Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
00d1a39e 28#include <linux/preempt_mask.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
1da177e4 135
615d6e87
DB
136#define VMACACHE_BITS 2
137#define VMACACHE_SIZE (1U << VMACACHE_BITS)
138#define VMACACHE_MASK (VMACACHE_SIZE - 1)
139
1da177e4
LT
140/*
141 * These are the constant used to fake the fixed-point load-average
142 * counting. Some notes:
143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
144 * a load-average precision of 10 bits integer + 11 bits fractional
145 * - if you want to count load-averages more often, you need more
146 * precision, or rounding will get you. With 2-second counting freq,
147 * the EXP_n values would be 1981, 2034 and 2043 if still using only
148 * 11 bit fractions.
149 */
150extern unsigned long avenrun[]; /* Load averages */
2d02494f 151extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
152
153#define FSHIFT 11 /* nr of bits of precision */
154#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 155#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
156#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
157#define EXP_5 2014 /* 1/exp(5sec/5min) */
158#define EXP_15 2037 /* 1/exp(5sec/15min) */
159
160#define CALC_LOAD(load,exp,n) \
161 load *= exp; \
162 load += n*(FIXED_1-exp); \
163 load >>= FSHIFT;
164
165extern unsigned long total_forks;
166extern int nr_threads;
1da177e4
LT
167DECLARE_PER_CPU(unsigned long, process_counts);
168extern int nr_processes(void);
169extern unsigned long nr_running(void);
2ee507c4 170extern bool single_task_running(void);
1da177e4 171extern unsigned long nr_iowait(void);
8c215bd3 172extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 173extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 174
0f004f5a 175extern void calc_global_load(unsigned long ticks);
5aaa0b7a 176extern void update_cpu_load_nohz(void);
1da177e4 177
7e49fcce
SR
178extern unsigned long get_parent_ip(unsigned long addr);
179
b637a328
PM
180extern void dump_cpu_task(int cpu);
181
43ae34cb
IM
182struct seq_file;
183struct cfs_rq;
4cf86d77 184struct task_group;
43ae34cb
IM
185#ifdef CONFIG_SCHED_DEBUG
186extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
187extern void proc_sched_set_task(struct task_struct *p);
188extern void
5cef9eca 189print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
43ae34cb 190#endif
1da177e4 191
4a8342d2
LT
192/*
193 * Task state bitmask. NOTE! These bits are also
194 * encoded in fs/proc/array.c: get_task_state().
195 *
196 * We have two separate sets of flags: task->state
197 * is about runnability, while task->exit_state are
198 * about the task exiting. Confusing, but this way
199 * modifying one set can't modify the other one by
200 * mistake.
201 */
1da177e4
LT
202#define TASK_RUNNING 0
203#define TASK_INTERRUPTIBLE 1
204#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
205#define __TASK_STOPPED 4
206#define __TASK_TRACED 8
4a8342d2 207/* in tsk->exit_state */
ad86622b
ON
208#define EXIT_DEAD 16
209#define EXIT_ZOMBIE 32
abd50b39 210#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 211/* in tsk->state again */
af927232 212#define TASK_DEAD 64
f021a3c2 213#define TASK_WAKEKILL 128
e9c84311 214#define TASK_WAKING 256
f2530dc7
TG
215#define TASK_PARKED 512
216#define TASK_STATE_MAX 1024
f021a3c2 217
ad0f614e 218#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
73342151 219
e1781538
PZ
220extern char ___assert_task_state[1 - 2*!!(
221 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
222
223/* Convenience macros for the sake of set_task_state */
224#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
225#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
226#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 227
92a1f4bc
MW
228/* Convenience macros for the sake of wake_up */
229#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 230#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
231
232/* get_task_state() */
233#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 234 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 235 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 236
f021a3c2
MW
237#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
238#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 239#define task_is_stopped_or_traced(task) \
f021a3c2 240 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 241#define task_contributes_to_load(task) \
e3c8ca83 242 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
376fede8 243 (task->flags & PF_FROZEN) == 0)
1da177e4 244
8eb23b9f
PZ
245#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
246
247#define __set_task_state(tsk, state_value) \
248 do { \
249 (tsk)->task_state_change = _THIS_IP_; \
250 (tsk)->state = (state_value); \
251 } while (0)
252#define set_task_state(tsk, state_value) \
253 do { \
254 (tsk)->task_state_change = _THIS_IP_; \
255 set_mb((tsk)->state, (state_value)); \
256 } while (0)
257
258/*
259 * set_current_state() includes a barrier so that the write of current->state
260 * is correctly serialised wrt the caller's subsequent test of whether to
261 * actually sleep:
262 *
263 * set_current_state(TASK_UNINTERRUPTIBLE);
264 * if (do_i_need_to_sleep())
265 * schedule();
266 *
267 * If the caller does not need such serialisation then use __set_current_state()
268 */
269#define __set_current_state(state_value) \
270 do { \
271 current->task_state_change = _THIS_IP_; \
272 current->state = (state_value); \
273 } while (0)
274#define set_current_state(state_value) \
275 do { \
276 current->task_state_change = _THIS_IP_; \
277 set_mb(current->state, (state_value)); \
278 } while (0)
279
280#else
281
1da177e4
LT
282#define __set_task_state(tsk, state_value) \
283 do { (tsk)->state = (state_value); } while (0)
284#define set_task_state(tsk, state_value) \
285 set_mb((tsk)->state, (state_value))
286
498d0c57
AM
287/*
288 * set_current_state() includes a barrier so that the write of current->state
289 * is correctly serialised wrt the caller's subsequent test of whether to
290 * actually sleep:
291 *
292 * set_current_state(TASK_UNINTERRUPTIBLE);
293 * if (do_i_need_to_sleep())
294 * schedule();
295 *
296 * If the caller does not need such serialisation then use __set_current_state()
297 */
8eb23b9f 298#define __set_current_state(state_value) \
1da177e4 299 do { current->state = (state_value); } while (0)
8eb23b9f 300#define set_current_state(state_value) \
1da177e4
LT
301 set_mb(current->state, (state_value))
302
8eb23b9f
PZ
303#endif
304
1da177e4
LT
305/* Task command name length */
306#define TASK_COMM_LEN 16
307
1da177e4
LT
308#include <linux/spinlock.h>
309
310/*
311 * This serializes "schedule()" and also protects
312 * the run-queue from deletions/modifications (but
313 * _adding_ to the beginning of the run-queue has
314 * a separate lock).
315 */
316extern rwlock_t tasklist_lock;
317extern spinlock_t mmlist_lock;
318
36c8b586 319struct task_struct;
1da177e4 320
db1466b3
PM
321#ifdef CONFIG_PROVE_RCU
322extern int lockdep_tasklist_lock_is_held(void);
323#endif /* #ifdef CONFIG_PROVE_RCU */
324
1da177e4
LT
325extern void sched_init(void);
326extern void sched_init_smp(void);
2d07b255 327extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 328extern void init_idle(struct task_struct *idle, int cpu);
1df21055 329extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 330
3fa0818b
RR
331extern cpumask_var_t cpu_isolated_map;
332
89f19f04 333extern int runqueue_is_locked(int cpu);
017730c1 334
3451d024 335#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 336extern void nohz_balance_enter_idle(int cpu);
69e1e811 337extern void set_cpu_sd_state_idle(void);
6201b4d6 338extern int get_nohz_timer_target(int pinned);
46cb4b7c 339#else
c1cc017c 340static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 341static inline void set_cpu_sd_state_idle(void) { }
6201b4d6
VK
342static inline int get_nohz_timer_target(int pinned)
343{
344 return smp_processor_id();
345}
46cb4b7c 346#endif
1da177e4 347
e59e2ae2 348/*
39bc89fd 349 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
350 */
351extern void show_state_filter(unsigned long state_filter);
352
353static inline void show_state(void)
354{
39bc89fd 355 show_state_filter(0);
e59e2ae2
IM
356}
357
1da177e4
LT
358extern void show_regs(struct pt_regs *);
359
360/*
361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
362 * task), SP is the stack pointer of the first frame that should be shown in the back
363 * trace (or NULL if the entire call-chain of the task should be shown).
364 */
365extern void show_stack(struct task_struct *task, unsigned long *sp);
366
1da177e4
LT
367extern void cpu_init (void);
368extern void trap_init(void);
369extern void update_process_times(int user);
370extern void scheduler_tick(void);
371
82a1fcb9
IM
372extern void sched_show_task(struct task_struct *p);
373
19cc36c0 374#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 375extern void touch_softlockup_watchdog(void);
d6ad3e28 376extern void touch_softlockup_watchdog_sync(void);
04c9167f 377extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
378extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
379 void __user *buffer,
380 size_t *lenp, loff_t *ppos);
9c44bc03 381extern unsigned int softlockup_panic;
004417a6 382void lockup_detector_init(void);
8446f1d3 383#else
8446f1d3
IM
384static inline void touch_softlockup_watchdog(void)
385{
386}
d6ad3e28
JW
387static inline void touch_softlockup_watchdog_sync(void)
388{
389}
04c9167f
JF
390static inline void touch_all_softlockup_watchdogs(void)
391{
392}
004417a6
PZ
393static inline void lockup_detector_init(void)
394{
395}
8446f1d3
IM
396#endif
397
8b414521
MT
398#ifdef CONFIG_DETECT_HUNG_TASK
399void reset_hung_task_detector(void);
400#else
401static inline void reset_hung_task_detector(void)
402{
403}
404#endif
405
1da177e4
LT
406/* Attach to any functions which should be ignored in wchan output. */
407#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
408
409/* Linker adds these: start and end of __sched functions */
410extern char __sched_text_start[], __sched_text_end[];
411
1da177e4
LT
412/* Is this address in the __sched functions? */
413extern int in_sched_functions(unsigned long addr);
414
415#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 416extern signed long schedule_timeout(signed long timeout);
64ed93a2 417extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 418extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 419extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 420asmlinkage void schedule(void);
c5491ea7 421extern void schedule_preempt_disabled(void);
1da177e4 422
9cff8ade
N
423extern long io_schedule_timeout(long timeout);
424
425static inline void io_schedule(void)
426{
427 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
428}
429
ab516013 430struct nsproxy;
acce292c 431struct user_namespace;
1da177e4 432
efc1a3b1
DH
433#ifdef CONFIG_MMU
434extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
435extern unsigned long
436arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
437 unsigned long, unsigned long);
438extern unsigned long
439arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
440 unsigned long len, unsigned long pgoff,
441 unsigned long flags);
efc1a3b1
DH
442#else
443static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
444#endif
1da177e4 445
d049f74f
KC
446#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
447#define SUID_DUMP_USER 1 /* Dump as user of process */
448#define SUID_DUMP_ROOT 2 /* Dump as root */
449
6c5d5238 450/* mm flags */
f8af4da3 451
7288e118 452/* for SUID_DUMP_* above */
3cb4a0bb 453#define MMF_DUMPABLE_BITS 2
f8af4da3 454#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 455
942be387
ON
456extern void set_dumpable(struct mm_struct *mm, int value);
457/*
458 * This returns the actual value of the suid_dumpable flag. For things
459 * that are using this for checking for privilege transitions, it must
460 * test against SUID_DUMP_USER rather than treating it as a boolean
461 * value.
462 */
463static inline int __get_dumpable(unsigned long mm_flags)
464{
465 return mm_flags & MMF_DUMPABLE_MASK;
466}
467
468static inline int get_dumpable(struct mm_struct *mm)
469{
470 return __get_dumpable(mm->flags);
471}
472
3cb4a0bb
KH
473/* coredump filter bits */
474#define MMF_DUMP_ANON_PRIVATE 2
475#define MMF_DUMP_ANON_SHARED 3
476#define MMF_DUMP_MAPPED_PRIVATE 4
477#define MMF_DUMP_MAPPED_SHARED 5
82df3973 478#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
479#define MMF_DUMP_HUGETLB_PRIVATE 7
480#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 481
3cb4a0bb 482#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 483#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
484#define MMF_DUMP_FILTER_MASK \
485 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
486#define MMF_DUMP_FILTER_DEFAULT \
e575f111 487 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
488 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
489
490#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
491# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
492#else
493# define MMF_DUMP_MASK_DEFAULT_ELF 0
494#endif
f8af4da3
HD
495 /* leave room for more dump flags */
496#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 497#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 498#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 499
9f68f672
ON
500#define MMF_HAS_UPROBES 19 /* has uprobes */
501#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 502
f8af4da3 503#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 504
1da177e4
LT
505struct sighand_struct {
506 atomic_t count;
507 struct k_sigaction action[_NSIG];
508 spinlock_t siglock;
b8fceee1 509 wait_queue_head_t signalfd_wqh;
1da177e4
LT
510};
511
0e464814 512struct pacct_struct {
f6ec29a4
KK
513 int ac_flag;
514 long ac_exitcode;
0e464814 515 unsigned long ac_mem;
77787bfb
KK
516 cputime_t ac_utime, ac_stime;
517 unsigned long ac_minflt, ac_majflt;
0e464814
KK
518};
519
42c4ab41
SG
520struct cpu_itimer {
521 cputime_t expires;
522 cputime_t incr;
8356b5f9
SG
523 u32 error;
524 u32 incr_error;
42c4ab41
SG
525};
526
d37f761d
FW
527/**
528 * struct cputime - snaphsot of system and user cputime
529 * @utime: time spent in user mode
530 * @stime: time spent in system mode
531 *
532 * Gathers a generic snapshot of user and system time.
533 */
534struct cputime {
535 cputime_t utime;
536 cputime_t stime;
537};
538
f06febc9
FM
539/**
540 * struct task_cputime - collected CPU time counts
541 * @utime: time spent in user mode, in &cputime_t units
542 * @stime: time spent in kernel mode, in &cputime_t units
543 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 544 *
d37f761d
FW
545 * This is an extension of struct cputime that includes the total runtime
546 * spent by the task from the scheduler point of view.
547 *
548 * As a result, this structure groups together three kinds of CPU time
549 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
550 * CPU time want to group these counts together and treat all three
551 * of them in parallel.
552 */
553struct task_cputime {
554 cputime_t utime;
555 cputime_t stime;
556 unsigned long long sum_exec_runtime;
557};
558/* Alternate field names when used to cache expirations. */
559#define prof_exp stime
560#define virt_exp utime
561#define sched_exp sum_exec_runtime
562
4cd4c1b4
PZ
563#define INIT_CPUTIME \
564 (struct task_cputime) { \
64861634
MS
565 .utime = 0, \
566 .stime = 0, \
4cd4c1b4
PZ
567 .sum_exec_runtime = 0, \
568 }
569
a233f112
PZ
570#ifdef CONFIG_PREEMPT_COUNT
571#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
572#else
573#define PREEMPT_DISABLED PREEMPT_ENABLED
574#endif
575
c99e6efe
PZ
576/*
577 * Disable preemption until the scheduler is running.
578 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
579 *
580 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
581 * before the scheduler is active -- see should_resched().
c99e6efe 582 */
a233f112 583#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 584
f06febc9 585/**
4cd4c1b4
PZ
586 * struct thread_group_cputimer - thread group interval timer counts
587 * @cputime: thread group interval timers.
588 * @running: non-zero when there are timers running and
589 * @cputime receives updates.
590 * @lock: lock for fields in this struct.
f06febc9
FM
591 *
592 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 593 * used for thread group CPU timer calculations.
f06febc9 594 */
4cd4c1b4
PZ
595struct thread_group_cputimer {
596 struct task_cputime cputime;
597 int running;
ee30a7b2 598 raw_spinlock_t lock;
f06febc9 599};
f06febc9 600
4714d1d3 601#include <linux/rwsem.h>
5091faa4
MG
602struct autogroup;
603
1da177e4 604/*
e815f0a8 605 * NOTE! "signal_struct" does not have its own
1da177e4
LT
606 * locking, because a shared signal_struct always
607 * implies a shared sighand_struct, so locking
608 * sighand_struct is always a proper superset of
609 * the locking of signal_struct.
610 */
611struct signal_struct {
ea6d290c 612 atomic_t sigcnt;
1da177e4 613 atomic_t live;
b3ac022c 614 int nr_threads;
0c740d0a 615 struct list_head thread_head;
1da177e4
LT
616
617 wait_queue_head_t wait_chldexit; /* for wait4() */
618
619 /* current thread group signal load-balancing target: */
36c8b586 620 struct task_struct *curr_target;
1da177e4
LT
621
622 /* shared signal handling: */
623 struct sigpending shared_pending;
624
625 /* thread group exit support */
626 int group_exit_code;
627 /* overloaded:
628 * - notify group_exit_task when ->count is equal to notify_count
629 * - everyone except group_exit_task is stopped during signal delivery
630 * of fatal signals, group_exit_task processes the signal.
631 */
1da177e4 632 int notify_count;
07dd20e0 633 struct task_struct *group_exit_task;
1da177e4
LT
634
635 /* thread group stop support, overloads group_exit_code too */
636 int group_stop_count;
637 unsigned int flags; /* see SIGNAL_* flags below */
638
ebec18a6
LP
639 /*
640 * PR_SET_CHILD_SUBREAPER marks a process, like a service
641 * manager, to re-parent orphan (double-forking) child processes
642 * to this process instead of 'init'. The service manager is
643 * able to receive SIGCHLD signals and is able to investigate
644 * the process until it calls wait(). All children of this
645 * process will inherit a flag if they should look for a
646 * child_subreaper process at exit.
647 */
648 unsigned int is_child_subreaper:1;
649 unsigned int has_child_subreaper:1;
650
1da177e4 651 /* POSIX.1b Interval Timers */
5ed67f05
PE
652 int posix_timer_id;
653 struct list_head posix_timers;
1da177e4
LT
654
655 /* ITIMER_REAL timer for the process */
2ff678b8 656 struct hrtimer real_timer;
fea9d175 657 struct pid *leader_pid;
2ff678b8 658 ktime_t it_real_incr;
1da177e4 659
42c4ab41
SG
660 /*
661 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
662 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
663 * values are defined to 0 and 1 respectively
664 */
665 struct cpu_itimer it[2];
1da177e4 666
f06febc9 667 /*
4cd4c1b4
PZ
668 * Thread group totals for process CPU timers.
669 * See thread_group_cputimer(), et al, for details.
f06febc9 670 */
4cd4c1b4 671 struct thread_group_cputimer cputimer;
f06febc9
FM
672
673 /* Earliest-expiration cache. */
674 struct task_cputime cputime_expires;
675
676 struct list_head cpu_timers[3];
677
ab521dc0 678 struct pid *tty_old_pgrp;
1ec320af 679
1da177e4
LT
680 /* boolean value for session group leader */
681 int leader;
682
683 struct tty_struct *tty; /* NULL if no tty */
684
5091faa4
MG
685#ifdef CONFIG_SCHED_AUTOGROUP
686 struct autogroup *autogroup;
687#endif
1da177e4
LT
688 /*
689 * Cumulative resource counters for dead threads in the group,
690 * and for reaped dead child processes forked by this group.
691 * Live threads maintain their own counters and add to these
692 * in __exit_signal, except for the group leader.
693 */
e78c3496 694 seqlock_t stats_lock;
32bd671d 695 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
696 cputime_t gtime;
697 cputime_t cgtime;
9fbc42ea 698#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 699 struct cputime prev_cputime;
0cf55e1e 700#endif
1da177e4
LT
701 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
702 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 703 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 704 unsigned long maxrss, cmaxrss;
940389b8 705 struct task_io_accounting ioac;
1da177e4 706
32bd671d
PZ
707 /*
708 * Cumulative ns of schedule CPU time fo dead threads in the
709 * group, not including a zombie group leader, (This only differs
710 * from jiffies_to_ns(utime + stime) if sched_clock uses something
711 * other than jiffies.)
712 */
713 unsigned long long sum_sched_runtime;
714
1da177e4
LT
715 /*
716 * We don't bother to synchronize most readers of this at all,
717 * because there is no reader checking a limit that actually needs
718 * to get both rlim_cur and rlim_max atomically, and either one
719 * alone is a single word that can safely be read normally.
720 * getrlimit/setrlimit use task_lock(current->group_leader) to
721 * protect this instead of the siglock, because they really
722 * have no need to disable irqs.
723 */
724 struct rlimit rlim[RLIM_NLIMITS];
725
0e464814
KK
726#ifdef CONFIG_BSD_PROCESS_ACCT
727 struct pacct_struct pacct; /* per-process accounting information */
728#endif
ad4ecbcb 729#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
730 struct taskstats *stats;
731#endif
522ed776
MT
732#ifdef CONFIG_AUDIT
733 unsigned audit_tty;
46e959ea 734 unsigned audit_tty_log_passwd;
522ed776
MT
735 struct tty_audit_buf *tty_audit_buf;
736#endif
4714d1d3
BB
737#ifdef CONFIG_CGROUPS
738 /*
77e4ef99
TH
739 * group_rwsem prevents new tasks from entering the threadgroup and
740 * member tasks from exiting,a more specifically, setting of
741 * PF_EXITING. fork and exit paths are protected with this rwsem
742 * using threadgroup_change_begin/end(). Users which require
743 * threadgroup to remain stable should use threadgroup_[un]lock()
744 * which also takes care of exec path. Currently, cgroup is the
745 * only user.
4714d1d3 746 */
257058ae 747 struct rw_semaphore group_rwsem;
4714d1d3 748#endif
28b83c51 749
e1e12d2f 750 oom_flags_t oom_flags;
a9c58b90
DR
751 short oom_score_adj; /* OOM kill score adjustment */
752 short oom_score_adj_min; /* OOM kill score adjustment min value.
753 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
754
755 struct mutex cred_guard_mutex; /* guard against foreign influences on
756 * credential calculations
757 * (notably. ptrace) */
1da177e4
LT
758};
759
760/*
761 * Bits in flags field of signal_struct.
762 */
763#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
764#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
765#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 766#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
767/*
768 * Pending notifications to parent.
769 */
770#define SIGNAL_CLD_STOPPED 0x00000010
771#define SIGNAL_CLD_CONTINUED 0x00000020
772#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 773
fae5fa44
ON
774#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
775
ed5d2cac
ON
776/* If true, all threads except ->group_exit_task have pending SIGKILL */
777static inline int signal_group_exit(const struct signal_struct *sig)
778{
779 return (sig->flags & SIGNAL_GROUP_EXIT) ||
780 (sig->group_exit_task != NULL);
781}
782
1da177e4
LT
783/*
784 * Some day this will be a full-fledged user tracking system..
785 */
786struct user_struct {
787 atomic_t __count; /* reference count */
788 atomic_t processes; /* How many processes does this user have? */
1da177e4 789 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 790#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
791 atomic_t inotify_watches; /* How many inotify watches does this user have? */
792 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
793#endif
4afeff85
EP
794#ifdef CONFIG_FANOTIFY
795 atomic_t fanotify_listeners;
796#endif
7ef9964e 797#ifdef CONFIG_EPOLL
52bd19f7 798 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 799#endif
970a8645 800#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
801 /* protected by mq_lock */
802 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 803#endif
1da177e4
LT
804 unsigned long locked_shm; /* How many pages of mlocked shm ? */
805
806#ifdef CONFIG_KEYS
807 struct key *uid_keyring; /* UID specific keyring */
808 struct key *session_keyring; /* UID's default session keyring */
809#endif
810
811 /* Hash table maintenance information */
735de223 812 struct hlist_node uidhash_node;
7b44ab97 813 kuid_t uid;
24e377a8 814
cdd6c482 815#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
816 atomic_long_t locked_vm;
817#endif
1da177e4
LT
818};
819
eb41d946 820extern int uids_sysfs_init(void);
5cb350ba 821
7b44ab97 822extern struct user_struct *find_user(kuid_t);
1da177e4
LT
823
824extern struct user_struct root_user;
825#define INIT_USER (&root_user)
826
b6dff3ec 827
1da177e4
LT
828struct backing_dev_info;
829struct reclaim_state;
830
52f17b6c 831#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
832struct sched_info {
833 /* cumulative counters */
2d72376b 834 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 835 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
836
837 /* timestamps */
172ba844
BS
838 unsigned long long last_arrival,/* when we last ran on a cpu */
839 last_queued; /* when we were last queued to run */
1da177e4 840};
52f17b6c 841#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
1da177e4 842
ca74e92b
SN
843#ifdef CONFIG_TASK_DELAY_ACCT
844struct task_delay_info {
845 spinlock_t lock;
846 unsigned int flags; /* Private per-task flags */
847
848 /* For each stat XXX, add following, aligned appropriately
849 *
850 * struct timespec XXX_start, XXX_end;
851 * u64 XXX_delay;
852 * u32 XXX_count;
853 *
854 * Atomicity of updates to XXX_delay, XXX_count protected by
855 * single lock above (split into XXX_lock if contention is an issue).
856 */
0ff92245
SN
857
858 /*
859 * XXX_count is incremented on every XXX operation, the delay
860 * associated with the operation is added to XXX_delay.
861 * XXX_delay contains the accumulated delay time in nanoseconds.
862 */
9667a23d 863 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
864 u64 blkio_delay; /* wait for sync block io completion */
865 u64 swapin_delay; /* wait for swapin block io completion */
866 u32 blkio_count; /* total count of the number of sync block */
867 /* io operations performed */
868 u32 swapin_count; /* total count of the number of swapin block */
869 /* io operations performed */
873b4771 870
9667a23d 871 u64 freepages_start;
873b4771
KK
872 u64 freepages_delay; /* wait for memory reclaim */
873 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 874};
52f17b6c
CS
875#endif /* CONFIG_TASK_DELAY_ACCT */
876
877static inline int sched_info_on(void)
878{
879#ifdef CONFIG_SCHEDSTATS
880 return 1;
881#elif defined(CONFIG_TASK_DELAY_ACCT)
882 extern int delayacct_on;
883 return delayacct_on;
884#else
885 return 0;
ca74e92b 886#endif
52f17b6c 887}
ca74e92b 888
d15bcfdb
IM
889enum cpu_idle_type {
890 CPU_IDLE,
891 CPU_NOT_IDLE,
892 CPU_NEWLY_IDLE,
893 CPU_MAX_IDLE_TYPES
1da177e4
LT
894};
895
1399fa78 896/*
ca8ce3d0 897 * Increase resolution of cpu_capacity calculations
1399fa78 898 */
ca8ce3d0
NP
899#define SCHED_CAPACITY_SHIFT 10
900#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 901
1399fa78
NR
902/*
903 * sched-domains (multiprocessor balancing) declarations:
904 */
2dd73a4f 905#ifdef CONFIG_SMP
b5d978e0
PZ
906#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
907#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
908#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
909#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 910#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 911#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 912#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 913#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
914#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
915#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 916#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 917#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 918#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 919#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 920
143e1e28 921#ifdef CONFIG_SCHED_SMT
b6220ad6 922static inline int cpu_smt_flags(void)
143e1e28 923{
5d4dfddd 924 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
925}
926#endif
927
928#ifdef CONFIG_SCHED_MC
b6220ad6 929static inline int cpu_core_flags(void)
143e1e28
VG
930{
931 return SD_SHARE_PKG_RESOURCES;
932}
933#endif
934
935#ifdef CONFIG_NUMA
b6220ad6 936static inline int cpu_numa_flags(void)
143e1e28
VG
937{
938 return SD_NUMA;
939}
940#endif
532cb4c4 941
1d3504fc
HS
942struct sched_domain_attr {
943 int relax_domain_level;
944};
945
946#define SD_ATTR_INIT (struct sched_domain_attr) { \
947 .relax_domain_level = -1, \
948}
949
60495e77
PZ
950extern int sched_domain_level_max;
951
5e6521ea
LZ
952struct sched_group;
953
1da177e4
LT
954struct sched_domain {
955 /* These fields must be setup */
956 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 957 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 958 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
959 unsigned long min_interval; /* Minimum balance interval ms */
960 unsigned long max_interval; /* Maximum balance interval ms */
961 unsigned int busy_factor; /* less balancing by factor if busy */
962 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 963 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
964 unsigned int busy_idx;
965 unsigned int idle_idx;
966 unsigned int newidle_idx;
967 unsigned int wake_idx;
147cbb4b 968 unsigned int forkexec_idx;
a52bfd73 969 unsigned int smt_gain;
25f55d9d
VG
970
971 int nohz_idle; /* NOHZ IDLE status */
1da177e4 972 int flags; /* See SD_* */
60495e77 973 int level;
1da177e4
LT
974
975 /* Runtime fields. */
976 unsigned long last_balance; /* init to jiffies. units in jiffies */
977 unsigned int balance_interval; /* initialise to 1. units in ms. */
978 unsigned int nr_balance_failed; /* initialise to 0 */
979
f48627e6 980 /* idle_balance() stats */
9bd721c5 981 u64 max_newidle_lb_cost;
f48627e6 982 unsigned long next_decay_max_lb_cost;
2398f2c6 983
1da177e4
LT
984#ifdef CONFIG_SCHEDSTATS
985 /* load_balance() stats */
480b9434
KC
986 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
987 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
988 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
989 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
990 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
991 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
992 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
993 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
994
995 /* Active load balancing */
480b9434
KC
996 unsigned int alb_count;
997 unsigned int alb_failed;
998 unsigned int alb_pushed;
1da177e4 999
68767a0a 1000 /* SD_BALANCE_EXEC stats */
480b9434
KC
1001 unsigned int sbe_count;
1002 unsigned int sbe_balanced;
1003 unsigned int sbe_pushed;
1da177e4 1004
68767a0a 1005 /* SD_BALANCE_FORK stats */
480b9434
KC
1006 unsigned int sbf_count;
1007 unsigned int sbf_balanced;
1008 unsigned int sbf_pushed;
68767a0a 1009
1da177e4 1010 /* try_to_wake_up() stats */
480b9434
KC
1011 unsigned int ttwu_wake_remote;
1012 unsigned int ttwu_move_affine;
1013 unsigned int ttwu_move_balance;
1da177e4 1014#endif
a5d8c348
IM
1015#ifdef CONFIG_SCHED_DEBUG
1016 char *name;
1017#endif
dce840a0
PZ
1018 union {
1019 void *private; /* used during construction */
1020 struct rcu_head rcu; /* used during destruction */
1021 };
6c99e9ad 1022
669c55e9 1023 unsigned int span_weight;
4200efd9
IM
1024 /*
1025 * Span of all CPUs in this domain.
1026 *
1027 * NOTE: this field is variable length. (Allocated dynamically
1028 * by attaching extra space to the end of the structure,
1029 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1030 */
1031 unsigned long span[0];
1da177e4
LT
1032};
1033
758b2cdc
RR
1034static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1035{
6c99e9ad 1036 return to_cpumask(sd->span);
758b2cdc
RR
1037}
1038
acc3f5d7 1039extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1040 struct sched_domain_attr *dattr_new);
029190c5 1041
acc3f5d7
RR
1042/* Allocate an array of sched domains, for partition_sched_domains(). */
1043cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1044void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1045
39be3501
PZ
1046bool cpus_share_cache(int this_cpu, int that_cpu);
1047
143e1e28 1048typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1049typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1050
1051#define SDTL_OVERLAP 0x01
1052
1053struct sd_data {
1054 struct sched_domain **__percpu sd;
1055 struct sched_group **__percpu sg;
63b2ca30 1056 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1057};
1058
1059struct sched_domain_topology_level {
1060 sched_domain_mask_f mask;
1061 sched_domain_flags_f sd_flags;
1062 int flags;
1063 int numa_level;
1064 struct sd_data data;
1065#ifdef CONFIG_SCHED_DEBUG
1066 char *name;
1067#endif
1068};
1069
1070extern struct sched_domain_topology_level *sched_domain_topology;
1071
1072extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1073extern void wake_up_if_idle(int cpu);
143e1e28
VG
1074
1075#ifdef CONFIG_SCHED_DEBUG
1076# define SD_INIT_NAME(type) .name = #type
1077#else
1078# define SD_INIT_NAME(type)
1079#endif
1080
1b427c15 1081#else /* CONFIG_SMP */
1da177e4 1082
1b427c15 1083struct sched_domain_attr;
d02c7a8c 1084
1b427c15 1085static inline void
acc3f5d7 1086partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1087 struct sched_domain_attr *dattr_new)
1088{
d02c7a8c 1089}
39be3501
PZ
1090
1091static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1092{
1093 return true;
1094}
1095
1b427c15 1096#endif /* !CONFIG_SMP */
1da177e4 1097
47fe38fc 1098
1da177e4 1099struct io_context; /* See blkdev.h */
1da177e4 1100
1da177e4 1101
383f2835 1102#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1103extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1104#else
1105static inline void prefetch_stack(struct task_struct *t) { }
1106#endif
1da177e4
LT
1107
1108struct audit_context; /* See audit.c */
1109struct mempolicy;
b92ce558 1110struct pipe_inode_info;
4865ecf1 1111struct uts_namespace;
1da177e4 1112
20b8a59f 1113struct load_weight {
9dbdb155
PZ
1114 unsigned long weight;
1115 u32 inv_weight;
20b8a59f
IM
1116};
1117
9d85f21c 1118struct sched_avg {
36ee28e4
VG
1119 u64 last_runnable_update;
1120 s64 decay_count;
1121 /*
1122 * utilization_avg_contrib describes the amount of time that a
1123 * sched_entity is running on a CPU. It is based on running_avg_sum
1124 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1125 * load_avg_contrib described the amount of time that a sched_entity
1126 * is runnable on a rq. It is based on both runnable_avg_sum and the
1127 * weight of the task.
1128 */
1129 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1130 /*
1131 * These sums represent an infinite geometric series and so are bound
239003ea 1132 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1133 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1134 * running_avg_sum reflects the time that the sched_entity is
1135 * effectively running on the CPU.
1136 * runnable_avg_sum represents the amount of time a sched_entity is on
1137 * a runqueue which includes the running time that is monitored by
1138 * running_avg_sum.
9d85f21c 1139 */
36ee28e4 1140 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1141};
1142
94c18227 1143#ifdef CONFIG_SCHEDSTATS
41acab88 1144struct sched_statistics {
20b8a59f 1145 u64 wait_start;
94c18227 1146 u64 wait_max;
6d082592
AV
1147 u64 wait_count;
1148 u64 wait_sum;
8f0dfc34
AV
1149 u64 iowait_count;
1150 u64 iowait_sum;
94c18227 1151
20b8a59f 1152 u64 sleep_start;
20b8a59f 1153 u64 sleep_max;
94c18227
IM
1154 s64 sum_sleep_runtime;
1155
1156 u64 block_start;
20b8a59f
IM
1157 u64 block_max;
1158 u64 exec_max;
eba1ed4b 1159 u64 slice_max;
cc367732 1160
cc367732
IM
1161 u64 nr_migrations_cold;
1162 u64 nr_failed_migrations_affine;
1163 u64 nr_failed_migrations_running;
1164 u64 nr_failed_migrations_hot;
1165 u64 nr_forced_migrations;
cc367732
IM
1166
1167 u64 nr_wakeups;
1168 u64 nr_wakeups_sync;
1169 u64 nr_wakeups_migrate;
1170 u64 nr_wakeups_local;
1171 u64 nr_wakeups_remote;
1172 u64 nr_wakeups_affine;
1173 u64 nr_wakeups_affine_attempts;
1174 u64 nr_wakeups_passive;
1175 u64 nr_wakeups_idle;
41acab88
LDM
1176};
1177#endif
1178
1179struct sched_entity {
1180 struct load_weight load; /* for load-balancing */
1181 struct rb_node run_node;
1182 struct list_head group_node;
1183 unsigned int on_rq;
1184
1185 u64 exec_start;
1186 u64 sum_exec_runtime;
1187 u64 vruntime;
1188 u64 prev_sum_exec_runtime;
1189
41acab88
LDM
1190 u64 nr_migrations;
1191
41acab88
LDM
1192#ifdef CONFIG_SCHEDSTATS
1193 struct sched_statistics statistics;
94c18227
IM
1194#endif
1195
20b8a59f 1196#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1197 int depth;
20b8a59f
IM
1198 struct sched_entity *parent;
1199 /* rq on which this entity is (to be) queued: */
1200 struct cfs_rq *cfs_rq;
1201 /* rq "owned" by this entity/group: */
1202 struct cfs_rq *my_q;
1203#endif
8bd75c77 1204
141965c7 1205#ifdef CONFIG_SMP
f4e26b12 1206 /* Per-entity load-tracking */
9d85f21c
PT
1207 struct sched_avg avg;
1208#endif
20b8a59f 1209};
70b97a7f 1210
fa717060
PZ
1211struct sched_rt_entity {
1212 struct list_head run_list;
78f2c7db 1213 unsigned long timeout;
57d2aa00 1214 unsigned long watchdog_stamp;
bee367ed 1215 unsigned int time_slice;
6f505b16 1216
58d6c2d7 1217 struct sched_rt_entity *back;
052f1dc7 1218#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1219 struct sched_rt_entity *parent;
1220 /* rq on which this entity is (to be) queued: */
1221 struct rt_rq *rt_rq;
1222 /* rq "owned" by this entity/group: */
1223 struct rt_rq *my_q;
1224#endif
fa717060
PZ
1225};
1226
aab03e05
DF
1227struct sched_dl_entity {
1228 struct rb_node rb_node;
1229
1230 /*
1231 * Original scheduling parameters. Copied here from sched_attr
4027d080 1232 * during sched_setattr(), they will remain the same until
1233 * the next sched_setattr().
aab03e05
DF
1234 */
1235 u64 dl_runtime; /* maximum runtime for each instance */
1236 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1237 u64 dl_period; /* separation of two instances (period) */
332ac17e 1238 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1239
1240 /*
1241 * Actual scheduling parameters. Initialized with the values above,
1242 * they are continously updated during task execution. Note that
1243 * the remaining runtime could be < 0 in case we are in overrun.
1244 */
1245 s64 runtime; /* remaining runtime for this instance */
1246 u64 deadline; /* absolute deadline for this instance */
1247 unsigned int flags; /* specifying the scheduler behaviour */
1248
1249 /*
1250 * Some bool flags:
1251 *
1252 * @dl_throttled tells if we exhausted the runtime. If so, the
1253 * task has to wait for a replenishment to be performed at the
1254 * next firing of dl_timer.
1255 *
1256 * @dl_new tells if a new instance arrived. If so we must
1257 * start executing it with full runtime and reset its absolute
1258 * deadline;
2d3d891d
DF
1259 *
1260 * @dl_boosted tells if we are boosted due to DI. If so we are
1261 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1262 * exit the critical section);
1263 *
1264 * @dl_yielded tells if task gave up the cpu before consuming
1265 * all its available runtime during the last job.
aab03e05 1266 */
5bfd126e 1267 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1268
1269 /*
1270 * Bandwidth enforcement timer. Each -deadline task has its
1271 * own bandwidth to be enforced, thus we need one timer per task.
1272 */
1273 struct hrtimer dl_timer;
1274};
8bd75c77 1275
1d082fd0
PM
1276union rcu_special {
1277 struct {
1278 bool blocked;
1279 bool need_qs;
1280 } b;
1281 short s;
1282};
86848966
PM
1283struct rcu_node;
1284
8dc85d54
PZ
1285enum perf_event_task_context {
1286 perf_invalid_context = -1,
1287 perf_hw_context = 0,
89a1e187 1288 perf_sw_context,
8dc85d54
PZ
1289 perf_nr_task_contexts,
1290};
1291
1da177e4
LT
1292struct task_struct {
1293 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1294 void *stack;
1da177e4 1295 atomic_t usage;
97dc32cd
WC
1296 unsigned int flags; /* per process flags, defined below */
1297 unsigned int ptrace;
1da177e4 1298
2dd73a4f 1299#ifdef CONFIG_SMP
fa14ff4a 1300 struct llist_node wake_entry;
3ca7a440 1301 int on_cpu;
62470419
MW
1302 struct task_struct *last_wakee;
1303 unsigned long wakee_flips;
1304 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1305
1306 int wake_cpu;
2dd73a4f 1307#endif
fd2f4419 1308 int on_rq;
50e645a8 1309
b29739f9 1310 int prio, static_prio, normal_prio;
c7aceaba 1311 unsigned int rt_priority;
5522d5d5 1312 const struct sched_class *sched_class;
20b8a59f 1313 struct sched_entity se;
fa717060 1314 struct sched_rt_entity rt;
8323f26c
PZ
1315#ifdef CONFIG_CGROUP_SCHED
1316 struct task_group *sched_task_group;
1317#endif
aab03e05 1318 struct sched_dl_entity dl;
1da177e4 1319
e107be36
AK
1320#ifdef CONFIG_PREEMPT_NOTIFIERS
1321 /* list of struct preempt_notifier: */
1322 struct hlist_head preempt_notifiers;
1323#endif
1324
6c5c9341 1325#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1326 unsigned int btrace_seq;
6c5c9341 1327#endif
1da177e4 1328
97dc32cd 1329 unsigned int policy;
29baa747 1330 int nr_cpus_allowed;
1da177e4 1331 cpumask_t cpus_allowed;
1da177e4 1332
a57eb940 1333#ifdef CONFIG_PREEMPT_RCU
e260be67 1334 int rcu_read_lock_nesting;
1d082fd0 1335 union rcu_special rcu_read_unlock_special;
f41d911f 1336 struct list_head rcu_node_entry;
a57eb940 1337#endif /* #ifdef CONFIG_PREEMPT_RCU */
28f6569a 1338#ifdef CONFIG_PREEMPT_RCU
a57eb940 1339 struct rcu_node *rcu_blocked_node;
28f6569a 1340#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1341#ifdef CONFIG_TASKS_RCU
1342 unsigned long rcu_tasks_nvcsw;
1343 bool rcu_tasks_holdout;
1344 struct list_head rcu_tasks_holdout_list;
176f8f7a 1345 int rcu_tasks_idle_cpu;
8315f422 1346#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1347
52f17b6c 1348#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
1349 struct sched_info sched_info;
1350#endif
1351
1352 struct list_head tasks;
806c09a7 1353#ifdef CONFIG_SMP
917b627d 1354 struct plist_node pushable_tasks;
1baca4ce 1355 struct rb_node pushable_dl_tasks;
806c09a7 1356#endif
1da177e4
LT
1357
1358 struct mm_struct *mm, *active_mm;
4471a675
JK
1359#ifdef CONFIG_COMPAT_BRK
1360 unsigned brk_randomized:1;
1361#endif
615d6e87
DB
1362 /* per-thread vma caching */
1363 u32 vmacache_seqnum;
1364 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1365#if defined(SPLIT_RSS_COUNTING)
1366 struct task_rss_stat rss_stat;
1367#endif
1da177e4 1368/* task state */
97dc32cd 1369 int exit_state;
1da177e4
LT
1370 int exit_code, exit_signal;
1371 int pdeath_signal; /* The signal sent when the parent dies */
a8f072c1 1372 unsigned int jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1373
1374 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1375 unsigned int personality;
9b89f6ba 1376
f9ce1f1c
KT
1377 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1378 * execve */
8f0dfc34
AV
1379 unsigned in_iowait:1;
1380
ca94c442
LP
1381 /* Revert to default priority/policy when forking */
1382 unsigned sched_reset_on_fork:1;
a8e4f2ea 1383 unsigned sched_contributes_to_load:1;
ca94c442 1384
6f185c29
VD
1385#ifdef CONFIG_MEMCG_KMEM
1386 unsigned memcg_kmem_skip_account:1;
1387#endif
1388
1d4457f9
KC
1389 unsigned long atomic_flags; /* Flags needing atomic access. */
1390
f56141e3
AL
1391 struct restart_block restart_block;
1392
1da177e4
LT
1393 pid_t pid;
1394 pid_t tgid;
0a425405 1395
1314562a 1396#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1397 /* Canary value for the -fstack-protector gcc feature */
1398 unsigned long stack_canary;
1314562a 1399#endif
4d1d61a6 1400 /*
1da177e4 1401 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1402 * older sibling, respectively. (p->father can be replaced with
f470021a 1403 * p->real_parent->pid)
1da177e4 1404 */
abd63bc3
KC
1405 struct task_struct __rcu *real_parent; /* real parent process */
1406 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1407 /*
f470021a 1408 * children/sibling forms the list of my natural children
1da177e4
LT
1409 */
1410 struct list_head children; /* list of my children */
1411 struct list_head sibling; /* linkage in my parent's children list */
1412 struct task_struct *group_leader; /* threadgroup leader */
1413
f470021a
RM
1414 /*
1415 * ptraced is the list of tasks this task is using ptrace on.
1416 * This includes both natural children and PTRACE_ATTACH targets.
1417 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1418 */
1419 struct list_head ptraced;
1420 struct list_head ptrace_entry;
1421
1da177e4 1422 /* PID/PID hash table linkage. */
92476d7f 1423 struct pid_link pids[PIDTYPE_MAX];
47e65328 1424 struct list_head thread_group;
0c740d0a 1425 struct list_head thread_node;
1da177e4
LT
1426
1427 struct completion *vfork_done; /* for vfork() */
1428 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1429 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1430
c66f08be 1431 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1432 cputime_t gtime;
9fbc42ea 1433#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1434 struct cputime prev_cputime;
6a61671b
FW
1435#endif
1436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1437 seqlock_t vtime_seqlock;
1438 unsigned long long vtime_snap;
1439 enum {
1440 VTIME_SLEEPING = 0,
1441 VTIME_USER,
1442 VTIME_SYS,
1443 } vtime_snap_whence;
d99ca3b9 1444#endif
1da177e4 1445 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1446 u64 start_time; /* monotonic time in nsec */
57e0be04 1447 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1448/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1449 unsigned long min_flt, maj_flt;
1450
f06febc9 1451 struct task_cputime cputime_expires;
1da177e4
LT
1452 struct list_head cpu_timers[3];
1453
1454/* process credentials */
1b0ba1c9 1455 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1456 * credentials (COW) */
1b0ba1c9 1457 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1458 * credentials (COW) */
36772092
PBG
1459 char comm[TASK_COMM_LEN]; /* executable name excluding path
1460 - access with [gs]et_task_comm (which lock
1461 it with task_lock())
221af7f8 1462 - initialized normally by setup_new_exec */
1da177e4
LT
1463/* file system info */
1464 int link_count, total_link_count;
3d5b6fcc 1465#ifdef CONFIG_SYSVIPC
1da177e4
LT
1466/* ipc stuff */
1467 struct sysv_sem sysvsem;
ab602f79 1468 struct sysv_shm sysvshm;
3d5b6fcc 1469#endif
e162b39a 1470#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1471/* hung task detection */
82a1fcb9
IM
1472 unsigned long last_switch_count;
1473#endif
1da177e4
LT
1474/* CPU-specific state of this task */
1475 struct thread_struct thread;
1476/* filesystem information */
1477 struct fs_struct *fs;
1478/* open file information */
1479 struct files_struct *files;
1651e14e 1480/* namespaces */
ab516013 1481 struct nsproxy *nsproxy;
1da177e4
LT
1482/* signal handlers */
1483 struct signal_struct *signal;
1484 struct sighand_struct *sighand;
1485
1486 sigset_t blocked, real_blocked;
f3de272b 1487 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1488 struct sigpending pending;
1489
1490 unsigned long sas_ss_sp;
1491 size_t sas_ss_size;
1492 int (*notifier)(void *priv);
1493 void *notifier_data;
1494 sigset_t *notifier_mask;
67d12145 1495 struct callback_head *task_works;
e73f8959 1496
1da177e4 1497 struct audit_context *audit_context;
bfef93a5 1498#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1499 kuid_t loginuid;
4746ec5b 1500 unsigned int sessionid;
bfef93a5 1501#endif
932ecebb 1502 struct seccomp seccomp;
1da177e4
LT
1503
1504/* Thread group tracking */
1505 u32 parent_exec_id;
1506 u32 self_exec_id;
58568d2a
MX
1507/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1508 * mempolicy */
1da177e4 1509 spinlock_t alloc_lock;
1da177e4 1510
b29739f9 1511 /* Protection of the PI data structures: */
1d615482 1512 raw_spinlock_t pi_lock;
b29739f9 1513
23f78d4a
IM
1514#ifdef CONFIG_RT_MUTEXES
1515 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1516 struct rb_root pi_waiters;
1517 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1518 /* Deadlock detection and priority inheritance handling */
1519 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1520#endif
1521
408894ee
IM
1522#ifdef CONFIG_DEBUG_MUTEXES
1523 /* mutex deadlock detection */
1524 struct mutex_waiter *blocked_on;
1525#endif
de30a2b3
IM
1526#ifdef CONFIG_TRACE_IRQFLAGS
1527 unsigned int irq_events;
de30a2b3 1528 unsigned long hardirq_enable_ip;
de30a2b3 1529 unsigned long hardirq_disable_ip;
fa1452e8 1530 unsigned int hardirq_enable_event;
de30a2b3 1531 unsigned int hardirq_disable_event;
fa1452e8
HS
1532 int hardirqs_enabled;
1533 int hardirq_context;
de30a2b3 1534 unsigned long softirq_disable_ip;
de30a2b3 1535 unsigned long softirq_enable_ip;
fa1452e8 1536 unsigned int softirq_disable_event;
de30a2b3 1537 unsigned int softirq_enable_event;
fa1452e8 1538 int softirqs_enabled;
de30a2b3
IM
1539 int softirq_context;
1540#endif
fbb9ce95 1541#ifdef CONFIG_LOCKDEP
bdb9441e 1542# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1543 u64 curr_chain_key;
1544 int lockdep_depth;
fbb9ce95 1545 unsigned int lockdep_recursion;
c7aceaba 1546 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1547 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1548#endif
408894ee 1549
1da177e4
LT
1550/* journalling filesystem info */
1551 void *journal_info;
1552
d89d8796 1553/* stacked block device info */
bddd87c7 1554 struct bio_list *bio_list;
d89d8796 1555
73c10101
JA
1556#ifdef CONFIG_BLOCK
1557/* stack plugging */
1558 struct blk_plug *plug;
1559#endif
1560
1da177e4
LT
1561/* VM state */
1562 struct reclaim_state *reclaim_state;
1563
1da177e4
LT
1564 struct backing_dev_info *backing_dev_info;
1565
1566 struct io_context *io_context;
1567
1568 unsigned long ptrace_message;
1569 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1570 struct task_io_accounting ioac;
8f0ab514 1571#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1572 u64 acct_rss_mem1; /* accumulated rss usage */
1573 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1574 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1575#endif
1576#ifdef CONFIG_CPUSETS
58568d2a 1577 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1578 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1579 int cpuset_mem_spread_rotor;
6adef3eb 1580 int cpuset_slab_spread_rotor;
1da177e4 1581#endif
ddbcc7e8 1582#ifdef CONFIG_CGROUPS
817929ec 1583 /* Control Group info protected by css_set_lock */
2c392b8c 1584 struct css_set __rcu *cgroups;
817929ec
PM
1585 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1586 struct list_head cg_list;
ddbcc7e8 1587#endif
42b2dd0a 1588#ifdef CONFIG_FUTEX
0771dfef 1589 struct robust_list_head __user *robust_list;
34f192c6
IM
1590#ifdef CONFIG_COMPAT
1591 struct compat_robust_list_head __user *compat_robust_list;
1592#endif
c87e2837
IM
1593 struct list_head pi_state_list;
1594 struct futex_pi_state *pi_state_cache;
c7aceaba 1595#endif
cdd6c482 1596#ifdef CONFIG_PERF_EVENTS
8dc85d54 1597 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1598 struct mutex perf_event_mutex;
1599 struct list_head perf_event_list;
a63eaf34 1600#endif
8f47b187
TG
1601#ifdef CONFIG_DEBUG_PREEMPT
1602 unsigned long preempt_disable_ip;
1603#endif
c7aceaba 1604#ifdef CONFIG_NUMA
58568d2a 1605 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1606 short il_next;
207205a2 1607 short pref_node_fork;
42b2dd0a 1608#endif
cbee9f88
PZ
1609#ifdef CONFIG_NUMA_BALANCING
1610 int numa_scan_seq;
cbee9f88 1611 unsigned int numa_scan_period;
598f0ec0 1612 unsigned int numa_scan_period_max;
de1c9ce6 1613 int numa_preferred_nid;
6b9a7460 1614 unsigned long numa_migrate_retry;
cbee9f88 1615 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1616 u64 last_task_numa_placement;
1617 u64 last_sum_exec_runtime;
cbee9f88 1618 struct callback_head numa_work;
f809ca9a 1619
8c8a743c
PZ
1620 struct list_head numa_entry;
1621 struct numa_group *numa_group;
1622
745d6147 1623 /*
44dba3d5
IM
1624 * numa_faults is an array split into four regions:
1625 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1626 * in this precise order.
1627 *
1628 * faults_memory: Exponential decaying average of faults on a per-node
1629 * basis. Scheduling placement decisions are made based on these
1630 * counts. The values remain static for the duration of a PTE scan.
1631 * faults_cpu: Track the nodes the process was running on when a NUMA
1632 * hinting fault was incurred.
1633 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1634 * during the current scan window. When the scan completes, the counts
1635 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1636 */
44dba3d5 1637 unsigned long *numa_faults;
83e1d2cd 1638 unsigned long total_numa_faults;
745d6147 1639
04bb2f94
RR
1640 /*
1641 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1642 * scan window were remote/local or failed to migrate. The task scan
1643 * period is adapted based on the locality of the faults with different
1644 * weights depending on whether they were shared or private faults
04bb2f94 1645 */
074c2381 1646 unsigned long numa_faults_locality[3];
04bb2f94 1647
b32e86b4 1648 unsigned long numa_pages_migrated;
cbee9f88
PZ
1649#endif /* CONFIG_NUMA_BALANCING */
1650
e56d0903 1651 struct rcu_head rcu;
b92ce558
JA
1652
1653 /*
1654 * cache last used pipe for splice
1655 */
1656 struct pipe_inode_info *splice_pipe;
5640f768
ED
1657
1658 struct page_frag task_frag;
1659
ca74e92b
SN
1660#ifdef CONFIG_TASK_DELAY_ACCT
1661 struct task_delay_info *delays;
f4f154fd
AM
1662#endif
1663#ifdef CONFIG_FAULT_INJECTION
1664 int make_it_fail;
ca74e92b 1665#endif
9d823e8f
WF
1666 /*
1667 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1668 * balance_dirty_pages() for some dirty throttling pause
1669 */
1670 int nr_dirtied;
1671 int nr_dirtied_pause;
83712358 1672 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1673
9745512c
AV
1674#ifdef CONFIG_LATENCYTOP
1675 int latency_record_count;
1676 struct latency_record latency_record[LT_SAVECOUNT];
1677#endif
6976675d
AV
1678 /*
1679 * time slack values; these are used to round up poll() and
1680 * select() etc timeout values. These are in nanoseconds.
1681 */
1682 unsigned long timer_slack_ns;
1683 unsigned long default_timer_slack_ns;
f8d570a4 1684
0b24becc
AR
1685#ifdef CONFIG_KASAN
1686 unsigned int kasan_depth;
1687#endif
fb52607a 1688#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1689 /* Index of current stored address in ret_stack */
f201ae23
FW
1690 int curr_ret_stack;
1691 /* Stack of return addresses for return function tracing */
1692 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1693 /* time stamp for last schedule */
1694 unsigned long long ftrace_timestamp;
f201ae23
FW
1695 /*
1696 * Number of functions that haven't been traced
1697 * because of depth overrun.
1698 */
1699 atomic_t trace_overrun;
380c4b14
FW
1700 /* Pause for the tracing */
1701 atomic_t tracing_graph_pause;
f201ae23 1702#endif
ea4e2bc4
SR
1703#ifdef CONFIG_TRACING
1704 /* state flags for use by tracers */
1705 unsigned long trace;
b1cff0ad 1706 /* bitmask and counter of trace recursion */
261842b7
SR
1707 unsigned long trace_recursion;
1708#endif /* CONFIG_TRACING */
6f185c29 1709#ifdef CONFIG_MEMCG
519e5247 1710 struct memcg_oom_info {
49426420
JW
1711 struct mem_cgroup *memcg;
1712 gfp_t gfp_mask;
1713 int order;
519e5247
JW
1714 unsigned int may_oom:1;
1715 } memcg_oom;
569b846d 1716#endif
0326f5a9
SD
1717#ifdef CONFIG_UPROBES
1718 struct uprobe_task *utask;
0326f5a9 1719#endif
cafe5635
KO
1720#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1721 unsigned int sequential_io;
1722 unsigned int sequential_io_avg;
1723#endif
8eb23b9f
PZ
1724#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1725 unsigned long task_state_change;
1726#endif
1da177e4
LT
1727};
1728
76e6eee0 1729/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1730#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1731
6688cc05
PZ
1732#define TNF_MIGRATED 0x01
1733#define TNF_NO_GROUP 0x02
dabe1d99 1734#define TNF_SHARED 0x04
04bb2f94 1735#define TNF_FAULT_LOCAL 0x08
074c2381 1736#define TNF_MIGRATE_FAIL 0x10
6688cc05 1737
cbee9f88 1738#ifdef CONFIG_NUMA_BALANCING
6688cc05 1739extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1740extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1741extern void set_numabalancing_state(bool enabled);
82727018 1742extern void task_numa_free(struct task_struct *p);
10f39042
RR
1743extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1744 int src_nid, int dst_cpu);
cbee9f88 1745#else
ac8e895b 1746static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1747 int flags)
cbee9f88
PZ
1748{
1749}
e29cf08b
MG
1750static inline pid_t task_numa_group_id(struct task_struct *p)
1751{
1752 return 0;
1753}
1a687c2e
MG
1754static inline void set_numabalancing_state(bool enabled)
1755{
1756}
82727018
RR
1757static inline void task_numa_free(struct task_struct *p)
1758{
1759}
10f39042
RR
1760static inline bool should_numa_migrate_memory(struct task_struct *p,
1761 struct page *page, int src_nid, int dst_cpu)
1762{
1763 return true;
1764}
cbee9f88
PZ
1765#endif
1766
e868171a 1767static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1768{
1769 return task->pids[PIDTYPE_PID].pid;
1770}
1771
e868171a 1772static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1773{
1774 return task->group_leader->pids[PIDTYPE_PID].pid;
1775}
1776
6dda81f4
ON
1777/*
1778 * Without tasklist or rcu lock it is not safe to dereference
1779 * the result of task_pgrp/task_session even if task == current,
1780 * we can race with another thread doing sys_setsid/sys_setpgid.
1781 */
e868171a 1782static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1783{
1784 return task->group_leader->pids[PIDTYPE_PGID].pid;
1785}
1786
e868171a 1787static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1788{
1789 return task->group_leader->pids[PIDTYPE_SID].pid;
1790}
1791
7af57294
PE
1792struct pid_namespace;
1793
1794/*
1795 * the helpers to get the task's different pids as they are seen
1796 * from various namespaces
1797 *
1798 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1799 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1800 * current.
7af57294
PE
1801 * task_xid_nr_ns() : id seen from the ns specified;
1802 *
1803 * set_task_vxid() : assigns a virtual id to a task;
1804 *
7af57294
PE
1805 * see also pid_nr() etc in include/linux/pid.h
1806 */
52ee2dfd
ON
1807pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1808 struct pid_namespace *ns);
7af57294 1809
e868171a 1810static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1811{
1812 return tsk->pid;
1813}
1814
52ee2dfd
ON
1815static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1816 struct pid_namespace *ns)
1817{
1818 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1819}
7af57294
PE
1820
1821static inline pid_t task_pid_vnr(struct task_struct *tsk)
1822{
52ee2dfd 1823 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1824}
1825
1826
e868171a 1827static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1828{
1829 return tsk->tgid;
1830}
1831
2f2a3a46 1832pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1833
1834static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1835{
1836 return pid_vnr(task_tgid(tsk));
1837}
1838
1839
80e0b6e8 1840static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1841static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1842{
1843 pid_t pid = 0;
1844
1845 rcu_read_lock();
1846 if (pid_alive(tsk))
1847 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1848 rcu_read_unlock();
1849
1850 return pid;
1851}
1852
1853static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1854{
1855 return task_ppid_nr_ns(tsk, &init_pid_ns);
1856}
1857
52ee2dfd
ON
1858static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1859 struct pid_namespace *ns)
7af57294 1860{
52ee2dfd 1861 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1862}
1863
7af57294
PE
1864static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1865{
52ee2dfd 1866 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1867}
1868
1869
52ee2dfd
ON
1870static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1871 struct pid_namespace *ns)
7af57294 1872{
52ee2dfd 1873 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1874}
1875
7af57294
PE
1876static inline pid_t task_session_vnr(struct task_struct *tsk)
1877{
52ee2dfd 1878 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1879}
1880
1b0f7ffd
ON
1881/* obsolete, do not use */
1882static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1883{
1884 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1885}
7af57294 1886
1da177e4
LT
1887/**
1888 * pid_alive - check that a task structure is not stale
1889 * @p: Task structure to be checked.
1890 *
1891 * Test if a process is not yet dead (at most zombie state)
1892 * If pid_alive fails, then pointers within the task structure
1893 * can be stale and must not be dereferenced.
e69f6186
YB
1894 *
1895 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1896 */
ad36d282 1897static inline int pid_alive(const struct task_struct *p)
1da177e4 1898{
92476d7f 1899 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1900}
1901
f400e198 1902/**
b460cbc5 1903 * is_global_init - check if a task structure is init
3260259f
H
1904 * @tsk: Task structure to be checked.
1905 *
1906 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1907 *
1908 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1909 */
e868171a 1910static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1911{
1912 return tsk->pid == 1;
1913}
b460cbc5 1914
9ec52099
CLG
1915extern struct pid *cad_pid;
1916
1da177e4 1917extern void free_task(struct task_struct *tsk);
1da177e4 1918#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1919
158d9ebd 1920extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1921
1922static inline void put_task_struct(struct task_struct *t)
1923{
1924 if (atomic_dec_and_test(&t->usage))
8c7904a0 1925 __put_task_struct(t);
e56d0903 1926}
1da177e4 1927
6a61671b
FW
1928#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1929extern void task_cputime(struct task_struct *t,
1930 cputime_t *utime, cputime_t *stime);
1931extern void task_cputime_scaled(struct task_struct *t,
1932 cputime_t *utimescaled, cputime_t *stimescaled);
1933extern cputime_t task_gtime(struct task_struct *t);
1934#else
6fac4829
FW
1935static inline void task_cputime(struct task_struct *t,
1936 cputime_t *utime, cputime_t *stime)
1937{
1938 if (utime)
1939 *utime = t->utime;
1940 if (stime)
1941 *stime = t->stime;
1942}
1943
1944static inline void task_cputime_scaled(struct task_struct *t,
1945 cputime_t *utimescaled,
1946 cputime_t *stimescaled)
1947{
1948 if (utimescaled)
1949 *utimescaled = t->utimescaled;
1950 if (stimescaled)
1951 *stimescaled = t->stimescaled;
1952}
6a61671b
FW
1953
1954static inline cputime_t task_gtime(struct task_struct *t)
1955{
1956 return t->gtime;
1957}
1958#endif
e80d0a1a
FW
1959extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1960extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 1961
1da177e4
LT
1962/*
1963 * Per process flags
1964 */
1da177e4 1965#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 1966#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 1967#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 1968#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 1969#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 1970#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
1971#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1972#define PF_DUMPCORE 0x00000200 /* dumped core */
1973#define PF_SIGNALED 0x00000400 /* killed by a signal */
1974#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 1975#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 1976#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 1977#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
1978#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1979#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1980#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1981#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 1982#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 1983#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 1984#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
1985#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1986#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 1987#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 1988#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 1989#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 1990#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 1991#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
1992
1993/*
1994 * Only the _current_ task can read/write to tsk->flags, but other
1995 * tasks can access tsk->flags in readonly mode for example
1996 * with tsk_used_math (like during threaded core dumping).
1997 * There is however an exception to this rule during ptrace
1998 * or during fork: the ptracer task is allowed to write to the
1999 * child->flags of its traced child (same goes for fork, the parent
2000 * can write to the child->flags), because we're guaranteed the
2001 * child is not running and in turn not changing child->flags
2002 * at the same time the parent does it.
2003 */
2004#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2005#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2006#define clear_used_math() clear_stopped_child_used_math(current)
2007#define set_used_math() set_stopped_child_used_math(current)
2008#define conditional_stopped_child_used_math(condition, child) \
2009 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2010#define conditional_used_math(condition) \
2011 conditional_stopped_child_used_math(condition, current)
2012#define copy_to_stopped_child_used_math(child) \
2013 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2014/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2015#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2016#define used_math() tsk_used_math(current)
2017
934f3072
JB
2018/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2019 * __GFP_FS is also cleared as it implies __GFP_IO.
2020 */
21caf2fc
ML
2021static inline gfp_t memalloc_noio_flags(gfp_t flags)
2022{
2023 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2024 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2025 return flags;
2026}
2027
2028static inline unsigned int memalloc_noio_save(void)
2029{
2030 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2031 current->flags |= PF_MEMALLOC_NOIO;
2032 return flags;
2033}
2034
2035static inline void memalloc_noio_restore(unsigned int flags)
2036{
2037 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2038}
2039
1d4457f9 2040/* Per-process atomic flags. */
a2b86f77 2041#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2042#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2043#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2044
1d4457f9 2045
e0e5070b
ZL
2046#define TASK_PFA_TEST(name, func) \
2047 static inline bool task_##func(struct task_struct *p) \
2048 { return test_bit(PFA_##name, &p->atomic_flags); }
2049#define TASK_PFA_SET(name, func) \
2050 static inline void task_set_##func(struct task_struct *p) \
2051 { set_bit(PFA_##name, &p->atomic_flags); }
2052#define TASK_PFA_CLEAR(name, func) \
2053 static inline void task_clear_##func(struct task_struct *p) \
2054 { clear_bit(PFA_##name, &p->atomic_flags); }
2055
2056TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2057TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2058
2ad654bc
ZL
2059TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2060TASK_PFA_SET(SPREAD_PAGE, spread_page)
2061TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2062
2063TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2064TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2065TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2066
e5c1902e 2067/*
a8f072c1 2068 * task->jobctl flags
e5c1902e 2069 */
a8f072c1 2070#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2071
a8f072c1
TH
2072#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2073#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2074#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2075#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2076#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2077#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2078#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1
TH
2079
2080#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
2081#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
2082#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
73ddff2b 2083#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
fb1d910c 2084#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
a8f072c1 2085#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
544b2c91 2086#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
a8f072c1 2087
fb1d910c 2088#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2089#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2090
7dd3db54
TH
2091extern bool task_set_jobctl_pending(struct task_struct *task,
2092 unsigned int mask);
73ddff2b 2093extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9
TH
2094extern void task_clear_jobctl_pending(struct task_struct *task,
2095 unsigned int mask);
39efa3ef 2096
f41d911f
PM
2097static inline void rcu_copy_process(struct task_struct *p)
2098{
8315f422 2099#ifdef CONFIG_PREEMPT_RCU
f41d911f 2100 p->rcu_read_lock_nesting = 0;
1d082fd0 2101 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2102 p->rcu_blocked_node = NULL;
f41d911f 2103 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2104#endif /* #ifdef CONFIG_PREEMPT_RCU */
2105#ifdef CONFIG_TASKS_RCU
2106 p->rcu_tasks_holdout = false;
2107 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2108 p->rcu_tasks_idle_cpu = -1;
8315f422 2109#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2110}
2111
907aed48
MG
2112static inline void tsk_restore_flags(struct task_struct *task,
2113 unsigned long orig_flags, unsigned long flags)
2114{
2115 task->flags &= ~flags;
2116 task->flags |= orig_flags & flags;
2117}
2118
f82f8042
JL
2119extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2120 const struct cpumask *trial);
7f51412a
JL
2121extern int task_can_attach(struct task_struct *p,
2122 const struct cpumask *cs_cpus_allowed);
1da177e4 2123#ifdef CONFIG_SMP
1e1b6c51
KM
2124extern void do_set_cpus_allowed(struct task_struct *p,
2125 const struct cpumask *new_mask);
2126
cd8ba7cd 2127extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2128 const struct cpumask *new_mask);
1da177e4 2129#else
1e1b6c51
KM
2130static inline void do_set_cpus_allowed(struct task_struct *p,
2131 const struct cpumask *new_mask)
2132{
2133}
cd8ba7cd 2134static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2135 const struct cpumask *new_mask)
1da177e4 2136{
96f874e2 2137 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2138 return -EINVAL;
2139 return 0;
2140}
2141#endif
e0ad9556 2142
3451d024 2143#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2144void calc_load_enter_idle(void);
2145void calc_load_exit_idle(void);
2146#else
2147static inline void calc_load_enter_idle(void) { }
2148static inline void calc_load_exit_idle(void) { }
3451d024 2149#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2150
e0ad9556 2151#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2152static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2153{
2154 return set_cpus_allowed_ptr(p, &new_mask);
2155}
e0ad9556 2156#endif
1da177e4 2157
b342501c 2158/*
c676329a
PZ
2159 * Do not use outside of architecture code which knows its limitations.
2160 *
2161 * sched_clock() has no promise of monotonicity or bounded drift between
2162 * CPUs, use (which you should not) requires disabling IRQs.
2163 *
2164 * Please use one of the three interfaces below.
b342501c 2165 */
1bbfa6f2 2166extern unsigned long long notrace sched_clock(void);
c676329a 2167/*
489a71b0 2168 * See the comment in kernel/sched/clock.c
c676329a
PZ
2169 */
2170extern u64 cpu_clock(int cpu);
2171extern u64 local_clock(void);
545a2bf7 2172extern u64 running_clock(void);
c676329a
PZ
2173extern u64 sched_clock_cpu(int cpu);
2174
e436d800 2175
c1955a3d 2176extern void sched_clock_init(void);
3e51f33f 2177
c1955a3d 2178#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2179static inline void sched_clock_tick(void)
2180{
2181}
2182
2183static inline void sched_clock_idle_sleep_event(void)
2184{
2185}
2186
2187static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2188{
2189}
2190#else
c676329a
PZ
2191/*
2192 * Architectures can set this to 1 if they have specified
2193 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2194 * but then during bootup it turns out that sched_clock()
2195 * is reliable after all:
2196 */
35af99e6
PZ
2197extern int sched_clock_stable(void);
2198extern void set_sched_clock_stable(void);
2199extern void clear_sched_clock_stable(void);
c676329a 2200
3e51f33f
PZ
2201extern void sched_clock_tick(void);
2202extern void sched_clock_idle_sleep_event(void);
2203extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2204#endif
2205
b52bfee4
VP
2206#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2207/*
2208 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2209 * The reason for this explicit opt-in is not to have perf penalty with
2210 * slow sched_clocks.
2211 */
2212extern void enable_sched_clock_irqtime(void);
2213extern void disable_sched_clock_irqtime(void);
2214#else
2215static inline void enable_sched_clock_irqtime(void) {}
2216static inline void disable_sched_clock_irqtime(void) {}
2217#endif
2218
36c8b586 2219extern unsigned long long
41b86e9c 2220task_sched_runtime(struct task_struct *task);
1da177e4
LT
2221
2222/* sched_exec is called by processes performing an exec */
2223#ifdef CONFIG_SMP
2224extern void sched_exec(void);
2225#else
2226#define sched_exec() {}
2227#endif
2228
2aa44d05
IM
2229extern void sched_clock_idle_sleep_event(void);
2230extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2231
1da177e4
LT
2232#ifdef CONFIG_HOTPLUG_CPU
2233extern void idle_task_exit(void);
2234#else
2235static inline void idle_task_exit(void) {}
2236#endif
2237
3451d024 2238#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2239extern void wake_up_nohz_cpu(int cpu);
06d8308c 2240#else
1c20091e 2241static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2242#endif
2243
ce831b38
FW
2244#ifdef CONFIG_NO_HZ_FULL
2245extern bool sched_can_stop_tick(void);
265f22a9 2246extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2247#else
2248static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2249#endif
2250
5091faa4 2251#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2252extern void sched_autogroup_create_attach(struct task_struct *p);
2253extern void sched_autogroup_detach(struct task_struct *p);
2254extern void sched_autogroup_fork(struct signal_struct *sig);
2255extern void sched_autogroup_exit(struct signal_struct *sig);
2256#ifdef CONFIG_PROC_FS
2257extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2258extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2259#endif
2260#else
2261static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2262static inline void sched_autogroup_detach(struct task_struct *p) { }
2263static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2264static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2265#endif
2266
fa93384f 2267extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2268extern void set_user_nice(struct task_struct *p, long nice);
2269extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2270/**
2271 * task_nice - return the nice value of a given task.
2272 * @p: the task in question.
2273 *
2274 * Return: The nice value [ -20 ... 0 ... 19 ].
2275 */
2276static inline int task_nice(const struct task_struct *p)
2277{
2278 return PRIO_TO_NICE((p)->static_prio);
2279}
36c8b586
IM
2280extern int can_nice(const struct task_struct *p, const int nice);
2281extern int task_curr(const struct task_struct *p);
1da177e4 2282extern int idle_cpu(int cpu);
fe7de49f
KM
2283extern int sched_setscheduler(struct task_struct *, int,
2284 const struct sched_param *);
961ccddd 2285extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2286 const struct sched_param *);
d50dde5a
DF
2287extern int sched_setattr(struct task_struct *,
2288 const struct sched_attr *);
36c8b586 2289extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2290/**
2291 * is_idle_task - is the specified task an idle task?
fa757281 2292 * @p: the task in question.
e69f6186
YB
2293 *
2294 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2295 */
7061ca3b 2296static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2297{
2298 return p->pid == 0;
2299}
36c8b586
IM
2300extern struct task_struct *curr_task(int cpu);
2301extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2302
2303void yield(void);
2304
1da177e4
LT
2305union thread_union {
2306 struct thread_info thread_info;
2307 unsigned long stack[THREAD_SIZE/sizeof(long)];
2308};
2309
2310#ifndef __HAVE_ARCH_KSTACK_END
2311static inline int kstack_end(void *addr)
2312{
2313 /* Reliable end of stack detection:
2314 * Some APM bios versions misalign the stack
2315 */
2316 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2317}
2318#endif
2319
2320extern union thread_union init_thread_union;
2321extern struct task_struct init_task;
2322
2323extern struct mm_struct init_mm;
2324
198fe21b
PE
2325extern struct pid_namespace init_pid_ns;
2326
2327/*
2328 * find a task by one of its numerical ids
2329 *
198fe21b
PE
2330 * find_task_by_pid_ns():
2331 * finds a task by its pid in the specified namespace
228ebcbe
PE
2332 * find_task_by_vpid():
2333 * finds a task by its virtual pid
198fe21b 2334 *
e49859e7 2335 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2336 */
2337
228ebcbe
PE
2338extern struct task_struct *find_task_by_vpid(pid_t nr);
2339extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2340 struct pid_namespace *ns);
198fe21b 2341
1da177e4 2342/* per-UID process charging. */
7b44ab97 2343extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2344static inline struct user_struct *get_uid(struct user_struct *u)
2345{
2346 atomic_inc(&u->__count);
2347 return u;
2348}
2349extern void free_uid(struct user_struct *);
1da177e4
LT
2350
2351#include <asm/current.h>
2352
f0af911a 2353extern void xtime_update(unsigned long ticks);
1da177e4 2354
b3c97528
HH
2355extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2356extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2357extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2358#ifdef CONFIG_SMP
2359 extern void kick_process(struct task_struct *tsk);
2360#else
2361 static inline void kick_process(struct task_struct *tsk) { }
2362#endif
aab03e05 2363extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2364extern void sched_dead(struct task_struct *p);
1da177e4 2365
1da177e4
LT
2366extern void proc_caches_init(void);
2367extern void flush_signals(struct task_struct *);
3bcac026 2368extern void __flush_signals(struct task_struct *);
10ab825b 2369extern void ignore_signals(struct task_struct *);
1da177e4
LT
2370extern void flush_signal_handlers(struct task_struct *, int force_default);
2371extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2372
2373static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2374{
2375 unsigned long flags;
2376 int ret;
2377
2378 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2379 ret = dequeue_signal(tsk, mask, info);
2380 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2381
2382 return ret;
53c8f9f1 2383}
1da177e4
LT
2384
2385extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2386 sigset_t *mask);
2387extern void unblock_all_signals(void);
2388extern void release_task(struct task_struct * p);
2389extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2390extern int force_sigsegv(int, struct task_struct *);
2391extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2392extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2393extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2394extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2395 const struct cred *, u32);
c4b92fc1
EB
2396extern int kill_pgrp(struct pid *pid, int sig, int priv);
2397extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2398extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2399extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2400extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2401extern void force_sig(int, struct task_struct *);
1da177e4 2402extern int send_sig(int, struct task_struct *, int);
09faef11 2403extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2404extern struct sigqueue *sigqueue_alloc(void);
2405extern void sigqueue_free(struct sigqueue *);
ac5c2153 2406extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2407extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2408
51a7b448
AV
2409static inline void restore_saved_sigmask(void)
2410{
2411 if (test_and_clear_restore_sigmask())
77097ae5 2412 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2413}
2414
b7f9a11a
AV
2415static inline sigset_t *sigmask_to_save(void)
2416{
2417 sigset_t *res = &current->blocked;
2418 if (unlikely(test_restore_sigmask()))
2419 res = &current->saved_sigmask;
2420 return res;
2421}
2422
9ec52099
CLG
2423static inline int kill_cad_pid(int sig, int priv)
2424{
2425 return kill_pid(cad_pid, sig, priv);
2426}
2427
1da177e4
LT
2428/* These can be the second arg to send_sig_info/send_group_sig_info. */
2429#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2430#define SEND_SIG_PRIV ((struct siginfo *) 1)
2431#define SEND_SIG_FORCED ((struct siginfo *) 2)
2432
2a855dd0
SAS
2433/*
2434 * True if we are on the alternate signal stack.
2435 */
1da177e4
LT
2436static inline int on_sig_stack(unsigned long sp)
2437{
2a855dd0
SAS
2438#ifdef CONFIG_STACK_GROWSUP
2439 return sp >= current->sas_ss_sp &&
2440 sp - current->sas_ss_sp < current->sas_ss_size;
2441#else
2442 return sp > current->sas_ss_sp &&
2443 sp - current->sas_ss_sp <= current->sas_ss_size;
2444#endif
1da177e4
LT
2445}
2446
2447static inline int sas_ss_flags(unsigned long sp)
2448{
72f15c03
RW
2449 if (!current->sas_ss_size)
2450 return SS_DISABLE;
2451
2452 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2453}
2454
5a1b98d3
AV
2455static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2456{
2457 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2458#ifdef CONFIG_STACK_GROWSUP
2459 return current->sas_ss_sp;
2460#else
2461 return current->sas_ss_sp + current->sas_ss_size;
2462#endif
2463 return sp;
2464}
2465
1da177e4
LT
2466/*
2467 * Routines for handling mm_structs
2468 */
2469extern struct mm_struct * mm_alloc(void);
2470
2471/* mmdrop drops the mm and the page tables */
b3c97528 2472extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2473static inline void mmdrop(struct mm_struct * mm)
2474{
6fb43d7b 2475 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2476 __mmdrop(mm);
2477}
2478
2479/* mmput gets rid of the mappings and all user-space */
2480extern void mmput(struct mm_struct *);
2481/* Grab a reference to a task's mm, if it is not already going away */
2482extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2483/*
2484 * Grab a reference to a task's mm, if it is not already going away
2485 * and ptrace_may_access with the mode parameter passed to it
2486 * succeeds.
2487 */
2488extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2489/* Remove the current tasks stale references to the old mm_struct */
2490extern void mm_release(struct task_struct *, struct mm_struct *);
2491
6f2c55b8 2492extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2493 struct task_struct *);
1da177e4
LT
2494extern void flush_thread(void);
2495extern void exit_thread(void);
2496
1da177e4 2497extern void exit_files(struct task_struct *);
a7e5328a 2498extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2499
1da177e4 2500extern void exit_itimers(struct signal_struct *);
cbaffba1 2501extern void flush_itimer_signals(void);
1da177e4 2502
9402c95f 2503extern void do_group_exit(int);
1da177e4 2504
c4ad8f98 2505extern int do_execve(struct filename *,
d7627467 2506 const char __user * const __user *,
da3d4c5f 2507 const char __user * const __user *);
51f39a1f
DD
2508extern int do_execveat(int, struct filename *,
2509 const char __user * const __user *,
2510 const char __user * const __user *,
2511 int);
e80d6661 2512extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2513struct task_struct *fork_idle(int);
2aa3a7f8 2514extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2515
82b89778
AH
2516extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2517static inline void set_task_comm(struct task_struct *tsk, const char *from)
2518{
2519 __set_task_comm(tsk, from, false);
2520}
59714d65 2521extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2522
2523#ifdef CONFIG_SMP
317f3941 2524void scheduler_ipi(void);
85ba2d86 2525extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2526#else
184748cc 2527static inline void scheduler_ipi(void) { }
85ba2d86
RM
2528static inline unsigned long wait_task_inactive(struct task_struct *p,
2529 long match_state)
2530{
2531 return 1;
2532}
1da177e4
LT
2533#endif
2534
05725f7e
JP
2535#define next_task(p) \
2536 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2537
2538#define for_each_process(p) \
2539 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2540
5bb459bb 2541extern bool current_is_single_threaded(void);
d84f4f99 2542
1da177e4
LT
2543/*
2544 * Careful: do_each_thread/while_each_thread is a double loop so
2545 * 'break' will not work as expected - use goto instead.
2546 */
2547#define do_each_thread(g, t) \
2548 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2549
2550#define while_each_thread(g, t) \
2551 while ((t = next_thread(t)) != g)
2552
0c740d0a
ON
2553#define __for_each_thread(signal, t) \
2554 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2555
2556#define for_each_thread(p, t) \
2557 __for_each_thread((p)->signal, t)
2558
2559/* Careful: this is a double loop, 'break' won't work as expected. */
2560#define for_each_process_thread(p, t) \
2561 for_each_process(p) for_each_thread(p, t)
2562
7e49827c
ON
2563static inline int get_nr_threads(struct task_struct *tsk)
2564{
b3ac022c 2565 return tsk->signal->nr_threads;
7e49827c
ON
2566}
2567
087806b1
ON
2568static inline bool thread_group_leader(struct task_struct *p)
2569{
2570 return p->exit_signal >= 0;
2571}
1da177e4 2572
0804ef4b
EB
2573/* Do to the insanities of de_thread it is possible for a process
2574 * to have the pid of the thread group leader without actually being
2575 * the thread group leader. For iteration through the pids in proc
2576 * all we care about is that we have a task with the appropriate
2577 * pid, we don't actually care if we have the right task.
2578 */
e1403b8e 2579static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2580{
e1403b8e 2581 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2582}
2583
bac0abd6 2584static inline
e1403b8e 2585bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2586{
e1403b8e 2587 return p1->signal == p2->signal;
bac0abd6
PE
2588}
2589
36c8b586 2590static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2591{
05725f7e
JP
2592 return list_entry_rcu(p->thread_group.next,
2593 struct task_struct, thread_group);
47e65328
ON
2594}
2595
e868171a 2596static inline int thread_group_empty(struct task_struct *p)
1da177e4 2597{
47e65328 2598 return list_empty(&p->thread_group);
1da177e4
LT
2599}
2600
2601#define delay_group_leader(p) \
2602 (thread_group_leader(p) && !thread_group_empty(p))
2603
1da177e4 2604/*
260ea101 2605 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2606 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2607 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2608 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2609 *
2610 * Nests both inside and outside of read_lock(&tasklist_lock).
2611 * It must not be nested with write_lock_irq(&tasklist_lock),
2612 * neither inside nor outside.
2613 */
2614static inline void task_lock(struct task_struct *p)
2615{
2616 spin_lock(&p->alloc_lock);
2617}
2618
2619static inline void task_unlock(struct task_struct *p)
2620{
2621 spin_unlock(&p->alloc_lock);
2622}
2623
b8ed374e 2624extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2625 unsigned long *flags);
2626
9388dc30
AV
2627static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2628 unsigned long *flags)
2629{
2630 struct sighand_struct *ret;
2631
2632 ret = __lock_task_sighand(tsk, flags);
2633 (void)__cond_lock(&tsk->sighand->siglock, ret);
2634 return ret;
2635}
b8ed374e 2636
f63ee72e
ON
2637static inline void unlock_task_sighand(struct task_struct *tsk,
2638 unsigned long *flags)
2639{
2640 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2641}
2642
4714d1d3 2643#ifdef CONFIG_CGROUPS
257058ae 2644static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2645{
257058ae 2646 down_read(&tsk->signal->group_rwsem);
4714d1d3 2647}
257058ae 2648static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2649{
257058ae 2650 up_read(&tsk->signal->group_rwsem);
4714d1d3 2651}
77e4ef99
TH
2652
2653/**
2654 * threadgroup_lock - lock threadgroup
2655 * @tsk: member task of the threadgroup to lock
2656 *
2657 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2658 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2659 * change ->group_leader/pid. This is useful for cases where the threadgroup
2660 * needs to stay stable across blockable operations.
77e4ef99
TH
2661 *
2662 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2663 * synchronization. While held, no new task will be added to threadgroup
2664 * and no existing live task will have its PF_EXITING set.
2665 *
e56fb287
ON
2666 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2667 * sub-thread becomes a new leader.
77e4ef99 2668 */
257058ae 2669static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2670{
257058ae 2671 down_write(&tsk->signal->group_rwsem);
4714d1d3 2672}
77e4ef99
TH
2673
2674/**
2675 * threadgroup_unlock - unlock threadgroup
2676 * @tsk: member task of the threadgroup to unlock
2677 *
2678 * Reverse threadgroup_lock().
2679 */
257058ae 2680static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2681{
257058ae 2682 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2683}
2684#else
257058ae
TH
2685static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2686static inline void threadgroup_change_end(struct task_struct *tsk) {}
2687static inline void threadgroup_lock(struct task_struct *tsk) {}
2688static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2689#endif
2690
f037360f
AV
2691#ifndef __HAVE_THREAD_FUNCTIONS
2692
f7e4217b
RZ
2693#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2694#define task_stack_page(task) ((task)->stack)
a1261f54 2695
10ebffde
AV
2696static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2697{
2698 *task_thread_info(p) = *task_thread_info(org);
2699 task_thread_info(p)->task = p;
2700}
2701
6a40281a
CE
2702/*
2703 * Return the address of the last usable long on the stack.
2704 *
2705 * When the stack grows down, this is just above the thread
2706 * info struct. Going any lower will corrupt the threadinfo.
2707 *
2708 * When the stack grows up, this is the highest address.
2709 * Beyond that position, we corrupt data on the next page.
2710 */
10ebffde
AV
2711static inline unsigned long *end_of_stack(struct task_struct *p)
2712{
6a40281a
CE
2713#ifdef CONFIG_STACK_GROWSUP
2714 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2715#else
f7e4217b 2716 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2717#endif
10ebffde
AV
2718}
2719
f037360f 2720#endif
a70857e4
AT
2721#define task_stack_end_corrupted(task) \
2722 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2723
8b05c7e6
FT
2724static inline int object_is_on_stack(void *obj)
2725{
2726 void *stack = task_stack_page(current);
2727
2728 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2729}
2730
8c9843e5
BH
2731extern void thread_info_cache_init(void);
2732
7c9f8861
ES
2733#ifdef CONFIG_DEBUG_STACK_USAGE
2734static inline unsigned long stack_not_used(struct task_struct *p)
2735{
2736 unsigned long *n = end_of_stack(p);
2737
2738 do { /* Skip over canary */
2739 n++;
2740 } while (!*n);
2741
2742 return (unsigned long)n - (unsigned long)end_of_stack(p);
2743}
2744#endif
d4311ff1 2745extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2746
1da177e4
LT
2747/* set thread flags in other task's structures
2748 * - see asm/thread_info.h for TIF_xxxx flags available
2749 */
2750static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2751{
a1261f54 2752 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2753}
2754
2755static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2756{
a1261f54 2757 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2758}
2759
2760static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2761{
a1261f54 2762 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2763}
2764
2765static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2766{
a1261f54 2767 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2768}
2769
2770static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2771{
a1261f54 2772 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2773}
2774
2775static inline void set_tsk_need_resched(struct task_struct *tsk)
2776{
2777 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2778}
2779
2780static inline void clear_tsk_need_resched(struct task_struct *tsk)
2781{
2782 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2783}
2784
8ae121ac
GH
2785static inline int test_tsk_need_resched(struct task_struct *tsk)
2786{
2787 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2788}
2789
690cc3ff
EB
2790static inline int restart_syscall(void)
2791{
2792 set_tsk_thread_flag(current, TIF_SIGPENDING);
2793 return -ERESTARTNOINTR;
2794}
2795
1da177e4
LT
2796static inline int signal_pending(struct task_struct *p)
2797{
2798 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2799}
f776d12d 2800
d9588725
RM
2801static inline int __fatal_signal_pending(struct task_struct *p)
2802{
2803 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2804}
f776d12d
MW
2805
2806static inline int fatal_signal_pending(struct task_struct *p)
2807{
2808 return signal_pending(p) && __fatal_signal_pending(p);
2809}
2810
16882c1e
ON
2811static inline int signal_pending_state(long state, struct task_struct *p)
2812{
2813 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2814 return 0;
2815 if (!signal_pending(p))
2816 return 0;
2817
16882c1e
ON
2818 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2819}
2820
1da177e4
LT
2821/*
2822 * cond_resched() and cond_resched_lock(): latency reduction via
2823 * explicit rescheduling in places that are safe. The return
2824 * value indicates whether a reschedule was done in fact.
2825 * cond_resched_lock() will drop the spinlock before scheduling,
2826 * cond_resched_softirq() will enable bhs before scheduling.
2827 */
c3921ab7 2828extern int _cond_resched(void);
6f80bd98 2829
613afbf8 2830#define cond_resched() ({ \
3427445a 2831 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2832 _cond_resched(); \
2833})
6f80bd98 2834
613afbf8
FW
2835extern int __cond_resched_lock(spinlock_t *lock);
2836
bdd4e85d 2837#ifdef CONFIG_PREEMPT_COUNT
716a4234 2838#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2839#else
716a4234 2840#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2841#endif
716a4234 2842
613afbf8 2843#define cond_resched_lock(lock) ({ \
3427445a 2844 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2845 __cond_resched_lock(lock); \
2846})
2847
2848extern int __cond_resched_softirq(void);
2849
75e1056f 2850#define cond_resched_softirq() ({ \
3427445a 2851 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2852 __cond_resched_softirq(); \
613afbf8 2853})
1da177e4 2854
f6f3c437
SH
2855static inline void cond_resched_rcu(void)
2856{
2857#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2858 rcu_read_unlock();
2859 cond_resched();
2860 rcu_read_lock();
2861#endif
2862}
2863
1da177e4
LT
2864/*
2865 * Does a critical section need to be broken due to another
95c354fe
NP
2866 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2867 * but a general need for low latency)
1da177e4 2868 */
95c354fe 2869static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2870{
95c354fe
NP
2871#ifdef CONFIG_PREEMPT
2872 return spin_is_contended(lock);
2873#else
1da177e4 2874 return 0;
95c354fe 2875#endif
1da177e4
LT
2876}
2877
ee761f62
TG
2878/*
2879 * Idle thread specific functions to determine the need_resched
69dd0f84 2880 * polling state.
ee761f62 2881 */
69dd0f84 2882#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2883static inline int tsk_is_polling(struct task_struct *p)
2884{
2885 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2886}
ea811747
PZ
2887
2888static inline void __current_set_polling(void)
3a98f871
TG
2889{
2890 set_thread_flag(TIF_POLLING_NRFLAG);
2891}
2892
ea811747
PZ
2893static inline bool __must_check current_set_polling_and_test(void)
2894{
2895 __current_set_polling();
2896
2897 /*
2898 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2899 * paired by resched_curr()
ea811747 2900 */
4e857c58 2901 smp_mb__after_atomic();
ea811747
PZ
2902
2903 return unlikely(tif_need_resched());
2904}
2905
2906static inline void __current_clr_polling(void)
3a98f871
TG
2907{
2908 clear_thread_flag(TIF_POLLING_NRFLAG);
2909}
ea811747
PZ
2910
2911static inline bool __must_check current_clr_polling_and_test(void)
2912{
2913 __current_clr_polling();
2914
2915 /*
2916 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2917 * paired by resched_curr()
ea811747 2918 */
4e857c58 2919 smp_mb__after_atomic();
ea811747
PZ
2920
2921 return unlikely(tif_need_resched());
2922}
2923
ee761f62
TG
2924#else
2925static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2926static inline void __current_set_polling(void) { }
2927static inline void __current_clr_polling(void) { }
2928
2929static inline bool __must_check current_set_polling_and_test(void)
2930{
2931 return unlikely(tif_need_resched());
2932}
2933static inline bool __must_check current_clr_polling_and_test(void)
2934{
2935 return unlikely(tif_need_resched());
2936}
ee761f62
TG
2937#endif
2938
8cb75e0c
PZ
2939static inline void current_clr_polling(void)
2940{
2941 __current_clr_polling();
2942
2943 /*
2944 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2945 * Once the bit is cleared, we'll get IPIs with every new
2946 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2947 * fold.
2948 */
8875125e 2949 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
2950
2951 preempt_fold_need_resched();
2952}
2953
75f93fed
PZ
2954static __always_inline bool need_resched(void)
2955{
2956 return unlikely(tif_need_resched());
2957}
2958
f06febc9
FM
2959/*
2960 * Thread group CPU time accounting.
2961 */
4cd4c1b4 2962void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 2963void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 2964
490dea45 2965static inline void thread_group_cputime_init(struct signal_struct *sig)
f06febc9 2966{
ee30a7b2 2967 raw_spin_lock_init(&sig->cputimer.lock);
f06febc9
FM
2968}
2969
7bb44ade
RM
2970/*
2971 * Reevaluate whether the task has signals pending delivery.
2972 * Wake the task if so.
2973 * This is required every time the blocked sigset_t changes.
2974 * callers must hold sighand->siglock.
2975 */
2976extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
2977extern void recalc_sigpending(void);
2978
910ffdb1
ON
2979extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2980
2981static inline void signal_wake_up(struct task_struct *t, bool resume)
2982{
2983 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2984}
2985static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2986{
2987 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2988}
1da177e4
LT
2989
2990/*
2991 * Wrappers for p->thread_info->cpu access. No-op on UP.
2992 */
2993#ifdef CONFIG_SMP
2994
2995static inline unsigned int task_cpu(const struct task_struct *p)
2996{
a1261f54 2997 return task_thread_info(p)->cpu;
1da177e4
LT
2998}
2999
b32e86b4
IM
3000static inline int task_node(const struct task_struct *p)
3001{
3002 return cpu_to_node(task_cpu(p));
3003}
3004
c65cc870 3005extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3006
3007#else
3008
3009static inline unsigned int task_cpu(const struct task_struct *p)
3010{
3011 return 0;
3012}
3013
3014static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3015{
3016}
3017
3018#endif /* CONFIG_SMP */
3019
96f874e2
RR
3020extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3021extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3022
7c941438 3023#ifdef CONFIG_CGROUP_SCHED
07e06b01 3024extern struct task_group root_task_group;
8323f26c 3025#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3026
54e99124
DG
3027extern int task_can_switch_user(struct user_struct *up,
3028 struct task_struct *tsk);
3029
4b98d11b
AD
3030#ifdef CONFIG_TASK_XACCT
3031static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3032{
940389b8 3033 tsk->ioac.rchar += amt;
4b98d11b
AD
3034}
3035
3036static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3037{
940389b8 3038 tsk->ioac.wchar += amt;
4b98d11b
AD
3039}
3040
3041static inline void inc_syscr(struct task_struct *tsk)
3042{
940389b8 3043 tsk->ioac.syscr++;
4b98d11b
AD
3044}
3045
3046static inline void inc_syscw(struct task_struct *tsk)
3047{
940389b8 3048 tsk->ioac.syscw++;
4b98d11b
AD
3049}
3050#else
3051static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3052{
3053}
3054
3055static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3056{
3057}
3058
3059static inline void inc_syscr(struct task_struct *tsk)
3060{
3061}
3062
3063static inline void inc_syscw(struct task_struct *tsk)
3064{
3065}
3066#endif
3067
82455257
DH
3068#ifndef TASK_SIZE_OF
3069#define TASK_SIZE_OF(tsk) TASK_SIZE
3070#endif
3071
f98bafa0 3072#ifdef CONFIG_MEMCG
cf475ad2 3073extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3074#else
3075static inline void mm_update_next_owner(struct mm_struct *mm)
3076{
3077}
f98bafa0 3078#endif /* CONFIG_MEMCG */
cf475ad2 3079
3e10e716
JS
3080static inline unsigned long task_rlimit(const struct task_struct *tsk,
3081 unsigned int limit)
3082{
3083 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3084}
3085
3086static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3087 unsigned int limit)
3088{
3089 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3090}
3091
3092static inline unsigned long rlimit(unsigned int limit)
3093{
3094 return task_rlimit(current, limit);
3095}
3096
3097static inline unsigned long rlimit_max(unsigned int limit)
3098{
3099 return task_rlimit_max(current, limit);
3100}
3101
1da177e4 3102#endif