Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4
LT
40
41#include <linux/dcache.h>
2fe17c10 42#include <linux/falloc.h>
d126d43f 43#include <linux/pagevec.h>
66114cad 44#include <linux/backing-dev.h>
1da177e4 45
f0f37e2f 46static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 47
487f84f3
DC
48/*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52static inline void
53xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56{
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60}
61
62static inline void
63xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66{
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70}
71
72static inline void
73xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76{
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80}
81
dda35b8f 82/*
4f69f578
DC
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
dda35b8f 88 *
4f69f578
DC
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
dda35b8f 92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
4f69f578
DC
101 int status = 0;
102
dda35b8f
CH
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
4f69f578
DC
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
dda35b8f 125
4f69f578 126 zero_user(page, offset, bytes);
dda35b8f 127
4f69f578
DC
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
dda35b8f
CH
133 pos += bytes;
134 count -= bytes;
dda35b8f
CH
135 } while (count);
136
cddc1162 137 return status;
dda35b8f
CH
138}
139
8add71ca
CH
140int
141xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144{
145 struct xfs_trans *tp;
146 int error;
147
148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 if (error) {
4906e215 151 xfs_trans_cancel(tp);
8add71ca
CH
152 return error;
153 }
154
155 xfs_ilock(ip, XFS_ILOCK_EXCL);
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157
158 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 ip->i_d.di_mode &= ~S_ISUID;
160 if (ip->i_d.di_mode & S_IXGRP)
161 ip->i_d.di_mode &= ~S_ISGID;
162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 }
164
165 if (flags & XFS_PREALLOC_SET)
166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 if (flags & XFS_PREALLOC_CLEAR)
168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 if (flags & XFS_PREALLOC_SYNC)
172 xfs_trans_set_sync(tp);
70393313 173 return xfs_trans_commit(tp);
8add71ca
CH
174}
175
1da2f2db
CH
176/*
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
181 */
182STATIC int
183xfs_dir_fsync(
184 struct file *file,
185 loff_t start,
186 loff_t end,
187 int datasync)
188{
189 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_lsn_t lsn = 0;
192
193 trace_xfs_dir_fsync(ip);
194
195 xfs_ilock(ip, XFS_ILOCK_SHARED);
196 if (xfs_ipincount(ip))
197 lsn = ip->i_itemp->ili_last_lsn;
198 xfs_iunlock(ip, XFS_ILOCK_SHARED);
199
200 if (!lsn)
201 return 0;
2451337d 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
203}
204
fd3200be
CH
205STATIC int
206xfs_file_fsync(
207 struct file *file,
02c24a82
JB
208 loff_t start,
209 loff_t end,
fd3200be
CH
210 int datasync)
211{
7ea80859
CH
212 struct inode *inode = file->f_mapping->host;
213 struct xfs_inode *ip = XFS_I(inode);
a27a263b 214 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
215 int error = 0;
216 int log_flushed = 0;
b1037058 217 xfs_lsn_t lsn = 0;
fd3200be 218
cca28fb8 219 trace_xfs_file_fsync(ip);
fd3200be 220
02c24a82
JB
221 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 if (error)
223 return error;
224
a27a263b 225 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 226 return -EIO;
fd3200be
CH
227
228 xfs_iflags_clear(ip, XFS_ITRUNCATED);
229
a27a263b
CH
230 if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 /*
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
237 */
238 if (XFS_IS_REALTIME_INODE(ip))
239 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 }
243
fd3200be 244 /*
8a9c9980
CH
245 * All metadata updates are logged, which means that we just have
246 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
247 */
248 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
249 if (xfs_ipincount(ip)) {
250 if (!datasync ||
251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 lsn = ip->i_itemp->ili_last_lsn;
253 }
8a9c9980 254 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 255
8a9c9980 256 if (lsn)
b1037058
CH
257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258
a27a263b
CH
259 /*
260 * If we only have a single device, and the log force about was
261 * a no-op we might have to flush the data device cache here.
262 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 * an already allocated file and thus do not have any metadata to
264 * commit.
265 */
266 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 mp->m_logdev_targp == mp->m_ddev_targp &&
268 !XFS_IS_REALTIME_INODE(ip) &&
269 !log_flushed)
270 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 271
2451337d 272 return error;
fd3200be
CH
273}
274
00258e36 275STATIC ssize_t
b4f5d2c6 276xfs_file_read_iter(
dda35b8f 277 struct kiocb *iocb,
b4f5d2c6 278 struct iov_iter *to)
dda35b8f
CH
279{
280 struct file *file = iocb->ki_filp;
281 struct inode *inode = file->f_mapping->host;
00258e36
CH
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 284 size_t size = iov_iter_count(to);
dda35b8f 285 ssize_t ret = 0;
00258e36 286 int ioflags = 0;
dda35b8f 287 xfs_fsize_t n;
b4f5d2c6 288 loff_t pos = iocb->ki_pos;
dda35b8f 289
dda35b8f
CH
290 XFS_STATS_INC(xs_read_calls);
291
2ba48ce5 292 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
b92cc59f 293 ioflags |= XFS_IO_ISDIRECT;
00258e36 294 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 295 ioflags |= XFS_IO_INVIS;
00258e36 296
6b698ede 297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
dda35b8f
CH
298 xfs_buftarg_t *target =
299 XFS_IS_REALTIME_INODE(ip) ?
300 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
301 /* DIO must be aligned to device logical sector size */
302 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 303 if (pos == i_size_read(inode))
00258e36 304 return 0;
b474c7ae 305 return -EINVAL;
dda35b8f
CH
306 }
307 }
308
fb595814 309 n = mp->m_super->s_maxbytes - pos;
00258e36 310 if (n <= 0 || size == 0)
dda35b8f
CH
311 return 0;
312
313 if (n < size)
314 size = n;
315
316 if (XFS_FORCED_SHUTDOWN(mp))
317 return -EIO;
318
0c38a251
DC
319 /*
320 * Locking is a bit tricky here. If we take an exclusive lock
321 * for direct IO, we effectively serialise all new concurrent
322 * read IO to this file and block it behind IO that is currently in
323 * progress because IO in progress holds the IO lock shared. We only
324 * need to hold the lock exclusive to blow away the page cache, so
325 * only take lock exclusively if the page cache needs invalidation.
326 * This allows the normal direct IO case of no page cache pages to
327 * proceeed concurrently without serialisation.
328 */
329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333
00258e36 334 if (inode->i_mapping->nrpages) {
8ff1e670 335 ret = filemap_write_and_wait_range(
fb595814 336 VFS_I(ip)->i_mapping,
7d4ea3ce 337 pos, pos + size - 1);
487f84f3
DC
338 if (ret) {
339 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
340 return ret;
341 }
85e584da
CM
342
343 /*
344 * Invalidate whole pages. This can return an error if
345 * we fail to invalidate a page, but this should never
346 * happen on XFS. Warn if it does fail.
347 */
348 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
349 pos >> PAGE_CACHE_SHIFT,
350 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
351 WARN_ON_ONCE(ret);
352 ret = 0;
00258e36 353 }
487f84f3 354 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 355 }
dda35b8f 356
fb595814 357 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 358
b4f5d2c6 359 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
360 if (ret > 0)
361 XFS_STATS_ADD(xs_read_bytes, ret);
362
487f84f3 363 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
364 return ret;
365}
366
00258e36
CH
367STATIC ssize_t
368xfs_file_splice_read(
dda35b8f
CH
369 struct file *infilp,
370 loff_t *ppos,
371 struct pipe_inode_info *pipe,
372 size_t count,
00258e36 373 unsigned int flags)
dda35b8f 374{
00258e36 375 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 376 int ioflags = 0;
dda35b8f
CH
377 ssize_t ret;
378
379 XFS_STATS_INC(xs_read_calls);
00258e36
CH
380
381 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 382 ioflags |= XFS_IO_INVIS;
00258e36 383
dda35b8f
CH
384 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 return -EIO;
386
487f84f3 387 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 388
dda35b8f
CH
389 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
390
6b698ede
DC
391 /* for dax, we need to avoid the page cache */
392 if (IS_DAX(VFS_I(ip)))
393 ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
394 else
395 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
dda35b8f
CH
396 if (ret > 0)
397 XFS_STATS_ADD(xs_read_bytes, ret);
398
487f84f3 399 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
400 return ret;
401}
402
dda35b8f 403/*
193aec10
CH
404 * This routine is called to handle zeroing any space in the last block of the
405 * file that is beyond the EOF. We do this since the size is being increased
406 * without writing anything to that block and we don't want to read the
407 * garbage on the disk.
dda35b8f
CH
408 */
409STATIC int /* error (positive) */
410xfs_zero_last_block(
193aec10
CH
411 struct xfs_inode *ip,
412 xfs_fsize_t offset,
5885ebda
DC
413 xfs_fsize_t isize,
414 bool *did_zeroing)
dda35b8f 415{
193aec10
CH
416 struct xfs_mount *mp = ip->i_mount;
417 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
418 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
419 int zero_len;
420 int nimaps = 1;
421 int error = 0;
422 struct xfs_bmbt_irec imap;
dda35b8f 423
193aec10 424 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 425 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 426 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 427 if (error)
dda35b8f 428 return error;
193aec10 429
dda35b8f 430 ASSERT(nimaps > 0);
193aec10 431
dda35b8f
CH
432 /*
433 * If the block underlying isize is just a hole, then there
434 * is nothing to zero.
435 */
193aec10 436 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 437 return 0;
dda35b8f
CH
438
439 zero_len = mp->m_sb.sb_blocksize - zero_offset;
440 if (isize + zero_len > offset)
441 zero_len = offset - isize;
5885ebda 442 *did_zeroing = true;
193aec10 443 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
444}
445
446/*
193aec10
CH
447 * Zero any on disk space between the current EOF and the new, larger EOF.
448 *
449 * This handles the normal case of zeroing the remainder of the last block in
450 * the file and the unusual case of zeroing blocks out beyond the size of the
451 * file. This second case only happens with fixed size extents and when the
452 * system crashes before the inode size was updated but after blocks were
453 * allocated.
454 *
455 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 456 */
dda35b8f
CH
457int /* error (positive) */
458xfs_zero_eof(
193aec10
CH
459 struct xfs_inode *ip,
460 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
461 xfs_fsize_t isize, /* current inode size */
462 bool *did_zeroing)
dda35b8f 463{
193aec10
CH
464 struct xfs_mount *mp = ip->i_mount;
465 xfs_fileoff_t start_zero_fsb;
466 xfs_fileoff_t end_zero_fsb;
467 xfs_fileoff_t zero_count_fsb;
468 xfs_fileoff_t last_fsb;
469 xfs_fileoff_t zero_off;
470 xfs_fsize_t zero_len;
471 int nimaps;
472 int error = 0;
473 struct xfs_bmbt_irec imap;
474
475 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
476 ASSERT(offset > isize);
477
478 /*
479 * First handle zeroing the block on which isize resides.
193aec10 480 *
dda35b8f
CH
481 * We only zero a part of that block so it is handled specially.
482 */
193aec10 483 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
5885ebda 484 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
193aec10
CH
485 if (error)
486 return error;
dda35b8f
CH
487 }
488
489 /*
193aec10
CH
490 * Calculate the range between the new size and the old where blocks
491 * needing to be zeroed may exist.
492 *
493 * To get the block where the last byte in the file currently resides,
494 * we need to subtract one from the size and truncate back to a block
495 * boundary. We subtract 1 in case the size is exactly on a block
496 * boundary.
dda35b8f
CH
497 */
498 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
499 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
500 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
501 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
502 if (last_fsb == end_zero_fsb) {
503 /*
504 * The size was only incremented on its last block.
505 * We took care of that above, so just return.
506 */
507 return 0;
508 }
509
510 ASSERT(start_zero_fsb <= end_zero_fsb);
511 while (start_zero_fsb <= end_zero_fsb) {
512 nimaps = 1;
513 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
514
515 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
516 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
517 &imap, &nimaps, 0);
193aec10
CH
518 xfs_iunlock(ip, XFS_ILOCK_EXCL);
519 if (error)
dda35b8f 520 return error;
193aec10 521
dda35b8f
CH
522 ASSERT(nimaps > 0);
523
524 if (imap.br_state == XFS_EXT_UNWRITTEN ||
525 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
526 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 continue;
529 }
530
531 /*
532 * There are blocks we need to zero.
dda35b8f 533 */
dda35b8f
CH
534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
536
537 if ((zero_off + zero_len) > offset)
538 zero_len = offset - zero_off;
539
540 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
541 if (error)
542 return error;
dda35b8f 543
5885ebda 544 *did_zeroing = true;
dda35b8f
CH
545 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
547 }
548
549 return 0;
dda35b8f
CH
550}
551
4d8d1581
DC
552/*
553 * Common pre-write limit and setup checks.
554 *
5bf1f262
CH
555 * Called with the iolocked held either shared and exclusive according to
556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
557 * if called for a direct write beyond i_size.
4d8d1581
DC
558 */
559STATIC ssize_t
560xfs_file_aio_write_checks(
99733fa3
AV
561 struct kiocb *iocb,
562 struct iov_iter *from,
4d8d1581
DC
563 int *iolock)
564{
99733fa3 565 struct file *file = iocb->ki_filp;
4d8d1581
DC
566 struct inode *inode = file->f_mapping->host;
567 struct xfs_inode *ip = XFS_I(inode);
3309dd04 568 ssize_t error = 0;
99733fa3 569 size_t count = iov_iter_count(from);
4d8d1581 570
7271d243 571restart:
3309dd04
AV
572 error = generic_write_checks(iocb, from);
573 if (error <= 0)
4d8d1581 574 return error;
4d8d1581 575
21c3ea18 576 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
577 if (error)
578 return error;
579
a6de82ca
JK
580 /* For changing security info in file_remove_privs() we need i_mutex */
581 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
582 xfs_rw_iunlock(ip, *iolock);
583 *iolock = XFS_IOLOCK_EXCL;
584 xfs_rw_ilock(ip, *iolock);
585 goto restart;
586 }
4d8d1581
DC
587 /*
588 * If the offset is beyond the size of the file, we need to zero any
589 * blocks that fall between the existing EOF and the start of this
2813d682 590 * write. If zeroing is needed and we are currently holding the
467f7899
CH
591 * iolock shared, we need to update it to exclusive which implies
592 * having to redo all checks before.
b9d59846
DC
593 *
594 * We need to serialise against EOF updates that occur in IO
595 * completions here. We want to make sure that nobody is changing the
596 * size while we do this check until we have placed an IO barrier (i.e.
597 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
598 * The spinlock effectively forms a memory barrier once we have the
599 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
600 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 601 */
b9d59846 602 spin_lock(&ip->i_flags_lock);
99733fa3 603 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
604 bool zero = false;
605
b9d59846 606 spin_unlock(&ip->i_flags_lock);
7271d243 607 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 608 xfs_rw_iunlock(ip, *iolock);
7271d243 609 *iolock = XFS_IOLOCK_EXCL;
467f7899 610 xfs_rw_ilock(ip, *iolock);
3309dd04 611 iov_iter_reexpand(from, count);
40c63fbc
DC
612
613 /*
614 * We now have an IO submission barrier in place, but
615 * AIO can do EOF updates during IO completion and hence
616 * we now need to wait for all of them to drain. Non-AIO
617 * DIO will have drained before we are given the
618 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
619 * no-op.
620 */
621 inode_dio_wait(inode);
7271d243
DC
622 goto restart;
623 }
99733fa3 624 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
625 if (error)
626 return error;
b9d59846
DC
627 } else
628 spin_unlock(&ip->i_flags_lock);
4d8d1581 629
8a9c9980
CH
630 /*
631 * Updating the timestamps will grab the ilock again from
632 * xfs_fs_dirty_inode, so we have to call it after dropping the
633 * lock above. Eventually we should look into a way to avoid
634 * the pointless lock roundtrip.
635 */
c3b2da31
JB
636 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
637 error = file_update_time(file);
638 if (error)
639 return error;
640 }
8a9c9980 641
4d8d1581
DC
642 /*
643 * If we're writing the file then make sure to clear the setuid and
644 * setgid bits if the process is not being run by root. This keeps
645 * people from modifying setuid and setgid binaries.
646 */
a6de82ca
JK
647 if (!IS_NOSEC(inode))
648 return file_remove_privs(file);
649 return 0;
4d8d1581
DC
650}
651
f0d26e86
DC
652/*
653 * xfs_file_dio_aio_write - handle direct IO writes
654 *
655 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 656 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
657 * follow locking changes and looping.
658 *
eda77982
DC
659 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
660 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
661 * pages are flushed out.
662 *
663 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
664 * allowing them to be done in parallel with reads and other direct IO writes.
665 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
666 * needs to do sub-block zeroing and that requires serialisation against other
667 * direct IOs to the same block. In this case we need to serialise the
668 * submission of the unaligned IOs so that we don't get racing block zeroing in
669 * the dio layer. To avoid the problem with aio, we also need to wait for
670 * outstanding IOs to complete so that unwritten extent conversion is completed
671 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 672 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 673 *
f0d26e86
DC
674 * Returns with locks held indicated by @iolock and errors indicated by
675 * negative return values.
676 */
677STATIC ssize_t
678xfs_file_dio_aio_write(
679 struct kiocb *iocb,
b3188919 680 struct iov_iter *from)
f0d26e86
DC
681{
682 struct file *file = iocb->ki_filp;
683 struct address_space *mapping = file->f_mapping;
684 struct inode *inode = mapping->host;
685 struct xfs_inode *ip = XFS_I(inode);
686 struct xfs_mount *mp = ip->i_mount;
687 ssize_t ret = 0;
eda77982 688 int unaligned_io = 0;
d0606464 689 int iolock;
b3188919
AV
690 size_t count = iov_iter_count(from);
691 loff_t pos = iocb->ki_pos;
0cefb29e
DC
692 loff_t end;
693 struct iov_iter data;
f0d26e86
DC
694 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
695 mp->m_rtdev_targp : mp->m_ddev_targp;
696
7c71ee78 697 /* DIO must be aligned to device logical sector size */
6b698ede 698 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
b474c7ae 699 return -EINVAL;
f0d26e86 700
7c71ee78 701 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
702 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
703 unaligned_io = 1;
704
7271d243
DC
705 /*
706 * We don't need to take an exclusive lock unless there page cache needs
707 * to be invalidated or unaligned IO is being executed. We don't need to
708 * consider the EOF extension case here because
709 * xfs_file_aio_write_checks() will relock the inode as necessary for
710 * EOF zeroing cases and fill out the new inode size as appropriate.
711 */
712 if (unaligned_io || mapping->nrpages)
d0606464 713 iolock = XFS_IOLOCK_EXCL;
f0d26e86 714 else
d0606464
CH
715 iolock = XFS_IOLOCK_SHARED;
716 xfs_rw_ilock(ip, iolock);
c58cb165
CH
717
718 /*
719 * Recheck if there are cached pages that need invalidate after we got
720 * the iolock to protect against other threads adding new pages while
721 * we were waiting for the iolock.
722 */
d0606464
CH
723 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
724 xfs_rw_iunlock(ip, iolock);
725 iolock = XFS_IOLOCK_EXCL;
726 xfs_rw_ilock(ip, iolock);
c58cb165 727 }
f0d26e86 728
99733fa3 729 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 730 if (ret)
d0606464 731 goto out;
99733fa3
AV
732 count = iov_iter_count(from);
733 pos = iocb->ki_pos;
0cefb29e 734 end = pos + count - 1;
f0d26e86
DC
735
736 if (mapping->nrpages) {
07d5035a 737 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
0cefb29e 738 pos, end);
f0d26e86 739 if (ret)
d0606464 740 goto out;
834ffca6
DC
741 /*
742 * Invalidate whole pages. This can return an error if
743 * we fail to invalidate a page, but this should never
744 * happen on XFS. Warn if it does fail.
745 */
746 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce 747 pos >> PAGE_CACHE_SHIFT,
0cefb29e 748 end >> PAGE_CACHE_SHIFT);
834ffca6
DC
749 WARN_ON_ONCE(ret);
750 ret = 0;
f0d26e86
DC
751 }
752
eda77982
DC
753 /*
754 * If we are doing unaligned IO, wait for all other IO to drain,
755 * otherwise demote the lock if we had to flush cached pages
756 */
757 if (unaligned_io)
4a06fd26 758 inode_dio_wait(inode);
d0606464 759 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 760 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 761 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
762 }
763
764 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
f0d26e86 765
0cefb29e 766 data = *from;
1aef882f 767 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
0cefb29e
DC
768
769 /* see generic_file_direct_write() for why this is necessary */
770 if (mapping->nrpages) {
771 invalidate_inode_pages2_range(mapping,
772 pos >> PAGE_CACHE_SHIFT,
773 end >> PAGE_CACHE_SHIFT);
774 }
775
776 if (ret > 0) {
777 pos += ret;
778 iov_iter_advance(from, ret);
779 iocb->ki_pos = pos;
780 }
d0606464
CH
781out:
782 xfs_rw_iunlock(ip, iolock);
783
6b698ede
DC
784 /*
785 * No fallback to buffered IO on errors for XFS. DAX can result in
786 * partial writes, but direct IO will either complete fully or fail.
787 */
788 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
f0d26e86
DC
789 return ret;
790}
791
00258e36 792STATIC ssize_t
637bbc75 793xfs_file_buffered_aio_write(
dda35b8f 794 struct kiocb *iocb,
b3188919 795 struct iov_iter *from)
dda35b8f
CH
796{
797 struct file *file = iocb->ki_filp;
798 struct address_space *mapping = file->f_mapping;
799 struct inode *inode = mapping->host;
00258e36 800 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
801 ssize_t ret;
802 int enospc = 0;
d0606464 803 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 804
d0606464 805 xfs_rw_ilock(ip, iolock);
dda35b8f 806
99733fa3 807 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 808 if (ret)
d0606464 809 goto out;
dda35b8f
CH
810
811 /* We can write back this queue in page reclaim */
de1414a6 812 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 813
dda35b8f 814write_retry:
99733fa3
AV
815 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
816 iocb->ki_pos, 0);
817 ret = generic_perform_write(file, from, iocb->ki_pos);
0a64bc2c 818 if (likely(ret >= 0))
99733fa3 819 iocb->ki_pos += ret;
dc06f398 820
637bbc75 821 /*
dc06f398
BF
822 * If we hit a space limit, try to free up some lingering preallocated
823 * space before returning an error. In the case of ENOSPC, first try to
824 * write back all dirty inodes to free up some of the excess reserved
825 * metadata space. This reduces the chances that the eofblocks scan
826 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
827 * also behaves as a filter to prevent too many eofblocks scans from
828 * running at the same time.
637bbc75 829 */
dc06f398
BF
830 if (ret == -EDQUOT && !enospc) {
831 enospc = xfs_inode_free_quota_eofblocks(ip);
832 if (enospc)
833 goto write_retry;
834 } else if (ret == -ENOSPC && !enospc) {
835 struct xfs_eofblocks eofb = {0};
836
637bbc75 837 enospc = 1;
9aa05000 838 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
839 eofb.eof_scan_owner = ip->i_ino; /* for locking */
840 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
841 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 842 goto write_retry;
dda35b8f 843 }
d0606464 844
dda35b8f 845 current->backing_dev_info = NULL;
d0606464
CH
846out:
847 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
848 return ret;
849}
850
851STATIC ssize_t
bf97f3bc 852xfs_file_write_iter(
637bbc75 853 struct kiocb *iocb,
bf97f3bc 854 struct iov_iter *from)
637bbc75
DC
855{
856 struct file *file = iocb->ki_filp;
857 struct address_space *mapping = file->f_mapping;
858 struct inode *inode = mapping->host;
859 struct xfs_inode *ip = XFS_I(inode);
860 ssize_t ret;
bf97f3bc 861 size_t ocount = iov_iter_count(from);
637bbc75
DC
862
863 XFS_STATS_INC(xs_write_calls);
864
637bbc75
DC
865 if (ocount == 0)
866 return 0;
867
bf97f3bc
AV
868 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
869 return -EIO;
637bbc75 870
6b698ede 871 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
bf97f3bc 872 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 873 else
bf97f3bc 874 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 875
d0606464
CH
876 if (ret > 0) {
877 ssize_t err;
dda35b8f 878
d0606464 879 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 880
d0606464 881 /* Handle various SYNC-type writes */
d311d79d 882 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
883 if (err < 0)
884 ret = err;
dda35b8f 885 }
a363f0c2 886 return ret;
dda35b8f
CH
887}
888
a904b1ca
NJ
889#define XFS_FALLOC_FL_SUPPORTED \
890 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
891 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
892 FALLOC_FL_INSERT_RANGE)
893
2fe17c10
CH
894STATIC long
895xfs_file_fallocate(
83aee9e4
CH
896 struct file *file,
897 int mode,
898 loff_t offset,
899 loff_t len)
2fe17c10 900{
83aee9e4
CH
901 struct inode *inode = file_inode(file);
902 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 903 long error;
8add71ca 904 enum xfs_prealloc_flags flags = 0;
781355c6 905 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 906 loff_t new_size = 0;
a904b1ca 907 bool do_file_insert = 0;
2fe17c10 908
83aee9e4
CH
909 if (!S_ISREG(inode->i_mode))
910 return -EINVAL;
a904b1ca 911 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
912 return -EOPNOTSUPP;
913
781355c6 914 xfs_ilock(ip, iolock);
21c3ea18 915 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
916 if (error)
917 goto out_unlock;
918
e8e9ad42
DC
919 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
920 iolock |= XFS_MMAPLOCK_EXCL;
921
83aee9e4
CH
922 if (mode & FALLOC_FL_PUNCH_HOLE) {
923 error = xfs_free_file_space(ip, offset, len);
924 if (error)
925 goto out_unlock;
e1d8fb88
NJ
926 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
927 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
928
929 if (offset & blksize_mask || len & blksize_mask) {
2451337d 930 error = -EINVAL;
e1d8fb88
NJ
931 goto out_unlock;
932 }
933
23fffa92
LC
934 /*
935 * There is no need to overlap collapse range with EOF,
936 * in which case it is effectively a truncate operation
937 */
938 if (offset + len >= i_size_read(inode)) {
2451337d 939 error = -EINVAL;
23fffa92
LC
940 goto out_unlock;
941 }
942
e1d8fb88
NJ
943 new_size = i_size_read(inode) - len;
944
945 error = xfs_collapse_file_space(ip, offset, len);
946 if (error)
947 goto out_unlock;
a904b1ca
NJ
948 } else if (mode & FALLOC_FL_INSERT_RANGE) {
949 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
950
951 new_size = i_size_read(inode) + len;
952 if (offset & blksize_mask || len & blksize_mask) {
953 error = -EINVAL;
954 goto out_unlock;
955 }
956
957 /* check the new inode size does not wrap through zero */
958 if (new_size > inode->i_sb->s_maxbytes) {
959 error = -EFBIG;
960 goto out_unlock;
961 }
962
963 /* Offset should be less than i_size */
964 if (offset >= i_size_read(inode)) {
965 error = -EINVAL;
966 goto out_unlock;
967 }
968 do_file_insert = 1;
83aee9e4 969 } else {
8add71ca
CH
970 flags |= XFS_PREALLOC_SET;
971
83aee9e4
CH
972 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
973 offset + len > i_size_read(inode)) {
974 new_size = offset + len;
2451337d 975 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
976 if (error)
977 goto out_unlock;
978 }
2fe17c10 979
376ba313
LC
980 if (mode & FALLOC_FL_ZERO_RANGE)
981 error = xfs_zero_file_space(ip, offset, len);
982 else
983 error = xfs_alloc_file_space(ip, offset, len,
984 XFS_BMAPI_PREALLOC);
2fe17c10
CH
985 if (error)
986 goto out_unlock;
987 }
988
83aee9e4 989 if (file->f_flags & O_DSYNC)
8add71ca
CH
990 flags |= XFS_PREALLOC_SYNC;
991
992 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
993 if (error)
994 goto out_unlock;
995
996 /* Change file size if needed */
997 if (new_size) {
998 struct iattr iattr;
999
1000 iattr.ia_valid = ATTR_SIZE;
1001 iattr.ia_size = new_size;
83aee9e4 1002 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
1003 if (error)
1004 goto out_unlock;
2fe17c10
CH
1005 }
1006
a904b1ca
NJ
1007 /*
1008 * Perform hole insertion now that the file size has been
1009 * updated so that if we crash during the operation we don't
1010 * leave shifted extents past EOF and hence losing access to
1011 * the data that is contained within them.
1012 */
1013 if (do_file_insert)
1014 error = xfs_insert_file_space(ip, offset, len);
1015
2fe17c10 1016out_unlock:
781355c6 1017 xfs_iunlock(ip, iolock);
2451337d 1018 return error;
2fe17c10
CH
1019}
1020
1021
1da177e4 1022STATIC int
3562fd45 1023xfs_file_open(
1da177e4 1024 struct inode *inode,
f999a5bf 1025 struct file *file)
1da177e4 1026{
f999a5bf 1027 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1028 return -EFBIG;
f999a5bf
CH
1029 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1030 return -EIO;
1031 return 0;
1032}
1033
1034STATIC int
1035xfs_dir_open(
1036 struct inode *inode,
1037 struct file *file)
1038{
1039 struct xfs_inode *ip = XFS_I(inode);
1040 int mode;
1041 int error;
1042
1043 error = xfs_file_open(inode, file);
1044 if (error)
1045 return error;
1046
1047 /*
1048 * If there are any blocks, read-ahead block 0 as we're almost
1049 * certain to have the next operation be a read there.
1050 */
309ecac8 1051 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1052 if (ip->i_d.di_nextents > 0)
9df2dd0b 1053 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1054 xfs_iunlock(ip, mode);
1055 return 0;
1da177e4
LT
1056}
1057
1da177e4 1058STATIC int
3562fd45 1059xfs_file_release(
1da177e4
LT
1060 struct inode *inode,
1061 struct file *filp)
1062{
2451337d 1063 return xfs_release(XFS_I(inode));
1da177e4
LT
1064}
1065
1da177e4 1066STATIC int
3562fd45 1067xfs_file_readdir(
b8227554
AV
1068 struct file *file,
1069 struct dir_context *ctx)
1da177e4 1070{
b8227554 1071 struct inode *inode = file_inode(file);
739bfb2a 1072 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1073 size_t bufsize;
1074
1075 /*
1076 * The Linux API doesn't pass down the total size of the buffer
1077 * we read into down to the filesystem. With the filldir concept
1078 * it's not needed for correct information, but the XFS dir2 leaf
1079 * code wants an estimate of the buffer size to calculate it's
1080 * readahead window and size the buffers used for mapping to
1081 * physical blocks.
1082 *
1083 * Try to give it an estimate that's good enough, maybe at some
1084 * point we can change the ->readdir prototype to include the
a9cc799e 1085 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1086 */
a9cc799e 1087 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1088
8300475e 1089 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1090}
1091
d126d43f
JL
1092/*
1093 * This type is designed to indicate the type of offset we would like
49c69591 1094 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1095 */
1096enum {
1097 HOLE_OFF = 0,
1098 DATA_OFF,
1099};
1100
1101/*
1102 * Lookup the desired type of offset from the given page.
1103 *
1104 * On success, return true and the offset argument will point to the
1105 * start of the region that was found. Otherwise this function will
1106 * return false and keep the offset argument unchanged.
1107 */
1108STATIC bool
1109xfs_lookup_buffer_offset(
1110 struct page *page,
1111 loff_t *offset,
1112 unsigned int type)
1113{
1114 loff_t lastoff = page_offset(page);
1115 bool found = false;
1116 struct buffer_head *bh, *head;
1117
1118 bh = head = page_buffers(page);
1119 do {
1120 /*
1121 * Unwritten extents that have data in the page
1122 * cache covering them can be identified by the
1123 * BH_Unwritten state flag. Pages with multiple
1124 * buffers might have a mix of holes, data and
1125 * unwritten extents - any buffer with valid
1126 * data in it should have BH_Uptodate flag set
1127 * on it.
1128 */
1129 if (buffer_unwritten(bh) ||
1130 buffer_uptodate(bh)) {
1131 if (type == DATA_OFF)
1132 found = true;
1133 } else {
1134 if (type == HOLE_OFF)
1135 found = true;
1136 }
1137
1138 if (found) {
1139 *offset = lastoff;
1140 break;
1141 }
1142 lastoff += bh->b_size;
1143 } while ((bh = bh->b_this_page) != head);
1144
1145 return found;
1146}
1147
1148/*
1149 * This routine is called to find out and return a data or hole offset
1150 * from the page cache for unwritten extents according to the desired
49c69591 1151 * type for xfs_seek_hole_data().
d126d43f
JL
1152 *
1153 * The argument offset is used to tell where we start to search from the
1154 * page cache. Map is used to figure out the end points of the range to
1155 * lookup pages.
1156 *
1157 * Return true if the desired type of offset was found, and the argument
1158 * offset is filled with that address. Otherwise, return false and keep
1159 * offset unchanged.
1160 */
1161STATIC bool
1162xfs_find_get_desired_pgoff(
1163 struct inode *inode,
1164 struct xfs_bmbt_irec *map,
1165 unsigned int type,
1166 loff_t *offset)
1167{
1168 struct xfs_inode *ip = XFS_I(inode);
1169 struct xfs_mount *mp = ip->i_mount;
1170 struct pagevec pvec;
1171 pgoff_t index;
1172 pgoff_t end;
1173 loff_t endoff;
1174 loff_t startoff = *offset;
1175 loff_t lastoff = startoff;
1176 bool found = false;
1177
1178 pagevec_init(&pvec, 0);
1179
1180 index = startoff >> PAGE_CACHE_SHIFT;
1181 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1182 end = endoff >> PAGE_CACHE_SHIFT;
1183 do {
1184 int want;
1185 unsigned nr_pages;
1186 unsigned int i;
1187
1188 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1189 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1190 want);
1191 /*
1192 * No page mapped into given range. If we are searching holes
1193 * and if this is the first time we got into the loop, it means
1194 * that the given offset is landed in a hole, return it.
1195 *
1196 * If we have already stepped through some block buffers to find
1197 * holes but they all contains data. In this case, the last
1198 * offset is already updated and pointed to the end of the last
1199 * mapped page, if it does not reach the endpoint to search,
1200 * that means there should be a hole between them.
1201 */
1202 if (nr_pages == 0) {
1203 /* Data search found nothing */
1204 if (type == DATA_OFF)
1205 break;
1206
1207 ASSERT(type == HOLE_OFF);
1208 if (lastoff == startoff || lastoff < endoff) {
1209 found = true;
1210 *offset = lastoff;
1211 }
1212 break;
1213 }
1214
1215 /*
1216 * At lease we found one page. If this is the first time we
1217 * step into the loop, and if the first page index offset is
1218 * greater than the given search offset, a hole was found.
1219 */
1220 if (type == HOLE_OFF && lastoff == startoff &&
1221 lastoff < page_offset(pvec.pages[0])) {
1222 found = true;
1223 break;
1224 }
1225
1226 for (i = 0; i < nr_pages; i++) {
1227 struct page *page = pvec.pages[i];
1228 loff_t b_offset;
1229
1230 /*
1231 * At this point, the page may be truncated or
1232 * invalidated (changing page->mapping to NULL),
1233 * or even swizzled back from swapper_space to tmpfs
1234 * file mapping. However, page->index will not change
1235 * because we have a reference on the page.
1236 *
1237 * Searching done if the page index is out of range.
1238 * If the current offset is not reaches the end of
1239 * the specified search range, there should be a hole
1240 * between them.
1241 */
1242 if (page->index > end) {
1243 if (type == HOLE_OFF && lastoff < endoff) {
1244 *offset = lastoff;
1245 found = true;
1246 }
1247 goto out;
1248 }
1249
1250 lock_page(page);
1251 /*
1252 * Page truncated or invalidated(page->mapping == NULL).
1253 * We can freely skip it and proceed to check the next
1254 * page.
1255 */
1256 if (unlikely(page->mapping != inode->i_mapping)) {
1257 unlock_page(page);
1258 continue;
1259 }
1260
1261 if (!page_has_buffers(page)) {
1262 unlock_page(page);
1263 continue;
1264 }
1265
1266 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1267 if (found) {
1268 /*
1269 * The found offset may be less than the start
1270 * point to search if this is the first time to
1271 * come here.
1272 */
1273 *offset = max_t(loff_t, startoff, b_offset);
1274 unlock_page(page);
1275 goto out;
1276 }
1277
1278 /*
1279 * We either searching data but nothing was found, or
1280 * searching hole but found a data buffer. In either
1281 * case, probably the next page contains the desired
1282 * things, update the last offset to it so.
1283 */
1284 lastoff = page_offset(page) + PAGE_SIZE;
1285 unlock_page(page);
1286 }
1287
1288 /*
1289 * The number of returned pages less than our desired, search
1290 * done. In this case, nothing was found for searching data,
1291 * but we found a hole behind the last offset.
1292 */
1293 if (nr_pages < want) {
1294 if (type == HOLE_OFF) {
1295 *offset = lastoff;
1296 found = true;
1297 }
1298 break;
1299 }
1300
1301 index = pvec.pages[i - 1]->index + 1;
1302 pagevec_release(&pvec);
1303 } while (index <= end);
1304
1305out:
1306 pagevec_release(&pvec);
1307 return found;
1308}
1309
3fe3e6b1 1310STATIC loff_t
49c69591 1311xfs_seek_hole_data(
3fe3e6b1 1312 struct file *file,
49c69591
ES
1313 loff_t start,
1314 int whence)
3fe3e6b1
JL
1315{
1316 struct inode *inode = file->f_mapping->host;
1317 struct xfs_inode *ip = XFS_I(inode);
1318 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1319 loff_t uninitialized_var(offset);
1320 xfs_fsize_t isize;
1321 xfs_fileoff_t fsbno;
1322 xfs_filblks_t end;
1323 uint lock;
1324 int error;
1325
49c69591
ES
1326 if (XFS_FORCED_SHUTDOWN(mp))
1327 return -EIO;
1328
309ecac8 1329 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1330
1331 isize = i_size_read(inode);
1332 if (start >= isize) {
2451337d 1333 error = -ENXIO;
3fe3e6b1
JL
1334 goto out_unlock;
1335 }
1336
3fe3e6b1
JL
1337 /*
1338 * Try to read extents from the first block indicated
1339 * by fsbno to the end block of the file.
1340 */
52f1acc8 1341 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1342 end = XFS_B_TO_FSB(mp, isize);
49c69591 1343
52f1acc8
JL
1344 for (;;) {
1345 struct xfs_bmbt_irec map[2];
1346 int nmap = 2;
1347 unsigned int i;
3fe3e6b1 1348
52f1acc8
JL
1349 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1350 XFS_BMAPI_ENTIRE);
1351 if (error)
1352 goto out_unlock;
3fe3e6b1 1353
52f1acc8
JL
1354 /* No extents at given offset, must be beyond EOF */
1355 if (nmap == 0) {
2451337d 1356 error = -ENXIO;
52f1acc8
JL
1357 goto out_unlock;
1358 }
1359
1360 for (i = 0; i < nmap; i++) {
1361 offset = max_t(loff_t, start,
1362 XFS_FSB_TO_B(mp, map[i].br_startoff));
1363
49c69591
ES
1364 /* Landed in the hole we wanted? */
1365 if (whence == SEEK_HOLE &&
1366 map[i].br_startblock == HOLESTARTBLOCK)
1367 goto out;
1368
1369 /* Landed in the data extent we wanted? */
1370 if (whence == SEEK_DATA &&
1371 (map[i].br_startblock == DELAYSTARTBLOCK ||
1372 (map[i].br_state == XFS_EXT_NORM &&
1373 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1374 goto out;
1375
1376 /*
49c69591
ES
1377 * Landed in an unwritten extent, try to search
1378 * for hole or data from page cache.
52f1acc8
JL
1379 */
1380 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1381 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1382 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1383 &offset))
52f1acc8
JL
1384 goto out;
1385 }
1386 }
1387
1388 /*
49c69591
ES
1389 * We only received one extent out of the two requested. This
1390 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1391 */
3fe3e6b1 1392 if (nmap == 1) {
49c69591
ES
1393 /*
1394 * If we were looking for a hole, set offset to
1395 * the end of the file (i.e., there is an implicit
1396 * hole at the end of any file).
1397 */
1398 if (whence == SEEK_HOLE) {
1399 offset = isize;
1400 break;
1401 }
1402 /*
1403 * If we were looking for data, it's nowhere to be found
1404 */
1405 ASSERT(whence == SEEK_DATA);
2451337d 1406 error = -ENXIO;
3fe3e6b1
JL
1407 goto out_unlock;
1408 }
1409
52f1acc8
JL
1410 ASSERT(i > 1);
1411
1412 /*
1413 * Nothing was found, proceed to the next round of search
49c69591 1414 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1415 */
1416 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417 start = XFS_FSB_TO_B(mp, fsbno);
1418 if (start >= isize) {
49c69591
ES
1419 if (whence == SEEK_HOLE) {
1420 offset = isize;
1421 break;
1422 }
1423 ASSERT(whence == SEEK_DATA);
2451337d 1424 error = -ENXIO;
52f1acc8
JL
1425 goto out_unlock;
1426 }
3fe3e6b1
JL
1427 }
1428
b686d1f7
JL
1429out:
1430 /*
49c69591 1431 * If at this point we have found the hole we wanted, the returned
b686d1f7 1432 * offset may be bigger than the file size as it may be aligned to
49c69591 1433 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1434 * situation in particular.
1435 */
49c69591
ES
1436 if (whence == SEEK_HOLE)
1437 offset = min_t(loff_t, offset, isize);
46a1c2c7 1438 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1439
1440out_unlock:
01f4f327 1441 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1442
1443 if (error)
2451337d 1444 return error;
3fe3e6b1
JL
1445 return offset;
1446}
1447
1448STATIC loff_t
1449xfs_file_llseek(
1450 struct file *file,
1451 loff_t offset,
59f9c004 1452 int whence)
3fe3e6b1 1453{
59f9c004 1454 switch (whence) {
3fe3e6b1
JL
1455 case SEEK_END:
1456 case SEEK_CUR:
1457 case SEEK_SET:
59f9c004 1458 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1459 case SEEK_HOLE:
49c69591 1460 case SEEK_DATA:
59f9c004 1461 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1462 default:
1463 return -EINVAL;
1464 }
1465}
1466
de0e8c20
DC
1467/*
1468 * Locking for serialisation of IO during page faults. This results in a lock
1469 * ordering of:
1470 *
1471 * mmap_sem (MM)
6b698ede
DC
1472 * sb_start_pagefault(vfs, freeze)
1473 * i_mmap_lock (XFS - truncate serialisation)
1474 * page_lock (MM)
1475 * i_lock (XFS - extent map serialisation)
de0e8c20 1476 */
de0e8c20 1477
075a924d
DC
1478/*
1479 * mmap()d file has taken write protection fault and is being made writable. We
1480 * can set the page state up correctly for a writable page, which means we can
1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482 * mapping.
de0e8c20
DC
1483 */
1484STATIC int
075a924d 1485xfs_filemap_page_mkwrite(
de0e8c20
DC
1486 struct vm_area_struct *vma,
1487 struct vm_fault *vmf)
1488{
6b698ede 1489 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1490 int ret;
de0e8c20 1491
6b698ede 1492 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1493
6b698ede 1494 sb_start_pagefault(inode->i_sb);
ec56b1f1 1495 file_update_time(vma->vm_file);
6b698ede 1496 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1497
6b698ede
DC
1498 if (IS_DAX(inode)) {
1499 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1500 xfs_end_io_dax_write);
1501 } else {
1502 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1503 ret = block_page_mkwrite_return(ret);
1504 }
1505
1506 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1507 sb_end_pagefault(inode->i_sb);
1508
1509 return ret;
de0e8c20
DC
1510}
1511
075a924d 1512STATIC int
6b698ede 1513xfs_filemap_fault(
075a924d
DC
1514 struct vm_area_struct *vma,
1515 struct vm_fault *vmf)
1516{
b2442c5a 1517 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1518 int ret;
ec56b1f1 1519
b2442c5a 1520 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1521
6b698ede 1522 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1523 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1524 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1525
b2442c5a
DC
1526 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1527 if (IS_DAX(inode)) {
1528 /*
1529 * we do not want to trigger unwritten extent conversion on read
1530 * faults - that is unnecessary overhead and would also require
1531 * changes to xfs_get_blocks_direct() to map unwritten extent
1532 * ioend for conversion on read-only mappings.
1533 */
1534 ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
1535 } else
1536 ret = filemap_fault(vma, vmf);
1537 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1538
6b698ede
DC
1539 return ret;
1540}
1541
1542static const struct vm_operations_struct xfs_file_vm_ops = {
1543 .fault = xfs_filemap_fault,
1544 .map_pages = filemap_map_pages,
1545 .page_mkwrite = xfs_filemap_page_mkwrite,
1546};
1547
1548STATIC int
1549xfs_file_mmap(
1550 struct file *filp,
1551 struct vm_area_struct *vma)
1552{
1553 file_accessed(filp);
1554 vma->vm_ops = &xfs_file_vm_ops;
1555 if (IS_DAX(file_inode(filp)))
1556 vma->vm_flags |= VM_MIXEDMAP;
1557 return 0;
075a924d
DC
1558}
1559
4b6f5d20 1560const struct file_operations xfs_file_operations = {
3fe3e6b1 1561 .llseek = xfs_file_llseek,
b4f5d2c6 1562 .read_iter = xfs_file_read_iter,
bf97f3bc 1563 .write_iter = xfs_file_write_iter,
1b895840 1564 .splice_read = xfs_file_splice_read,
8d020765 1565 .splice_write = iter_file_splice_write,
3562fd45 1566 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1567#ifdef CONFIG_COMPAT
3562fd45 1568 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1569#endif
3562fd45
NS
1570 .mmap = xfs_file_mmap,
1571 .open = xfs_file_open,
1572 .release = xfs_file_release,
1573 .fsync = xfs_file_fsync,
2fe17c10 1574 .fallocate = xfs_file_fallocate,
1da177e4
LT
1575};
1576
4b6f5d20 1577const struct file_operations xfs_dir_file_operations = {
f999a5bf 1578 .open = xfs_dir_open,
1da177e4 1579 .read = generic_read_dir,
b8227554 1580 .iterate = xfs_file_readdir,
59af1584 1581 .llseek = generic_file_llseek,
3562fd45 1582 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1583#ifdef CONFIG_COMPAT
3562fd45 1584 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1585#endif
1da2f2db 1586 .fsync = xfs_dir_fsync,
1da177e4 1587};