libceph: move r_reply_op_{len,result} into struct ceph_osd_req_op
[linux-2.6-block.git] / kernel / audit.c
CommitLineData
85c8721f 1/* audit.c -- Auditing support
1da177e4
LT
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
6a01b07f 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
1da177e4
LT
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
d7a96f3a 24 * Goals: 1) Integrate fully with Security Modules.
1da177e4
LT
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
85c8721f 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
1da177e4
LT
42 */
43
d957f7b7
JP
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
5b282552 46#include <linux/file.h>
1da177e4 47#include <linux/init.h>
7153e402 48#include <linux/types.h>
60063497 49#include <linux/atomic.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
b7d11258
DW
53#include <linux/err.h>
54#include <linux/kthread.h>
46e959ea 55#include <linux/kernel.h>
b24a30a7 56#include <linux/syscalls.h>
1da177e4
LT
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
93315ed6 61#include <net/netlink.h>
1da177e4 62#include <linux/skbuff.h>
131ad62d
MDF
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
7dfb7103 66#include <linux/freezer.h>
522ed776 67#include <linux/tty.h>
34e36d8e 68#include <linux/pid_namespace.h>
33faba7f 69#include <net/netns/generic.h>
3dc7e315
DG
70
71#include "audit.h"
1da177e4 72
a3f07114 73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
1da177e4 74 * (Initialization happens after skb_init is called.) */
a3f07114
EP
75#define AUDIT_DISABLED -1
76#define AUDIT_UNINITIALIZED 0
77#define AUDIT_INITIALIZED 1
1da177e4
LT
78static int audit_initialized;
79
1a6b9f23
EP
80#define AUDIT_OFF 0
81#define AUDIT_ON 1
82#define AUDIT_LOCKED 2
3e1d0bb6
JP
83u32 audit_enabled;
84u32 audit_ever_enabled;
1da177e4 85
ae9d67af
JE
86EXPORT_SYMBOL_GPL(audit_enabled);
87
1da177e4 88/* Default state when kernel boots without any parameters. */
3e1d0bb6 89static u32 audit_default;
1da177e4
LT
90
91/* If auditing cannot proceed, audit_failure selects what happens. */
3e1d0bb6 92static u32 audit_failure = AUDIT_FAIL_PRINTK;
1da177e4 93
75c0371a
PE
94/*
95 * If audit records are to be written to the netlink socket, audit_pid
15e47304
EB
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
75c0371a 98 */
c2f0c7c3 99int audit_pid;
f9441639 100static __u32 audit_nlk_portid;
1da177e4 101
b0dd25a8 102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
1da177e4
LT
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
3e1d0bb6 105static u32 audit_rate_limit;
1da177e4 106
40c0775e
RGB
107/* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
3e1d0bb6 109static u32 audit_backlog_limit = 64;
e789e561 110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
a77ed4e5 111static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
3e1d0bb6 112static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1da177e4 113
c2f0c7c3 114/* The identity of the user shutting down the audit system. */
cca080d9 115kuid_t audit_sig_uid = INVALID_UID;
c2f0c7c3 116pid_t audit_sig_pid = -1;
e1396065 117u32 audit_sig_sid = 0;
c2f0c7c3 118
1da177e4
LT
119/* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125*/
126static atomic_t audit_lost = ATOMIC_INIT(0);
127
128/* The netlink socket. */
129static struct sock *audit_sock;
c0a8d9b0 130static int audit_net_id;
1da177e4 131
f368c07d
AG
132/* Hash for inode-based rules */
133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
b7d11258 135/* The audit_freelist is a list of pre-allocated audit buffers (if more
1da177e4
LT
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
1da177e4 138static DEFINE_SPINLOCK(audit_freelist_lock);
b0dd25a8 139static int audit_freelist_count;
1da177e4
LT
140static LIST_HEAD(audit_freelist);
141
b7d11258 142static struct sk_buff_head audit_skb_queue;
f3d357b0
EP
143/* queue of skbs to send to auditd when/if it comes back */
144static struct sk_buff_head audit_skb_hold_queue;
b7d11258
DW
145static struct task_struct *kauditd_task;
146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
9ad9ad38 147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
1da177e4 148
b0fed402
EP
149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
21b85c31 154static char *audit_feature_names[2] = {
d040e5af 155 "only_unset_loginuid",
21b85c31 156 "loginuid_immutable",
b0fed402
EP
157};
158
159
f368c07d 160/* Serialize requests from userspace. */
916d7576 161DEFINE_MUTEX(audit_cmd_mutex);
1da177e4
LT
162
163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166#define AUDIT_BUFSIZ 1024
167
168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170#define AUDIT_MAXFREE (2*NR_CPUS)
171
172/* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177struct audit_buffer {
178 struct list_head list;
8fc6115c 179 struct sk_buff *skb; /* formatted skb ready to send */
1da177e4 180 struct audit_context *ctx; /* NULL or associated context */
9796fdd8 181 gfp_t gfp_mask;
1da177e4
LT
182};
183
f09ac9db 184struct audit_reply {
f9441639 185 __u32 portid;
638a0fd2 186 struct net *net;
f09ac9db
EP
187 struct sk_buff *skb;
188};
189
f9441639 190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
c0404993 191{
50397bd1
EP
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
f9441639 194 nlh->nlmsg_pid = portid;
50397bd1 195 }
c0404993
SG
196}
197
8c8570fb 198void audit_panic(const char *message)
1da177e4 199{
d957f7b7 200 switch (audit_failure) {
1da177e4
LT
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
320f1b1e 204 if (printk_ratelimit())
d957f7b7 205 pr_err("%s\n", message);
1da177e4
LT
206 break;
207 case AUDIT_FAIL_PANIC:
b29ee87e
EP
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
1da177e4
LT
211 break;
212 }
213}
214
215static inline int audit_rate_check(void)
216{
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242}
243
b0dd25a8
RD
244/**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251*/
1da177e4
LT
252void audit_log_lost(const char *message)
253{
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
320f1b1e 275 if (printk_ratelimit())
3e1d0bb6 276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
320f1b1e
EP
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
1da177e4
LT
280 audit_panic(message);
281 }
1da177e4
LT
282}
283
3e1d0bb6 284static int audit_log_config_change(char *function_name, u32 new, u32 old,
2532386f 285 int allow_changes)
1da177e4 286{
1a6b9f23
EP
287 struct audit_buffer *ab;
288 int rc = 0;
ce29b682 289
1a6b9f23 290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
0644ec0c
KC
291 if (unlikely(!ab))
292 return rc;
3e1d0bb6 293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
4d3fb709 294 audit_log_session_info(ab);
b122c376
EP
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
1a6b9f23
EP
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
6a01b07f 300 return rc;
1da177e4
LT
301}
302
3e1d0bb6 303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
1da177e4 304{
3e1d0bb6
JP
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
6a01b07f
SG
307
308 /* check if we are locked */
1a6b9f23
EP
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
6a01b07f 311 else
1a6b9f23 312 allow_changes = 1;
ce29b682 313
1a6b9f23 314 if (audit_enabled != AUDIT_OFF) {
dc9eb698 315 rc = audit_log_config_change(function_name, new, old, allow_changes);
1a6b9f23
EP
316 if (rc)
317 allow_changes = 0;
6a01b07f 318 }
6a01b07f
SG
319
320 /* If we are allowed, make the change */
1a6b9f23
EP
321 if (allow_changes == 1)
322 *to_change = new;
6a01b07f
SG
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
1da177e4
LT
327}
328
3e1d0bb6 329static int audit_set_rate_limit(u32 limit)
1da177e4 330{
dc9eb698 331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
1a6b9f23 332}
ce29b682 333
3e1d0bb6 334static int audit_set_backlog_limit(u32 limit)
1a6b9f23 335{
dc9eb698 336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
1a6b9f23 337}
6a01b07f 338
3e1d0bb6 339static int audit_set_backlog_wait_time(u32 timeout)
51cc83f0
RGB
340{
341 return audit_do_config_change("audit_backlog_wait_time",
a77ed4e5 342 &audit_backlog_wait_time_master, timeout);
51cc83f0
RGB
343}
344
3e1d0bb6 345static int audit_set_enabled(u32 state)
1a6b9f23 346{
b593d384 347 int rc;
724e7bfc 348 if (state > AUDIT_LOCKED)
1a6b9f23 349 return -EINVAL;
6a01b07f 350
dc9eb698 351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
b593d384
EP
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
1da177e4
LT
356}
357
3e1d0bb6 358static int audit_set_failure(u32 state)
1da177e4 359{
1da177e4
LT
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
ce29b682 364
dc9eb698 365 return audit_do_config_change("audit_failure", &audit_failure, state);
1da177e4
LT
366}
367
f3d357b0
EP
368/*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377static void audit_hold_skb(struct sk_buff *skb)
378{
379 if (audit_default &&
40c0775e
RGB
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
f3d357b0
EP
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385}
386
038cbcf6
EP
387/*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391static void audit_printk_skb(struct sk_buff *skb)
392{
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
c64e66c6 394 char *data = nlmsg_data(nlh);
038cbcf6
EP
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
d957f7b7 398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
038cbcf6 399 else
f1283527 400 audit_log_lost("printk limit exceeded");
038cbcf6
EP
401 }
402
403 audit_hold_skb(skb);
404}
405
f3d357b0
EP
406static void kauditd_send_skb(struct sk_buff *skb)
407{
408 int err;
32a1dbae
RGB
409 int attempts = 0;
410#define AUDITD_RETRIES 5
411
412restart:
f3d357b0
EP
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
15e47304 415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
f3d357b0 416 if (err < 0) {
32a1dbae
RGB
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
04ee1a3b 419 if (audit_pid) {
32a1dbae
RGB
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
04ee1a3b 436 }
f3d357b0
EP
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
70d4bf6d 441 consume_skb(skb);
f3d357b0
EP
442}
443
451f9216
RGB
444/*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
54dc77d9 450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451f9216
RGB
451{
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
7f74ecd7
RGB
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
451f9216
RGB
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
54dc77d9 469 copy = skb_copy(skb, gfp_mask);
451f9216
RGB
470 if (!copy)
471 return;
472
54dc77d9 473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
451f9216
RGB
474}
475
b551d1d9
RGB
476/*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491static void flush_hold_queue(void)
b7d11258
DW
492{
493 struct sk_buff *skb;
494
b551d1d9
RGB
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
d865e573 511 consume_skb(skb);
b551d1d9
RGB
512}
513
97a41e26 514static int kauditd_thread(void *dummy)
b7d11258 515{
83144186 516 set_freezable();
4899b8b1 517 while (!kthread_should_stop()) {
3320c513 518 struct sk_buff *skb;
3320c513 519
b551d1d9 520 flush_hold_queue();
f3d357b0 521
b7d11258 522 skb = skb_dequeue(&audit_skb_queue);
db897319 523
b7d11258 524 if (skb) {
1194b994
RGB
525 if (!audit_backlog_limit ||
526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
db897319 527 wake_up(&audit_backlog_wait);
f3d357b0
EP
528 if (audit_pid)
529 kauditd_send_skb(skb);
038cbcf6
EP
530 else
531 audit_printk_skb(skb);
3320c513
RGB
532 continue;
533 }
b7d11258 534
6b55fc63 535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
b7d11258 536 }
4899b8b1 537 return 0;
b7d11258
DW
538}
539
9044e6bc
AV
540int audit_send_list(void *_dest)
541{
542 struct audit_netlink_list *dest = _dest;
9044e6bc 543 struct sk_buff *skb;
48095d99 544 struct net *net = dest->net;
33faba7f 545 struct audit_net *aunet = net_generic(net, audit_net_id);
9044e6bc
AV
546
547 /* wait for parent to finish and send an ACK */
f368c07d
AG
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
9044e6bc
AV
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
33faba7f 552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
9044e6bc 553
48095d99 554 put_net(net);
9044e6bc
AV
555 kfree(dest);
556
557 return 0;
558}
559
f9441639 560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
b8800aa5 561 int multi, const void *payload, int size)
9044e6bc
AV
562{
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
9044e6bc
AV
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
ee080e6c 569 skb = nlmsg_new(size, GFP_KERNEL);
9044e6bc
AV
570 if (!skb)
571 return NULL;
572
f9441639 573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
c64e66c6
DM
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
9044e6bc
AV
577 memcpy(data, payload, size);
578 return skb;
579
c64e66c6
DM
580out_kfree_skb:
581 kfree_skb(skb);
9044e6bc
AV
582 return NULL;
583}
584
f09ac9db
EP
585static int audit_send_reply_thread(void *arg)
586{
587 struct audit_reply *reply = (struct audit_reply *)arg;
48095d99 588 struct net *net = reply->net;
33faba7f 589 struct audit_net *aunet = net_generic(net, audit_net_id);
f09ac9db
EP
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
33faba7f 596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
48095d99 597 put_net(net);
f09ac9db
EP
598 kfree(reply);
599 return 0;
600}
b0dd25a8
RD
601/**
602 * audit_send_reply - send an audit reply message via netlink
d211f177 603 * @request_skb: skb of request we are replying to (used to target the reply)
b0dd25a8
RD
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
f9441639 611 * Allocates an skb, builds the netlink message, and sends it to the port id.
b0dd25a8
RD
612 * No failure notifications.
613 */
6f285b19 614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
f9441639 615 int multi, const void *payload, int size)
1da177e4 616{
6f285b19
EB
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
f09ac9db
EP
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
f9441639 627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
1da177e4 628 if (!skb)
fcaf1eb8 629 goto out;
f09ac9db 630
6f285b19 631 reply->net = get_net(net);
f9441639 632 reply->portid = portid;
f09ac9db
EP
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
fcaf1eb8
AM
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639out:
640 kfree(reply);
1da177e4
LT
641}
642
643/*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
c7bdb545 647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1da177e4
LT
648{
649 int err = 0;
650
5a3cb3b6 651 /* Only support initial user namespace for now. */
aa4af831
EP
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
0b747172 662 if (current_user_ns() != &init_user_ns)
aa4af831 663 return -ECONNREFUSED;
34e36d8e 664
1da177e4 665 switch (msg_type) {
1da177e4 666 case AUDIT_LIST:
1da177e4
LT
667 case AUDIT_ADD:
668 case AUDIT_DEL:
18900909
EP
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
b0fed402
EP
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
18900909
EP
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
93315ed6 676 case AUDIT_DEL_RULE:
c2f0c7c3 677 case AUDIT_SIGNAL_INFO:
522ed776
MT
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
74c3cbe3
AV
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
5a3cb3b6
RGB
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
5985de67 684 if (task_active_pid_ns(current) != &init_pid_ns)
5a3cb3b6
RGB
685 return -EPERM;
686
90f62cf3 687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1da177e4
LT
688 err = -EPERM;
689 break;
05474106 690 case AUDIT_USER:
039b6b3e
RD
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
90f62cf3 693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1da177e4
LT
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701}
702
233a6866 703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
50397bd1 704{
dc9eb698 705 uid_t uid = from_kuid(&init_user_ns, current_uid());
f1dc4867 706 pid_t pid = task_tgid_nr(current);
50397bd1 707
0868a5e1 708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
50397bd1 709 *ab = NULL;
233a6866 710 return;
50397bd1
EP
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
0644ec0c 714 if (unlikely(!*ab))
233a6866 715 return;
f1dc4867 716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
4d3fb709 717 audit_log_session_info(*ab);
b122c376 718 audit_log_task_context(*ab);
50397bd1
EP
719}
720
b0fed402
EP
721int is_audit_feature_set(int i)
722{
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724}
725
726
727static int audit_get_feature(struct sk_buff *skb)
728{
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
9ef91514 733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
b0fed402
EP
734
735 return 0;
736}
737
738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740{
741 struct audit_buffer *ab;
742
b6c50fe0
G
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
b0fed402 746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
ad2ac263 747 audit_log_task_info(ab, current);
897f1acb 748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
b0fed402
EP
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
6eed9b26 759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
b0fed402
EP
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
4547b3bc 778 if (old_lock && (new_feature != old_feature)) {
b0fed402
EP
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
133e1e5a
RGB
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
1da177e4
LT
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
dc9eb698 824 u32 seq;
1da177e4 825 void *data;
1da177e4 826 int err;
c0404993 827 struct audit_buffer *ab;
1da177e4 828 u16 msg_type = nlh->nlmsg_type;
e1396065 829 struct audit_sig_info *sig_data;
50397bd1 830 char *ctx = NULL;
e1396065 831 u32 len;
1da177e4 832
c7bdb545 833 err = audit_netlink_ok(skb, msg_type);
1da177e4
LT
834 if (err)
835 return err;
836
b0dd25a8
RD
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
13f51e1c 839 if (!kauditd_task) {
b7d11258 840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
13f51e1c
G
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
b7d11258 846 }
1da177e4 847 seq = nlh->nlmsg_seq;
c64e66c6 848 data = nlmsg_data(nlh);
1da177e4
LT
849
850 switch (msg_type) {
09f883a9
RGB
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
0288d718 861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
a77ed4e5 862 s.backlog_wait_time = audit_backlog_wait_time_master;
6f285b19 863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1da177e4 864 break;
09f883a9
RGB
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
20c6aaa3 873 if (err < 0)
874 return err;
1da177e4 875 }
09f883a9
RGB
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
20c6aaa3 878 if (err < 0)
879 return err;
1da177e4 880 }
09f883a9
RGB
881 if (s.mask & AUDIT_STATUS_PID) {
882 int new_pid = s.pid;
133e1e5a 883 pid_t requesting_pid = task_tgid_vnr(current);
1a6b9f23 884
935c9e7f
RGB
885 if ((!new_pid) && (requesting_pid != audit_pid)) {
886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
34eab0a7 887 return -EACCES;
935c9e7f 888 }
133e1e5a 889 if (audit_pid && new_pid &&
935c9e7f
RGB
890 audit_replace(requesting_pid) != -ECONNREFUSED) {
891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
133e1e5a 892 return -EEXIST;
935c9e7f 893 }
1a6b9f23 894 if (audit_enabled != AUDIT_OFF)
dc9eb698 895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
1a6b9f23 896 audit_pid = new_pid;
15e47304 897 audit_nlk_portid = NETLINK_CB(skb).portid;
de92fc97 898 audit_sock = skb->sk;
1da177e4 899 }
09f883a9
RGB
900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 err = audit_set_rate_limit(s.rate_limit);
20c6aaa3 902 if (err < 0)
903 return err;
904 }
51cc83f0 905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
09f883a9 906 err = audit_set_backlog_limit(s.backlog_limit);
51cc83f0
RGB
907 if (err < 0)
908 return err;
909 }
3f0c5fad
EP
910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 return -EINVAL;
724e7bfc 913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
3f0c5fad
EP
914 return -EINVAL;
915 err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 if (err < 0)
917 return err;
51cc83f0 918 }
1da177e4 919 break;
09f883a9 920 }
b0fed402
EP
921 case AUDIT_GET_FEATURE:
922 err = audit_get_feature(skb);
923 if (err)
924 return err;
925 break;
926 case AUDIT_SET_FEATURE:
927 err = audit_set_feature(skb);
928 if (err)
929 return err;
930 break;
05474106 931 case AUDIT_USER:
039b6b3e
RD
932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
4a4cd633
DW
934 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 return 0;
936
62062cf8 937 err = audit_filter_user(msg_type);
724e4fcc 938 if (err == 1) { /* match or error */
4a4cd633 939 err = 0;
522ed776 940 if (msg_type == AUDIT_USER_TTY) {
37282a77 941 err = tty_audit_push();
522ed776
MT
942 if (err)
943 break;
944 }
1b7b533f 945 mutex_unlock(&audit_cmd_mutex);
dc9eb698 946 audit_log_common_recv_msg(&ab, msg_type);
50397bd1 947 if (msg_type != AUDIT_USER_TTY)
b50eba7e
RGB
948 audit_log_format(ab, " msg='%.*s'",
949 AUDIT_MESSAGE_TEXT_MAX,
50397bd1
EP
950 (char *)data);
951 else {
952 int size;
953
f7616102 954 audit_log_format(ab, " data=");
50397bd1 955 size = nlmsg_len(nlh);
55ad2f8d
MT
956 if (size > 0 &&
957 ((unsigned char *)data)[size - 1] == '\0')
958 size--;
b556f8ad 959 audit_log_n_untrustedstring(ab, data, size);
4a4cd633 960 }
f9441639 961 audit_set_portid(ab, NETLINK_CB(skb).portid);
50397bd1 962 audit_log_end(ab);
1b7b533f 963 mutex_lock(&audit_cmd_mutex);
0f45aa18 964 }
1da177e4 965 break;
93315ed6
AG
966 case AUDIT_ADD_RULE:
967 case AUDIT_DEL_RULE:
968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 return -EINVAL;
1a6b9f23 970 if (audit_enabled == AUDIT_LOCKED) {
dc9eb698
EP
971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
50397bd1 973 audit_log_end(ab);
6a01b07f
SG
974 return -EPERM;
975 }
ce0d9f04 976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
dc9eb698 977 seq, data, nlmsg_len(nlh));
1da177e4 978 break;
ce0d9f04 979 case AUDIT_LIST_RULES:
6f285b19 980 err = audit_list_rules_send(skb, seq);
ce0d9f04 981 break;
74c3cbe3
AV
982 case AUDIT_TRIM:
983 audit_trim_trees();
dc9eb698 984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
74c3cbe3
AV
985 audit_log_format(ab, " op=trim res=1");
986 audit_log_end(ab);
987 break;
988 case AUDIT_MAKE_EQUIV: {
989 void *bufp = data;
990 u32 sizes[2];
7719e437 991 size_t msglen = nlmsg_len(nlh);
74c3cbe3
AV
992 char *old, *new;
993
994 err = -EINVAL;
7719e437 995 if (msglen < 2 * sizeof(u32))
74c3cbe3
AV
996 break;
997 memcpy(sizes, bufp, 2 * sizeof(u32));
998 bufp += 2 * sizeof(u32);
7719e437
HH
999 msglen -= 2 * sizeof(u32);
1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
74c3cbe3
AV
1001 if (IS_ERR(old)) {
1002 err = PTR_ERR(old);
1003 break;
1004 }
7719e437 1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
74c3cbe3
AV
1006 if (IS_ERR(new)) {
1007 err = PTR_ERR(new);
1008 kfree(old);
1009 break;
1010 }
1011 /* OK, here comes... */
1012 err = audit_tag_tree(old, new);
1013
dc9eb698 1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
50397bd1 1015
74c3cbe3
AV
1016 audit_log_format(ab, " op=make_equiv old=");
1017 audit_log_untrustedstring(ab, old);
1018 audit_log_format(ab, " new=");
1019 audit_log_untrustedstring(ab, new);
1020 audit_log_format(ab, " res=%d", !err);
1021 audit_log_end(ab);
1022 kfree(old);
1023 kfree(new);
1024 break;
1025 }
c2f0c7c3 1026 case AUDIT_SIGNAL_INFO:
939cbf26
EP
1027 len = 0;
1028 if (audit_sig_sid) {
1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 if (err)
1031 return err;
1032 }
e1396065
AV
1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 if (!sig_data) {
939cbf26
EP
1035 if (audit_sig_sid)
1036 security_release_secctx(ctx, len);
e1396065
AV
1037 return -ENOMEM;
1038 }
cca080d9 1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
e1396065 1040 sig_data->pid = audit_sig_pid;
939cbf26
EP
1041 if (audit_sig_sid) {
1042 memcpy(sig_data->ctx, ctx, len);
1043 security_release_secctx(ctx, len);
1044 }
6f285b19
EB
1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 sig_data, sizeof(*sig_data) + len);
e1396065 1047 kfree(sig_data);
c2f0c7c3 1048 break;
522ed776
MT
1049 case AUDIT_TTY_GET: {
1050 struct audit_tty_status s;
2e28d38a 1051 unsigned int t;
8aa14b64 1052
2e28d38a
PH
1053 t = READ_ONCE(current->signal->audit_tty);
1054 s.enabled = t & AUDIT_TTY_ENABLE;
1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
8aa14b64 1056
6f285b19 1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
522ed776
MT
1058 break;
1059 }
1060 case AUDIT_TTY_SET: {
a06e56b2 1061 struct audit_tty_status s, old;
a06e56b2 1062 struct audit_buffer *ab;
2e28d38a 1063 unsigned int t;
0e23bacc
EP
1064
1065 memset(&s, 0, sizeof(s));
1066 /* guard against past and future API changes */
1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 /* check if new data is valid */
1069 if ((s.enabled != 0 && s.enabled != 1) ||
1070 (s.log_passwd != 0 && s.log_passwd != 1))
1071 err = -EINVAL;
a06e56b2 1072
2e28d38a
PH
1073 if (err)
1074 t = READ_ONCE(current->signal->audit_tty);
1075 else {
1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 t = xchg(&current->signal->audit_tty, t);
0e23bacc 1078 }
2e28d38a
PH
1079 old.enabled = t & AUDIT_TTY_ENABLE;
1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
522ed776 1081
a06e56b2 1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1ce319f1
EP
1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 old.enabled, s.enabled, old.log_passwd,
1086 s.log_passwd, !err);
a06e56b2 1087 audit_log_end(ab);
522ed776
MT
1088 break;
1089 }
1da177e4
LT
1090 default:
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 return err < 0 ? err : 0;
1096}
1097
b0dd25a8 1098/*
ea7ae60b
EP
1099 * Get message from skb. Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
b0dd25a8 1101 */
2a0a6ebe 1102static void audit_receive_skb(struct sk_buff *skb)
1da177e4 1103{
ea7ae60b
EP
1104 struct nlmsghdr *nlh;
1105 /*
94191213 1106 * len MUST be signed for nlmsg_next to be able to dec it below 0
ea7ae60b
EP
1107 * if the nlmsg_len was not aligned
1108 */
1109 int len;
1110 int err;
1111
1112 nlh = nlmsg_hdr(skb);
1113 len = skb->len;
1114
94191213 1115 while (nlmsg_ok(nlh, len)) {
ea7ae60b
EP
1116 err = audit_receive_msg(skb, nlh);
1117 /* if err or if this message says it wants a response */
1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1da177e4 1119 netlink_ack(skb, nlh, err);
ea7ae60b 1120
2851da57 1121 nlh = nlmsg_next(nlh, &len);
1da177e4 1122 }
1da177e4
LT
1123}
1124
1125/* Receive messages from netlink socket. */
cd40b7d3 1126static void audit_receive(struct sk_buff *skb)
1da177e4 1127{
f368c07d 1128 mutex_lock(&audit_cmd_mutex);
cd40b7d3 1129 audit_receive_skb(skb);
f368c07d 1130 mutex_unlock(&audit_cmd_mutex);
1da177e4
LT
1131}
1132
3a101b8d 1133/* Run custom bind function on netlink socket group connect or bind requests. */
023e2cfa 1134static int audit_bind(struct net *net, int group)
3a101b8d
RGB
1135{
1136 if (!capable(CAP_AUDIT_READ))
1137 return -EPERM;
1138
1139 return 0;
1140}
1141
33faba7f 1142static int __net_init audit_net_init(struct net *net)
1da177e4 1143{
a31f2d17
PNA
1144 struct netlink_kernel_cfg cfg = {
1145 .input = audit_receive,
3a101b8d 1146 .bind = audit_bind,
451f9216
RGB
1147 .flags = NL_CFG_F_NONROOT_RECV,
1148 .groups = AUDIT_NLGRP_MAX,
a31f2d17 1149 };
f368c07d 1150
33faba7f
RGB
1151 struct audit_net *aunet = net_generic(net, audit_net_id);
1152
33faba7f 1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
11ee39eb 1154 if (aunet->nlsk == NULL) {
33faba7f 1155 audit_panic("cannot initialize netlink socket in namespace");
11ee39eb
G
1156 return -ENOMEM;
1157 }
1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
33faba7f
RGB
1159 return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164 struct audit_net *aunet = net_generic(net, audit_net_id);
1165 struct sock *sock = aunet->nlsk;
1166 if (sock == audit_sock) {
1167 audit_pid = 0;
1168 audit_sock = NULL;
1169 }
1170
e231d54c 1171 RCU_INIT_POINTER(aunet->nlsk, NULL);
33faba7f
RGB
1172 synchronize_net();
1173 netlink_kernel_release(sock);
1174}
1175
8626877b 1176static struct pernet_operations audit_net_ops __net_initdata = {
33faba7f
RGB
1177 .init = audit_net_init,
1178 .exit = audit_net_exit,
1179 .id = &audit_net_id,
1180 .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186 int i;
1187
a3f07114
EP
1188 if (audit_initialized == AUDIT_DISABLED)
1189 return 0;
1190
d957f7b7
JP
1191 pr_info("initializing netlink subsys (%s)\n",
1192 audit_default ? "enabled" : "disabled");
33faba7f 1193 register_pernet_subsys(&audit_net_ops);
1da177e4 1194
b7d11258 1195 skb_queue_head_init(&audit_skb_queue);
f3d357b0 1196 skb_queue_head_init(&audit_skb_hold_queue);
a3f07114 1197 audit_initialized = AUDIT_INITIALIZED;
1da177e4 1198 audit_enabled = audit_default;
b593d384 1199 audit_ever_enabled |= !!audit_default;
3dc7e315 1200
9ad9ad38 1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
f368c07d 1202
f368c07d
AG
1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 INIT_LIST_HEAD(&audit_inode_hash[i]);
f368c07d 1205
1da177e4
LT
1206 return 0;
1207}
1da177e4
LT
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213 audit_default = !!simple_strtol(str, NULL, 0);
a3f07114
EP
1214 if (!audit_default)
1215 audit_initialized = AUDIT_DISABLED;
1216
d957f7b7 1217 pr_info("%s\n", audit_default ?
d3ca0344 1218 "enabled (after initialization)" : "disabled (until reboot)");
a3f07114 1219
9b41046c 1220 return 1;
1da177e4 1221}
1da177e4
LT
1222__setup("audit=", audit_enable);
1223
f910fde7
RGB
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
3e1d0bb6 1228 u32 audit_backlog_limit_arg;
d957f7b7 1229
f910fde7 1230 pr_info("audit_backlog_limit: ");
3e1d0bb6
JP
1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 pr_cont("using default of %u, unable to parse %s\n",
d957f7b7 1233 audit_backlog_limit, str);
f910fde7
RGB
1234 return 1;
1235 }
3e1d0bb6
JP
1236
1237 audit_backlog_limit = audit_backlog_limit_arg;
d957f7b7 1238 pr_cont("%d\n", audit_backlog_limit);
f910fde7
RGB
1239
1240 return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
16e1904e
CW
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246 unsigned long flags;
1247
8fc6115c
CW
1248 if (!ab)
1249 return;
1250
d865e573 1251 kfree_skb(ab->skb);
16e1904e 1252 spin_lock_irqsave(&audit_freelist_lock, flags);
5d136a01 1253 if (audit_freelist_count > AUDIT_MAXFREE)
16e1904e 1254 kfree(ab);
5d136a01
SH
1255 else {
1256 audit_freelist_count++;
16e1904e 1257 list_add(&ab->list, &audit_freelist);
5d136a01 1258 }
16e1904e
CW
1259 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
c0404993 1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
dd0fc66f 1263 gfp_t gfp_mask, int type)
16e1904e
CW
1264{
1265 unsigned long flags;
1266 struct audit_buffer *ab = NULL;
c0404993 1267 struct nlmsghdr *nlh;
16e1904e
CW
1268
1269 spin_lock_irqsave(&audit_freelist_lock, flags);
1270 if (!list_empty(&audit_freelist)) {
1271 ab = list_entry(audit_freelist.next,
1272 struct audit_buffer, list);
1273 list_del(&ab->list);
1274 --audit_freelist_count;
1275 }
1276 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278 if (!ab) {
4332bdd3 1279 ab = kmalloc(sizeof(*ab), gfp_mask);
16e1904e 1280 if (!ab)
8fc6115c 1281 goto err;
16e1904e 1282 }
8fc6115c 1283
b7d11258 1284 ab->ctx = ctx;
9ad9ad38 1285 ab->gfp_mask = gfp_mask;
ee080e6c
EP
1286
1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 if (!ab->skb)
c64e66c6 1289 goto err;
ee080e6c 1290
c64e66c6
DM
1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 if (!nlh)
1293 goto out_kfree_skb;
ee080e6c 1294
16e1904e 1295 return ab;
ee080e6c 1296
c64e66c6 1297out_kfree_skb:
ee080e6c
EP
1298 kfree_skb(ab->skb);
1299 ab->skb = NULL;
8fc6115c
CW
1300err:
1301 audit_buffer_free(ab);
1302 return NULL;
16e1904e 1303}
1da177e4 1304
b0dd25a8
RD
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record. Audit records are
bfb4496e
DW
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces. The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record. The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
bfb4496e
DW
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit. However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
b0dd25a8
RD
1320 * halts).
1321 */
bfb4496e
DW
1322unsigned int audit_serial(void)
1323{
01478d7d 1324 static atomic_t serial = ATOMIC_INIT(0);
d5b454f2 1325
01478d7d 1326 return atomic_add_return(1, &serial);
bfb4496e
DW
1327}
1328
5600b892 1329static inline void audit_get_stamp(struct audit_context *ctx,
bfb4496e
DW
1330 struct timespec *t, unsigned int *serial)
1331{
48887e63 1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
bfb4496e
DW
1333 *t = CURRENT_TIME;
1334 *serial = audit_serial();
1335 }
1336}
1337
82919919
AM
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
c81825dd 1341static long wait_for_auditd(long sleep_time)
82919919
AM
1342{
1343 DECLARE_WAITQUEUE(wait, current);
f000cfdd 1344 set_current_state(TASK_UNINTERRUPTIBLE);
7ecf69bf 1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
82919919
AM
1346
1347 if (audit_backlog_limit &&
1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
c81825dd 1349 sleep_time = schedule_timeout(sleep_time);
82919919
AM
1350
1351 __set_current_state(TASK_RUNNING);
1352 remove_wait_queue(&audit_backlog_wait, &wait);
ae887e0b 1353
c81825dd 1354 return sleep_time;
82919919
AM
1355}
1356
b0dd25a8
RD
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer. This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format. If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit. If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
9796fdd8 1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
9ad9ad38 1373 int type)
1da177e4
LT
1374{
1375 struct audit_buffer *ab = NULL;
1da177e4 1376 struct timespec t;
ef00be05 1377 unsigned int uninitialized_var(serial);
6dd80aba
TO
1378 int reserve = 5; /* Allow atomic callers to go up to five
1379 entries over the normal backlog limit */
ac4cec44 1380 unsigned long timeout_start = jiffies;
1da177e4 1381
a3f07114 1382 if (audit_initialized != AUDIT_INITIALIZED)
1da177e4
LT
1383 return NULL;
1384
c8edc80c
DK
1385 if (unlikely(audit_filter_type(type)))
1386 return NULL;
1387
d0164adc 1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
f48a9429 1389 if (audit_pid && audit_pid == current->tgid)
d0164adc 1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
6dd80aba
TO
1391 else
1392 reserve = 0;
1393 }
9ad9ad38
DW
1394
1395 while (audit_backlog_limit
1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
d0164adc 1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
c81825dd 1398 long sleep_time;
9ad9ad38 1399
c81825dd
EP
1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 if (sleep_time > 0) {
ae887e0b 1402 sleep_time = wait_for_auditd(sleep_time);
c81825dd 1403 if (sleep_time > 0)
ae887e0b 1404 continue;
8ac1c8d5 1405 }
9ad9ad38 1406 }
320f1b1e 1407 if (audit_rate_check() && printk_ratelimit())
d957f7b7
JP
1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 skb_queue_len(&audit_skb_queue),
1410 audit_backlog_limit);
fb19b4c6 1411 audit_log_lost("backlog limit exceeded");
eb8baf6a 1412 audit_backlog_wait_time = 0;
ac4cec44 1413 wake_up(&audit_backlog_wait);
fb19b4c6
DW
1414 return NULL;
1415 }
1416
c4b7a775 1417 if (!reserve && !audit_backlog_wait_time)
efef73a1 1418 audit_backlog_wait_time = audit_backlog_wait_time_master;
e789e561 1419
9ad9ad38 1420 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1da177e4
LT
1421 if (!ab) {
1422 audit_log_lost("out of memory in audit_log_start");
1423 return NULL;
1424 }
1425
bfb4496e 1426 audit_get_stamp(ab->ctx, &t, &serial);
197c69c6 1427
1da177e4
LT
1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 t.tv_sec, t.tv_nsec/1000000, serial);
1430 return ab;
1431}
1432
8fc6115c 1433/**
5ac52f33 1434 * audit_expand - expand skb in the audit buffer
8fc6115c 1435 * @ab: audit_buffer
b0dd25a8 1436 * @extra: space to add at tail of the skb
8fc6115c
CW
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
e3b926b4 1441static inline int audit_expand(struct audit_buffer *ab, int extra)
8fc6115c 1442{
5ac52f33 1443 struct sk_buff *skb = ab->skb;
406a1d86
HX
1444 int oldtail = skb_tailroom(skb);
1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 int newtail = skb_tailroom(skb);
1447
5ac52f33
CW
1448 if (ret < 0) {
1449 audit_log_lost("out of memory in audit_expand");
8fc6115c 1450 return 0;
5ac52f33 1451 }
406a1d86
HX
1452
1453 skb->truesize += newtail - oldtail;
1454 return newtail;
8fc6115c 1455}
1da177e4 1456
b0dd25a8
RD
1457/*
1458 * Format an audit message into the audit buffer. If there isn't enough
1da177e4
LT
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time. Currently, we assume that a printk
b0dd25a8
RD
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1da177e4
LT
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 va_list args)
1465{
1466 int len, avail;
5ac52f33 1467 struct sk_buff *skb;
eecb0a73 1468 va_list args2;
1da177e4
LT
1469
1470 if (!ab)
1471 return;
1472
5ac52f33
CW
1473 BUG_ON(!ab->skb);
1474 skb = ab->skb;
1475 avail = skb_tailroom(skb);
1476 if (avail == 0) {
e3b926b4 1477 avail = audit_expand(ab, AUDIT_BUFSIZ);
8fc6115c
CW
1478 if (!avail)
1479 goto out;
1da177e4 1480 }
eecb0a73 1481 va_copy(args2, args);
27a884dc 1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1da177e4
LT
1483 if (len >= avail) {
1484 /* The printk buffer is 1024 bytes long, so if we get
1485 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 * log everything that printk could have logged. */
b0dd25a8
RD
1487 avail = audit_expand(ab,
1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
8fc6115c 1489 if (!avail)
a0e86bd4 1490 goto out_va_end;
27a884dc 1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1da177e4 1492 }
168b7173
SG
1493 if (len > 0)
1494 skb_put(skb, len);
a0e86bd4
JJ
1495out_va_end:
1496 va_end(args2);
8fc6115c
CW
1497out:
1498 return;
1da177e4
LT
1499}
1500
b0dd25a8
RD
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1da177e4
LT
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511 va_list args;
1512
1513 if (!ab)
1514 return;
1515 va_start(args, fmt);
1516 audit_log_vformat(ab, fmt, args);
1517 va_end(args);
1518}
1519
b0dd25a8
RD
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
b556f8ad 1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
168b7173 1532 size_t len)
83c7d091 1533{
168b7173
SG
1534 int i, avail, new_len;
1535 unsigned char *ptr;
1536 struct sk_buff *skb;
168b7173 1537
8ef2d304
AG
1538 if (!ab)
1539 return;
1540
168b7173
SG
1541 BUG_ON(!ab->skb);
1542 skb = ab->skb;
1543 avail = skb_tailroom(skb);
1544 new_len = len<<1;
1545 if (new_len >= avail) {
1546 /* Round the buffer request up to the next multiple */
1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 avail = audit_expand(ab, new_len);
1549 if (!avail)
1550 return;
1551 }
83c7d091 1552
27a884dc 1553 ptr = skb_tail_pointer(skb);
b8dbc324
JP
1554 for (i = 0; i < len; i++)
1555 ptr = hex_byte_pack_upper(ptr, buf[i]);
168b7173
SG
1556 *ptr = 0;
1557 skb_put(skb, len << 1); /* new string is twice the old string */
83c7d091 1558}
1559
9c937dcc
AG
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
b556f8ad
EP
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 size_t slen)
9c937dcc
AG
1566{
1567 int avail, new_len;
1568 unsigned char *ptr;
1569 struct sk_buff *skb;
1570
8ef2d304
AG
1571 if (!ab)
1572 return;
1573
9c937dcc
AG
1574 BUG_ON(!ab->skb);
1575 skb = ab->skb;
1576 avail = skb_tailroom(skb);
1577 new_len = slen + 3; /* enclosing quotes + null terminator */
1578 if (new_len > avail) {
1579 avail = audit_expand(ab, new_len);
1580 if (!avail)
1581 return;
1582 }
27a884dc 1583 ptr = skb_tail_pointer(skb);
9c937dcc
AG
1584 *ptr++ = '"';
1585 memcpy(ptr, string, slen);
1586 ptr += slen;
1587 *ptr++ = '"';
1588 *ptr = 0;
1589 skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
de6bbd1d
EP
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
f706d5d2
DJ
1594 * @string: string to be checked
1595 * @len: max length of the string to check
de6bbd1d 1596 */
9fcf836b 1597bool audit_string_contains_control(const char *string, size_t len)
de6bbd1d
EP
1598{
1599 const unsigned char *p;
b3897f56 1600 for (p = string; p < (const unsigned char *)string + len; p++) {
1d6c9649 1601 if (*p == '"' || *p < 0x21 || *p > 0x7e)
9fcf836b 1602 return true;
de6bbd1d 1603 }
9fcf836b 1604 return false;
de6bbd1d
EP
1605}
1606
b0dd25a8 1607/**
522ed776 1608 * audit_log_n_untrustedstring - log a string that may contain random characters
b0dd25a8 1609 * @ab: audit_buffer
f706d5d2 1610 * @len: length of string (not including trailing null)
b0dd25a8
RD
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
168b7173 1615 * or a space. Unescaped strings will start and end with a double quote mark.
b0dd25a8 1616 * Strings that are escaped are printed in hex (2 digits per char).
9c937dcc
AG
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
b0dd25a8 1620 */
b556f8ad
EP
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 size_t len)
83c7d091 1623{
de6bbd1d 1624 if (audit_string_contains_control(string, len))
b556f8ad 1625 audit_log_n_hex(ab, string, len);
de6bbd1d 1626 else
b556f8ad 1627 audit_log_n_string(ab, string, len);
83c7d091 1628}
1629
9c937dcc 1630/**
522ed776 1631 * audit_log_untrustedstring - log a string that may contain random characters
9c937dcc
AG
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
522ed776 1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
9c937dcc
AG
1636 * determine string length.
1637 */
de6bbd1d 1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
9c937dcc 1639{
b556f8ad 1640 audit_log_n_untrustedstring(ab, string, strlen(string));
9c937dcc
AG
1641}
1642
168b7173 1643/* This is a helper-function to print the escaped d_path */
1da177e4 1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
66b3fad3 1645 const struct path *path)
1da177e4 1646{
44707fdf 1647 char *p, *pathname;
1da177e4 1648
8fc6115c 1649 if (prefix)
c158a35c 1650 audit_log_format(ab, "%s", prefix);
1da177e4 1651
168b7173 1652 /* We will allow 11 spaces for ' (deleted)' to be appended */
44707fdf
JB
1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 if (!pathname) {
def57543 1655 audit_log_string(ab, "<no_memory>");
168b7173 1656 return;
1da177e4 1657 }
cf28b486 1658 p = d_path(path, pathname, PATH_MAX+11);
168b7173
SG
1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 /* FIXME: can we save some information here? */
def57543 1661 audit_log_string(ab, "<too_long>");
5600b892 1662 } else
168b7173 1663 audit_log_untrustedstring(ab, p);
44707fdf 1664 kfree(pathname);
1da177e4
LT
1665}
1666
4d3fb709
EP
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
4440e854 1669 unsigned int sessionid = audit_get_sessionid(current);
4d3fb709
EP
1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
b8f89caa 1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
4d3fb709
EP
1673}
1674
9d960985
EP
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677 audit_log_format(ab, " key=");
1678 if (key)
1679 audit_log_untrustedstring(ab, key);
1680 else
1681 audit_log_format(ab, "(null)");
1682}
1683
b24a30a7
EP
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686 int i;
1687
1688 audit_log_format(ab, " %s=", prefix);
1689 CAP_FOR_EACH_U32(i) {
1690 audit_log_format(ab, "%08x",
7d8b6c63 1691 cap->cap[CAP_LAST_U32 - i]);
b24a30a7
EP
1692 }
1693}
1694
691e6d59 1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
b24a30a7
EP
1696{
1697 kernel_cap_t *perm = &name->fcap.permitted;
1698 kernel_cap_t *inh = &name->fcap.inheritable;
1699 int log = 0;
1700
1701 if (!cap_isclear(*perm)) {
1702 audit_log_cap(ab, "cap_fp", perm);
1703 log = 1;
1704 }
1705 if (!cap_isclear(*inh)) {
1706 audit_log_cap(ab, "cap_fi", inh);
1707 log = 1;
1708 }
1709
1710 if (log)
1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716 const struct dentry *dentry)
1717{
1718 struct cpu_vfs_cap_data caps;
1719 int rc;
1720
1721 if (!dentry)
1722 return 0;
1723
1724 rc = get_vfs_caps_from_disk(dentry, &caps);
1725 if (rc)
1726 return rc;
1727
1728 name->fcap.permitted = caps.permitted;
1729 name->fcap.inheritable = caps.inheritable;
1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 VFS_CAP_REVISION_SHIFT;
1733
1734 return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
d6335d77 1739 struct inode *inode)
b24a30a7
EP
1740{
1741 name->ino = inode->i_ino;
1742 name->dev = inode->i_sb->s_dev;
1743 name->mode = inode->i_mode;
1744 name->uid = inode->i_uid;
1745 name->gid = inode->i_gid;
1746 name->rdev = inode->i_rdev;
1747 security_inode_getsecid(inode, &name->osid);
1748 audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 struct path *path, int record_num, int *call_panic)
1761{
1762 struct audit_buffer *ab;
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 if (!ab)
1765 return;
1766
1767 audit_log_format(ab, "item=%d", record_num);
1768
1769 if (path)
1770 audit_log_d_path(ab, " name=", path);
1771 else if (n->name) {
1772 switch (n->name_len) {
1773 case AUDIT_NAME_FULL:
1774 /* log the full path */
1775 audit_log_format(ab, " name=");
1776 audit_log_untrustedstring(ab, n->name->name);
1777 break;
1778 case 0:
1779 /* name was specified as a relative path and the
1780 * directory component is the cwd */
1781 audit_log_d_path(ab, " name=", &context->pwd);
1782 break;
1783 default:
1784 /* log the name's directory component */
1785 audit_log_format(ab, " name=");
1786 audit_log_n_untrustedstring(ab, n->name->name,
1787 n->name_len);
1788 }
1789 } else
1790 audit_log_format(ab, " name=(null)");
1791
425afcff 1792 if (n->ino != AUDIT_INO_UNSET)
b24a30a7
EP
1793 audit_log_format(ab, " inode=%lu"
1794 " dev=%02x:%02x mode=%#ho"
1795 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 n->ino,
1797 MAJOR(n->dev),
1798 MINOR(n->dev),
1799 n->mode,
1800 from_kuid(&init_user_ns, n->uid),
1801 from_kgid(&init_user_ns, n->gid),
1802 MAJOR(n->rdev),
1803 MINOR(n->rdev));
b24a30a7
EP
1804 if (n->osid != 0) {
1805 char *ctx = NULL;
1806 u32 len;
1807 if (security_secid_to_secctx(
1808 n->osid, &ctx, &len)) {
1809 audit_log_format(ab, " osid=%u", n->osid);
1810 if (call_panic)
1811 *call_panic = 2;
1812 } else {
1813 audit_log_format(ab, " obj=%s", ctx);
1814 security_release_secctx(ctx, len);
1815 }
1816 }
1817
d3aea84a
JL
1818 /* log the audit_names record type */
1819 audit_log_format(ab, " nametype=");
1820 switch(n->type) {
1821 case AUDIT_TYPE_NORMAL:
1822 audit_log_format(ab, "NORMAL");
1823 break;
1824 case AUDIT_TYPE_PARENT:
1825 audit_log_format(ab, "PARENT");
1826 break;
1827 case AUDIT_TYPE_CHILD_DELETE:
1828 audit_log_format(ab, "DELETE");
1829 break;
1830 case AUDIT_TYPE_CHILD_CREATE:
1831 audit_log_format(ab, "CREATE");
1832 break;
1833 default:
1834 audit_log_format(ab, "UNKNOWN");
1835 break;
1836 }
1837
b24a30a7
EP
1838 audit_log_fcaps(ab, n);
1839 audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844 char *ctx = NULL;
1845 unsigned len;
1846 int error;
1847 u32 sid;
1848
1849 security_task_getsecid(current, &sid);
1850 if (!sid)
1851 return 0;
1852
1853 error = security_secid_to_secctx(sid, &ctx, &len);
1854 if (error) {
1855 if (error != -EINVAL)
1856 goto error_path;
1857 return 0;
1858 }
1859
1860 audit_log_format(ab, " subj=%s", ctx);
1861 security_release_secctx(ctx, len);
1862 return 0;
1863
1864error_path:
1865 audit_panic("error in audit_log_task_context");
1866 return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
4766b199
DB
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871 struct mm_struct *mm)
1872{
5b282552
DB
1873 struct file *exe_file;
1874
1875 if (!mm)
1876 goto out_null;
4766b199 1877
5b282552
DB
1878 exe_file = get_mm_exe_file(mm);
1879 if (!exe_file)
1880 goto out_null;
1881
1882 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 fput(exe_file);
1884 return;
1885out_null:
1886 audit_log_format(ab, " exe=(null)");
4766b199
DB
1887}
1888
b24a30a7
EP
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891 const struct cred *cred;
9eab339b 1892 char comm[sizeof(tsk->comm)];
b24a30a7
EP
1893 char *tty;
1894
1895 if (!ab)
1896 return;
1897
1898 /* tsk == current */
1899 cred = current_cred();
1900
1901 spin_lock_irq(&tsk->sighand->siglock);
1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 tty = tsk->signal->tty->name;
1904 else
1905 tty = "(none)";
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 audit_log_format(ab,
c92cdeb4 1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
b24a30a7 1910 " euid=%u suid=%u fsuid=%u"
2f2ad101 1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
c92cdeb4 1912 task_ppid_nr(tsk),
f1dc4867 1913 task_pid_nr(tsk),
b24a30a7
EP
1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 from_kuid(&init_user_ns, cred->uid),
1916 from_kgid(&init_user_ns, cred->gid),
1917 from_kuid(&init_user_ns, cred->euid),
1918 from_kuid(&init_user_ns, cred->suid),
1919 from_kuid(&init_user_ns, cred->fsuid),
1920 from_kgid(&init_user_ns, cred->egid),
1921 from_kgid(&init_user_ns, cred->sgid),
1922 from_kgid(&init_user_ns, cred->fsgid),
2f2ad101 1923 tty, audit_get_sessionid(tsk));
b24a30a7 1924
b24a30a7 1925 audit_log_format(ab, " comm=");
9eab339b 1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
b24a30a7 1927
4766b199 1928 audit_log_d_path_exe(ab, tsk->mm);
b24a30a7
EP
1929 audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
a51d9eaa
KC
1933/**
1934 * audit_log_link_denied - report a link restriction denial
22011964 1935 * @operation: specific link operation
a51d9eaa
KC
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940 struct audit_buffer *ab;
b24a30a7
EP
1941 struct audit_names *name;
1942
1943 name = kzalloc(sizeof(*name), GFP_NOFS);
1944 if (!name)
1945 return;
a51d9eaa 1946
b24a30a7 1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
a51d9eaa
KC
1948 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 AUDIT_ANOM_LINK);
d1c7d97a 1950 if (!ab)
b24a30a7
EP
1951 goto out;
1952 audit_log_format(ab, "op=%s", operation);
1953 audit_log_task_info(ab, current);
1954 audit_log_format(ab, " res=0");
a51d9eaa 1955 audit_log_end(ab);
b24a30a7
EP
1956
1957 /* Generate AUDIT_PATH record with object. */
1958 name->type = AUDIT_TYPE_NORMAL;
3b362157 1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
b24a30a7
EP
1960 audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962 kfree(name);
a51d9eaa
KC
1963}
1964
b0dd25a8
RD
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
451f9216
RGB
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context. May be called in any context.
b0dd25a8 1973 */
b7d11258 1974void audit_log_end(struct audit_buffer *ab)
1da177e4 1975{
1da177e4
LT
1976 if (!ab)
1977 return;
1978 if (!audit_rate_check()) {
1979 audit_log_lost("rate limit exceeded");
1980 } else {
8d07a67c 1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
451f9216 1982
54e05edd 1983 nlh->nlmsg_len = ab->skb->len;
54dc77d9 1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
451f9216
RGB
1985
1986 /*
1987 * The original kaudit unicast socket sends up messages with
1988 * nlmsg_len set to the payload length rather than the entire
1989 * message length. This breaks the standard set by netlink.
1990 * The existing auditd daemon assumes this breakage. Fixing
1991 * this would require co-ordinating a change in the established
1992 * protocol between the kaudit kernel subsystem and the auditd
1993 * userspace code.
1994 */
54e05edd 1995 nlh->nlmsg_len -= NLMSG_HDRLEN;
f3d357b0 1996
b7d11258 1997 if (audit_pid) {
b7d11258 1998 skb_queue_tail(&audit_skb_queue, ab->skb);
b7d11258 1999 wake_up_interruptible(&kauditd_wait);
f3d357b0 2000 } else {
038cbcf6 2001 audit_printk_skb(ab->skb);
b7d11258 2002 }
f3d357b0 2003 ab->skb = NULL;
1da177e4 2004 }
16e1904e 2005 audit_buffer_free(ab);
1da177e4
LT
2006}
2007
b0dd25a8
RD
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end. It may be called
2018 * in any context.
2019 */
5600b892 2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
9ad9ad38 2021 const char *fmt, ...)
1da177e4
LT
2022{
2023 struct audit_buffer *ab;
2024 va_list args;
2025
9ad9ad38 2026 ab = audit_log_start(ctx, gfp_mask, type);
1da177e4
LT
2027 if (ab) {
2028 va_start(args, fmt);
2029 audit_log_vformat(ab, fmt, args);
2030 va_end(args);
2031 audit_log_end(ab);
2032 }
2033}
bf45da97 2034
131ad62d
MDF
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048 u32 len;
2049 char *secctx;
2050
2051 if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 audit_panic("Cannot convert secid to context");
2053 } else {
2054 audit_log_format(ab, " obj=%s", secctx);
2055 security_release_secctx(secctx, len);
2056 }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
bf45da97 2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);