist_lock);
1864out_unlock:
f0d9a5f1 1865 spin_unlock_bh(&css_set_lock);
afeb0f9f 1866}
ddbcc7e8 1867
cc31edce
PM
1868static void init_cgroup_housekeeping(struct cgroup *cgrp)
1869{
2d8f243a
TH
1870 struct cgroup_subsys *ss;
1871 int ssid;
1872
d5c419b6
TH
1873 INIT_LIST_HEAD(&cgrp->self.sibling);
1874 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1875 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1876 INIT_LIST_HEAD(&cgrp->pidlists);
1877 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1878 cgrp->self.cgroup = cgrp;
184faf32 1879 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1880
1881 for_each_subsys(ss, ssid)
1882 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1883
1884 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1885 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1886}
c6d57f33 1887
3dd06ffa 1888static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1889 struct cgroup_sb_opts *opts)
ddbcc7e8 1890{
3dd06ffa 1891 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1892
ddbcc7e8 1893 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1894 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1895 cgrp->root = root;
cc31edce 1896 init_cgroup_housekeeping(cgrp);
4e96ee8e 1897 idr_init(&root->cgroup_idr);
c6d57f33 1898
c6d57f33
PM
1899 root->flags = opts->flags;
1900 if (opts->release_agent)
1901 strcpy(root->release_agent_path, opts->release_agent);
1902 if (opts->name)
1903 strcpy(root->name, opts->name);
2260e7fc 1904 if (opts->cpuset_clone_children)
3dd06ffa 1905 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1906}
1907
6e5c8307 1908static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1909{
d427dfeb 1910 LIST_HEAD(tmp_links);
3dd06ffa 1911 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1912 struct css_set *cset;
d427dfeb 1913 int i, ret;
2c6ab6d2 1914
d427dfeb 1915 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1916
cf780b7d 1917 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1918 if (ret < 0)
2bd59d48 1919 goto out;
d427dfeb 1920 root_cgrp->id = ret;
b11cfb58 1921 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1922
2aad2a86
TH
1923 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1924 GFP_KERNEL);
9d755d33
TH
1925 if (ret)
1926 goto out;
1927
d427dfeb 1928 /*
f0d9a5f1 1929 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 1930 * but that's OK - it can only be increased by someone holding
04313591
TH
1931 * cgroup_lock, and that's us. Later rebinding may disable
1932 * controllers on the default hierarchy and thus create new csets,
1933 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 1934 */
04313591 1935 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 1936 if (ret)
9d755d33 1937 goto cancel_ref;
ddbcc7e8 1938
985ed670 1939 ret = cgroup_init_root_id(root);
ddbcc7e8 1940 if (ret)
9d755d33 1941 goto cancel_ref;
ddbcc7e8 1942
2bd59d48
TH
1943 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1944 KERNFS_ROOT_CREATE_DEACTIVATED,
1945 root_cgrp);
1946 if (IS_ERR(root->kf_root)) {
1947 ret = PTR_ERR(root->kf_root);
1948 goto exit_root_id;
1949 }
1950 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1951
334c3679 1952 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 1953 if (ret)
2bd59d48 1954 goto destroy_root;
ddbcc7e8 1955
5df36032 1956 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1957 if (ret)
2bd59d48 1958 goto destroy_root;
ddbcc7e8 1959
d427dfeb
TH
1960 /*
1961 * There must be no failure case after here, since rebinding takes
1962 * care of subsystems' refcounts, which are explicitly dropped in
1963 * the failure exit path.
1964 */
1965 list_add(&root->root_list, &cgroup_roots);
1966 cgroup_root_count++;
0df6a63f 1967
d427dfeb 1968 /*
3dd06ffa 1969 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1970 * objects.
1971 */
f0d9a5f1 1972 spin_lock_bh(&css_set_lock);
0de0942d 1973 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1974 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1975 if (css_set_populated(cset))
1976 cgroup_update_populated(root_cgrp, true);
1977 }
f0d9a5f1 1978 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1979
d5c419b6 1980 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1981 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1982
2bd59d48 1983 kernfs_activate(root_cgrp->kn);
d427dfeb 1984 ret = 0;
2bd59d48 1985 goto out;
d427dfeb 1986
2bd59d48
TH
1987destroy_root:
1988 kernfs_destroy_root(root->kf_root);
1989 root->kf_root = NULL;
1990exit_root_id:
d427dfeb 1991 cgroup_exit_root_id(root);
9d755d33 1992cancel_ref:
9a1049da 1993 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1994out:
d427dfeb
TH
1995 free_cgrp_cset_links(&tmp_links);
1996 return ret;
ddbcc7e8
PM
1997}
1998
f7e83571 1999static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2000 int flags, const char *unused_dev_name,
f7e83571 2001 void *data)
ddbcc7e8 2002{
67e9c74b 2003 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2004 struct super_block *pinned_sb = NULL;
970317aa 2005 struct cgroup_subsys *ss;
3dd06ffa 2006 struct cgroup_root *root;
ddbcc7e8 2007 struct cgroup_sb_opts opts;
2bd59d48 2008 struct dentry *dentry;
8e30e2b8 2009 int ret;
970317aa 2010 int i;
c6b3d5bc 2011 bool new_sb;
ddbcc7e8 2012
56fde9e0
TH
2013 /*
2014 * The first time anyone tries to mount a cgroup, enable the list
2015 * linking each css_set to its tasks and fix up all existing tasks.
2016 */
2017 if (!use_task_css_set_links)
2018 cgroup_enable_task_cg_lists();
e37a06f1 2019
67e9c74b
TH
2020 if (is_v2) {
2021 if (data) {
2022 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2023 return ERR_PTR(-EINVAL);
2024 }
a7165264 2025 cgrp_dfl_visible = true;
67e9c74b
TH
2026 root = &cgrp_dfl_root;
2027 cgroup_get(&root->cgrp);
2028 goto out_mount;
2029 }
2030
334c3679 2031 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2032
2033 /* First find the desired set of subsystems */
ddbcc7e8 2034 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2035 if (ret)
8e30e2b8 2036 goto out_unlock;
a015edd2 2037
970317aa
LZ
2038 /*
2039 * Destruction of cgroup root is asynchronous, so subsystems may
2040 * still be dying after the previous unmount. Let's drain the
2041 * dying subsystems. We just need to ensure that the ones
2042 * unmounted previously finish dying and don't care about new ones
2043 * starting. Testing ref liveliness is good enough.
2044 */
2045 for_each_subsys(ss, i) {
2046 if (!(opts.subsys_mask & (1 << i)) ||
2047 ss->root == &cgrp_dfl_root)
2048 continue;
2049
2050 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2051 mutex_unlock(&cgroup_mutex);
2052 msleep(10);
2053 ret = restart_syscall();
2054 goto out_free;
2055 }
2056 cgroup_put(&ss->root->cgrp);
2057 }
2058
985ed670 2059 for_each_root(root) {
2bd59d48 2060 bool name_match = false;
3126121f 2061
3dd06ffa 2062 if (root == &cgrp_dfl_root)
985ed670 2063 continue;
3126121f 2064
cf5d5941 2065 /*
2bd59d48
TH
2066 * If we asked for a name then it must match. Also, if
2067 * name matches but sybsys_mask doesn't, we should fail.
2068 * Remember whether name matched.
cf5d5941 2069 */
2bd59d48
TH
2070 if (opts.name) {
2071 if (strcmp(opts.name, root->name))
2072 continue;
2073 name_match = true;
2074 }
ddbcc7e8 2075
c6d57f33 2076 /*
2bd59d48
TH
2077 * If we asked for subsystems (or explicitly for no
2078 * subsystems) then they must match.
c6d57f33 2079 */
2bd59d48 2080 if ((opts.subsys_mask || opts.none) &&
f392e51c 2081 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2082 if (!name_match)
2083 continue;
2084 ret = -EBUSY;
2085 goto out_unlock;
2086 }
873fe09e 2087
7b9a6ba5
TH
2088 if (root->flags ^ opts.flags)
2089 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2090
776f02fa 2091 /*
3a32bd72
LZ
2092 * We want to reuse @root whose lifetime is governed by its
2093 * ->cgrp. Let's check whether @root is alive and keep it
2094 * that way. As cgroup_kill_sb() can happen anytime, we
2095 * want to block it by pinning the sb so that @root doesn't
2096 * get killed before mount is complete.
2097 *
2098 * With the sb pinned, tryget_live can reliably indicate
2099 * whether @root can be reused. If it's being killed,
2100 * drain it. We can use wait_queue for the wait but this
2101 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2102 */
3a32bd72
LZ
2103 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2104 if (IS_ERR(pinned_sb) ||
2105 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2106 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2107 if (!IS_ERR_OR_NULL(pinned_sb))
2108 deactivate_super(pinned_sb);
776f02fa 2109 msleep(10);
a015edd2
TH
2110 ret = restart_syscall();
2111 goto out_free;
776f02fa 2112 }
ddbcc7e8 2113
776f02fa 2114 ret = 0;
2bd59d48 2115 goto out_unlock;
ddbcc7e8 2116 }
ddbcc7e8 2117
817929ec 2118 /*
172a2c06
TH
2119 * No such thing, create a new one. name= matching without subsys
2120 * specification is allowed for already existing hierarchies but we
2121 * can't create new one without subsys specification.
817929ec 2122 */
172a2c06
TH
2123 if (!opts.subsys_mask && !opts.none) {
2124 ret = -EINVAL;
2125 goto out_unlock;
817929ec 2126 }
817929ec 2127
172a2c06
TH
2128 root = kzalloc(sizeof(*root), GFP_KERNEL);
2129 if (!root) {
2130 ret = -ENOMEM;
2bd59d48 2131 goto out_unlock;
839ec545 2132 }
e5f6a860 2133
172a2c06
TH
2134 init_cgroup_root(root, &opts);
2135
35585573 2136 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2137 if (ret)
2138 cgroup_free_root(root);
fa3ca07e 2139
8e30e2b8 2140out_unlock:
ddbcc7e8 2141 mutex_unlock(&cgroup_mutex);
a015edd2 2142out_free:
c6d57f33
PM
2143 kfree(opts.release_agent);
2144 kfree(opts.name);
03b1cde6 2145
2bd59d48 2146 if (ret)
8e30e2b8 2147 return ERR_PTR(ret);
67e9c74b 2148out_mount:
c9482a5b 2149 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2150 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2151 &new_sb);
c6b3d5bc 2152 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2153 cgroup_put(&root->cgrp);
3a32bd72
LZ
2154
2155 /*
2156 * If @pinned_sb, we're reusing an existing root and holding an
2157 * extra ref on its sb. Mount is complete. Put the extra ref.
2158 */
2159 if (pinned_sb) {
2160 WARN_ON(new_sb);
2161 deactivate_super(pinned_sb);
2162 }
2163
2bd59d48
TH
2164 return dentry;
2165}
2166
2167static void cgroup_kill_sb(struct super_block *sb)
2168{
2169 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2170 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2171
9d755d33
TH
2172 /*
2173 * If @root doesn't have any mounts or children, start killing it.
2174 * This prevents new mounts by disabling percpu_ref_tryget_live().
2175 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2176 *
2177 * And don't kill the default root.
9d755d33 2178 */
3c606d35 2179 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2180 root == &cgrp_dfl_root)
9d755d33
TH
2181 cgroup_put(&root->cgrp);
2182 else
2183 percpu_ref_kill(&root->cgrp.self.refcnt);
2184
2bd59d48 2185 kernfs_kill_sb(sb);
ddbcc7e8
PM
2186}
2187
2188static struct file_system_type cgroup_fs_type = {
2189 .name = "cgroup",
f7e83571 2190 .mount = cgroup_mount,
ddbcc7e8
PM
2191 .kill_sb = cgroup_kill_sb,
2192};
2193
67e9c74b
TH
2194static struct file_system_type cgroup2_fs_type = {
2195 .name = "cgroup2",
2196 .mount = cgroup_mount,
2197 .kill_sb = cgroup_kill_sb,
2198};
2199
857a2beb 2200/**
913ffdb5 2201 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2202 * @task: target task
857a2beb
TH
2203 * @buf: the buffer to write the path into
2204 * @buflen: the length of the buffer
2205 *
913ffdb5
TH
2206 * Determine @task's cgroup on the first (the one with the lowest non-zero
2207 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2208 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2209 * cgroup controller callbacks.
2210 *
e61734c5 2211 * Return value is the same as kernfs_path().
857a2beb 2212 */
e61734c5 2213char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2214{
3dd06ffa 2215 struct cgroup_root *root;
913ffdb5 2216 struct cgroup *cgrp;
e61734c5
TH
2217 int hierarchy_id = 1;
2218 char *path = NULL;
857a2beb
TH
2219
2220 mutex_lock(&cgroup_mutex);
f0d9a5f1 2221 spin_lock_bh(&css_set_lock);
857a2beb 2222
913ffdb5
TH
2223 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2224
857a2beb
TH
2225 if (root) {
2226 cgrp = task_cgroup_from_root(task, root);
e61734c5 2227 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2228 } else {
2229 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2230 if (strlcpy(buf, "/", buflen) < buflen)
2231 path = buf;
857a2beb
TH
2232 }
2233
f0d9a5f1 2234 spin_unlock_bh(&css_set_lock);
857a2beb 2235 mutex_unlock(&cgroup_mutex);
e61734c5 2236 return path;
857a2beb 2237}
913ffdb5 2238EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2239
b3dc094e 2240/* used to track tasks and other necessary states during migration */
2f7ee569 2241struct cgroup_taskset {
b3dc094e
TH
2242 /* the src and dst cset list running through cset->mg_node */
2243 struct list_head src_csets;
2244 struct list_head dst_csets;
2245
1f7dd3e5
TH
2246 /* the subsys currently being processed */
2247 int ssid;
2248
b3dc094e
TH
2249 /*
2250 * Fields for cgroup_taskset_*() iteration.
2251 *
2252 * Before migration is committed, the target migration tasks are on
2253 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2254 * the csets on ->dst_csets. ->csets point to either ->src_csets
2255 * or ->dst_csets depending on whether migration is committed.
2256 *
2257 * ->cur_csets and ->cur_task point to the current task position
2258 * during iteration.
2259 */
2260 struct list_head *csets;
2261 struct css_set *cur_cset;
2262 struct task_struct *cur_task;
2f7ee569
TH
2263};
2264
adaae5dc
TH
2265#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2266 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2267 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2268 .csets = &tset.src_csets, \
2269}
2270
2271/**
2272 * cgroup_taskset_add - try to add a migration target task to a taskset
2273 * @task: target task
2274 * @tset: target taskset
2275 *
2276 * Add @task, which is a migration target, to @tset. This function becomes
2277 * noop if @task doesn't need to be migrated. @task's css_set should have
2278 * been added as a migration source and @task->cg_list will be moved from
2279 * the css_set's tasks list to mg_tasks one.
2280 */
2281static void cgroup_taskset_add(struct task_struct *task,
2282 struct cgroup_taskset *tset)
2283{
2284 struct css_set *cset;
2285
f0d9a5f1 2286 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2287
2288 /* @task either already exited or can't exit until the end */
2289 if (task->flags & PF_EXITING)
2290 return;
2291
2292 /* leave @task alone if post_fork() hasn't linked it yet */
2293 if (list_empty(&task->cg_list))
2294 return;
2295
2296 cset = task_css_set(task);
2297 if (!cset->mg_src_cgrp)
2298 return;
2299
2300 list_move_tail(&task->cg_list, &cset->mg_tasks);
2301 if (list_empty(&cset->mg_node))
2302 list_add_tail(&cset->mg_node, &tset->src_csets);
2303 if (list_empty(&cset->mg_dst_cset->mg_node))
2304 list_move_tail(&cset->mg_dst_cset->mg_node,
2305 &tset->dst_csets);
2306}
2307
2f7ee569
TH
2308/**
2309 * cgroup_taskset_first - reset taskset and return the first task
2310 * @tset: taskset of interest
1f7dd3e5 2311 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2312 *
2313 * @tset iteration is initialized and the first task is returned.
2314 */
1f7dd3e5
TH
2315struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2316 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2317{
b3dc094e
TH
2318 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2319 tset->cur_task = NULL;
2320
1f7dd3e5 2321 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2322}
2f7ee569
TH
2323
2324/**
2325 * cgroup_taskset_next - iterate to the next task in taskset
2326 * @tset: taskset of interest
1f7dd3e5 2327 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2328 *
2329 * Return the next task in @tset. Iteration must have been initialized
2330 * with cgroup_taskset_first().
2331 */
1f7dd3e5
TH
2332struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2333 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2334{
b3dc094e
TH
2335 struct css_set *cset = tset->cur_cset;
2336 struct task_struct *task = tset->cur_task;
2f7ee569 2337
b3dc094e
TH
2338 while (&cset->mg_node != tset->csets) {
2339 if (!task)
2340 task = list_first_entry(&cset->mg_tasks,
2341 struct task_struct, cg_list);
2342 else
2343 task = list_next_entry(task, cg_list);
2f7ee569 2344
b3dc094e
TH
2345 if (&task->cg_list != &cset->mg_tasks) {
2346 tset->cur_cset = cset;
2347 tset->cur_task = task;
1f7dd3e5
TH
2348
2349 /*
2350 * This function may be called both before and
2351 * after cgroup_taskset_migrate(). The two cases
2352 * can be distinguished by looking at whether @cset
2353 * has its ->mg_dst_cset set.
2354 */
2355 if (cset->mg_dst_cset)
2356 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2357 else
2358 *dst_cssp = cset->subsys[tset->ssid];
2359
b3dc094e
TH
2360 return task;
2361 }
2f7ee569 2362
b3dc094e
TH
2363 cset = list_next_entry(cset, mg_node);
2364 task = NULL;
2365 }
2f7ee569 2366
b3dc094e 2367 return NULL;
2f7ee569 2368}
2f7ee569 2369
adaae5dc 2370/**
37ff9f8f 2371 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2372 * @tset: taget taskset
37ff9f8f 2373 * @root: cgroup root the migration is taking place on
adaae5dc 2374 *
37ff9f8f
TH
2375 * Migrate tasks in @tset as setup by migration preparation functions.
2376 * This function fails iff one of the ->can_attach callbacks fails and
2377 * guarantees that either all or none of the tasks in @tset are migrated.
2378 * @tset is consumed regardless of success.
adaae5dc
TH
2379 */
2380static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2381 struct cgroup_root *root)
adaae5dc 2382{
37ff9f8f 2383 struct cgroup_subsys *ss;
adaae5dc
TH
2384 struct task_struct *task, *tmp_task;
2385 struct css_set *cset, *tmp_cset;
37ff9f8f 2386 int ssid, failed_ssid, ret;
adaae5dc
TH
2387
2388 /* methods shouldn't be called if no task is actually migrating */
2389 if (list_empty(&tset->src_csets))
2390 return 0;
2391
2392 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2393 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2394 if (ss->can_attach) {
2395 tset->ssid = ssid;
2396 ret = ss->can_attach(tset);
adaae5dc 2397 if (ret) {
37ff9f8f 2398 failed_ssid = ssid;
adaae5dc
TH
2399 goto out_cancel_attach;
2400 }
2401 }
37ff9f8f 2402 } while_each_subsys_mask();
adaae5dc
TH
2403
2404 /*
2405 * Now that we're guaranteed success, proceed to move all tasks to
2406 * the new cgroup. There are no failure cases after here, so this
2407 * is the commit point.
2408 */
f0d9a5f1 2409 spin_lock_bh(&css_set_lock);
adaae5dc 2410 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2411 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2412 struct css_set *from_cset = task_css_set(task);
2413 struct css_set *to_cset = cset->mg_dst_cset;
2414
2415 get_css_set(to_cset);
2416 css_set_move_task(task, from_cset, to_cset, true);
2417 put_css_set_locked(from_cset);
2418 }
adaae5dc 2419 }
f0d9a5f1 2420 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2421
2422 /*
2423 * Migration is committed, all target tasks are now on dst_csets.
2424 * Nothing is sensitive to fork() after this point. Notify
2425 * controllers that migration is complete.
2426 */
2427 tset->csets = &tset->dst_csets;
2428
37ff9f8f
TH
2429 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2430 if (ss->attach) {
2431 tset->ssid = ssid;
2432 ss->attach(tset);
1f7dd3e5 2433 }
37ff9f8f 2434 } while_each_subsys_mask();
adaae5dc
TH
2435
2436 ret = 0;
2437 goto out_release_tset;
2438
2439out_cancel_attach:
37ff9f8f
TH
2440 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2441 if (ssid == failed_ssid)
adaae5dc 2442 break;
37ff9f8f
TH
2443 if (ss->cancel_attach) {
2444 tset->ssid = ssid;
2445 ss->cancel_attach(tset);
1f7dd3e5 2446 }
37ff9f8f 2447 } while_each_subsys_mask();
adaae5dc 2448out_release_tset:
f0d9a5f1 2449 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2450 list_splice_init(&tset->dst_csets, &tset->src_csets);
2451 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2452 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2453 list_del_init(&cset->mg_node);
2454 }
f0d9a5f1 2455 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2456 return ret;
2457}
2458
6c694c88
TH
2459/**
2460 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2461 * @dst_cgrp: destination cgroup to test
2462 *
2463 * On the default hierarchy, except for the root, subtree_control must be
2464 * zero for migration destination cgroups with tasks so that child cgroups
2465 * don't compete against tasks.
2466 */
2467static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2468{
2469 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2470 !dst_cgrp->subtree_control;
2471}
2472
a043e3b2 2473/**
1958d2d5
TH
2474 * cgroup_migrate_finish - cleanup after attach
2475 * @preloaded_csets: list of preloaded css_sets
74a1166d 2476 *
1958d2d5
TH
2477 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2478 * those functions for details.
74a1166d 2479 */
1958d2d5 2480static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2481{
1958d2d5 2482 struct css_set *cset, *tmp_cset;
74a1166d 2483
1958d2d5
TH
2484 lockdep_assert_held(&cgroup_mutex);
2485
f0d9a5f1 2486 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2487 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2488 cset->mg_src_cgrp = NULL;
e4857982 2489 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2490 cset->mg_dst_cset = NULL;
2491 list_del_init(&cset->mg_preload_node);
a25eb52e 2492 put_css_set_locked(cset);
1958d2d5 2493 }
f0d9a5f1 2494 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2495}
2496
2497/**
2498 * cgroup_migrate_add_src - add a migration source css_set
2499 * @src_cset: the source css_set to add
2500 * @dst_cgrp: the destination cgroup
2501 * @preloaded_csets: list of preloaded css_sets
2502 *
2503 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2504 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2505 * up by cgroup_migrate_finish().
2506 *
1ed13287
TH
2507 * This function may be called without holding cgroup_threadgroup_rwsem
2508 * even if the target is a process. Threads may be created and destroyed
2509 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2510 * into play and the preloaded css_sets are guaranteed to cover all
2511 * migrations.
1958d2d5
TH
2512 */
2513static void cgroup_migrate_add_src(struct css_set *src_cset,
2514 struct cgroup *dst_cgrp,
2515 struct list_head *preloaded_csets)
2516{
2517 struct cgroup *src_cgrp;
2518
2519 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2520 lockdep_assert_held(&css_set_lock);
1958d2d5 2521
2b021cbf
TH
2522 /*
2523 * If ->dead, @src_set is associated with one or more dead cgroups
2524 * and doesn't contain any migratable tasks. Ignore it early so
2525 * that the rest of migration path doesn't get confused by it.
2526 */
2527 if (src_cset->dead)
2528 return;
2529
1958d2d5
TH
2530 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2531
1958d2d5
TH
2532 if (!list_empty(&src_cset->mg_preload_node))
2533 return;
2534
2535 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2536 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2537 WARN_ON(!list_empty(&src_cset->mg_tasks));
2538 WARN_ON(!list_empty(&src_cset->mg_node));
2539
2540 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2541 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2542 get_css_set(src_cset);
2543 list_add(&src_cset->mg_preload_node, preloaded_csets);
2544}
2545
2546/**
2547 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2548 * @preloaded_csets: list of preloaded source css_sets
2549 *
e4857982
TH
2550 * Tasks are about to be moved and all the source css_sets have been
2551 * preloaded to @preloaded_csets. This function looks up and pins all
2552 * destination css_sets, links each to its source, and append them to
2553 * @preloaded_csets.
1958d2d5
TH
2554 *
2555 * This function must be called after cgroup_migrate_add_src() has been
2556 * called on each migration source css_set. After migration is performed
2557 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2558 * @preloaded_csets.
2559 */
e4857982 2560static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2561{
2562 LIST_HEAD(csets);
f817de98 2563 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2564
2565 lockdep_assert_held(&cgroup_mutex);
2566
2567 /* look up the dst cset for each src cset and link it to src */
f817de98 2568 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2569 struct css_set *dst_cset;
2570
e4857982 2571 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2572 if (!dst_cset)
2573 goto err;
2574
2575 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2576
2577 /*
2578 * If src cset equals dst, it's noop. Drop the src.
2579 * cgroup_migrate() will skip the cset too. Note that we
2580 * can't handle src == dst as some nodes are used by both.
2581 */
2582 if (src_cset == dst_cset) {
2583 src_cset->mg_src_cgrp = NULL;
e4857982 2584 src_cset->mg_dst_cgrp = NULL;
f817de98 2585 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2586 put_css_set(src_cset);
2587 put_css_set(dst_cset);
f817de98
TH
2588 continue;
2589 }
2590
1958d2d5
TH
2591 src_cset->mg_dst_cset = dst_cset;
2592
2593 if (list_empty(&dst_cset->mg_preload_node))
2594 list_add(&dst_cset->mg_preload_node, &csets);
2595 else
a25eb52e 2596 put_css_set(dst_cset);
1958d2d5
TH
2597 }
2598
f817de98 2599 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2600 return 0;
2601err:
2602 cgroup_migrate_finish(&csets);
2603 return -ENOMEM;
2604}
2605
2606/**
2607 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2608 * @leader: the leader of the process or the task to migrate
2609 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2610 * @root: cgroup root migration is taking place on
1958d2d5 2611 *
37ff9f8f
TH
2612 * Migrate a process or task denoted by @leader. If migrating a process,
2613 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2614 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2615 * cgroup_migrate_prepare_dst() on the targets before invoking this
2616 * function and following up with cgroup_migrate_finish().
2617 *
2618 * As long as a controller's ->can_attach() doesn't fail, this function is
2619 * guaranteed to succeed. This means that, excluding ->can_attach()
2620 * failure, when migrating multiple targets, the success or failure can be
2621 * decided for all targets by invoking group_migrate_prepare_dst() before
2622 * actually starting migrating.
2623 */
9af2ec45 2624static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2625 struct cgroup_root *root)
74a1166d 2626{
adaae5dc
TH
2627 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2628 struct task_struct *task;
74a1166d 2629
fb5d2b4c
MSB
2630 /*
2631 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2632 * already PF_EXITING could be freed from underneath us unless we
2633 * take an rcu_read_lock.
2634 */
f0d9a5f1 2635 spin_lock_bh(&css_set_lock);
fb5d2b4c 2636 rcu_read_lock();
9db8de37 2637 task = leader;
74a1166d 2638 do {
adaae5dc 2639 cgroup_taskset_add(task, &tset);
081aa458
LZ
2640 if (!threadgroup)
2641 break;
9db8de37 2642 } while_each_thread(leader, task);
fb5d2b4c 2643 rcu_read_unlock();
f0d9a5f1 2644 spin_unlock_bh(&css_set_lock);
74a1166d 2645
37ff9f8f 2646 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2647}
2648
1958d2d5
TH
2649/**
2650 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2651 * @dst_cgrp: the cgroup to attach to
2652 * @leader: the task or the leader of the threadgroup to be attached
2653 * @threadgroup: attach the whole threadgroup?
2654 *
1ed13287 2655 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2656 */
2657static int cgroup_attach_task(struct cgroup *dst_cgrp,
2658 struct task_struct *leader, bool threadgroup)
2659{
2660 LIST_HEAD(preloaded_csets);
2661 struct task_struct *task;
2662 int ret;
2663
6c694c88
TH
2664 if (!cgroup_may_migrate_to(dst_cgrp))
2665 return -EBUSY;
2666
1958d2d5 2667 /* look up all src csets */
f0d9a5f1 2668 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2669 rcu_read_lock();
2670 task = leader;
2671 do {
2672 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2673 &preloaded_csets);
2674 if (!threadgroup)
2675 break;
2676 } while_each_thread(leader, task);
2677 rcu_read_unlock();
f0d9a5f1 2678 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2679
2680 /* prepare dst csets and commit */
e4857982 2681 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2682 if (!ret)
37ff9f8f 2683 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2684
2685 cgroup_migrate_finish(&preloaded_csets);
2686 return ret;
74a1166d
BB
2687}
2688
187fe840
TH
2689static int cgroup_procs_write_permission(struct task_struct *task,
2690 struct cgroup *dst_cgrp,
2691 struct kernfs_open_file *of)
dedf22e9
TH
2692{
2693 const struct cred *cred = current_cred();
2694 const struct cred *tcred = get_task_cred(task);
2695 int ret = 0;
2696
2697 /*
2698 * even if we're attaching all tasks in the thread group, we only
2699 * need to check permissions on one of them.
2700 */
2701 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2702 !uid_eq(cred->euid, tcred->uid) &&
2703 !uid_eq(cred->euid, tcred->suid))
2704 ret = -EACCES;
2705
187fe840
TH
2706 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2707 struct super_block *sb = of->file->f_path.dentry->d_sb;
2708 struct cgroup *cgrp;
2709 struct inode *inode;
2710
f0d9a5f1 2711 spin_lock_bh(&css_set_lock);
187fe840 2712 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2713 spin_unlock_bh(&css_set_lock);
187fe840
TH
2714
2715 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2716 cgrp = cgroup_parent(cgrp);
2717
2718 ret = -ENOMEM;
6f60eade 2719 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2720 if (inode) {
2721 ret = inode_permission(inode, MAY_WRITE);
2722 iput(inode);
2723 }
2724 }
2725
dedf22e9
TH
2726 put_cred(tcred);
2727 return ret;
2728}
2729
74a1166d
BB
2730/*
2731 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2732 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2733 * cgroup_mutex and threadgroup.
bbcb81d0 2734 */
acbef755
TH
2735static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2736 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2737{
bbcb81d0 2738 struct task_struct *tsk;
e76ecaee 2739 struct cgroup *cgrp;
acbef755 2740 pid_t pid;
bbcb81d0
PM
2741 int ret;
2742
acbef755
TH
2743 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2744 return -EINVAL;
2745
945ba199 2746 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2747 if (!cgrp)
74a1166d
BB
2748 return -ENODEV;
2749
3014dde7 2750 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2751 rcu_read_lock();
bbcb81d0 2752 if (pid) {
73507f33 2753 tsk = find_task_by_vpid(pid);
74a1166d 2754 if (!tsk) {
dd4b0a46 2755 ret = -ESRCH;
3014dde7 2756 goto out_unlock_rcu;
bbcb81d0 2757 }
dedf22e9 2758 } else {
b78949eb 2759 tsk = current;
dedf22e9 2760 }
cd3d0952
TH
2761
2762 if (threadgroup)
b78949eb 2763 tsk = tsk->group_leader;
c4c27fbd
MG
2764
2765 /*
14a40ffc 2766 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2767 * trapped in a cpuset, or RT worker may be born in a cgroup
2768 * with no rt_runtime allocated. Just say no.
2769 */
14a40ffc 2770 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2771 ret = -EINVAL;
3014dde7 2772 goto out_unlock_rcu;
c4c27fbd
MG
2773 }
2774
b78949eb
MSB
2775 get_task_struct(tsk);
2776 rcu_read_unlock();
2777
187fe840 2778 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2779 if (!ret)
2780 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2781
f9f9e7b7 2782 put_task_struct(tsk);
3014dde7
TH
2783 goto out_unlock_threadgroup;
2784
2785out_unlock_rcu:
2786 rcu_read_unlock();
2787out_unlock_threadgroup:
2788 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2789 cgroup_kn_unlock(of->kn);
e93ad19d 2790 cpuset_post_attach_flush();
acbef755 2791 return ret ?: nbytes;
bbcb81d0
PM
2792}
2793
7ae1bad9
TH
2794/**
2795 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2796 * @from: attach to all cgroups of a given task
2797 * @tsk: the task to be attached
2798 */
2799int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2800{
3dd06ffa 2801 struct cgroup_root *root;
7ae1bad9
TH
2802 int retval = 0;
2803
47cfcd09 2804 mutex_lock(&cgroup_mutex);
985ed670 2805 for_each_root(root) {
96d365e0
TH
2806 struct cgroup *from_cgrp;
2807
3dd06ffa 2808 if (root == &cgrp_dfl_root)
985ed670
TH
2809 continue;
2810
f0d9a5f1 2811 spin_lock_bh(&css_set_lock);
96d365e0 2812 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2813 spin_unlock_bh(&css_set_lock);
7ae1bad9 2814
6f4b7e63 2815 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2816 if (retval)
2817 break;
2818 }
47cfcd09 2819 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2820
2821 return retval;
2822}
2823EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2824
acbef755
TH
2825static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2826 char *buf, size_t nbytes, loff_t off)
74a1166d 2827{
acbef755 2828 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2829}
2830
acbef755
TH
2831static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2832 char *buf, size_t nbytes, loff_t off)
af351026 2833{
acbef755 2834 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2835}
2836
451af504
TH
2837static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2838 char *buf, size_t nbytes, loff_t off)
e788e066 2839{
e76ecaee 2840 struct cgroup *cgrp;
5f469907 2841
e76ecaee 2842 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2843
945ba199 2844 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2845 if (!cgrp)
e788e066 2846 return -ENODEV;
69e943b7 2847 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2848 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2849 sizeof(cgrp->root->release_agent_path));
69e943b7 2850 spin_unlock(&release_agent_path_lock);
e76ecaee 2851 cgroup_kn_unlock(of->kn);
451af504 2852 return nbytes;
e788e066
PM
2853}
2854
2da8ca82 2855static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2856{
2da8ca82 2857 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2858
46cfeb04 2859 spin_lock(&release_agent_path_lock);
e788e066 2860 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2861 spin_unlock(&release_agent_path_lock);
e788e066 2862 seq_putc(seq, '\n');
e788e066
PM
2863 return 0;
2864}
2865
2da8ca82 2866static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2867{
c1d5d42e 2868 seq_puts(seq, "0\n");
e788e066
PM
2869 return 0;
2870}
2871
6e5c8307 2872static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2873{
f8f22e53
TH
2874 struct cgroup_subsys *ss;
2875 bool printed = false;
2876 int ssid;
a742c59d 2877
b4e0eeaf 2878 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2879 if (printed)
2880 seq_putc(seq, ' ');
2881 seq_printf(seq, "%s", ss->name);
2882 printed = true;
b4e0eeaf 2883 } while_each_subsys_mask();
f8f22e53
TH
2884 if (printed)
2885 seq_putc(seq, '\n');
355e0c48
PM
2886}
2887
f8f22e53
TH
2888/* show controllers which are enabled from the parent */
2889static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2890{
f8f22e53
TH
2891 struct cgroup *cgrp = seq_css(seq)->cgroup;
2892
5531dc91 2893 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2894 return 0;
ddbcc7e8
PM
2895}
2896
f8f22e53
TH
2897/* show controllers which are enabled for a given cgroup's children */
2898static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2899{
f8f22e53
TH
2900 struct cgroup *cgrp = seq_css(seq)->cgroup;
2901
667c2491 2902 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2903 return 0;
2904}
2905
2906/**
2907 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2908 * @cgrp: root of the subtree to update csses for
2909 *
54962604
TH
2910 * @cgrp's control masks have changed and its subtree's css associations
2911 * need to be updated accordingly. This function looks up all css_sets
2912 * which are attached to the subtree, creates the matching updated css_sets
2913 * and migrates the tasks to the new ones.
f8f22e53
TH
2914 */
2915static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2916{
2917 LIST_HEAD(preloaded_csets);
10265075 2918 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
2919 struct cgroup_subsys_state *d_css;
2920 struct cgroup *dsct;
f8f22e53
TH
2921 struct css_set *src_cset;
2922 int ret;
2923
f8f22e53
TH
2924 lockdep_assert_held(&cgroup_mutex);
2925
3014dde7
TH
2926 percpu_down_write(&cgroup_threadgroup_rwsem);
2927
f8f22e53 2928 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2929 spin_lock_bh(&css_set_lock);
54962604 2930 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
2931 struct cgrp_cset_link *link;
2932
54962604 2933 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 2934 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
2935 &preloaded_csets);
2936 }
f0d9a5f1 2937 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2938
2939 /* NULL dst indicates self on default hierarchy */
e4857982 2940 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
2941 if (ret)
2942 goto out_finish;
2943
f0d9a5f1 2944 spin_lock_bh(&css_set_lock);
f8f22e53 2945 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2946 struct task_struct *task, *ntask;
f8f22e53
TH
2947
2948 /* src_csets precede dst_csets, break on the first dst_cset */
2949 if (!src_cset->mg_src_cgrp)
2950 break;
2951
10265075
TH
2952 /* all tasks in src_csets need to be migrated */
2953 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2954 cgroup_taskset_add(task, &tset);
f8f22e53 2955 }
f0d9a5f1 2956 spin_unlock_bh(&css_set_lock);
f8f22e53 2957
37ff9f8f 2958 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
2959out_finish:
2960 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2961 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2962 return ret;
2963}
2964
1b9b96a1 2965/**
945ba199 2966 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 2967 * @cgrp: root of the target subtree
1b9b96a1
TH
2968 *
2969 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
2970 * controller while the previous css is still around. This function grabs
2971 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 2972 */
945ba199
TH
2973static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2974 __acquires(&cgroup_mutex)
1b9b96a1
TH
2975{
2976 struct cgroup *dsct;
ce3f1d9d 2977 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
2978 struct cgroup_subsys *ss;
2979 int ssid;
2980
945ba199
TH
2981restart:
2982 mutex_lock(&cgroup_mutex);
1b9b96a1 2983
ce3f1d9d 2984 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
2985 for_each_subsys(ss, ssid) {
2986 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2987 DEFINE_WAIT(wait);
2988
ce3f1d9d 2989 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
2990 continue;
2991
2992 cgroup_get(dsct);
2993 prepare_to_wait(&dsct->offline_waitq, &wait,
2994 TASK_UNINTERRUPTIBLE);
2995
2996 mutex_unlock(&cgroup_mutex);
2997 schedule();
2998 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
2999
3000 cgroup_put(dsct);
945ba199 3001 goto restart;
1b9b96a1
TH
3002 }
3003 }
1b9b96a1
TH
3004}
3005
15a27c36
TH
3006/**
3007 * cgroup_save_control - save control masks of a subtree
3008 * @cgrp: root of the target subtree
3009 *
3010 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3011 * prefixed fields for @cgrp's subtree including @cgrp itself.
3012 */
3013static void cgroup_save_control(struct cgroup *cgrp)
3014{
3015 struct cgroup *dsct;
3016 struct cgroup_subsys_state *d_css;
3017
3018 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3019 dsct->old_subtree_control = dsct->subtree_control;
3020 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3021 }
3022}
3023
3024/**
3025 * cgroup_propagate_control - refresh control masks of a subtree
3026 * @cgrp: root of the target subtree
3027 *
3028 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3029 * ->subtree_control and propagate controller availability through the
3030 * subtree so that descendants don't have unavailable controllers enabled.
3031 */
3032static void cgroup_propagate_control(struct cgroup *cgrp)
3033{
3034 struct cgroup *dsct;
3035 struct cgroup_subsys_state *d_css;
3036
3037 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3038 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3039 dsct->subtree_ss_mask =
3040 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3041 cgroup_ss_mask(dsct));
15a27c36
TH
3042 }
3043}
3044
3045/**
3046 * cgroup_restore_control - restore control masks of a subtree
3047 * @cgrp: root of the target subtree
3048 *
3049 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3050 * prefixed fields for @cgrp's subtree including @cgrp itself.
3051 */
3052static void cgroup_restore_control(struct cgroup *cgrp)
3053{
3054 struct cgroup *dsct;
3055 struct cgroup_subsys_state *d_css;
3056
3057 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3058 dsct->subtree_control = dsct->old_subtree_control;
3059 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3060 }
3061}
3062
f6d635ad
TH
3063static bool css_visible(struct cgroup_subsys_state *css)
3064{
3065 struct cgroup_subsys *ss = css->ss;
3066 struct cgroup *cgrp = css->cgroup;
3067
3068 if (cgroup_control(cgrp) & (1 << ss->id))
3069 return true;
3070 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3071 return false;
3072 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3073}
3074
bdb53bd7
TH
3075/**
3076 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3077 * @cgrp: root of the target subtree
bdb53bd7 3078 *
ce3f1d9d 3079 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3080 * visible. A css is created invisible if it's being implicitly enabled
3081 * through dependency. An invisible css is made visible when the userland
3082 * explicitly enables it.
3083 *
3084 * Returns 0 on success, -errno on failure. On failure, csses which have
3085 * been processed already aren't cleaned up. The caller is responsible for
3086 * cleaning up with cgroup_apply_control_disble().
3087 */
3088static int cgroup_apply_control_enable(struct cgroup *cgrp)
3089{
3090 struct cgroup *dsct;
ce3f1d9d 3091 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3092 struct cgroup_subsys *ss;
3093 int ssid, ret;
3094
ce3f1d9d 3095 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3096 for_each_subsys(ss, ssid) {
3097 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3098
945ba199
TH
3099 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3100
bdb53bd7
TH
3101 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3102 continue;
3103
3104 if (!css) {
3105 css = css_create(dsct, ss);
3106 if (IS_ERR(css))
3107 return PTR_ERR(css);
3108 }
3109
f6d635ad 3110 if (css_visible(css)) {
334c3679 3111 ret = css_populate_dir(css);
bdb53bd7
TH
3112 if (ret)
3113 return ret;
3114 }
3115 }
3116 }
3117
3118 return 0;
3119}
3120
12b3bb6a
TH
3121/**
3122 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3123 * @cgrp: root of the target subtree
12b3bb6a 3124 *
ce3f1d9d 3125 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3126 * cgroup_ss_mask() and cgroup_visible_mask().
3127 *
3128 * A css is hidden when the userland requests it to be disabled while other
3129 * subsystems are still depending on it. The css must not actively control
3130 * resources and be in the vanilla state if it's made visible again later.
3131 * Controllers which may be depended upon should provide ->css_reset() for
3132 * this purpose.
3133 */
3134static void cgroup_apply_control_disable(struct cgroup *cgrp)
3135{
3136 struct cgroup *dsct;
ce3f1d9d 3137 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3138 struct cgroup_subsys *ss;
3139 int ssid;
3140
ce3f1d9d 3141 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3142 for_each_subsys(ss, ssid) {
3143 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3144
945ba199
TH
3145 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3146
12b3bb6a
TH
3147 if (!css)
3148 continue;
3149
334c3679
TH
3150 if (css->parent &&
3151 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3152 kill_css(css);
f6d635ad 3153 } else if (!css_visible(css)) {
334c3679 3154 css_clear_dir(css);
12b3bb6a
TH
3155 if (ss->css_reset)
3156 ss->css_reset(css);
3157 }
3158 }
3159 }
3160}
3161
f7b2814b
TH
3162/**
3163 * cgroup_apply_control - apply control mask updates to the subtree
3164 * @cgrp: root of the target subtree
3165 *
3166 * subsystems can be enabled and disabled in a subtree using the following
3167 * steps.
3168 *
3169 * 1. Call cgroup_save_control() to stash the current state.
3170 * 2. Update ->subtree_control masks in the subtree as desired.
3171 * 3. Call cgroup_apply_control() to apply the changes.
3172 * 4. Optionally perform other related operations.
3173 * 5. Call cgroup_finalize_control() to finish up.
3174 *
3175 * This function implements step 3 and propagates the mask changes
3176 * throughout @cgrp's subtree, updates csses accordingly and perform
3177 * process migrations.
3178 */
3179static int cgroup_apply_control(struct cgroup *cgrp)
3180{
3181 int ret;
3182
3183 cgroup_propagate_control(cgrp);
3184
3185 ret = cgroup_apply_control_enable(cgrp);
3186 if (ret)
3187 return ret;
3188
3189 /*
3190 * At this point, cgroup_e_css() results reflect the new csses
3191 * making the following cgroup_update_dfl_csses() properly update
3192 * css associations of all tasks in the subtree.
3193 */
3194 ret = cgroup_update_dfl_csses(cgrp);
3195 if (ret)
3196 return ret;
3197
3198 return 0;
3199}
3200
3201/**
3202 * cgroup_finalize_control - finalize control mask update
3203 * @cgrp: root of the target subtree
3204 * @ret: the result of the update
3205 *
3206 * Finalize control mask update. See cgroup_apply_control() for more info.
3207 */
3208static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3209{
3210 if (ret) {
3211 cgroup_restore_control(cgrp);
3212 cgroup_propagate_control(cgrp);
3213 }
3214
3215 cgroup_apply_control_disable(cgrp);
3216}
3217
f8f22e53 3218/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3219static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3220 char *buf, size_t nbytes,
3221 loff_t off)
f8f22e53 3222{
6e5c8307 3223 u16 enable = 0, disable = 0;
a9746d8d 3224 struct cgroup *cgrp, *child;
f8f22e53 3225 struct cgroup_subsys *ss;
451af504 3226 char *tok;
f8f22e53
TH
3227 int ssid, ret;
3228
3229 /*
d37167ab
TH
3230 * Parse input - space separated list of subsystem names prefixed
3231 * with either + or -.
f8f22e53 3232 */
451af504
TH
3233 buf = strstrip(buf);
3234 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3235 if (tok[0] == '\0')
3236 continue;
a7165264 3237 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3238 if (!cgroup_ssid_enabled(ssid) ||
3239 strcmp(tok + 1, ss->name))
f8f22e53
TH
3240 continue;
3241
3242 if (*tok == '+') {
7d331fa9
TH
3243 enable |= 1 << ssid;
3244 disable &= ~(1 << ssid);
f8f22e53 3245 } else if (*tok == '-') {
7d331fa9
TH
3246 disable |= 1 << ssid;
3247 enable &= ~(1 << ssid);
f8f22e53
TH
3248 } else {
3249 return -EINVAL;
3250 }
3251 break;
b4e0eeaf 3252 } while_each_subsys_mask();
f8f22e53
TH
3253 if (ssid == CGROUP_SUBSYS_COUNT)
3254 return -EINVAL;
3255 }
3256
945ba199 3257 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3258 if (!cgrp)
3259 return -ENODEV;
f8f22e53
TH
3260
3261 for_each_subsys(ss, ssid) {
3262 if (enable & (1 << ssid)) {
667c2491 3263 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3264 enable &= ~(1 << ssid);
3265 continue;
3266 }
3267
5531dc91 3268 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3269 ret = -ENOENT;
3270 goto out_unlock;
3271 }
f8f22e53 3272 } else if (disable & (1 << ssid)) {
667c2491 3273 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3274 disable &= ~(1 << ssid);
3275 continue;
3276 }
3277
3278 /* a child has it enabled? */
3279 cgroup_for_each_live_child(child, cgrp) {
667c2491 3280 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3281 ret = -EBUSY;
ddab2b6e 3282 goto out_unlock;
f8f22e53
TH
3283 }
3284 }
3285 }
3286 }
3287
3288 if (!enable && !disable) {
3289 ret = 0;
ddab2b6e 3290 goto out_unlock;
f8f22e53
TH
3291 }
3292
3293 /*
667c2491 3294 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3295 * with tasks so that child cgroups don't compete against tasks.
3296 */
d51f39b0 3297 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3298 ret = -EBUSY;
3299 goto out_unlock;
3300 }
3301
15a27c36
TH
3302 /* save and update control masks and prepare csses */
3303 cgroup_save_control(cgrp);
f63070d3 3304
15a27c36
TH
3305 cgrp->subtree_control |= enable;
3306 cgrp->subtree_control &= ~disable;
c29adf24 3307
f7b2814b 3308 ret = cgroup_apply_control(cgrp);
f8f22e53 3309
f7b2814b 3310 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3311
3312 kernfs_activate(cgrp->kn);
3313 ret = 0;
3314out_unlock:
a9746d8d 3315 cgroup_kn_unlock(of->kn);
451af504 3316 return ret ?: nbytes;
f8f22e53
TH
3317}
3318
4a07c222 3319static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3320{
4a07c222 3321 seq_printf(seq, "populated %d\n",
27bd4dbb 3322 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3323 return 0;
3324}
3325
2bd59d48
TH
3326static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3327 size_t nbytes, loff_t off)
355e0c48 3328{
2bd59d48
TH
3329 struct cgroup *cgrp = of->kn->parent->priv;
3330 struct cftype *cft = of->kn->priv;
3331 struct cgroup_subsys_state *css;
a742c59d 3332 int ret;
355e0c48 3333
b4168640
TH
3334 if (cft->write)
3335 return cft->write(of, buf, nbytes, off);
3336
2bd59d48
TH
3337 /*
3338 * kernfs guarantees that a file isn't deleted with operations in
3339 * flight, which means that the matching css is and stays alive and
3340 * doesn't need to be pinned. The RCU locking is not necessary
3341 * either. It's just for the convenience of using cgroup_css().
3342 */
3343 rcu_read_lock();
3344 css = cgroup_css(cgrp, cft->ss);
3345 rcu_read_unlock();
a742c59d 3346
451af504 3347 if (cft->write_u64) {
a742c59d
TH
3348 unsigned long long v;
3349 ret = kstrtoull(buf, 0, &v);
3350 if (!ret)
3351 ret = cft->write_u64(css, cft, v);
3352 } else if (cft->write_s64) {
3353 long long v;
3354 ret = kstrtoll(buf, 0, &v);
3355 if (!ret)
3356 ret = cft->write_s64(css, cft, v);
e73d2c61 3357 } else {
a742c59d 3358 ret = -EINVAL;
e73d2c61 3359 }
2bd59d48 3360
a742c59d 3361 return ret ?: nbytes;
355e0c48
PM
3362}
3363
6612f05b 3364static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3365{
2bd59d48 3366 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3367}
3368
6612f05b 3369static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3370{
2bd59d48 3371 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3372}
3373
6612f05b 3374static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3375{
2bd59d48 3376 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3377}
3378
91796569 3379static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3380{
7da11279
TH
3381 struct cftype *cft = seq_cft(m);
3382 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3383
2da8ca82
TH
3384 if (cft->seq_show)
3385 return cft->seq_show(m, arg);
e73d2c61 3386
f4c753b7 3387 if (cft->read_u64)
896f5199
TH
3388 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3389 else if (cft->read_s64)
3390 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3391 else
3392 return -EINVAL;
3393 return 0;
91796569
PM
3394}
3395
2bd59d48
TH
3396static struct kernfs_ops cgroup_kf_single_ops = {
3397 .atomic_write_len = PAGE_SIZE,
3398 .write = cgroup_file_write,
3399 .seq_show = cgroup_seqfile_show,
91796569
PM
3400};
3401
2bd59d48
TH
3402static struct kernfs_ops cgroup_kf_ops = {
3403 .atomic_write_len = PAGE_SIZE,
3404 .write = cgroup_file_write,
3405 .seq_start = cgroup_seqfile_start,
3406 .seq_next = cgroup_seqfile_next,
3407 .seq_stop = cgroup_seqfile_stop,
3408 .seq_show = cgroup_seqfile_show,
3409};
ddbcc7e8
PM
3410
3411/*
3412 * cgroup_rename - Only allow simple rename of directories in place.
3413 */
2bd59d48
TH
3414static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3415 const char *new_name_str)
ddbcc7e8 3416{
2bd59d48 3417 struct cgroup *cgrp = kn->priv;
65dff759 3418 int ret;
65dff759 3419
2bd59d48 3420 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3421 return -ENOTDIR;
2bd59d48 3422 if (kn->parent != new_parent)
ddbcc7e8 3423 return -EIO;
65dff759 3424
6db8e85c
TH
3425 /*
3426 * This isn't a proper migration and its usefulness is very
aa6ec29b 3427 * limited. Disallow on the default hierarchy.
6db8e85c 3428 */
aa6ec29b 3429 if (cgroup_on_dfl(cgrp))
6db8e85c 3430 return -EPERM;
099fca32 3431
e1b2dc17 3432 /*
8353da1f 3433 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3434 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3435 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3436 */
3437 kernfs_break_active_protection(new_parent);
3438 kernfs_break_active_protection(kn);
099fca32 3439
2bd59d48 3440 mutex_lock(&cgroup_mutex);
099fca32 3441
2bd59d48 3442 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3443
2bd59d48 3444 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3445
3446 kernfs_unbreak_active_protection(kn);
3447 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3448 return ret;
099fca32
LZ
3449}
3450
49957f8e
TH
3451/* set uid and gid of cgroup dirs and files to that of the creator */
3452static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3453{
3454 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3455 .ia_uid = current_fsuid(),
3456 .ia_gid = current_fsgid(), };
3457
3458 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3459 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3460 return 0;
3461
3462 return kernfs_setattr(kn, &iattr);
3463}
3464
4df8dc90
TH
3465static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3466 struct cftype *cft)
ddbcc7e8 3467{
8d7e6fb0 3468 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3469 struct kernfs_node *kn;
3470 struct lock_class_key *key = NULL;
49957f8e 3471 int ret;
05ef1d7c 3472
2bd59d48
TH
3473#ifdef CONFIG_DEBUG_LOCK_ALLOC
3474 key = &cft->lockdep_key;
3475#endif
3476 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3477 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3478 NULL, key);
49957f8e
TH
3479 if (IS_ERR(kn))
3480 return PTR_ERR(kn);
3481
3482 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3483 if (ret) {
49957f8e 3484 kernfs_remove(kn);
f8f22e53
TH
3485 return ret;
3486 }
3487
6f60eade
TH
3488 if (cft->file_offset) {
3489 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3490
34c06254 3491 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3492 cfile->kn = kn;
34c06254 3493 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3494 }
3495
f8f22e53 3496 return 0;
ddbcc7e8
PM
3497}
3498
b1f28d31
TH
3499/**
3500 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3501 * @css: the target css
3502 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3503 * @cfts: array of cftypes to be added
3504 * @is_add: whether to add or remove
3505 *
3506 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3507 * For removals, this function never fails.
b1f28d31 3508 */
4df8dc90
TH
3509static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3510 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3511 bool is_add)
ddbcc7e8 3512{
6732ed85 3513 struct cftype *cft, *cft_end = NULL;
b598dde3 3514 int ret = 0;
b1f28d31 3515
01f6474c 3516 lockdep_assert_held(&cgroup_mutex);
db0416b6 3517
6732ed85
TH
3518restart:
3519 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3520 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3521 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3522 continue;
05ebb6e6 3523 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3524 continue;
d51f39b0 3525 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3526 continue;
d51f39b0 3527 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3528 continue;
3529
2739d3cc 3530 if (is_add) {
4df8dc90 3531 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3532 if (ret) {
ed3d261b
JP
3533 pr_warn("%s: failed to add %s, err=%d\n",
3534 __func__, cft->name, ret);
6732ed85
TH
3535 cft_end = cft;
3536 is_add = false;
3537 goto restart;
b1f28d31 3538 }
2739d3cc
LZ
3539 } else {
3540 cgroup_rm_file(cgrp, cft);
db0416b6 3541 }
ddbcc7e8 3542 }
b598dde3 3543 return ret;
ddbcc7e8
PM
3544}
3545
21a2d343 3546static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3547{
3548 LIST_HEAD(pending);
2bb566cb 3549 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3550 struct cgroup *root = &ss->root->cgrp;
492eb21b 3551 struct cgroup_subsys_state *css;
9ccece80 3552 int ret = 0;
8e3f6541 3553
01f6474c 3554 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3555
e8c82d20 3556 /* add/rm files for all cgroups created before */
ca8bdcaf 3557 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3558 struct cgroup *cgrp = css->cgroup;
3559
88cb04b9 3560 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3561 continue;
3562
4df8dc90 3563 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3564 if (ret)
3565 break;
8e3f6541 3566 }
21a2d343
TH
3567
3568 if (is_add && !ret)
3569 kernfs_activate(root->kn);
9ccece80 3570 return ret;
8e3f6541
TH
3571}
3572
2da440a2 3573static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3574{
2bb566cb 3575 struct cftype *cft;
8e3f6541 3576
2bd59d48
TH
3577 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3578 /* free copy for custom atomic_write_len, see init_cftypes() */
3579 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3580 kfree(cft->kf_ops);
3581 cft->kf_ops = NULL;
2da440a2 3582 cft->ss = NULL;
a8ddc821
TH
3583
3584 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3585 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3586 }
2da440a2
TH
3587}
3588
2bd59d48 3589static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3590{
3591 struct cftype *cft;
3592
2bd59d48
TH
3593 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3594 struct kernfs_ops *kf_ops;
3595
0adb0704
TH
3596 WARN_ON(cft->ss || cft->kf_ops);
3597
2bd59d48
TH
3598 if (cft->seq_start)
3599 kf_ops = &cgroup_kf_ops;
3600 else
3601 kf_ops = &cgroup_kf_single_ops;
3602
3603 /*
3604 * Ugh... if @cft wants a custom max_write_len, we need to
3605 * make a copy of kf_ops to set its atomic_write_len.
3606 */
3607 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3608 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3609 if (!kf_ops) {
3610 cgroup_exit_cftypes(cfts);
3611 return -ENOMEM;
3612 }
3613 kf_ops->atomic_write_len = cft->max_write_len;
3614 }
8e3f6541 3615
2bd59d48 3616 cft->kf_ops = kf_ops;
2bb566cb 3617 cft->ss = ss;
2bd59d48 3618 }
2bb566cb 3619
2bd59d48 3620 return 0;
2da440a2
TH
3621}
3622
21a2d343
TH
3623static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3624{
01f6474c 3625 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3626
3627 if (!cfts || !cfts[0].ss)
3628 return -ENOENT;
3629
3630 list_del(&cfts->node);
3631 cgroup_apply_cftypes(cfts, false);
3632 cgroup_exit_cftypes(cfts);
3633 return 0;
8e3f6541 3634}
8e3f6541 3635
79578621
TH
3636/**
3637 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3638 * @cfts: zero-length name terminated array of cftypes
3639 *
2bb566cb
TH
3640 * Unregister @cfts. Files described by @cfts are removed from all
3641 * existing cgroups and all future cgroups won't have them either. This
3642 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3643 *
3644 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3645 * registered.
79578621 3646 */
2bb566cb 3647int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3648{
21a2d343 3649 int ret;
79578621 3650
01f6474c 3651 mutex_lock(&cgroup_mutex);
21a2d343 3652 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3653 mutex_unlock(&cgroup_mutex);
21a2d343 3654 return ret;
80b13586
TH
3655}
3656
8e3f6541
TH
3657/**
3658 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3659 * @ss: target cgroup subsystem
3660 * @cfts: zero-length name terminated array of cftypes
3661 *
3662 * Register @cfts to @ss. Files described by @cfts are created for all
3663 * existing cgroups to which @ss is attached and all future cgroups will
3664 * have them too. This function can be called anytime whether @ss is
3665 * attached or not.
3666 *
3667 * Returns 0 on successful registration, -errno on failure. Note that this
3668 * function currently returns 0 as long as @cfts registration is successful
3669 * even if some file creation attempts on existing cgroups fail.
3670 */
2cf669a5 3671static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3672{
9ccece80 3673 int ret;
8e3f6541 3674
fc5ed1e9 3675 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3676 return 0;
3677
dc5736ed
LZ
3678 if (!cfts || cfts[0].name[0] == '\0')
3679 return 0;
2bb566cb 3680
2bd59d48
TH
3681 ret = cgroup_init_cftypes(ss, cfts);
3682 if (ret)
3683 return ret;
79578621 3684
01f6474c 3685 mutex_lock(&cgroup_mutex);
21a2d343 3686
0adb0704 3687 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3688 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3689 if (ret)
21a2d343 3690 cgroup_rm_cftypes_locked(cfts);
79578621 3691
01f6474c 3692 mutex_unlock(&cgroup_mutex);
9ccece80 3693 return ret;
79578621
TH
3694}
3695
a8ddc821
TH
3696/**
3697 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3698 * @ss: target cgroup subsystem
3699 * @cfts: zero-length name terminated array of cftypes
3700 *
3701 * Similar to cgroup_add_cftypes() but the added files are only used for
3702 * the default hierarchy.
3703 */
3704int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3705{
3706 struct cftype *cft;
3707
3708 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3709 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3710 return cgroup_add_cftypes(ss, cfts);
3711}
3712
3713/**
3714 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3715 * @ss: target cgroup subsystem
3716 * @cfts: zero-length name terminated array of cftypes
3717 *
3718 * Similar to cgroup_add_cftypes() but the added files are only used for
3719 * the legacy hierarchies.
3720 */
2cf669a5
TH
3721int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3722{
a8ddc821
TH
3723 struct cftype *cft;
3724
e4b7037c
TH
3725 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3726 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3727 return cgroup_add_cftypes(ss, cfts);
3728}
3729
34c06254
TH
3730/**
3731 * cgroup_file_notify - generate a file modified event for a cgroup_file
3732 * @cfile: target cgroup_file
3733 *
3734 * @cfile must have been obtained by setting cftype->file_offset.
3735 */
3736void cgroup_file_notify(struct cgroup_file *cfile)
3737{
3738 unsigned long flags;
3739
3740 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3741 if (cfile->kn)
3742 kernfs_notify(cfile->kn);
3743 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3744}
3745
a043e3b2
LZ
3746/**
3747 * cgroup_task_count - count the number of tasks in a cgroup.
3748 * @cgrp: the cgroup in question
3749 *
3750 * Return the number of tasks in the cgroup.
3751 */
07bc356e 3752static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3753{
3754 int count = 0;
69d0206c 3755 struct cgrp_cset_link *link;
817929ec 3756
f0d9a5f1 3757 spin_lock_bh(&css_set_lock);
69d0206c
TH
3758 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3759 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3760 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3761 return count;
3762}
3763
53fa5261 3764/**
492eb21b 3765 * css_next_child - find the next child of a given css
c2931b70
TH
3766 * @pos: the current position (%NULL to initiate traversal)
3767 * @parent: css whose children to walk
53fa5261 3768 *
c2931b70 3769 * This function returns the next child of @parent and should be called
87fb54f1 3770 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3771 * that @parent and @pos are accessible. The next sibling is guaranteed to
3772 * be returned regardless of their states.
3773 *
3774 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3775 * css which finished ->css_online() is guaranteed to be visible in the
3776 * future iterations and will stay visible until the last reference is put.
3777 * A css which hasn't finished ->css_online() or already finished
3778 * ->css_offline() may show up during traversal. It's each subsystem's
3779 * responsibility to synchronize against on/offlining.
53fa5261 3780 */
c2931b70
TH
3781struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3782 struct cgroup_subsys_state *parent)
53fa5261 3783{
c2931b70 3784 struct cgroup_subsys_state *next;
53fa5261 3785
8353da1f 3786 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3787
3788 /*
de3f0341
TH
3789 * @pos could already have been unlinked from the sibling list.
3790 * Once a cgroup is removed, its ->sibling.next is no longer
3791 * updated when its next sibling changes. CSS_RELEASED is set when
3792 * @pos is taken off list, at which time its next pointer is valid,
3793 * and, as releases are serialized, the one pointed to by the next
3794 * pointer is guaranteed to not have started release yet. This
3795 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3796 * critical section, the one pointed to by its next pointer is
3797 * guaranteed to not have finished its RCU grace period even if we
3798 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3799 *
de3f0341
TH
3800 * If @pos has CSS_RELEASED set, its next pointer can't be
3801 * dereferenced; however, as each css is given a monotonically
3802 * increasing unique serial number and always appended to the
3803 * sibling list, the next one can be found by walking the parent's
3804 * children until the first css with higher serial number than
3805 * @pos's. While this path can be slower, it happens iff iteration
3806 * races against release and the race window is very small.
53fa5261 3807 */
3b287a50 3808 if (!pos) {
c2931b70
TH
3809 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3810 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3811 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3812 } else {
c2931b70 3813 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3814 if (next->serial_nr > pos->serial_nr)
3815 break;
53fa5261
TH
3816 }
3817
3b281afb
TH
3818 /*
3819 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3820 * the next sibling.
3b281afb 3821 */
c2931b70
TH
3822 if (&next->sibling != &parent->children)
3823 return next;
3b281afb 3824 return NULL;
53fa5261 3825}
53fa5261 3826
574bd9f7 3827/**
492eb21b 3828 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3829 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3830 * @root: css whose descendants to walk
574bd9f7 3831 *
492eb21b 3832 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3833 * to visit for pre-order traversal of @root's descendants. @root is
3834 * included in the iteration and the first node to be visited.
75501a6d 3835 *
87fb54f1
TH
3836 * While this function requires cgroup_mutex or RCU read locking, it
3837 * doesn't require the whole traversal to be contained in a single critical
3838 * section. This function will return the correct next descendant as long
3839 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3840 *
3841 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3842 * css which finished ->css_online() is guaranteed to be visible in the
3843 * future iterations and will stay visible until the last reference is put.
3844 * A css which hasn't finished ->css_online() or already finished
3845 * ->css_offline() may show up during traversal. It's each subsystem's
3846 * responsibility to synchronize against on/offlining.
574bd9f7 3847 */
492eb21b
TH
3848struct cgroup_subsys_state *
3849css_next_descendant_pre(struct cgroup_subsys_state *pos,
3850 struct cgroup_subsys_state *root)
574bd9f7 3851{
492eb21b 3852 struct cgroup_subsys_state *next;
574bd9f7 3853
8353da1f 3854 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3855
bd8815a6 3856 /* if first iteration, visit @root */
7805d000 3857 if (!pos)
bd8815a6 3858 return root;
574bd9f7
TH
3859
3860 /* visit the first child if exists */
492eb21b 3861 next = css_next_child(NULL, pos);
574bd9f7
TH
3862 if (next)
3863 return next;
3864
3865 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3866 while (pos != root) {
5c9d535b 3867 next = css_next_child(pos, pos->parent);
75501a6d 3868 if (next)
574bd9f7 3869 return next;
5c9d535b 3870 pos = pos->parent;
7805d000 3871 }
574bd9f7
TH
3872
3873 return NULL;
3874}
574bd9f7 3875
12a9d2fe 3876/**
492eb21b
TH
3877 * css_rightmost_descendant - return the rightmost descendant of a css
3878 * @pos: css of interest
12a9d2fe 3879 *
492eb21b
TH
3880 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3881 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3882 * subtree of @pos.
75501a6d 3883 *
87fb54f1
TH
3884 * While this function requires cgroup_mutex or RCU read locking, it
3885 * doesn't require the whole traversal to be contained in a single critical
3886 * section. This function will return the correct rightmost descendant as
3887 * long as @pos is accessible.
12a9d2fe 3888 */
492eb21b
TH
3889struct cgroup_subsys_state *
3890css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3891{
492eb21b 3892 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3893
8353da1f 3894 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3895
3896 do {
3897 last = pos;
3898 /* ->prev isn't RCU safe, walk ->next till the end */
3899 pos = NULL;
492eb21b 3900 css_for_each_child(tmp, last)
12a9d2fe
TH
3901 pos = tmp;
3902 } while (pos);
3903
3904 return last;
3905}
12a9d2fe 3906
492eb21b
TH
3907static struct cgroup_subsys_state *
3908css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3909{
492eb21b 3910 struct cgroup_subsys_state *last;
574bd9f7
TH
3911
3912 do {
3913 last = pos;
492eb21b 3914 pos = css_next_child(NULL, pos);
574bd9f7
TH
3915 } while (pos);
3916
3917 return last;
3918}
3919
3920/**
492eb21b 3921 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3922 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3923 * @root: css whose descendants to walk
574bd9f7 3924 *
492eb21b 3925 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3926 * to visit for post-order traversal of @root's descendants. @root is
3927 * included in the iteration and the last node to be visited.
75501a6d 3928 *
87fb54f1
TH
3929 * While this function requires cgroup_mutex or RCU read locking, it
3930 * doesn't require the whole traversal to be contained in a single critical
3931 * section. This function will return the correct next descendant as long
3932 * as both @pos and @cgroup are accessible and @pos is a descendant of
3933 * @cgroup.
c2931b70
TH
3934 *
3935 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3936 * css which finished ->css_online() is guaranteed to be visible in the
3937 * future iterations and will stay visible until the last reference is put.
3938 * A css which hasn't finished ->css_online() or already finished
3939 * ->css_offline() may show up during traversal. It's each subsystem's
3940 * responsibility to synchronize against on/offlining.
574bd9f7 3941 */
492eb21b
TH
3942struct cgroup_subsys_state *
3943css_next_descendant_post(struct cgroup_subsys_state *pos,
3944 struct cgroup_subsys_state *root)
574bd9f7 3945{
492eb21b 3946 struct cgroup_subsys_state *next;
574bd9f7 3947
8353da1f 3948 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3949
58b79a91
TH
3950 /* if first iteration, visit leftmost descendant which may be @root */
3951 if (!pos)
3952 return css_leftmost_descendant(root);
574bd9f7 3953
bd8815a6
TH
3954 /* if we visited @root, we're done */
3955 if (pos == root)
3956 return NULL;
3957
574bd9f7 3958 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3959 next = css_next_child(pos, pos->parent);
75501a6d 3960 if (next)
492eb21b 3961 return css_leftmost_descendant(next);
574bd9f7
TH
3962
3963 /* no sibling left, visit parent */
5c9d535b 3964 return pos->parent;
574bd9f7 3965}
574bd9f7 3966
f3d46500
TH
3967/**
3968 * css_has_online_children - does a css have online children
3969 * @css: the target css
3970 *
3971 * Returns %true if @css has any online children; otherwise, %false. This
3972 * function can be called from any context but the caller is responsible
3973 * for synchronizing against on/offlining as necessary.
3974 */
3975bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3976{
f3d46500
TH
3977 struct cgroup_subsys_state *child;
3978 bool ret = false;
cbc125ef
TH
3979
3980 rcu_read_lock();
f3d46500 3981 css_for_each_child(child, css) {
99bae5f9 3982 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3983 ret = true;
3984 break;
cbc125ef
TH
3985 }
3986 }
3987 rcu_read_unlock();
f3d46500 3988 return ret;
574bd9f7 3989}
574bd9f7 3990
0942eeee 3991/**
ecb9d535 3992 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3993 * @it: the iterator to advance
3994 *
3995 * Advance @it to the next css_set to walk.
d515876e 3996 */
ecb9d535 3997static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3998{
0f0a2b4f 3999 struct list_head *l = it->cset_pos;
d515876e
TH
4000 struct cgrp_cset_link *link;
4001 struct css_set *cset;
4002
f0d9a5f1 4003 lockdep_assert_held(&css_set_lock);
ed27b9f7 4004
d515876e
TH
4005 /* Advance to the next non-empty css_set */
4006 do {
4007 l = l->next;
0f0a2b4f
TH
4008 if (l == it->cset_head) {
4009 it->cset_pos = NULL;
ecb9d535 4010 it->task_pos = NULL;
d515876e
TH
4011 return;
4012 }
3ebb2b6e
TH
4013
4014 if (it->ss) {
4015 cset = container_of(l, struct css_set,
4016 e_cset_node[it->ss->id]);
4017 } else {
4018 link = list_entry(l, struct cgrp_cset_link, cset_link);
4019 cset = link->cset;
4020 }
0de0942d 4021 } while (!css_set_populated(cset));
c7561128 4022
0f0a2b4f 4023 it->cset_pos = l;
c7561128
TH
4024
4025 if (!list_empty(&cset->tasks))
0f0a2b4f 4026 it->task_pos = cset->tasks.next;
c7561128 4027 else
0f0a2b4f
TH
4028 it->task_pos = cset->mg_tasks.next;
4029
4030 it->tasks_head = &cset->tasks;
4031 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4032
4033 /*
4034 * We don't keep css_sets locked across iteration steps and thus
4035 * need to take steps to ensure that iteration can be resumed after
4036 * the lock is re-acquired. Iteration is performed at two levels -
4037 * css_sets and tasks in them.
4038 *
4039 * Once created, a css_set never leaves its cgroup lists, so a
4040 * pinned css_set is guaranteed to stay put and we can resume
4041 * iteration afterwards.
4042 *
4043 * Tasks may leave @cset across iteration steps. This is resolved
4044 * by registering each iterator with the css_set currently being
4045 * walked and making css_set_move_task() advance iterators whose
4046 * next task is leaving.
4047 */
4048 if (it->cur_cset) {
4049 list_del(&it->iters_node);
4050 put_css_set_locked(it->cur_cset);
4051 }
4052 get_css_set(cset);
4053 it->cur_cset = cset;
4054 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4055}
4056
ecb9d535
TH
4057static void css_task_iter_advance(struct css_task_iter *it)
4058{
4059 struct list_head *l = it->task_pos;
4060
f0d9a5f1 4061 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4062 WARN_ON_ONCE(!l);
4063
4064 /*
4065 * Advance iterator to find next entry. cset->tasks is consumed
4066 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4067 * next cset.
4068 */
4069 l = l->next;
4070
4071 if (l == it->tasks_head)
4072 l = it->mg_tasks_head->next;
4073
4074 if (l == it->mg_tasks_head)
4075 css_task_iter_advance_css_set(it);
4076 else
4077 it->task_pos = l;
4078}
4079
0942eeee 4080/**
72ec7029
TH
4081 * css_task_iter_start - initiate task iteration
4082 * @css: the css to walk tasks of
0942eeee
TH
4083 * @it: the task iterator to use
4084 *
72ec7029
TH
4085 * Initiate iteration through the tasks of @css. The caller can call
4086 * css_task_iter_next() to walk through the tasks until the function
4087 * returns NULL. On completion of iteration, css_task_iter_end() must be
4088 * called.
0942eeee 4089 */
72ec7029
TH
4090void css_task_iter_start(struct cgroup_subsys_state *css,
4091 struct css_task_iter *it)
817929ec 4092{
56fde9e0
TH
4093 /* no one should try to iterate before mounting cgroups */
4094 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4095
ed27b9f7
TH
4096 memset(it, 0, sizeof(*it));
4097
f0d9a5f1 4098 spin_lock_bh(&css_set_lock);
c59cd3d8 4099
3ebb2b6e
TH
4100 it->ss = css->ss;
4101
4102 if (it->ss)
4103 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4104 else
4105 it->cset_pos = &css->cgroup->cset_links;
4106
0f0a2b4f 4107 it->cset_head = it->cset_pos;
c59cd3d8 4108
ecb9d535 4109 css_task_iter_advance_css_set(it);
ed27b9f7 4110
f0d9a5f1 4111 spin_unlock_bh(&css_set_lock);
817929ec
PM
4112}
4113
0942eeee 4114/**
72ec7029 4115 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4116 * @it: the task iterator being iterated
4117 *
4118 * The "next" function for task iteration. @it should have been
72ec7029
TH
4119 * initialized via css_task_iter_start(). Returns NULL when the iteration
4120 * reaches the end.
0942eeee 4121 */
72ec7029 4122struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4123{
d5745675 4124 if (it->cur_task) {
ed27b9f7 4125 put_task_struct(it->cur_task);
d5745675
TH
4126 it->cur_task = NULL;
4127 }
ed27b9f7 4128
f0d9a5f1 4129 spin_lock_bh(&css_set_lock);
ed27b9f7 4130
d5745675
TH
4131 if (it->task_pos) {
4132 it->cur_task = list_entry(it->task_pos, struct task_struct,
4133 cg_list);
4134 get_task_struct(it->cur_task);
4135 css_task_iter_advance(it);
4136 }
ed27b9f7 4137
f0d9a5f1 4138 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4139
4140 return it->cur_task;
817929ec
PM
4141}
4142
0942eeee 4143/**
72ec7029 4144 * css_task_iter_end - finish task iteration
0942eeee
TH
4145 * @it: the task iterator to finish
4146 *
72ec7029 4147 * Finish task iteration started by css_task_iter_start().
0942eeee 4148 */
72ec7029 4149void css_task_iter_end(struct css_task_iter *it)
31a7df01 4150{
ed27b9f7 4151 if (it->cur_cset) {
f0d9a5f1 4152 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4153 list_del(&it->iters_node);
4154 put_css_set_locked(it->cur_cset);
f0d9a5f1 4155 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4156 }
4157
4158 if (it->cur_task)
4159 put_task_struct(it->cur_task);
31a7df01
CW
4160}
4161
4162/**
8cc99345
TH
4163 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4164 * @to: cgroup to which the tasks will be moved
4165 * @from: cgroup in which the tasks currently reside
31a7df01 4166 *
eaf797ab
TH
4167 * Locking rules between cgroup_post_fork() and the migration path
4168 * guarantee that, if a task is forking while being migrated, the new child
4169 * is guaranteed to be either visible in the source cgroup after the
4170 * parent's migration is complete or put into the target cgroup. No task
4171 * can slip out of migration through forking.
31a7df01 4172 */
8cc99345 4173int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4174{
952aaa12
TH
4175 LIST_HEAD(preloaded_csets);
4176 struct cgrp_cset_link *link;
72ec7029 4177 struct css_task_iter it;
e406d1cf 4178 struct task_struct *task;
952aaa12 4179 int ret;
31a7df01 4180
6c694c88
TH
4181 if (!cgroup_may_migrate_to(to))
4182 return -EBUSY;
4183
952aaa12 4184 mutex_lock(&cgroup_mutex);
31a7df01 4185
952aaa12 4186 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4187 spin_lock_bh(&css_set_lock);
952aaa12
TH
4188 list_for_each_entry(link, &from->cset_links, cset_link)
4189 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4190 spin_unlock_bh(&css_set_lock);
31a7df01 4191
e4857982 4192 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4193 if (ret)
4194 goto out_err;
8cc99345 4195
952aaa12 4196 /*
2cfa2b19 4197 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4198 * ->can_attach() fails.
4199 */
e406d1cf 4200 do {
9d800df1 4201 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4202 task = css_task_iter_next(&it);
4203 if (task)
4204 get_task_struct(task);
4205 css_task_iter_end(&it);
4206
4207 if (task) {
37ff9f8f 4208 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4209 put_task_struct(task);
4210 }
4211 } while (task && !ret);
952aaa12
TH
4212out_err:
4213 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4214 mutex_unlock(&cgroup_mutex);
e406d1cf 4215 return ret;
8cc99345
TH
4216}
4217
bbcb81d0 4218/*
102a775e 4219 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4220 *
4221 * Reading this file can return large amounts of data if a cgroup has
4222 * *lots* of attached tasks. So it may need several calls to read(),
4223 * but we cannot guarantee that the information we produce is correct
4224 * unless we produce it entirely atomically.
4225 *
bbcb81d0 4226 */
bbcb81d0 4227
24528255
LZ
4228/* which pidlist file are we talking about? */
4229enum cgroup_filetype {
4230 CGROUP_FILE_PROCS,
4231 CGROUP_FILE_TASKS,
4232};
4233
4234/*
4235 * A pidlist is a list of pids that virtually represents the contents of one
4236 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4237 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4238 * to the cgroup.
4239 */
4240struct cgroup_pidlist {
4241 /*
4242 * used to find which pidlist is wanted. doesn't change as long as
4243 * this particular list stays in the list.
4244 */
4245 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4246 /* array of xids */
4247 pid_t *list;
4248 /* how many elements the above list has */
4249 int length;
24528255
LZ
4250 /* each of these stored in a list by its cgroup */
4251 struct list_head links;
4252 /* pointer to the cgroup we belong to, for list removal purposes */
4253 struct cgroup *owner;
b1a21367
TH
4254 /* for delayed destruction */
4255 struct delayed_work destroy_dwork;
24528255
LZ
4256};
4257
d1d9fd33
BB
4258/*
4259 * The following two functions "fix" the issue where there are more pids
4260 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4261 * TODO: replace with a kernel-wide solution to this problem
4262 */
4263#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4264static void *pidlist_allocate(int count)
4265{
4266 if (PIDLIST_TOO_LARGE(count))
4267 return vmalloc(count * sizeof(pid_t));
4268 else
4269 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4270}
b1a21367 4271
d1d9fd33
BB
4272static void pidlist_free(void *p)
4273{
58794514 4274 kvfree(p);
d1d9fd33 4275}
d1d9fd33 4276
b1a21367
TH
4277/*
4278 * Used to destroy all pidlists lingering waiting for destroy timer. None
4279 * should be left afterwards.
4280 */
4281static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4282{
4283 struct cgroup_pidlist *l, *tmp_l;
4284
4285 mutex_lock(&cgrp->pidlist_mutex);
4286 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4287 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4288 mutex_unlock(&cgrp->pidlist_mutex);
4289
4290 flush_workqueue(cgroup_pidlist_destroy_wq);
4291 BUG_ON(!list_empty(&cgrp->pidlists));
4292}
4293
4294static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4295{
4296 struct delayed_work *dwork = to_delayed_work(work);
4297 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4298 destroy_dwork);
4299 struct cgroup_pidlist *tofree = NULL;
4300
4301 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4302
4303 /*
04502365
TH
4304 * Destroy iff we didn't get queued again. The state won't change
4305 * as destroy_dwork can only be queued while locked.
b1a21367 4306 */
04502365 4307 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4308 list_del(&l->links);
4309 pidlist_free(l->list);
4310 put_pid_ns(l->key.ns);
4311 tofree = l;
4312 }
4313
b1a21367
TH
4314 mutex_unlock(&l->owner->pidlist_mutex);
4315 kfree(tofree);
4316}
4317
bbcb81d0 4318/*
102a775e 4319 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4320 * Returns the number of unique elements.
bbcb81d0 4321 */
6ee211ad 4322static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4323{
102a775e 4324 int src, dest = 1;
102a775e
BB
4325
4326 /*
4327 * we presume the 0th element is unique, so i starts at 1. trivial
4328 * edge cases first; no work needs to be done for either
4329 */
4330 if (length == 0 || length == 1)
4331 return length;
4332 /* src and dest walk down the list; dest counts unique elements */
4333 for (src = 1; src < length; src++) {
4334 /* find next unique element */
4335 while (list[src] == list[src-1]) {
4336 src++;
4337 if (src == length)
4338 goto after;
4339 }
4340 /* dest always points to where the next unique element goes */
4341 list[dest] = list[src];
4342 dest++;
4343 }
4344after:
102a775e
BB
4345 return dest;
4346}
4347
afb2bc14
TH
4348/*
4349 * The two pid files - task and cgroup.procs - guaranteed that the result
4350 * is sorted, which forced this whole pidlist fiasco. As pid order is
4351 * different per namespace, each namespace needs differently sorted list,
4352 * making it impossible to use, for example, single rbtree of member tasks
4353 * sorted by task pointer. As pidlists can be fairly large, allocating one
4354 * per open file is dangerous, so cgroup had to implement shared pool of
4355 * pidlists keyed by cgroup and namespace.
4356 *
4357 * All this extra complexity was caused by the original implementation
4358 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4359 * want to do away with it. Explicitly scramble sort order if on the
4360 * default hierarchy so that no such expectation exists in the new
4361 * interface.
afb2bc14
TH
4362 *
4363 * Scrambling is done by swapping every two consecutive bits, which is
4364 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4365 */
4366static pid_t pid_fry(pid_t pid)
4367{
4368 unsigned a = pid & 0x55555555;
4369 unsigned b = pid & 0xAAAAAAAA;
4370
4371 return (a << 1) | (b >> 1);
4372}
4373
4374static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4375{
aa6ec29b 4376 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4377 return pid_fry(pid);
4378 else
4379 return pid;
4380}
4381
102a775e
BB
4382static int cmppid(const void *a, const void *b)
4383{
4384 return *(pid_t *)a - *(pid_t *)b;
4385}
4386
afb2bc14
TH
4387static int fried_cmppid(const void *a, const void *b)
4388{
4389 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4390}
4391
e6b81710
TH
4392static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4393 enum cgroup_filetype type)
4394{
4395 struct cgroup_pidlist *l;
4396 /* don't need task_nsproxy() if we're looking at ourself */
4397 struct pid_namespace *ns = task_active_pid_ns(current);
4398
4399 lockdep_assert_held(&cgrp->pidlist_mutex);
4400
4401 list_for_each_entry(l, &cgrp->pidlists, links)
4402 if (l->key.type == type && l->key.ns == ns)
4403 return l;
4404 return NULL;
4405}
4406
72a8cb30
BB
4407/*
4408 * find the appropriate pidlist for our purpose (given procs vs tasks)
4409 * returns with the lock on that pidlist already held, and takes care
4410 * of the use count, or returns NULL with no locks held if we're out of
4411 * memory.
4412 */
e6b81710
TH
4413static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4414 enum cgroup_filetype type)
72a8cb30
BB
4415{
4416 struct cgroup_pidlist *l;
b70cc5fd 4417
e6b81710
TH
4418 lockdep_assert_held(&cgrp->pidlist_mutex);
4419
4420 l = cgroup_pidlist_find(cgrp, type);
4421 if (l)
4422 return l;
4423
72a8cb30 4424 /* entry not found; create a new one */
f4f4be2b 4425 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4426 if (!l)
72a8cb30 4427 return l;
e6b81710 4428
b1a21367 4429 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4430 l->key.type = type;
e6b81710
TH
4431 /* don't need task_nsproxy() if we're looking at ourself */
4432 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4433 l->owner = cgrp;
4434 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4435 return l;
4436}
4437
102a775e
BB
4438/*
4439 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4440 */
72a8cb30
BB
4441static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4442 struct cgroup_pidlist **lp)
102a775e
BB
4443{
4444 pid_t *array;
4445 int length;
4446 int pid, n = 0; /* used for populating the array */
72ec7029 4447 struct css_task_iter it;
817929ec 4448 struct task_struct *tsk;
102a775e
BB
4449 struct cgroup_pidlist *l;
4450
4bac00d1
TH
4451 lockdep_assert_held(&cgrp->pidlist_mutex);
4452
102a775e
BB
4453 /*
4454 * If cgroup gets more users after we read count, we won't have
4455 * enough space - tough. This race is indistinguishable to the
4456 * caller from the case that the additional cgroup users didn't
4457 * show up until sometime later on.
4458 */
4459 length = cgroup_task_count(cgrp);
d1d9fd33 4460 array = pidlist_allocate(length);
102a775e
BB
4461 if (!array)
4462 return -ENOMEM;
4463 /* now, populate the array */
9d800df1 4464 css_task_iter_start(&cgrp->self, &it);
72ec7029 4465 while ((tsk = css_task_iter_next(&it))) {
102a775e 4466 if (unlikely(n == length))
817929ec 4467 break;
102a775e 4468 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4469 if (type == CGROUP_FILE_PROCS)
4470 pid = task_tgid_vnr(tsk);
4471 else
4472 pid = task_pid_vnr(tsk);
102a775e
BB
4473 if (pid > 0) /* make sure to only use valid results */
4474 array[n++] = pid;
817929ec 4475 }
72ec7029 4476 css_task_iter_end(&it);
102a775e
BB
4477 length = n;
4478 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4479 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4480 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4481 else
4482 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4483 if (type == CGROUP_FILE_PROCS)
6ee211ad 4484 length = pidlist_uniq(array, length);
e6b81710 4485
e6b81710 4486 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4487 if (!l) {
d1d9fd33 4488 pidlist_free(array);
72a8cb30 4489 return -ENOMEM;
102a775e 4490 }
e6b81710
TH
4491
4492 /* store array, freeing old if necessary */
d1d9fd33 4493 pidlist_free(l->list);
102a775e
BB
4494 l->list = array;
4495 l->length = length;
72a8cb30 4496 *lp = l;
102a775e 4497 return 0;
bbcb81d0
PM
4498}
4499
846c7bb0 4500/**
a043e3b2 4501 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4502 * @stats: cgroupstats to fill information into
4503 * @dentry: A dentry entry belonging to the cgroup for which stats have
4504 * been requested.
a043e3b2
LZ
4505 *
4506 * Build and fill cgroupstats so that taskstats can export it to user
4507 * space.
846c7bb0
BS
4508 */
4509int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4510{
2bd59d48 4511 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4512 struct cgroup *cgrp;
72ec7029 4513 struct css_task_iter it;
846c7bb0 4514 struct task_struct *tsk;
33d283be 4515
2bd59d48
TH
4516 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4517 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4518 kernfs_type(kn) != KERNFS_DIR)
4519 return -EINVAL;
4520
bad34660
LZ
4521 mutex_lock(&cgroup_mutex);
4522
846c7bb0 4523 /*
2bd59d48 4524 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4525 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4526 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4527 */
2bd59d48
TH
4528 rcu_read_lock();
4529 cgrp = rcu_dereference(kn->priv);
bad34660 4530 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4531 rcu_read_unlock();
bad34660 4532 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4533 return -ENOENT;
4534 }
bad34660 4535 rcu_read_unlock();
846c7bb0 4536
9d800df1 4537 css_task_iter_start(&cgrp->self, &it);
72ec7029 4538 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4539 switch (tsk->state) {
4540 case TASK_RUNNING:
4541 stats->nr_running++;
4542 break;
4543 case TASK_INTERRUPTIBLE:
4544 stats->nr_sleeping++;
4545 break;
4546 case TASK_UNINTERRUPTIBLE:
4547 stats->nr_uninterruptible++;
4548 break;
4549 case TASK_STOPPED:
4550 stats->nr_stopped++;
4551 break;
4552 default:
4553 if (delayacct_is_task_waiting_on_io(tsk))
4554 stats->nr_io_wait++;
4555 break;
4556 }
4557 }
72ec7029 4558 css_task_iter_end(&it);
846c7bb0 4559
bad34660 4560 mutex_unlock(&cgroup_mutex);
2bd59d48 4561 return 0;
846c7bb0
BS
4562}
4563
8f3ff208 4564
bbcb81d0 4565/*
102a775e 4566 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4567 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4568 * in the cgroup->l->list array.
bbcb81d0 4569 */
cc31edce 4570
102a775e 4571static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4572{
cc31edce
PM
4573 /*
4574 * Initially we receive a position value that corresponds to
4575 * one more than the last pid shown (or 0 on the first call or
4576 * after a seek to the start). Use a binary-search to find the
4577 * next pid to display, if any
4578 */
2bd59d48 4579 struct kernfs_open_file *of = s->private;
7da11279 4580 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4581 struct cgroup_pidlist *l;
7da11279 4582 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4583 int index = 0, pid = *pos;
4bac00d1
TH
4584 int *iter, ret;
4585
4586 mutex_lock(&cgrp->pidlist_mutex);
4587
4588 /*
5d22444f 4589 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4590 * after open. If the matching pidlist is around, we can use that.
5d22444f 4591 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4592 * could already have been destroyed.
4593 */
5d22444f
TH
4594 if (of->priv)
4595 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4596
4597 /*
4598 * Either this is the first start() after open or the matching
4599 * pidlist has been destroyed inbetween. Create a new one.
4600 */
5d22444f
TH
4601 if (!of->priv) {
4602 ret = pidlist_array_load(cgrp, type,
4603 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4604 if (ret)
4605 return ERR_PTR(ret);
4606 }
5d22444f 4607 l = of->priv;
cc31edce 4608
cc31edce 4609 if (pid) {
102a775e 4610 int end = l->length;
20777766 4611
cc31edce
PM
4612 while (index < end) {
4613 int mid = (index + end) / 2;
afb2bc14 4614 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4615 index = mid;
4616 break;
afb2bc14 4617 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4618 index = mid + 1;
4619 else
4620 end = mid;
4621 }
4622 }
4623 /* If we're off the end of the array, we're done */
102a775e 4624 if (index >= l->length)
cc31edce
PM
4625 return NULL;
4626 /* Update the abstract position to be the actual pid that we found */
102a775e 4627 iter = l->list + index;
afb2bc14 4628 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4629 return iter;
4630}
4631
102a775e 4632static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4633{
2bd59d48 4634 struct kernfs_open_file *of = s->private;
5d22444f 4635 struct cgroup_pidlist *l = of->priv;
62236858 4636
5d22444f
TH
4637 if (l)
4638 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4639 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4640 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4641}
4642
102a775e 4643static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4644{
2bd59d48 4645 struct kernfs_open_file *of = s->private;
5d22444f 4646 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4647 pid_t *p = v;
4648 pid_t *end = l->list + l->length;
cc31edce
PM
4649 /*
4650 * Advance to the next pid in the array. If this goes off the
4651 * end, we're done
4652 */
4653 p++;
4654 if (p >= end) {
4655 return NULL;
4656 } else {
7da11279 4657 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4658 return p;
4659 }
4660}
4661
102a775e 4662static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4663{
94ff212d
JP
4664 seq_printf(s, "%d\n", *(int *)v);
4665
4666 return 0;
cc31edce 4667}
bbcb81d0 4668
182446d0
TH
4669static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4670 struct cftype *cft)
81a6a5cd 4671{
182446d0 4672 return notify_on_release(css->cgroup);
81a6a5cd
PM
4673}
4674
182446d0
TH
4675static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4676 struct cftype *cft, u64 val)
6379c106 4677{
6379c106 4678 if (val)
182446d0 4679 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4680 else
182446d0 4681 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4682 return 0;
4683}
4684
182446d0
TH
4685static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4686 struct cftype *cft)
97978e6d 4687{
182446d0 4688 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4689}
4690
182446d0
TH
4691static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4692 struct cftype *cft, u64 val)
97978e6d
DL
4693{
4694 if (val)
182446d0 4695 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4696 else
182446d0 4697 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4698 return 0;
4699}
4700
a14c6874
TH
4701/* cgroup core interface files for the default hierarchy */
4702static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4703 {
d5c56ced 4704 .name = "cgroup.procs",
6f60eade 4705 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4706 .seq_start = cgroup_pidlist_start,
4707 .seq_next = cgroup_pidlist_next,
4708 .seq_stop = cgroup_pidlist_stop,
4709 .seq_show = cgroup_pidlist_show,
5d22444f 4710 .private = CGROUP_FILE_PROCS,
acbef755 4711 .write = cgroup_procs_write,
102a775e 4712 },
f8f22e53
TH
4713 {
4714 .name = "cgroup.controllers",
f8f22e53
TH
4715 .seq_show = cgroup_controllers_show,
4716 },
4717 {
4718 .name = "cgroup.subtree_control",
f8f22e53 4719 .seq_show = cgroup_subtree_control_show,
451af504 4720 .write = cgroup_subtree_control_write,
f8f22e53 4721 },
842b597e 4722 {
4a07c222 4723 .name = "cgroup.events",
a14c6874 4724 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4725 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4726 .seq_show = cgroup_events_show,
842b597e 4727 },
a14c6874
TH
4728 { } /* terminate */
4729};
d5c56ced 4730
a14c6874
TH
4731/* cgroup core interface files for the legacy hierarchies */
4732static struct cftype cgroup_legacy_base_files[] = {
4733 {
4734 .name = "cgroup.procs",
4735 .seq_start = cgroup_pidlist_start,
4736 .seq_next = cgroup_pidlist_next,
4737 .seq_stop = cgroup_pidlist_stop,
4738 .seq_show = cgroup_pidlist_show,
4739 .private = CGROUP_FILE_PROCS,
4740 .write = cgroup_procs_write,
a14c6874
TH
4741 },
4742 {
4743 .name = "cgroup.clone_children",
4744 .read_u64 = cgroup_clone_children_read,
4745 .write_u64 = cgroup_clone_children_write,
4746 },
4747 {
4748 .name = "cgroup.sane_behavior",
4749 .flags = CFTYPE_ONLY_ON_ROOT,
4750 .seq_show = cgroup_sane_behavior_show,
4751 },
d5c56ced
TH
4752 {
4753 .name = "tasks",
6612f05b
TH
4754 .seq_start = cgroup_pidlist_start,
4755 .seq_next = cgroup_pidlist_next,
4756 .seq_stop = cgroup_pidlist_stop,
4757 .seq_show = cgroup_pidlist_show,
5d22444f 4758 .private = CGROUP_FILE_TASKS,
acbef755 4759 .write = cgroup_tasks_write,
d5c56ced
TH
4760 },
4761 {
4762 .name = "notify_on_release",
d5c56ced
TH
4763 .read_u64 = cgroup_read_notify_on_release,
4764 .write_u64 = cgroup_write_notify_on_release,
4765 },
6e6ff25b
TH
4766 {
4767 .name = "release_agent",
a14c6874 4768 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4769 .seq_show = cgroup_release_agent_show,
451af504 4770 .write = cgroup_release_agent_write,
5f469907 4771 .max_write_len = PATH_MAX - 1,
6e6ff25b 4772 },
db0416b6 4773 { } /* terminate */
bbcb81d0
PM
4774};
4775
0c21ead1
TH
4776/*
4777 * css destruction is four-stage process.
4778 *
4779 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4780 * Implemented in kill_css().
4781 *
4782 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4783 * and thus css_tryget_online() is guaranteed to fail, the css can be
4784 * offlined by invoking offline_css(). After offlining, the base ref is
4785 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4786 *
4787 * 3. When the percpu_ref reaches zero, the only possible remaining
4788 * accessors are inside RCU read sections. css_release() schedules the
4789 * RCU callback.
4790 *
4791 * 4. After the grace period, the css can be freed. Implemented in
4792 * css_free_work_fn().
4793 *
4794 * It is actually hairier because both step 2 and 4 require process context
4795 * and thus involve punting to css->destroy_work adding two additional
4796 * steps to the already complex sequence.
4797 */
35ef10da 4798static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4799{
4800 struct cgroup_subsys_state *css =
35ef10da 4801 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4802 struct cgroup_subsys *ss = css->ss;
0c21ead1 4803 struct cgroup *cgrp = css->cgroup;
48ddbe19 4804
9a1049da
TH
4805 percpu_ref_exit(&css->refcnt);
4806
01e58659 4807 if (ss) {
9d755d33 4808 /* css free path */
8bb5ef79 4809 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4810 int id = css->id;
4811
01e58659
VD
4812 ss->css_free(css);
4813 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4814 cgroup_put(cgrp);
8bb5ef79
TH
4815
4816 if (parent)
4817 css_put(parent);
9d755d33
TH
4818 } else {
4819 /* cgroup free path */
4820 atomic_dec(&cgrp->root->nr_cgrps);
4821 cgroup_pidlist_destroy_all(cgrp);
971ff493 4822 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4823
d51f39b0 4824 if (cgroup_parent(cgrp)) {
9d755d33
TH
4825 /*
4826 * We get a ref to the parent, and put the ref when
4827 * this cgroup is being freed, so it's guaranteed
4828 * that the parent won't be destroyed before its
4829 * children.
4830 */
d51f39b0 4831 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4832 kernfs_put(cgrp->kn);
4833 kfree(cgrp);
4834 } else {
4835 /*
4836 * This is root cgroup's refcnt reaching zero,
4837 * which indicates that the root should be
4838 * released.
4839 */
4840 cgroup_destroy_root(cgrp->root);
4841 }
4842 }
48ddbe19
TH
4843}
4844
0c21ead1 4845static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4846{
4847 struct cgroup_subsys_state *css =
0c21ead1 4848 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4849
35ef10da 4850 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4851 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4852}
4853
25e15d83 4854static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4855{
4856 struct cgroup_subsys_state *css =
25e15d83 4857 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4858 struct cgroup_subsys *ss = css->ss;
9d755d33 4859 struct cgroup *cgrp = css->cgroup;
15a4c835 4860
1fed1b2e
TH
4861 mutex_lock(&cgroup_mutex);
4862
de3f0341 4863 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4864 list_del_rcu(&css->sibling);
4865
9d755d33
TH
4866 if (ss) {
4867 /* css release path */
01e58659 4868 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4869 if (ss->css_released)
4870 ss->css_released(css);
9d755d33
TH
4871 } else {
4872 /* cgroup release path */
9d755d33
TH
4873 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4874 cgrp->id = -1;
a4189487
LZ
4875
4876 /*
4877 * There are two control paths which try to determine
4878 * cgroup from dentry without going through kernfs -
4879 * cgroupstats_build() and css_tryget_online_from_dir().
4880 * Those are supported by RCU protecting clearing of
4881 * cgrp->kn->priv backpointer.
4882 */
6cd0f5bb
TH
4883 if (cgrp->kn)
4884 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4885 NULL);
9d755d33 4886 }
d3daf28d 4887
1fed1b2e
TH
4888 mutex_unlock(&cgroup_mutex);
4889
0c21ead1 4890 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4891}
4892
d3daf28d
TH
4893static void css_release(struct percpu_ref *ref)
4894{
4895 struct cgroup_subsys_state *css =
4896 container_of(ref, struct cgroup_subsys_state, refcnt);
4897
25e15d83
TH
4898 INIT_WORK(&css->destroy_work, css_release_work_fn);
4899 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4900}
4901
ddfcadab
TH
4902static void init_and_link_css(struct cgroup_subsys_state *css,
4903 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4904{
0cb51d71
TH
4905 lockdep_assert_held(&cgroup_mutex);
4906
ddfcadab
TH
4907 cgroup_get(cgrp);
4908
d5c419b6 4909 memset(css, 0, sizeof(*css));
bd89aabc 4910 css->cgroup = cgrp;
72c97e54 4911 css->ss = ss;
d5c419b6
TH
4912 INIT_LIST_HEAD(&css->sibling);
4913 INIT_LIST_HEAD(&css->children);
0cb51d71 4914 css->serial_nr = css_serial_nr_next++;
aa226ff4 4915 atomic_set(&css->online_cnt, 0);
0ae78e0b 4916
d51f39b0
TH
4917 if (cgroup_parent(cgrp)) {
4918 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4919 css_get(css->parent);
ddfcadab 4920 }
48ddbe19 4921
ca8bdcaf 4922 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4923}
4924
2a4ac633 4925/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4926static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4927{
623f926b 4928 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4929 int ret = 0;
4930
a31f2d3f
TH
4931 lockdep_assert_held(&cgroup_mutex);
4932
92fb9748 4933 if (ss->css_online)
eb95419b 4934 ret = ss->css_online(css);
ae7f164a 4935 if (!ret) {
eb95419b 4936 css->flags |= CSS_ONLINE;
aec25020 4937 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4938
4939 atomic_inc(&css->online_cnt);
4940 if (css->parent)
4941 atomic_inc(&css->parent->online_cnt);
ae7f164a 4942 }
b1929db4 4943 return ret;
a31f2d3f
TH
4944}
4945
2a4ac633 4946/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4947static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4948{
623f926b 4949 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4950
4951 lockdep_assert_held(&cgroup_mutex);
4952
4953 if (!(css->flags & CSS_ONLINE))
4954 return;
4955
fa06235b
VD
4956 if (ss->css_reset)
4957 ss->css_reset(css);
4958
d7eeac19 4959 if (ss->css_offline)
eb95419b 4960 ss->css_offline(css);
a31f2d3f 4961
eb95419b 4962 css->flags &= ~CSS_ONLINE;
e3297803 4963 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4964
4965 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4966}
4967
c81c925a 4968/**
6cd0f5bb 4969 * css_create - create a cgroup_subsys_state
c81c925a
TH
4970 * @cgrp: the cgroup new css will be associated with
4971 * @ss: the subsys of new css
4972 *
4973 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4974 * css is online and installed in @cgrp. This function doesn't create the
4975 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4976 */
6cd0f5bb
TH
4977static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4978 struct cgroup_subsys *ss)
c81c925a 4979{
d51f39b0 4980 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4981 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4982 struct cgroup_subsys_state *css;
4983 int err;
4984
c81c925a
TH
4985 lockdep_assert_held(&cgroup_mutex);
4986
1fed1b2e 4987 css = ss->css_alloc(parent_css);
c81c925a 4988 if (IS_ERR(css))
6cd0f5bb 4989 return css;
c81c925a 4990
ddfcadab 4991 init_and_link_css(css, ss, cgrp);
a2bed820 4992
2aad2a86 4993 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4994 if (err)
3eb59ec6 4995 goto err_free_css;
c81c925a 4996
cf780b7d 4997 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4998 if (err < 0)
4999 goto err_free_percpu_ref;
5000 css->id = err;
c81c925a 5001
15a4c835 5002 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5003 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5004 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5005
5006 err = online_css(css);
5007 if (err)
1fed1b2e 5008 goto err_list_del;
94419627 5009
c81c925a 5010 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5011 cgroup_parent(parent)) {
ed3d261b 5012 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5013 current->comm, current->pid, ss->name);
c81c925a 5014 if (!strcmp(ss->name, "memory"))
ed3d261b 5015 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5016 ss->warned_broken_hierarchy = true;
5017 }
5018
6cd0f5bb 5019 return css;
c81c925a 5020
1fed1b2e
TH
5021err_list_del:
5022 list_del_rcu(&css->sibling);
15a4c835 5023 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5024err_free_percpu_ref:
9a1049da 5025 percpu_ref_exit(&css->refcnt);
3eb59ec6 5026err_free_css:
a2bed820 5027 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5028 return ERR_PTR(err);
c81c925a
TH
5029}
5030
a5bca215 5031static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5032{
a5bca215 5033 struct cgroup_root *root = parent->root;
a5bca215
TH
5034 struct cgroup *cgrp, *tcgrp;
5035 int level = parent->level + 1;
03970d3c 5036 int ret;
ddbcc7e8 5037
0a950f65 5038 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5039 cgrp = kzalloc(sizeof(*cgrp) +
5040 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5041 if (!cgrp)
5042 return ERR_PTR(-ENOMEM);
0ab02ca8 5043
2aad2a86 5044 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5045 if (ret)
5046 goto out_free_cgrp;
5047
0ab02ca8
LZ
5048 /*
5049 * Temporarily set the pointer to NULL, so idr_find() won't return
5050 * a half-baked cgroup.
5051 */
cf780b7d 5052 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5053 if (cgrp->id < 0) {
ba0f4d76 5054 ret = -ENOMEM;
9d755d33 5055 goto out_cancel_ref;
976c06bc
TH
5056 }
5057
cc31edce 5058 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5059
9d800df1 5060 cgrp->self.parent = &parent->self;
ba0f4d76 5061 cgrp->root = root;
b11cfb58
TH
5062 cgrp->level = level;
5063
5064 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5065 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5066
b6abdb0e
LZ
5067 if (notify_on_release(parent))
5068 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5069
2260e7fc
TH
5070 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5071 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5072
0cb51d71 5073 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5074
4e139afc 5075 /* allocation complete, commit to creation */
d5c419b6 5076 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5077 atomic_inc(&root->nr_cgrps);
59f5296b 5078 cgroup_get(parent);
415cf07a 5079
0d80255e
TH
5080 /*
5081 * @cgrp is now fully operational. If something fails after this
5082 * point, it'll be released via the normal destruction path.
5083 */
6fa4918d 5084 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5085
bd53d617
TH
5086 /*
5087 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5088 * subtree_control from the parent. Each is configured manually.
bd53d617 5089 */
03970d3c 5090 if (!cgroup_on_dfl(cgrp))
5531dc91 5091 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5092
5093 cgroup_propagate_control(cgrp);
5094
5095 /* @cgrp doesn't have dir yet so the following will only create csses */
5096 ret = cgroup_apply_control_enable(cgrp);
5097 if (ret)
5098 goto out_destroy;
2bd59d48 5099
a5bca215
TH
5100 return cgrp;
5101
5102out_cancel_ref:
5103 percpu_ref_exit(&cgrp->self.refcnt);
5104out_free_cgrp:
5105 kfree(cgrp);
5106 return ERR_PTR(ret);
5107out_destroy:
5108 cgroup_destroy_locked(cgrp);
5109 return ERR_PTR(ret);
5110}
5111
5112static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5113 umode_t mode)
5114{
5115 struct cgroup *parent, *cgrp;
a5bca215 5116 struct kernfs_node *kn;
03970d3c 5117 int ret;
a5bca215
TH
5118
5119 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5120 if (strchr(name, '\n'))
5121 return -EINVAL;
5122
945ba199 5123 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5124 if (!parent)
5125 return -ENODEV;
5126
5127 cgrp = cgroup_create(parent);
5128 if (IS_ERR(cgrp)) {
5129 ret = PTR_ERR(cgrp);
5130 goto out_unlock;
5131 }
5132
195e9b6c
TH
5133 /* create the directory */
5134 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5135 if (IS_ERR(kn)) {
5136 ret = PTR_ERR(kn);
5137 goto out_destroy;
5138 }
5139 cgrp->kn = kn;
5140
5141 /*
5142 * This extra ref will be put in cgroup_free_fn() and guarantees
5143 * that @cgrp->kn is always accessible.
5144 */
5145 kernfs_get(kn);
5146
5147 ret = cgroup_kn_set_ugid(kn);
5148 if (ret)
5149 goto out_destroy;
5150
334c3679 5151 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5152 if (ret)
5153 goto out_destroy;
5154
03970d3c
TH
5155 ret = cgroup_apply_control_enable(cgrp);
5156 if (ret)
5157 goto out_destroy;
195e9b6c
TH
5158
5159 /* let's create and online css's */
2bd59d48 5160 kernfs_activate(kn);
ddbcc7e8 5161
ba0f4d76
TH
5162 ret = 0;
5163 goto out_unlock;
ddbcc7e8 5164
a5bca215
TH
5165out_destroy:
5166 cgroup_destroy_locked(cgrp);
ba0f4d76 5167out_unlock:
a9746d8d 5168 cgroup_kn_unlock(parent_kn);
ba0f4d76 5169 return ret;
ddbcc7e8
PM
5170}
5171
223dbc38
TH
5172/*
5173 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5174 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5175 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5176 */
5177static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5178{
223dbc38
TH
5179 struct cgroup_subsys_state *css =
5180 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5181
f20104de 5182 mutex_lock(&cgroup_mutex);
09a503ea 5183
aa226ff4
TH
5184 do {
5185 offline_css(css);
5186 css_put(css);
5187 /* @css can't go away while we're holding cgroup_mutex */
5188 css = css->parent;
5189 } while (css && atomic_dec_and_test(&css->online_cnt));
5190
5191 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5192}
5193
223dbc38
TH
5194/* css kill confirmation processing requires process context, bounce */
5195static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5196{
5197 struct cgroup_subsys_state *css =
5198 container_of(ref, struct cgroup_subsys_state, refcnt);
5199
aa226ff4
TH
5200 if (atomic_dec_and_test(&css->online_cnt)) {
5201 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5202 queue_work(cgroup_destroy_wq, &css->destroy_work);
5203 }
d3daf28d
TH
5204}
5205
f392e51c
TH
5206/**
5207 * kill_css - destroy a css
5208 * @css: css to destroy
5209 *
5210 * This function initiates destruction of @css by removing cgroup interface
5211 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5212 * asynchronously once css_tryget_online() is guaranteed to fail and when
5213 * the reference count reaches zero, @css will be released.
f392e51c
TH
5214 */
5215static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5216{
01f6474c 5217 lockdep_assert_held(&cgroup_mutex);
94419627 5218
2bd59d48
TH
5219 /*
5220 * This must happen before css is disassociated with its cgroup.
5221 * See seq_css() for details.
5222 */
334c3679 5223 css_clear_dir(css);
3c14f8b4 5224
edae0c33
TH
5225 /*
5226 * Killing would put the base ref, but we need to keep it alive
5227 * until after ->css_offline().
5228 */
5229 css_get(css);
5230
5231 /*
5232 * cgroup core guarantees that, by the time ->css_offline() is
5233 * invoked, no new css reference will be given out via
ec903c0c 5234 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5235 * proceed to offlining css's because percpu_ref_kill() doesn't
5236 * guarantee that the ref is seen as killed on all CPUs on return.
5237 *
5238 * Use percpu_ref_kill_and_confirm() to get notifications as each
5239 * css is confirmed to be seen as killed on all CPUs.
5240 */
5241 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5242}
5243
5244/**
5245 * cgroup_destroy_locked - the first stage of cgroup destruction
5246 * @cgrp: cgroup to be destroyed
5247 *
5248 * css's make use of percpu refcnts whose killing latency shouldn't be
5249 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5250 * guarantee that css_tryget_online() won't succeed by the time
5251 * ->css_offline() is invoked. To satisfy all the requirements,
5252 * destruction is implemented in the following two steps.
d3daf28d
TH
5253 *
5254 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5255 * userland visible parts and start killing the percpu refcnts of
5256 * css's. Set up so that the next stage will be kicked off once all
5257 * the percpu refcnts are confirmed to be killed.
5258 *
5259 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5260 * rest of destruction. Once all cgroup references are gone, the
5261 * cgroup is RCU-freed.
5262 *
5263 * This function implements s1. After this step, @cgrp is gone as far as
5264 * the userland is concerned and a new cgroup with the same name may be
5265 * created. As cgroup doesn't care about the names internally, this
5266 * doesn't cause any problem.
5267 */
42809dd4
TH
5268static int cgroup_destroy_locked(struct cgroup *cgrp)
5269 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5270{
2bd59d48 5271 struct cgroup_subsys_state *css;
2b021cbf 5272 struct cgrp_cset_link *link;
1c6727af 5273 int ssid;
ddbcc7e8 5274
42809dd4
TH
5275 lockdep_assert_held(&cgroup_mutex);
5276
91486f61
TH
5277 /*
5278 * Only migration can raise populated from zero and we're already
5279 * holding cgroup_mutex.
5280 */
5281 if (cgroup_is_populated(cgrp))
ddbcc7e8 5282 return -EBUSY;
a043e3b2 5283
bb78a92f 5284 /*
d5c419b6
TH
5285 * Make sure there's no live children. We can't test emptiness of
5286 * ->self.children as dead children linger on it while being
5287 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5288 */
f3d46500 5289 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5290 return -EBUSY;
5291
455050d2 5292 /*
2b021cbf
TH
5293 * Mark @cgrp and the associated csets dead. The former prevents
5294 * further task migration and child creation by disabling
5295 * cgroup_lock_live_group(). The latter makes the csets ignored by
5296 * the migration path.
455050d2 5297 */
184faf32 5298 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5299
2b021cbf
TH
5300 spin_lock_bh(&css_set_lock);
5301 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5302 link->cset->dead = true;
5303 spin_unlock_bh(&css_set_lock);
5304
249f3468 5305 /* initiate massacre of all css's */
1c6727af
TH
5306 for_each_css(css, ssid, cgrp)
5307 kill_css(css);
455050d2 5308
455050d2 5309 /*
01f6474c
TH
5310 * Remove @cgrp directory along with the base files. @cgrp has an
5311 * extra ref on its kn.
f20104de 5312 */
01f6474c 5313 kernfs_remove(cgrp->kn);
f20104de 5314
d51f39b0 5315 check_for_release(cgroup_parent(cgrp));
2bd59d48 5316
249f3468 5317 /* put the base reference */
9d755d33 5318 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5319
ea15f8cc
TH
5320 return 0;
5321};
5322
2bd59d48 5323static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5324{
a9746d8d 5325 struct cgroup *cgrp;
2bd59d48 5326 int ret = 0;
42809dd4 5327
945ba199 5328 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5329 if (!cgrp)
5330 return 0;
42809dd4 5331
a9746d8d 5332 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5333
a9746d8d 5334 cgroup_kn_unlock(kn);
42809dd4 5335 return ret;
8e3f6541
TH
5336}
5337
2bd59d48
TH
5338static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5339 .remount_fs = cgroup_remount,
5340 .show_options = cgroup_show_options,
5341 .mkdir = cgroup_mkdir,
5342 .rmdir = cgroup_rmdir,
5343 .rename = cgroup_rename,
5344};
5345
15a4c835 5346static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5347{
ddbcc7e8 5348 struct cgroup_subsys_state *css;
cfe36bde 5349
a5ae9899 5350 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5351
648bb56d
TH
5352 mutex_lock(&cgroup_mutex);
5353
15a4c835 5354 idr_init(&ss->css_idr);
0adb0704 5355 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5356
3dd06ffa
TH
5357 /* Create the root cgroup state for this subsystem */
5358 ss->root = &cgrp_dfl_root;
5359 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5360 /* We don't handle early failures gracefully */
5361 BUG_ON(IS_ERR(css));
ddfcadab 5362 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5363
5364 /*
5365 * Root csses are never destroyed and we can't initialize
5366 * percpu_ref during early init. Disable refcnting.
5367 */
5368 css->flags |= CSS_NO_REF;
5369
15a4c835 5370 if (early) {
9395a450 5371 /* allocation can't be done safely during early init */
15a4c835
TH
5372 css->id = 1;
5373 } else {
5374 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5375 BUG_ON(css->id < 0);
5376 }
ddbcc7e8 5377
e8d55fde 5378 /* Update the init_css_set to contain a subsys
817929ec 5379 * pointer to this state - since the subsystem is
e8d55fde 5380 * newly registered, all tasks and hence the
3dd06ffa 5381 * init_css_set is in the subsystem's root cgroup. */
aec25020 5382 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5383
cb4a3167
AS
5384 have_fork_callback |= (bool)ss->fork << ss->id;
5385 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5386 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5387 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5388
e8d55fde
LZ
5389 /* At system boot, before all subsystems have been
5390 * registered, no tasks have been forked, so we don't
5391 * need to invoke fork callbacks here. */
5392 BUG_ON(!list_empty(&init_task.tasks));
5393
ae7f164a 5394 BUG_ON(online_css(css));
a8638030 5395
cf5d5941
BB
5396 mutex_unlock(&cgroup_mutex);
5397}
cf5d5941 5398
ddbcc7e8 5399/**
a043e3b2
LZ
5400 * cgroup_init_early - cgroup initialization at system boot
5401 *
5402 * Initialize cgroups at system boot, and initialize any
5403 * subsystems that request early init.
ddbcc7e8
PM
5404 */
5405int __init cgroup_init_early(void)
5406{
7b9a6ba5 5407 static struct cgroup_sb_opts __initdata opts;
30159ec7 5408 struct cgroup_subsys *ss;
ddbcc7e8 5409 int i;
30159ec7 5410
3dd06ffa 5411 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5412 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5413
a4ea1cc9 5414 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5415
3ed80a62 5416 for_each_subsys(ss, i) {
aec25020 5417 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5418 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5419 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5420 ss->id, ss->name);
073219e9
TH
5421 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5422 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5423
aec25020 5424 ss->id = i;
073219e9 5425 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5426 if (!ss->legacy_name)
5427 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5428
5429 if (ss->early_init)
15a4c835 5430 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5431 }
5432 return 0;
5433}
5434
6e5c8307 5435static u16 cgroup_disable_mask __initdata;
a3e72739 5436
ddbcc7e8 5437/**
a043e3b2
LZ
5438 * cgroup_init - cgroup initialization
5439 *
5440 * Register cgroup filesystem and /proc file, and initialize
5441 * any subsystems that didn't request early init.
ddbcc7e8
PM
5442 */
5443int __init cgroup_init(void)
5444{
30159ec7 5445 struct cgroup_subsys *ss;
035f4f51 5446 int ssid;
ddbcc7e8 5447
6e5c8307 5448 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5449 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5450 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5451 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5452
54e7b4eb 5453 mutex_lock(&cgroup_mutex);
54e7b4eb 5454
2378d8b8
TH
5455 /*
5456 * Add init_css_set to the hash table so that dfl_root can link to
5457 * it during init.
5458 */
5459 hash_add(css_set_table, &init_css_set.hlist,
5460 css_set_hash(init_css_set.subsys));
82fe9b0d 5461
3dd06ffa 5462 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5463
54e7b4eb
TH
5464 mutex_unlock(&cgroup_mutex);
5465
172a2c06 5466 for_each_subsys(ss, ssid) {
15a4c835
TH
5467 if (ss->early_init) {
5468 struct cgroup_subsys_state *css =
5469 init_css_set.subsys[ss->id];
5470
5471 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5472 GFP_KERNEL);
5473 BUG_ON(css->id < 0);
5474 } else {
5475 cgroup_init_subsys(ss, false);
5476 }
172a2c06 5477
2d8f243a
TH
5478 list_add_tail(&init_css_set.e_cset_node[ssid],
5479 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5480
5481 /*
c731ae1d
LZ
5482 * Setting dfl_root subsys_mask needs to consider the
5483 * disabled flag and cftype registration needs kmalloc,
5484 * both of which aren't available during early_init.
172a2c06 5485 */
a3e72739
TH
5486 if (cgroup_disable_mask & (1 << ssid)) {
5487 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5488 printk(KERN_INFO "Disabling %s control group subsystem\n",
5489 ss->name);
a8ddc821 5490 continue;
a3e72739 5491 }
a8ddc821 5492
223ffb29
JW
5493 if (cgroup_ssid_no_v1(ssid))
5494 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5495 ss->name);
5496
a8ddc821
TH
5497 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5498
f6d635ad
TH
5499 if (ss->implicit_on_dfl)
5500 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5501 else if (!ss->dfl_cftypes)
a7165264 5502 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5503
a8ddc821
TH
5504 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5505 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5506 } else {
5507 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5508 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5509 }
295458e6
VD
5510
5511 if (ss->bind)
5512 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5513 }
5514
2378d8b8
TH
5515 /* init_css_set.subsys[] has been updated, re-hash */
5516 hash_del(&init_css_set.hlist);
5517 hash_add(css_set_table, &init_css_set.hlist,
5518 css_set_hash(init_css_set.subsys));
5519
035f4f51
TH
5520 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5521 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5522 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5523 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5524
2bd59d48 5525 return 0;
ddbcc7e8 5526}
b4f48b63 5527
e5fca243
TH
5528static int __init cgroup_wq_init(void)
5529{
5530 /*
5531 * There isn't much point in executing destruction path in
5532 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5533 * Use 1 for @max_active.
e5fca243
TH
5534 *
5535 * We would prefer to do this in cgroup_init() above, but that
5536 * is called before init_workqueues(): so leave this until after.
5537 */
1a11533f 5538 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5539 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5540
5541 /*
5542 * Used to destroy pidlists and separate to serve as flush domain.
5543 * Cap @max_active to 1 too.
5544 */
5545 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5546 0, 1);
5547 BUG_ON(!cgroup_pidlist_destroy_wq);
5548
e5fca243
TH
5549 return 0;
5550}
5551core_initcall(cgroup_wq_init);
5552
a424316c
PM
5553/*
5554 * proc_cgroup_show()
5555 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5556 * - Used for /proc/<pid>/cgroup.
a424316c 5557 */
006f4ac4
ZL
5558int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5559 struct pid *pid, struct task_struct *tsk)
a424316c 5560{
e61734c5 5561 char *buf, *path;
a424316c 5562 int retval;
3dd06ffa 5563 struct cgroup_root *root;
a424316c
PM
5564
5565 retval = -ENOMEM;
e61734c5 5566 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5567 if (!buf)
5568 goto out;
5569
a424316c 5570 mutex_lock(&cgroup_mutex);
f0d9a5f1 5571 spin_lock_bh(&css_set_lock);
a424316c 5572
985ed670 5573 for_each_root(root) {
a424316c 5574 struct cgroup_subsys *ss;
bd89aabc 5575 struct cgroup *cgrp;
b85d2040 5576 int ssid, count = 0;
a424316c 5577
a7165264 5578 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5579 continue;
5580
2c6ab6d2 5581 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5582 if (root != &cgrp_dfl_root)
5583 for_each_subsys(ss, ssid)
5584 if (root->subsys_mask & (1 << ssid))
5585 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5586 ss->legacy_name);
c6d57f33
PM
5587 if (strlen(root->name))
5588 seq_printf(m, "%sname=%s", count ? "," : "",
5589 root->name);
a424316c 5590 seq_putc(m, ':');
2e91fa7f 5591
7717f7ba 5592 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5593
5594 /*
5595 * On traditional hierarchies, all zombie tasks show up as
5596 * belonging to the root cgroup. On the default hierarchy,
5597 * while a zombie doesn't show up in "cgroup.procs" and
5598 * thus can't be migrated, its /proc/PID/cgroup keeps
5599 * reporting the cgroup it belonged to before exiting. If
5600 * the cgroup is removed before the zombie is reaped,
5601 * " (deleted)" is appended to the cgroup path.
5602 */
5603 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5604 path = cgroup_path(cgrp, buf, PATH_MAX);
5605 if (!path) {
5606 retval = -ENAMETOOLONG;
5607 goto out_unlock;
5608 }
5609 } else {
5610 path = "/";
e61734c5 5611 }
2e91fa7f 5612
e61734c5 5613 seq_puts(m, path);
2e91fa7f
TH
5614
5615 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5616 seq_puts(m, " (deleted)\n");
5617 else
5618 seq_putc(m, '\n');
a424316c
PM
5619 }
5620
006f4ac4 5621 retval = 0;
a424316c 5622out_unlock:
f0d9a5f1 5623 spin_unlock_bh(&css_set_lock);
a424316c 5624 mutex_unlock(&cgroup_mutex);
a424316c
PM
5625 kfree(buf);
5626out:
5627 return retval;
5628}
5629
a424316c
PM
5630/* Display information about each subsystem and each hierarchy */
5631static int proc_cgroupstats_show(struct seq_file *m, void *v)
5632{
30159ec7 5633 struct cgroup_subsys *ss;
a424316c 5634 int i;
a424316c 5635
8bab8dde 5636 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5637 /*
5638 * ideally we don't want subsystems moving around while we do this.
5639 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5640 * subsys/hierarchy state.
5641 */
a424316c 5642 mutex_lock(&cgroup_mutex);
30159ec7
TH
5643
5644 for_each_subsys(ss, i)
2c6ab6d2 5645 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5646 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5647 atomic_read(&ss->root->nr_cgrps),
5648 cgroup_ssid_enabled(i));
30159ec7 5649
a424316c
PM
5650 mutex_unlock(&cgroup_mutex);
5651 return 0;
5652}
5653
5654static int cgroupstats_open(struct inode *inode, struct file *file)
5655{
9dce07f1 5656 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5657}
5658
828c0950 5659static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5660 .open = cgroupstats_open,
5661 .read = seq_read,
5662 .llseek = seq_lseek,
5663 .release = single_release,
5664};
5665
b4f48b63 5666/**
eaf797ab 5667 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5668 * @child: pointer to task_struct of forking parent process.
b4f48b63 5669 *
eaf797ab
TH
5670 * A task is associated with the init_css_set until cgroup_post_fork()
5671 * attaches it to the parent's css_set. Empty cg_list indicates that
5672 * @child isn't holding reference to its css_set.
b4f48b63
PM
5673 */
5674void cgroup_fork(struct task_struct *child)
5675{
eaf797ab 5676 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5677 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5678}
5679
7e47682e
AS
5680/**
5681 * cgroup_can_fork - called on a new task before the process is exposed
5682 * @child: the task in question.
5683 *
5684 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5685 * returns an error, the fork aborts with that error code. This allows for
5686 * a cgroup subsystem to conditionally allow or deny new forks.
5687 */
b53202e6 5688int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5689{
5690 struct cgroup_subsys *ss;
5691 int i, j, ret;
5692
b4e0eeaf 5693 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5694 ret = ss->can_fork(child);
7e47682e
AS
5695 if (ret)
5696 goto out_revert;
b4e0eeaf 5697 } while_each_subsys_mask();
7e47682e
AS
5698
5699 return 0;
5700
5701out_revert:
5702 for_each_subsys(ss, j) {
5703 if (j >= i)
5704 break;
5705 if (ss->cancel_fork)
b53202e6 5706 ss->cancel_fork(child);
7e47682e
AS
5707 }
5708
5709 return ret;
5710}
5711
5712/**
5713 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5714 * @child: the task in question
5715 *
5716 * This calls the cancel_fork() callbacks if a fork failed *after*
5717 * cgroup_can_fork() succeded.
5718 */
b53202e6 5719void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5720{
5721 struct cgroup_subsys *ss;
5722 int i;
5723
5724 for_each_subsys(ss, i)
5725 if (ss->cancel_fork)
b53202e6 5726 ss->cancel_fork(child);
7e47682e
AS
5727}
5728
817929ec 5729/**
a043e3b2
LZ
5730 * cgroup_post_fork - called on a new task after adding it to the task list
5731 * @child: the task in question
5732 *
5edee61e
TH
5733 * Adds the task to the list running through its css_set if necessary and
5734 * call the subsystem fork() callbacks. Has to be after the task is
5735 * visible on the task list in case we race with the first call to
0942eeee 5736 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5737 * list.
a043e3b2 5738 */
b53202e6 5739void cgroup_post_fork(struct task_struct *child)
817929ec 5740{
30159ec7 5741 struct cgroup_subsys *ss;
5edee61e
TH
5742 int i;
5743
3ce3230a 5744 /*
251f8c03 5745 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5746 * function sets use_task_css_set_links before grabbing
5747 * tasklist_lock and we just went through tasklist_lock to add
5748 * @child, it's guaranteed that either we see the set
5749 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5750 * @child during its iteration.
5751 *
5752 * If we won the race, @child is associated with %current's
f0d9a5f1 5753 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5754 * association is stable, and, on completion of the parent's
5755 * migration, @child is visible in the source of migration or
5756 * already in the destination cgroup. This guarantee is necessary
5757 * when implementing operations which need to migrate all tasks of
5758 * a cgroup to another.
5759 *
251f8c03 5760 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5761 * will remain in init_css_set. This is safe because all tasks are
5762 * in the init_css_set before cg_links is enabled and there's no
5763 * operation which transfers all tasks out of init_css_set.
3ce3230a 5764 */
817929ec 5765 if (use_task_css_set_links) {
eaf797ab
TH
5766 struct css_set *cset;
5767
f0d9a5f1 5768 spin_lock_bh(&css_set_lock);
0e1d768f 5769 cset = task_css_set(current);
eaf797ab 5770 if (list_empty(&child->cg_list)) {
eaf797ab 5771 get_css_set(cset);
f6d7d049 5772 css_set_move_task(child, NULL, cset, false);
eaf797ab 5773 }
f0d9a5f1 5774 spin_unlock_bh(&css_set_lock);
817929ec 5775 }
5edee61e
TH
5776
5777 /*
5778 * Call ss->fork(). This must happen after @child is linked on
5779 * css_set; otherwise, @child might change state between ->fork()
5780 * and addition to css_set.
5781 */
b4e0eeaf 5782 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5783 ss->fork(child);
b4e0eeaf 5784 } while_each_subsys_mask();
817929ec 5785}
5edee61e 5786
b4f48b63
PM
5787/**
5788 * cgroup_exit - detach cgroup from exiting task
5789 * @tsk: pointer to task_struct of exiting process
5790 *
5791 * Description: Detach cgroup from @tsk and release it.
5792 *
5793 * Note that cgroups marked notify_on_release force every task in
5794 * them to take the global cgroup_mutex mutex when exiting.
5795 * This could impact scaling on very large systems. Be reluctant to
5796 * use notify_on_release cgroups where very high task exit scaling
5797 * is required on large systems.
5798 *
0e1d768f
TH
5799 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5800 * call cgroup_exit() while the task is still competent to handle
5801 * notify_on_release(), then leave the task attached to the root cgroup in
5802 * each hierarchy for the remainder of its exit. No need to bother with
5803 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5804 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5805 */
1ec41830 5806void cgroup_exit(struct task_struct *tsk)
b4f48b63 5807{
30159ec7 5808 struct cgroup_subsys *ss;
5abb8855 5809 struct css_set *cset;
d41d5a01 5810 int i;
817929ec
PM
5811
5812 /*
0e1d768f 5813 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5814 * with us, we can check css_set and cg_list without synchronization.
817929ec 5815 */
0de0942d
TH
5816 cset = task_css_set(tsk);
5817
817929ec 5818 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5819 spin_lock_bh(&css_set_lock);
f6d7d049 5820 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5821 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5822 } else {
5823 get_css_set(cset);
817929ec
PM
5824 }
5825
cb4a3167 5826 /* see cgroup_post_fork() for details */
b4e0eeaf 5827 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5828 ss->exit(tsk);
b4e0eeaf 5829 } while_each_subsys_mask();
2e91fa7f 5830}
30159ec7 5831
2e91fa7f
TH
5832void cgroup_free(struct task_struct *task)
5833{
5834 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5835 struct cgroup_subsys *ss;
5836 int ssid;
5837
b4e0eeaf 5838 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5839 ss->free(task);
b4e0eeaf 5840 } while_each_subsys_mask();
d41d5a01 5841
2e91fa7f 5842 put_css_set(cset);
b4f48b63 5843}
697f4161 5844
bd89aabc 5845static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5846{
27bd4dbb 5847 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5848 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5849 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5850}
5851
81a6a5cd
PM
5852/*
5853 * Notify userspace when a cgroup is released, by running the
5854 * configured release agent with the name of the cgroup (path
5855 * relative to the root of cgroup file system) as the argument.
5856 *
5857 * Most likely, this user command will try to rmdir this cgroup.
5858 *
5859 * This races with the possibility that some other task will be
5860 * attached to this cgroup before it is removed, or that some other
5861 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5862 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5863 * unused, and this cgroup will be reprieved from its death sentence,
5864 * to continue to serve a useful existence. Next time it's released,
5865 * we will get notified again, if it still has 'notify_on_release' set.
5866 *
5867 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5868 * means only wait until the task is successfully execve()'d. The
5869 * separate release agent task is forked by call_usermodehelper(),
5870 * then control in this thread returns here, without waiting for the
5871 * release agent task. We don't bother to wait because the caller of
5872 * this routine has no use for the exit status of the release agent
5873 * task, so no sense holding our caller up for that.
81a6a5cd 5874 */
81a6a5cd
PM
5875static void cgroup_release_agent(struct work_struct *work)
5876{
971ff493
ZL
5877 struct cgroup *cgrp =
5878 container_of(work, struct cgroup, release_agent_work);
5879 char *pathbuf = NULL, *agentbuf = NULL, *path;
5880 char *argv[3], *envp[3];
5881
81a6a5cd 5882 mutex_lock(&cgroup_mutex);
971ff493
ZL
5883
5884 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5885 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5886 if (!pathbuf || !agentbuf)
5887 goto out;
5888
5889 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5890 if (!path)
5891 goto out;
5892
5893 argv[0] = agentbuf;
5894 argv[1] = path;
5895 argv[2] = NULL;
5896
5897 /* minimal command environment */
5898 envp[0] = "HOME=/";
5899 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5900 envp[2] = NULL;
5901
81a6a5cd 5902 mutex_unlock(&cgroup_mutex);
971ff493 5903 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5904 goto out_free;
971ff493 5905out:
81a6a5cd 5906 mutex_unlock(&cgroup_mutex);
3e2cd91a 5907out_free:
971ff493
ZL
5908 kfree(agentbuf);
5909 kfree(pathbuf);
81a6a5cd 5910}
8bab8dde
PM
5911
5912static int __init cgroup_disable(char *str)
5913{
30159ec7 5914 struct cgroup_subsys *ss;
8bab8dde 5915 char *token;
30159ec7 5916 int i;
8bab8dde
PM
5917
5918 while ((token = strsep(&str, ",")) != NULL) {
5919 if (!*token)
5920 continue;
be45c900 5921
3ed80a62 5922 for_each_subsys(ss, i) {
3e1d2eed
TH
5923 if (strcmp(token, ss->name) &&
5924 strcmp(token, ss->legacy_name))
5925 continue;
a3e72739 5926 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5927 }
5928 }
5929 return 1;
5930}
5931__setup("cgroup_disable=", cgroup_disable);
38460b48 5932
223ffb29
JW
5933static int __init cgroup_no_v1(char *str)
5934{
5935 struct cgroup_subsys *ss;
5936 char *token;
5937 int i;
5938
5939 while ((token = strsep(&str, ",")) != NULL) {
5940 if (!*token)
5941 continue;
5942
5943 if (!strcmp(token, "all")) {
6e5c8307 5944 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5945 break;
5946 }
5947
5948 for_each_subsys(ss, i) {
5949 if (strcmp(token, ss->name) &&
5950 strcmp(token, ss->legacy_name))
5951 continue;
5952
5953 cgroup_no_v1_mask |= 1 << i;
5954 }
5955 }
5956 return 1;
5957}
5958__setup("cgroup_no_v1=", cgroup_no_v1);
5959
b77d7b60 5960/**
ec903c0c 5961 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5962 * @dentry: directory dentry of interest
5963 * @ss: subsystem of interest
b77d7b60 5964 *
5a17f543
TH
5965 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5966 * to get the corresponding css and return it. If such css doesn't exist
5967 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5968 */
ec903c0c
TH
5969struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5970 struct cgroup_subsys *ss)
e5d1367f 5971{
2bd59d48 5972 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5973 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5974 struct cgroup_subsys_state *css = NULL;
e5d1367f 5975 struct cgroup *cgrp;
e5d1367f 5976
35cf0836 5977 /* is @dentry a cgroup dir? */
f17fc25f
TH
5978 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5979 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5980 return ERR_PTR(-EBADF);
5981
5a17f543
TH
5982 rcu_read_lock();
5983
2bd59d48
TH
5984 /*
5985 * This path doesn't originate from kernfs and @kn could already
5986 * have been or be removed at any point. @kn->priv is RCU
a4189487 5987 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5988 */
5989 cgrp = rcu_dereference(kn->priv);
5990 if (cgrp)
5991 css = cgroup_css(cgrp, ss);
5a17f543 5992
ec903c0c 5993 if (!css || !css_tryget_online(css))
5a17f543
TH
5994 css = ERR_PTR(-ENOENT);
5995
5996 rcu_read_unlock();
5997 return css;
e5d1367f 5998}
e5d1367f 5999
1cb650b9
LZ
6000/**
6001 * css_from_id - lookup css by id
6002 * @id: the cgroup id
6003 * @ss: cgroup subsys to be looked into
6004 *
6005 * Returns the css if there's valid one with @id, otherwise returns NULL.
6006 * Should be called under rcu_read_lock().
6007 */
6008struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6009{
6fa4918d 6010 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 6011 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
6012}
6013
16af4396
TH
6014/**
6015 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6016 * @path: path on the default hierarchy
6017 *
6018 * Find the cgroup at @path on the default hierarchy, increment its
6019 * reference count and return it. Returns pointer to the found cgroup on
6020 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6021 * if @path points to a non-directory.
6022 */
6023struct cgroup *cgroup_get_from_path(const char *path)
6024{
6025 struct kernfs_node *kn;
6026 struct cgroup *cgrp;
6027
6028 mutex_lock(&cgroup_mutex);
6029
6030 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6031 if (kn) {
6032 if (kernfs_type(kn) == KERNFS_DIR) {
6033 cgrp = kn->priv;
6034 cgroup_get(cgrp);
6035 } else {
6036 cgrp = ERR_PTR(-ENOTDIR);
6037 }
6038 kernfs_put(kn);
6039 } else {
6040 cgrp = ERR_PTR(-ENOENT);
6041 }
6042
6043 mutex_unlock(&cgroup_mutex);
6044 return cgrp;
6045}
6046EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6047
bd1060a1
TH
6048/*
6049 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6050 * definition in cgroup-defs.h.
6051 */
6052#ifdef CONFIG_SOCK_CGROUP_DATA
6053
6054#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6055
3fa4cc9c 6056DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6057static bool cgroup_sk_alloc_disabled __read_mostly;
6058
6059void cgroup_sk_alloc_disable(void)
6060{
6061 if (cgroup_sk_alloc_disabled)
6062 return;
6063 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6064 cgroup_sk_alloc_disabled = true;
6065}
6066
6067#else
6068
6069#define cgroup_sk_alloc_disabled false
6070
6071#endif
6072
6073void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6074{
6075 if (cgroup_sk_alloc_disabled)
6076 return;
6077
6078 rcu_read_lock();
6079
6080 while (true) {
6081 struct css_set *cset;
6082
6083 cset = task_css_set(current);
6084 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6085 skcd->val = (unsigned long)cset->dfl_cgrp;
6086 break;
6087 }
6088 cpu_relax();
6089 }
6090
6091 rcu_read_unlock();
6092}
6093
6094void cgroup_sk_free(struct sock_cgroup_data *skcd)
6095{
6096 cgroup_put(sock_cgroup_ptr(skcd));
6097}
6098
6099#endif /* CONFIG_SOCK_CGROUP_DATA */
6100
fe693435 6101#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6102static struct cgroup_subsys_state *
6103debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6104{
6105 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6106
6107 if (!css)
6108 return ERR_PTR(-ENOMEM);
6109
6110 return css;
6111}
6112
eb95419b 6113static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6114{
eb95419b 6115 kfree(css);
fe693435
PM
6116}
6117
182446d0
TH
6118static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6119 struct cftype *cft)
fe693435 6120{
182446d0 6121 return cgroup_task_count(css->cgroup);
fe693435
PM
6122}
6123
182446d0
TH
6124static u64 current_css_set_read(struct cgroup_subsys_state *css,
6125 struct cftype *cft)
fe693435
PM
6126{
6127 return (u64)(unsigned long)current->cgroups;
6128}
6129
182446d0 6130static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6131 struct cftype *cft)
fe693435
PM
6132{
6133 u64 count;
6134
6135 rcu_read_lock();
a8ad805c 6136 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6137 rcu_read_unlock();
6138 return count;
6139}
6140
2da8ca82 6141static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6142{
69d0206c 6143 struct cgrp_cset_link *link;
5abb8855 6144 struct css_set *cset;
e61734c5
TH
6145 char *name_buf;
6146
6147 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6148 if (!name_buf)
6149 return -ENOMEM;
7717f7ba 6150
f0d9a5f1 6151 spin_lock_bh(&css_set_lock);
7717f7ba 6152 rcu_read_lock();
5abb8855 6153 cset = rcu_dereference(current->cgroups);
69d0206c 6154 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6155 struct cgroup *c = link->cgrp;
7717f7ba 6156
a2dd4247 6157 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6158 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6159 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6160 }
6161 rcu_read_unlock();
f0d9a5f1 6162 spin_unlock_bh(&css_set_lock);
e61734c5 6163 kfree(name_buf);
7717f7ba
PM
6164 return 0;
6165}
6166
6167#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6168static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6169{
2da8ca82 6170 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6171 struct cgrp_cset_link *link;
7717f7ba 6172
f0d9a5f1 6173 spin_lock_bh(&css_set_lock);
182446d0 6174 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6175 struct css_set *cset = link->cset;
7717f7ba
PM
6176 struct task_struct *task;
6177 int count = 0;
c7561128 6178
5abb8855 6179 seq_printf(seq, "css_set %p\n", cset);
c7561128 6180
5abb8855 6181 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6182 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6183 goto overflow;
6184 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6185 }
6186
6187 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6188 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6189 goto overflow;
6190 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6191 }
c7561128
TH
6192 continue;
6193 overflow:
6194 seq_puts(seq, " ...\n");
7717f7ba 6195 }
f0d9a5f1 6196 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6197 return 0;
6198}
6199
182446d0 6200static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6201{
27bd4dbb 6202 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6203 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6204}
6205
6206static struct cftype debug_files[] = {
fe693435
PM
6207 {
6208 .name = "taskcount",
6209 .read_u64 = debug_taskcount_read,
6210 },
6211
6212 {
6213 .name = "current_css_set",
6214 .read_u64 = current_css_set_read,
6215 },
6216
6217 {
6218 .name = "current_css_set_refcount",
6219 .read_u64 = current_css_set_refcount_read,
6220 },
6221
7717f7ba
PM
6222 {
6223 .name = "current_css_set_cg_links",
2da8ca82 6224 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6225 },
6226
6227 {
6228 .name = "cgroup_css_links",
2da8ca82 6229 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6230 },
6231
fe693435
PM
6232 {
6233 .name = "releasable",
6234 .read_u64 = releasable_read,
6235 },
fe693435 6236
4baf6e33
TH
6237 { } /* terminate */
6238};
fe693435 6239
073219e9 6240struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6241 .css_alloc = debug_css_alloc,
6242 .css_free = debug_css_free,
5577964e 6243 .legacy_cftypes = debug_files,
fe693435
PM
6244};
6245#endif /* CONFIG_CGROUP_DEBUG */