kernel: add a helper to get an owning user namespace for a namespace
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7 592/* call under rcu_read_lock */
294d71ff 593int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
294d71ff 597 return 1;
48a066e7 598 if (bastard == NULL)
294d71ff 599 return 0;
48a066e7
AV
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 603 return 0;
48a066e7
AV
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
294d71ff
AV
606 return 1;
607 }
608 return -1;
609}
610
611/* call under rcu_read_lock */
612bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613{
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
48a066e7 621 }
48a066e7
AV
622 return false;
623}
624
1da177e4 625/*
474279dc 626 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 627 * call under rcu_read_lock()
1da177e4 628 */
474279dc 629struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 630{
38129a13 631 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
632 struct mount *p;
633
38129a13 634 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638}
639
640/*
641 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 642 * mount_lock must be held.
474279dc
AV
643 */
644struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645{
411a938b
EB
646 struct mount *p, *res = NULL;
647 p = __lookup_mnt(mnt, dentry);
38129a13
AV
648 if (!p)
649 goto out;
411a938b
EB
650 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 res = p;
38129a13 652 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
653 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 break;
411a938b
EB
655 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 res = p;
1d6a32ac 657 }
38129a13 658out:
1d6a32ac 659 return res;
1da177e4
LT
660}
661
a05964f3 662/*
f015f126
DH
663 * lookup_mnt - Return the first child mount mounted at path
664 *
665 * "First" means first mounted chronologically. If you create the
666 * following mounts:
667 *
668 * mount /dev/sda1 /mnt
669 * mount /dev/sda2 /mnt
670 * mount /dev/sda3 /mnt
671 *
672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
673 * return successively the root dentry and vfsmount of /dev/sda1, then
674 * /dev/sda2, then /dev/sda3, then NULL.
675 *
676 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 677 */
1c755af4 678struct vfsmount *lookup_mnt(struct path *path)
a05964f3 679{
c7105365 680 struct mount *child_mnt;
48a066e7
AV
681 struct vfsmount *m;
682 unsigned seq;
99b7db7b 683
48a066e7
AV
684 rcu_read_lock();
685 do {
686 seq = read_seqbegin(&mount_lock);
687 child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 m = child_mnt ? &child_mnt->mnt : NULL;
689 } while (!legitimize_mnt(m, seq));
690 rcu_read_unlock();
691 return m;
a05964f3
RP
692}
693
7af1364f
EB
694/*
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
697 *
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
702 * is a mountpoint.
703 *
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
707 * parent mount.
708 */
709bool __is_local_mountpoint(struct dentry *dentry)
710{
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 struct mount *mnt;
713 bool is_covered = false;
714
715 if (!d_mountpoint(dentry))
716 goto out;
717
718 down_read(&namespace_sem);
719 list_for_each_entry(mnt, &ns->list, mnt_list) {
720 is_covered = (mnt->mnt_mountpoint == dentry);
721 if (is_covered)
722 break;
723 }
724 up_read(&namespace_sem);
725out:
726 return is_covered;
727}
728
e2dfa935 729static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 730{
0818bf27 731 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
732 struct mountpoint *mp;
733
0818bf27 734 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
735 if (mp->m_dentry == dentry) {
736 /* might be worth a WARN_ON() */
737 if (d_unlinked(dentry))
738 return ERR_PTR(-ENOENT);
739 mp->m_count++;
740 return mp;
741 }
742 }
e2dfa935
EB
743 return NULL;
744}
745
746static struct mountpoint *new_mountpoint(struct dentry *dentry)
747{
748 struct hlist_head *chain = mp_hash(dentry);
749 struct mountpoint *mp;
750 int ret;
84d17192
AV
751
752 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!mp)
754 return ERR_PTR(-ENOMEM);
755
eed81007
MS
756 ret = d_set_mounted(dentry);
757 if (ret) {
84d17192 758 kfree(mp);
eed81007 759 return ERR_PTR(ret);
84d17192 760 }
eed81007 761
84d17192
AV
762 mp->m_dentry = dentry;
763 mp->m_count = 1;
0818bf27 764 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 765 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
766 return mp;
767}
768
769static void put_mountpoint(struct mountpoint *mp)
770{
771 if (!--mp->m_count) {
772 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 773 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
774 spin_lock(&dentry->d_lock);
775 dentry->d_flags &= ~DCACHE_MOUNTED;
776 spin_unlock(&dentry->d_lock);
0818bf27 777 hlist_del(&mp->m_hash);
84d17192
AV
778 kfree(mp);
779 }
780}
781
143c8c91 782static inline int check_mnt(struct mount *mnt)
1da177e4 783{
6b3286ed 784 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
785}
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns) {
793 ns->event = ++event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
6b3286ed 801static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
802{
803 if (ns && ns->event != event) {
804 ns->event = event;
805 wake_up_interruptible(&ns->poll);
806 }
807}
808
99b7db7b
NP
809/*
810 * vfsmount lock must be held for write
811 */
7bdb11de 812static void unhash_mnt(struct mount *mnt)
419148da 813{
0714a533 814 mnt->mnt_parent = mnt;
a73324da 815 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 816 list_del_init(&mnt->mnt_child);
38129a13 817 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 818 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
819 put_mountpoint(mnt->mnt_mp);
820 mnt->mnt_mp = NULL;
1da177e4
LT
821}
822
7bdb11de
EB
823/*
824 * vfsmount lock must be held for write
825 */
826static void detach_mnt(struct mount *mnt, struct path *old_path)
827{
828 old_path->dentry = mnt->mnt_mountpoint;
829 old_path->mnt = &mnt->mnt_parent->mnt;
830 unhash_mnt(mnt);
831}
832
6a46c573
EB
833/*
834 * vfsmount lock must be held for write
835 */
836static void umount_mnt(struct mount *mnt)
837{
838 /* old mountpoint will be dropped when we can do that */
839 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
840 unhash_mnt(mnt);
841}
842
99b7db7b
NP
843/*
844 * vfsmount lock must be held for write
845 */
84d17192
AV
846void mnt_set_mountpoint(struct mount *mnt,
847 struct mountpoint *mp,
44d964d6 848 struct mount *child_mnt)
b90fa9ae 849{
84d17192 850 mp->m_count++;
3a2393d7 851 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 852 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 853 child_mnt->mnt_parent = mnt;
84d17192 854 child_mnt->mnt_mp = mp;
0a5eb7c8 855 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
856}
857
99b7db7b
NP
858/*
859 * vfsmount lock must be held for write
860 */
84d17192
AV
861static void attach_mnt(struct mount *mnt,
862 struct mount *parent,
863 struct mountpoint *mp)
1da177e4 864{
84d17192 865 mnt_set_mountpoint(parent, mp, mnt);
38129a13 866 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 867 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
868}
869
12a5b529
AV
870static void attach_shadowed(struct mount *mnt,
871 struct mount *parent,
872 struct mount *shadows)
873{
874 if (shadows) {
f6f99332 875 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
876 list_add(&mnt->mnt_child, &shadows->mnt_child);
877 } else {
878 hlist_add_head_rcu(&mnt->mnt_hash,
879 m_hash(&parent->mnt, mnt->mnt_mountpoint));
880 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 }
882}
883
b90fa9ae 884/*
99b7db7b 885 * vfsmount lock must be held for write
b90fa9ae 886 */
1d6a32ac 887static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 888{
0714a533 889 struct mount *parent = mnt->mnt_parent;
83adc753 890 struct mount *m;
b90fa9ae 891 LIST_HEAD(head);
143c8c91 892 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 893
0714a533 894 BUG_ON(parent == mnt);
b90fa9ae 895
1a4eeaf2 896 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 897 list_for_each_entry(m, &head, mnt_list)
143c8c91 898 m->mnt_ns = n;
f03c6599 899
b90fa9ae
RP
900 list_splice(&head, n->list.prev);
901
12a5b529 902 attach_shadowed(mnt, parent, shadows);
6b3286ed 903 touch_mnt_namespace(n);
1da177e4
LT
904}
905
909b0a88 906static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 907{
6b41d536
AV
908 struct list_head *next = p->mnt_mounts.next;
909 if (next == &p->mnt_mounts) {
1da177e4 910 while (1) {
909b0a88 911 if (p == root)
1da177e4 912 return NULL;
6b41d536
AV
913 next = p->mnt_child.next;
914 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 915 break;
0714a533 916 p = p->mnt_parent;
1da177e4
LT
917 }
918 }
6b41d536 919 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
920}
921
315fc83e 922static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 923{
6b41d536
AV
924 struct list_head *prev = p->mnt_mounts.prev;
925 while (prev != &p->mnt_mounts) {
926 p = list_entry(prev, struct mount, mnt_child);
927 prev = p->mnt_mounts.prev;
9676f0c6
RP
928 }
929 return p;
930}
931
9d412a43
AV
932struct vfsmount *
933vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
934{
b105e270 935 struct mount *mnt;
9d412a43
AV
936 struct dentry *root;
937
938 if (!type)
939 return ERR_PTR(-ENODEV);
940
941 mnt = alloc_vfsmnt(name);
942 if (!mnt)
943 return ERR_PTR(-ENOMEM);
944
945 if (flags & MS_KERNMOUNT)
b105e270 946 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
947
948 root = mount_fs(type, flags, name, data);
949 if (IS_ERR(root)) {
8ffcb32e 950 mnt_free_id(mnt);
9d412a43
AV
951 free_vfsmnt(mnt);
952 return ERR_CAST(root);
953 }
954
b105e270
AV
955 mnt->mnt.mnt_root = root;
956 mnt->mnt.mnt_sb = root->d_sb;
a73324da 957 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 958 mnt->mnt_parent = mnt;
719ea2fb 959 lock_mount_hash();
39f7c4db 960 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 961 unlock_mount_hash();
b105e270 962 return &mnt->mnt;
9d412a43
AV
963}
964EXPORT_SYMBOL_GPL(vfs_kern_mount);
965
87129cc0 966static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 967 int flag)
1da177e4 968{
87129cc0 969 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
970 struct mount *mnt;
971 int err;
1da177e4 972
be34d1a3
DH
973 mnt = alloc_vfsmnt(old->mnt_devname);
974 if (!mnt)
975 return ERR_PTR(-ENOMEM);
719f5d7f 976
7a472ef4 977 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
978 mnt->mnt_group_id = 0; /* not a peer of original */
979 else
980 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 981
be34d1a3
DH
982 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
983 err = mnt_alloc_group_id(mnt);
984 if (err)
985 goto out_free;
1da177e4 986 }
be34d1a3 987
f2ebb3a9 988 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 989 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
990 if (flag & CL_UNPRIVILEGED) {
991 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
992
993 if (mnt->mnt.mnt_flags & MNT_READONLY)
994 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
995
996 if (mnt->mnt.mnt_flags & MNT_NODEV)
997 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
998
999 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1000 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1001
1002 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1003 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1004 }
132c94e3 1005
5ff9d8a6 1006 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1007 if ((flag & CL_UNPRIVILEGED) &&
1008 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1009 mnt->mnt.mnt_flags |= MNT_LOCKED;
1010
be34d1a3
DH
1011 atomic_inc(&sb->s_active);
1012 mnt->mnt.mnt_sb = sb;
1013 mnt->mnt.mnt_root = dget(root);
1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 mnt->mnt_parent = mnt;
719ea2fb 1016 lock_mount_hash();
be34d1a3 1017 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1018 unlock_mount_hash();
be34d1a3 1019
7a472ef4
EB
1020 if ((flag & CL_SLAVE) ||
1021 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1022 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1023 mnt->mnt_master = old;
1024 CLEAR_MNT_SHARED(mnt);
1025 } else if (!(flag & CL_PRIVATE)) {
1026 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1027 list_add(&mnt->mnt_share, &old->mnt_share);
1028 if (IS_MNT_SLAVE(old))
1029 list_add(&mnt->mnt_slave, &old->mnt_slave);
1030 mnt->mnt_master = old->mnt_master;
1031 }
1032 if (flag & CL_MAKE_SHARED)
1033 set_mnt_shared(mnt);
1034
1035 /* stick the duplicate mount on the same expiry list
1036 * as the original if that was on one */
1037 if (flag & CL_EXPIRE) {
1038 if (!list_empty(&old->mnt_expire))
1039 list_add(&mnt->mnt_expire, &old->mnt_expire);
1040 }
1041
cb338d06 1042 return mnt;
719f5d7f
MS
1043
1044 out_free:
8ffcb32e 1045 mnt_free_id(mnt);
719f5d7f 1046 free_vfsmnt(mnt);
be34d1a3 1047 return ERR_PTR(err);
1da177e4
LT
1048}
1049
9ea459e1
AV
1050static void cleanup_mnt(struct mount *mnt)
1051{
1052 /*
1053 * This probably indicates that somebody messed
1054 * up a mnt_want/drop_write() pair. If this
1055 * happens, the filesystem was probably unable
1056 * to make r/w->r/o transitions.
1057 */
1058 /*
1059 * The locking used to deal with mnt_count decrement provides barriers,
1060 * so mnt_get_writers() below is safe.
1061 */
1062 WARN_ON(mnt_get_writers(mnt));
1063 if (unlikely(mnt->mnt_pins.first))
1064 mnt_pin_kill(mnt);
1065 fsnotify_vfsmount_delete(&mnt->mnt);
1066 dput(mnt->mnt.mnt_root);
1067 deactivate_super(mnt->mnt.mnt_sb);
1068 mnt_free_id(mnt);
1069 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1070}
1071
1072static void __cleanup_mnt(struct rcu_head *head)
1073{
1074 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1075}
1076
1077static LLIST_HEAD(delayed_mntput_list);
1078static void delayed_mntput(struct work_struct *unused)
1079{
1080 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1081 struct llist_node *next;
1082
1083 for (; node; node = next) {
1084 next = llist_next(node);
1085 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1086 }
1087}
1088static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1089
900148dc 1090static void mntput_no_expire(struct mount *mnt)
b3e19d92 1091{
48a066e7
AV
1092 rcu_read_lock();
1093 mnt_add_count(mnt, -1);
1094 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1095 rcu_read_unlock();
f03c6599 1096 return;
b3e19d92 1097 }
719ea2fb 1098 lock_mount_hash();
b3e19d92 1099 if (mnt_get_count(mnt)) {
48a066e7 1100 rcu_read_unlock();
719ea2fb 1101 unlock_mount_hash();
99b7db7b
NP
1102 return;
1103 }
48a066e7
AV
1104 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1105 rcu_read_unlock();
1106 unlock_mount_hash();
1107 return;
1108 }
1109 mnt->mnt.mnt_flags |= MNT_DOOMED;
1110 rcu_read_unlock();
962830df 1111
39f7c4db 1112 list_del(&mnt->mnt_instance);
ce07d891
EB
1113
1114 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1115 struct mount *p, *tmp;
1116 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1117 umount_mnt(p);
1118 }
1119 }
719ea2fb 1120 unlock_mount_hash();
649a795a 1121
9ea459e1
AV
1122 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1123 struct task_struct *task = current;
1124 if (likely(!(task->flags & PF_KTHREAD))) {
1125 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1126 if (!task_work_add(task, &mnt->mnt_rcu, true))
1127 return;
1128 }
1129 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1130 schedule_delayed_work(&delayed_mntput_work, 1);
1131 return;
1132 }
1133 cleanup_mnt(mnt);
b3e19d92 1134}
b3e19d92
NP
1135
1136void mntput(struct vfsmount *mnt)
1137{
1138 if (mnt) {
863d684f 1139 struct mount *m = real_mount(mnt);
b3e19d92 1140 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1141 if (unlikely(m->mnt_expiry_mark))
1142 m->mnt_expiry_mark = 0;
1143 mntput_no_expire(m);
b3e19d92
NP
1144 }
1145}
1146EXPORT_SYMBOL(mntput);
1147
1148struct vfsmount *mntget(struct vfsmount *mnt)
1149{
1150 if (mnt)
83adc753 1151 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1152 return mnt;
1153}
1154EXPORT_SYMBOL(mntget);
1155
3064c356 1156struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1157{
3064c356
AV
1158 struct mount *p;
1159 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1160 if (IS_ERR(p))
1161 return ERR_CAST(p);
1162 p->mnt.mnt_flags |= MNT_INTERNAL;
1163 return &p->mnt;
7b7b1ace 1164}
1da177e4 1165
b3b304a2
MS
1166static inline void mangle(struct seq_file *m, const char *s)
1167{
1168 seq_escape(m, s, " \t\n\\");
1169}
1170
1171/*
1172 * Simple .show_options callback for filesystems which don't want to
1173 * implement more complex mount option showing.
1174 *
1175 * See also save_mount_options().
1176 */
34c80b1d 1177int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1178{
2a32cebd
AV
1179 const char *options;
1180
1181 rcu_read_lock();
34c80b1d 1182 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1183
1184 if (options != NULL && options[0]) {
1185 seq_putc(m, ',');
1186 mangle(m, options);
1187 }
2a32cebd 1188 rcu_read_unlock();
b3b304a2
MS
1189
1190 return 0;
1191}
1192EXPORT_SYMBOL(generic_show_options);
1193
1194/*
1195 * If filesystem uses generic_show_options(), this function should be
1196 * called from the fill_super() callback.
1197 *
1198 * The .remount_fs callback usually needs to be handled in a special
1199 * way, to make sure, that previous options are not overwritten if the
1200 * remount fails.
1201 *
1202 * Also note, that if the filesystem's .remount_fs function doesn't
1203 * reset all options to their default value, but changes only newly
1204 * given options, then the displayed options will not reflect reality
1205 * any more.
1206 */
1207void save_mount_options(struct super_block *sb, char *options)
1208{
2a32cebd
AV
1209 BUG_ON(sb->s_options);
1210 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1211}
1212EXPORT_SYMBOL(save_mount_options);
1213
2a32cebd
AV
1214void replace_mount_options(struct super_block *sb, char *options)
1215{
1216 char *old = sb->s_options;
1217 rcu_assign_pointer(sb->s_options, options);
1218 if (old) {
1219 synchronize_rcu();
1220 kfree(old);
1221 }
1222}
1223EXPORT_SYMBOL(replace_mount_options);
1224
a1a2c409 1225#ifdef CONFIG_PROC_FS
0226f492 1226/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1227static void *m_start(struct seq_file *m, loff_t *pos)
1228{
ede1bf0d 1229 struct proc_mounts *p = m->private;
1da177e4 1230
390c6843 1231 down_read(&namespace_sem);
c7999c36
AV
1232 if (p->cached_event == p->ns->event) {
1233 void *v = p->cached_mount;
1234 if (*pos == p->cached_index)
1235 return v;
1236 if (*pos == p->cached_index + 1) {
1237 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1238 return p->cached_mount = v;
1239 }
1240 }
1241
1242 p->cached_event = p->ns->event;
1243 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1244 p->cached_index = *pos;
1245 return p->cached_mount;
1da177e4
LT
1246}
1247
1248static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1249{
ede1bf0d 1250 struct proc_mounts *p = m->private;
b0765fb8 1251
c7999c36
AV
1252 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1253 p->cached_index = *pos;
1254 return p->cached_mount;
1da177e4
LT
1255}
1256
1257static void m_stop(struct seq_file *m, void *v)
1258{
390c6843 1259 up_read(&namespace_sem);
1da177e4
LT
1260}
1261
0226f492 1262static int m_show(struct seq_file *m, void *v)
2d4d4864 1263{
ede1bf0d 1264 struct proc_mounts *p = m->private;
1a4eeaf2 1265 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1266 return p->show(m, &r->mnt);
1da177e4
LT
1267}
1268
a1a2c409 1269const struct seq_operations mounts_op = {
1da177e4
LT
1270 .start = m_start,
1271 .next = m_next,
1272 .stop = m_stop,
0226f492 1273 .show = m_show,
b4629fe2 1274};
a1a2c409 1275#endif /* CONFIG_PROC_FS */
b4629fe2 1276
1da177e4
LT
1277/**
1278 * may_umount_tree - check if a mount tree is busy
1279 * @mnt: root of mount tree
1280 *
1281 * This is called to check if a tree of mounts has any
1282 * open files, pwds, chroots or sub mounts that are
1283 * busy.
1284 */
909b0a88 1285int may_umount_tree(struct vfsmount *m)
1da177e4 1286{
909b0a88 1287 struct mount *mnt = real_mount(m);
36341f64
RP
1288 int actual_refs = 0;
1289 int minimum_refs = 0;
315fc83e 1290 struct mount *p;
909b0a88 1291 BUG_ON(!m);
1da177e4 1292
b3e19d92 1293 /* write lock needed for mnt_get_count */
719ea2fb 1294 lock_mount_hash();
909b0a88 1295 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1296 actual_refs += mnt_get_count(p);
1da177e4 1297 minimum_refs += 2;
1da177e4 1298 }
719ea2fb 1299 unlock_mount_hash();
1da177e4
LT
1300
1301 if (actual_refs > minimum_refs)
e3474a8e 1302 return 0;
1da177e4 1303
e3474a8e 1304 return 1;
1da177e4
LT
1305}
1306
1307EXPORT_SYMBOL(may_umount_tree);
1308
1309/**
1310 * may_umount - check if a mount point is busy
1311 * @mnt: root of mount
1312 *
1313 * This is called to check if a mount point has any
1314 * open files, pwds, chroots or sub mounts. If the
1315 * mount has sub mounts this will return busy
1316 * regardless of whether the sub mounts are busy.
1317 *
1318 * Doesn't take quota and stuff into account. IOW, in some cases it will
1319 * give false negatives. The main reason why it's here is that we need
1320 * a non-destructive way to look for easily umountable filesystems.
1321 */
1322int may_umount(struct vfsmount *mnt)
1323{
e3474a8e 1324 int ret = 1;
8ad08d8a 1325 down_read(&namespace_sem);
719ea2fb 1326 lock_mount_hash();
1ab59738 1327 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1328 ret = 0;
719ea2fb 1329 unlock_mount_hash();
8ad08d8a 1330 up_read(&namespace_sem);
a05964f3 1331 return ret;
1da177e4
LT
1332}
1333
1334EXPORT_SYMBOL(may_umount);
1335
38129a13 1336static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1337
97216be0 1338static void namespace_unlock(void)
70fbcdf4 1339{
a3b3c562 1340 struct hlist_head head;
97216be0 1341
a3b3c562 1342 hlist_move_list(&unmounted, &head);
97216be0 1343
97216be0
AV
1344 up_write(&namespace_sem);
1345
a3b3c562
EB
1346 if (likely(hlist_empty(&head)))
1347 return;
1348
48a066e7
AV
1349 synchronize_rcu();
1350
87b95ce0 1351 group_pin_kill(&head);
70fbcdf4
RP
1352}
1353
97216be0 1354static inline void namespace_lock(void)
e3197d83 1355{
97216be0 1356 down_write(&namespace_sem);
e3197d83
AV
1357}
1358
e819f152
EB
1359enum umount_tree_flags {
1360 UMOUNT_SYNC = 1,
1361 UMOUNT_PROPAGATE = 2,
e0c9c0af 1362 UMOUNT_CONNECTED = 4,
e819f152 1363};
f2d0a123
EB
1364
1365static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1366{
1367 /* Leaving mounts connected is only valid for lazy umounts */
1368 if (how & UMOUNT_SYNC)
1369 return true;
1370
1371 /* A mount without a parent has nothing to be connected to */
1372 if (!mnt_has_parent(mnt))
1373 return true;
1374
1375 /* Because the reference counting rules change when mounts are
1376 * unmounted and connected, umounted mounts may not be
1377 * connected to mounted mounts.
1378 */
1379 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1380 return true;
1381
1382 /* Has it been requested that the mount remain connected? */
1383 if (how & UMOUNT_CONNECTED)
1384 return false;
1385
1386 /* Is the mount locked such that it needs to remain connected? */
1387 if (IS_MNT_LOCKED(mnt))
1388 return false;
1389
1390 /* By default disconnect the mount */
1391 return true;
1392}
1393
99b7db7b 1394/*
48a066e7 1395 * mount_lock must be held
99b7db7b
NP
1396 * namespace_sem must be held for write
1397 */
e819f152 1398static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1399{
c003b26f 1400 LIST_HEAD(tmp_list);
315fc83e 1401 struct mount *p;
1da177e4 1402
5d88457e
EB
1403 if (how & UMOUNT_PROPAGATE)
1404 propagate_mount_unlock(mnt);
1405
c003b26f 1406 /* Gather the mounts to umount */
590ce4bc
EB
1407 for (p = mnt; p; p = next_mnt(p, mnt)) {
1408 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1409 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1410 }
1da177e4 1411
411a938b 1412 /* Hide the mounts from mnt_mounts */
c003b26f 1413 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1414 list_del_init(&p->mnt_child);
c003b26f 1415 }
88b368f2 1416
c003b26f 1417 /* Add propogated mounts to the tmp_list */
e819f152 1418 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1419 propagate_umount(&tmp_list);
a05964f3 1420
c003b26f 1421 while (!list_empty(&tmp_list)) {
ce07d891 1422 bool disconnect;
c003b26f 1423 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1424 list_del_init(&p->mnt_expire);
1a4eeaf2 1425 list_del_init(&p->mnt_list);
143c8c91
AV
1426 __touch_mnt_namespace(p->mnt_ns);
1427 p->mnt_ns = NULL;
e819f152 1428 if (how & UMOUNT_SYNC)
48a066e7 1429 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1430
f2d0a123 1431 disconnect = disconnect_mount(p, how);
ce07d891
EB
1432
1433 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434 disconnect ? &unmounted : NULL);
676da58d 1435 if (mnt_has_parent(p)) {
81b6b061 1436 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1437 if (!disconnect) {
1438 /* Don't forget about p */
1439 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440 } else {
1441 umount_mnt(p);
1442 }
7c4b93d8 1443 }
0f0afb1d 1444 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1445 }
1446}
1447
b54b9be7 1448static void shrink_submounts(struct mount *mnt);
c35038be 1449
1ab59738 1450static int do_umount(struct mount *mnt, int flags)
1da177e4 1451{
1ab59738 1452 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1453 int retval;
1454
1ab59738 1455 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1456 if (retval)
1457 return retval;
1458
1459 /*
1460 * Allow userspace to request a mountpoint be expired rather than
1461 * unmounting unconditionally. Unmount only happens if:
1462 * (1) the mark is already set (the mark is cleared by mntput())
1463 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1464 */
1465 if (flags & MNT_EXPIRE) {
1ab59738 1466 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1467 flags & (MNT_FORCE | MNT_DETACH))
1468 return -EINVAL;
1469
b3e19d92
NP
1470 /*
1471 * probably don't strictly need the lock here if we examined
1472 * all race cases, but it's a slowpath.
1473 */
719ea2fb 1474 lock_mount_hash();
83adc753 1475 if (mnt_get_count(mnt) != 2) {
719ea2fb 1476 unlock_mount_hash();
1da177e4 1477 return -EBUSY;
b3e19d92 1478 }
719ea2fb 1479 unlock_mount_hash();
1da177e4 1480
863d684f 1481 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1482 return -EAGAIN;
1483 }
1484
1485 /*
1486 * If we may have to abort operations to get out of this
1487 * mount, and they will themselves hold resources we must
1488 * allow the fs to do things. In the Unix tradition of
1489 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 * might fail to complete on the first run through as other tasks
1491 * must return, and the like. Thats for the mount program to worry
1492 * about for the moment.
1493 */
1494
42faad99 1495 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1496 sb->s_op->umount_begin(sb);
42faad99 1497 }
1da177e4
LT
1498
1499 /*
1500 * No sense to grab the lock for this test, but test itself looks
1501 * somewhat bogus. Suggestions for better replacement?
1502 * Ho-hum... In principle, we might treat that as umount + switch
1503 * to rootfs. GC would eventually take care of the old vfsmount.
1504 * Actually it makes sense, especially if rootfs would contain a
1505 * /reboot - static binary that would close all descriptors and
1506 * call reboot(9). Then init(8) could umount root and exec /reboot.
1507 */
1ab59738 1508 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1509 /*
1510 * Special case for "unmounting" root ...
1511 * we just try to remount it readonly.
1512 */
a1480dcc
AL
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1da177e4 1515 down_write(&sb->s_umount);
4aa98cf7 1516 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1517 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1518 up_write(&sb->s_umount);
1519 return retval;
1520 }
1521
97216be0 1522 namespace_lock();
719ea2fb 1523 lock_mount_hash();
5addc5dd 1524 event++;
1da177e4 1525
48a066e7 1526 if (flags & MNT_DETACH) {
1a4eeaf2 1527 if (!list_empty(&mnt->mnt_list))
e819f152 1528 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1529 retval = 0;
48a066e7
AV
1530 } else {
1531 shrink_submounts(mnt);
1532 retval = -EBUSY;
1533 if (!propagate_mount_busy(mnt, 2)) {
1534 if (!list_empty(&mnt->mnt_list))
e819f152 1535 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1536 retval = 0;
1537 }
1da177e4 1538 }
719ea2fb 1539 unlock_mount_hash();
e3197d83 1540 namespace_unlock();
1da177e4
LT
1541 return retval;
1542}
1543
80b5dce8
EB
1544/*
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1546 *
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1550 * leaking them.
1551 *
1552 * The caller may hold dentry->d_inode->i_mutex.
1553 */
1554void __detach_mounts(struct dentry *dentry)
1555{
1556 struct mountpoint *mp;
1557 struct mount *mnt;
1558
1559 namespace_lock();
1560 mp = lookup_mountpoint(dentry);
f53e5797 1561 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1562 goto out_unlock;
1563
1564 lock_mount_hash();
e06b933e 1565 event++;
80b5dce8
EB
1566 while (!hlist_empty(&mp->m_list)) {
1567 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1568 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1569 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1570 umount_mnt(mnt);
ce07d891 1571 }
e0c9c0af 1572 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8
EB
1573 }
1574 unlock_mount_hash();
1575 put_mountpoint(mp);
1576out_unlock:
1577 namespace_unlock();
1578}
1579
9b40bc90
AV
1580/*
1581 * Is the caller allowed to modify his namespace?
1582 */
1583static inline bool may_mount(void)
1584{
1585 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1586}
1587
9e8925b6
JL
1588static inline bool may_mandlock(void)
1589{
1590#ifndef CONFIG_MANDATORY_FILE_LOCKING
1591 return false;
1592#endif
95ace754 1593 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1594}
1595
1da177e4
LT
1596/*
1597 * Now umount can handle mount points as well as block devices.
1598 * This is important for filesystems which use unnamed block devices.
1599 *
1600 * We now support a flag for forced unmount like the other 'big iron'
1601 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1602 */
1603
bdc480e3 1604SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1605{
2d8f3038 1606 struct path path;
900148dc 1607 struct mount *mnt;
1da177e4 1608 int retval;
db1f05bb 1609 int lookup_flags = 0;
1da177e4 1610
db1f05bb
MS
1611 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1612 return -EINVAL;
1613
9b40bc90
AV
1614 if (!may_mount())
1615 return -EPERM;
1616
db1f05bb
MS
1617 if (!(flags & UMOUNT_NOFOLLOW))
1618 lookup_flags |= LOOKUP_FOLLOW;
1619
197df04c 1620 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1621 if (retval)
1622 goto out;
900148dc 1623 mnt = real_mount(path.mnt);
1da177e4 1624 retval = -EINVAL;
2d8f3038 1625 if (path.dentry != path.mnt->mnt_root)
1da177e4 1626 goto dput_and_out;
143c8c91 1627 if (!check_mnt(mnt))
1da177e4 1628 goto dput_and_out;
5ff9d8a6
EB
1629 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 goto dput_and_out;
b2f5d4dc
EB
1631 retval = -EPERM;
1632 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1633 goto dput_and_out;
1da177e4 1634
900148dc 1635 retval = do_umount(mnt, flags);
1da177e4 1636dput_and_out:
429731b1 1637 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1638 dput(path.dentry);
900148dc 1639 mntput_no_expire(mnt);
1da177e4
LT
1640out:
1641 return retval;
1642}
1643
1644#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1645
1646/*
b58fed8b 1647 * The 2.0 compatible umount. No flags.
1da177e4 1648 */
bdc480e3 1649SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1650{
b58fed8b 1651 return sys_umount(name, 0);
1da177e4
LT
1652}
1653
1654#endif
1655
4ce5d2b1 1656static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1657{
4ce5d2b1 1658 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1659 return dentry->d_op == &ns_dentry_operations &&
1660 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1661}
1662
58be2825
AV
1663struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1664{
1665 return container_of(ns, struct mnt_namespace, ns);
1666}
1667
4ce5d2b1
EB
1668static bool mnt_ns_loop(struct dentry *dentry)
1669{
1670 /* Could bind mounting the mount namespace inode cause a
1671 * mount namespace loop?
1672 */
1673 struct mnt_namespace *mnt_ns;
1674 if (!is_mnt_ns_file(dentry))
1675 return false;
1676
f77c8014 1677 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1678 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1679}
1680
87129cc0 1681struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1682 int flag)
1da177e4 1683{
84d17192 1684 struct mount *res, *p, *q, *r, *parent;
1da177e4 1685
4ce5d2b1
EB
1686 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1687 return ERR_PTR(-EINVAL);
1688
1689 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1690 return ERR_PTR(-EINVAL);
9676f0c6 1691
36341f64 1692 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1693 if (IS_ERR(q))
1694 return q;
1695
a73324da 1696 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1697
1698 p = mnt;
6b41d536 1699 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1700 struct mount *s;
7ec02ef1 1701 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1702 continue;
1703
909b0a88 1704 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1705 struct mount *t = NULL;
4ce5d2b1
EB
1706 if (!(flag & CL_COPY_UNBINDABLE) &&
1707 IS_MNT_UNBINDABLE(s)) {
1708 s = skip_mnt_tree(s);
1709 continue;
1710 }
1711 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1712 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1713 s = skip_mnt_tree(s);
1714 continue;
1715 }
0714a533
AV
1716 while (p != s->mnt_parent) {
1717 p = p->mnt_parent;
1718 q = q->mnt_parent;
1da177e4 1719 }
87129cc0 1720 p = s;
84d17192 1721 parent = q;
87129cc0 1722 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1723 if (IS_ERR(q))
1724 goto out;
719ea2fb 1725 lock_mount_hash();
1a4eeaf2 1726 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1727 mnt_set_mountpoint(parent, p->mnt_mp, q);
1728 if (!list_empty(&parent->mnt_mounts)) {
1729 t = list_last_entry(&parent->mnt_mounts,
1730 struct mount, mnt_child);
1731 if (t->mnt_mp != p->mnt_mp)
1732 t = NULL;
1733 }
1734 attach_shadowed(q, parent, t);
719ea2fb 1735 unlock_mount_hash();
1da177e4
LT
1736 }
1737 }
1738 return res;
be34d1a3 1739out:
1da177e4 1740 if (res) {
719ea2fb 1741 lock_mount_hash();
e819f152 1742 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1743 unlock_mount_hash();
1da177e4 1744 }
be34d1a3 1745 return q;
1da177e4
LT
1746}
1747
be34d1a3
DH
1748/* Caller should check returned pointer for errors */
1749
589ff870 1750struct vfsmount *collect_mounts(struct path *path)
8aec0809 1751{
cb338d06 1752 struct mount *tree;
97216be0 1753 namespace_lock();
cd4a4017
EB
1754 if (!check_mnt(real_mount(path->mnt)))
1755 tree = ERR_PTR(-EINVAL);
1756 else
1757 tree = copy_tree(real_mount(path->mnt), path->dentry,
1758 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1759 namespace_unlock();
be34d1a3 1760 if (IS_ERR(tree))
52e220d3 1761 return ERR_CAST(tree);
be34d1a3 1762 return &tree->mnt;
8aec0809
AV
1763}
1764
1765void drop_collected_mounts(struct vfsmount *mnt)
1766{
97216be0 1767 namespace_lock();
719ea2fb 1768 lock_mount_hash();
e819f152 1769 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1770 unlock_mount_hash();
3ab6abee 1771 namespace_unlock();
8aec0809
AV
1772}
1773
c771d683
MS
1774/**
1775 * clone_private_mount - create a private clone of a path
1776 *
1777 * This creates a new vfsmount, which will be the clone of @path. The new will
1778 * not be attached anywhere in the namespace and will be private (i.e. changes
1779 * to the originating mount won't be propagated into this).
1780 *
1781 * Release with mntput().
1782 */
1783struct vfsmount *clone_private_mount(struct path *path)
1784{
1785 struct mount *old_mnt = real_mount(path->mnt);
1786 struct mount *new_mnt;
1787
1788 if (IS_MNT_UNBINDABLE(old_mnt))
1789 return ERR_PTR(-EINVAL);
1790
1791 down_read(&namespace_sem);
1792 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1793 up_read(&namespace_sem);
1794 if (IS_ERR(new_mnt))
1795 return ERR_CAST(new_mnt);
1796
1797 return &new_mnt->mnt;
1798}
1799EXPORT_SYMBOL_GPL(clone_private_mount);
1800
1f707137
AV
1801int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1802 struct vfsmount *root)
1803{
1a4eeaf2 1804 struct mount *mnt;
1f707137
AV
1805 int res = f(root, arg);
1806 if (res)
1807 return res;
1a4eeaf2
AV
1808 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1809 res = f(&mnt->mnt, arg);
1f707137
AV
1810 if (res)
1811 return res;
1812 }
1813 return 0;
1814}
1815
4b8b21f4 1816static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1817{
315fc83e 1818 struct mount *p;
719f5d7f 1819
909b0a88 1820 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1821 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1822 mnt_release_group_id(p);
719f5d7f
MS
1823 }
1824}
1825
4b8b21f4 1826static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1827{
315fc83e 1828 struct mount *p;
719f5d7f 1829
909b0a88 1830 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1831 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1832 int err = mnt_alloc_group_id(p);
719f5d7f 1833 if (err) {
4b8b21f4 1834 cleanup_group_ids(mnt, p);
719f5d7f
MS
1835 return err;
1836 }
1837 }
1838 }
1839
1840 return 0;
1841}
1842
b90fa9ae
RP
1843/*
1844 * @source_mnt : mount tree to be attached
21444403
RP
1845 * @nd : place the mount tree @source_mnt is attached
1846 * @parent_nd : if non-null, detach the source_mnt from its parent and
1847 * store the parent mount and mountpoint dentry.
1848 * (done when source_mnt is moved)
b90fa9ae
RP
1849 *
1850 * NOTE: in the table below explains the semantics when a source mount
1851 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1852 * ---------------------------------------------------------------------------
1853 * | BIND MOUNT OPERATION |
1854 * |**************************************************************************
1855 * | source-->| shared | private | slave | unbindable |
1856 * | dest | | | | |
1857 * | | | | | | |
1858 * | v | | | | |
1859 * |**************************************************************************
1860 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1861 * | | | | | |
1862 * |non-shared| shared (+) | private | slave (*) | invalid |
1863 * ***************************************************************************
b90fa9ae
RP
1864 * A bind operation clones the source mount and mounts the clone on the
1865 * destination mount.
1866 *
1867 * (++) the cloned mount is propagated to all the mounts in the propagation
1868 * tree of the destination mount and the cloned mount is added to
1869 * the peer group of the source mount.
1870 * (+) the cloned mount is created under the destination mount and is marked
1871 * as shared. The cloned mount is added to the peer group of the source
1872 * mount.
5afe0022
RP
1873 * (+++) the mount is propagated to all the mounts in the propagation tree
1874 * of the destination mount and the cloned mount is made slave
1875 * of the same master as that of the source mount. The cloned mount
1876 * is marked as 'shared and slave'.
1877 * (*) the cloned mount is made a slave of the same master as that of the
1878 * source mount.
1879 *
9676f0c6
RP
1880 * ---------------------------------------------------------------------------
1881 * | MOVE MOUNT OPERATION |
1882 * |**************************************************************************
1883 * | source-->| shared | private | slave | unbindable |
1884 * | dest | | | | |
1885 * | | | | | | |
1886 * | v | | | | |
1887 * |**************************************************************************
1888 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1889 * | | | | | |
1890 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1891 * ***************************************************************************
5afe0022
RP
1892 *
1893 * (+) the mount is moved to the destination. And is then propagated to
1894 * all the mounts in the propagation tree of the destination mount.
21444403 1895 * (+*) the mount is moved to the destination.
5afe0022
RP
1896 * (+++) the mount is moved to the destination and is then propagated to
1897 * all the mounts belonging to the destination mount's propagation tree.
1898 * the mount is marked as 'shared and slave'.
1899 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1900 *
1901 * if the source mount is a tree, the operations explained above is
1902 * applied to each mount in the tree.
1903 * Must be called without spinlocks held, since this function can sleep
1904 * in allocations.
1905 */
0fb54e50 1906static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1907 struct mount *dest_mnt,
1908 struct mountpoint *dest_mp,
1909 struct path *parent_path)
b90fa9ae 1910{
38129a13 1911 HLIST_HEAD(tree_list);
315fc83e 1912 struct mount *child, *p;
38129a13 1913 struct hlist_node *n;
719f5d7f 1914 int err;
b90fa9ae 1915
fc7be130 1916 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1917 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1918 if (err)
1919 goto out;
0b1b901b 1920 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1921 lock_mount_hash();
0b1b901b
AV
1922 if (err)
1923 goto out_cleanup_ids;
909b0a88 1924 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1925 set_mnt_shared(p);
0b1b901b
AV
1926 } else {
1927 lock_mount_hash();
b90fa9ae 1928 }
1a390689 1929 if (parent_path) {
0fb54e50 1930 detach_mnt(source_mnt, parent_path);
84d17192 1931 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1932 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1933 } else {
84d17192 1934 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1935 commit_tree(source_mnt, NULL);
21444403 1936 }
b90fa9ae 1937
38129a13 1938 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1939 struct mount *q;
38129a13 1940 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1941 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1942 child->mnt_mountpoint);
1943 commit_tree(child, q);
b90fa9ae 1944 }
719ea2fb 1945 unlock_mount_hash();
99b7db7b 1946
b90fa9ae 1947 return 0;
719f5d7f
MS
1948
1949 out_cleanup_ids:
f2ebb3a9
AV
1950 while (!hlist_empty(&tree_list)) {
1951 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1952 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1953 }
1954 unlock_mount_hash();
0b1b901b 1955 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1956 out:
1957 return err;
b90fa9ae
RP
1958}
1959
84d17192 1960static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1961{
1962 struct vfsmount *mnt;
84d17192 1963 struct dentry *dentry = path->dentry;
b12cea91 1964retry:
5955102c 1965 inode_lock(dentry->d_inode);
84d17192 1966 if (unlikely(cant_mount(dentry))) {
5955102c 1967 inode_unlock(dentry->d_inode);
84d17192 1968 return ERR_PTR(-ENOENT);
b12cea91 1969 }
97216be0 1970 namespace_lock();
b12cea91 1971 mnt = lookup_mnt(path);
84d17192 1972 if (likely(!mnt)) {
e2dfa935
EB
1973 struct mountpoint *mp = lookup_mountpoint(dentry);
1974 if (!mp)
1975 mp = new_mountpoint(dentry);
84d17192 1976 if (IS_ERR(mp)) {
97216be0 1977 namespace_unlock();
5955102c 1978 inode_unlock(dentry->d_inode);
84d17192
AV
1979 return mp;
1980 }
1981 return mp;
1982 }
97216be0 1983 namespace_unlock();
5955102c 1984 inode_unlock(path->dentry->d_inode);
b12cea91
AV
1985 path_put(path);
1986 path->mnt = mnt;
84d17192 1987 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1988 goto retry;
1989}
1990
84d17192 1991static void unlock_mount(struct mountpoint *where)
b12cea91 1992{
84d17192
AV
1993 struct dentry *dentry = where->m_dentry;
1994 put_mountpoint(where);
328e6d90 1995 namespace_unlock();
5955102c 1996 inode_unlock(dentry->d_inode);
b12cea91
AV
1997}
1998
84d17192 1999static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2000{
95bc5f25 2001 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2002 return -EINVAL;
2003
e36cb0b8
DH
2004 if (d_is_dir(mp->m_dentry) !=
2005 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2006 return -ENOTDIR;
2007
84d17192 2008 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2009}
2010
7a2e8a8f
VA
2011/*
2012 * Sanity check the flags to change_mnt_propagation.
2013 */
2014
2015static int flags_to_propagation_type(int flags)
2016{
7c6e984d 2017 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2018
2019 /* Fail if any non-propagation flags are set */
2020 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2021 return 0;
2022 /* Only one propagation flag should be set */
2023 if (!is_power_of_2(type))
2024 return 0;
2025 return type;
2026}
2027
07b20889
RP
2028/*
2029 * recursively change the type of the mountpoint.
2030 */
0a0d8a46 2031static int do_change_type(struct path *path, int flag)
07b20889 2032{
315fc83e 2033 struct mount *m;
4b8b21f4 2034 struct mount *mnt = real_mount(path->mnt);
07b20889 2035 int recurse = flag & MS_REC;
7a2e8a8f 2036 int type;
719f5d7f 2037 int err = 0;
07b20889 2038
2d92ab3c 2039 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2040 return -EINVAL;
2041
7a2e8a8f
VA
2042 type = flags_to_propagation_type(flag);
2043 if (!type)
2044 return -EINVAL;
2045
97216be0 2046 namespace_lock();
719f5d7f
MS
2047 if (type == MS_SHARED) {
2048 err = invent_group_ids(mnt, recurse);
2049 if (err)
2050 goto out_unlock;
2051 }
2052
719ea2fb 2053 lock_mount_hash();
909b0a88 2054 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2055 change_mnt_propagation(m, type);
719ea2fb 2056 unlock_mount_hash();
719f5d7f
MS
2057
2058 out_unlock:
97216be0 2059 namespace_unlock();
719f5d7f 2060 return err;
07b20889
RP
2061}
2062
5ff9d8a6
EB
2063static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2064{
2065 struct mount *child;
2066 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2067 if (!is_subdir(child->mnt_mountpoint, dentry))
2068 continue;
2069
2070 if (child->mnt.mnt_flags & MNT_LOCKED)
2071 return true;
2072 }
2073 return false;
2074}
2075
1da177e4
LT
2076/*
2077 * do loopback mount.
2078 */
808d4e3c 2079static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2080 int recurse)
1da177e4 2081{
2d92ab3c 2082 struct path old_path;
84d17192
AV
2083 struct mount *mnt = NULL, *old, *parent;
2084 struct mountpoint *mp;
57eccb83 2085 int err;
1da177e4
LT
2086 if (!old_name || !*old_name)
2087 return -EINVAL;
815d405c 2088 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2089 if (err)
2090 return err;
2091
8823c079 2092 err = -EINVAL;
4ce5d2b1 2093 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2094 goto out;
2095
84d17192
AV
2096 mp = lock_mount(path);
2097 err = PTR_ERR(mp);
2098 if (IS_ERR(mp))
b12cea91
AV
2099 goto out;
2100
87129cc0 2101 old = real_mount(old_path.mnt);
84d17192 2102 parent = real_mount(path->mnt);
87129cc0 2103
1da177e4 2104 err = -EINVAL;
fc7be130 2105 if (IS_MNT_UNBINDABLE(old))
b12cea91 2106 goto out2;
9676f0c6 2107
e149ed2b
AV
2108 if (!check_mnt(parent))
2109 goto out2;
2110
2111 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2112 goto out2;
1da177e4 2113
5ff9d8a6
EB
2114 if (!recurse && has_locked_children(old, old_path.dentry))
2115 goto out2;
2116
ccd48bc7 2117 if (recurse)
4ce5d2b1 2118 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2119 else
87129cc0 2120 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2121
be34d1a3
DH
2122 if (IS_ERR(mnt)) {
2123 err = PTR_ERR(mnt);
e9c5d8a5 2124 goto out2;
be34d1a3 2125 }
ccd48bc7 2126
5ff9d8a6
EB
2127 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2128
84d17192 2129 err = graft_tree(mnt, parent, mp);
ccd48bc7 2130 if (err) {
719ea2fb 2131 lock_mount_hash();
e819f152 2132 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2133 unlock_mount_hash();
5b83d2c5 2134 }
b12cea91 2135out2:
84d17192 2136 unlock_mount(mp);
ccd48bc7 2137out:
2d92ab3c 2138 path_put(&old_path);
1da177e4
LT
2139 return err;
2140}
2141
2e4b7fcd
DH
2142static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2143{
2144 int error = 0;
2145 int readonly_request = 0;
2146
2147 if (ms_flags & MS_RDONLY)
2148 readonly_request = 1;
2149 if (readonly_request == __mnt_is_readonly(mnt))
2150 return 0;
2151
2152 if (readonly_request)
83adc753 2153 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2154 else
83adc753 2155 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2156 return error;
2157}
2158
1da177e4
LT
2159/*
2160 * change filesystem flags. dir should be a physical root of filesystem.
2161 * If you've mounted a non-root directory somewhere and want to do remount
2162 * on it - tough luck.
2163 */
0a0d8a46 2164static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2165 void *data)
2166{
2167 int err;
2d92ab3c 2168 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2169 struct mount *mnt = real_mount(path->mnt);
1da177e4 2170
143c8c91 2171 if (!check_mnt(mnt))
1da177e4
LT
2172 return -EINVAL;
2173
2d92ab3c 2174 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2175 return -EINVAL;
2176
07b64558
EB
2177 /* Don't allow changing of locked mnt flags.
2178 *
2179 * No locks need to be held here while testing the various
2180 * MNT_LOCK flags because those flags can never be cleared
2181 * once they are set.
2182 */
2183 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2184 !(mnt_flags & MNT_READONLY)) {
2185 return -EPERM;
2186 }
9566d674
EB
2187 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2188 !(mnt_flags & MNT_NODEV)) {
67690f93 2189 return -EPERM;
9566d674
EB
2190 }
2191 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2192 !(mnt_flags & MNT_NOSUID)) {
2193 return -EPERM;
2194 }
2195 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2196 !(mnt_flags & MNT_NOEXEC)) {
2197 return -EPERM;
2198 }
2199 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2200 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2201 return -EPERM;
2202 }
2203
ff36fe2c
EP
2204 err = security_sb_remount(sb, data);
2205 if (err)
2206 return err;
2207
1da177e4 2208 down_write(&sb->s_umount);
2e4b7fcd 2209 if (flags & MS_BIND)
2d92ab3c 2210 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2211 else if (!capable(CAP_SYS_ADMIN))
2212 err = -EPERM;
4aa98cf7 2213 else
2e4b7fcd 2214 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2215 if (!err) {
719ea2fb 2216 lock_mount_hash();
a6138db8 2217 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2218 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2219 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2220 unlock_mount_hash();
0e55a7cc 2221 }
6339dab8 2222 up_write(&sb->s_umount);
1da177e4
LT
2223 return err;
2224}
2225
cbbe362c 2226static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2227{
315fc83e 2228 struct mount *p;
909b0a88 2229 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2230 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2231 return 1;
2232 }
2233 return 0;
2234}
2235
808d4e3c 2236static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2237{
2d92ab3c 2238 struct path old_path, parent_path;
676da58d 2239 struct mount *p;
0fb54e50 2240 struct mount *old;
84d17192 2241 struct mountpoint *mp;
57eccb83 2242 int err;
1da177e4
LT
2243 if (!old_name || !*old_name)
2244 return -EINVAL;
2d92ab3c 2245 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2246 if (err)
2247 return err;
2248
84d17192
AV
2249 mp = lock_mount(path);
2250 err = PTR_ERR(mp);
2251 if (IS_ERR(mp))
cc53ce53
DH
2252 goto out;
2253
143c8c91 2254 old = real_mount(old_path.mnt);
fc7be130 2255 p = real_mount(path->mnt);
143c8c91 2256
1da177e4 2257 err = -EINVAL;
fc7be130 2258 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2259 goto out1;
2260
5ff9d8a6
EB
2261 if (old->mnt.mnt_flags & MNT_LOCKED)
2262 goto out1;
2263
1da177e4 2264 err = -EINVAL;
2d92ab3c 2265 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2266 goto out1;
1da177e4 2267
676da58d 2268 if (!mnt_has_parent(old))
21444403 2269 goto out1;
1da177e4 2270
e36cb0b8
DH
2271 if (d_is_dir(path->dentry) !=
2272 d_is_dir(old_path.dentry))
21444403
RP
2273 goto out1;
2274 /*
2275 * Don't move a mount residing in a shared parent.
2276 */
fc7be130 2277 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2278 goto out1;
9676f0c6
RP
2279 /*
2280 * Don't move a mount tree containing unbindable mounts to a destination
2281 * mount which is shared.
2282 */
fc7be130 2283 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2284 goto out1;
1da177e4 2285 err = -ELOOP;
fc7be130 2286 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2287 if (p == old)
21444403 2288 goto out1;
1da177e4 2289
84d17192 2290 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2291 if (err)
21444403 2292 goto out1;
1da177e4
LT
2293
2294 /* if the mount is moved, it should no longer be expire
2295 * automatically */
6776db3d 2296 list_del_init(&old->mnt_expire);
1da177e4 2297out1:
84d17192 2298 unlock_mount(mp);
1da177e4 2299out:
1da177e4 2300 if (!err)
1a390689 2301 path_put(&parent_path);
2d92ab3c 2302 path_put(&old_path);
1da177e4
LT
2303 return err;
2304}
2305
9d412a43
AV
2306static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2307{
2308 int err;
2309 const char *subtype = strchr(fstype, '.');
2310 if (subtype) {
2311 subtype++;
2312 err = -EINVAL;
2313 if (!subtype[0])
2314 goto err;
2315 } else
2316 subtype = "";
2317
2318 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2319 err = -ENOMEM;
2320 if (!mnt->mnt_sb->s_subtype)
2321 goto err;
2322 return mnt;
2323
2324 err:
2325 mntput(mnt);
2326 return ERR_PTR(err);
2327}
2328
9d412a43
AV
2329/*
2330 * add a mount into a namespace's mount tree
2331 */
95bc5f25 2332static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2333{
84d17192
AV
2334 struct mountpoint *mp;
2335 struct mount *parent;
9d412a43
AV
2336 int err;
2337
f2ebb3a9 2338 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2339
84d17192
AV
2340 mp = lock_mount(path);
2341 if (IS_ERR(mp))
2342 return PTR_ERR(mp);
9d412a43 2343
84d17192 2344 parent = real_mount(path->mnt);
9d412a43 2345 err = -EINVAL;
84d17192 2346 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2347 /* that's acceptable only for automounts done in private ns */
2348 if (!(mnt_flags & MNT_SHRINKABLE))
2349 goto unlock;
2350 /* ... and for those we'd better have mountpoint still alive */
84d17192 2351 if (!parent->mnt_ns)
156cacb1
AV
2352 goto unlock;
2353 }
9d412a43
AV
2354
2355 /* Refuse the same filesystem on the same mount point */
2356 err = -EBUSY;
95bc5f25 2357 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2358 path->mnt->mnt_root == path->dentry)
2359 goto unlock;
2360
2361 err = -EINVAL;
e36cb0b8 2362 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2363 goto unlock;
2364
95bc5f25 2365 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2366 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2367
2368unlock:
84d17192 2369 unlock_mount(mp);
9d412a43
AV
2370 return err;
2371}
b1e75df4 2372
8654df4e 2373static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2374
1da177e4
LT
2375/*
2376 * create a new mount for userspace and request it to be added into the
2377 * namespace's tree
2378 */
0c55cfc4 2379static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2380 int mnt_flags, const char *name, void *data)
1da177e4 2381{
0c55cfc4 2382 struct file_system_type *type;
1da177e4 2383 struct vfsmount *mnt;
15f9a3f3 2384 int err;
1da177e4 2385
0c55cfc4 2386 if (!fstype)
1da177e4
LT
2387 return -EINVAL;
2388
0c55cfc4
EB
2389 type = get_fs_type(fstype);
2390 if (!type)
2391 return -ENODEV;
2392
0c55cfc4
EB
2393 mnt = vfs_kern_mount(type, flags, name, data);
2394 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2395 !mnt->mnt_sb->s_subtype)
2396 mnt = fs_set_subtype(mnt, fstype);
2397
2398 put_filesystem(type);
1da177e4
LT
2399 if (IS_ERR(mnt))
2400 return PTR_ERR(mnt);
2401
8654df4e
EB
2402 if (mount_too_revealing(mnt, &mnt_flags)) {
2403 mntput(mnt);
2404 return -EPERM;
2405 }
2406
95bc5f25 2407 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2408 if (err)
2409 mntput(mnt);
2410 return err;
1da177e4
LT
2411}
2412
19a167af
AV
2413int finish_automount(struct vfsmount *m, struct path *path)
2414{
6776db3d 2415 struct mount *mnt = real_mount(m);
19a167af
AV
2416 int err;
2417 /* The new mount record should have at least 2 refs to prevent it being
2418 * expired before we get a chance to add it
2419 */
6776db3d 2420 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2421
2422 if (m->mnt_sb == path->mnt->mnt_sb &&
2423 m->mnt_root == path->dentry) {
b1e75df4
AV
2424 err = -ELOOP;
2425 goto fail;
19a167af
AV
2426 }
2427
95bc5f25 2428 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2429 if (!err)
2430 return 0;
2431fail:
2432 /* remove m from any expiration list it may be on */
6776db3d 2433 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2434 namespace_lock();
6776db3d 2435 list_del_init(&mnt->mnt_expire);
97216be0 2436 namespace_unlock();
19a167af 2437 }
b1e75df4
AV
2438 mntput(m);
2439 mntput(m);
19a167af
AV
2440 return err;
2441}
2442
ea5b778a
DH
2443/**
2444 * mnt_set_expiry - Put a mount on an expiration list
2445 * @mnt: The mount to list.
2446 * @expiry_list: The list to add the mount to.
2447 */
2448void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2449{
97216be0 2450 namespace_lock();
ea5b778a 2451
6776db3d 2452 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2453
97216be0 2454 namespace_unlock();
ea5b778a
DH
2455}
2456EXPORT_SYMBOL(mnt_set_expiry);
2457
1da177e4
LT
2458/*
2459 * process a list of expirable mountpoints with the intent of discarding any
2460 * mountpoints that aren't in use and haven't been touched since last we came
2461 * here
2462 */
2463void mark_mounts_for_expiry(struct list_head *mounts)
2464{
761d5c38 2465 struct mount *mnt, *next;
1da177e4
LT
2466 LIST_HEAD(graveyard);
2467
2468 if (list_empty(mounts))
2469 return;
2470
97216be0 2471 namespace_lock();
719ea2fb 2472 lock_mount_hash();
1da177e4
LT
2473
2474 /* extract from the expiration list every vfsmount that matches the
2475 * following criteria:
2476 * - only referenced by its parent vfsmount
2477 * - still marked for expiry (marked on the last call here; marks are
2478 * cleared by mntput())
2479 */
6776db3d 2480 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2481 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2482 propagate_mount_busy(mnt, 1))
1da177e4 2483 continue;
6776db3d 2484 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2485 }
bcc5c7d2 2486 while (!list_empty(&graveyard)) {
6776db3d 2487 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2488 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2489 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2490 }
719ea2fb 2491 unlock_mount_hash();
3ab6abee 2492 namespace_unlock();
5528f911
TM
2493}
2494
2495EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2496
2497/*
2498 * Ripoff of 'select_parent()'
2499 *
2500 * search the list of submounts for a given mountpoint, and move any
2501 * shrinkable submounts to the 'graveyard' list.
2502 */
692afc31 2503static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2504{
692afc31 2505 struct mount *this_parent = parent;
5528f911
TM
2506 struct list_head *next;
2507 int found = 0;
2508
2509repeat:
6b41d536 2510 next = this_parent->mnt_mounts.next;
5528f911 2511resume:
6b41d536 2512 while (next != &this_parent->mnt_mounts) {
5528f911 2513 struct list_head *tmp = next;
6b41d536 2514 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2515
2516 next = tmp->next;
692afc31 2517 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2518 continue;
5528f911
TM
2519 /*
2520 * Descend a level if the d_mounts list is non-empty.
2521 */
6b41d536 2522 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2523 this_parent = mnt;
2524 goto repeat;
2525 }
1da177e4 2526
1ab59738 2527 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2528 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2529 found++;
2530 }
1da177e4 2531 }
5528f911
TM
2532 /*
2533 * All done at this level ... ascend and resume the search
2534 */
2535 if (this_parent != parent) {
6b41d536 2536 next = this_parent->mnt_child.next;
0714a533 2537 this_parent = this_parent->mnt_parent;
5528f911
TM
2538 goto resume;
2539 }
2540 return found;
2541}
2542
2543/*
2544 * process a list of expirable mountpoints with the intent of discarding any
2545 * submounts of a specific parent mountpoint
99b7db7b 2546 *
48a066e7 2547 * mount_lock must be held for write
5528f911 2548 */
b54b9be7 2549static void shrink_submounts(struct mount *mnt)
5528f911
TM
2550{
2551 LIST_HEAD(graveyard);
761d5c38 2552 struct mount *m;
5528f911 2553
5528f911 2554 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2555 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2556 while (!list_empty(&graveyard)) {
761d5c38 2557 m = list_first_entry(&graveyard, struct mount,
6776db3d 2558 mnt_expire);
143c8c91 2559 touch_mnt_namespace(m->mnt_ns);
e819f152 2560 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2561 }
2562 }
1da177e4
LT
2563}
2564
1da177e4
LT
2565/*
2566 * Some copy_from_user() implementations do not return the exact number of
2567 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2568 * Note that this function differs from copy_from_user() in that it will oops
2569 * on bad values of `to', rather than returning a short copy.
2570 */
b58fed8b
RP
2571static long exact_copy_from_user(void *to, const void __user * from,
2572 unsigned long n)
1da177e4
LT
2573{
2574 char *t = to;
2575 const char __user *f = from;
2576 char c;
2577
2578 if (!access_ok(VERIFY_READ, from, n))
2579 return n;
2580
2581 while (n) {
2582 if (__get_user(c, f)) {
2583 memset(t, 0, n);
2584 break;
2585 }
2586 *t++ = c;
2587 f++;
2588 n--;
2589 }
2590 return n;
2591}
2592
b40ef869 2593void *copy_mount_options(const void __user * data)
1da177e4
LT
2594{
2595 int i;
1da177e4 2596 unsigned long size;
b40ef869 2597 char *copy;
b58fed8b 2598
1da177e4 2599 if (!data)
b40ef869 2600 return NULL;
1da177e4 2601
b40ef869
AV
2602 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2603 if (!copy)
2604 return ERR_PTR(-ENOMEM);
1da177e4
LT
2605
2606 /* We only care that *some* data at the address the user
2607 * gave us is valid. Just in case, we'll zero
2608 * the remainder of the page.
2609 */
2610 /* copy_from_user cannot cross TASK_SIZE ! */
2611 size = TASK_SIZE - (unsigned long)data;
2612 if (size > PAGE_SIZE)
2613 size = PAGE_SIZE;
2614
b40ef869 2615 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2616 if (!i) {
b40ef869
AV
2617 kfree(copy);
2618 return ERR_PTR(-EFAULT);
1da177e4
LT
2619 }
2620 if (i != PAGE_SIZE)
b40ef869
AV
2621 memset(copy + i, 0, PAGE_SIZE - i);
2622 return copy;
1da177e4
LT
2623}
2624
b8850d1f 2625char *copy_mount_string(const void __user *data)
eca6f534 2626{
b8850d1f 2627 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2628}
2629
1da177e4
LT
2630/*
2631 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2632 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2633 *
2634 * data is a (void *) that can point to any structure up to
2635 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2636 * information (or be NULL).
2637 *
2638 * Pre-0.97 versions of mount() didn't have a flags word.
2639 * When the flags word was introduced its top half was required
2640 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2641 * Therefore, if this magic number is present, it carries no information
2642 * and must be discarded.
2643 */
5e6123f3 2644long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2645 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2646{
2d92ab3c 2647 struct path path;
1da177e4
LT
2648 int retval = 0;
2649 int mnt_flags = 0;
2650
2651 /* Discard magic */
2652 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2653 flags &= ~MS_MGC_MSK;
2654
2655 /* Basic sanity checks */
1da177e4
LT
2656 if (data_page)
2657 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2658
a27ab9f2 2659 /* ... and get the mountpoint */
5e6123f3 2660 retval = user_path(dir_name, &path);
a27ab9f2
TH
2661 if (retval)
2662 return retval;
2663
2664 retval = security_sb_mount(dev_name, &path,
2665 type_page, flags, data_page);
0d5cadb8
AV
2666 if (!retval && !may_mount())
2667 retval = -EPERM;
9e8925b6
JL
2668 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2669 retval = -EPERM;
a27ab9f2
TH
2670 if (retval)
2671 goto dput_out;
2672
613cbe3d
AK
2673 /* Default to relatime unless overriden */
2674 if (!(flags & MS_NOATIME))
2675 mnt_flags |= MNT_RELATIME;
0a1c01c9 2676
1da177e4
LT
2677 /* Separate the per-mountpoint flags */
2678 if (flags & MS_NOSUID)
2679 mnt_flags |= MNT_NOSUID;
2680 if (flags & MS_NODEV)
2681 mnt_flags |= MNT_NODEV;
2682 if (flags & MS_NOEXEC)
2683 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2684 if (flags & MS_NOATIME)
2685 mnt_flags |= MNT_NOATIME;
2686 if (flags & MS_NODIRATIME)
2687 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2688 if (flags & MS_STRICTATIME)
2689 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2690 if (flags & MS_RDONLY)
2691 mnt_flags |= MNT_READONLY;
fc33a7bb 2692
ffbc6f0e
EB
2693 /* The default atime for remount is preservation */
2694 if ((flags & MS_REMOUNT) &&
2695 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2696 MS_STRICTATIME)) == 0)) {
2697 mnt_flags &= ~MNT_ATIME_MASK;
2698 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2699 }
2700
7a4dec53 2701 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2702 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2703 MS_STRICTATIME);
1da177e4 2704
1da177e4 2705 if (flags & MS_REMOUNT)
2d92ab3c 2706 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2707 data_page);
2708 else if (flags & MS_BIND)
2d92ab3c 2709 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2710 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2711 retval = do_change_type(&path, flags);
1da177e4 2712 else if (flags & MS_MOVE)
2d92ab3c 2713 retval = do_move_mount(&path, dev_name);
1da177e4 2714 else
2d92ab3c 2715 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2716 dev_name, data_page);
2717dput_out:
2d92ab3c 2718 path_put(&path);
1da177e4
LT
2719 return retval;
2720}
2721
771b1371
EB
2722static void free_mnt_ns(struct mnt_namespace *ns)
2723{
6344c433 2724 ns_free_inum(&ns->ns);
771b1371
EB
2725 put_user_ns(ns->user_ns);
2726 kfree(ns);
2727}
2728
8823c079
EB
2729/*
2730 * Assign a sequence number so we can detect when we attempt to bind
2731 * mount a reference to an older mount namespace into the current
2732 * mount namespace, preventing reference counting loops. A 64bit
2733 * number incrementing at 10Ghz will take 12,427 years to wrap which
2734 * is effectively never, so we can ignore the possibility.
2735 */
2736static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2737
771b1371 2738static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2739{
2740 struct mnt_namespace *new_ns;
98f842e6 2741 int ret;
cf8d2c11
TM
2742
2743 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2744 if (!new_ns)
2745 return ERR_PTR(-ENOMEM);
6344c433 2746 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2747 if (ret) {
2748 kfree(new_ns);
2749 return ERR_PTR(ret);
2750 }
33c42940 2751 new_ns->ns.ops = &mntns_operations;
8823c079 2752 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2753 atomic_set(&new_ns->count, 1);
2754 new_ns->root = NULL;
2755 INIT_LIST_HEAD(&new_ns->list);
2756 init_waitqueue_head(&new_ns->poll);
2757 new_ns->event = 0;
771b1371 2758 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2759 return new_ns;
2760}
2761
9559f689
AV
2762struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2763 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2764{
6b3286ed 2765 struct mnt_namespace *new_ns;
7f2da1e7 2766 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2767 struct mount *p, *q;
9559f689 2768 struct mount *old;
cb338d06 2769 struct mount *new;
7a472ef4 2770 int copy_flags;
1da177e4 2771
9559f689
AV
2772 BUG_ON(!ns);
2773
2774 if (likely(!(flags & CLONE_NEWNS))) {
2775 get_mnt_ns(ns);
2776 return ns;
2777 }
2778
2779 old = ns->root;
2780
771b1371 2781 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2782 if (IS_ERR(new_ns))
2783 return new_ns;
1da177e4 2784
97216be0 2785 namespace_lock();
1da177e4 2786 /* First pass: copy the tree topology */
4ce5d2b1 2787 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2788 if (user_ns != ns->user_ns)
132c94e3 2789 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2790 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2791 if (IS_ERR(new)) {
328e6d90 2792 namespace_unlock();
771b1371 2793 free_mnt_ns(new_ns);
be34d1a3 2794 return ERR_CAST(new);
1da177e4 2795 }
be08d6d2 2796 new_ns->root = new;
1a4eeaf2 2797 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2798
2799 /*
2800 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2801 * as belonging to new namespace. We have already acquired a private
2802 * fs_struct, so tsk->fs->lock is not needed.
2803 */
909b0a88 2804 p = old;
cb338d06 2805 q = new;
1da177e4 2806 while (p) {
143c8c91 2807 q->mnt_ns = new_ns;
9559f689
AV
2808 if (new_fs) {
2809 if (&p->mnt == new_fs->root.mnt) {
2810 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2811 rootmnt = &p->mnt;
1da177e4 2812 }
9559f689
AV
2813 if (&p->mnt == new_fs->pwd.mnt) {
2814 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2815 pwdmnt = &p->mnt;
1da177e4 2816 }
1da177e4 2817 }
909b0a88
AV
2818 p = next_mnt(p, old);
2819 q = next_mnt(q, new);
4ce5d2b1
EB
2820 if (!q)
2821 break;
2822 while (p->mnt.mnt_root != q->mnt.mnt_root)
2823 p = next_mnt(p, old);
1da177e4 2824 }
328e6d90 2825 namespace_unlock();
1da177e4 2826
1da177e4 2827 if (rootmnt)
f03c6599 2828 mntput(rootmnt);
1da177e4 2829 if (pwdmnt)
f03c6599 2830 mntput(pwdmnt);
1da177e4 2831
741a2951 2832 return new_ns;
1da177e4
LT
2833}
2834
cf8d2c11
TM
2835/**
2836 * create_mnt_ns - creates a private namespace and adds a root filesystem
2837 * @mnt: pointer to the new root filesystem mountpoint
2838 */
1a4eeaf2 2839static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2840{
771b1371 2841 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2842 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2843 struct mount *mnt = real_mount(m);
2844 mnt->mnt_ns = new_ns;
be08d6d2 2845 new_ns->root = mnt;
b1983cd8 2846 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2847 } else {
1a4eeaf2 2848 mntput(m);
cf8d2c11
TM
2849 }
2850 return new_ns;
2851}
cf8d2c11 2852
ea441d11
AV
2853struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2854{
2855 struct mnt_namespace *ns;
d31da0f0 2856 struct super_block *s;
ea441d11
AV
2857 struct path path;
2858 int err;
2859
2860 ns = create_mnt_ns(mnt);
2861 if (IS_ERR(ns))
2862 return ERR_CAST(ns);
2863
2864 err = vfs_path_lookup(mnt->mnt_root, mnt,
2865 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2866
2867 put_mnt_ns(ns);
2868
2869 if (err)
2870 return ERR_PTR(err);
2871
2872 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2873 s = path.mnt->mnt_sb;
2874 atomic_inc(&s->s_active);
ea441d11
AV
2875 mntput(path.mnt);
2876 /* lock the sucker */
d31da0f0 2877 down_write(&s->s_umount);
ea441d11
AV
2878 /* ... and return the root of (sub)tree on it */
2879 return path.dentry;
2880}
2881EXPORT_SYMBOL(mount_subtree);
2882
bdc480e3
HC
2883SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2884 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2885{
eca6f534
VN
2886 int ret;
2887 char *kernel_type;
eca6f534 2888 char *kernel_dev;
b40ef869 2889 void *options;
1da177e4 2890
b8850d1f
TG
2891 kernel_type = copy_mount_string(type);
2892 ret = PTR_ERR(kernel_type);
2893 if (IS_ERR(kernel_type))
eca6f534 2894 goto out_type;
1da177e4 2895
b8850d1f
TG
2896 kernel_dev = copy_mount_string(dev_name);
2897 ret = PTR_ERR(kernel_dev);
2898 if (IS_ERR(kernel_dev))
eca6f534 2899 goto out_dev;
1da177e4 2900
b40ef869
AV
2901 options = copy_mount_options(data);
2902 ret = PTR_ERR(options);
2903 if (IS_ERR(options))
eca6f534 2904 goto out_data;
1da177e4 2905
b40ef869 2906 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 2907
b40ef869 2908 kfree(options);
eca6f534
VN
2909out_data:
2910 kfree(kernel_dev);
2911out_dev:
eca6f534
VN
2912 kfree(kernel_type);
2913out_type:
2914 return ret;
1da177e4
LT
2915}
2916
afac7cba
AV
2917/*
2918 * Return true if path is reachable from root
2919 *
48a066e7 2920 * namespace_sem or mount_lock is held
afac7cba 2921 */
643822b4 2922bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2923 const struct path *root)
2924{
643822b4 2925 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2926 dentry = mnt->mnt_mountpoint;
0714a533 2927 mnt = mnt->mnt_parent;
afac7cba 2928 }
643822b4 2929 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2930}
2931
25ab4c9b 2932bool path_is_under(struct path *path1, struct path *path2)
afac7cba 2933{
25ab4c9b 2934 bool res;
48a066e7 2935 read_seqlock_excl(&mount_lock);
643822b4 2936 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2937 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2938 return res;
2939}
2940EXPORT_SYMBOL(path_is_under);
2941
1da177e4
LT
2942/*
2943 * pivot_root Semantics:
2944 * Moves the root file system of the current process to the directory put_old,
2945 * makes new_root as the new root file system of the current process, and sets
2946 * root/cwd of all processes which had them on the current root to new_root.
2947 *
2948 * Restrictions:
2949 * The new_root and put_old must be directories, and must not be on the
2950 * same file system as the current process root. The put_old must be
2951 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2952 * pointed to by put_old must yield the same directory as new_root. No other
2953 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2954 *
4a0d11fa
NB
2955 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2956 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2957 * in this situation.
2958 *
1da177e4
LT
2959 * Notes:
2960 * - we don't move root/cwd if they are not at the root (reason: if something
2961 * cared enough to change them, it's probably wrong to force them elsewhere)
2962 * - it's okay to pick a root that isn't the root of a file system, e.g.
2963 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2964 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2965 * first.
2966 */
3480b257
HC
2967SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2968 const char __user *, put_old)
1da177e4 2969{
2d8f3038 2970 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2971 struct mount *new_mnt, *root_mnt, *old_mnt;
2972 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2973 int error;
2974
9b40bc90 2975 if (!may_mount())
1da177e4
LT
2976 return -EPERM;
2977
2d8f3038 2978 error = user_path_dir(new_root, &new);
1da177e4
LT
2979 if (error)
2980 goto out0;
1da177e4 2981
2d8f3038 2982 error = user_path_dir(put_old, &old);
1da177e4
LT
2983 if (error)
2984 goto out1;
2985
2d8f3038 2986 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2987 if (error)
2988 goto out2;
1da177e4 2989
f7ad3c6b 2990 get_fs_root(current->fs, &root);
84d17192
AV
2991 old_mp = lock_mount(&old);
2992 error = PTR_ERR(old_mp);
2993 if (IS_ERR(old_mp))
b12cea91
AV
2994 goto out3;
2995
1da177e4 2996 error = -EINVAL;
419148da
AV
2997 new_mnt = real_mount(new.mnt);
2998 root_mnt = real_mount(root.mnt);
84d17192
AV
2999 old_mnt = real_mount(old.mnt);
3000 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3001 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3002 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3003 goto out4;
143c8c91 3004 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3005 goto out4;
5ff9d8a6
EB
3006 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3007 goto out4;
1da177e4 3008 error = -ENOENT;
f3da392e 3009 if (d_unlinked(new.dentry))
b12cea91 3010 goto out4;
1da177e4 3011 error = -EBUSY;
84d17192 3012 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3013 goto out4; /* loop, on the same file system */
1da177e4 3014 error = -EINVAL;
8c3ee42e 3015 if (root.mnt->mnt_root != root.dentry)
b12cea91 3016 goto out4; /* not a mountpoint */
676da58d 3017 if (!mnt_has_parent(root_mnt))
b12cea91 3018 goto out4; /* not attached */
84d17192 3019 root_mp = root_mnt->mnt_mp;
2d8f3038 3020 if (new.mnt->mnt_root != new.dentry)
b12cea91 3021 goto out4; /* not a mountpoint */
676da58d 3022 if (!mnt_has_parent(new_mnt))
b12cea91 3023 goto out4; /* not attached */
4ac91378 3024 /* make sure we can reach put_old from new_root */
84d17192 3025 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3026 goto out4;
0d082601
EB
3027 /* make certain new is below the root */
3028 if (!is_path_reachable(new_mnt, new.dentry, &root))
3029 goto out4;
84d17192 3030 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3031 lock_mount_hash();
419148da
AV
3032 detach_mnt(new_mnt, &parent_path);
3033 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3034 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3035 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3036 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3037 }
4ac91378 3038 /* mount old root on put_old */
84d17192 3039 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3040 /* mount new_root on / */
84d17192 3041 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3042 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3043 /* A moved mount should not expire automatically */
3044 list_del_init(&new_mnt->mnt_expire);
719ea2fb 3045 unlock_mount_hash();
2d8f3038 3046 chroot_fs_refs(&root, &new);
84d17192 3047 put_mountpoint(root_mp);
1da177e4 3048 error = 0;
b12cea91 3049out4:
84d17192 3050 unlock_mount(old_mp);
b12cea91
AV
3051 if (!error) {
3052 path_put(&root_parent);
3053 path_put(&parent_path);
3054 }
3055out3:
8c3ee42e 3056 path_put(&root);
b12cea91 3057out2:
2d8f3038 3058 path_put(&old);
1da177e4 3059out1:
2d8f3038 3060 path_put(&new);
1da177e4 3061out0:
1da177e4 3062 return error;
1da177e4
LT
3063}
3064
3065static void __init init_mount_tree(void)
3066{
3067 struct vfsmount *mnt;
6b3286ed 3068 struct mnt_namespace *ns;
ac748a09 3069 struct path root;
0c55cfc4 3070 struct file_system_type *type;
1da177e4 3071
0c55cfc4
EB
3072 type = get_fs_type("rootfs");
3073 if (!type)
3074 panic("Can't find rootfs type");
3075 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3076 put_filesystem(type);
1da177e4
LT
3077 if (IS_ERR(mnt))
3078 panic("Can't create rootfs");
b3e19d92 3079
3b22edc5
TM
3080 ns = create_mnt_ns(mnt);
3081 if (IS_ERR(ns))
1da177e4 3082 panic("Can't allocate initial namespace");
6b3286ed
KK
3083
3084 init_task.nsproxy->mnt_ns = ns;
3085 get_mnt_ns(ns);
3086
be08d6d2
AV
3087 root.mnt = mnt;
3088 root.dentry = mnt->mnt_root;
da362b09 3089 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3090
3091 set_fs_pwd(current->fs, &root);
3092 set_fs_root(current->fs, &root);
1da177e4
LT
3093}
3094
74bf17cf 3095void __init mnt_init(void)
1da177e4 3096{
13f14b4d 3097 unsigned u;
15a67dd8 3098 int err;
1da177e4 3099
7d6fec45 3100 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3101 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3102
0818bf27 3103 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3104 sizeof(struct hlist_head),
0818bf27
AV
3105 mhash_entries, 19,
3106 0,
3107 &m_hash_shift, &m_hash_mask, 0, 0);
3108 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3109 sizeof(struct hlist_head),
3110 mphash_entries, 19,
3111 0,
3112 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3113
84d17192 3114 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3115 panic("Failed to allocate mount hash table\n");
3116
0818bf27 3117 for (u = 0; u <= m_hash_mask; u++)
38129a13 3118 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3119 for (u = 0; u <= mp_hash_mask; u++)
3120 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3121
4b93dc9b
TH
3122 kernfs_init();
3123
15a67dd8
RD
3124 err = sysfs_init();
3125 if (err)
3126 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3127 __func__, err);
00d26666
GKH
3128 fs_kobj = kobject_create_and_add("fs", NULL);
3129 if (!fs_kobj)
8e24eea7 3130 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3131 init_rootfs();
3132 init_mount_tree();
3133}
3134
616511d0 3135void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3136{
d498b25a 3137 if (!atomic_dec_and_test(&ns->count))
616511d0 3138 return;
7b00ed6f 3139 drop_collected_mounts(&ns->root->mnt);
771b1371 3140 free_mnt_ns(ns);
1da177e4 3141}
9d412a43
AV
3142
3143struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3144{
423e0ab0
TC
3145 struct vfsmount *mnt;
3146 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3147 if (!IS_ERR(mnt)) {
3148 /*
3149 * it is a longterm mount, don't release mnt until
3150 * we unmount before file sys is unregistered
3151 */
f7a99c5b 3152 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3153 }
3154 return mnt;
9d412a43
AV
3155}
3156EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3157
3158void kern_unmount(struct vfsmount *mnt)
3159{
3160 /* release long term mount so mount point can be released */
3161 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3162 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3163 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3164 mntput(mnt);
3165 }
3166}
3167EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3168
3169bool our_mnt(struct vfsmount *mnt)
3170{
143c8c91 3171 return check_mnt(real_mount(mnt));
02125a82 3172}
8823c079 3173
3151527e
EB
3174bool current_chrooted(void)
3175{
3176 /* Does the current process have a non-standard root */
3177 struct path ns_root;
3178 struct path fs_root;
3179 bool chrooted;
3180
3181 /* Find the namespace root */
3182 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3183 ns_root.dentry = ns_root.mnt->mnt_root;
3184 path_get(&ns_root);
3185 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3186 ;
3187
3188 get_fs_root(current->fs, &fs_root);
3189
3190 chrooted = !path_equal(&fs_root, &ns_root);
3191
3192 path_put(&fs_root);
3193 path_put(&ns_root);
3194
3195 return chrooted;
3196}
3197
8654df4e
EB
3198static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3199 int *new_mnt_flags)
87a8ebd6 3200{
8c6cf9cc 3201 int new_flags = *new_mnt_flags;
87a8ebd6 3202 struct mount *mnt;
e51db735 3203 bool visible = false;
87a8ebd6 3204
44bb4385 3205 down_read(&namespace_sem);
87a8ebd6 3206 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3207 struct mount *child;
77b1a97d
EB
3208 int mnt_flags;
3209
8654df4e 3210 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3211 continue;
3212
7e96c1b0
EB
3213 /* This mount is not fully visible if it's root directory
3214 * is not the root directory of the filesystem.
3215 */
3216 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3217 continue;
3218
a1935c17 3219 /* A local view of the mount flags */
77b1a97d 3220 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3221
695e9df0
EB
3222 /* Don't miss readonly hidden in the superblock flags */
3223 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3224 mnt_flags |= MNT_LOCK_READONLY;
3225
8c6cf9cc
EB
3226 /* Verify the mount flags are equal to or more permissive
3227 * than the proposed new mount.
3228 */
77b1a97d 3229 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3230 !(new_flags & MNT_READONLY))
3231 continue;
77b1a97d
EB
3232 if ((mnt_flags & MNT_LOCK_ATIME) &&
3233 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3234 continue;
3235
ceeb0e5d
EB
3236 /* This mount is not fully visible if there are any
3237 * locked child mounts that cover anything except for
3238 * empty directories.
e51db735
EB
3239 */
3240 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3241 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3242 /* Only worry about locked mounts */
d71ed6c9 3243 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3244 continue;
7236c85e
EB
3245 /* Is the directory permanetly empty? */
3246 if (!is_empty_dir_inode(inode))
e51db735 3247 goto next;
87a8ebd6 3248 }
8c6cf9cc 3249 /* Preserve the locked attributes */
77b1a97d 3250 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3251 MNT_LOCK_ATIME);
e51db735
EB
3252 visible = true;
3253 goto found;
3254 next: ;
87a8ebd6 3255 }
e51db735 3256found:
44bb4385 3257 up_read(&namespace_sem);
e51db735 3258 return visible;
87a8ebd6
EB
3259}
3260
8654df4e
EB
3261static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3262{
a1935c17 3263 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3264 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3265 unsigned long s_iflags;
3266
3267 if (ns->user_ns == &init_user_ns)
3268 return false;
3269
3270 /* Can this filesystem be too revealing? */
3271 s_iflags = mnt->mnt_sb->s_iflags;
3272 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3273 return false;
3274
a1935c17
EB
3275 if ((s_iflags & required_iflags) != required_iflags) {
3276 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3277 required_iflags);
3278 return true;
3279 }
3280
8654df4e
EB
3281 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3282}
3283
380cf5ba
AL
3284bool mnt_may_suid(struct vfsmount *mnt)
3285{
3286 /*
3287 * Foreign mounts (accessed via fchdir or through /proc
3288 * symlinks) are always treated as if they are nosuid. This
3289 * prevents namespaces from trusting potentially unsafe
3290 * suid/sgid bits, file caps, or security labels that originate
3291 * in other namespaces.
3292 */
3293 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3294 current_in_userns(mnt->mnt_sb->s_user_ns);
3295}
3296
64964528 3297static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3298{
58be2825 3299 struct ns_common *ns = NULL;
8823c079
EB
3300 struct nsproxy *nsproxy;
3301
728dba3a
EB
3302 task_lock(task);
3303 nsproxy = task->nsproxy;
8823c079 3304 if (nsproxy) {
58be2825
AV
3305 ns = &nsproxy->mnt_ns->ns;
3306 get_mnt_ns(to_mnt_ns(ns));
8823c079 3307 }
728dba3a 3308 task_unlock(task);
8823c079
EB
3309
3310 return ns;
3311}
3312
64964528 3313static void mntns_put(struct ns_common *ns)
8823c079 3314{
58be2825 3315 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3316}
3317
64964528 3318static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3319{
3320 struct fs_struct *fs = current->fs;
58be2825 3321 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3322 struct path root;
3323
0c55cfc4 3324 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3325 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3326 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3327 return -EPERM;
8823c079
EB
3328
3329 if (fs->users != 1)
3330 return -EINVAL;
3331
3332 get_mnt_ns(mnt_ns);
3333 put_mnt_ns(nsproxy->mnt_ns);
3334 nsproxy->mnt_ns = mnt_ns;
3335
3336 /* Find the root */
3337 root.mnt = &mnt_ns->root->mnt;
3338 root.dentry = mnt_ns->root->mnt.mnt_root;
3339 path_get(&root);
3340 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3341 ;
3342
3343 /* Update the pwd and root */
3344 set_fs_pwd(fs, &root);
3345 set_fs_root(fs, &root);
3346
3347 path_put(&root);
3348 return 0;
3349}
3350
bcac25a5
AV
3351static struct user_namespace *mntns_owner(struct ns_common *ns)
3352{
3353 return to_mnt_ns(ns)->user_ns;
3354}
3355
8823c079
EB
3356const struct proc_ns_operations mntns_operations = {
3357 .name = "mnt",
3358 .type = CLONE_NEWNS,
3359 .get = mntns_get,
3360 .put = mntns_put,
3361 .install = mntns_install,
bcac25a5 3362 .owner = mntns_owner,
8823c079 3363};