include/linux/slab.h: add kmalloc_array_node() and kcalloc_node()
[linux-2.6-block.git] / include / linux / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
2e892f43
CL
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
cde53535 5 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
f1b6eb6e
CL
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
1da177e4
LT
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
1b1cec4b 15#include <linux/gfp.h>
1b1cec4b 16#include <linux/types.h>
1f458cbf
GC
17#include <linux/workqueue.h>
18
1da177e4 19
2e892f43
CL
20/*
21 * Flags to pass to kmem_cache_create().
124dee09 22 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 23 */
d50112ed 24/* DEBUG: Perform (expensive) checks on alloc/free */
4fd0b46e 25#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
d50112ed 26/* DEBUG: Red zone objs in a cache */
4fd0b46e 27#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
d50112ed 28/* DEBUG: Poison objects */
4fd0b46e 29#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
d50112ed 30/* Align objs on cache lines */
4fd0b46e 31#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
d50112ed 32/* Use GFP_DMA memory */
4fd0b46e 33#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
d50112ed 34/* DEBUG: Store the last owner for bug hunting */
4fd0b46e 35#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
d50112ed 36/* Panic if kmem_cache_create() fails */
4fd0b46e 37#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
d7de4c1d 38/*
5f0d5a3a 39 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
d7de4c1d
PZ
40 *
41 * This delays freeing the SLAB page by a grace period, it does _NOT_
42 * delay object freeing. This means that if you do kmem_cache_free()
43 * that memory location is free to be reused at any time. Thus it may
44 * be possible to see another object there in the same RCU grace period.
45 *
46 * This feature only ensures the memory location backing the object
47 * stays valid, the trick to using this is relying on an independent
48 * object validation pass. Something like:
49 *
50 * rcu_read_lock()
51 * again:
52 * obj = lockless_lookup(key);
53 * if (obj) {
54 * if (!try_get_ref(obj)) // might fail for free objects
55 * goto again;
56 *
57 * if (obj->key != key) { // not the object we expected
58 * put_ref(obj);
59 * goto again;
60 * }
61 * }
62 * rcu_read_unlock();
63 *
68126702
JK
64 * This is useful if we need to approach a kernel structure obliquely,
65 * from its address obtained without the usual locking. We can lock
66 * the structure to stabilize it and check it's still at the given address,
67 * only if we can be sure that the memory has not been meanwhile reused
68 * for some other kind of object (which our subsystem's lock might corrupt).
69 *
70 * rcu_read_lock before reading the address, then rcu_read_unlock after
71 * taking the spinlock within the structure expected at that address.
5f0d5a3a
PM
72 *
73 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
d7de4c1d 74 */
d50112ed 75/* Defer freeing slabs to RCU */
4fd0b46e 76#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
d50112ed 77/* Spread some memory over cpuset */
4fd0b46e 78#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
d50112ed 79/* Trace allocations and frees */
4fd0b46e 80#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
1da177e4 81
30327acf
TG
82/* Flag to prevent checks on free */
83#ifdef CONFIG_DEBUG_OBJECTS
4fd0b46e 84# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
30327acf 85#else
4fd0b46e 86# define SLAB_DEBUG_OBJECTS 0
30327acf
TG
87#endif
88
d50112ed 89/* Avoid kmemleak tracing */
4fd0b46e 90#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
d5cff635 91
2dff4405
VN
92/* Don't track use of uninitialized memory */
93#ifdef CONFIG_KMEMCHECK
4fd0b46e 94# define SLAB_NOTRACK ((slab_flags_t __force)0x01000000U)
2dff4405 95#else
4fd0b46e 96# define SLAB_NOTRACK 0
2dff4405 97#endif
d50112ed 98/* Fault injection mark */
4c13dd3b 99#ifdef CONFIG_FAILSLAB
4fd0b46e 100# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
4c13dd3b 101#else
4fd0b46e 102# define SLAB_FAILSLAB 0
4c13dd3b 103#endif
d50112ed 104/* Account to memcg */
127424c8 105#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
4fd0b46e 106# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
230e9fc2 107#else
4fd0b46e 108# define SLAB_ACCOUNT 0
230e9fc2 109#endif
2dff4405 110
7ed2f9e6 111#ifdef CONFIG_KASAN
4fd0b46e 112#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
7ed2f9e6 113#else
4fd0b46e 114#define SLAB_KASAN 0
7ed2f9e6
AP
115#endif
116
e12ba74d 117/* The following flags affect the page allocator grouping pages by mobility */
d50112ed 118/* Objects are reclaimable */
4fd0b46e 119#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
e12ba74d 120#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
121/*
122 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
123 *
124 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
125 *
126 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
127 * Both make kfree a no-op.
128 */
129#define ZERO_SIZE_PTR ((void *)16)
130
1d4ec7b1 131#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
132 (unsigned long)ZERO_SIZE_PTR)
133
f1b6eb6e 134#include <linux/kmemleak.h>
0316bec2 135#include <linux/kasan.h>
3b0efdfa 136
2633d7a0 137struct mem_cgroup;
2e892f43
CL
138/*
139 * struct kmem_cache related prototypes
140 */
141void __init kmem_cache_init(void);
fda90124 142bool slab_is_available(void);
1da177e4 143
2e892f43 144struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
d50112ed 145 slab_flags_t,
51cc5068 146 void (*)(void *));
2e892f43
CL
147void kmem_cache_destroy(struct kmem_cache *);
148int kmem_cache_shrink(struct kmem_cache *);
2a4db7eb
VD
149
150void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
151void memcg_deactivate_kmem_caches(struct mem_cgroup *);
152void memcg_destroy_kmem_caches(struct mem_cgroup *);
2e892f43 153
0a31bd5f
CL
154/*
155 * Please use this macro to create slab caches. Simply specify the
156 * name of the structure and maybe some flags that are listed above.
157 *
158 * The alignment of the struct determines object alignment. If you
159 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
160 * then the objects will be properly aligned in SMP configurations.
161 */
162#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
163 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 164 (__flags), NULL)
0a31bd5f 165
34504667
CL
166/*
167 * Common kmalloc functions provided by all allocators
168 */
169void * __must_check __krealloc(const void *, size_t, gfp_t);
170void * __must_check krealloc(const void *, size_t, gfp_t);
171void kfree(const void *);
172void kzfree(const void *);
173size_t ksize(const void *);
174
f5509cc1
KC
175#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
176const char *__check_heap_object(const void *ptr, unsigned long n,
177 struct page *page);
178#else
179static inline const char *__check_heap_object(const void *ptr,
180 unsigned long n,
181 struct page *page)
182{
183 return NULL;
184}
185#endif
186
c601fd69
CL
187/*
188 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
189 * alignment larger than the alignment of a 64-bit integer.
190 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
191 */
192#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
193#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
194#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
195#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
196#else
197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198#endif
199
94a58c36
RV
200/*
201 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
202 * Intended for arches that get misalignment faults even for 64 bit integer
203 * aligned buffers.
204 */
205#ifndef ARCH_SLAB_MINALIGN
206#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
207#endif
208
209/*
210 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
211 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
212 * aligned pointers.
213 */
214#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
215#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
216#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
217
0aa817f0 218/*
95a05b42
CL
219 * Kmalloc array related definitions
220 */
221
222#ifdef CONFIG_SLAB
223/*
224 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
225 * 32 megabyte (2^25) or the maximum allocatable page order if that is
226 * less than 32 MB.
227 *
228 * WARNING: Its not easy to increase this value since the allocators have
229 * to do various tricks to work around compiler limitations in order to
230 * ensure proper constant folding.
231 */
debee076
CL
232#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
233 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 234#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 235#ifndef KMALLOC_SHIFT_LOW
95a05b42 236#define KMALLOC_SHIFT_LOW 5
c601fd69 237#endif
069e2b35
CL
238#endif
239
240#ifdef CONFIG_SLUB
95a05b42 241/*
433a91ff
DH
242 * SLUB directly allocates requests fitting in to an order-1 page
243 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
244 */
245#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
bb1107f7 246#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
c601fd69 247#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
248#define KMALLOC_SHIFT_LOW 3
249#endif
c601fd69 250#endif
0aa817f0 251
069e2b35
CL
252#ifdef CONFIG_SLOB
253/*
433a91ff 254 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
255 * No kmalloc array is necessary since objects of different sizes can
256 * be allocated from the same page.
257 */
069e2b35 258#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
bb1107f7 259#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
069e2b35
CL
260#ifndef KMALLOC_SHIFT_LOW
261#define KMALLOC_SHIFT_LOW 3
262#endif
263#endif
264
95a05b42
CL
265/* Maximum allocatable size */
266#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
267/* Maximum size for which we actually use a slab cache */
268#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
269/* Maximum order allocatable via the slab allocagtor */
270#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 271
ce6a5026
CL
272/*
273 * Kmalloc subsystem.
274 */
c601fd69 275#ifndef KMALLOC_MIN_SIZE
95a05b42 276#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
277#endif
278
24f870d8
JK
279/*
280 * This restriction comes from byte sized index implementation.
281 * Page size is normally 2^12 bytes and, in this case, if we want to use
282 * byte sized index which can represent 2^8 entries, the size of the object
283 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
284 * If minimum size of kmalloc is less than 16, we use it as minimum object
285 * size and give up to use byte sized index.
286 */
287#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
288 (KMALLOC_MIN_SIZE) : 16)
289
069e2b35 290#ifndef CONFIG_SLOB
9425c58e
CL
291extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
292#ifdef CONFIG_ZONE_DMA
293extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
294#endif
295
ce6a5026
CL
296/*
297 * Figure out which kmalloc slab an allocation of a certain size
298 * belongs to.
299 * 0 = zero alloc
300 * 1 = 65 .. 96 bytes
1ed58b60
RV
301 * 2 = 129 .. 192 bytes
302 * n = 2^(n-1)+1 .. 2^n
ce6a5026
CL
303 */
304static __always_inline int kmalloc_index(size_t size)
305{
306 if (!size)
307 return 0;
308
309 if (size <= KMALLOC_MIN_SIZE)
310 return KMALLOC_SHIFT_LOW;
311
312 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
313 return 1;
314 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
315 return 2;
316 if (size <= 8) return 3;
317 if (size <= 16) return 4;
318 if (size <= 32) return 5;
319 if (size <= 64) return 6;
320 if (size <= 128) return 7;
321 if (size <= 256) return 8;
322 if (size <= 512) return 9;
323 if (size <= 1024) return 10;
324 if (size <= 2 * 1024) return 11;
325 if (size <= 4 * 1024) return 12;
326 if (size <= 8 * 1024) return 13;
327 if (size <= 16 * 1024) return 14;
328 if (size <= 32 * 1024) return 15;
329 if (size <= 64 * 1024) return 16;
330 if (size <= 128 * 1024) return 17;
331 if (size <= 256 * 1024) return 18;
332 if (size <= 512 * 1024) return 19;
333 if (size <= 1024 * 1024) return 20;
334 if (size <= 2 * 1024 * 1024) return 21;
335 if (size <= 4 * 1024 * 1024) return 22;
336 if (size <= 8 * 1024 * 1024) return 23;
337 if (size <= 16 * 1024 * 1024) return 24;
338 if (size <= 32 * 1024 * 1024) return 25;
339 if (size <= 64 * 1024 * 1024) return 26;
340 BUG();
341
342 /* Will never be reached. Needed because the compiler may complain */
343 return -1;
344}
069e2b35 345#endif /* !CONFIG_SLOB */
ce6a5026 346
48a27055
RV
347void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
348void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
2a4db7eb 349void kmem_cache_free(struct kmem_cache *, void *);
f1b6eb6e 350
484748f0 351/*
9f706d68 352 * Bulk allocation and freeing operations. These are accelerated in an
484748f0
CL
353 * allocator specific way to avoid taking locks repeatedly or building
354 * metadata structures unnecessarily.
355 *
356 * Note that interrupts must be enabled when calling these functions.
357 */
358void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 359int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 360
ca257195
JDB
361/*
362 * Caller must not use kfree_bulk() on memory not originally allocated
363 * by kmalloc(), because the SLOB allocator cannot handle this.
364 */
365static __always_inline void kfree_bulk(size_t size, void **p)
366{
367 kmem_cache_free_bulk(NULL, size, p);
368}
369
f1b6eb6e 370#ifdef CONFIG_NUMA
48a27055
RV
371void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
372void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
f1b6eb6e
CL
373#else
374static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
375{
376 return __kmalloc(size, flags);
377}
378
379static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
380{
381 return kmem_cache_alloc(s, flags);
382}
383#endif
384
385#ifdef CONFIG_TRACING
48a27055 386extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
f1b6eb6e
CL
387
388#ifdef CONFIG_NUMA
389extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
390 gfp_t gfpflags,
48a27055 391 int node, size_t size) __assume_slab_alignment __malloc;
f1b6eb6e
CL
392#else
393static __always_inline void *
394kmem_cache_alloc_node_trace(struct kmem_cache *s,
395 gfp_t gfpflags,
396 int node, size_t size)
397{
398 return kmem_cache_alloc_trace(s, gfpflags, size);
399}
400#endif /* CONFIG_NUMA */
401
402#else /* CONFIG_TRACING */
403static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
404 gfp_t flags, size_t size)
405{
0316bec2
AR
406 void *ret = kmem_cache_alloc(s, flags);
407
505f5dcb 408 kasan_kmalloc(s, ret, size, flags);
0316bec2 409 return ret;
f1b6eb6e
CL
410}
411
412static __always_inline void *
413kmem_cache_alloc_node_trace(struct kmem_cache *s,
414 gfp_t gfpflags,
415 int node, size_t size)
416{
0316bec2
AR
417 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
418
505f5dcb 419 kasan_kmalloc(s, ret, size, gfpflags);
0316bec2 420 return ret;
f1b6eb6e
CL
421}
422#endif /* CONFIG_TRACING */
423
48a27055 424extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
f1b6eb6e
CL
425
426#ifdef CONFIG_TRACING
48a27055 427extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
f1b6eb6e
CL
428#else
429static __always_inline void *
430kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
431{
432 return kmalloc_order(size, flags, order);
433}
ce6a5026
CL
434#endif
435
f1b6eb6e
CL
436static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
437{
438 unsigned int order = get_order(size);
439 return kmalloc_order_trace(size, flags, order);
440}
441
442/**
443 * kmalloc - allocate memory
444 * @size: how many bytes of memory are required.
7e3528c3 445 * @flags: the type of memory to allocate.
f1b6eb6e
CL
446 *
447 * kmalloc is the normal method of allocating memory
448 * for objects smaller than page size in the kernel.
7e3528c3
RD
449 *
450 * The @flags argument may be one of:
451 *
452 * %GFP_USER - Allocate memory on behalf of user. May sleep.
453 *
454 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
455 *
456 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
457 * For example, use this inside interrupt handlers.
458 *
459 * %GFP_HIGHUSER - Allocate pages from high memory.
460 *
461 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
462 *
463 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
464 *
465 * %GFP_NOWAIT - Allocation will not sleep.
466 *
e97ca8e5 467 * %__GFP_THISNODE - Allocate node-local memory only.
7e3528c3
RD
468 *
469 * %GFP_DMA - Allocation suitable for DMA.
470 * Should only be used for kmalloc() caches. Otherwise, use a
471 * slab created with SLAB_DMA.
472 *
473 * Also it is possible to set different flags by OR'ing
474 * in one or more of the following additional @flags:
475 *
476 * %__GFP_COLD - Request cache-cold pages instead of
477 * trying to return cache-warm pages.
478 *
479 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
480 *
481 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
482 * (think twice before using).
483 *
484 * %__GFP_NORETRY - If memory is not immediately available,
485 * then give up at once.
486 *
487 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
488 *
dcda9b04
MH
489 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail
490 * eventually.
7e3528c3
RD
491 *
492 * There are other flags available as well, but these are not intended
493 * for general use, and so are not documented here. For a full list of
494 * potential flags, always refer to linux/gfp.h.
f1b6eb6e
CL
495 */
496static __always_inline void *kmalloc(size_t size, gfp_t flags)
497{
498 if (__builtin_constant_p(size)) {
499 if (size > KMALLOC_MAX_CACHE_SIZE)
500 return kmalloc_large(size, flags);
501#ifndef CONFIG_SLOB
502 if (!(flags & GFP_DMA)) {
503 int index = kmalloc_index(size);
504
505 if (!index)
506 return ZERO_SIZE_PTR;
507
508 return kmem_cache_alloc_trace(kmalloc_caches[index],
509 flags, size);
510 }
511#endif
512 }
513 return __kmalloc(size, flags);
514}
515
ce6a5026
CL
516/*
517 * Determine size used for the nth kmalloc cache.
518 * return size or 0 if a kmalloc cache for that
519 * size does not exist
520 */
521static __always_inline int kmalloc_size(int n)
522{
069e2b35 523#ifndef CONFIG_SLOB
ce6a5026
CL
524 if (n > 2)
525 return 1 << n;
526
527 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
528 return 96;
529
530 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
531 return 192;
069e2b35 532#endif
ce6a5026
CL
533 return 0;
534}
ce6a5026 535
f1b6eb6e
CL
536static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
537{
538#ifndef CONFIG_SLOB
539 if (__builtin_constant_p(size) &&
23774a2f 540 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
541 int i = kmalloc_index(size);
542
543 if (!i)
544 return ZERO_SIZE_PTR;
545
546 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
547 flags, node, size);
548 }
549#endif
550 return __kmalloc_node(size, flags, node);
551}
552
f7ce3190
VD
553struct memcg_cache_array {
554 struct rcu_head rcu;
555 struct kmem_cache *entries[0];
556};
557
ba6c496e
GC
558/*
559 * This is the main placeholder for memcg-related information in kmem caches.
ba6c496e
GC
560 * Both the root cache and the child caches will have it. For the root cache,
561 * this will hold a dynamically allocated array large enough to hold
f8570263
VD
562 * information about the currently limited memcgs in the system. To allow the
563 * array to be accessed without taking any locks, on relocation we free the old
564 * version only after a grace period.
ba6c496e 565 *
9eeadc8b 566 * Root and child caches hold different metadata.
ba6c496e 567 *
9eeadc8b
TH
568 * @root_cache: Common to root and child caches. NULL for root, pointer to
569 * the root cache for children.
426589f5 570 *
9eeadc8b
TH
571 * The following fields are specific to root caches.
572 *
573 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
574 * used to index child cachces during allocation and cleared
575 * early during shutdown.
576 *
510ded33
TH
577 * @root_caches_node: List node for slab_root_caches list.
578 *
9eeadc8b
TH
579 * @children: List of all child caches. While the child caches are also
580 * reachable through @memcg_caches, a child cache remains on
581 * this list until it is actually destroyed.
582 *
583 * The following fields are specific to child caches.
584 *
585 * @memcg: Pointer to the memcg this cache belongs to.
586 *
587 * @children_node: List node for @root_cache->children list.
bc2791f8
TH
588 *
589 * @kmem_caches_node: List node for @memcg->kmem_caches list.
ba6c496e
GC
590 */
591struct memcg_cache_params {
9eeadc8b 592 struct kmem_cache *root_cache;
ba6c496e 593 union {
9eeadc8b
TH
594 struct {
595 struct memcg_cache_array __rcu *memcg_caches;
510ded33 596 struct list_head __root_caches_node;
9eeadc8b
TH
597 struct list_head children;
598 };
2633d7a0
GC
599 struct {
600 struct mem_cgroup *memcg;
9eeadc8b 601 struct list_head children_node;
bc2791f8 602 struct list_head kmem_caches_node;
01fb58bc
TH
603
604 void (*deact_fn)(struct kmem_cache *);
605 union {
606 struct rcu_head deact_rcu_head;
607 struct work_struct deact_work;
608 };
2633d7a0 609 };
ba6c496e
GC
610 };
611};
612
2633d7a0
GC
613int memcg_update_all_caches(int num_memcgs);
614
e7efa615
MO
615/**
616 * kmalloc_array - allocate memory for an array.
617 * @n: number of elements.
618 * @size: element size.
619 * @flags: the type of memory to allocate (see kmalloc).
800590f5 620 */
a8203725 621static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 622{
a3860c1c 623 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 624 return NULL;
91c6a05f
AD
625 if (__builtin_constant_p(n) && __builtin_constant_p(size))
626 return kmalloc(n * size, flags);
a8203725
XW
627 return __kmalloc(n * size, flags);
628}
629
630/**
631 * kcalloc - allocate memory for an array. The memory is set to zero.
632 * @n: number of elements.
633 * @size: element size.
634 * @flags: the type of memory to allocate (see kmalloc).
635 */
636static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
637{
638 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
639}
640
1d2c8eea
CH
641/*
642 * kmalloc_track_caller is a special version of kmalloc that records the
643 * calling function of the routine calling it for slab leak tracking instead
644 * of just the calling function (confusing, eh?).
645 * It's useful when the call to kmalloc comes from a widely-used standard
646 * allocator where we care about the real place the memory allocation
647 * request comes from.
648 */
ce71e27c 649extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 650#define kmalloc_track_caller(size, flags) \
ce71e27c 651 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 652
5799b255
JT
653static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
654 int node)
655{
656 if (size != 0 && n > SIZE_MAX / size)
657 return NULL;
658 if (__builtin_constant_p(n) && __builtin_constant_p(size))
659 return kmalloc_node(n * size, flags, node);
660 return __kmalloc_node(n * size, flags, node);
661}
662
663static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
664{
665 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
666}
667
668
97e2bde4 669#ifdef CONFIG_NUMA
ce71e27c 670extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
671#define kmalloc_node_track_caller(size, flags, node) \
672 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 673 _RET_IP_)
2e892f43 674
8b98c169 675#else /* CONFIG_NUMA */
8b98c169
CH
676
677#define kmalloc_node_track_caller(size, flags, node) \
678 kmalloc_track_caller(size, flags)
97e2bde4 679
dfcd3610 680#endif /* CONFIG_NUMA */
10cef602 681
81cda662
CL
682/*
683 * Shortcuts
684 */
685static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
686{
687 return kmem_cache_alloc(k, flags | __GFP_ZERO);
688}
689
690/**
691 * kzalloc - allocate memory. The memory is set to zero.
692 * @size: how many bytes of memory are required.
693 * @flags: the type of memory to allocate (see kmalloc).
694 */
695static inline void *kzalloc(size_t size, gfp_t flags)
696{
697 return kmalloc(size, flags | __GFP_ZERO);
698}
699
979b0fea
JL
700/**
701 * kzalloc_node - allocate zeroed memory from a particular memory node.
702 * @size: how many bytes of memory are required.
703 * @flags: the type of memory to allocate (see kmalloc).
704 * @node: memory node from which to allocate
705 */
706static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
707{
708 return kmalloc_node(size, flags | __GFP_ZERO, node);
709}
710
07f361b2 711unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
712void __init kmem_cache_init_late(void);
713
6731d4f1
SAS
714#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
715int slab_prepare_cpu(unsigned int cpu);
716int slab_dead_cpu(unsigned int cpu);
717#else
718#define slab_prepare_cpu NULL
719#define slab_dead_cpu NULL
720#endif
721
1da177e4 722#endif /* _LINUX_SLAB_H */