Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7 592/* call under rcu_read_lock */
294d71ff 593int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
294d71ff 597 return 1;
48a066e7 598 if (bastard == NULL)
294d71ff 599 return 0;
48a066e7
AV
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 603 return 0;
48a066e7
AV
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
294d71ff
AV
606 return 1;
607 }
608 return -1;
609}
610
611/* call under rcu_read_lock */
612bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613{
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
48a066e7 621 }
48a066e7
AV
622 return false;
623}
624
1da177e4 625/*
474279dc 626 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 627 * call under rcu_read_lock()
1da177e4 628 */
474279dc 629struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 630{
38129a13 631 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
632 struct mount *p;
633
38129a13 634 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638}
639
640/*
641 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 642 * mount_lock must be held.
474279dc
AV
643 */
644struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645{
411a938b
EB
646 struct mount *p, *res = NULL;
647 p = __lookup_mnt(mnt, dentry);
38129a13
AV
648 if (!p)
649 goto out;
411a938b
EB
650 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 res = p;
38129a13 652 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
653 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 break;
411a938b
EB
655 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 res = p;
1d6a32ac 657 }
38129a13 658out:
1d6a32ac 659 return res;
1da177e4
LT
660}
661
a05964f3 662/*
f015f126
DH
663 * lookup_mnt - Return the first child mount mounted at path
664 *
665 * "First" means first mounted chronologically. If you create the
666 * following mounts:
667 *
668 * mount /dev/sda1 /mnt
669 * mount /dev/sda2 /mnt
670 * mount /dev/sda3 /mnt
671 *
672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
673 * return successively the root dentry and vfsmount of /dev/sda1, then
674 * /dev/sda2, then /dev/sda3, then NULL.
675 *
676 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 677 */
1c755af4 678struct vfsmount *lookup_mnt(struct path *path)
a05964f3 679{
c7105365 680 struct mount *child_mnt;
48a066e7
AV
681 struct vfsmount *m;
682 unsigned seq;
99b7db7b 683
48a066e7
AV
684 rcu_read_lock();
685 do {
686 seq = read_seqbegin(&mount_lock);
687 child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 m = child_mnt ? &child_mnt->mnt : NULL;
689 } while (!legitimize_mnt(m, seq));
690 rcu_read_unlock();
691 return m;
a05964f3
RP
692}
693
7af1364f
EB
694/*
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
697 *
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
702 * is a mountpoint.
703 *
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
707 * parent mount.
708 */
709bool __is_local_mountpoint(struct dentry *dentry)
710{
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 struct mount *mnt;
713 bool is_covered = false;
714
715 if (!d_mountpoint(dentry))
716 goto out;
717
718 down_read(&namespace_sem);
719 list_for_each_entry(mnt, &ns->list, mnt_list) {
720 is_covered = (mnt->mnt_mountpoint == dentry);
721 if (is_covered)
722 break;
723 }
724 up_read(&namespace_sem);
725out:
726 return is_covered;
727}
728
e2dfa935 729static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 730{
0818bf27 731 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
732 struct mountpoint *mp;
733
0818bf27 734 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
735 if (mp->m_dentry == dentry) {
736 /* might be worth a WARN_ON() */
737 if (d_unlinked(dentry))
738 return ERR_PTR(-ENOENT);
739 mp->m_count++;
740 return mp;
741 }
742 }
e2dfa935
EB
743 return NULL;
744}
745
746static struct mountpoint *new_mountpoint(struct dentry *dentry)
747{
748 struct hlist_head *chain = mp_hash(dentry);
749 struct mountpoint *mp;
750 int ret;
84d17192
AV
751
752 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!mp)
754 return ERR_PTR(-ENOMEM);
755
eed81007
MS
756 ret = d_set_mounted(dentry);
757 if (ret) {
84d17192 758 kfree(mp);
eed81007 759 return ERR_PTR(ret);
84d17192 760 }
eed81007 761
84d17192
AV
762 mp->m_dentry = dentry;
763 mp->m_count = 1;
0818bf27 764 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 765 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
766 return mp;
767}
768
769static void put_mountpoint(struct mountpoint *mp)
770{
771 if (!--mp->m_count) {
772 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 773 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
774 spin_lock(&dentry->d_lock);
775 dentry->d_flags &= ~DCACHE_MOUNTED;
776 spin_unlock(&dentry->d_lock);
0818bf27 777 hlist_del(&mp->m_hash);
84d17192
AV
778 kfree(mp);
779 }
780}
781
143c8c91 782static inline int check_mnt(struct mount *mnt)
1da177e4 783{
6b3286ed 784 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
785}
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns) {
793 ns->event = ++event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
6b3286ed 801static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
802{
803 if (ns && ns->event != event) {
804 ns->event = event;
805 wake_up_interruptible(&ns->poll);
806 }
807}
808
99b7db7b
NP
809/*
810 * vfsmount lock must be held for write
811 */
7bdb11de 812static void unhash_mnt(struct mount *mnt)
419148da 813{
0714a533 814 mnt->mnt_parent = mnt;
a73324da 815 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 816 list_del_init(&mnt->mnt_child);
38129a13 817 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 818 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
819 put_mountpoint(mnt->mnt_mp);
820 mnt->mnt_mp = NULL;
1da177e4
LT
821}
822
7bdb11de
EB
823/*
824 * vfsmount lock must be held for write
825 */
826static void detach_mnt(struct mount *mnt, struct path *old_path)
827{
828 old_path->dentry = mnt->mnt_mountpoint;
829 old_path->mnt = &mnt->mnt_parent->mnt;
830 unhash_mnt(mnt);
831}
832
6a46c573
EB
833/*
834 * vfsmount lock must be held for write
835 */
836static void umount_mnt(struct mount *mnt)
837{
838 /* old mountpoint will be dropped when we can do that */
839 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
840 unhash_mnt(mnt);
841}
842
99b7db7b
NP
843/*
844 * vfsmount lock must be held for write
845 */
84d17192
AV
846void mnt_set_mountpoint(struct mount *mnt,
847 struct mountpoint *mp,
44d964d6 848 struct mount *child_mnt)
b90fa9ae 849{
84d17192 850 mp->m_count++;
3a2393d7 851 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 852 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 853 child_mnt->mnt_parent = mnt;
84d17192 854 child_mnt->mnt_mp = mp;
0a5eb7c8 855 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
856}
857
99b7db7b
NP
858/*
859 * vfsmount lock must be held for write
860 */
84d17192
AV
861static void attach_mnt(struct mount *mnt,
862 struct mount *parent,
863 struct mountpoint *mp)
1da177e4 864{
84d17192 865 mnt_set_mountpoint(parent, mp, mnt);
38129a13 866 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 867 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
868}
869
12a5b529
AV
870static void attach_shadowed(struct mount *mnt,
871 struct mount *parent,
872 struct mount *shadows)
873{
874 if (shadows) {
f6f99332 875 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
876 list_add(&mnt->mnt_child, &shadows->mnt_child);
877 } else {
878 hlist_add_head_rcu(&mnt->mnt_hash,
879 m_hash(&parent->mnt, mnt->mnt_mountpoint));
880 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 }
882}
883
b90fa9ae 884/*
99b7db7b 885 * vfsmount lock must be held for write
b90fa9ae 886 */
1d6a32ac 887static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 888{
0714a533 889 struct mount *parent = mnt->mnt_parent;
83adc753 890 struct mount *m;
b90fa9ae 891 LIST_HEAD(head);
143c8c91 892 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 893
0714a533 894 BUG_ON(parent == mnt);
b90fa9ae 895
1a4eeaf2 896 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 897 list_for_each_entry(m, &head, mnt_list)
143c8c91 898 m->mnt_ns = n;
f03c6599 899
b90fa9ae
RP
900 list_splice(&head, n->list.prev);
901
12a5b529 902 attach_shadowed(mnt, parent, shadows);
6b3286ed 903 touch_mnt_namespace(n);
1da177e4
LT
904}
905
909b0a88 906static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 907{
6b41d536
AV
908 struct list_head *next = p->mnt_mounts.next;
909 if (next == &p->mnt_mounts) {
1da177e4 910 while (1) {
909b0a88 911 if (p == root)
1da177e4 912 return NULL;
6b41d536
AV
913 next = p->mnt_child.next;
914 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 915 break;
0714a533 916 p = p->mnt_parent;
1da177e4
LT
917 }
918 }
6b41d536 919 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
920}
921
315fc83e 922static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 923{
6b41d536
AV
924 struct list_head *prev = p->mnt_mounts.prev;
925 while (prev != &p->mnt_mounts) {
926 p = list_entry(prev, struct mount, mnt_child);
927 prev = p->mnt_mounts.prev;
9676f0c6
RP
928 }
929 return p;
930}
931
9d412a43
AV
932struct vfsmount *
933vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
934{
b105e270 935 struct mount *mnt;
9d412a43
AV
936 struct dentry *root;
937
938 if (!type)
939 return ERR_PTR(-ENODEV);
940
941 mnt = alloc_vfsmnt(name);
942 if (!mnt)
943 return ERR_PTR(-ENOMEM);
944
945 if (flags & MS_KERNMOUNT)
b105e270 946 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
947
948 root = mount_fs(type, flags, name, data);
949 if (IS_ERR(root)) {
8ffcb32e 950 mnt_free_id(mnt);
9d412a43
AV
951 free_vfsmnt(mnt);
952 return ERR_CAST(root);
953 }
954
b105e270
AV
955 mnt->mnt.mnt_root = root;
956 mnt->mnt.mnt_sb = root->d_sb;
a73324da 957 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 958 mnt->mnt_parent = mnt;
719ea2fb 959 lock_mount_hash();
39f7c4db 960 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 961 unlock_mount_hash();
b105e270 962 return &mnt->mnt;
9d412a43
AV
963}
964EXPORT_SYMBOL_GPL(vfs_kern_mount);
965
87129cc0 966static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 967 int flag)
1da177e4 968{
87129cc0 969 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
970 struct mount *mnt;
971 int err;
1da177e4 972
be34d1a3
DH
973 mnt = alloc_vfsmnt(old->mnt_devname);
974 if (!mnt)
975 return ERR_PTR(-ENOMEM);
719f5d7f 976
7a472ef4 977 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
978 mnt->mnt_group_id = 0; /* not a peer of original */
979 else
980 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 981
be34d1a3
DH
982 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
983 err = mnt_alloc_group_id(mnt);
984 if (err)
985 goto out_free;
1da177e4 986 }
be34d1a3 987
f2ebb3a9 988 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 989 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
990 if (flag & CL_UNPRIVILEGED) {
991 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
992
993 if (mnt->mnt.mnt_flags & MNT_READONLY)
994 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
995
996 if (mnt->mnt.mnt_flags & MNT_NODEV)
997 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
998
999 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1000 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1001
1002 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1003 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1004 }
132c94e3 1005
5ff9d8a6 1006 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1007 if ((flag & CL_UNPRIVILEGED) &&
1008 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1009 mnt->mnt.mnt_flags |= MNT_LOCKED;
1010
be34d1a3
DH
1011 atomic_inc(&sb->s_active);
1012 mnt->mnt.mnt_sb = sb;
1013 mnt->mnt.mnt_root = dget(root);
1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 mnt->mnt_parent = mnt;
719ea2fb 1016 lock_mount_hash();
be34d1a3 1017 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1018 unlock_mount_hash();
be34d1a3 1019
7a472ef4
EB
1020 if ((flag & CL_SLAVE) ||
1021 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1022 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1023 mnt->mnt_master = old;
1024 CLEAR_MNT_SHARED(mnt);
1025 } else if (!(flag & CL_PRIVATE)) {
1026 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1027 list_add(&mnt->mnt_share, &old->mnt_share);
1028 if (IS_MNT_SLAVE(old))
1029 list_add(&mnt->mnt_slave, &old->mnt_slave);
1030 mnt->mnt_master = old->mnt_master;
1031 }
1032 if (flag & CL_MAKE_SHARED)
1033 set_mnt_shared(mnt);
1034
1035 /* stick the duplicate mount on the same expiry list
1036 * as the original if that was on one */
1037 if (flag & CL_EXPIRE) {
1038 if (!list_empty(&old->mnt_expire))
1039 list_add(&mnt->mnt_expire, &old->mnt_expire);
1040 }
1041
cb338d06 1042 return mnt;
719f5d7f
MS
1043
1044 out_free:
8ffcb32e 1045 mnt_free_id(mnt);
719f5d7f 1046 free_vfsmnt(mnt);
be34d1a3 1047 return ERR_PTR(err);
1da177e4
LT
1048}
1049
9ea459e1
AV
1050static void cleanup_mnt(struct mount *mnt)
1051{
1052 /*
1053 * This probably indicates that somebody messed
1054 * up a mnt_want/drop_write() pair. If this
1055 * happens, the filesystem was probably unable
1056 * to make r/w->r/o transitions.
1057 */
1058 /*
1059 * The locking used to deal with mnt_count decrement provides barriers,
1060 * so mnt_get_writers() below is safe.
1061 */
1062 WARN_ON(mnt_get_writers(mnt));
1063 if (unlikely(mnt->mnt_pins.first))
1064 mnt_pin_kill(mnt);
1065 fsnotify_vfsmount_delete(&mnt->mnt);
1066 dput(mnt->mnt.mnt_root);
1067 deactivate_super(mnt->mnt.mnt_sb);
1068 mnt_free_id(mnt);
1069 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1070}
1071
1072static void __cleanup_mnt(struct rcu_head *head)
1073{
1074 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1075}
1076
1077static LLIST_HEAD(delayed_mntput_list);
1078static void delayed_mntput(struct work_struct *unused)
1079{
1080 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1081 struct llist_node *next;
1082
1083 for (; node; node = next) {
1084 next = llist_next(node);
1085 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1086 }
1087}
1088static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1089
900148dc 1090static void mntput_no_expire(struct mount *mnt)
b3e19d92 1091{
48a066e7
AV
1092 rcu_read_lock();
1093 mnt_add_count(mnt, -1);
1094 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1095 rcu_read_unlock();
f03c6599 1096 return;
b3e19d92 1097 }
719ea2fb 1098 lock_mount_hash();
b3e19d92 1099 if (mnt_get_count(mnt)) {
48a066e7 1100 rcu_read_unlock();
719ea2fb 1101 unlock_mount_hash();
99b7db7b
NP
1102 return;
1103 }
48a066e7
AV
1104 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1105 rcu_read_unlock();
1106 unlock_mount_hash();
1107 return;
1108 }
1109 mnt->mnt.mnt_flags |= MNT_DOOMED;
1110 rcu_read_unlock();
962830df 1111
39f7c4db 1112 list_del(&mnt->mnt_instance);
ce07d891
EB
1113
1114 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1115 struct mount *p, *tmp;
1116 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1117 umount_mnt(p);
1118 }
1119 }
719ea2fb 1120 unlock_mount_hash();
649a795a 1121
9ea459e1
AV
1122 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1123 struct task_struct *task = current;
1124 if (likely(!(task->flags & PF_KTHREAD))) {
1125 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1126 if (!task_work_add(task, &mnt->mnt_rcu, true))
1127 return;
1128 }
1129 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1130 schedule_delayed_work(&delayed_mntput_work, 1);
1131 return;
1132 }
1133 cleanup_mnt(mnt);
b3e19d92 1134}
b3e19d92
NP
1135
1136void mntput(struct vfsmount *mnt)
1137{
1138 if (mnt) {
863d684f 1139 struct mount *m = real_mount(mnt);
b3e19d92 1140 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1141 if (unlikely(m->mnt_expiry_mark))
1142 m->mnt_expiry_mark = 0;
1143 mntput_no_expire(m);
b3e19d92
NP
1144 }
1145}
1146EXPORT_SYMBOL(mntput);
1147
1148struct vfsmount *mntget(struct vfsmount *mnt)
1149{
1150 if (mnt)
83adc753 1151 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1152 return mnt;
1153}
1154EXPORT_SYMBOL(mntget);
1155
3064c356 1156struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1157{
3064c356
AV
1158 struct mount *p;
1159 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1160 if (IS_ERR(p))
1161 return ERR_CAST(p);
1162 p->mnt.mnt_flags |= MNT_INTERNAL;
1163 return &p->mnt;
7b7b1ace 1164}
1da177e4 1165
b3b304a2
MS
1166static inline void mangle(struct seq_file *m, const char *s)
1167{
1168 seq_escape(m, s, " \t\n\\");
1169}
1170
1171/*
1172 * Simple .show_options callback for filesystems which don't want to
1173 * implement more complex mount option showing.
1174 *
1175 * See also save_mount_options().
1176 */
34c80b1d 1177int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1178{
2a32cebd
AV
1179 const char *options;
1180
1181 rcu_read_lock();
34c80b1d 1182 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1183
1184 if (options != NULL && options[0]) {
1185 seq_putc(m, ',');
1186 mangle(m, options);
1187 }
2a32cebd 1188 rcu_read_unlock();
b3b304a2
MS
1189
1190 return 0;
1191}
1192EXPORT_SYMBOL(generic_show_options);
1193
1194/*
1195 * If filesystem uses generic_show_options(), this function should be
1196 * called from the fill_super() callback.
1197 *
1198 * The .remount_fs callback usually needs to be handled in a special
1199 * way, to make sure, that previous options are not overwritten if the
1200 * remount fails.
1201 *
1202 * Also note, that if the filesystem's .remount_fs function doesn't
1203 * reset all options to their default value, but changes only newly
1204 * given options, then the displayed options will not reflect reality
1205 * any more.
1206 */
1207void save_mount_options(struct super_block *sb, char *options)
1208{
2a32cebd
AV
1209 BUG_ON(sb->s_options);
1210 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1211}
1212EXPORT_SYMBOL(save_mount_options);
1213
2a32cebd
AV
1214void replace_mount_options(struct super_block *sb, char *options)
1215{
1216 char *old = sb->s_options;
1217 rcu_assign_pointer(sb->s_options, options);
1218 if (old) {
1219 synchronize_rcu();
1220 kfree(old);
1221 }
1222}
1223EXPORT_SYMBOL(replace_mount_options);
1224
a1a2c409 1225#ifdef CONFIG_PROC_FS
0226f492 1226/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1227static void *m_start(struct seq_file *m, loff_t *pos)
1228{
ede1bf0d 1229 struct proc_mounts *p = m->private;
1da177e4 1230
390c6843 1231 down_read(&namespace_sem);
c7999c36
AV
1232 if (p->cached_event == p->ns->event) {
1233 void *v = p->cached_mount;
1234 if (*pos == p->cached_index)
1235 return v;
1236 if (*pos == p->cached_index + 1) {
1237 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1238 return p->cached_mount = v;
1239 }
1240 }
1241
1242 p->cached_event = p->ns->event;
1243 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1244 p->cached_index = *pos;
1245 return p->cached_mount;
1da177e4
LT
1246}
1247
1248static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1249{
ede1bf0d 1250 struct proc_mounts *p = m->private;
b0765fb8 1251
c7999c36
AV
1252 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1253 p->cached_index = *pos;
1254 return p->cached_mount;
1da177e4
LT
1255}
1256
1257static void m_stop(struct seq_file *m, void *v)
1258{
390c6843 1259 up_read(&namespace_sem);
1da177e4
LT
1260}
1261
0226f492 1262static int m_show(struct seq_file *m, void *v)
2d4d4864 1263{
ede1bf0d 1264 struct proc_mounts *p = m->private;
1a4eeaf2 1265 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1266 return p->show(m, &r->mnt);
1da177e4
LT
1267}
1268
a1a2c409 1269const struct seq_operations mounts_op = {
1da177e4
LT
1270 .start = m_start,
1271 .next = m_next,
1272 .stop = m_stop,
0226f492 1273 .show = m_show,
b4629fe2 1274};
a1a2c409 1275#endif /* CONFIG_PROC_FS */
b4629fe2 1276
1da177e4
LT
1277/**
1278 * may_umount_tree - check if a mount tree is busy
1279 * @mnt: root of mount tree
1280 *
1281 * This is called to check if a tree of mounts has any
1282 * open files, pwds, chroots or sub mounts that are
1283 * busy.
1284 */
909b0a88 1285int may_umount_tree(struct vfsmount *m)
1da177e4 1286{
909b0a88 1287 struct mount *mnt = real_mount(m);
36341f64
RP
1288 int actual_refs = 0;
1289 int minimum_refs = 0;
315fc83e 1290 struct mount *p;
909b0a88 1291 BUG_ON(!m);
1da177e4 1292
b3e19d92 1293 /* write lock needed for mnt_get_count */
719ea2fb 1294 lock_mount_hash();
909b0a88 1295 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1296 actual_refs += mnt_get_count(p);
1da177e4 1297 minimum_refs += 2;
1da177e4 1298 }
719ea2fb 1299 unlock_mount_hash();
1da177e4
LT
1300
1301 if (actual_refs > minimum_refs)
e3474a8e 1302 return 0;
1da177e4 1303
e3474a8e 1304 return 1;
1da177e4
LT
1305}
1306
1307EXPORT_SYMBOL(may_umount_tree);
1308
1309/**
1310 * may_umount - check if a mount point is busy
1311 * @mnt: root of mount
1312 *
1313 * This is called to check if a mount point has any
1314 * open files, pwds, chroots or sub mounts. If the
1315 * mount has sub mounts this will return busy
1316 * regardless of whether the sub mounts are busy.
1317 *
1318 * Doesn't take quota and stuff into account. IOW, in some cases it will
1319 * give false negatives. The main reason why it's here is that we need
1320 * a non-destructive way to look for easily umountable filesystems.
1321 */
1322int may_umount(struct vfsmount *mnt)
1323{
e3474a8e 1324 int ret = 1;
8ad08d8a 1325 down_read(&namespace_sem);
719ea2fb 1326 lock_mount_hash();
1ab59738 1327 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1328 ret = 0;
719ea2fb 1329 unlock_mount_hash();
8ad08d8a 1330 up_read(&namespace_sem);
a05964f3 1331 return ret;
1da177e4
LT
1332}
1333
1334EXPORT_SYMBOL(may_umount);
1335
38129a13 1336static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1337
97216be0 1338static void namespace_unlock(void)
70fbcdf4 1339{
a3b3c562 1340 struct hlist_head head;
97216be0 1341
a3b3c562 1342 hlist_move_list(&unmounted, &head);
97216be0 1343
97216be0
AV
1344 up_write(&namespace_sem);
1345
a3b3c562
EB
1346 if (likely(hlist_empty(&head)))
1347 return;
1348
48a066e7
AV
1349 synchronize_rcu();
1350
87b95ce0 1351 group_pin_kill(&head);
70fbcdf4
RP
1352}
1353
97216be0 1354static inline void namespace_lock(void)
e3197d83 1355{
97216be0 1356 down_write(&namespace_sem);
e3197d83
AV
1357}
1358
e819f152
EB
1359enum umount_tree_flags {
1360 UMOUNT_SYNC = 1,
1361 UMOUNT_PROPAGATE = 2,
e0c9c0af 1362 UMOUNT_CONNECTED = 4,
e819f152 1363};
f2d0a123
EB
1364
1365static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1366{
1367 /* Leaving mounts connected is only valid for lazy umounts */
1368 if (how & UMOUNT_SYNC)
1369 return true;
1370
1371 /* A mount without a parent has nothing to be connected to */
1372 if (!mnt_has_parent(mnt))
1373 return true;
1374
1375 /* Because the reference counting rules change when mounts are
1376 * unmounted and connected, umounted mounts may not be
1377 * connected to mounted mounts.
1378 */
1379 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1380 return true;
1381
1382 /* Has it been requested that the mount remain connected? */
1383 if (how & UMOUNT_CONNECTED)
1384 return false;
1385
1386 /* Is the mount locked such that it needs to remain connected? */
1387 if (IS_MNT_LOCKED(mnt))
1388 return false;
1389
1390 /* By default disconnect the mount */
1391 return true;
1392}
1393
99b7db7b 1394/*
48a066e7 1395 * mount_lock must be held
99b7db7b
NP
1396 * namespace_sem must be held for write
1397 */
e819f152 1398static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1399{
c003b26f 1400 LIST_HEAD(tmp_list);
315fc83e 1401 struct mount *p;
1da177e4 1402
5d88457e
EB
1403 if (how & UMOUNT_PROPAGATE)
1404 propagate_mount_unlock(mnt);
1405
c003b26f 1406 /* Gather the mounts to umount */
590ce4bc
EB
1407 for (p = mnt; p; p = next_mnt(p, mnt)) {
1408 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1409 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1410 }
1da177e4 1411
411a938b 1412 /* Hide the mounts from mnt_mounts */
c003b26f 1413 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1414 list_del_init(&p->mnt_child);
c003b26f 1415 }
88b368f2 1416
c003b26f 1417 /* Add propogated mounts to the tmp_list */
e819f152 1418 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1419 propagate_umount(&tmp_list);
a05964f3 1420
c003b26f 1421 while (!list_empty(&tmp_list)) {
ce07d891 1422 bool disconnect;
c003b26f 1423 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1424 list_del_init(&p->mnt_expire);
1a4eeaf2 1425 list_del_init(&p->mnt_list);
143c8c91
AV
1426 __touch_mnt_namespace(p->mnt_ns);
1427 p->mnt_ns = NULL;
e819f152 1428 if (how & UMOUNT_SYNC)
48a066e7 1429 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1430
f2d0a123 1431 disconnect = disconnect_mount(p, how);
ce07d891
EB
1432
1433 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434 disconnect ? &unmounted : NULL);
676da58d 1435 if (mnt_has_parent(p)) {
81b6b061 1436 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1437 if (!disconnect) {
1438 /* Don't forget about p */
1439 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440 } else {
1441 umount_mnt(p);
1442 }
7c4b93d8 1443 }
0f0afb1d 1444 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1445 }
1446}
1447
b54b9be7 1448static void shrink_submounts(struct mount *mnt);
c35038be 1449
1ab59738 1450static int do_umount(struct mount *mnt, int flags)
1da177e4 1451{
1ab59738 1452 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1453 int retval;
1454
1ab59738 1455 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1456 if (retval)
1457 return retval;
1458
1459 /*
1460 * Allow userspace to request a mountpoint be expired rather than
1461 * unmounting unconditionally. Unmount only happens if:
1462 * (1) the mark is already set (the mark is cleared by mntput())
1463 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1464 */
1465 if (flags & MNT_EXPIRE) {
1ab59738 1466 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1467 flags & (MNT_FORCE | MNT_DETACH))
1468 return -EINVAL;
1469
b3e19d92
NP
1470 /*
1471 * probably don't strictly need the lock here if we examined
1472 * all race cases, but it's a slowpath.
1473 */
719ea2fb 1474 lock_mount_hash();
83adc753 1475 if (mnt_get_count(mnt) != 2) {
719ea2fb 1476 unlock_mount_hash();
1da177e4 1477 return -EBUSY;
b3e19d92 1478 }
719ea2fb 1479 unlock_mount_hash();
1da177e4 1480
863d684f 1481 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1482 return -EAGAIN;
1483 }
1484
1485 /*
1486 * If we may have to abort operations to get out of this
1487 * mount, and they will themselves hold resources we must
1488 * allow the fs to do things. In the Unix tradition of
1489 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 * might fail to complete on the first run through as other tasks
1491 * must return, and the like. Thats for the mount program to worry
1492 * about for the moment.
1493 */
1494
42faad99 1495 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1496 sb->s_op->umount_begin(sb);
42faad99 1497 }
1da177e4
LT
1498
1499 /*
1500 * No sense to grab the lock for this test, but test itself looks
1501 * somewhat bogus. Suggestions for better replacement?
1502 * Ho-hum... In principle, we might treat that as umount + switch
1503 * to rootfs. GC would eventually take care of the old vfsmount.
1504 * Actually it makes sense, especially if rootfs would contain a
1505 * /reboot - static binary that would close all descriptors and
1506 * call reboot(9). Then init(8) could umount root and exec /reboot.
1507 */
1ab59738 1508 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1509 /*
1510 * Special case for "unmounting" root ...
1511 * we just try to remount it readonly.
1512 */
a1480dcc
AL
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1da177e4 1515 down_write(&sb->s_umount);
4aa98cf7 1516 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1517 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1518 up_write(&sb->s_umount);
1519 return retval;
1520 }
1521
97216be0 1522 namespace_lock();
719ea2fb 1523 lock_mount_hash();
5addc5dd 1524 event++;
1da177e4 1525
48a066e7 1526 if (flags & MNT_DETACH) {
1a4eeaf2 1527 if (!list_empty(&mnt->mnt_list))
e819f152 1528 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1529 retval = 0;
48a066e7
AV
1530 } else {
1531 shrink_submounts(mnt);
1532 retval = -EBUSY;
1533 if (!propagate_mount_busy(mnt, 2)) {
1534 if (!list_empty(&mnt->mnt_list))
e819f152 1535 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1536 retval = 0;
1537 }
1da177e4 1538 }
719ea2fb 1539 unlock_mount_hash();
e3197d83 1540 namespace_unlock();
1da177e4
LT
1541 return retval;
1542}
1543
80b5dce8
EB
1544/*
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1546 *
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1550 * leaking them.
1551 *
1552 * The caller may hold dentry->d_inode->i_mutex.
1553 */
1554void __detach_mounts(struct dentry *dentry)
1555{
1556 struct mountpoint *mp;
1557 struct mount *mnt;
1558
1559 namespace_lock();
1560 mp = lookup_mountpoint(dentry);
f53e5797 1561 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1562 goto out_unlock;
1563
1564 lock_mount_hash();
1565 while (!hlist_empty(&mp->m_list)) {
1566 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1567 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1568 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1569 umount_mnt(mnt);
ce07d891 1570 }
e0c9c0af 1571 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8
EB
1572 }
1573 unlock_mount_hash();
1574 put_mountpoint(mp);
1575out_unlock:
1576 namespace_unlock();
1577}
1578
9b40bc90
AV
1579/*
1580 * Is the caller allowed to modify his namespace?
1581 */
1582static inline bool may_mount(void)
1583{
1584 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1585}
1586
9e8925b6
JL
1587static inline bool may_mandlock(void)
1588{
1589#ifndef CONFIG_MANDATORY_FILE_LOCKING
1590 return false;
1591#endif
95ace754 1592 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1593}
1594
1da177e4
LT
1595/*
1596 * Now umount can handle mount points as well as block devices.
1597 * This is important for filesystems which use unnamed block devices.
1598 *
1599 * We now support a flag for forced unmount like the other 'big iron'
1600 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1601 */
1602
bdc480e3 1603SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1604{
2d8f3038 1605 struct path path;
900148dc 1606 struct mount *mnt;
1da177e4 1607 int retval;
db1f05bb 1608 int lookup_flags = 0;
1da177e4 1609
db1f05bb
MS
1610 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1611 return -EINVAL;
1612
9b40bc90
AV
1613 if (!may_mount())
1614 return -EPERM;
1615
db1f05bb
MS
1616 if (!(flags & UMOUNT_NOFOLLOW))
1617 lookup_flags |= LOOKUP_FOLLOW;
1618
197df04c 1619 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1620 if (retval)
1621 goto out;
900148dc 1622 mnt = real_mount(path.mnt);
1da177e4 1623 retval = -EINVAL;
2d8f3038 1624 if (path.dentry != path.mnt->mnt_root)
1da177e4 1625 goto dput_and_out;
143c8c91 1626 if (!check_mnt(mnt))
1da177e4 1627 goto dput_and_out;
5ff9d8a6
EB
1628 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1629 goto dput_and_out;
b2f5d4dc
EB
1630 retval = -EPERM;
1631 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1632 goto dput_and_out;
1da177e4 1633
900148dc 1634 retval = do_umount(mnt, flags);
1da177e4 1635dput_and_out:
429731b1 1636 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1637 dput(path.dentry);
900148dc 1638 mntput_no_expire(mnt);
1da177e4
LT
1639out:
1640 return retval;
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1644
1645/*
b58fed8b 1646 * The 2.0 compatible umount. No flags.
1da177e4 1647 */
bdc480e3 1648SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1649{
b58fed8b 1650 return sys_umount(name, 0);
1da177e4
LT
1651}
1652
1653#endif
1654
4ce5d2b1 1655static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1656{
4ce5d2b1 1657 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1658 return dentry->d_op == &ns_dentry_operations &&
1659 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1660}
1661
58be2825
AV
1662struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1663{
1664 return container_of(ns, struct mnt_namespace, ns);
1665}
1666
4ce5d2b1
EB
1667static bool mnt_ns_loop(struct dentry *dentry)
1668{
1669 /* Could bind mounting the mount namespace inode cause a
1670 * mount namespace loop?
1671 */
1672 struct mnt_namespace *mnt_ns;
1673 if (!is_mnt_ns_file(dentry))
1674 return false;
1675
f77c8014 1676 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1677 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1678}
1679
87129cc0 1680struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1681 int flag)
1da177e4 1682{
84d17192 1683 struct mount *res, *p, *q, *r, *parent;
1da177e4 1684
4ce5d2b1
EB
1685 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1686 return ERR_PTR(-EINVAL);
1687
1688 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1689 return ERR_PTR(-EINVAL);
9676f0c6 1690
36341f64 1691 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1692 if (IS_ERR(q))
1693 return q;
1694
a73324da 1695 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1696
1697 p = mnt;
6b41d536 1698 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1699 struct mount *s;
7ec02ef1 1700 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1701 continue;
1702
909b0a88 1703 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1704 struct mount *t = NULL;
4ce5d2b1
EB
1705 if (!(flag & CL_COPY_UNBINDABLE) &&
1706 IS_MNT_UNBINDABLE(s)) {
1707 s = skip_mnt_tree(s);
1708 continue;
1709 }
1710 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1711 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1712 s = skip_mnt_tree(s);
1713 continue;
1714 }
0714a533
AV
1715 while (p != s->mnt_parent) {
1716 p = p->mnt_parent;
1717 q = q->mnt_parent;
1da177e4 1718 }
87129cc0 1719 p = s;
84d17192 1720 parent = q;
87129cc0 1721 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1722 if (IS_ERR(q))
1723 goto out;
719ea2fb 1724 lock_mount_hash();
1a4eeaf2 1725 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1726 mnt_set_mountpoint(parent, p->mnt_mp, q);
1727 if (!list_empty(&parent->mnt_mounts)) {
1728 t = list_last_entry(&parent->mnt_mounts,
1729 struct mount, mnt_child);
1730 if (t->mnt_mp != p->mnt_mp)
1731 t = NULL;
1732 }
1733 attach_shadowed(q, parent, t);
719ea2fb 1734 unlock_mount_hash();
1da177e4
LT
1735 }
1736 }
1737 return res;
be34d1a3 1738out:
1da177e4 1739 if (res) {
719ea2fb 1740 lock_mount_hash();
e819f152 1741 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1742 unlock_mount_hash();
1da177e4 1743 }
be34d1a3 1744 return q;
1da177e4
LT
1745}
1746
be34d1a3
DH
1747/* Caller should check returned pointer for errors */
1748
589ff870 1749struct vfsmount *collect_mounts(struct path *path)
8aec0809 1750{
cb338d06 1751 struct mount *tree;
97216be0 1752 namespace_lock();
cd4a4017
EB
1753 if (!check_mnt(real_mount(path->mnt)))
1754 tree = ERR_PTR(-EINVAL);
1755 else
1756 tree = copy_tree(real_mount(path->mnt), path->dentry,
1757 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1758 namespace_unlock();
be34d1a3 1759 if (IS_ERR(tree))
52e220d3 1760 return ERR_CAST(tree);
be34d1a3 1761 return &tree->mnt;
8aec0809
AV
1762}
1763
1764void drop_collected_mounts(struct vfsmount *mnt)
1765{
97216be0 1766 namespace_lock();
719ea2fb 1767 lock_mount_hash();
e819f152 1768 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1769 unlock_mount_hash();
3ab6abee 1770 namespace_unlock();
8aec0809
AV
1771}
1772
c771d683
MS
1773/**
1774 * clone_private_mount - create a private clone of a path
1775 *
1776 * This creates a new vfsmount, which will be the clone of @path. The new will
1777 * not be attached anywhere in the namespace and will be private (i.e. changes
1778 * to the originating mount won't be propagated into this).
1779 *
1780 * Release with mntput().
1781 */
1782struct vfsmount *clone_private_mount(struct path *path)
1783{
1784 struct mount *old_mnt = real_mount(path->mnt);
1785 struct mount *new_mnt;
1786
1787 if (IS_MNT_UNBINDABLE(old_mnt))
1788 return ERR_PTR(-EINVAL);
1789
1790 down_read(&namespace_sem);
1791 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1792 up_read(&namespace_sem);
1793 if (IS_ERR(new_mnt))
1794 return ERR_CAST(new_mnt);
1795
1796 return &new_mnt->mnt;
1797}
1798EXPORT_SYMBOL_GPL(clone_private_mount);
1799
1f707137
AV
1800int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1801 struct vfsmount *root)
1802{
1a4eeaf2 1803 struct mount *mnt;
1f707137
AV
1804 int res = f(root, arg);
1805 if (res)
1806 return res;
1a4eeaf2
AV
1807 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1808 res = f(&mnt->mnt, arg);
1f707137
AV
1809 if (res)
1810 return res;
1811 }
1812 return 0;
1813}
1814
4b8b21f4 1815static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1816{
315fc83e 1817 struct mount *p;
719f5d7f 1818
909b0a88 1819 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1820 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1821 mnt_release_group_id(p);
719f5d7f
MS
1822 }
1823}
1824
4b8b21f4 1825static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1826{
315fc83e 1827 struct mount *p;
719f5d7f 1828
909b0a88 1829 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1830 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1831 int err = mnt_alloc_group_id(p);
719f5d7f 1832 if (err) {
4b8b21f4 1833 cleanup_group_ids(mnt, p);
719f5d7f
MS
1834 return err;
1835 }
1836 }
1837 }
1838
1839 return 0;
1840}
1841
b90fa9ae
RP
1842/*
1843 * @source_mnt : mount tree to be attached
21444403
RP
1844 * @nd : place the mount tree @source_mnt is attached
1845 * @parent_nd : if non-null, detach the source_mnt from its parent and
1846 * store the parent mount and mountpoint dentry.
1847 * (done when source_mnt is moved)
b90fa9ae
RP
1848 *
1849 * NOTE: in the table below explains the semantics when a source mount
1850 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1851 * ---------------------------------------------------------------------------
1852 * | BIND MOUNT OPERATION |
1853 * |**************************************************************************
1854 * | source-->| shared | private | slave | unbindable |
1855 * | dest | | | | |
1856 * | | | | | | |
1857 * | v | | | | |
1858 * |**************************************************************************
1859 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1860 * | | | | | |
1861 * |non-shared| shared (+) | private | slave (*) | invalid |
1862 * ***************************************************************************
b90fa9ae
RP
1863 * A bind operation clones the source mount and mounts the clone on the
1864 * destination mount.
1865 *
1866 * (++) the cloned mount is propagated to all the mounts in the propagation
1867 * tree of the destination mount and the cloned mount is added to
1868 * the peer group of the source mount.
1869 * (+) the cloned mount is created under the destination mount and is marked
1870 * as shared. The cloned mount is added to the peer group of the source
1871 * mount.
5afe0022
RP
1872 * (+++) the mount is propagated to all the mounts in the propagation tree
1873 * of the destination mount and the cloned mount is made slave
1874 * of the same master as that of the source mount. The cloned mount
1875 * is marked as 'shared and slave'.
1876 * (*) the cloned mount is made a slave of the same master as that of the
1877 * source mount.
1878 *
9676f0c6
RP
1879 * ---------------------------------------------------------------------------
1880 * | MOVE MOUNT OPERATION |
1881 * |**************************************************************************
1882 * | source-->| shared | private | slave | unbindable |
1883 * | dest | | | | |
1884 * | | | | | | |
1885 * | v | | | | |
1886 * |**************************************************************************
1887 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1888 * | | | | | |
1889 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1890 * ***************************************************************************
5afe0022
RP
1891 *
1892 * (+) the mount is moved to the destination. And is then propagated to
1893 * all the mounts in the propagation tree of the destination mount.
21444403 1894 * (+*) the mount is moved to the destination.
5afe0022
RP
1895 * (+++) the mount is moved to the destination and is then propagated to
1896 * all the mounts belonging to the destination mount's propagation tree.
1897 * the mount is marked as 'shared and slave'.
1898 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1899 *
1900 * if the source mount is a tree, the operations explained above is
1901 * applied to each mount in the tree.
1902 * Must be called without spinlocks held, since this function can sleep
1903 * in allocations.
1904 */
0fb54e50 1905static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1906 struct mount *dest_mnt,
1907 struct mountpoint *dest_mp,
1908 struct path *parent_path)
b90fa9ae 1909{
38129a13 1910 HLIST_HEAD(tree_list);
315fc83e 1911 struct mount *child, *p;
38129a13 1912 struct hlist_node *n;
719f5d7f 1913 int err;
b90fa9ae 1914
fc7be130 1915 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1916 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1917 if (err)
1918 goto out;
0b1b901b 1919 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1920 lock_mount_hash();
0b1b901b
AV
1921 if (err)
1922 goto out_cleanup_ids;
909b0a88 1923 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1924 set_mnt_shared(p);
0b1b901b
AV
1925 } else {
1926 lock_mount_hash();
b90fa9ae 1927 }
1a390689 1928 if (parent_path) {
0fb54e50 1929 detach_mnt(source_mnt, parent_path);
84d17192 1930 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1931 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1932 } else {
84d17192 1933 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1934 commit_tree(source_mnt, NULL);
21444403 1935 }
b90fa9ae 1936
38129a13 1937 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1938 struct mount *q;
38129a13 1939 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1940 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1941 child->mnt_mountpoint);
1942 commit_tree(child, q);
b90fa9ae 1943 }
719ea2fb 1944 unlock_mount_hash();
99b7db7b 1945
b90fa9ae 1946 return 0;
719f5d7f
MS
1947
1948 out_cleanup_ids:
f2ebb3a9
AV
1949 while (!hlist_empty(&tree_list)) {
1950 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
e819f152 1951 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1952 }
1953 unlock_mount_hash();
0b1b901b 1954 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1955 out:
1956 return err;
b90fa9ae
RP
1957}
1958
84d17192 1959static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1960{
1961 struct vfsmount *mnt;
84d17192 1962 struct dentry *dentry = path->dentry;
b12cea91 1963retry:
5955102c 1964 inode_lock(dentry->d_inode);
84d17192 1965 if (unlikely(cant_mount(dentry))) {
5955102c 1966 inode_unlock(dentry->d_inode);
84d17192 1967 return ERR_PTR(-ENOENT);
b12cea91 1968 }
97216be0 1969 namespace_lock();
b12cea91 1970 mnt = lookup_mnt(path);
84d17192 1971 if (likely(!mnt)) {
e2dfa935
EB
1972 struct mountpoint *mp = lookup_mountpoint(dentry);
1973 if (!mp)
1974 mp = new_mountpoint(dentry);
84d17192 1975 if (IS_ERR(mp)) {
97216be0 1976 namespace_unlock();
5955102c 1977 inode_unlock(dentry->d_inode);
84d17192
AV
1978 return mp;
1979 }
1980 return mp;
1981 }
97216be0 1982 namespace_unlock();
5955102c 1983 inode_unlock(path->dentry->d_inode);
b12cea91
AV
1984 path_put(path);
1985 path->mnt = mnt;
84d17192 1986 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1987 goto retry;
1988}
1989
84d17192 1990static void unlock_mount(struct mountpoint *where)
b12cea91 1991{
84d17192
AV
1992 struct dentry *dentry = where->m_dentry;
1993 put_mountpoint(where);
328e6d90 1994 namespace_unlock();
5955102c 1995 inode_unlock(dentry->d_inode);
b12cea91
AV
1996}
1997
84d17192 1998static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1999{
95bc5f25 2000 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2001 return -EINVAL;
2002
e36cb0b8
DH
2003 if (d_is_dir(mp->m_dentry) !=
2004 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2005 return -ENOTDIR;
2006
84d17192 2007 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2008}
2009
7a2e8a8f
VA
2010/*
2011 * Sanity check the flags to change_mnt_propagation.
2012 */
2013
2014static int flags_to_propagation_type(int flags)
2015{
7c6e984d 2016 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2017
2018 /* Fail if any non-propagation flags are set */
2019 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2020 return 0;
2021 /* Only one propagation flag should be set */
2022 if (!is_power_of_2(type))
2023 return 0;
2024 return type;
2025}
2026
07b20889
RP
2027/*
2028 * recursively change the type of the mountpoint.
2029 */
0a0d8a46 2030static int do_change_type(struct path *path, int flag)
07b20889 2031{
315fc83e 2032 struct mount *m;
4b8b21f4 2033 struct mount *mnt = real_mount(path->mnt);
07b20889 2034 int recurse = flag & MS_REC;
7a2e8a8f 2035 int type;
719f5d7f 2036 int err = 0;
07b20889 2037
2d92ab3c 2038 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2039 return -EINVAL;
2040
7a2e8a8f
VA
2041 type = flags_to_propagation_type(flag);
2042 if (!type)
2043 return -EINVAL;
2044
97216be0 2045 namespace_lock();
719f5d7f
MS
2046 if (type == MS_SHARED) {
2047 err = invent_group_ids(mnt, recurse);
2048 if (err)
2049 goto out_unlock;
2050 }
2051
719ea2fb 2052 lock_mount_hash();
909b0a88 2053 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2054 change_mnt_propagation(m, type);
719ea2fb 2055 unlock_mount_hash();
719f5d7f
MS
2056
2057 out_unlock:
97216be0 2058 namespace_unlock();
719f5d7f 2059 return err;
07b20889
RP
2060}
2061
5ff9d8a6
EB
2062static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2063{
2064 struct mount *child;
2065 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2066 if (!is_subdir(child->mnt_mountpoint, dentry))
2067 continue;
2068
2069 if (child->mnt.mnt_flags & MNT_LOCKED)
2070 return true;
2071 }
2072 return false;
2073}
2074
1da177e4
LT
2075/*
2076 * do loopback mount.
2077 */
808d4e3c 2078static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2079 int recurse)
1da177e4 2080{
2d92ab3c 2081 struct path old_path;
84d17192
AV
2082 struct mount *mnt = NULL, *old, *parent;
2083 struct mountpoint *mp;
57eccb83 2084 int err;
1da177e4
LT
2085 if (!old_name || !*old_name)
2086 return -EINVAL;
815d405c 2087 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2088 if (err)
2089 return err;
2090
8823c079 2091 err = -EINVAL;
4ce5d2b1 2092 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2093 goto out;
2094
84d17192
AV
2095 mp = lock_mount(path);
2096 err = PTR_ERR(mp);
2097 if (IS_ERR(mp))
b12cea91
AV
2098 goto out;
2099
87129cc0 2100 old = real_mount(old_path.mnt);
84d17192 2101 parent = real_mount(path->mnt);
87129cc0 2102
1da177e4 2103 err = -EINVAL;
fc7be130 2104 if (IS_MNT_UNBINDABLE(old))
b12cea91 2105 goto out2;
9676f0c6 2106
e149ed2b
AV
2107 if (!check_mnt(parent))
2108 goto out2;
2109
2110 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2111 goto out2;
1da177e4 2112
5ff9d8a6
EB
2113 if (!recurse && has_locked_children(old, old_path.dentry))
2114 goto out2;
2115
ccd48bc7 2116 if (recurse)
4ce5d2b1 2117 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2118 else
87129cc0 2119 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2120
be34d1a3
DH
2121 if (IS_ERR(mnt)) {
2122 err = PTR_ERR(mnt);
e9c5d8a5 2123 goto out2;
be34d1a3 2124 }
ccd48bc7 2125
5ff9d8a6
EB
2126 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2127
84d17192 2128 err = graft_tree(mnt, parent, mp);
ccd48bc7 2129 if (err) {
719ea2fb 2130 lock_mount_hash();
e819f152 2131 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2132 unlock_mount_hash();
5b83d2c5 2133 }
b12cea91 2134out2:
84d17192 2135 unlock_mount(mp);
ccd48bc7 2136out:
2d92ab3c 2137 path_put(&old_path);
1da177e4
LT
2138 return err;
2139}
2140
2e4b7fcd
DH
2141static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2142{
2143 int error = 0;
2144 int readonly_request = 0;
2145
2146 if (ms_flags & MS_RDONLY)
2147 readonly_request = 1;
2148 if (readonly_request == __mnt_is_readonly(mnt))
2149 return 0;
2150
2151 if (readonly_request)
83adc753 2152 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2153 else
83adc753 2154 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2155 return error;
2156}
2157
1da177e4
LT
2158/*
2159 * change filesystem flags. dir should be a physical root of filesystem.
2160 * If you've mounted a non-root directory somewhere and want to do remount
2161 * on it - tough luck.
2162 */
0a0d8a46 2163static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2164 void *data)
2165{
2166 int err;
2d92ab3c 2167 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2168 struct mount *mnt = real_mount(path->mnt);
1da177e4 2169
143c8c91 2170 if (!check_mnt(mnt))
1da177e4
LT
2171 return -EINVAL;
2172
2d92ab3c 2173 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2174 return -EINVAL;
2175
07b64558
EB
2176 /* Don't allow changing of locked mnt flags.
2177 *
2178 * No locks need to be held here while testing the various
2179 * MNT_LOCK flags because those flags can never be cleared
2180 * once they are set.
2181 */
2182 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2183 !(mnt_flags & MNT_READONLY)) {
2184 return -EPERM;
2185 }
9566d674
EB
2186 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2187 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2188 /* Was the nodev implicitly added in mount? */
2189 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2190 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2191 mnt_flags |= MNT_NODEV;
2192 } else {
2193 return -EPERM;
2194 }
9566d674
EB
2195 }
2196 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2197 !(mnt_flags & MNT_NOSUID)) {
2198 return -EPERM;
2199 }
2200 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2201 !(mnt_flags & MNT_NOEXEC)) {
2202 return -EPERM;
2203 }
2204 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2205 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2206 return -EPERM;
2207 }
2208
ff36fe2c
EP
2209 err = security_sb_remount(sb, data);
2210 if (err)
2211 return err;
2212
1da177e4 2213 down_write(&sb->s_umount);
2e4b7fcd 2214 if (flags & MS_BIND)
2d92ab3c 2215 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2216 else if (!capable(CAP_SYS_ADMIN))
2217 err = -EPERM;
4aa98cf7 2218 else
2e4b7fcd 2219 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2220 if (!err) {
719ea2fb 2221 lock_mount_hash();
a6138db8 2222 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2223 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2224 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2225 unlock_mount_hash();
0e55a7cc 2226 }
6339dab8 2227 up_write(&sb->s_umount);
1da177e4
LT
2228 return err;
2229}
2230
cbbe362c 2231static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2232{
315fc83e 2233 struct mount *p;
909b0a88 2234 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2235 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2236 return 1;
2237 }
2238 return 0;
2239}
2240
808d4e3c 2241static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2242{
2d92ab3c 2243 struct path old_path, parent_path;
676da58d 2244 struct mount *p;
0fb54e50 2245 struct mount *old;
84d17192 2246 struct mountpoint *mp;
57eccb83 2247 int err;
1da177e4
LT
2248 if (!old_name || !*old_name)
2249 return -EINVAL;
2d92ab3c 2250 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2251 if (err)
2252 return err;
2253
84d17192
AV
2254 mp = lock_mount(path);
2255 err = PTR_ERR(mp);
2256 if (IS_ERR(mp))
cc53ce53
DH
2257 goto out;
2258
143c8c91 2259 old = real_mount(old_path.mnt);
fc7be130 2260 p = real_mount(path->mnt);
143c8c91 2261
1da177e4 2262 err = -EINVAL;
fc7be130 2263 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2264 goto out1;
2265
5ff9d8a6
EB
2266 if (old->mnt.mnt_flags & MNT_LOCKED)
2267 goto out1;
2268
1da177e4 2269 err = -EINVAL;
2d92ab3c 2270 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2271 goto out1;
1da177e4 2272
676da58d 2273 if (!mnt_has_parent(old))
21444403 2274 goto out1;
1da177e4 2275
e36cb0b8
DH
2276 if (d_is_dir(path->dentry) !=
2277 d_is_dir(old_path.dentry))
21444403
RP
2278 goto out1;
2279 /*
2280 * Don't move a mount residing in a shared parent.
2281 */
fc7be130 2282 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2283 goto out1;
9676f0c6
RP
2284 /*
2285 * Don't move a mount tree containing unbindable mounts to a destination
2286 * mount which is shared.
2287 */
fc7be130 2288 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2289 goto out1;
1da177e4 2290 err = -ELOOP;
fc7be130 2291 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2292 if (p == old)
21444403 2293 goto out1;
1da177e4 2294
84d17192 2295 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2296 if (err)
21444403 2297 goto out1;
1da177e4
LT
2298
2299 /* if the mount is moved, it should no longer be expire
2300 * automatically */
6776db3d 2301 list_del_init(&old->mnt_expire);
1da177e4 2302out1:
84d17192 2303 unlock_mount(mp);
1da177e4 2304out:
1da177e4 2305 if (!err)
1a390689 2306 path_put(&parent_path);
2d92ab3c 2307 path_put(&old_path);
1da177e4
LT
2308 return err;
2309}
2310
9d412a43
AV
2311static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2312{
2313 int err;
2314 const char *subtype = strchr(fstype, '.');
2315 if (subtype) {
2316 subtype++;
2317 err = -EINVAL;
2318 if (!subtype[0])
2319 goto err;
2320 } else
2321 subtype = "";
2322
2323 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2324 err = -ENOMEM;
2325 if (!mnt->mnt_sb->s_subtype)
2326 goto err;
2327 return mnt;
2328
2329 err:
2330 mntput(mnt);
2331 return ERR_PTR(err);
2332}
2333
9d412a43
AV
2334/*
2335 * add a mount into a namespace's mount tree
2336 */
95bc5f25 2337static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2338{
84d17192
AV
2339 struct mountpoint *mp;
2340 struct mount *parent;
9d412a43
AV
2341 int err;
2342
f2ebb3a9 2343 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2344
84d17192
AV
2345 mp = lock_mount(path);
2346 if (IS_ERR(mp))
2347 return PTR_ERR(mp);
9d412a43 2348
84d17192 2349 parent = real_mount(path->mnt);
9d412a43 2350 err = -EINVAL;
84d17192 2351 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2352 /* that's acceptable only for automounts done in private ns */
2353 if (!(mnt_flags & MNT_SHRINKABLE))
2354 goto unlock;
2355 /* ... and for those we'd better have mountpoint still alive */
84d17192 2356 if (!parent->mnt_ns)
156cacb1
AV
2357 goto unlock;
2358 }
9d412a43
AV
2359
2360 /* Refuse the same filesystem on the same mount point */
2361 err = -EBUSY;
95bc5f25 2362 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2363 path->mnt->mnt_root == path->dentry)
2364 goto unlock;
2365
2366 err = -EINVAL;
e36cb0b8 2367 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2368 goto unlock;
2369
95bc5f25 2370 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2371 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2372
2373unlock:
84d17192 2374 unlock_mount(mp);
9d412a43
AV
2375 return err;
2376}
b1e75df4 2377
8c6cf9cc 2378static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
1b852bce 2379
1da177e4
LT
2380/*
2381 * create a new mount for userspace and request it to be added into the
2382 * namespace's tree
2383 */
0c55cfc4 2384static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2385 int mnt_flags, const char *name, void *data)
1da177e4 2386{
0c55cfc4 2387 struct file_system_type *type;
9b40bc90 2388 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2389 struct vfsmount *mnt;
15f9a3f3 2390 int err;
1da177e4 2391
0c55cfc4 2392 if (!fstype)
1da177e4
LT
2393 return -EINVAL;
2394
0c55cfc4
EB
2395 type = get_fs_type(fstype);
2396 if (!type)
2397 return -ENODEV;
2398
2399 if (user_ns != &init_user_ns) {
2400 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2401 put_filesystem(type);
2402 return -EPERM;
2403 }
2404 /* Only in special cases allow devices from mounts
2405 * created outside the initial user namespace.
2406 */
2407 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2408 flags |= MS_NODEV;
9566d674 2409 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4 2410 }
1b852bce 2411 if (type->fs_flags & FS_USERNS_VISIBLE) {
8c6cf9cc 2412 if (!fs_fully_visible(type, &mnt_flags))
1b852bce
EB
2413 return -EPERM;
2414 }
0c55cfc4
EB
2415 }
2416
2417 mnt = vfs_kern_mount(type, flags, name, data);
2418 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2419 !mnt->mnt_sb->s_subtype)
2420 mnt = fs_set_subtype(mnt, fstype);
2421
2422 put_filesystem(type);
1da177e4
LT
2423 if (IS_ERR(mnt))
2424 return PTR_ERR(mnt);
2425
95bc5f25 2426 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2427 if (err)
2428 mntput(mnt);
2429 return err;
1da177e4
LT
2430}
2431
19a167af
AV
2432int finish_automount(struct vfsmount *m, struct path *path)
2433{
6776db3d 2434 struct mount *mnt = real_mount(m);
19a167af
AV
2435 int err;
2436 /* The new mount record should have at least 2 refs to prevent it being
2437 * expired before we get a chance to add it
2438 */
6776db3d 2439 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2440
2441 if (m->mnt_sb == path->mnt->mnt_sb &&
2442 m->mnt_root == path->dentry) {
b1e75df4
AV
2443 err = -ELOOP;
2444 goto fail;
19a167af
AV
2445 }
2446
95bc5f25 2447 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2448 if (!err)
2449 return 0;
2450fail:
2451 /* remove m from any expiration list it may be on */
6776db3d 2452 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2453 namespace_lock();
6776db3d 2454 list_del_init(&mnt->mnt_expire);
97216be0 2455 namespace_unlock();
19a167af 2456 }
b1e75df4
AV
2457 mntput(m);
2458 mntput(m);
19a167af
AV
2459 return err;
2460}
2461
ea5b778a
DH
2462/**
2463 * mnt_set_expiry - Put a mount on an expiration list
2464 * @mnt: The mount to list.
2465 * @expiry_list: The list to add the mount to.
2466 */
2467void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2468{
97216be0 2469 namespace_lock();
ea5b778a 2470
6776db3d 2471 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2472
97216be0 2473 namespace_unlock();
ea5b778a
DH
2474}
2475EXPORT_SYMBOL(mnt_set_expiry);
2476
1da177e4
LT
2477/*
2478 * process a list of expirable mountpoints with the intent of discarding any
2479 * mountpoints that aren't in use and haven't been touched since last we came
2480 * here
2481 */
2482void mark_mounts_for_expiry(struct list_head *mounts)
2483{
761d5c38 2484 struct mount *mnt, *next;
1da177e4
LT
2485 LIST_HEAD(graveyard);
2486
2487 if (list_empty(mounts))
2488 return;
2489
97216be0 2490 namespace_lock();
719ea2fb 2491 lock_mount_hash();
1da177e4
LT
2492
2493 /* extract from the expiration list every vfsmount that matches the
2494 * following criteria:
2495 * - only referenced by its parent vfsmount
2496 * - still marked for expiry (marked on the last call here; marks are
2497 * cleared by mntput())
2498 */
6776db3d 2499 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2500 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2501 propagate_mount_busy(mnt, 1))
1da177e4 2502 continue;
6776db3d 2503 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2504 }
bcc5c7d2 2505 while (!list_empty(&graveyard)) {
6776db3d 2506 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2507 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2508 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2509 }
719ea2fb 2510 unlock_mount_hash();
3ab6abee 2511 namespace_unlock();
5528f911
TM
2512}
2513
2514EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2515
2516/*
2517 * Ripoff of 'select_parent()'
2518 *
2519 * search the list of submounts for a given mountpoint, and move any
2520 * shrinkable submounts to the 'graveyard' list.
2521 */
692afc31 2522static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2523{
692afc31 2524 struct mount *this_parent = parent;
5528f911
TM
2525 struct list_head *next;
2526 int found = 0;
2527
2528repeat:
6b41d536 2529 next = this_parent->mnt_mounts.next;
5528f911 2530resume:
6b41d536 2531 while (next != &this_parent->mnt_mounts) {
5528f911 2532 struct list_head *tmp = next;
6b41d536 2533 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2534
2535 next = tmp->next;
692afc31 2536 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2537 continue;
5528f911
TM
2538 /*
2539 * Descend a level if the d_mounts list is non-empty.
2540 */
6b41d536 2541 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2542 this_parent = mnt;
2543 goto repeat;
2544 }
1da177e4 2545
1ab59738 2546 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2547 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2548 found++;
2549 }
1da177e4 2550 }
5528f911
TM
2551 /*
2552 * All done at this level ... ascend and resume the search
2553 */
2554 if (this_parent != parent) {
6b41d536 2555 next = this_parent->mnt_child.next;
0714a533 2556 this_parent = this_parent->mnt_parent;
5528f911
TM
2557 goto resume;
2558 }
2559 return found;
2560}
2561
2562/*
2563 * process a list of expirable mountpoints with the intent of discarding any
2564 * submounts of a specific parent mountpoint
99b7db7b 2565 *
48a066e7 2566 * mount_lock must be held for write
5528f911 2567 */
b54b9be7 2568static void shrink_submounts(struct mount *mnt)
5528f911
TM
2569{
2570 LIST_HEAD(graveyard);
761d5c38 2571 struct mount *m;
5528f911 2572
5528f911 2573 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2574 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2575 while (!list_empty(&graveyard)) {
761d5c38 2576 m = list_first_entry(&graveyard, struct mount,
6776db3d 2577 mnt_expire);
143c8c91 2578 touch_mnt_namespace(m->mnt_ns);
e819f152 2579 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2580 }
2581 }
1da177e4
LT
2582}
2583
1da177e4
LT
2584/*
2585 * Some copy_from_user() implementations do not return the exact number of
2586 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2587 * Note that this function differs from copy_from_user() in that it will oops
2588 * on bad values of `to', rather than returning a short copy.
2589 */
b58fed8b
RP
2590static long exact_copy_from_user(void *to, const void __user * from,
2591 unsigned long n)
1da177e4
LT
2592{
2593 char *t = to;
2594 const char __user *f = from;
2595 char c;
2596
2597 if (!access_ok(VERIFY_READ, from, n))
2598 return n;
2599
2600 while (n) {
2601 if (__get_user(c, f)) {
2602 memset(t, 0, n);
2603 break;
2604 }
2605 *t++ = c;
2606 f++;
2607 n--;
2608 }
2609 return n;
2610}
2611
b40ef869 2612void *copy_mount_options(const void __user * data)
1da177e4
LT
2613{
2614 int i;
1da177e4 2615 unsigned long size;
b40ef869 2616 char *copy;
b58fed8b 2617
1da177e4 2618 if (!data)
b40ef869 2619 return NULL;
1da177e4 2620
b40ef869
AV
2621 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2622 if (!copy)
2623 return ERR_PTR(-ENOMEM);
1da177e4
LT
2624
2625 /* We only care that *some* data at the address the user
2626 * gave us is valid. Just in case, we'll zero
2627 * the remainder of the page.
2628 */
2629 /* copy_from_user cannot cross TASK_SIZE ! */
2630 size = TASK_SIZE - (unsigned long)data;
2631 if (size > PAGE_SIZE)
2632 size = PAGE_SIZE;
2633
b40ef869 2634 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2635 if (!i) {
b40ef869
AV
2636 kfree(copy);
2637 return ERR_PTR(-EFAULT);
1da177e4
LT
2638 }
2639 if (i != PAGE_SIZE)
b40ef869
AV
2640 memset(copy + i, 0, PAGE_SIZE - i);
2641 return copy;
1da177e4
LT
2642}
2643
b8850d1f 2644char *copy_mount_string(const void __user *data)
eca6f534 2645{
b8850d1f 2646 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2647}
2648
1da177e4
LT
2649/*
2650 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2651 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2652 *
2653 * data is a (void *) that can point to any structure up to
2654 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2655 * information (or be NULL).
2656 *
2657 * Pre-0.97 versions of mount() didn't have a flags word.
2658 * When the flags word was introduced its top half was required
2659 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2660 * Therefore, if this magic number is present, it carries no information
2661 * and must be discarded.
2662 */
5e6123f3 2663long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2664 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2665{
2d92ab3c 2666 struct path path;
1da177e4
LT
2667 int retval = 0;
2668 int mnt_flags = 0;
2669
2670 /* Discard magic */
2671 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2672 flags &= ~MS_MGC_MSK;
2673
2674 /* Basic sanity checks */
1da177e4
LT
2675 if (data_page)
2676 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2677
a27ab9f2 2678 /* ... and get the mountpoint */
5e6123f3 2679 retval = user_path(dir_name, &path);
a27ab9f2
TH
2680 if (retval)
2681 return retval;
2682
2683 retval = security_sb_mount(dev_name, &path,
2684 type_page, flags, data_page);
0d5cadb8
AV
2685 if (!retval && !may_mount())
2686 retval = -EPERM;
9e8925b6
JL
2687 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2688 retval = -EPERM;
a27ab9f2
TH
2689 if (retval)
2690 goto dput_out;
2691
613cbe3d
AK
2692 /* Default to relatime unless overriden */
2693 if (!(flags & MS_NOATIME))
2694 mnt_flags |= MNT_RELATIME;
0a1c01c9 2695
1da177e4
LT
2696 /* Separate the per-mountpoint flags */
2697 if (flags & MS_NOSUID)
2698 mnt_flags |= MNT_NOSUID;
2699 if (flags & MS_NODEV)
2700 mnt_flags |= MNT_NODEV;
2701 if (flags & MS_NOEXEC)
2702 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2703 if (flags & MS_NOATIME)
2704 mnt_flags |= MNT_NOATIME;
2705 if (flags & MS_NODIRATIME)
2706 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2707 if (flags & MS_STRICTATIME)
2708 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2709 if (flags & MS_RDONLY)
2710 mnt_flags |= MNT_READONLY;
fc33a7bb 2711
ffbc6f0e
EB
2712 /* The default atime for remount is preservation */
2713 if ((flags & MS_REMOUNT) &&
2714 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2715 MS_STRICTATIME)) == 0)) {
2716 mnt_flags &= ~MNT_ATIME_MASK;
2717 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2718 }
2719
7a4dec53 2720 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2721 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2722 MS_STRICTATIME);
1da177e4 2723
1da177e4 2724 if (flags & MS_REMOUNT)
2d92ab3c 2725 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2726 data_page);
2727 else if (flags & MS_BIND)
2d92ab3c 2728 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2729 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2730 retval = do_change_type(&path, flags);
1da177e4 2731 else if (flags & MS_MOVE)
2d92ab3c 2732 retval = do_move_mount(&path, dev_name);
1da177e4 2733 else
2d92ab3c 2734 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2735 dev_name, data_page);
2736dput_out:
2d92ab3c 2737 path_put(&path);
1da177e4
LT
2738 return retval;
2739}
2740
771b1371
EB
2741static void free_mnt_ns(struct mnt_namespace *ns)
2742{
6344c433 2743 ns_free_inum(&ns->ns);
771b1371
EB
2744 put_user_ns(ns->user_ns);
2745 kfree(ns);
2746}
2747
8823c079
EB
2748/*
2749 * Assign a sequence number so we can detect when we attempt to bind
2750 * mount a reference to an older mount namespace into the current
2751 * mount namespace, preventing reference counting loops. A 64bit
2752 * number incrementing at 10Ghz will take 12,427 years to wrap which
2753 * is effectively never, so we can ignore the possibility.
2754 */
2755static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2756
771b1371 2757static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2758{
2759 struct mnt_namespace *new_ns;
98f842e6 2760 int ret;
cf8d2c11
TM
2761
2762 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2763 if (!new_ns)
2764 return ERR_PTR(-ENOMEM);
6344c433 2765 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2766 if (ret) {
2767 kfree(new_ns);
2768 return ERR_PTR(ret);
2769 }
33c42940 2770 new_ns->ns.ops = &mntns_operations;
8823c079 2771 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2772 atomic_set(&new_ns->count, 1);
2773 new_ns->root = NULL;
2774 INIT_LIST_HEAD(&new_ns->list);
2775 init_waitqueue_head(&new_ns->poll);
2776 new_ns->event = 0;
771b1371 2777 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2778 return new_ns;
2779}
2780
9559f689
AV
2781struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2782 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2783{
6b3286ed 2784 struct mnt_namespace *new_ns;
7f2da1e7 2785 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2786 struct mount *p, *q;
9559f689 2787 struct mount *old;
cb338d06 2788 struct mount *new;
7a472ef4 2789 int copy_flags;
1da177e4 2790
9559f689
AV
2791 BUG_ON(!ns);
2792
2793 if (likely(!(flags & CLONE_NEWNS))) {
2794 get_mnt_ns(ns);
2795 return ns;
2796 }
2797
2798 old = ns->root;
2799
771b1371 2800 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2801 if (IS_ERR(new_ns))
2802 return new_ns;
1da177e4 2803
97216be0 2804 namespace_lock();
1da177e4 2805 /* First pass: copy the tree topology */
4ce5d2b1 2806 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2807 if (user_ns != ns->user_ns)
132c94e3 2808 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2809 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2810 if (IS_ERR(new)) {
328e6d90 2811 namespace_unlock();
771b1371 2812 free_mnt_ns(new_ns);
be34d1a3 2813 return ERR_CAST(new);
1da177e4 2814 }
be08d6d2 2815 new_ns->root = new;
1a4eeaf2 2816 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2817
2818 /*
2819 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2820 * as belonging to new namespace. We have already acquired a private
2821 * fs_struct, so tsk->fs->lock is not needed.
2822 */
909b0a88 2823 p = old;
cb338d06 2824 q = new;
1da177e4 2825 while (p) {
143c8c91 2826 q->mnt_ns = new_ns;
9559f689
AV
2827 if (new_fs) {
2828 if (&p->mnt == new_fs->root.mnt) {
2829 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2830 rootmnt = &p->mnt;
1da177e4 2831 }
9559f689
AV
2832 if (&p->mnt == new_fs->pwd.mnt) {
2833 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2834 pwdmnt = &p->mnt;
1da177e4 2835 }
1da177e4 2836 }
909b0a88
AV
2837 p = next_mnt(p, old);
2838 q = next_mnt(q, new);
4ce5d2b1
EB
2839 if (!q)
2840 break;
2841 while (p->mnt.mnt_root != q->mnt.mnt_root)
2842 p = next_mnt(p, old);
1da177e4 2843 }
328e6d90 2844 namespace_unlock();
1da177e4 2845
1da177e4 2846 if (rootmnt)
f03c6599 2847 mntput(rootmnt);
1da177e4 2848 if (pwdmnt)
f03c6599 2849 mntput(pwdmnt);
1da177e4 2850
741a2951 2851 return new_ns;
1da177e4
LT
2852}
2853
cf8d2c11
TM
2854/**
2855 * create_mnt_ns - creates a private namespace and adds a root filesystem
2856 * @mnt: pointer to the new root filesystem mountpoint
2857 */
1a4eeaf2 2858static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2859{
771b1371 2860 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2861 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2862 struct mount *mnt = real_mount(m);
2863 mnt->mnt_ns = new_ns;
be08d6d2 2864 new_ns->root = mnt;
b1983cd8 2865 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2866 } else {
1a4eeaf2 2867 mntput(m);
cf8d2c11
TM
2868 }
2869 return new_ns;
2870}
cf8d2c11 2871
ea441d11
AV
2872struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2873{
2874 struct mnt_namespace *ns;
d31da0f0 2875 struct super_block *s;
ea441d11
AV
2876 struct path path;
2877 int err;
2878
2879 ns = create_mnt_ns(mnt);
2880 if (IS_ERR(ns))
2881 return ERR_CAST(ns);
2882
2883 err = vfs_path_lookup(mnt->mnt_root, mnt,
2884 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2885
2886 put_mnt_ns(ns);
2887
2888 if (err)
2889 return ERR_PTR(err);
2890
2891 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2892 s = path.mnt->mnt_sb;
2893 atomic_inc(&s->s_active);
ea441d11
AV
2894 mntput(path.mnt);
2895 /* lock the sucker */
d31da0f0 2896 down_write(&s->s_umount);
ea441d11
AV
2897 /* ... and return the root of (sub)tree on it */
2898 return path.dentry;
2899}
2900EXPORT_SYMBOL(mount_subtree);
2901
bdc480e3
HC
2902SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2903 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2904{
eca6f534
VN
2905 int ret;
2906 char *kernel_type;
eca6f534 2907 char *kernel_dev;
b40ef869 2908 void *options;
1da177e4 2909
b8850d1f
TG
2910 kernel_type = copy_mount_string(type);
2911 ret = PTR_ERR(kernel_type);
2912 if (IS_ERR(kernel_type))
eca6f534 2913 goto out_type;
1da177e4 2914
b8850d1f
TG
2915 kernel_dev = copy_mount_string(dev_name);
2916 ret = PTR_ERR(kernel_dev);
2917 if (IS_ERR(kernel_dev))
eca6f534 2918 goto out_dev;
1da177e4 2919
b40ef869
AV
2920 options = copy_mount_options(data);
2921 ret = PTR_ERR(options);
2922 if (IS_ERR(options))
eca6f534 2923 goto out_data;
1da177e4 2924
b40ef869 2925 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 2926
b40ef869 2927 kfree(options);
eca6f534
VN
2928out_data:
2929 kfree(kernel_dev);
2930out_dev:
eca6f534
VN
2931 kfree(kernel_type);
2932out_type:
2933 return ret;
1da177e4
LT
2934}
2935
afac7cba
AV
2936/*
2937 * Return true if path is reachable from root
2938 *
48a066e7 2939 * namespace_sem or mount_lock is held
afac7cba 2940 */
643822b4 2941bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2942 const struct path *root)
2943{
643822b4 2944 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2945 dentry = mnt->mnt_mountpoint;
0714a533 2946 mnt = mnt->mnt_parent;
afac7cba 2947 }
643822b4 2948 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2949}
2950
25ab4c9b 2951bool path_is_under(struct path *path1, struct path *path2)
afac7cba 2952{
25ab4c9b 2953 bool res;
48a066e7 2954 read_seqlock_excl(&mount_lock);
643822b4 2955 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2956 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2957 return res;
2958}
2959EXPORT_SYMBOL(path_is_under);
2960
1da177e4
LT
2961/*
2962 * pivot_root Semantics:
2963 * Moves the root file system of the current process to the directory put_old,
2964 * makes new_root as the new root file system of the current process, and sets
2965 * root/cwd of all processes which had them on the current root to new_root.
2966 *
2967 * Restrictions:
2968 * The new_root and put_old must be directories, and must not be on the
2969 * same file system as the current process root. The put_old must be
2970 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2971 * pointed to by put_old must yield the same directory as new_root. No other
2972 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2973 *
4a0d11fa
NB
2974 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2975 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2976 * in this situation.
2977 *
1da177e4
LT
2978 * Notes:
2979 * - we don't move root/cwd if they are not at the root (reason: if something
2980 * cared enough to change them, it's probably wrong to force them elsewhere)
2981 * - it's okay to pick a root that isn't the root of a file system, e.g.
2982 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2983 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2984 * first.
2985 */
3480b257
HC
2986SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2987 const char __user *, put_old)
1da177e4 2988{
2d8f3038 2989 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2990 struct mount *new_mnt, *root_mnt, *old_mnt;
2991 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2992 int error;
2993
9b40bc90 2994 if (!may_mount())
1da177e4
LT
2995 return -EPERM;
2996
2d8f3038 2997 error = user_path_dir(new_root, &new);
1da177e4
LT
2998 if (error)
2999 goto out0;
1da177e4 3000
2d8f3038 3001 error = user_path_dir(put_old, &old);
1da177e4
LT
3002 if (error)
3003 goto out1;
3004
2d8f3038 3005 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3006 if (error)
3007 goto out2;
1da177e4 3008
f7ad3c6b 3009 get_fs_root(current->fs, &root);
84d17192
AV
3010 old_mp = lock_mount(&old);
3011 error = PTR_ERR(old_mp);
3012 if (IS_ERR(old_mp))
b12cea91
AV
3013 goto out3;
3014
1da177e4 3015 error = -EINVAL;
419148da
AV
3016 new_mnt = real_mount(new.mnt);
3017 root_mnt = real_mount(root.mnt);
84d17192
AV
3018 old_mnt = real_mount(old.mnt);
3019 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3020 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3021 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3022 goto out4;
143c8c91 3023 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3024 goto out4;
5ff9d8a6
EB
3025 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3026 goto out4;
1da177e4 3027 error = -ENOENT;
f3da392e 3028 if (d_unlinked(new.dentry))
b12cea91 3029 goto out4;
1da177e4 3030 error = -EBUSY;
84d17192 3031 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3032 goto out4; /* loop, on the same file system */
1da177e4 3033 error = -EINVAL;
8c3ee42e 3034 if (root.mnt->mnt_root != root.dentry)
b12cea91 3035 goto out4; /* not a mountpoint */
676da58d 3036 if (!mnt_has_parent(root_mnt))
b12cea91 3037 goto out4; /* not attached */
84d17192 3038 root_mp = root_mnt->mnt_mp;
2d8f3038 3039 if (new.mnt->mnt_root != new.dentry)
b12cea91 3040 goto out4; /* not a mountpoint */
676da58d 3041 if (!mnt_has_parent(new_mnt))
b12cea91 3042 goto out4; /* not attached */
4ac91378 3043 /* make sure we can reach put_old from new_root */
84d17192 3044 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3045 goto out4;
0d082601
EB
3046 /* make certain new is below the root */
3047 if (!is_path_reachable(new_mnt, new.dentry, &root))
3048 goto out4;
84d17192 3049 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3050 lock_mount_hash();
419148da
AV
3051 detach_mnt(new_mnt, &parent_path);
3052 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3053 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3054 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3055 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3056 }
4ac91378 3057 /* mount old root on put_old */
84d17192 3058 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3059 /* mount new_root on / */
84d17192 3060 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3061 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3062 /* A moved mount should not expire automatically */
3063 list_del_init(&new_mnt->mnt_expire);
719ea2fb 3064 unlock_mount_hash();
2d8f3038 3065 chroot_fs_refs(&root, &new);
84d17192 3066 put_mountpoint(root_mp);
1da177e4 3067 error = 0;
b12cea91 3068out4:
84d17192 3069 unlock_mount(old_mp);
b12cea91
AV
3070 if (!error) {
3071 path_put(&root_parent);
3072 path_put(&parent_path);
3073 }
3074out3:
8c3ee42e 3075 path_put(&root);
b12cea91 3076out2:
2d8f3038 3077 path_put(&old);
1da177e4 3078out1:
2d8f3038 3079 path_put(&new);
1da177e4 3080out0:
1da177e4 3081 return error;
1da177e4
LT
3082}
3083
3084static void __init init_mount_tree(void)
3085{
3086 struct vfsmount *mnt;
6b3286ed 3087 struct mnt_namespace *ns;
ac748a09 3088 struct path root;
0c55cfc4 3089 struct file_system_type *type;
1da177e4 3090
0c55cfc4
EB
3091 type = get_fs_type("rootfs");
3092 if (!type)
3093 panic("Can't find rootfs type");
3094 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3095 put_filesystem(type);
1da177e4
LT
3096 if (IS_ERR(mnt))
3097 panic("Can't create rootfs");
b3e19d92 3098
3b22edc5
TM
3099 ns = create_mnt_ns(mnt);
3100 if (IS_ERR(ns))
1da177e4 3101 panic("Can't allocate initial namespace");
6b3286ed
KK
3102
3103 init_task.nsproxy->mnt_ns = ns;
3104 get_mnt_ns(ns);
3105
be08d6d2
AV
3106 root.mnt = mnt;
3107 root.dentry = mnt->mnt_root;
da362b09 3108 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3109
3110 set_fs_pwd(current->fs, &root);
3111 set_fs_root(current->fs, &root);
1da177e4
LT
3112}
3113
74bf17cf 3114void __init mnt_init(void)
1da177e4 3115{
13f14b4d 3116 unsigned u;
15a67dd8 3117 int err;
1da177e4 3118
7d6fec45 3119 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3120 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3121
0818bf27 3122 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3123 sizeof(struct hlist_head),
0818bf27
AV
3124 mhash_entries, 19,
3125 0,
3126 &m_hash_shift, &m_hash_mask, 0, 0);
3127 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3128 sizeof(struct hlist_head),
3129 mphash_entries, 19,
3130 0,
3131 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3132
84d17192 3133 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3134 panic("Failed to allocate mount hash table\n");
3135
0818bf27 3136 for (u = 0; u <= m_hash_mask; u++)
38129a13 3137 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3138 for (u = 0; u <= mp_hash_mask; u++)
3139 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3140
4b93dc9b
TH
3141 kernfs_init();
3142
15a67dd8
RD
3143 err = sysfs_init();
3144 if (err)
3145 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3146 __func__, err);
00d26666
GKH
3147 fs_kobj = kobject_create_and_add("fs", NULL);
3148 if (!fs_kobj)
8e24eea7 3149 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3150 init_rootfs();
3151 init_mount_tree();
3152}
3153
616511d0 3154void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3155{
d498b25a 3156 if (!atomic_dec_and_test(&ns->count))
616511d0 3157 return;
7b00ed6f 3158 drop_collected_mounts(&ns->root->mnt);
771b1371 3159 free_mnt_ns(ns);
1da177e4 3160}
9d412a43
AV
3161
3162struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3163{
423e0ab0
TC
3164 struct vfsmount *mnt;
3165 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3166 if (!IS_ERR(mnt)) {
3167 /*
3168 * it is a longterm mount, don't release mnt until
3169 * we unmount before file sys is unregistered
3170 */
f7a99c5b 3171 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3172 }
3173 return mnt;
9d412a43
AV
3174}
3175EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3176
3177void kern_unmount(struct vfsmount *mnt)
3178{
3179 /* release long term mount so mount point can be released */
3180 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3181 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3182 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3183 mntput(mnt);
3184 }
3185}
3186EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3187
3188bool our_mnt(struct vfsmount *mnt)
3189{
143c8c91 3190 return check_mnt(real_mount(mnt));
02125a82 3191}
8823c079 3192
3151527e
EB
3193bool current_chrooted(void)
3194{
3195 /* Does the current process have a non-standard root */
3196 struct path ns_root;
3197 struct path fs_root;
3198 bool chrooted;
3199
3200 /* Find the namespace root */
3201 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3202 ns_root.dentry = ns_root.mnt->mnt_root;
3203 path_get(&ns_root);
3204 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3205 ;
3206
3207 get_fs_root(current->fs, &fs_root);
3208
3209 chrooted = !path_equal(&fs_root, &ns_root);
3210
3211 path_put(&fs_root);
3212 path_put(&ns_root);
3213
3214 return chrooted;
3215}
3216
8c6cf9cc 3217static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
87a8ebd6
EB
3218{
3219 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
8c6cf9cc 3220 int new_flags = *new_mnt_flags;
87a8ebd6 3221 struct mount *mnt;
e51db735 3222 bool visible = false;
87a8ebd6 3223
e51db735
EB
3224 if (unlikely(!ns))
3225 return false;
3226
44bb4385 3227 down_read(&namespace_sem);
87a8ebd6 3228 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3229 struct mount *child;
77b1a97d
EB
3230 int mnt_flags;
3231
e51db735
EB
3232 if (mnt->mnt.mnt_sb->s_type != type)
3233 continue;
3234
7e96c1b0
EB
3235 /* This mount is not fully visible if it's root directory
3236 * is not the root directory of the filesystem.
3237 */
3238 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3239 continue;
3240
77b1a97d
EB
3241 /* Read the mount flags and filter out flags that
3242 * may safely be ignored.
3243 */
3244 mnt_flags = mnt->mnt.mnt_flags;
3245 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3246 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3247
8c6cf9cc
EB
3248 /* Verify the mount flags are equal to or more permissive
3249 * than the proposed new mount.
3250 */
77b1a97d 3251 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3252 !(new_flags & MNT_READONLY))
3253 continue;
77b1a97d 3254 if ((mnt_flags & MNT_LOCK_NODEV) &&
8c6cf9cc
EB
3255 !(new_flags & MNT_NODEV))
3256 continue;
77b1a97d
EB
3257 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3258 !(new_flags & MNT_NOSUID))
3259 continue;
3260 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3261 !(new_flags & MNT_NOEXEC))
3262 continue;
3263 if ((mnt_flags & MNT_LOCK_ATIME) &&
3264 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3265 continue;
3266
ceeb0e5d
EB
3267 /* This mount is not fully visible if there are any
3268 * locked child mounts that cover anything except for
3269 * empty directories.
e51db735
EB
3270 */
3271 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3272 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3273 /* Only worry about locked mounts */
77b1a97d 3274 if (!(mnt_flags & MNT_LOCKED))
ceeb0e5d 3275 continue;
7236c85e
EB
3276 /* Is the directory permanetly empty? */
3277 if (!is_empty_dir_inode(inode))
e51db735 3278 goto next;
87a8ebd6 3279 }
8c6cf9cc 3280 /* Preserve the locked attributes */
77b1a97d
EB
3281 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3282 MNT_LOCK_NODEV | \
3283 MNT_LOCK_NOSUID | \
3284 MNT_LOCK_NOEXEC | \
3285 MNT_LOCK_ATIME);
e51db735
EB
3286 visible = true;
3287 goto found;
3288 next: ;
87a8ebd6 3289 }
e51db735 3290found:
44bb4385 3291 up_read(&namespace_sem);
e51db735 3292 return visible;
87a8ebd6
EB
3293}
3294
64964528 3295static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3296{
58be2825 3297 struct ns_common *ns = NULL;
8823c079
EB
3298 struct nsproxy *nsproxy;
3299
728dba3a
EB
3300 task_lock(task);
3301 nsproxy = task->nsproxy;
8823c079 3302 if (nsproxy) {
58be2825
AV
3303 ns = &nsproxy->mnt_ns->ns;
3304 get_mnt_ns(to_mnt_ns(ns));
8823c079 3305 }
728dba3a 3306 task_unlock(task);
8823c079
EB
3307
3308 return ns;
3309}
3310
64964528 3311static void mntns_put(struct ns_common *ns)
8823c079 3312{
58be2825 3313 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3314}
3315
64964528 3316static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3317{
3318 struct fs_struct *fs = current->fs;
58be2825 3319 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3320 struct path root;
3321
0c55cfc4 3322 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3323 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3324 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3325 return -EPERM;
8823c079
EB
3326
3327 if (fs->users != 1)
3328 return -EINVAL;
3329
3330 get_mnt_ns(mnt_ns);
3331 put_mnt_ns(nsproxy->mnt_ns);
3332 nsproxy->mnt_ns = mnt_ns;
3333
3334 /* Find the root */
3335 root.mnt = &mnt_ns->root->mnt;
3336 root.dentry = mnt_ns->root->mnt.mnt_root;
3337 path_get(&root);
3338 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3339 ;
3340
3341 /* Update the pwd and root */
3342 set_fs_pwd(fs, &root);
3343 set_fs_root(fs, &root);
3344
3345 path_put(&root);
3346 return 0;
3347}
3348
3349const struct proc_ns_operations mntns_operations = {
3350 .name = "mnt",
3351 .type = CLONE_NEWNS,
3352 .get = mntns_get,
3353 .put = mntns_put,
3354 .install = mntns_install,
3355};