Merge branch 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
525705d1 180extern void update_cpu_load_nohz(int active);
3289bdb4 181#else
525705d1 182static inline void update_cpu_load_nohz(int active) { }
3289bdb4 183#endif
1da177e4 184
b637a328
PM
185extern void dump_cpu_task(int cpu);
186
43ae34cb
IM
187struct seq_file;
188struct cfs_rq;
4cf86d77 189struct task_group;
43ae34cb
IM
190#ifdef CONFIG_SCHED_DEBUG
191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 193#endif
1da177e4 194
4a8342d2
LT
195/*
196 * Task state bitmask. NOTE! These bits are also
197 * encoded in fs/proc/array.c: get_task_state().
198 *
199 * We have two separate sets of flags: task->state
200 * is about runnability, while task->exit_state are
201 * about the task exiting. Confusing, but this way
202 * modifying one set can't modify the other one by
203 * mistake.
204 */
1da177e4
LT
205#define TASK_RUNNING 0
206#define TASK_INTERRUPTIBLE 1
207#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
208#define __TASK_STOPPED 4
209#define __TASK_TRACED 8
4a8342d2 210/* in tsk->exit_state */
ad86622b
ON
211#define EXIT_DEAD 16
212#define EXIT_ZOMBIE 32
abd50b39 213#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 214/* in tsk->state again */
af927232 215#define TASK_DEAD 64
f021a3c2 216#define TASK_WAKEKILL 128
e9c84311 217#define TASK_WAKING 256
f2530dc7 218#define TASK_PARKED 512
80ed87c8
PZ
219#define TASK_NOLOAD 1024
220#define TASK_STATE_MAX 2048
f021a3c2 221
80ed87c8 222#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 223
e1781538
PZ
224extern char ___assert_task_state[1 - 2*!!(
225 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
226
227/* Convenience macros for the sake of set_task_state */
228#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
229#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
230#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 231
80ed87c8
PZ
232#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
233
92a1f4bc
MW
234/* Convenience macros for the sake of wake_up */
235#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 236#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
237
238/* get_task_state() */
239#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 240 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 241 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 242
f021a3c2
MW
243#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
244#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 245#define task_is_stopped_or_traced(task) \
f021a3c2 246 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 247#define task_contributes_to_load(task) \
e3c8ca83 248 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
249 (task->flags & PF_FROZEN) == 0 && \
250 (task->state & TASK_NOLOAD) == 0)
1da177e4 251
8eb23b9f
PZ
252#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
253
254#define __set_task_state(tsk, state_value) \
255 do { \
256 (tsk)->task_state_change = _THIS_IP_; \
257 (tsk)->state = (state_value); \
258 } while (0)
259#define set_task_state(tsk, state_value) \
260 do { \
261 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 262 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
263 } while (0)
264
265/*
266 * set_current_state() includes a barrier so that the write of current->state
267 * is correctly serialised wrt the caller's subsequent test of whether to
268 * actually sleep:
269 *
270 * set_current_state(TASK_UNINTERRUPTIBLE);
271 * if (do_i_need_to_sleep())
272 * schedule();
273 *
274 * If the caller does not need such serialisation then use __set_current_state()
275 */
276#define __set_current_state(state_value) \
277 do { \
278 current->task_state_change = _THIS_IP_; \
279 current->state = (state_value); \
280 } while (0)
281#define set_current_state(state_value) \
282 do { \
283 current->task_state_change = _THIS_IP_; \
b92b8b35 284 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
285 } while (0)
286
287#else
288
1da177e4
LT
289#define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291#define set_task_state(tsk, state_value) \
b92b8b35 292 smp_store_mb((tsk)->state, (state_value))
1da177e4 293
498d0c57
AM
294/*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
299 * set_current_state(TASK_UNINTERRUPTIBLE);
300 * if (do_i_need_to_sleep())
301 * schedule();
302 *
303 * If the caller does not need such serialisation then use __set_current_state()
304 */
8eb23b9f 305#define __set_current_state(state_value) \
1da177e4 306 do { current->state = (state_value); } while (0)
8eb23b9f 307#define set_current_state(state_value) \
b92b8b35 308 smp_store_mb(current->state, (state_value))
1da177e4 309
8eb23b9f
PZ
310#endif
311
1da177e4
LT
312/* Task command name length */
313#define TASK_COMM_LEN 16
314
1da177e4
LT
315#include <linux/spinlock.h>
316
317/*
318 * This serializes "schedule()" and also protects
319 * the run-queue from deletions/modifications (but
320 * _adding_ to the beginning of the run-queue has
321 * a separate lock).
322 */
323extern rwlock_t tasklist_lock;
324extern spinlock_t mmlist_lock;
325
36c8b586 326struct task_struct;
1da177e4 327
db1466b3
PM
328#ifdef CONFIG_PROVE_RCU
329extern int lockdep_tasklist_lock_is_held(void);
330#endif /* #ifdef CONFIG_PROVE_RCU */
331
1da177e4
LT
332extern void sched_init(void);
333extern void sched_init_smp(void);
2d07b255 334extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 335extern void init_idle(struct task_struct *idle, int cpu);
1df21055 336extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 337
3fa0818b
RR
338extern cpumask_var_t cpu_isolated_map;
339
89f19f04 340extern int runqueue_is_locked(int cpu);
017730c1 341
3451d024 342#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 343extern void nohz_balance_enter_idle(int cpu);
69e1e811 344extern void set_cpu_sd_state_idle(void);
bc7a34b8 345extern int get_nohz_timer_target(void);
46cb4b7c 346#else
c1cc017c 347static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 348static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 349#endif
1da177e4 350
e59e2ae2 351/*
39bc89fd 352 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
353 */
354extern void show_state_filter(unsigned long state_filter);
355
356static inline void show_state(void)
357{
39bc89fd 358 show_state_filter(0);
e59e2ae2
IM
359}
360
1da177e4
LT
361extern void show_regs(struct pt_regs *);
362
363/*
364 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
365 * task), SP is the stack pointer of the first frame that should be shown in the back
366 * trace (or NULL if the entire call-chain of the task should be shown).
367 */
368extern void show_stack(struct task_struct *task, unsigned long *sp);
369
1da177e4
LT
370extern void cpu_init (void);
371extern void trap_init(void);
372extern void update_process_times(int user);
373extern void scheduler_tick(void);
374
82a1fcb9
IM
375extern void sched_show_task(struct task_struct *p);
376
19cc36c0 377#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 378extern void touch_softlockup_watchdog_sched(void);
8446f1d3 379extern void touch_softlockup_watchdog(void);
d6ad3e28 380extern void touch_softlockup_watchdog_sync(void);
04c9167f 381extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
382extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
383 void __user *buffer,
384 size_t *lenp, loff_t *ppos);
9c44bc03 385extern unsigned int softlockup_panic;
ac1f5912 386extern unsigned int hardlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
03e0d461
TH
389static inline void touch_softlockup_watchdog_sched(void)
390{
391}
8446f1d3
IM
392static inline void touch_softlockup_watchdog(void)
393{
394}
d6ad3e28
JW
395static inline void touch_softlockup_watchdog_sync(void)
396{
397}
04c9167f
JF
398static inline void touch_all_softlockup_watchdogs(void)
399{
400}
004417a6
PZ
401static inline void lockup_detector_init(void)
402{
403}
8446f1d3
IM
404#endif
405
8b414521
MT
406#ifdef CONFIG_DETECT_HUNG_TASK
407void reset_hung_task_detector(void);
408#else
409static inline void reset_hung_task_detector(void)
410{
411}
412#endif
413
1da177e4
LT
414/* Attach to any functions which should be ignored in wchan output. */
415#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
416
417/* Linker adds these: start and end of __sched functions */
418extern char __sched_text_start[], __sched_text_end[];
419
1da177e4
LT
420/* Is this address in the __sched functions? */
421extern int in_sched_functions(unsigned long addr);
422
423#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 424extern signed long schedule_timeout(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 426extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 427extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 428extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 429asmlinkage void schedule(void);
c5491ea7 430extern void schedule_preempt_disabled(void);
1da177e4 431
9cff8ade
N
432extern long io_schedule_timeout(long timeout);
433
434static inline void io_schedule(void)
435{
436 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
437}
438
ab516013 439struct nsproxy;
acce292c 440struct user_namespace;
1da177e4 441
efc1a3b1
DH
442#ifdef CONFIG_MMU
443extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
444extern unsigned long
445arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
446 unsigned long, unsigned long);
447extern unsigned long
448arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
449 unsigned long len, unsigned long pgoff,
450 unsigned long flags);
efc1a3b1
DH
451#else
452static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
453#endif
1da177e4 454
d049f74f
KC
455#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
456#define SUID_DUMP_USER 1 /* Dump as user of process */
457#define SUID_DUMP_ROOT 2 /* Dump as root */
458
6c5d5238 459/* mm flags */
f8af4da3 460
7288e118 461/* for SUID_DUMP_* above */
3cb4a0bb 462#define MMF_DUMPABLE_BITS 2
f8af4da3 463#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 464
942be387
ON
465extern void set_dumpable(struct mm_struct *mm, int value);
466/*
467 * This returns the actual value of the suid_dumpable flag. For things
468 * that are using this for checking for privilege transitions, it must
469 * test against SUID_DUMP_USER rather than treating it as a boolean
470 * value.
471 */
472static inline int __get_dumpable(unsigned long mm_flags)
473{
474 return mm_flags & MMF_DUMPABLE_MASK;
475}
476
477static inline int get_dumpable(struct mm_struct *mm)
478{
479 return __get_dumpable(mm->flags);
480}
481
3cb4a0bb
KH
482/* coredump filter bits */
483#define MMF_DUMP_ANON_PRIVATE 2
484#define MMF_DUMP_ANON_SHARED 3
485#define MMF_DUMP_MAPPED_PRIVATE 4
486#define MMF_DUMP_MAPPED_SHARED 5
82df3973 487#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
488#define MMF_DUMP_HUGETLB_PRIVATE 7
489#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
490#define MMF_DUMP_DAX_PRIVATE 9
491#define MMF_DUMP_DAX_SHARED 10
f8af4da3 492
3cb4a0bb 493#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 494#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
495#define MMF_DUMP_FILTER_MASK \
496 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
497#define MMF_DUMP_FILTER_DEFAULT \
e575f111 498 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
499 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
500
501#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
502# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
503#else
504# define MMF_DUMP_MASK_DEFAULT_ELF 0
505#endif
f8af4da3
HD
506 /* leave room for more dump flags */
507#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 508#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 509#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 510
9f68f672
ON
511#define MMF_HAS_UPROBES 19 /* has uprobes */
512#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 513
f8af4da3 514#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 515
1da177e4
LT
516struct sighand_struct {
517 atomic_t count;
518 struct k_sigaction action[_NSIG];
519 spinlock_t siglock;
b8fceee1 520 wait_queue_head_t signalfd_wqh;
1da177e4
LT
521};
522
0e464814 523struct pacct_struct {
f6ec29a4
KK
524 int ac_flag;
525 long ac_exitcode;
0e464814 526 unsigned long ac_mem;
77787bfb
KK
527 cputime_t ac_utime, ac_stime;
528 unsigned long ac_minflt, ac_majflt;
0e464814
KK
529};
530
42c4ab41
SG
531struct cpu_itimer {
532 cputime_t expires;
533 cputime_t incr;
8356b5f9
SG
534 u32 error;
535 u32 incr_error;
42c4ab41
SG
536};
537
d37f761d 538/**
9d7fb042 539 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
540 * @utime: time spent in user mode
541 * @stime: time spent in system mode
9d7fb042 542 * @lock: protects the above two fields
d37f761d 543 *
9d7fb042
PZ
544 * Stores previous user/system time values such that we can guarantee
545 * monotonicity.
d37f761d 546 */
9d7fb042
PZ
547struct prev_cputime {
548#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
549 cputime_t utime;
550 cputime_t stime;
9d7fb042
PZ
551 raw_spinlock_t lock;
552#endif
d37f761d
FW
553};
554
9d7fb042
PZ
555static inline void prev_cputime_init(struct prev_cputime *prev)
556{
557#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
558 prev->utime = prev->stime = 0;
559 raw_spin_lock_init(&prev->lock);
560#endif
561}
562
f06febc9
FM
563/**
564 * struct task_cputime - collected CPU time counts
565 * @utime: time spent in user mode, in &cputime_t units
566 * @stime: time spent in kernel mode, in &cputime_t units
567 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 568 *
9d7fb042
PZ
569 * This structure groups together three kinds of CPU time that are tracked for
570 * threads and thread groups. Most things considering CPU time want to group
571 * these counts together and treat all three of them in parallel.
f06febc9
FM
572 */
573struct task_cputime {
574 cputime_t utime;
575 cputime_t stime;
576 unsigned long long sum_exec_runtime;
577};
9d7fb042 578
f06febc9 579/* Alternate field names when used to cache expirations. */
f06febc9 580#define virt_exp utime
9d7fb042 581#define prof_exp stime
f06febc9
FM
582#define sched_exp sum_exec_runtime
583
4cd4c1b4
PZ
584#define INIT_CPUTIME \
585 (struct task_cputime) { \
64861634
MS
586 .utime = 0, \
587 .stime = 0, \
4cd4c1b4
PZ
588 .sum_exec_runtime = 0, \
589 }
590
971e8a98
JL
591/*
592 * This is the atomic variant of task_cputime, which can be used for
593 * storing and updating task_cputime statistics without locking.
594 */
595struct task_cputime_atomic {
596 atomic64_t utime;
597 atomic64_t stime;
598 atomic64_t sum_exec_runtime;
599};
600
601#define INIT_CPUTIME_ATOMIC \
602 (struct task_cputime_atomic) { \
603 .utime = ATOMIC64_INIT(0), \
604 .stime = ATOMIC64_INIT(0), \
605 .sum_exec_runtime = ATOMIC64_INIT(0), \
606 }
607
609ca066 608#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 609
c99e6efe 610/*
87dcbc06
PZ
611 * Disable preemption until the scheduler is running -- use an unconditional
612 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 613 *
87dcbc06 614 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 615 */
87dcbc06 616#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 617
c99e6efe 618/*
609ca066
PZ
619 * Initial preempt_count value; reflects the preempt_count schedule invariant
620 * which states that during context switches:
d86ee480 621 *
609ca066
PZ
622 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
623 *
624 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
625 * Note: See finish_task_switch().
c99e6efe 626 */
609ca066 627#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 628
f06febc9 629/**
4cd4c1b4 630 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 631 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
632 * @running: true when there are timers running and
633 * @cputime_atomic receives updates.
c8d75aa4
JL
634 * @checking_timer: true when a thread in the group is in the
635 * process of checking for thread group timers.
f06febc9
FM
636 *
637 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 638 * used for thread group CPU timer calculations.
f06febc9 639 */
4cd4c1b4 640struct thread_group_cputimer {
71107445 641 struct task_cputime_atomic cputime_atomic;
d5c373eb 642 bool running;
c8d75aa4 643 bool checking_timer;
f06febc9 644};
f06febc9 645
4714d1d3 646#include <linux/rwsem.h>
5091faa4
MG
647struct autogroup;
648
1da177e4 649/*
e815f0a8 650 * NOTE! "signal_struct" does not have its own
1da177e4
LT
651 * locking, because a shared signal_struct always
652 * implies a shared sighand_struct, so locking
653 * sighand_struct is always a proper superset of
654 * the locking of signal_struct.
655 */
656struct signal_struct {
ea6d290c 657 atomic_t sigcnt;
1da177e4 658 atomic_t live;
b3ac022c 659 int nr_threads;
0c740d0a 660 struct list_head thread_head;
1da177e4
LT
661
662 wait_queue_head_t wait_chldexit; /* for wait4() */
663
664 /* current thread group signal load-balancing target: */
36c8b586 665 struct task_struct *curr_target;
1da177e4
LT
666
667 /* shared signal handling: */
668 struct sigpending shared_pending;
669
670 /* thread group exit support */
671 int group_exit_code;
672 /* overloaded:
673 * - notify group_exit_task when ->count is equal to notify_count
674 * - everyone except group_exit_task is stopped during signal delivery
675 * of fatal signals, group_exit_task processes the signal.
676 */
1da177e4 677 int notify_count;
07dd20e0 678 struct task_struct *group_exit_task;
1da177e4
LT
679
680 /* thread group stop support, overloads group_exit_code too */
681 int group_stop_count;
682 unsigned int flags; /* see SIGNAL_* flags below */
683
ebec18a6
LP
684 /*
685 * PR_SET_CHILD_SUBREAPER marks a process, like a service
686 * manager, to re-parent orphan (double-forking) child processes
687 * to this process instead of 'init'. The service manager is
688 * able to receive SIGCHLD signals and is able to investigate
689 * the process until it calls wait(). All children of this
690 * process will inherit a flag if they should look for a
691 * child_subreaper process at exit.
692 */
693 unsigned int is_child_subreaper:1;
694 unsigned int has_child_subreaper:1;
695
1da177e4 696 /* POSIX.1b Interval Timers */
5ed67f05
PE
697 int posix_timer_id;
698 struct list_head posix_timers;
1da177e4
LT
699
700 /* ITIMER_REAL timer for the process */
2ff678b8 701 struct hrtimer real_timer;
fea9d175 702 struct pid *leader_pid;
2ff678b8 703 ktime_t it_real_incr;
1da177e4 704
42c4ab41
SG
705 /*
706 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
707 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
708 * values are defined to 0 and 1 respectively
709 */
710 struct cpu_itimer it[2];
1da177e4 711
f06febc9 712 /*
4cd4c1b4
PZ
713 * Thread group totals for process CPU timers.
714 * See thread_group_cputimer(), et al, for details.
f06febc9 715 */
4cd4c1b4 716 struct thread_group_cputimer cputimer;
f06febc9
FM
717
718 /* Earliest-expiration cache. */
719 struct task_cputime cputime_expires;
720
d027d45d 721#ifdef CONFIG_NO_HZ_FULL
f009a7a7 722 atomic_t tick_dep_mask;
d027d45d
FW
723#endif
724
f06febc9
FM
725 struct list_head cpu_timers[3];
726
ab521dc0 727 struct pid *tty_old_pgrp;
1ec320af 728
1da177e4
LT
729 /* boolean value for session group leader */
730 int leader;
731
732 struct tty_struct *tty; /* NULL if no tty */
733
5091faa4
MG
734#ifdef CONFIG_SCHED_AUTOGROUP
735 struct autogroup *autogroup;
736#endif
1da177e4
LT
737 /*
738 * Cumulative resource counters for dead threads in the group,
739 * and for reaped dead child processes forked by this group.
740 * Live threads maintain their own counters and add to these
741 * in __exit_signal, except for the group leader.
742 */
e78c3496 743 seqlock_t stats_lock;
32bd671d 744 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
745 cputime_t gtime;
746 cputime_t cgtime;
9d7fb042 747 struct prev_cputime prev_cputime;
1da177e4
LT
748 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
749 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 750 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 751 unsigned long maxrss, cmaxrss;
940389b8 752 struct task_io_accounting ioac;
1da177e4 753
32bd671d
PZ
754 /*
755 * Cumulative ns of schedule CPU time fo dead threads in the
756 * group, not including a zombie group leader, (This only differs
757 * from jiffies_to_ns(utime + stime) if sched_clock uses something
758 * other than jiffies.)
759 */
760 unsigned long long sum_sched_runtime;
761
1da177e4
LT
762 /*
763 * We don't bother to synchronize most readers of this at all,
764 * because there is no reader checking a limit that actually needs
765 * to get both rlim_cur and rlim_max atomically, and either one
766 * alone is a single word that can safely be read normally.
767 * getrlimit/setrlimit use task_lock(current->group_leader) to
768 * protect this instead of the siglock, because they really
769 * have no need to disable irqs.
770 */
771 struct rlimit rlim[RLIM_NLIMITS];
772
0e464814
KK
773#ifdef CONFIG_BSD_PROCESS_ACCT
774 struct pacct_struct pacct; /* per-process accounting information */
775#endif
ad4ecbcb 776#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
777 struct taskstats *stats;
778#endif
522ed776
MT
779#ifdef CONFIG_AUDIT
780 unsigned audit_tty;
781 struct tty_audit_buf *tty_audit_buf;
782#endif
28b83c51 783
e1e12d2f 784 oom_flags_t oom_flags;
a9c58b90
DR
785 short oom_score_adj; /* OOM kill score adjustment */
786 short oom_score_adj_min; /* OOM kill score adjustment min value.
787 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
788
789 struct mutex cred_guard_mutex; /* guard against foreign influences on
790 * credential calculations
791 * (notably. ptrace) */
1da177e4
LT
792};
793
794/*
795 * Bits in flags field of signal_struct.
796 */
797#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
798#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
799#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 800#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
801/*
802 * Pending notifications to parent.
803 */
804#define SIGNAL_CLD_STOPPED 0x00000010
805#define SIGNAL_CLD_CONTINUED 0x00000020
806#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 807
fae5fa44
ON
808#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
809
ed5d2cac
ON
810/* If true, all threads except ->group_exit_task have pending SIGKILL */
811static inline int signal_group_exit(const struct signal_struct *sig)
812{
813 return (sig->flags & SIGNAL_GROUP_EXIT) ||
814 (sig->group_exit_task != NULL);
815}
816
1da177e4
LT
817/*
818 * Some day this will be a full-fledged user tracking system..
819 */
820struct user_struct {
821 atomic_t __count; /* reference count */
822 atomic_t processes; /* How many processes does this user have? */
1da177e4 823 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 824#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
825 atomic_t inotify_watches; /* How many inotify watches does this user have? */
826 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
827#endif
4afeff85
EP
828#ifdef CONFIG_FANOTIFY
829 atomic_t fanotify_listeners;
830#endif
7ef9964e 831#ifdef CONFIG_EPOLL
52bd19f7 832 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 833#endif
970a8645 834#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
835 /* protected by mq_lock */
836 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 837#endif
1da177e4 838 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 839 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 840 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
841
842#ifdef CONFIG_KEYS
843 struct key *uid_keyring; /* UID specific keyring */
844 struct key *session_keyring; /* UID's default session keyring */
845#endif
846
847 /* Hash table maintenance information */
735de223 848 struct hlist_node uidhash_node;
7b44ab97 849 kuid_t uid;
24e377a8 850
aaac3ba9 851#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
852 atomic_long_t locked_vm;
853#endif
1da177e4
LT
854};
855
eb41d946 856extern int uids_sysfs_init(void);
5cb350ba 857
7b44ab97 858extern struct user_struct *find_user(kuid_t);
1da177e4
LT
859
860extern struct user_struct root_user;
861#define INIT_USER (&root_user)
862
b6dff3ec 863
1da177e4
LT
864struct backing_dev_info;
865struct reclaim_state;
866
f6db8347 867#ifdef CONFIG_SCHED_INFO
1da177e4
LT
868struct sched_info {
869 /* cumulative counters */
2d72376b 870 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 871 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
872
873 /* timestamps */
172ba844
BS
874 unsigned long long last_arrival,/* when we last ran on a cpu */
875 last_queued; /* when we were last queued to run */
1da177e4 876};
f6db8347 877#endif /* CONFIG_SCHED_INFO */
1da177e4 878
ca74e92b
SN
879#ifdef CONFIG_TASK_DELAY_ACCT
880struct task_delay_info {
881 spinlock_t lock;
882 unsigned int flags; /* Private per-task flags */
883
884 /* For each stat XXX, add following, aligned appropriately
885 *
886 * struct timespec XXX_start, XXX_end;
887 * u64 XXX_delay;
888 * u32 XXX_count;
889 *
890 * Atomicity of updates to XXX_delay, XXX_count protected by
891 * single lock above (split into XXX_lock if contention is an issue).
892 */
0ff92245
SN
893
894 /*
895 * XXX_count is incremented on every XXX operation, the delay
896 * associated with the operation is added to XXX_delay.
897 * XXX_delay contains the accumulated delay time in nanoseconds.
898 */
9667a23d 899 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
900 u64 blkio_delay; /* wait for sync block io completion */
901 u64 swapin_delay; /* wait for swapin block io completion */
902 u32 blkio_count; /* total count of the number of sync block */
903 /* io operations performed */
904 u32 swapin_count; /* total count of the number of swapin block */
905 /* io operations performed */
873b4771 906
9667a23d 907 u64 freepages_start;
873b4771
KK
908 u64 freepages_delay; /* wait for memory reclaim */
909 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 910};
52f17b6c
CS
911#endif /* CONFIG_TASK_DELAY_ACCT */
912
913static inline int sched_info_on(void)
914{
915#ifdef CONFIG_SCHEDSTATS
916 return 1;
917#elif defined(CONFIG_TASK_DELAY_ACCT)
918 extern int delayacct_on;
919 return delayacct_on;
920#else
921 return 0;
ca74e92b 922#endif
52f17b6c 923}
ca74e92b 924
cb251765
MG
925#ifdef CONFIG_SCHEDSTATS
926void force_schedstat_enabled(void);
927#endif
928
d15bcfdb
IM
929enum cpu_idle_type {
930 CPU_IDLE,
931 CPU_NOT_IDLE,
932 CPU_NEWLY_IDLE,
933 CPU_MAX_IDLE_TYPES
1da177e4
LT
934};
935
1399fa78 936/*
ca8ce3d0 937 * Increase resolution of cpu_capacity calculations
1399fa78 938 */
ca8ce3d0
NP
939#define SCHED_CAPACITY_SHIFT 10
940#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 941
76751049
PZ
942/*
943 * Wake-queues are lists of tasks with a pending wakeup, whose
944 * callers have already marked the task as woken internally,
945 * and can thus carry on. A common use case is being able to
946 * do the wakeups once the corresponding user lock as been
947 * released.
948 *
949 * We hold reference to each task in the list across the wakeup,
950 * thus guaranteeing that the memory is still valid by the time
951 * the actual wakeups are performed in wake_up_q().
952 *
953 * One per task suffices, because there's never a need for a task to be
954 * in two wake queues simultaneously; it is forbidden to abandon a task
955 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
956 * already in a wake queue, the wakeup will happen soon and the second
957 * waker can just skip it.
958 *
959 * The WAKE_Q macro declares and initializes the list head.
960 * wake_up_q() does NOT reinitialize the list; it's expected to be
961 * called near the end of a function, where the fact that the queue is
962 * not used again will be easy to see by inspection.
963 *
964 * Note that this can cause spurious wakeups. schedule() callers
965 * must ensure the call is done inside a loop, confirming that the
966 * wakeup condition has in fact occurred.
967 */
968struct wake_q_node {
969 struct wake_q_node *next;
970};
971
972struct wake_q_head {
973 struct wake_q_node *first;
974 struct wake_q_node **lastp;
975};
976
977#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
978
979#define WAKE_Q(name) \
980 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
981
982extern void wake_q_add(struct wake_q_head *head,
983 struct task_struct *task);
984extern void wake_up_q(struct wake_q_head *head);
985
1399fa78
NR
986/*
987 * sched-domains (multiprocessor balancing) declarations:
988 */
2dd73a4f 989#ifdef CONFIG_SMP
b5d978e0
PZ
990#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
991#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
992#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
993#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 994#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 995#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 996#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 997#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
998#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
999#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1000#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1001#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1002#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1003#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1004
143e1e28 1005#ifdef CONFIG_SCHED_SMT
b6220ad6 1006static inline int cpu_smt_flags(void)
143e1e28 1007{
5d4dfddd 1008 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1009}
1010#endif
1011
1012#ifdef CONFIG_SCHED_MC
b6220ad6 1013static inline int cpu_core_flags(void)
143e1e28
VG
1014{
1015 return SD_SHARE_PKG_RESOURCES;
1016}
1017#endif
1018
1019#ifdef CONFIG_NUMA
b6220ad6 1020static inline int cpu_numa_flags(void)
143e1e28
VG
1021{
1022 return SD_NUMA;
1023}
1024#endif
532cb4c4 1025
1d3504fc
HS
1026struct sched_domain_attr {
1027 int relax_domain_level;
1028};
1029
1030#define SD_ATTR_INIT (struct sched_domain_attr) { \
1031 .relax_domain_level = -1, \
1032}
1033
60495e77
PZ
1034extern int sched_domain_level_max;
1035
5e6521ea
LZ
1036struct sched_group;
1037
1da177e4
LT
1038struct sched_domain {
1039 /* These fields must be setup */
1040 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1041 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1042 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1043 unsigned long min_interval; /* Minimum balance interval ms */
1044 unsigned long max_interval; /* Maximum balance interval ms */
1045 unsigned int busy_factor; /* less balancing by factor if busy */
1046 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1047 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1048 unsigned int busy_idx;
1049 unsigned int idle_idx;
1050 unsigned int newidle_idx;
1051 unsigned int wake_idx;
147cbb4b 1052 unsigned int forkexec_idx;
a52bfd73 1053 unsigned int smt_gain;
25f55d9d
VG
1054
1055 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1056 int flags; /* See SD_* */
60495e77 1057 int level;
1da177e4
LT
1058
1059 /* Runtime fields. */
1060 unsigned long last_balance; /* init to jiffies. units in jiffies */
1061 unsigned int balance_interval; /* initialise to 1. units in ms. */
1062 unsigned int nr_balance_failed; /* initialise to 0 */
1063
f48627e6 1064 /* idle_balance() stats */
9bd721c5 1065 u64 max_newidle_lb_cost;
f48627e6 1066 unsigned long next_decay_max_lb_cost;
2398f2c6 1067
1da177e4
LT
1068#ifdef CONFIG_SCHEDSTATS
1069 /* load_balance() stats */
480b9434
KC
1070 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1077 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1078
1079 /* Active load balancing */
480b9434
KC
1080 unsigned int alb_count;
1081 unsigned int alb_failed;
1082 unsigned int alb_pushed;
1da177e4 1083
68767a0a 1084 /* SD_BALANCE_EXEC stats */
480b9434
KC
1085 unsigned int sbe_count;
1086 unsigned int sbe_balanced;
1087 unsigned int sbe_pushed;
1da177e4 1088
68767a0a 1089 /* SD_BALANCE_FORK stats */
480b9434
KC
1090 unsigned int sbf_count;
1091 unsigned int sbf_balanced;
1092 unsigned int sbf_pushed;
68767a0a 1093
1da177e4 1094 /* try_to_wake_up() stats */
480b9434
KC
1095 unsigned int ttwu_wake_remote;
1096 unsigned int ttwu_move_affine;
1097 unsigned int ttwu_move_balance;
1da177e4 1098#endif
a5d8c348
IM
1099#ifdef CONFIG_SCHED_DEBUG
1100 char *name;
1101#endif
dce840a0
PZ
1102 union {
1103 void *private; /* used during construction */
1104 struct rcu_head rcu; /* used during destruction */
1105 };
6c99e9ad 1106
669c55e9 1107 unsigned int span_weight;
4200efd9
IM
1108 /*
1109 * Span of all CPUs in this domain.
1110 *
1111 * NOTE: this field is variable length. (Allocated dynamically
1112 * by attaching extra space to the end of the structure,
1113 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1114 */
1115 unsigned long span[0];
1da177e4
LT
1116};
1117
758b2cdc
RR
1118static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1119{
6c99e9ad 1120 return to_cpumask(sd->span);
758b2cdc
RR
1121}
1122
acc3f5d7 1123extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1124 struct sched_domain_attr *dattr_new);
029190c5 1125
acc3f5d7
RR
1126/* Allocate an array of sched domains, for partition_sched_domains(). */
1127cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1128void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1129
39be3501
PZ
1130bool cpus_share_cache(int this_cpu, int that_cpu);
1131
143e1e28 1132typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1133typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1134
1135#define SDTL_OVERLAP 0x01
1136
1137struct sd_data {
1138 struct sched_domain **__percpu sd;
1139 struct sched_group **__percpu sg;
63b2ca30 1140 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1141};
1142
1143struct sched_domain_topology_level {
1144 sched_domain_mask_f mask;
1145 sched_domain_flags_f sd_flags;
1146 int flags;
1147 int numa_level;
1148 struct sd_data data;
1149#ifdef CONFIG_SCHED_DEBUG
1150 char *name;
1151#endif
1152};
1153
143e1e28 1154extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1155extern void wake_up_if_idle(int cpu);
143e1e28
VG
1156
1157#ifdef CONFIG_SCHED_DEBUG
1158# define SD_INIT_NAME(type) .name = #type
1159#else
1160# define SD_INIT_NAME(type)
1161#endif
1162
1b427c15 1163#else /* CONFIG_SMP */
1da177e4 1164
1b427c15 1165struct sched_domain_attr;
d02c7a8c 1166
1b427c15 1167static inline void
acc3f5d7 1168partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1169 struct sched_domain_attr *dattr_new)
1170{
d02c7a8c 1171}
39be3501
PZ
1172
1173static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1174{
1175 return true;
1176}
1177
1b427c15 1178#endif /* !CONFIG_SMP */
1da177e4 1179
47fe38fc 1180
1da177e4 1181struct io_context; /* See blkdev.h */
1da177e4 1182
1da177e4 1183
383f2835 1184#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1185extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1186#else
1187static inline void prefetch_stack(struct task_struct *t) { }
1188#endif
1da177e4
LT
1189
1190struct audit_context; /* See audit.c */
1191struct mempolicy;
b92ce558 1192struct pipe_inode_info;
4865ecf1 1193struct uts_namespace;
1da177e4 1194
20b8a59f 1195struct load_weight {
9dbdb155
PZ
1196 unsigned long weight;
1197 u32 inv_weight;
20b8a59f
IM
1198};
1199
9d89c257
YD
1200/*
1201 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1202 * 1) load_avg factors frequency scaling into the amount of time that a
1203 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1204 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1205 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1206 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1207 * For cfs_rq, it is the aggregated such times of all runnable and
1208 * blocked sched_entities.
1209 * The 64 bit load_sum can:
1210 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1211 * the highest weight (=88761) always runnable, we should not overflow
1212 * 2) for entity, support any load.weight always runnable
1213 */
9d85f21c 1214struct sched_avg {
9d89c257
YD
1215 u64 last_update_time, load_sum;
1216 u32 util_sum, period_contrib;
1217 unsigned long load_avg, util_avg;
9d85f21c
PT
1218};
1219
94c18227 1220#ifdef CONFIG_SCHEDSTATS
41acab88 1221struct sched_statistics {
20b8a59f 1222 u64 wait_start;
94c18227 1223 u64 wait_max;
6d082592
AV
1224 u64 wait_count;
1225 u64 wait_sum;
8f0dfc34
AV
1226 u64 iowait_count;
1227 u64 iowait_sum;
94c18227 1228
20b8a59f 1229 u64 sleep_start;
20b8a59f 1230 u64 sleep_max;
94c18227
IM
1231 s64 sum_sleep_runtime;
1232
1233 u64 block_start;
20b8a59f
IM
1234 u64 block_max;
1235 u64 exec_max;
eba1ed4b 1236 u64 slice_max;
cc367732 1237
cc367732
IM
1238 u64 nr_migrations_cold;
1239 u64 nr_failed_migrations_affine;
1240 u64 nr_failed_migrations_running;
1241 u64 nr_failed_migrations_hot;
1242 u64 nr_forced_migrations;
cc367732
IM
1243
1244 u64 nr_wakeups;
1245 u64 nr_wakeups_sync;
1246 u64 nr_wakeups_migrate;
1247 u64 nr_wakeups_local;
1248 u64 nr_wakeups_remote;
1249 u64 nr_wakeups_affine;
1250 u64 nr_wakeups_affine_attempts;
1251 u64 nr_wakeups_passive;
1252 u64 nr_wakeups_idle;
41acab88
LDM
1253};
1254#endif
1255
1256struct sched_entity {
1257 struct load_weight load; /* for load-balancing */
1258 struct rb_node run_node;
1259 struct list_head group_node;
1260 unsigned int on_rq;
1261
1262 u64 exec_start;
1263 u64 sum_exec_runtime;
1264 u64 vruntime;
1265 u64 prev_sum_exec_runtime;
1266
41acab88
LDM
1267 u64 nr_migrations;
1268
41acab88
LDM
1269#ifdef CONFIG_SCHEDSTATS
1270 struct sched_statistics statistics;
94c18227
IM
1271#endif
1272
20b8a59f 1273#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1274 int depth;
20b8a59f
IM
1275 struct sched_entity *parent;
1276 /* rq on which this entity is (to be) queued: */
1277 struct cfs_rq *cfs_rq;
1278 /* rq "owned" by this entity/group: */
1279 struct cfs_rq *my_q;
1280#endif
8bd75c77 1281
141965c7 1282#ifdef CONFIG_SMP
5a107804
JO
1283 /*
1284 * Per entity load average tracking.
1285 *
1286 * Put into separate cache line so it does not
1287 * collide with read-mostly values above.
1288 */
1289 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1290#endif
20b8a59f 1291};
70b97a7f 1292
fa717060
PZ
1293struct sched_rt_entity {
1294 struct list_head run_list;
78f2c7db 1295 unsigned long timeout;
57d2aa00 1296 unsigned long watchdog_stamp;
bee367ed 1297 unsigned int time_slice;
ff77e468
PZ
1298 unsigned short on_rq;
1299 unsigned short on_list;
6f505b16 1300
58d6c2d7 1301 struct sched_rt_entity *back;
052f1dc7 1302#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1303 struct sched_rt_entity *parent;
1304 /* rq on which this entity is (to be) queued: */
1305 struct rt_rq *rt_rq;
1306 /* rq "owned" by this entity/group: */
1307 struct rt_rq *my_q;
1308#endif
fa717060
PZ
1309};
1310
aab03e05
DF
1311struct sched_dl_entity {
1312 struct rb_node rb_node;
1313
1314 /*
1315 * Original scheduling parameters. Copied here from sched_attr
4027d080 1316 * during sched_setattr(), they will remain the same until
1317 * the next sched_setattr().
aab03e05
DF
1318 */
1319 u64 dl_runtime; /* maximum runtime for each instance */
1320 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1321 u64 dl_period; /* separation of two instances (period) */
332ac17e 1322 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1323
1324 /*
1325 * Actual scheduling parameters. Initialized with the values above,
1326 * they are continously updated during task execution. Note that
1327 * the remaining runtime could be < 0 in case we are in overrun.
1328 */
1329 s64 runtime; /* remaining runtime for this instance */
1330 u64 deadline; /* absolute deadline for this instance */
1331 unsigned int flags; /* specifying the scheduler behaviour */
1332
1333 /*
1334 * Some bool flags:
1335 *
1336 * @dl_throttled tells if we exhausted the runtime. If so, the
1337 * task has to wait for a replenishment to be performed at the
1338 * next firing of dl_timer.
1339 *
2d3d891d
DF
1340 * @dl_boosted tells if we are boosted due to DI. If so we are
1341 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1342 * exit the critical section);
1343 *
1344 * @dl_yielded tells if task gave up the cpu before consuming
1345 * all its available runtime during the last job.
aab03e05 1346 */
72f9f3fd 1347 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1348
1349 /*
1350 * Bandwidth enforcement timer. Each -deadline task has its
1351 * own bandwidth to be enforced, thus we need one timer per task.
1352 */
1353 struct hrtimer dl_timer;
1354};
8bd75c77 1355
1d082fd0
PM
1356union rcu_special {
1357 struct {
8203d6d0
PM
1358 u8 blocked;
1359 u8 need_qs;
1360 u8 exp_need_qs;
1361 u8 pad; /* Otherwise the compiler can store garbage here. */
1362 } b; /* Bits. */
1363 u32 s; /* Set of bits. */
1d082fd0 1364};
86848966
PM
1365struct rcu_node;
1366
8dc85d54
PZ
1367enum perf_event_task_context {
1368 perf_invalid_context = -1,
1369 perf_hw_context = 0,
89a1e187 1370 perf_sw_context,
8dc85d54
PZ
1371 perf_nr_task_contexts,
1372};
1373
72b252ae
MG
1374/* Track pages that require TLB flushes */
1375struct tlbflush_unmap_batch {
1376 /*
1377 * Each bit set is a CPU that potentially has a TLB entry for one of
1378 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1379 */
1380 struct cpumask cpumask;
1381
1382 /* True if any bit in cpumask is set */
1383 bool flush_required;
d950c947
MG
1384
1385 /*
1386 * If true then the PTE was dirty when unmapped. The entry must be
1387 * flushed before IO is initiated or a stale TLB entry potentially
1388 * allows an update without redirtying the page.
1389 */
1390 bool writable;
72b252ae
MG
1391};
1392
1da177e4
LT
1393struct task_struct {
1394 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1395 void *stack;
1da177e4 1396 atomic_t usage;
97dc32cd
WC
1397 unsigned int flags; /* per process flags, defined below */
1398 unsigned int ptrace;
1da177e4 1399
2dd73a4f 1400#ifdef CONFIG_SMP
fa14ff4a 1401 struct llist_node wake_entry;
3ca7a440 1402 int on_cpu;
63b0e9ed 1403 unsigned int wakee_flips;
62470419 1404 unsigned long wakee_flip_decay_ts;
63b0e9ed 1405 struct task_struct *last_wakee;
ac66f547
PZ
1406
1407 int wake_cpu;
2dd73a4f 1408#endif
fd2f4419 1409 int on_rq;
50e645a8 1410
b29739f9 1411 int prio, static_prio, normal_prio;
c7aceaba 1412 unsigned int rt_priority;
5522d5d5 1413 const struct sched_class *sched_class;
20b8a59f 1414 struct sched_entity se;
fa717060 1415 struct sched_rt_entity rt;
8323f26c
PZ
1416#ifdef CONFIG_CGROUP_SCHED
1417 struct task_group *sched_task_group;
1418#endif
aab03e05 1419 struct sched_dl_entity dl;
1da177e4 1420
e107be36
AK
1421#ifdef CONFIG_PREEMPT_NOTIFIERS
1422 /* list of struct preempt_notifier: */
1423 struct hlist_head preempt_notifiers;
1424#endif
1425
6c5c9341 1426#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1427 unsigned int btrace_seq;
6c5c9341 1428#endif
1da177e4 1429
97dc32cd 1430 unsigned int policy;
29baa747 1431 int nr_cpus_allowed;
1da177e4 1432 cpumask_t cpus_allowed;
1da177e4 1433
a57eb940 1434#ifdef CONFIG_PREEMPT_RCU
e260be67 1435 int rcu_read_lock_nesting;
1d082fd0 1436 union rcu_special rcu_read_unlock_special;
f41d911f 1437 struct list_head rcu_node_entry;
a57eb940 1438 struct rcu_node *rcu_blocked_node;
28f6569a 1439#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1440#ifdef CONFIG_TASKS_RCU
1441 unsigned long rcu_tasks_nvcsw;
1442 bool rcu_tasks_holdout;
1443 struct list_head rcu_tasks_holdout_list;
176f8f7a 1444 int rcu_tasks_idle_cpu;
8315f422 1445#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1446
f6db8347 1447#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1448 struct sched_info sched_info;
1449#endif
1450
1451 struct list_head tasks;
806c09a7 1452#ifdef CONFIG_SMP
917b627d 1453 struct plist_node pushable_tasks;
1baca4ce 1454 struct rb_node pushable_dl_tasks;
806c09a7 1455#endif
1da177e4
LT
1456
1457 struct mm_struct *mm, *active_mm;
615d6e87
DB
1458 /* per-thread vma caching */
1459 u32 vmacache_seqnum;
1460 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1461#if defined(SPLIT_RSS_COUNTING)
1462 struct task_rss_stat rss_stat;
1463#endif
1da177e4 1464/* task state */
97dc32cd 1465 int exit_state;
1da177e4
LT
1466 int exit_code, exit_signal;
1467 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1468 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1469
1470 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1471 unsigned int personality;
9b89f6ba 1472
be958bdc 1473 /* scheduler bits, serialized by scheduler locks */
ca94c442 1474 unsigned sched_reset_on_fork:1;
a8e4f2ea 1475 unsigned sched_contributes_to_load:1;
ff303e66 1476 unsigned sched_migrated:1;
be958bdc
PZ
1477 unsigned :0; /* force alignment to the next boundary */
1478
1479 /* unserialized, strictly 'current' */
1480 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1481 unsigned in_iowait:1;
626ebc41
TH
1482#ifdef CONFIG_MEMCG
1483 unsigned memcg_may_oom:1;
127424c8 1484#ifndef CONFIG_SLOB
6f185c29
VD
1485 unsigned memcg_kmem_skip_account:1;
1486#endif
127424c8 1487#endif
ff303e66
PZ
1488#ifdef CONFIG_COMPAT_BRK
1489 unsigned brk_randomized:1;
1490#endif
6f185c29 1491
1d4457f9
KC
1492 unsigned long atomic_flags; /* Flags needing atomic access. */
1493
f56141e3
AL
1494 struct restart_block restart_block;
1495
1da177e4
LT
1496 pid_t pid;
1497 pid_t tgid;
0a425405 1498
1314562a 1499#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1500 /* Canary value for the -fstack-protector gcc feature */
1501 unsigned long stack_canary;
1314562a 1502#endif
4d1d61a6 1503 /*
1da177e4 1504 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1505 * older sibling, respectively. (p->father can be replaced with
f470021a 1506 * p->real_parent->pid)
1da177e4 1507 */
abd63bc3
KC
1508 struct task_struct __rcu *real_parent; /* real parent process */
1509 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1510 /*
f470021a 1511 * children/sibling forms the list of my natural children
1da177e4
LT
1512 */
1513 struct list_head children; /* list of my children */
1514 struct list_head sibling; /* linkage in my parent's children list */
1515 struct task_struct *group_leader; /* threadgroup leader */
1516
f470021a
RM
1517 /*
1518 * ptraced is the list of tasks this task is using ptrace on.
1519 * This includes both natural children and PTRACE_ATTACH targets.
1520 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1521 */
1522 struct list_head ptraced;
1523 struct list_head ptrace_entry;
1524
1da177e4 1525 /* PID/PID hash table linkage. */
92476d7f 1526 struct pid_link pids[PIDTYPE_MAX];
47e65328 1527 struct list_head thread_group;
0c740d0a 1528 struct list_head thread_node;
1da177e4
LT
1529
1530 struct completion *vfork_done; /* for vfork() */
1531 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1532 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1533
c66f08be 1534 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1535 cputime_t gtime;
9d7fb042 1536 struct prev_cputime prev_cputime;
6a61671b 1537#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1538 seqcount_t vtime_seqcount;
6a61671b
FW
1539 unsigned long long vtime_snap;
1540 enum {
7098c1ea
FW
1541 /* Task is sleeping or running in a CPU with VTIME inactive */
1542 VTIME_INACTIVE = 0,
1543 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1544 VTIME_USER,
7098c1ea 1545 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1546 VTIME_SYS,
1547 } vtime_snap_whence;
d99ca3b9 1548#endif
d027d45d
FW
1549
1550#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1551 atomic_t tick_dep_mask;
d027d45d 1552#endif
1da177e4 1553 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1554 u64 start_time; /* monotonic time in nsec */
57e0be04 1555 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1556/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1557 unsigned long min_flt, maj_flt;
1558
f06febc9 1559 struct task_cputime cputime_expires;
1da177e4
LT
1560 struct list_head cpu_timers[3];
1561
1562/* process credentials */
1b0ba1c9 1563 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1564 * credentials (COW) */
1b0ba1c9 1565 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1566 * credentials (COW) */
36772092
PBG
1567 char comm[TASK_COMM_LEN]; /* executable name excluding path
1568 - access with [gs]et_task_comm (which lock
1569 it with task_lock())
221af7f8 1570 - initialized normally by setup_new_exec */
1da177e4 1571/* file system info */
756daf26 1572 struct nameidata *nameidata;
3d5b6fcc 1573#ifdef CONFIG_SYSVIPC
1da177e4
LT
1574/* ipc stuff */
1575 struct sysv_sem sysvsem;
ab602f79 1576 struct sysv_shm sysvshm;
3d5b6fcc 1577#endif
e162b39a 1578#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1579/* hung task detection */
82a1fcb9
IM
1580 unsigned long last_switch_count;
1581#endif
1da177e4
LT
1582/* filesystem information */
1583 struct fs_struct *fs;
1584/* open file information */
1585 struct files_struct *files;
1651e14e 1586/* namespaces */
ab516013 1587 struct nsproxy *nsproxy;
1da177e4
LT
1588/* signal handlers */
1589 struct signal_struct *signal;
1590 struct sighand_struct *sighand;
1591
1592 sigset_t blocked, real_blocked;
f3de272b 1593 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1594 struct sigpending pending;
1595
1596 unsigned long sas_ss_sp;
1597 size_t sas_ss_size;
2a742138 1598 unsigned sas_ss_flags;
2e01fabe 1599
67d12145 1600 struct callback_head *task_works;
e73f8959 1601
1da177e4 1602 struct audit_context *audit_context;
bfef93a5 1603#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1604 kuid_t loginuid;
4746ec5b 1605 unsigned int sessionid;
bfef93a5 1606#endif
932ecebb 1607 struct seccomp seccomp;
1da177e4
LT
1608
1609/* Thread group tracking */
1610 u32 parent_exec_id;
1611 u32 self_exec_id;
58568d2a
MX
1612/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1613 * mempolicy */
1da177e4 1614 spinlock_t alloc_lock;
1da177e4 1615
b29739f9 1616 /* Protection of the PI data structures: */
1d615482 1617 raw_spinlock_t pi_lock;
b29739f9 1618
76751049
PZ
1619 struct wake_q_node wake_q;
1620
23f78d4a
IM
1621#ifdef CONFIG_RT_MUTEXES
1622 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1623 struct rb_root pi_waiters;
1624 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1625 /* Deadlock detection and priority inheritance handling */
1626 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1627#endif
1628
408894ee
IM
1629#ifdef CONFIG_DEBUG_MUTEXES
1630 /* mutex deadlock detection */
1631 struct mutex_waiter *blocked_on;
1632#endif
de30a2b3
IM
1633#ifdef CONFIG_TRACE_IRQFLAGS
1634 unsigned int irq_events;
de30a2b3 1635 unsigned long hardirq_enable_ip;
de30a2b3 1636 unsigned long hardirq_disable_ip;
fa1452e8 1637 unsigned int hardirq_enable_event;
de30a2b3 1638 unsigned int hardirq_disable_event;
fa1452e8
HS
1639 int hardirqs_enabled;
1640 int hardirq_context;
de30a2b3 1641 unsigned long softirq_disable_ip;
de30a2b3 1642 unsigned long softirq_enable_ip;
fa1452e8 1643 unsigned int softirq_disable_event;
de30a2b3 1644 unsigned int softirq_enable_event;
fa1452e8 1645 int softirqs_enabled;
de30a2b3
IM
1646 int softirq_context;
1647#endif
fbb9ce95 1648#ifdef CONFIG_LOCKDEP
bdb9441e 1649# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1650 u64 curr_chain_key;
1651 int lockdep_depth;
fbb9ce95 1652 unsigned int lockdep_recursion;
c7aceaba 1653 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1654 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1655#endif
c6d30853
AR
1656#ifdef CONFIG_UBSAN
1657 unsigned int in_ubsan;
1658#endif
408894ee 1659
1da177e4
LT
1660/* journalling filesystem info */
1661 void *journal_info;
1662
d89d8796 1663/* stacked block device info */
bddd87c7 1664 struct bio_list *bio_list;
d89d8796 1665
73c10101
JA
1666#ifdef CONFIG_BLOCK
1667/* stack plugging */
1668 struct blk_plug *plug;
1669#endif
1670
1da177e4
LT
1671/* VM state */
1672 struct reclaim_state *reclaim_state;
1673
1da177e4
LT
1674 struct backing_dev_info *backing_dev_info;
1675
1676 struct io_context *io_context;
1677
1678 unsigned long ptrace_message;
1679 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1680 struct task_io_accounting ioac;
8f0ab514 1681#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1682 u64 acct_rss_mem1; /* accumulated rss usage */
1683 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1684 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1685#endif
1686#ifdef CONFIG_CPUSETS
58568d2a 1687 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1688 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1689 int cpuset_mem_spread_rotor;
6adef3eb 1690 int cpuset_slab_spread_rotor;
1da177e4 1691#endif
ddbcc7e8 1692#ifdef CONFIG_CGROUPS
817929ec 1693 /* Control Group info protected by css_set_lock */
2c392b8c 1694 struct css_set __rcu *cgroups;
817929ec
PM
1695 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1696 struct list_head cg_list;
ddbcc7e8 1697#endif
42b2dd0a 1698#ifdef CONFIG_FUTEX
0771dfef 1699 struct robust_list_head __user *robust_list;
34f192c6
IM
1700#ifdef CONFIG_COMPAT
1701 struct compat_robust_list_head __user *compat_robust_list;
1702#endif
c87e2837
IM
1703 struct list_head pi_state_list;
1704 struct futex_pi_state *pi_state_cache;
c7aceaba 1705#endif
cdd6c482 1706#ifdef CONFIG_PERF_EVENTS
8dc85d54 1707 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1708 struct mutex perf_event_mutex;
1709 struct list_head perf_event_list;
a63eaf34 1710#endif
8f47b187
TG
1711#ifdef CONFIG_DEBUG_PREEMPT
1712 unsigned long preempt_disable_ip;
1713#endif
c7aceaba 1714#ifdef CONFIG_NUMA
58568d2a 1715 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1716 short il_next;
207205a2 1717 short pref_node_fork;
42b2dd0a 1718#endif
cbee9f88
PZ
1719#ifdef CONFIG_NUMA_BALANCING
1720 int numa_scan_seq;
cbee9f88 1721 unsigned int numa_scan_period;
598f0ec0 1722 unsigned int numa_scan_period_max;
de1c9ce6 1723 int numa_preferred_nid;
6b9a7460 1724 unsigned long numa_migrate_retry;
cbee9f88 1725 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1726 u64 last_task_numa_placement;
1727 u64 last_sum_exec_runtime;
cbee9f88 1728 struct callback_head numa_work;
f809ca9a 1729
8c8a743c
PZ
1730 struct list_head numa_entry;
1731 struct numa_group *numa_group;
1732
745d6147 1733 /*
44dba3d5
IM
1734 * numa_faults is an array split into four regions:
1735 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1736 * in this precise order.
1737 *
1738 * faults_memory: Exponential decaying average of faults on a per-node
1739 * basis. Scheduling placement decisions are made based on these
1740 * counts. The values remain static for the duration of a PTE scan.
1741 * faults_cpu: Track the nodes the process was running on when a NUMA
1742 * hinting fault was incurred.
1743 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1744 * during the current scan window. When the scan completes, the counts
1745 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1746 */
44dba3d5 1747 unsigned long *numa_faults;
83e1d2cd 1748 unsigned long total_numa_faults;
745d6147 1749
04bb2f94
RR
1750 /*
1751 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1752 * scan window were remote/local or failed to migrate. The task scan
1753 * period is adapted based on the locality of the faults with different
1754 * weights depending on whether they were shared or private faults
04bb2f94 1755 */
074c2381 1756 unsigned long numa_faults_locality[3];
04bb2f94 1757
b32e86b4 1758 unsigned long numa_pages_migrated;
cbee9f88
PZ
1759#endif /* CONFIG_NUMA_BALANCING */
1760
72b252ae
MG
1761#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1762 struct tlbflush_unmap_batch tlb_ubc;
1763#endif
1764
e56d0903 1765 struct rcu_head rcu;
b92ce558
JA
1766
1767 /*
1768 * cache last used pipe for splice
1769 */
1770 struct pipe_inode_info *splice_pipe;
5640f768
ED
1771
1772 struct page_frag task_frag;
1773
ca74e92b
SN
1774#ifdef CONFIG_TASK_DELAY_ACCT
1775 struct task_delay_info *delays;
f4f154fd
AM
1776#endif
1777#ifdef CONFIG_FAULT_INJECTION
1778 int make_it_fail;
ca74e92b 1779#endif
9d823e8f
WF
1780 /*
1781 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1782 * balance_dirty_pages() for some dirty throttling pause
1783 */
1784 int nr_dirtied;
1785 int nr_dirtied_pause;
83712358 1786 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1787
9745512c
AV
1788#ifdef CONFIG_LATENCYTOP
1789 int latency_record_count;
1790 struct latency_record latency_record[LT_SAVECOUNT];
1791#endif
6976675d
AV
1792 /*
1793 * time slack values; these are used to round up poll() and
1794 * select() etc timeout values. These are in nanoseconds.
1795 */
da8b44d5
JS
1796 u64 timer_slack_ns;
1797 u64 default_timer_slack_ns;
f8d570a4 1798
0b24becc
AR
1799#ifdef CONFIG_KASAN
1800 unsigned int kasan_depth;
1801#endif
fb52607a 1802#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1803 /* Index of current stored address in ret_stack */
f201ae23
FW
1804 int curr_ret_stack;
1805 /* Stack of return addresses for return function tracing */
1806 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1807 /* time stamp for last schedule */
1808 unsigned long long ftrace_timestamp;
f201ae23
FW
1809 /*
1810 * Number of functions that haven't been traced
1811 * because of depth overrun.
1812 */
1813 atomic_t trace_overrun;
380c4b14
FW
1814 /* Pause for the tracing */
1815 atomic_t tracing_graph_pause;
f201ae23 1816#endif
ea4e2bc4
SR
1817#ifdef CONFIG_TRACING
1818 /* state flags for use by tracers */
1819 unsigned long trace;
b1cff0ad 1820 /* bitmask and counter of trace recursion */
261842b7
SR
1821 unsigned long trace_recursion;
1822#endif /* CONFIG_TRACING */
5c9a8750
DV
1823#ifdef CONFIG_KCOV
1824 /* Coverage collection mode enabled for this task (0 if disabled). */
1825 enum kcov_mode kcov_mode;
1826 /* Size of the kcov_area. */
1827 unsigned kcov_size;
1828 /* Buffer for coverage collection. */
1829 void *kcov_area;
1830 /* kcov desciptor wired with this task or NULL. */
1831 struct kcov *kcov;
1832#endif
6f185c29 1833#ifdef CONFIG_MEMCG
626ebc41
TH
1834 struct mem_cgroup *memcg_in_oom;
1835 gfp_t memcg_oom_gfp_mask;
1836 int memcg_oom_order;
b23afb93
TH
1837
1838 /* number of pages to reclaim on returning to userland */
1839 unsigned int memcg_nr_pages_over_high;
569b846d 1840#endif
0326f5a9
SD
1841#ifdef CONFIG_UPROBES
1842 struct uprobe_task *utask;
0326f5a9 1843#endif
cafe5635
KO
1844#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1845 unsigned int sequential_io;
1846 unsigned int sequential_io_avg;
1847#endif
8eb23b9f
PZ
1848#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1849 unsigned long task_state_change;
1850#endif
8bcbde54 1851 int pagefault_disabled;
03049269 1852#ifdef CONFIG_MMU
29c696e1 1853 struct task_struct *oom_reaper_list;
03049269 1854#endif
0c8c0f03
DH
1855/* CPU-specific state of this task */
1856 struct thread_struct thread;
1857/*
1858 * WARNING: on x86, 'thread_struct' contains a variable-sized
1859 * structure. It *MUST* be at the end of 'task_struct'.
1860 *
1861 * Do not put anything below here!
1862 */
1da177e4
LT
1863};
1864
5aaeb5c0
IM
1865#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1866extern int arch_task_struct_size __read_mostly;
1867#else
1868# define arch_task_struct_size (sizeof(struct task_struct))
1869#endif
0c8c0f03 1870
76e6eee0 1871/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1872#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1873
6688cc05
PZ
1874#define TNF_MIGRATED 0x01
1875#define TNF_NO_GROUP 0x02
dabe1d99 1876#define TNF_SHARED 0x04
04bb2f94 1877#define TNF_FAULT_LOCAL 0x08
074c2381 1878#define TNF_MIGRATE_FAIL 0x10
6688cc05 1879
cbee9f88 1880#ifdef CONFIG_NUMA_BALANCING
6688cc05 1881extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1882extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1883extern void set_numabalancing_state(bool enabled);
82727018 1884extern void task_numa_free(struct task_struct *p);
10f39042
RR
1885extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1886 int src_nid, int dst_cpu);
cbee9f88 1887#else
ac8e895b 1888static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1889 int flags)
cbee9f88
PZ
1890{
1891}
e29cf08b
MG
1892static inline pid_t task_numa_group_id(struct task_struct *p)
1893{
1894 return 0;
1895}
1a687c2e
MG
1896static inline void set_numabalancing_state(bool enabled)
1897{
1898}
82727018
RR
1899static inline void task_numa_free(struct task_struct *p)
1900{
1901}
10f39042
RR
1902static inline bool should_numa_migrate_memory(struct task_struct *p,
1903 struct page *page, int src_nid, int dst_cpu)
1904{
1905 return true;
1906}
cbee9f88
PZ
1907#endif
1908
e868171a 1909static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1910{
1911 return task->pids[PIDTYPE_PID].pid;
1912}
1913
e868171a 1914static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1915{
1916 return task->group_leader->pids[PIDTYPE_PID].pid;
1917}
1918
6dda81f4
ON
1919/*
1920 * Without tasklist or rcu lock it is not safe to dereference
1921 * the result of task_pgrp/task_session even if task == current,
1922 * we can race with another thread doing sys_setsid/sys_setpgid.
1923 */
e868171a 1924static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1925{
1926 return task->group_leader->pids[PIDTYPE_PGID].pid;
1927}
1928
e868171a 1929static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1930{
1931 return task->group_leader->pids[PIDTYPE_SID].pid;
1932}
1933
7af57294
PE
1934struct pid_namespace;
1935
1936/*
1937 * the helpers to get the task's different pids as they are seen
1938 * from various namespaces
1939 *
1940 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1941 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1942 * current.
7af57294
PE
1943 * task_xid_nr_ns() : id seen from the ns specified;
1944 *
1945 * set_task_vxid() : assigns a virtual id to a task;
1946 *
7af57294
PE
1947 * see also pid_nr() etc in include/linux/pid.h
1948 */
52ee2dfd
ON
1949pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1950 struct pid_namespace *ns);
7af57294 1951
e868171a 1952static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1953{
1954 return tsk->pid;
1955}
1956
52ee2dfd
ON
1957static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1958 struct pid_namespace *ns)
1959{
1960 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1961}
7af57294
PE
1962
1963static inline pid_t task_pid_vnr(struct task_struct *tsk)
1964{
52ee2dfd 1965 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1966}
1967
1968
e868171a 1969static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1970{
1971 return tsk->tgid;
1972}
1973
2f2a3a46 1974pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1975
1976static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1977{
1978 return pid_vnr(task_tgid(tsk));
1979}
1980
1981
80e0b6e8 1982static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1983static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1984{
1985 pid_t pid = 0;
1986
1987 rcu_read_lock();
1988 if (pid_alive(tsk))
1989 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1990 rcu_read_unlock();
1991
1992 return pid;
1993}
1994
1995static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1996{
1997 return task_ppid_nr_ns(tsk, &init_pid_ns);
1998}
1999
52ee2dfd
ON
2000static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2001 struct pid_namespace *ns)
7af57294 2002{
52ee2dfd 2003 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2004}
2005
7af57294
PE
2006static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2007{
52ee2dfd 2008 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2009}
2010
2011
52ee2dfd
ON
2012static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2013 struct pid_namespace *ns)
7af57294 2014{
52ee2dfd 2015 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2016}
2017
7af57294
PE
2018static inline pid_t task_session_vnr(struct task_struct *tsk)
2019{
52ee2dfd 2020 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2021}
2022
1b0f7ffd
ON
2023/* obsolete, do not use */
2024static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2025{
2026 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2027}
7af57294 2028
1da177e4
LT
2029/**
2030 * pid_alive - check that a task structure is not stale
2031 * @p: Task structure to be checked.
2032 *
2033 * Test if a process is not yet dead (at most zombie state)
2034 * If pid_alive fails, then pointers within the task structure
2035 * can be stale and must not be dereferenced.
e69f6186
YB
2036 *
2037 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2038 */
ad36d282 2039static inline int pid_alive(const struct task_struct *p)
1da177e4 2040{
92476d7f 2041 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2042}
2043
f400e198 2044/**
570f5241
SS
2045 * is_global_init - check if a task structure is init. Since init
2046 * is free to have sub-threads we need to check tgid.
3260259f
H
2047 * @tsk: Task structure to be checked.
2048 *
2049 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2050 *
2051 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2052 */
e868171a 2053static inline int is_global_init(struct task_struct *tsk)
b461cc03 2054{
570f5241 2055 return task_tgid_nr(tsk) == 1;
b461cc03 2056}
b460cbc5 2057
9ec52099
CLG
2058extern struct pid *cad_pid;
2059
1da177e4 2060extern void free_task(struct task_struct *tsk);
1da177e4 2061#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2062
158d9ebd 2063extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2064
2065static inline void put_task_struct(struct task_struct *t)
2066{
2067 if (atomic_dec_and_test(&t->usage))
8c7904a0 2068 __put_task_struct(t);
e56d0903 2069}
1da177e4 2070
6a61671b
FW
2071#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2072extern void task_cputime(struct task_struct *t,
2073 cputime_t *utime, cputime_t *stime);
2074extern void task_cputime_scaled(struct task_struct *t,
2075 cputime_t *utimescaled, cputime_t *stimescaled);
2076extern cputime_t task_gtime(struct task_struct *t);
2077#else
6fac4829
FW
2078static inline void task_cputime(struct task_struct *t,
2079 cputime_t *utime, cputime_t *stime)
2080{
2081 if (utime)
2082 *utime = t->utime;
2083 if (stime)
2084 *stime = t->stime;
2085}
2086
2087static inline void task_cputime_scaled(struct task_struct *t,
2088 cputime_t *utimescaled,
2089 cputime_t *stimescaled)
2090{
2091 if (utimescaled)
2092 *utimescaled = t->utimescaled;
2093 if (stimescaled)
2094 *stimescaled = t->stimescaled;
2095}
6a61671b
FW
2096
2097static inline cputime_t task_gtime(struct task_struct *t)
2098{
2099 return t->gtime;
2100}
2101#endif
e80d0a1a
FW
2102extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2103extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2104
1da177e4
LT
2105/*
2106 * Per process flags
2107 */
1da177e4 2108#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2109#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2110#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2111#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2112#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2113#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2114#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2115#define PF_DUMPCORE 0x00000200 /* dumped core */
2116#define PF_SIGNALED 0x00000400 /* killed by a signal */
2117#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2118#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2119#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2120#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2121#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2122#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2123#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2124#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2125#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2126#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2127#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2128#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2129#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2130#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2131#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2132#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2133#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2134#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2135
2136/*
2137 * Only the _current_ task can read/write to tsk->flags, but other
2138 * tasks can access tsk->flags in readonly mode for example
2139 * with tsk_used_math (like during threaded core dumping).
2140 * There is however an exception to this rule during ptrace
2141 * or during fork: the ptracer task is allowed to write to the
2142 * child->flags of its traced child (same goes for fork, the parent
2143 * can write to the child->flags), because we're guaranteed the
2144 * child is not running and in turn not changing child->flags
2145 * at the same time the parent does it.
2146 */
2147#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2148#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2149#define clear_used_math() clear_stopped_child_used_math(current)
2150#define set_used_math() set_stopped_child_used_math(current)
2151#define conditional_stopped_child_used_math(condition, child) \
2152 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2153#define conditional_used_math(condition) \
2154 conditional_stopped_child_used_math(condition, current)
2155#define copy_to_stopped_child_used_math(child) \
2156 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2157/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2158#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2159#define used_math() tsk_used_math(current)
2160
934f3072
JB
2161/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2162 * __GFP_FS is also cleared as it implies __GFP_IO.
2163 */
21caf2fc
ML
2164static inline gfp_t memalloc_noio_flags(gfp_t flags)
2165{
2166 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2167 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2168 return flags;
2169}
2170
2171static inline unsigned int memalloc_noio_save(void)
2172{
2173 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2174 current->flags |= PF_MEMALLOC_NOIO;
2175 return flags;
2176}
2177
2178static inline void memalloc_noio_restore(unsigned int flags)
2179{
2180 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2181}
2182
1d4457f9 2183/* Per-process atomic flags. */
a2b86f77 2184#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2185#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2186#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2187
1d4457f9 2188
e0e5070b
ZL
2189#define TASK_PFA_TEST(name, func) \
2190 static inline bool task_##func(struct task_struct *p) \
2191 { return test_bit(PFA_##name, &p->atomic_flags); }
2192#define TASK_PFA_SET(name, func) \
2193 static inline void task_set_##func(struct task_struct *p) \
2194 { set_bit(PFA_##name, &p->atomic_flags); }
2195#define TASK_PFA_CLEAR(name, func) \
2196 static inline void task_clear_##func(struct task_struct *p) \
2197 { clear_bit(PFA_##name, &p->atomic_flags); }
2198
2199TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2200TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2201
2ad654bc
ZL
2202TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2203TASK_PFA_SET(SPREAD_PAGE, spread_page)
2204TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2205
2206TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2207TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2208TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2209
e5c1902e 2210/*
a8f072c1 2211 * task->jobctl flags
e5c1902e 2212 */
a8f072c1 2213#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2214
a8f072c1
TH
2215#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2216#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2217#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2218#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2219#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2220#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2221#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2222
b76808e6
PD
2223#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2224#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2225#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2226#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2227#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2228#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2229#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2230
fb1d910c 2231#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2232#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2233
7dd3db54 2234extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2235 unsigned long mask);
73ddff2b 2236extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2237extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2238 unsigned long mask);
39efa3ef 2239
f41d911f
PM
2240static inline void rcu_copy_process(struct task_struct *p)
2241{
8315f422 2242#ifdef CONFIG_PREEMPT_RCU
f41d911f 2243 p->rcu_read_lock_nesting = 0;
1d082fd0 2244 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2245 p->rcu_blocked_node = NULL;
f41d911f 2246 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2247#endif /* #ifdef CONFIG_PREEMPT_RCU */
2248#ifdef CONFIG_TASKS_RCU
2249 p->rcu_tasks_holdout = false;
2250 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2251 p->rcu_tasks_idle_cpu = -1;
8315f422 2252#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2253}
2254
907aed48
MG
2255static inline void tsk_restore_flags(struct task_struct *task,
2256 unsigned long orig_flags, unsigned long flags)
2257{
2258 task->flags &= ~flags;
2259 task->flags |= orig_flags & flags;
2260}
2261
f82f8042
JL
2262extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2263 const struct cpumask *trial);
7f51412a
JL
2264extern int task_can_attach(struct task_struct *p,
2265 const struct cpumask *cs_cpus_allowed);
1da177e4 2266#ifdef CONFIG_SMP
1e1b6c51
KM
2267extern void do_set_cpus_allowed(struct task_struct *p,
2268 const struct cpumask *new_mask);
2269
cd8ba7cd 2270extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2271 const struct cpumask *new_mask);
1da177e4 2272#else
1e1b6c51
KM
2273static inline void do_set_cpus_allowed(struct task_struct *p,
2274 const struct cpumask *new_mask)
2275{
2276}
cd8ba7cd 2277static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2278 const struct cpumask *new_mask)
1da177e4 2279{
96f874e2 2280 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2281 return -EINVAL;
2282 return 0;
2283}
2284#endif
e0ad9556 2285
3451d024 2286#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2287void calc_load_enter_idle(void);
2288void calc_load_exit_idle(void);
2289#else
2290static inline void calc_load_enter_idle(void) { }
2291static inline void calc_load_exit_idle(void) { }
3451d024 2292#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2293
b342501c 2294/*
c676329a
PZ
2295 * Do not use outside of architecture code which knows its limitations.
2296 *
2297 * sched_clock() has no promise of monotonicity or bounded drift between
2298 * CPUs, use (which you should not) requires disabling IRQs.
2299 *
2300 * Please use one of the three interfaces below.
b342501c 2301 */
1bbfa6f2 2302extern unsigned long long notrace sched_clock(void);
c676329a 2303/*
489a71b0 2304 * See the comment in kernel/sched/clock.c
c676329a
PZ
2305 */
2306extern u64 cpu_clock(int cpu);
2307extern u64 local_clock(void);
545a2bf7 2308extern u64 running_clock(void);
c676329a
PZ
2309extern u64 sched_clock_cpu(int cpu);
2310
e436d800 2311
c1955a3d 2312extern void sched_clock_init(void);
3e51f33f 2313
c1955a3d 2314#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2315static inline void sched_clock_tick(void)
2316{
2317}
2318
2319static inline void sched_clock_idle_sleep_event(void)
2320{
2321}
2322
2323static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2324{
2325}
2326#else
c676329a
PZ
2327/*
2328 * Architectures can set this to 1 if they have specified
2329 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2330 * but then during bootup it turns out that sched_clock()
2331 * is reliable after all:
2332 */
35af99e6
PZ
2333extern int sched_clock_stable(void);
2334extern void set_sched_clock_stable(void);
2335extern void clear_sched_clock_stable(void);
c676329a 2336
3e51f33f
PZ
2337extern void sched_clock_tick(void);
2338extern void sched_clock_idle_sleep_event(void);
2339extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2340#endif
2341
b52bfee4
VP
2342#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2343/*
2344 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2345 * The reason for this explicit opt-in is not to have perf penalty with
2346 * slow sched_clocks.
2347 */
2348extern void enable_sched_clock_irqtime(void);
2349extern void disable_sched_clock_irqtime(void);
2350#else
2351static inline void enable_sched_clock_irqtime(void) {}
2352static inline void disable_sched_clock_irqtime(void) {}
2353#endif
2354
36c8b586 2355extern unsigned long long
41b86e9c 2356task_sched_runtime(struct task_struct *task);
1da177e4
LT
2357
2358/* sched_exec is called by processes performing an exec */
2359#ifdef CONFIG_SMP
2360extern void sched_exec(void);
2361#else
2362#define sched_exec() {}
2363#endif
2364
2aa44d05
IM
2365extern void sched_clock_idle_sleep_event(void);
2366extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2367
1da177e4
LT
2368#ifdef CONFIG_HOTPLUG_CPU
2369extern void idle_task_exit(void);
2370#else
2371static inline void idle_task_exit(void) {}
2372#endif
2373
3451d024 2374#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2375extern void wake_up_nohz_cpu(int cpu);
06d8308c 2376#else
1c20091e 2377static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2378#endif
2379
ce831b38 2380#ifdef CONFIG_NO_HZ_FULL
265f22a9 2381extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2382#endif
2383
5091faa4 2384#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2385extern void sched_autogroup_create_attach(struct task_struct *p);
2386extern void sched_autogroup_detach(struct task_struct *p);
2387extern void sched_autogroup_fork(struct signal_struct *sig);
2388extern void sched_autogroup_exit(struct signal_struct *sig);
2389#ifdef CONFIG_PROC_FS
2390extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2391extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2392#endif
2393#else
2394static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2395static inline void sched_autogroup_detach(struct task_struct *p) { }
2396static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2397static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2398#endif
2399
fa93384f 2400extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2401extern void set_user_nice(struct task_struct *p, long nice);
2402extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2403/**
2404 * task_nice - return the nice value of a given task.
2405 * @p: the task in question.
2406 *
2407 * Return: The nice value [ -20 ... 0 ... 19 ].
2408 */
2409static inline int task_nice(const struct task_struct *p)
2410{
2411 return PRIO_TO_NICE((p)->static_prio);
2412}
36c8b586
IM
2413extern int can_nice(const struct task_struct *p, const int nice);
2414extern int task_curr(const struct task_struct *p);
1da177e4 2415extern int idle_cpu(int cpu);
fe7de49f
KM
2416extern int sched_setscheduler(struct task_struct *, int,
2417 const struct sched_param *);
961ccddd 2418extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2419 const struct sched_param *);
d50dde5a
DF
2420extern int sched_setattr(struct task_struct *,
2421 const struct sched_attr *);
36c8b586 2422extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2423/**
2424 * is_idle_task - is the specified task an idle task?
fa757281 2425 * @p: the task in question.
e69f6186
YB
2426 *
2427 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2428 */
7061ca3b 2429static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2430{
2431 return p->pid == 0;
2432}
36c8b586
IM
2433extern struct task_struct *curr_task(int cpu);
2434extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2435
2436void yield(void);
2437
1da177e4
LT
2438union thread_union {
2439 struct thread_info thread_info;
2440 unsigned long stack[THREAD_SIZE/sizeof(long)];
2441};
2442
2443#ifndef __HAVE_ARCH_KSTACK_END
2444static inline int kstack_end(void *addr)
2445{
2446 /* Reliable end of stack detection:
2447 * Some APM bios versions misalign the stack
2448 */
2449 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2450}
2451#endif
2452
2453extern union thread_union init_thread_union;
2454extern struct task_struct init_task;
2455
2456extern struct mm_struct init_mm;
2457
198fe21b
PE
2458extern struct pid_namespace init_pid_ns;
2459
2460/*
2461 * find a task by one of its numerical ids
2462 *
198fe21b
PE
2463 * find_task_by_pid_ns():
2464 * finds a task by its pid in the specified namespace
228ebcbe
PE
2465 * find_task_by_vpid():
2466 * finds a task by its virtual pid
198fe21b 2467 *
e49859e7 2468 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2469 */
2470
228ebcbe
PE
2471extern struct task_struct *find_task_by_vpid(pid_t nr);
2472extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2473 struct pid_namespace *ns);
198fe21b 2474
1da177e4 2475/* per-UID process charging. */
7b44ab97 2476extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2477static inline struct user_struct *get_uid(struct user_struct *u)
2478{
2479 atomic_inc(&u->__count);
2480 return u;
2481}
2482extern void free_uid(struct user_struct *);
1da177e4
LT
2483
2484#include <asm/current.h>
2485
f0af911a 2486extern void xtime_update(unsigned long ticks);
1da177e4 2487
b3c97528
HH
2488extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2489extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2490extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2491#ifdef CONFIG_SMP
2492 extern void kick_process(struct task_struct *tsk);
2493#else
2494 static inline void kick_process(struct task_struct *tsk) { }
2495#endif
aab03e05 2496extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2497extern void sched_dead(struct task_struct *p);
1da177e4 2498
1da177e4
LT
2499extern void proc_caches_init(void);
2500extern void flush_signals(struct task_struct *);
10ab825b 2501extern void ignore_signals(struct task_struct *);
1da177e4
LT
2502extern void flush_signal_handlers(struct task_struct *, int force_default);
2503extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2504
be0e6f29 2505static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2506{
be0e6f29
ON
2507 struct task_struct *tsk = current;
2508 siginfo_t __info;
1da177e4
LT
2509 int ret;
2510
be0e6f29
ON
2511 spin_lock_irq(&tsk->sighand->siglock);
2512 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2513 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2514
2515 return ret;
53c8f9f1 2516}
1da177e4 2517
9a13049e
ON
2518static inline void kernel_signal_stop(void)
2519{
2520 spin_lock_irq(&current->sighand->siglock);
2521 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2522 __set_current_state(TASK_STOPPED);
2523 spin_unlock_irq(&current->sighand->siglock);
2524
2525 schedule();
2526}
2527
1da177e4
LT
2528extern void release_task(struct task_struct * p);
2529extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2530extern int force_sigsegv(int, struct task_struct *);
2531extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2532extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2533extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2534extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2535 const struct cred *, u32);
c4b92fc1
EB
2536extern int kill_pgrp(struct pid *pid, int sig, int priv);
2537extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2538extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2539extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2540extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2541extern void force_sig(int, struct task_struct *);
1da177e4 2542extern int send_sig(int, struct task_struct *, int);
09faef11 2543extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2544extern struct sigqueue *sigqueue_alloc(void);
2545extern void sigqueue_free(struct sigqueue *);
ac5c2153 2546extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2547extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2548
51a7b448
AV
2549static inline void restore_saved_sigmask(void)
2550{
2551 if (test_and_clear_restore_sigmask())
77097ae5 2552 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2553}
2554
b7f9a11a
AV
2555static inline sigset_t *sigmask_to_save(void)
2556{
2557 sigset_t *res = &current->blocked;
2558 if (unlikely(test_restore_sigmask()))
2559 res = &current->saved_sigmask;
2560 return res;
2561}
2562
9ec52099
CLG
2563static inline int kill_cad_pid(int sig, int priv)
2564{
2565 return kill_pid(cad_pid, sig, priv);
2566}
2567
1da177e4
LT
2568/* These can be the second arg to send_sig_info/send_group_sig_info. */
2569#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2570#define SEND_SIG_PRIV ((struct siginfo *) 1)
2571#define SEND_SIG_FORCED ((struct siginfo *) 2)
2572
2a855dd0
SAS
2573/*
2574 * True if we are on the alternate signal stack.
2575 */
1da177e4
LT
2576static inline int on_sig_stack(unsigned long sp)
2577{
c876eeab
AL
2578 /*
2579 * If the signal stack is SS_AUTODISARM then, by construction, we
2580 * can't be on the signal stack unless user code deliberately set
2581 * SS_AUTODISARM when we were already on it.
2582 *
2583 * This improves reliability: if user state gets corrupted such that
2584 * the stack pointer points very close to the end of the signal stack,
2585 * then this check will enable the signal to be handled anyway.
2586 */
2587 if (current->sas_ss_flags & SS_AUTODISARM)
2588 return 0;
2589
2a855dd0
SAS
2590#ifdef CONFIG_STACK_GROWSUP
2591 return sp >= current->sas_ss_sp &&
2592 sp - current->sas_ss_sp < current->sas_ss_size;
2593#else
2594 return sp > current->sas_ss_sp &&
2595 sp - current->sas_ss_sp <= current->sas_ss_size;
2596#endif
1da177e4
LT
2597}
2598
2599static inline int sas_ss_flags(unsigned long sp)
2600{
72f15c03
RW
2601 if (!current->sas_ss_size)
2602 return SS_DISABLE;
2603
2604 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2605}
2606
2a742138
SS
2607static inline void sas_ss_reset(struct task_struct *p)
2608{
2609 p->sas_ss_sp = 0;
2610 p->sas_ss_size = 0;
2611 p->sas_ss_flags = SS_DISABLE;
2612}
2613
5a1b98d3
AV
2614static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2615{
2616 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2617#ifdef CONFIG_STACK_GROWSUP
2618 return current->sas_ss_sp;
2619#else
2620 return current->sas_ss_sp + current->sas_ss_size;
2621#endif
2622 return sp;
2623}
2624
1da177e4
LT
2625/*
2626 * Routines for handling mm_structs
2627 */
2628extern struct mm_struct * mm_alloc(void);
2629
2630/* mmdrop drops the mm and the page tables */
b3c97528 2631extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2632static inline void mmdrop(struct mm_struct * mm)
2633{
6fb43d7b 2634 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2635 __mmdrop(mm);
2636}
2637
2638/* mmput gets rid of the mappings and all user-space */
2639extern void mmput(struct mm_struct *);
2640/* Grab a reference to a task's mm, if it is not already going away */
2641extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2642/*
2643 * Grab a reference to a task's mm, if it is not already going away
2644 * and ptrace_may_access with the mode parameter passed to it
2645 * succeeds.
2646 */
2647extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2648/* Remove the current tasks stale references to the old mm_struct */
2649extern void mm_release(struct task_struct *, struct mm_struct *);
2650
3033f14a
JT
2651#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2652extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2653 struct task_struct *, unsigned long);
2654#else
6f2c55b8 2655extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2656 struct task_struct *);
3033f14a
JT
2657
2658/* Architectures that haven't opted into copy_thread_tls get the tls argument
2659 * via pt_regs, so ignore the tls argument passed via C. */
2660static inline int copy_thread_tls(
2661 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2662 struct task_struct *p, unsigned long tls)
2663{
2664 return copy_thread(clone_flags, sp, arg, p);
2665}
2666#endif
1da177e4
LT
2667extern void flush_thread(void);
2668extern void exit_thread(void);
2669
1da177e4 2670extern void exit_files(struct task_struct *);
a7e5328a 2671extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2672
1da177e4 2673extern void exit_itimers(struct signal_struct *);
cbaffba1 2674extern void flush_itimer_signals(void);
1da177e4 2675
9402c95f 2676extern void do_group_exit(int);
1da177e4 2677
c4ad8f98 2678extern int do_execve(struct filename *,
d7627467 2679 const char __user * const __user *,
da3d4c5f 2680 const char __user * const __user *);
51f39a1f
DD
2681extern int do_execveat(int, struct filename *,
2682 const char __user * const __user *,
2683 const char __user * const __user *,
2684 int);
3033f14a 2685extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2686extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2687struct task_struct *fork_idle(int);
2aa3a7f8 2688extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2689
82b89778
AH
2690extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2691static inline void set_task_comm(struct task_struct *tsk, const char *from)
2692{
2693 __set_task_comm(tsk, from, false);
2694}
59714d65 2695extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2696
2697#ifdef CONFIG_SMP
317f3941 2698void scheduler_ipi(void);
85ba2d86 2699extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2700#else
184748cc 2701static inline void scheduler_ipi(void) { }
85ba2d86
RM
2702static inline unsigned long wait_task_inactive(struct task_struct *p,
2703 long match_state)
2704{
2705 return 1;
2706}
1da177e4
LT
2707#endif
2708
fafe870f
FW
2709#define tasklist_empty() \
2710 list_empty(&init_task.tasks)
2711
05725f7e
JP
2712#define next_task(p) \
2713 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2714
2715#define for_each_process(p) \
2716 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2717
5bb459bb 2718extern bool current_is_single_threaded(void);
d84f4f99 2719
1da177e4
LT
2720/*
2721 * Careful: do_each_thread/while_each_thread is a double loop so
2722 * 'break' will not work as expected - use goto instead.
2723 */
2724#define do_each_thread(g, t) \
2725 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2726
2727#define while_each_thread(g, t) \
2728 while ((t = next_thread(t)) != g)
2729
0c740d0a
ON
2730#define __for_each_thread(signal, t) \
2731 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2732
2733#define for_each_thread(p, t) \
2734 __for_each_thread((p)->signal, t)
2735
2736/* Careful: this is a double loop, 'break' won't work as expected. */
2737#define for_each_process_thread(p, t) \
2738 for_each_process(p) for_each_thread(p, t)
2739
7e49827c
ON
2740static inline int get_nr_threads(struct task_struct *tsk)
2741{
b3ac022c 2742 return tsk->signal->nr_threads;
7e49827c
ON
2743}
2744
087806b1
ON
2745static inline bool thread_group_leader(struct task_struct *p)
2746{
2747 return p->exit_signal >= 0;
2748}
1da177e4 2749
0804ef4b
EB
2750/* Do to the insanities of de_thread it is possible for a process
2751 * to have the pid of the thread group leader without actually being
2752 * the thread group leader. For iteration through the pids in proc
2753 * all we care about is that we have a task with the appropriate
2754 * pid, we don't actually care if we have the right task.
2755 */
e1403b8e 2756static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2757{
e1403b8e 2758 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2759}
2760
bac0abd6 2761static inline
e1403b8e 2762bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2763{
e1403b8e 2764 return p1->signal == p2->signal;
bac0abd6
PE
2765}
2766
36c8b586 2767static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2768{
05725f7e
JP
2769 return list_entry_rcu(p->thread_group.next,
2770 struct task_struct, thread_group);
47e65328
ON
2771}
2772
e868171a 2773static inline int thread_group_empty(struct task_struct *p)
1da177e4 2774{
47e65328 2775 return list_empty(&p->thread_group);
1da177e4
LT
2776}
2777
2778#define delay_group_leader(p) \
2779 (thread_group_leader(p) && !thread_group_empty(p))
2780
1da177e4 2781/*
260ea101 2782 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2783 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2784 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2785 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2786 *
2787 * Nests both inside and outside of read_lock(&tasklist_lock).
2788 * It must not be nested with write_lock_irq(&tasklist_lock),
2789 * neither inside nor outside.
2790 */
2791static inline void task_lock(struct task_struct *p)
2792{
2793 spin_lock(&p->alloc_lock);
2794}
2795
2796static inline void task_unlock(struct task_struct *p)
2797{
2798 spin_unlock(&p->alloc_lock);
2799}
2800
b8ed374e 2801extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2802 unsigned long *flags);
2803
9388dc30
AV
2804static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2805 unsigned long *flags)
2806{
2807 struct sighand_struct *ret;
2808
2809 ret = __lock_task_sighand(tsk, flags);
2810 (void)__cond_lock(&tsk->sighand->siglock, ret);
2811 return ret;
2812}
b8ed374e 2813
f63ee72e
ON
2814static inline void unlock_task_sighand(struct task_struct *tsk,
2815 unsigned long *flags)
2816{
2817 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2818}
2819
77e4ef99 2820/**
7d7efec3
TH
2821 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2822 * @tsk: task causing the changes
77e4ef99 2823 *
7d7efec3
TH
2824 * All operations which modify a threadgroup - a new thread joining the
2825 * group, death of a member thread (the assertion of PF_EXITING) and
2826 * exec(2) dethreading the process and replacing the leader - are wrapped
2827 * by threadgroup_change_{begin|end}(). This is to provide a place which
2828 * subsystems needing threadgroup stability can hook into for
2829 * synchronization.
77e4ef99 2830 */
7d7efec3 2831static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2832{
7d7efec3
TH
2833 might_sleep();
2834 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2835}
77e4ef99
TH
2836
2837/**
7d7efec3
TH
2838 * threadgroup_change_end - mark the end of changes to a threadgroup
2839 * @tsk: task causing the changes
77e4ef99 2840 *
7d7efec3 2841 * See threadgroup_change_begin().
77e4ef99 2842 */
7d7efec3 2843static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2844{
7d7efec3 2845 cgroup_threadgroup_change_end(tsk);
4714d1d3 2846}
4714d1d3 2847
f037360f
AV
2848#ifndef __HAVE_THREAD_FUNCTIONS
2849
f7e4217b
RZ
2850#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2851#define task_stack_page(task) ((task)->stack)
a1261f54 2852
10ebffde
AV
2853static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2854{
2855 *task_thread_info(p) = *task_thread_info(org);
2856 task_thread_info(p)->task = p;
2857}
2858
6a40281a
CE
2859/*
2860 * Return the address of the last usable long on the stack.
2861 *
2862 * When the stack grows down, this is just above the thread
2863 * info struct. Going any lower will corrupt the threadinfo.
2864 *
2865 * When the stack grows up, this is the highest address.
2866 * Beyond that position, we corrupt data on the next page.
2867 */
10ebffde
AV
2868static inline unsigned long *end_of_stack(struct task_struct *p)
2869{
6a40281a
CE
2870#ifdef CONFIG_STACK_GROWSUP
2871 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2872#else
f7e4217b 2873 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2874#endif
10ebffde
AV
2875}
2876
f037360f 2877#endif
a70857e4
AT
2878#define task_stack_end_corrupted(task) \
2879 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2880
8b05c7e6
FT
2881static inline int object_is_on_stack(void *obj)
2882{
2883 void *stack = task_stack_page(current);
2884
2885 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2886}
2887
8c9843e5
BH
2888extern void thread_info_cache_init(void);
2889
7c9f8861
ES
2890#ifdef CONFIG_DEBUG_STACK_USAGE
2891static inline unsigned long stack_not_used(struct task_struct *p)
2892{
2893 unsigned long *n = end_of_stack(p);
2894
2895 do { /* Skip over canary */
6c31da34
HD
2896# ifdef CONFIG_STACK_GROWSUP
2897 n--;
2898# else
7c9f8861 2899 n++;
6c31da34 2900# endif
7c9f8861
ES
2901 } while (!*n);
2902
6c31da34
HD
2903# ifdef CONFIG_STACK_GROWSUP
2904 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2905# else
7c9f8861 2906 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 2907# endif
7c9f8861
ES
2908}
2909#endif
d4311ff1 2910extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2911
1da177e4
LT
2912/* set thread flags in other task's structures
2913 * - see asm/thread_info.h for TIF_xxxx flags available
2914 */
2915static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2916{
a1261f54 2917 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2918}
2919
2920static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2921{
a1261f54 2922 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2923}
2924
2925static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2926{
a1261f54 2927 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2928}
2929
2930static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2931{
a1261f54 2932 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2933}
2934
2935static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2936{
a1261f54 2937 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2938}
2939
2940static inline void set_tsk_need_resched(struct task_struct *tsk)
2941{
2942 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2943}
2944
2945static inline void clear_tsk_need_resched(struct task_struct *tsk)
2946{
2947 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2948}
2949
8ae121ac
GH
2950static inline int test_tsk_need_resched(struct task_struct *tsk)
2951{
2952 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2953}
2954
690cc3ff
EB
2955static inline int restart_syscall(void)
2956{
2957 set_tsk_thread_flag(current, TIF_SIGPENDING);
2958 return -ERESTARTNOINTR;
2959}
2960
1da177e4
LT
2961static inline int signal_pending(struct task_struct *p)
2962{
2963 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2964}
f776d12d 2965
d9588725
RM
2966static inline int __fatal_signal_pending(struct task_struct *p)
2967{
2968 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2969}
f776d12d
MW
2970
2971static inline int fatal_signal_pending(struct task_struct *p)
2972{
2973 return signal_pending(p) && __fatal_signal_pending(p);
2974}
2975
16882c1e
ON
2976static inline int signal_pending_state(long state, struct task_struct *p)
2977{
2978 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2979 return 0;
2980 if (!signal_pending(p))
2981 return 0;
2982
16882c1e
ON
2983 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2984}
2985
1da177e4
LT
2986/*
2987 * cond_resched() and cond_resched_lock(): latency reduction via
2988 * explicit rescheduling in places that are safe. The return
2989 * value indicates whether a reschedule was done in fact.
2990 * cond_resched_lock() will drop the spinlock before scheduling,
2991 * cond_resched_softirq() will enable bhs before scheduling.
2992 */
c3921ab7 2993extern int _cond_resched(void);
6f80bd98 2994
613afbf8 2995#define cond_resched() ({ \
3427445a 2996 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2997 _cond_resched(); \
2998})
6f80bd98 2999
613afbf8
FW
3000extern int __cond_resched_lock(spinlock_t *lock);
3001
3002#define cond_resched_lock(lock) ({ \
3427445a 3003 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3004 __cond_resched_lock(lock); \
3005})
3006
3007extern int __cond_resched_softirq(void);
3008
75e1056f 3009#define cond_resched_softirq() ({ \
3427445a 3010 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3011 __cond_resched_softirq(); \
613afbf8 3012})
1da177e4 3013
f6f3c437
SH
3014static inline void cond_resched_rcu(void)
3015{
3016#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3017 rcu_read_unlock();
3018 cond_resched();
3019 rcu_read_lock();
3020#endif
3021}
3022
1da177e4
LT
3023/*
3024 * Does a critical section need to be broken due to another
95c354fe
NP
3025 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3026 * but a general need for low latency)
1da177e4 3027 */
95c354fe 3028static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3029{
95c354fe
NP
3030#ifdef CONFIG_PREEMPT
3031 return spin_is_contended(lock);
3032#else
1da177e4 3033 return 0;
95c354fe 3034#endif
1da177e4
LT
3035}
3036
ee761f62
TG
3037/*
3038 * Idle thread specific functions to determine the need_resched
69dd0f84 3039 * polling state.
ee761f62 3040 */
69dd0f84 3041#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3042static inline int tsk_is_polling(struct task_struct *p)
3043{
3044 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3045}
ea811747
PZ
3046
3047static inline void __current_set_polling(void)
3a98f871
TG
3048{
3049 set_thread_flag(TIF_POLLING_NRFLAG);
3050}
3051
ea811747
PZ
3052static inline bool __must_check current_set_polling_and_test(void)
3053{
3054 __current_set_polling();
3055
3056 /*
3057 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3058 * paired by resched_curr()
ea811747 3059 */
4e857c58 3060 smp_mb__after_atomic();
ea811747
PZ
3061
3062 return unlikely(tif_need_resched());
3063}
3064
3065static inline void __current_clr_polling(void)
3a98f871
TG
3066{
3067 clear_thread_flag(TIF_POLLING_NRFLAG);
3068}
ea811747
PZ
3069
3070static inline bool __must_check current_clr_polling_and_test(void)
3071{
3072 __current_clr_polling();
3073
3074 /*
3075 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3076 * paired by resched_curr()
ea811747 3077 */
4e857c58 3078 smp_mb__after_atomic();
ea811747
PZ
3079
3080 return unlikely(tif_need_resched());
3081}
3082
ee761f62
TG
3083#else
3084static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3085static inline void __current_set_polling(void) { }
3086static inline void __current_clr_polling(void) { }
3087
3088static inline bool __must_check current_set_polling_and_test(void)
3089{
3090 return unlikely(tif_need_resched());
3091}
3092static inline bool __must_check current_clr_polling_and_test(void)
3093{
3094 return unlikely(tif_need_resched());
3095}
ee761f62
TG
3096#endif
3097
8cb75e0c
PZ
3098static inline void current_clr_polling(void)
3099{
3100 __current_clr_polling();
3101
3102 /*
3103 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3104 * Once the bit is cleared, we'll get IPIs with every new
3105 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3106 * fold.
3107 */
8875125e 3108 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3109
3110 preempt_fold_need_resched();
3111}
3112
75f93fed
PZ
3113static __always_inline bool need_resched(void)
3114{
3115 return unlikely(tif_need_resched());
3116}
3117
f06febc9
FM
3118/*
3119 * Thread group CPU time accounting.
3120 */
4cd4c1b4 3121void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3122void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3123
7bb44ade
RM
3124/*
3125 * Reevaluate whether the task has signals pending delivery.
3126 * Wake the task if so.
3127 * This is required every time the blocked sigset_t changes.
3128 * callers must hold sighand->siglock.
3129 */
3130extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3131extern void recalc_sigpending(void);
3132
910ffdb1
ON
3133extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3134
3135static inline void signal_wake_up(struct task_struct *t, bool resume)
3136{
3137 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3138}
3139static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3140{
3141 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3142}
1da177e4
LT
3143
3144/*
3145 * Wrappers for p->thread_info->cpu access. No-op on UP.
3146 */
3147#ifdef CONFIG_SMP
3148
3149static inline unsigned int task_cpu(const struct task_struct *p)
3150{
a1261f54 3151 return task_thread_info(p)->cpu;
1da177e4
LT
3152}
3153
b32e86b4
IM
3154static inline int task_node(const struct task_struct *p)
3155{
3156 return cpu_to_node(task_cpu(p));
3157}
3158
c65cc870 3159extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3160
3161#else
3162
3163static inline unsigned int task_cpu(const struct task_struct *p)
3164{
3165 return 0;
3166}
3167
3168static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3169{
3170}
3171
3172#endif /* CONFIG_SMP */
3173
96f874e2
RR
3174extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3175extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3176
7c941438 3177#ifdef CONFIG_CGROUP_SCHED
07e06b01 3178extern struct task_group root_task_group;
8323f26c 3179#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3180
54e99124
DG
3181extern int task_can_switch_user(struct user_struct *up,
3182 struct task_struct *tsk);
3183
4b98d11b
AD
3184#ifdef CONFIG_TASK_XACCT
3185static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3186{
940389b8 3187 tsk->ioac.rchar += amt;
4b98d11b
AD
3188}
3189
3190static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3191{
940389b8 3192 tsk->ioac.wchar += amt;
4b98d11b
AD
3193}
3194
3195static inline void inc_syscr(struct task_struct *tsk)
3196{
940389b8 3197 tsk->ioac.syscr++;
4b98d11b
AD
3198}
3199
3200static inline void inc_syscw(struct task_struct *tsk)
3201{
940389b8 3202 tsk->ioac.syscw++;
4b98d11b
AD
3203}
3204#else
3205static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3206{
3207}
3208
3209static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3210{
3211}
3212
3213static inline void inc_syscr(struct task_struct *tsk)
3214{
3215}
3216
3217static inline void inc_syscw(struct task_struct *tsk)
3218{
3219}
3220#endif
3221
82455257
DH
3222#ifndef TASK_SIZE_OF
3223#define TASK_SIZE_OF(tsk) TASK_SIZE
3224#endif
3225
f98bafa0 3226#ifdef CONFIG_MEMCG
cf475ad2 3227extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3228#else
3229static inline void mm_update_next_owner(struct mm_struct *mm)
3230{
3231}
f98bafa0 3232#endif /* CONFIG_MEMCG */
cf475ad2 3233
3e10e716
JS
3234static inline unsigned long task_rlimit(const struct task_struct *tsk,
3235 unsigned int limit)
3236{
316c1608 3237 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3238}
3239
3240static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3241 unsigned int limit)
3242{
316c1608 3243 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3244}
3245
3246static inline unsigned long rlimit(unsigned int limit)
3247{
3248 return task_rlimit(current, limit);
3249}
3250
3251static inline unsigned long rlimit_max(unsigned int limit)
3252{
3253 return task_rlimit_max(current, limit);
3254}
3255
adaf9fcd
RW
3256#ifdef CONFIG_CPU_FREQ
3257struct update_util_data {
3258 void (*func)(struct update_util_data *data,
3259 u64 time, unsigned long util, unsigned long max);
3260};
3261
3262void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3263#endif /* CONFIG_CPU_FREQ */
3264
1da177e4 3265#endif