Merge branch 'bkl/procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
40#include "xfs_ag.h"
41#include "xfs_dmapi.h"
42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
27496a8c 47STATIC int xfsbufd_wakeup(int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c
NS
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
ce8e922c 265 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 266
1fa40b01 267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
268 uint i;
269
73c77e2c 270 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
1da177e4 273
948ecdb4
NS
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
1fa40b01
CH
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
948ecdb4
NS
279 page_cache_release(page);
280 }
1da177e4 281 }
3fc98b1a 282 _xfs_buf_free_pages(bp);
ce8e922c 283 xfs_buf_deallocate(bp);
1da177e4
LT
284}
285
286/*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289STATIC int
ce8e922c 290_xfs_buf_lookup_pages(
1da177e4
LT
291 xfs_buf_t *bp,
292 uint flags)
293{
ce8e922c
NS
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
1da177e4 297 size_t nbytes, offset;
ce8e922c 298 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
299 unsigned short page_count, i;
300 pgoff_t first;
204ab25f 301 xfs_off_t end;
1da177e4
LT
302 int error;
303
ce8e922c
NS
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 306
ce8e922c 307 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
308 if (unlikely(error))
309 return error;
ce8e922c 310 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 311
ce8e922c
NS
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 314
ce8e922c 315 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
ce8e922c
NS
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
6ab455ee
CH
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
1da177e4
LT
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
34a622b2 339 __func__, gfp_mask);
1da177e4 340
ce8e922c 341 XFS_STATS_INC(xb_page_retries);
23ea4032 342 xfsbufd_wakeup(0, gfp_mask);
8aa7e847 343 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
344 goto retry;
345 }
346
ce8e922c 347 XFS_STATS_INC(xb_page_found);
1da177e4
LT
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
948ecdb4 352 ASSERT(!PagePrivate(page));
1da177e4
LT
353 if (!PageUptodate(page)) {
354 page_count--;
6ab455ee
CH
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
1da177e4
LT
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
ce8e922c 364 bp->b_pages[i] = page;
1da177e4
LT
365 offset = 0;
366 }
367
6ab455ee
CH
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
ce8e922c
NS
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
1da177e4 375
1da177e4
LT
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if nessecary.
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
387 /* A single page buffer is always mappable */
ce8e922c
NS
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
8a262e57
AE
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
ce8e922c 394 if (unlikely(bp->b_addr == NULL))
1da177e4 395 return -ENOMEM;
ce8e922c
NS
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
398 }
399
400 return 0;
401}
402
403/*
404 * Finding and Reading Buffers
405 */
406
407/*
ce8e922c 408 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415xfs_buf_t *
ce8e922c 416_xfs_buf_find(
1da177e4 417 xfs_buftarg_t *btp, /* block device target */
204ab25f 418 xfs_off_t ioff, /* starting offset of range */
1da177e4 419 size_t isize, /* length of range */
ce8e922c
NS
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
1da177e4 422{
204ab25f 423 xfs_off_t range_base;
1da177e4
LT
424 size_t range_length;
425 xfs_bufhash_t *hash;
ce8e922c 426 xfs_buf_t *bp, *n;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
ce8e922c
NS
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
1da177e4 443 /*
ce8e922c 444 * If we look at something, bring it to the
1da177e4
LT
445 * front of the list for next time.
446 */
ce8e922c
NS
447 atomic_inc(&bp->b_hold);
448 list_move(&bp->b_hash_list, &hash->bh_list);
1da177e4
LT
449 goto found;
450 }
451 }
452
453 /* No match found */
ce8e922c
NS
454 if (new_bp) {
455 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 456 range_length, flags);
ce8e922c
NS
457 new_bp->b_hash = hash;
458 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 459 } else {
ce8e922c 460 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
461 }
462
463 spin_unlock(&hash->bh_lock);
ce8e922c 464 return new_bp;
1da177e4
LT
465
466found:
467 spin_unlock(&hash->bh_lock);
468
469 /* Attempt to get the semaphore without sleeping,
470 * if this does not work then we need to drop the
471 * spinlock and do a hard attempt on the semaphore.
472 */
ce8e922c
NS
473 if (down_trylock(&bp->b_sema)) {
474 if (!(flags & XBF_TRYLOCK)) {
1da177e4 475 /* wait for buffer ownership */
ce8e922c
NS
476 xfs_buf_lock(bp);
477 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
478 } else {
479 /* We asked for a trylock and failed, no need
480 * to look at file offset and length here, we
ce8e922c
NS
481 * know that this buffer at least overlaps our
482 * buffer and is locked, therefore our buffer
483 * either does not exist, or is this buffer.
1da177e4 484 */
ce8e922c
NS
485 xfs_buf_rele(bp);
486 XFS_STATS_INC(xb_busy_locked);
487 return NULL;
1da177e4
LT
488 }
489 } else {
490 /* trylock worked */
ce8e922c 491 XB_SET_OWNER(bp);
1da177e4
LT
492 }
493
ce8e922c
NS
494 if (bp->b_flags & XBF_STALE) {
495 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496 bp->b_flags &= XBF_MAPPED;
2f926587 497 }
0b1b213f
CH
498
499 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
500 XFS_STATS_INC(xb_get_locked);
501 return bp;
1da177e4
LT
502}
503
504/*
ce8e922c 505 * Assembles a buffer covering the specified range.
1da177e4
LT
506 * Storage in memory for all portions of the buffer will be allocated,
507 * although backing storage may not be.
508 */
509xfs_buf_t *
6ad112bf 510xfs_buf_get(
1da177e4 511 xfs_buftarg_t *target,/* target for buffer */
204ab25f 512 xfs_off_t ioff, /* starting offset of range */
1da177e4 513 size_t isize, /* length of range */
ce8e922c 514 xfs_buf_flags_t flags)
1da177e4 515{
ce8e922c 516 xfs_buf_t *bp, *new_bp;
1da177e4
LT
517 int error = 0, i;
518
ce8e922c
NS
519 new_bp = xfs_buf_allocate(flags);
520 if (unlikely(!new_bp))
1da177e4
LT
521 return NULL;
522
ce8e922c
NS
523 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524 if (bp == new_bp) {
525 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
526 if (error)
527 goto no_buffer;
528 } else {
ce8e922c
NS
529 xfs_buf_deallocate(new_bp);
530 if (unlikely(bp == NULL))
1da177e4
LT
531 return NULL;
532 }
533
ce8e922c
NS
534 for (i = 0; i < bp->b_page_count; i++)
535 mark_page_accessed(bp->b_pages[i]);
1da177e4 536
ce8e922c
NS
537 if (!(bp->b_flags & XBF_MAPPED)) {
538 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
539 if (unlikely(error)) {
540 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 541 __func__);
1da177e4
LT
542 goto no_buffer;
543 }
544 }
545
ce8e922c 546 XFS_STATS_INC(xb_get);
1da177e4
LT
547
548 /*
549 * Always fill in the block number now, the mapped cases can do
550 * their own overlay of this later.
551 */
ce8e922c
NS
552 bp->b_bn = ioff;
553 bp->b_count_desired = bp->b_buffer_length;
1da177e4 554
0b1b213f 555 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 556 return bp;
1da177e4
LT
557
558 no_buffer:
ce8e922c
NS
559 if (flags & (XBF_LOCK | XBF_TRYLOCK))
560 xfs_buf_unlock(bp);
561 xfs_buf_rele(bp);
1da177e4
LT
562 return NULL;
563}
564
5d765b97
CH
565STATIC int
566_xfs_buf_read(
567 xfs_buf_t *bp,
568 xfs_buf_flags_t flags)
569{
570 int status;
571
5d765b97
CH
572 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580 status = xfs_buf_iorequest(bp);
581 if (!status && !(flags & XBF_ASYNC))
582 status = xfs_buf_iowait(bp);
583 return status;
584}
585
1da177e4 586xfs_buf_t *
6ad112bf 587xfs_buf_read(
1da177e4 588 xfs_buftarg_t *target,
204ab25f 589 xfs_off_t ioff,
1da177e4 590 size_t isize,
ce8e922c 591 xfs_buf_flags_t flags)
1da177e4 592{
ce8e922c
NS
593 xfs_buf_t *bp;
594
595 flags |= XBF_READ;
596
6ad112bf 597 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 598 if (bp) {
0b1b213f
CH
599 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
ce8e922c 601 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 602 XFS_STATS_INC(xb_get_read);
5d765b97 603 _xfs_buf_read(bp, flags);
ce8e922c 604 } else if (flags & XBF_ASYNC) {
1da177e4
LT
605 /*
606 * Read ahead call which is already satisfied,
607 * drop the buffer
608 */
609 goto no_buffer;
610 } else {
1da177e4 611 /* We do not want read in the flags */
ce8e922c 612 bp->b_flags &= ~XBF_READ;
1da177e4
LT
613 }
614 }
615
ce8e922c 616 return bp;
1da177e4
LT
617
618 no_buffer:
ce8e922c
NS
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
1da177e4
LT
622 return NULL;
623}
624
1da177e4 625/*
ce8e922c
NS
626 * If we are not low on memory then do the readahead in a deadlock
627 * safe manner.
1da177e4
LT
628 */
629void
ce8e922c 630xfs_buf_readahead(
1da177e4 631 xfs_buftarg_t *target,
204ab25f 632 xfs_off_t ioff,
1da177e4 633 size_t isize,
ce8e922c 634 xfs_buf_flags_t flags)
1da177e4
LT
635{
636 struct backing_dev_info *bdi;
637
ce8e922c 638 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
639 if (bdi_read_congested(bdi))
640 return;
641
ce8e922c 642 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
6ad112bf 643 xfs_buf_read(target, ioff, isize, flags);
1da177e4
LT
644}
645
646xfs_buf_t *
ce8e922c 647xfs_buf_get_empty(
1da177e4
LT
648 size_t len,
649 xfs_buftarg_t *target)
650{
ce8e922c 651 xfs_buf_t *bp;
1da177e4 652
ce8e922c
NS
653 bp = xfs_buf_allocate(0);
654 if (bp)
655 _xfs_buf_initialize(bp, target, 0, len, 0);
656 return bp;
1da177e4
LT
657}
658
659static inline struct page *
660mem_to_page(
661 void *addr)
662{
9e2779fa 663 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
664 return virt_to_page(addr);
665 } else {
666 return vmalloc_to_page(addr);
667 }
668}
669
670int
ce8e922c
NS
671xfs_buf_associate_memory(
672 xfs_buf_t *bp,
1da177e4
LT
673 void *mem,
674 size_t len)
675{
676 int rval;
677 int i = 0;
d1afb678
LM
678 unsigned long pageaddr;
679 unsigned long offset;
680 size_t buflen;
1da177e4
LT
681 int page_count;
682
d1afb678
LM
683 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684 offset = (unsigned long)mem - pageaddr;
685 buflen = PAGE_CACHE_ALIGN(len + offset);
686 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
687
688 /* Free any previous set of page pointers */
ce8e922c
NS
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
1da177e4 691
ce8e922c
NS
692 bp->b_pages = NULL;
693 bp->b_addr = mem;
1da177e4 694
36fae17a 695 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
696 if (rval)
697 return rval;
698
ce8e922c 699 bp->b_offset = offset;
d1afb678
LM
700
701 for (i = 0; i < bp->b_page_count; i++) {
702 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703 pageaddr += PAGE_CACHE_SIZE;
1da177e4 704 }
1da177e4 705
d1afb678
LM
706 bp->b_count_desired = len;
707 bp->b_buffer_length = buflen;
ce8e922c 708 bp->b_flags |= XBF_MAPPED;
6ab455ee 709 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
710
711 return 0;
712}
713
714xfs_buf_t *
ce8e922c 715xfs_buf_get_noaddr(
1da177e4
LT
716 size_t len,
717 xfs_buftarg_t *target)
718{
1fa40b01
CH
719 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720 int error, i;
1da177e4 721 xfs_buf_t *bp;
1da177e4 722
ce8e922c 723 bp = xfs_buf_allocate(0);
1da177e4
LT
724 if (unlikely(bp == NULL))
725 goto fail;
ce8e922c 726 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 727
1fa40b01
CH
728 error = _xfs_buf_get_pages(bp, page_count, 0);
729 if (error)
1da177e4
LT
730 goto fail_free_buf;
731
1fa40b01
CH
732 for (i = 0; i < page_count; i++) {
733 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734 if (!bp->b_pages[i])
735 goto fail_free_mem;
1da177e4 736 }
1fa40b01 737 bp->b_flags |= _XBF_PAGES;
1da177e4 738
1fa40b01
CH
739 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740 if (unlikely(error)) {
741 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 742 __func__);
1da177e4 743 goto fail_free_mem;
1fa40b01 744 }
1da177e4 745
ce8e922c 746 xfs_buf_unlock(bp);
1da177e4 747
0b1b213f 748 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
1da177e4 749 return bp;
1fa40b01 750
1da177e4 751 fail_free_mem:
1fa40b01
CH
752 while (--i >= 0)
753 __free_page(bp->b_pages[i]);
ca165b88 754 _xfs_buf_free_pages(bp);
1da177e4 755 fail_free_buf:
ca165b88 756 xfs_buf_deallocate(bp);
1da177e4
LT
757 fail:
758 return NULL;
759}
760
761/*
1da177e4
LT
762 * Increment reference count on buffer, to hold the buffer concurrently
763 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
764 * Must hold the buffer already to call this function.
765 */
766void
ce8e922c
NS
767xfs_buf_hold(
768 xfs_buf_t *bp)
1da177e4 769{
0b1b213f 770 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 771 atomic_inc(&bp->b_hold);
1da177e4
LT
772}
773
774/*
ce8e922c
NS
775 * Releases a hold on the specified buffer. If the
776 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
777 */
778void
ce8e922c
NS
779xfs_buf_rele(
780 xfs_buf_t *bp)
1da177e4 781{
ce8e922c 782 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 783
0b1b213f 784 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 785
fad3aa1e
NS
786 if (unlikely(!hash)) {
787 ASSERT(!bp->b_relse);
788 if (atomic_dec_and_test(&bp->b_hold))
789 xfs_buf_free(bp);
790 return;
791 }
792
3790689f 793 ASSERT(atomic_read(&bp->b_hold) > 0);
ce8e922c
NS
794 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795 if (bp->b_relse) {
796 atomic_inc(&bp->b_hold);
1da177e4 797 spin_unlock(&hash->bh_lock);
ce8e922c
NS
798 (*(bp->b_relse)) (bp);
799 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 800 spin_unlock(&hash->bh_lock);
1da177e4 801 } else {
ce8e922c
NS
802 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803 list_del_init(&bp->b_hash_list);
1da177e4 804 spin_unlock(&hash->bh_lock);
ce8e922c 805 xfs_buf_free(bp);
1da177e4
LT
806 }
807 }
808}
809
810
811/*
812 * Mutual exclusion on buffers. Locking model:
813 *
814 * Buffers associated with inodes for which buffer locking
815 * is not enabled are not protected by semaphores, and are
816 * assumed to be exclusively owned by the caller. There is a
817 * spinlock in the buffer, used by the caller when concurrent
818 * access is possible.
819 */
820
821/*
ce8e922c
NS
822 * Locks a buffer object, if it is not already locked.
823 * Note that this in no way locks the underlying pages, so it is only
824 * useful for synchronizing concurrent use of buffer objects, not for
825 * synchronizing independent access to the underlying pages.
1da177e4
LT
826 */
827int
ce8e922c
NS
828xfs_buf_cond_lock(
829 xfs_buf_t *bp)
1da177e4
LT
830{
831 int locked;
832
ce8e922c 833 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 834 if (locked)
ce8e922c 835 XB_SET_OWNER(bp);
0b1b213f
CH
836
837 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 838 return locked ? 0 : -EBUSY;
1da177e4
LT
839}
840
1da177e4 841int
ce8e922c
NS
842xfs_buf_lock_value(
843 xfs_buf_t *bp)
1da177e4 844{
adaa693b 845 return bp->b_sema.count;
1da177e4 846}
1da177e4
LT
847
848/*
ce8e922c
NS
849 * Locks a buffer object.
850 * Note that this in no way locks the underlying pages, so it is only
851 * useful for synchronizing concurrent use of buffer objects, not for
852 * synchronizing independent access to the underlying pages.
1da177e4 853 */
ce8e922c
NS
854void
855xfs_buf_lock(
856 xfs_buf_t *bp)
1da177e4 857{
0b1b213f
CH
858 trace_xfs_buf_lock(bp, _RET_IP_);
859
ce8e922c
NS
860 if (atomic_read(&bp->b_io_remaining))
861 blk_run_address_space(bp->b_target->bt_mapping);
862 down(&bp->b_sema);
863 XB_SET_OWNER(bp);
0b1b213f
CH
864
865 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
866}
867
868/*
ce8e922c 869 * Releases the lock on the buffer object.
2f926587 870 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 871 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
872 * take a reference for the delwri queue because the unlocker is going to
873 * drop their's and they don't know we just queued it.
1da177e4
LT
874 */
875void
ce8e922c
NS
876xfs_buf_unlock(
877 xfs_buf_t *bp)
1da177e4 878{
ce8e922c
NS
879 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
880 atomic_inc(&bp->b_hold);
881 bp->b_flags |= XBF_ASYNC;
882 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
883 }
884
ce8e922c
NS
885 XB_CLEAR_OWNER(bp);
886 up(&bp->b_sema);
0b1b213f
CH
887
888 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
889}
890
891
892/*
893 * Pinning Buffer Storage in Memory
ce8e922c 894 * Ensure that no attempt to force a buffer to disk will succeed.
1da177e4
LT
895 */
896void
ce8e922c
NS
897xfs_buf_pin(
898 xfs_buf_t *bp)
1da177e4 899{
0b1b213f 900 trace_xfs_buf_pin(bp, _RET_IP_);
ce8e922c 901 atomic_inc(&bp->b_pin_count);
1da177e4
LT
902}
903
1da177e4 904void
ce8e922c
NS
905xfs_buf_unpin(
906 xfs_buf_t *bp)
1da177e4 907{
0b1b213f
CH
908 trace_xfs_buf_unpin(bp, _RET_IP_);
909
ce8e922c
NS
910 if (atomic_dec_and_test(&bp->b_pin_count))
911 wake_up_all(&bp->b_waiters);
1da177e4
LT
912}
913
914int
ce8e922c
NS
915xfs_buf_ispin(
916 xfs_buf_t *bp)
1da177e4 917{
ce8e922c 918 return atomic_read(&bp->b_pin_count);
1da177e4
LT
919}
920
ce8e922c
NS
921STATIC void
922xfs_buf_wait_unpin(
923 xfs_buf_t *bp)
1da177e4
LT
924{
925 DECLARE_WAITQUEUE (wait, current);
926
ce8e922c 927 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
928 return;
929
ce8e922c 930 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
931 for (;;) {
932 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 933 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 934 break;
ce8e922c
NS
935 if (atomic_read(&bp->b_io_remaining))
936 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
937 schedule();
938 }
ce8e922c 939 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
940 set_current_state(TASK_RUNNING);
941}
942
943/*
944 * Buffer Utility Routines
945 */
946
1da177e4 947STATIC void
ce8e922c 948xfs_buf_iodone_work(
c4028958 949 struct work_struct *work)
1da177e4 950{
c4028958
DH
951 xfs_buf_t *bp =
952 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 953
0bfefc46
DC
954 /*
955 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
956 * ordered flag and reissue them. Because we can't tell the higher
957 * layers directly that they should not issue ordered I/O anymore, they
73f6aa4d 958 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
0bfefc46
DC
959 */
960 if ((bp->b_error == EOPNOTSUPP) &&
961 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
0b1b213f 962 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
0bfefc46 963 bp->b_flags &= ~XBF_ORDERED;
73f6aa4d 964 bp->b_flags |= _XFS_BARRIER_FAILED;
0bfefc46
DC
965 xfs_buf_iorequest(bp);
966 } else if (bp->b_iodone)
ce8e922c
NS
967 (*(bp->b_iodone))(bp);
968 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
969 xfs_buf_relse(bp);
970}
971
972void
ce8e922c
NS
973xfs_buf_ioend(
974 xfs_buf_t *bp,
1da177e4
LT
975 int schedule)
976{
0b1b213f
CH
977 trace_xfs_buf_iodone(bp, _RET_IP_);
978
77be55a5 979 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
980 if (bp->b_error == 0)
981 bp->b_flags |= XBF_DONE;
1da177e4 982
ce8e922c 983 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 984 if (schedule) {
c4028958 985 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 986 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 987 } else {
c4028958 988 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
989 }
990 } else {
b4dd330b 991 complete(&bp->b_iowait);
1da177e4
LT
992 }
993}
994
1da177e4 995void
ce8e922c
NS
996xfs_buf_ioerror(
997 xfs_buf_t *bp,
998 int error)
1da177e4
LT
999{
1000 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1001 bp->b_error = (unsigned short)error;
0b1b213f 1002 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1003}
1004
1da177e4 1005int
64e0bc7d
CH
1006xfs_bwrite(
1007 struct xfs_mount *mp,
5d765b97 1008 struct xfs_buf *bp)
1da177e4 1009{
64e0bc7d
CH
1010 int iowait = (bp->b_flags & XBF_ASYNC) == 0;
1011 int error = 0;
1da177e4 1012
64e0bc7d
CH
1013 bp->b_strat = xfs_bdstrat_cb;
1014 bp->b_mount = mp;
1015 bp->b_flags |= XBF_WRITE;
1016 if (!iowait)
1017 bp->b_flags |= _XBF_RUN_QUEUES;
1da177e4 1018
5d765b97 1019 xfs_buf_delwri_dequeue(bp);
64e0bc7d 1020 xfs_buf_iostrategy(bp);
1da177e4 1021
64e0bc7d
CH
1022 if (iowait) {
1023 error = xfs_buf_iowait(bp);
1024 if (error)
1025 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1026 xfs_buf_relse(bp);
1027 }
1da177e4 1028
64e0bc7d 1029 return error;
5d765b97 1030}
1da177e4 1031
5d765b97
CH
1032void
1033xfs_bdwrite(
1034 void *mp,
1035 struct xfs_buf *bp)
1036{
0b1b213f 1037 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1038
5d765b97 1039 bp->b_strat = xfs_bdstrat_cb;
15ac08a8 1040 bp->b_mount = mp;
1da177e4 1041
5d765b97
CH
1042 bp->b_flags &= ~XBF_READ;
1043 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1044
1045 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1046}
1047
4e23471a
CH
1048/*
1049 * Called when we want to stop a buffer from getting written or read.
1050 * We attach the EIO error, muck with its flags, and call biodone
1051 * so that the proper iodone callbacks get called.
1052 */
1053STATIC int
1054xfs_bioerror(
1055 xfs_buf_t *bp)
1056{
1057#ifdef XFSERRORDEBUG
1058 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1059#endif
1060
1061 /*
1062 * No need to wait until the buffer is unpinned, we aren't flushing it.
1063 */
1064 XFS_BUF_ERROR(bp, EIO);
1065
1066 /*
1067 * We're calling biodone, so delete XBF_DONE flag.
1068 */
1069 XFS_BUF_UNREAD(bp);
1070 XFS_BUF_UNDELAYWRITE(bp);
1071 XFS_BUF_UNDONE(bp);
1072 XFS_BUF_STALE(bp);
1073
1074 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1075 xfs_biodone(bp);
1076
1077 return EIO;
1078}
1079
1080/*
1081 * Same as xfs_bioerror, except that we are releasing the buffer
1082 * here ourselves, and avoiding the biodone call.
1083 * This is meant for userdata errors; metadata bufs come with
1084 * iodone functions attached, so that we can track down errors.
1085 */
1086STATIC int
1087xfs_bioerror_relse(
1088 struct xfs_buf *bp)
1089{
1090 int64_t fl = XFS_BUF_BFLAGS(bp);
1091 /*
1092 * No need to wait until the buffer is unpinned.
1093 * We aren't flushing it.
1094 *
1095 * chunkhold expects B_DONE to be set, whether
1096 * we actually finish the I/O or not. We don't want to
1097 * change that interface.
1098 */
1099 XFS_BUF_UNREAD(bp);
1100 XFS_BUF_UNDELAYWRITE(bp);
1101 XFS_BUF_DONE(bp);
1102 XFS_BUF_STALE(bp);
1103 XFS_BUF_CLR_IODONE_FUNC(bp);
1104 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
0cadda1c 1105 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1106 /*
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1110 * ASYNC buffers.
1111 */
1112 XFS_BUF_ERROR(bp, EIO);
1113 XFS_BUF_FINISH_IOWAIT(bp);
1114 } else {
1115 xfs_buf_relse(bp);
1116 }
1117
1118 return EIO;
1119}
1120
1121
1122/*
1123 * All xfs metadata buffers except log state machine buffers
1124 * get this attached as their b_bdstrat callback function.
1125 * This is so that we can catch a buffer
1126 * after prematurely unpinning it to forcibly shutdown the filesystem.
1127 */
1128int
1129xfs_bdstrat_cb(
1130 struct xfs_buf *bp)
1131{
1132 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1133 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134 /*
1135 * Metadata write that didn't get logged but
1136 * written delayed anyway. These aren't associated
1137 * with a transaction, and can be ignored.
1138 */
1139 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1140 return xfs_bioerror_relse(bp);
1141 else
1142 return xfs_bioerror(bp);
1143 }
1144
1145 xfs_buf_iorequest(bp);
1146 return 0;
1147}
1148
1149/*
1150 * Wrapper around bdstrat so that we can stop data from going to disk in case
1151 * we are shutting down the filesystem. Typically user data goes thru this
1152 * path; one of the exceptions is the superblock.
1153 */
1154void
1155xfsbdstrat(
1156 struct xfs_mount *mp,
1157 struct xfs_buf *bp)
1158{
1159 if (XFS_FORCED_SHUTDOWN(mp)) {
1160 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161 xfs_bioerror_relse(bp);
1162 return;
1163 }
1164
1165 xfs_buf_iorequest(bp);
1166}
1167
b8f82a4a 1168STATIC void
ce8e922c
NS
1169_xfs_buf_ioend(
1170 xfs_buf_t *bp,
1da177e4
LT
1171 int schedule)
1172{
6ab455ee
CH
1173 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1174 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1175 xfs_buf_ioend(bp, schedule);
6ab455ee 1176 }
1da177e4
LT
1177}
1178
782e3b3b 1179STATIC void
ce8e922c 1180xfs_buf_bio_end_io(
1da177e4 1181 struct bio *bio,
1da177e4
LT
1182 int error)
1183{
ce8e922c
NS
1184 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1185 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1186 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1187
cfbe5267 1188 xfs_buf_ioerror(bp, -error);
1da177e4 1189
73c77e2c
JB
1190 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192
eedb5530 1193 do {
1da177e4
LT
1194 struct page *page = bvec->bv_page;
1195
948ecdb4 1196 ASSERT(!PagePrivate(page));
ce8e922c
NS
1197 if (unlikely(bp->b_error)) {
1198 if (bp->b_flags & XBF_READ)
eedb5530 1199 ClearPageUptodate(page);
ce8e922c 1200 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1201 SetPageUptodate(page);
1202 } else if (!PagePrivate(page) &&
ce8e922c 1203 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1204 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1205 }
1206
eedb5530
NS
1207 if (--bvec >= bio->bi_io_vec)
1208 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1209
1210 if (bp->b_flags & _XBF_PAGE_LOCKED)
1211 unlock_page(page);
eedb5530 1212 } while (bvec >= bio->bi_io_vec);
1da177e4 1213
ce8e922c 1214 _xfs_buf_ioend(bp, 1);
1da177e4 1215 bio_put(bio);
1da177e4
LT
1216}
1217
1218STATIC void
ce8e922c
NS
1219_xfs_buf_ioapply(
1220 xfs_buf_t *bp)
1da177e4 1221{
a9759f2d 1222 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1223 struct bio *bio;
ce8e922c
NS
1224 int offset = bp->b_offset;
1225 int size = bp->b_count_desired;
1226 sector_t sector = bp->b_bn;
1227 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1228
ce8e922c 1229 total_nr_pages = bp->b_page_count;
1da177e4
LT
1230 map_i = 0;
1231
ce8e922c
NS
1232 if (bp->b_flags & XBF_ORDERED) {
1233 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1234 rw = WRITE_BARRIER;
2ee1abad 1235 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1236 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1237 bp->b_flags &= ~_XBF_RUN_QUEUES;
1238 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1239 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1240 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1241 bp->b_flags &= ~_XBF_RUN_QUEUES;
1242 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1243 } else {
1244 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1245 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1246 }
1247
ce8e922c 1248 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1249 * we populate up the whole page, and hence the other metadata
1250 * in the same page. This optimization is only valid when the
ce8e922c 1251 * filesystem block size is not smaller than the page size.
1da177e4 1252 */
ce8e922c 1253 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1254 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1255 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1256 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1257 bio = bio_alloc(GFP_NOIO, 1);
1258
ce8e922c 1259 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1260 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1261 bio->bi_end_io = xfs_buf_bio_end_io;
1262 bio->bi_private = bp;
1da177e4 1263
ce8e922c 1264 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1265 size = 0;
1266
ce8e922c 1267 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1268
1269 goto submit_io;
1270 }
1271
1da177e4 1272next_chunk:
ce8e922c 1273 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1274 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1275 if (nr_pages > total_nr_pages)
1276 nr_pages = total_nr_pages;
1277
1278 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1279 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1280 bio->bi_sector = sector;
ce8e922c
NS
1281 bio->bi_end_io = xfs_buf_bio_end_io;
1282 bio->bi_private = bp;
1da177e4
LT
1283
1284 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1285 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1286
1287 if (nbytes > size)
1288 nbytes = size;
1289
ce8e922c
NS
1290 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1291 if (rbytes < nbytes)
1da177e4
LT
1292 break;
1293
1294 offset = 0;
1295 sector += nbytes >> BBSHIFT;
1296 size -= nbytes;
1297 total_nr_pages--;
1298 }
1299
1300submit_io:
1301 if (likely(bio->bi_size)) {
73c77e2c
JB
1302 if (xfs_buf_is_vmapped(bp)) {
1303 flush_kernel_vmap_range(bp->b_addr,
1304 xfs_buf_vmap_len(bp));
1305 }
1da177e4
LT
1306 submit_bio(rw, bio);
1307 if (size)
1308 goto next_chunk;
1309 } else {
1310 bio_put(bio);
ce8e922c 1311 xfs_buf_ioerror(bp, EIO);
1da177e4
LT
1312 }
1313}
1314
1da177e4 1315int
ce8e922c
NS
1316xfs_buf_iorequest(
1317 xfs_buf_t *bp)
1da177e4 1318{
0b1b213f 1319 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1320
ce8e922c
NS
1321 if (bp->b_flags & XBF_DELWRI) {
1322 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1323 return 0;
1324 }
1325
ce8e922c
NS
1326 if (bp->b_flags & XBF_WRITE) {
1327 xfs_buf_wait_unpin(bp);
1da177e4
LT
1328 }
1329
ce8e922c 1330 xfs_buf_hold(bp);
1da177e4
LT
1331
1332 /* Set the count to 1 initially, this will stop an I/O
1333 * completion callout which happens before we have started
ce8e922c 1334 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1335 */
ce8e922c
NS
1336 atomic_set(&bp->b_io_remaining, 1);
1337 _xfs_buf_ioapply(bp);
1338 _xfs_buf_ioend(bp, 0);
1da177e4 1339
ce8e922c 1340 xfs_buf_rele(bp);
1da177e4
LT
1341 return 0;
1342}
1343
1344/*
ce8e922c
NS
1345 * Waits for I/O to complete on the buffer supplied.
1346 * It returns immediately if no I/O is pending.
1347 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1348 */
1349int
ce8e922c
NS
1350xfs_buf_iowait(
1351 xfs_buf_t *bp)
1da177e4 1352{
0b1b213f
CH
1353 trace_xfs_buf_iowait(bp, _RET_IP_);
1354
ce8e922c
NS
1355 if (atomic_read(&bp->b_io_remaining))
1356 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1357 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1358
1359 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1360 return bp->b_error;
1da177e4
LT
1361}
1362
ce8e922c
NS
1363xfs_caddr_t
1364xfs_buf_offset(
1365 xfs_buf_t *bp,
1da177e4
LT
1366 size_t offset)
1367{
1368 struct page *page;
1369
ce8e922c
NS
1370 if (bp->b_flags & XBF_MAPPED)
1371 return XFS_BUF_PTR(bp) + offset;
1da177e4 1372
ce8e922c
NS
1373 offset += bp->b_offset;
1374 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1375 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1376}
1377
1378/*
1da177e4
LT
1379 * Move data into or out of a buffer.
1380 */
1381void
ce8e922c
NS
1382xfs_buf_iomove(
1383 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1384 size_t boff, /* starting buffer offset */
1385 size_t bsize, /* length to copy */
b9c48649 1386 void *data, /* data address */
ce8e922c 1387 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1388{
1389 size_t bend, cpoff, csize;
1390 struct page *page;
1391
1392 bend = boff + bsize;
1393 while (boff < bend) {
ce8e922c
NS
1394 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1395 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1396 csize = min_t(size_t,
ce8e922c 1397 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1398
1399 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1400
1401 switch (mode) {
ce8e922c 1402 case XBRW_ZERO:
1da177e4
LT
1403 memset(page_address(page) + cpoff, 0, csize);
1404 break;
ce8e922c 1405 case XBRW_READ:
1da177e4
LT
1406 memcpy(data, page_address(page) + cpoff, csize);
1407 break;
ce8e922c 1408 case XBRW_WRITE:
1da177e4
LT
1409 memcpy(page_address(page) + cpoff, data, csize);
1410 }
1411
1412 boff += csize;
1413 data += csize;
1414 }
1415}
1416
1417/*
ce8e922c 1418 * Handling of buffer targets (buftargs).
1da177e4
LT
1419 */
1420
1421/*
ce8e922c
NS
1422 * Wait for any bufs with callbacks that have been submitted but
1423 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1424 */
1425void
1426xfs_wait_buftarg(
1427 xfs_buftarg_t *btp)
1428{
1429 xfs_buf_t *bp, *n;
1430 xfs_bufhash_t *hash;
1431 uint i;
1432
1433 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1434 hash = &btp->bt_hash[i];
1435again:
1436 spin_lock(&hash->bh_lock);
ce8e922c
NS
1437 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1438 ASSERT(btp == bp->b_target);
1439 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1440 spin_unlock(&hash->bh_lock);
2f926587
DC
1441 /*
1442 * Catch superblock reference count leaks
1443 * immediately
1444 */
ce8e922c 1445 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1446 delay(100);
1447 goto again;
1448 }
1449 }
1450 spin_unlock(&hash->bh_lock);
1451 }
1452}
1453
1454/*
ce8e922c
NS
1455 * Allocate buffer hash table for a given target.
1456 * For devices containing metadata (i.e. not the log/realtime devices)
1457 * we need to allocate a much larger hash table.
1da177e4
LT
1458 */
1459STATIC void
1460xfs_alloc_bufhash(
1461 xfs_buftarg_t *btp,
1462 int external)
1463{
1464 unsigned int i;
1465
1466 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1467 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
bdfb0430
CH
1468 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1469 sizeof(xfs_bufhash_t));
1da177e4
LT
1470 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1471 spin_lock_init(&btp->bt_hash[i].bh_lock);
1472 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1473 }
1474}
1475
1476STATIC void
1477xfs_free_bufhash(
1478 xfs_buftarg_t *btp)
1479{
bdfb0430 1480 kmem_free_large(btp->bt_hash);
1da177e4
LT
1481 btp->bt_hash = NULL;
1482}
1483
a6867a68 1484/*
ce8e922c 1485 * buftarg list for delwrite queue processing
a6867a68 1486 */
e6a0e9cd 1487static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1488static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1489
1490STATIC void
1491xfs_register_buftarg(
1492 xfs_buftarg_t *btp)
1493{
1494 spin_lock(&xfs_buftarg_lock);
1495 list_add(&btp->bt_list, &xfs_buftarg_list);
1496 spin_unlock(&xfs_buftarg_lock);
1497}
1498
1499STATIC void
1500xfs_unregister_buftarg(
1501 xfs_buftarg_t *btp)
1502{
1503 spin_lock(&xfs_buftarg_lock);
1504 list_del(&btp->bt_list);
1505 spin_unlock(&xfs_buftarg_lock);
1506}
1507
1da177e4
LT
1508void
1509xfs_free_buftarg(
b7963133
CH
1510 struct xfs_mount *mp,
1511 struct xfs_buftarg *btp)
1da177e4
LT
1512{
1513 xfs_flush_buftarg(btp, 1);
b7963133
CH
1514 if (mp->m_flags & XFS_MOUNT_BARRIER)
1515 xfs_blkdev_issue_flush(btp);
1da177e4 1516 xfs_free_bufhash(btp);
ce8e922c 1517 iput(btp->bt_mapping->host);
a6867a68 1518
ce8e922c
NS
1519 /* Unregister the buftarg first so that we don't get a
1520 * wakeup finding a non-existent task
1521 */
a6867a68
DC
1522 xfs_unregister_buftarg(btp);
1523 kthread_stop(btp->bt_task);
1524
f0e2d93c 1525 kmem_free(btp);
1da177e4
LT
1526}
1527
1da177e4
LT
1528STATIC int
1529xfs_setsize_buftarg_flags(
1530 xfs_buftarg_t *btp,
1531 unsigned int blocksize,
1532 unsigned int sectorsize,
1533 int verbose)
1534{
ce8e922c
NS
1535 btp->bt_bsize = blocksize;
1536 btp->bt_sshift = ffs(sectorsize) - 1;
1537 btp->bt_smask = sectorsize - 1;
1da177e4 1538
ce8e922c 1539 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1540 printk(KERN_WARNING
1541 "XFS: Cannot set_blocksize to %u on device %s\n",
1542 sectorsize, XFS_BUFTARG_NAME(btp));
1543 return EINVAL;
1544 }
1545
1546 if (verbose &&
1547 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1548 printk(KERN_WARNING
1549 "XFS: %u byte sectors in use on device %s. "
1550 "This is suboptimal; %u or greater is ideal.\n",
1551 sectorsize, XFS_BUFTARG_NAME(btp),
1552 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1553 }
1554
1555 return 0;
1556}
1557
1558/*
ce8e922c
NS
1559 * When allocating the initial buffer target we have not yet
1560 * read in the superblock, so don't know what sized sectors
1561 * are being used is at this early stage. Play safe.
1562 */
1da177e4
LT
1563STATIC int
1564xfs_setsize_buftarg_early(
1565 xfs_buftarg_t *btp,
1566 struct block_device *bdev)
1567{
1568 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1569 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1570}
1571
1572int
1573xfs_setsize_buftarg(
1574 xfs_buftarg_t *btp,
1575 unsigned int blocksize,
1576 unsigned int sectorsize)
1577{
1578 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1579}
1580
1581STATIC int
1582xfs_mapping_buftarg(
1583 xfs_buftarg_t *btp,
1584 struct block_device *bdev)
1585{
1586 struct backing_dev_info *bdi;
1587 struct inode *inode;
1588 struct address_space *mapping;
f5e54d6e 1589 static const struct address_space_operations mapping_aops = {
1da177e4 1590 .sync_page = block_sync_page,
e965f963 1591 .migratepage = fail_migrate_page,
1da177e4
LT
1592 };
1593
1594 inode = new_inode(bdev->bd_inode->i_sb);
1595 if (!inode) {
1596 printk(KERN_WARNING
1597 "XFS: Cannot allocate mapping inode for device %s\n",
1598 XFS_BUFTARG_NAME(btp));
1599 return ENOMEM;
1600 }
1601 inode->i_mode = S_IFBLK;
1602 inode->i_bdev = bdev;
1603 inode->i_rdev = bdev->bd_dev;
1604 bdi = blk_get_backing_dev_info(bdev);
1605 if (!bdi)
1606 bdi = &default_backing_dev_info;
1607 mapping = &inode->i_data;
1608 mapping->a_ops = &mapping_aops;
1609 mapping->backing_dev_info = bdi;
1610 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1611 btp->bt_mapping = mapping;
1da177e4
LT
1612 return 0;
1613}
1614
a6867a68
DC
1615STATIC int
1616xfs_alloc_delwrite_queue(
1617 xfs_buftarg_t *btp)
1618{
1619 int error = 0;
1620
1621 INIT_LIST_HEAD(&btp->bt_list);
1622 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1623 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68
DC
1624 btp->bt_flags = 0;
1625 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1626 if (IS_ERR(btp->bt_task)) {
1627 error = PTR_ERR(btp->bt_task);
1628 goto out_error;
1629 }
1630 xfs_register_buftarg(btp);
1631out_error:
1632 return error;
1633}
1634
1da177e4
LT
1635xfs_buftarg_t *
1636xfs_alloc_buftarg(
1637 struct block_device *bdev,
1638 int external)
1639{
1640 xfs_buftarg_t *btp;
1641
1642 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1643
ce8e922c
NS
1644 btp->bt_dev = bdev->bd_dev;
1645 btp->bt_bdev = bdev;
1da177e4
LT
1646 if (xfs_setsize_buftarg_early(btp, bdev))
1647 goto error;
1648 if (xfs_mapping_buftarg(btp, bdev))
1649 goto error;
a6867a68
DC
1650 if (xfs_alloc_delwrite_queue(btp))
1651 goto error;
1da177e4
LT
1652 xfs_alloc_bufhash(btp, external);
1653 return btp;
1654
1655error:
f0e2d93c 1656 kmem_free(btp);
1da177e4
LT
1657 return NULL;
1658}
1659
1660
1661/*
ce8e922c 1662 * Delayed write buffer handling
1da177e4 1663 */
1da177e4 1664STATIC void
ce8e922c
NS
1665xfs_buf_delwri_queue(
1666 xfs_buf_t *bp,
1da177e4
LT
1667 int unlock)
1668{
ce8e922c
NS
1669 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1670 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1671
0b1b213f
CH
1672 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1673
ce8e922c 1674 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1675
a6867a68 1676 spin_lock(dwlk);
1da177e4 1677 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1678 if (!list_empty(&bp->b_list)) {
1679 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1680 if (unlock)
1681 atomic_dec(&bp->b_hold);
1682 list_del(&bp->b_list);
1da177e4
LT
1683 }
1684
c9c12971
DC
1685 if (list_empty(dwq)) {
1686 /* start xfsbufd as it is about to have something to do */
1687 wake_up_process(bp->b_target->bt_task);
1688 }
1689
ce8e922c
NS
1690 bp->b_flags |= _XBF_DELWRI_Q;
1691 list_add_tail(&bp->b_list, dwq);
1692 bp->b_queuetime = jiffies;
a6867a68 1693 spin_unlock(dwlk);
1da177e4
LT
1694
1695 if (unlock)
ce8e922c 1696 xfs_buf_unlock(bp);
1da177e4
LT
1697}
1698
1699void
ce8e922c
NS
1700xfs_buf_delwri_dequeue(
1701 xfs_buf_t *bp)
1da177e4 1702{
ce8e922c 1703 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1704 int dequeued = 0;
1705
a6867a68 1706 spin_lock(dwlk);
ce8e922c
NS
1707 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1708 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1709 list_del_init(&bp->b_list);
1da177e4
LT
1710 dequeued = 1;
1711 }
ce8e922c 1712 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1713 spin_unlock(dwlk);
1da177e4
LT
1714
1715 if (dequeued)
ce8e922c 1716 xfs_buf_rele(bp);
1da177e4 1717
0b1b213f 1718 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1719}
1720
d808f617
DC
1721/*
1722 * If a delwri buffer needs to be pushed before it has aged out, then promote
1723 * it to the head of the delwri queue so that it will be flushed on the next
1724 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1725 * than the age currently needed to flush the buffer. Hence the next time the
1726 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1727 */
1728void
1729xfs_buf_delwri_promote(
1730 struct xfs_buf *bp)
1731{
1732 struct xfs_buftarg *btp = bp->b_target;
1733 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1734
1735 ASSERT(bp->b_flags & XBF_DELWRI);
1736 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1737
1738 /*
1739 * Check the buffer age before locking the delayed write queue as we
1740 * don't need to promote buffers that are already past the flush age.
1741 */
1742 if (bp->b_queuetime < jiffies - age)
1743 return;
1744 bp->b_queuetime = jiffies - age;
1745 spin_lock(&btp->bt_delwrite_lock);
1746 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1747 spin_unlock(&btp->bt_delwrite_lock);
1748}
1749
1da177e4 1750STATIC void
ce8e922c 1751xfs_buf_runall_queues(
1da177e4
LT
1752 struct workqueue_struct *queue)
1753{
1754 flush_workqueue(queue);
1755}
1756
1da177e4 1757STATIC int
23ea4032 1758xfsbufd_wakeup(
15c84a47
NS
1759 int priority,
1760 gfp_t mask)
1da177e4 1761{
da7f93e9 1762 xfs_buftarg_t *btp;
a6867a68
DC
1763
1764 spin_lock(&xfs_buftarg_lock);
da7f93e9 1765 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1766 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1767 continue;
c9c12971
DC
1768 if (list_empty(&btp->bt_delwrite_queue))
1769 continue;
ce8e922c 1770 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1771 wake_up_process(btp->bt_task);
1772 }
1773 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1774 return 0;
1775}
1776
585e6d88
DC
1777/*
1778 * Move as many buffers as specified to the supplied list
1779 * idicating if we skipped any buffers to prevent deadlocks.
1780 */
1781STATIC int
1782xfs_buf_delwri_split(
1783 xfs_buftarg_t *target,
1784 struct list_head *list,
5e6a07df 1785 unsigned long age)
585e6d88
DC
1786{
1787 xfs_buf_t *bp, *n;
1788 struct list_head *dwq = &target->bt_delwrite_queue;
1789 spinlock_t *dwlk = &target->bt_delwrite_lock;
1790 int skipped = 0;
5e6a07df 1791 int force;
585e6d88 1792
5e6a07df 1793 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1794 INIT_LIST_HEAD(list);
1795 spin_lock(dwlk);
1796 list_for_each_entry_safe(bp, n, dwq, b_list) {
0b1b213f 1797 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1798 ASSERT(bp->b_flags & XBF_DELWRI);
1799
1800 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1801 if (!force &&
585e6d88
DC
1802 time_before(jiffies, bp->b_queuetime + age)) {
1803 xfs_buf_unlock(bp);
1804 break;
1805 }
1806
1807 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1808 _XBF_RUN_QUEUES);
1809 bp->b_flags |= XBF_WRITE;
1810 list_move_tail(&bp->b_list, list);
1811 } else
1812 skipped++;
1813 }
1814 spin_unlock(dwlk);
1815
1816 return skipped;
1817
1818}
1819
089716aa
DC
1820/*
1821 * Compare function is more complex than it needs to be because
1822 * the return value is only 32 bits and we are doing comparisons
1823 * on 64 bit values
1824 */
1825static int
1826xfs_buf_cmp(
1827 void *priv,
1828 struct list_head *a,
1829 struct list_head *b)
1830{
1831 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1832 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1833 xfs_daddr_t diff;
1834
1835 diff = ap->b_bn - bp->b_bn;
1836 if (diff < 0)
1837 return -1;
1838 if (diff > 0)
1839 return 1;
1840 return 0;
1841}
1842
1843void
1844xfs_buf_delwri_sort(
1845 xfs_buftarg_t *target,
1846 struct list_head *list)
1847{
1848 list_sort(NULL, list, xfs_buf_cmp);
1849}
1850
1da177e4 1851STATIC int
23ea4032 1852xfsbufd(
585e6d88 1853 void *data)
1da177e4 1854{
089716aa 1855 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1856
1da177e4
LT
1857 current->flags |= PF_MEMALLOC;
1858
978c7b2f
RW
1859 set_freezable();
1860
1da177e4 1861 do {
c9c12971
DC
1862 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1863 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1864 int count = 0;
1865 struct list_head tmp;
c9c12971 1866
3e1d1d28 1867 if (unlikely(freezing(current))) {
ce8e922c 1868 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1869 refrigerator();
abd0cf7a 1870 } else {
ce8e922c 1871 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1872 }
1da177e4 1873
c9c12971
DC
1874 /* sleep for a long time if there is nothing to do. */
1875 if (list_empty(&target->bt_delwrite_queue))
1876 tout = MAX_SCHEDULE_TIMEOUT;
1877 schedule_timeout_interruptible(tout);
1da177e4 1878
c9c12971 1879 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1880 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1881 while (!list_empty(&tmp)) {
089716aa
DC
1882 struct xfs_buf *bp;
1883 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c
NS
1884 list_del_init(&bp->b_list);
1885 xfs_buf_iostrategy(bp);
585e6d88 1886 count++;
1da177e4 1887 }
f07c2250
NS
1888 if (count)
1889 blk_run_address_space(target->bt_mapping);
1da177e4 1890
4df08c52 1891 } while (!kthread_should_stop());
1da177e4 1892
4df08c52 1893 return 0;
1da177e4
LT
1894}
1895
1896/*
ce8e922c
NS
1897 * Go through all incore buffers, and release buffers if they belong to
1898 * the given device. This is used in filesystem error handling to
1899 * preserve the consistency of its metadata.
1da177e4
LT
1900 */
1901int
1902xfs_flush_buftarg(
585e6d88
DC
1903 xfs_buftarg_t *target,
1904 int wait)
1da177e4 1905{
089716aa 1906 xfs_buf_t *bp;
585e6d88 1907 int pincount = 0;
089716aa
DC
1908 LIST_HEAD(tmp_list);
1909 LIST_HEAD(wait_list);
1da177e4 1910
c626d174 1911 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1912 xfs_buf_runall_queues(xfsdatad_workqueue);
1913 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1914
5e6a07df 1915 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1916 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1917
1918 /*
089716aa
DC
1919 * Dropped the delayed write list lock, now walk the temporary list.
1920 * All I/O is issued async and then if we need to wait for completion
1921 * we do that after issuing all the IO.
1da177e4 1922 */
089716aa
DC
1923 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1924 while (!list_empty(&tmp_list)) {
1925 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1926 ASSERT(target == bp->b_target);
089716aa
DC
1927 list_del_init(&bp->b_list);
1928 if (wait) {
ce8e922c 1929 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1930 list_add(&bp->b_list, &wait_list);
1931 }
ce8e922c 1932 xfs_buf_iostrategy(bp);
1da177e4
LT
1933 }
1934
089716aa
DC
1935 if (wait) {
1936 /* Expedite and wait for IO to complete. */
f07c2250 1937 blk_run_address_space(target->bt_mapping);
089716aa
DC
1938 while (!list_empty(&wait_list)) {
1939 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1940
089716aa
DC
1941 list_del_init(&bp->b_list);
1942 xfs_iowait(bp);
1943 xfs_buf_relse(bp);
1944 }
1da177e4
LT
1945 }
1946
1da177e4
LT
1947 return pincount;
1948}
1949
04d8b284 1950int __init
ce8e922c 1951xfs_buf_init(void)
1da177e4 1952{
8758280f
NS
1953 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1954 KM_ZONE_HWALIGN, NULL);
ce8e922c 1955 if (!xfs_buf_zone)
0b1b213f 1956 goto out;
04d8b284 1957
b4337692 1958 xfslogd_workqueue = create_workqueue("xfslogd");
23ea4032 1959 if (!xfslogd_workqueue)
04d8b284 1960 goto out_free_buf_zone;
1da177e4 1961
b4337692 1962 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1963 if (!xfsdatad_workqueue)
1964 goto out_destroy_xfslogd_workqueue;
1da177e4 1965
c626d174
DC
1966 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1967 if (!xfsconvertd_workqueue)
1968 goto out_destroy_xfsdatad_workqueue;
1969
8e1f936b 1970 register_shrinker(&xfs_buf_shake);
23ea4032 1971 return 0;
1da177e4 1972
c626d174
DC
1973 out_destroy_xfsdatad_workqueue:
1974 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1975 out_destroy_xfslogd_workqueue:
1976 destroy_workqueue(xfslogd_workqueue);
23ea4032 1977 out_free_buf_zone:
ce8e922c 1978 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1979 out:
8758280f 1980 return -ENOMEM;
1da177e4
LT
1981}
1982
1da177e4 1983void
ce8e922c 1984xfs_buf_terminate(void)
1da177e4 1985{
8e1f936b 1986 unregister_shrinker(&xfs_buf_shake);
c626d174 1987 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1988 destroy_workqueue(xfsdatad_workqueue);
1989 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1990 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1991}
e6a0e9cd
TS
1992
1993#ifdef CONFIG_KDB_MODULES
1994struct list_head *
1995xfs_get_buftarg_list(void)
1996{
1997 return &xfs_buftarg_list;
1998}
1999#endif