sparc: switch to using asm-generic for seccomp.h
[linux-2.6-block.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
1da177e4
LT
40
41/*
42 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 43 * the size of a structure in the slab cache
1da177e4
LT
44 */
45#define DIO_PAGES 64
46
47/*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
1da177e4
LT
57 */
58
eb28be2b
AK
59/* dio_state only used in the submission path */
60
61struct dio_submit {
1da177e4 62 struct bio *bio; /* bio under assembly */
1da177e4
LT
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4 77 sector_t final_block_in_request;/* doesn't change */
1da177e4 78 int boundary; /* prev block is at a boundary */
1d8fa7a2 79 get_block_t *get_block; /* block mapping function */
facd07b0 80 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 81
facd07b0 82 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
1da177e4
LT
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
facd07b0 96 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 97
7b2c99d1 98 struct iov_iter *iter;
1da177e4
LT
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
1da177e4
LT
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
7b2c99d1 105 size_t from, to;
eb28be2b
AK
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110 int flags; /* doesn't change */
eb28be2b 111 int rw;
0dc2bc49 112 struct inode *inode;
eb28be2b
AK
113 loff_t i_size; /* i_size when submitted */
114 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 115
18772641 116 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
117
118 /* BIO completion state */
119 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
120 int page_errors; /* errno from get_user_pages() */
121 int is_async; /* is IO async ? */
7b7a8665 122 bool defer_completion; /* defer AIO completion to workqueue? */
0dc2bc49 123 int io_error; /* IO error in completion path */
eb28be2b
AK
124 unsigned long refcount; /* direct_io_worker() and bios */
125 struct bio *bio_list; /* singly linked via bi_private */
126 struct task_struct *waiter; /* waiting task (NULL if none) */
127
128 /* AIO related stuff */
129 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
130 ssize_t result; /* IO result */
131
23aee091
JM
132 /*
133 * pages[] (and any fields placed after it) are not zeroed out at
134 * allocation time. Don't add new fields after pages[] unless you
135 * wish that they not be zeroed.
136 */
7b7a8665
CH
137 union {
138 struct page *pages[DIO_PAGES]; /* page buffer */
139 struct work_struct complete_work;/* deferred AIO completion */
140 };
6e8267f5
AK
141} ____cacheline_aligned_in_smp;
142
143static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
144
145/*
146 * How many pages are in the queue?
147 */
eb28be2b 148static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 149{
eb28be2b 150 return sdio->tail - sdio->head;
1da177e4
LT
151}
152
153/*
154 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
155 */
ba253fbf 156static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 157{
7b2c99d1 158 ssize_t ret;
1da177e4 159
2c80929c 160 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 161 &sdio->from);
1da177e4 162
eb28be2b 163 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 164 struct page *page = ZERO_PAGE(0);
1da177e4
LT
165 /*
166 * A memory fault, but the filesystem has some outstanding
167 * mapped blocks. We need to use those blocks up to avoid
168 * leaking stale data in the file.
169 */
170 if (dio->page_errors == 0)
171 dio->page_errors = ret;
b5810039
NP
172 page_cache_get(page);
173 dio->pages[0] = page;
eb28be2b
AK
174 sdio->head = 0;
175 sdio->tail = 1;
7b2c99d1
AV
176 sdio->from = 0;
177 sdio->to = PAGE_SIZE;
178 return 0;
1da177e4
LT
179 }
180
181 if (ret >= 0) {
7b2c99d1
AV
182 iov_iter_advance(sdio->iter, ret);
183 ret += sdio->from;
eb28be2b 184 sdio->head = 0;
7b2c99d1
AV
185 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187 return 0;
1da177e4 188 }
1da177e4
LT
189 return ret;
190}
191
192/*
193 * Get another userspace page. Returns an ERR_PTR on error. Pages are
194 * buffered inside the dio so that we can call get_user_pages() against a
195 * decent number of pages, less frequently. To provide nicer use of the
196 * L1 cache.
197 */
ba253fbf 198static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 199 struct dio_submit *sdio)
1da177e4 200{
eb28be2b 201 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
202 int ret;
203
eb28be2b 204 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
205 if (ret)
206 return ERR_PTR(ret);
eb28be2b 207 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 208 }
6fcc5420 209 return dio->pages[sdio->head];
1da177e4
LT
210}
211
6d544bb4
ZB
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
7b7a8665
CH
216 * This drops i_dio_count, lets interested parties know that a DIO operation
217 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
218 *
219 * It lets the filesystem know if it registered an interest earlier via
220 * get_block. Pass the private field of the map buffer_head so that
221 * filesystems can use it to hold additional state between get_block calls and
222 * dio_complete.
1da177e4 223 */
7b7a8665
CH
224static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225 bool is_async)
1da177e4 226{
6d544bb4
ZB
227 ssize_t transferred = 0;
228
8459d86a
ZB
229 /*
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
234 */
235 if (ret == -EIOCBQUEUED)
236 ret = 0;
237
6d544bb4
ZB
238 if (dio->result) {
239 transferred = dio->result;
240
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
244 }
245
6d544bb4
ZB
246 if (ret == 0)
247 ret = dio->page_errors;
248 if (ret == 0)
249 ret = dio->io_error;
250 if (ret == 0)
251 ret = transferred;
252
7b7a8665
CH
253 if (dio->end_io && dio->result)
254 dio->end_io(dio->iocb, offset, transferred, dio->private);
255
256 inode_dio_done(dio->inode);
02afc27f
CH
257 if (is_async) {
258 if (dio->rw & WRITE) {
259 int err;
260
261 err = generic_write_sync(dio->iocb->ki_filp, offset,
262 transferred);
263 if (err < 0 && ret > 0)
264 ret = err;
265 }
266
04b2fa9f 267 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 268 }
40e2e973 269
7b7a8665 270 kmem_cache_free(dio_cache, dio);
6d544bb4 271 return ret;
1da177e4
LT
272}
273
7b7a8665
CH
274static void dio_aio_complete_work(struct work_struct *work)
275{
276 struct dio *dio = container_of(work, struct dio, complete_work);
277
278 dio_complete(dio, dio->iocb->ki_pos, 0, true);
279}
280
1da177e4 281static int dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 282
1da177e4
LT
283/*
284 * Asynchronous IO callback.
285 */
6712ecf8 286static void dio_bio_end_aio(struct bio *bio, int error)
1da177e4
LT
287{
288 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
289 unsigned long remaining;
290 unsigned long flags;
1da177e4 291
1da177e4
LT
292 /* cleanup the bio */
293 dio_bio_complete(dio, bio);
0273201e 294
5eb6c7a2
ZB
295 spin_lock_irqsave(&dio->bio_lock, flags);
296 remaining = --dio->refcount;
297 if (remaining == 1 && dio->waiter)
20258b2b 298 wake_up_process(dio->waiter);
5eb6c7a2 299 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 300
8459d86a 301 if (remaining == 0) {
7b7a8665
CH
302 if (dio->result && dio->defer_completion) {
303 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
304 queue_work(dio->inode->i_sb->s_dio_done_wq,
305 &dio->complete_work);
306 } else {
307 dio_complete(dio, dio->iocb->ki_pos, 0, true);
308 }
8459d86a 309 }
1da177e4
LT
310}
311
312/*
313 * The BIO completion handler simply queues the BIO up for the process-context
314 * handler.
315 *
316 * During I/O bi_private points at the dio. After I/O, bi_private is used to
317 * implement a singly-linked list of completed BIOs, at dio->bio_list.
318 */
6712ecf8 319static void dio_bio_end_io(struct bio *bio, int error)
1da177e4
LT
320{
321 struct dio *dio = bio->bi_private;
322 unsigned long flags;
323
1da177e4
LT
324 spin_lock_irqsave(&dio->bio_lock, flags);
325 bio->bi_private = dio->bio_list;
326 dio->bio_list = bio;
5eb6c7a2 327 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
328 wake_up_process(dio->waiter);
329 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
330}
331
facd07b0
JB
332/**
333 * dio_end_io - handle the end io action for the given bio
334 * @bio: The direct io bio thats being completed
335 * @error: Error if there was one
336 *
337 * This is meant to be called by any filesystem that uses their own dio_submit_t
338 * so that the DIO specific endio actions are dealt with after the filesystem
339 * has done it's completion work.
340 */
341void dio_end_io(struct bio *bio, int error)
342{
343 struct dio *dio = bio->bi_private;
344
345 if (dio->is_async)
346 dio_bio_end_aio(bio, error);
347 else
348 dio_bio_end_io(bio, error);
349}
350EXPORT_SYMBOL_GPL(dio_end_io);
351
ba253fbf 352static inline void
eb28be2b
AK
353dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
354 struct block_device *bdev,
355 sector_t first_sector, int nr_vecs)
1da177e4
LT
356{
357 struct bio *bio;
358
20d9600c
DD
359 /*
360 * bio_alloc() is guaranteed to return a bio when called with
361 * __GFP_WAIT and we request a valid number of vectors.
362 */
1da177e4 363 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
364
365 bio->bi_bdev = bdev;
4f024f37 366 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
367 if (dio->is_async)
368 bio->bi_end_io = dio_bio_end_aio;
369 else
370 bio->bi_end_io = dio_bio_end_io;
371
eb28be2b
AK
372 sdio->bio = bio;
373 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
374}
375
376/*
377 * In the AIO read case we speculatively dirty the pages before starting IO.
378 * During IO completion, any of these pages which happen to have been written
379 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
380 *
381 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 382 */
ba253fbf 383static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 384{
eb28be2b 385 struct bio *bio = sdio->bio;
5eb6c7a2 386 unsigned long flags;
1da177e4
LT
387
388 bio->bi_private = dio;
5eb6c7a2
ZB
389
390 spin_lock_irqsave(&dio->bio_lock, flags);
391 dio->refcount++;
392 spin_unlock_irqrestore(&dio->bio_lock, flags);
393
1da177e4
LT
394 if (dio->is_async && dio->rw == READ)
395 bio_set_pages_dirty(bio);
5eb6c7a2 396
eb28be2b
AK
397 if (sdio->submit_io)
398 sdio->submit_io(dio->rw, bio, dio->inode,
399 sdio->logical_offset_in_bio);
facd07b0
JB
400 else
401 submit_bio(dio->rw, bio);
1da177e4 402
eb28be2b
AK
403 sdio->bio = NULL;
404 sdio->boundary = 0;
405 sdio->logical_offset_in_bio = 0;
1da177e4
LT
406}
407
408/*
409 * Release any resources in case of a failure
410 */
ba253fbf 411static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 412{
7b2c99d1
AV
413 while (sdio->head < sdio->tail)
414 page_cache_release(dio->pages[sdio->head++]);
1da177e4
LT
415}
416
417/*
0273201e
ZB
418 * Wait for the next BIO to complete. Remove it and return it. NULL is
419 * returned once all BIOs have been completed. This must only be called once
420 * all bios have been issued so that dio->refcount can only decrease. This
421 * requires that that the caller hold a reference on the dio.
1da177e4
LT
422 */
423static struct bio *dio_await_one(struct dio *dio)
424{
425 unsigned long flags;
0273201e 426 struct bio *bio = NULL;
1da177e4
LT
427
428 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
429
430 /*
431 * Wait as long as the list is empty and there are bios in flight. bio
432 * completion drops the count, maybe adds to the list, and wakes while
433 * holding the bio_lock so we don't need set_current_state()'s barrier
434 * and can call it after testing our condition.
435 */
436 while (dio->refcount > 1 && dio->bio_list == NULL) {
437 __set_current_state(TASK_UNINTERRUPTIBLE);
438 dio->waiter = current;
439 spin_unlock_irqrestore(&dio->bio_lock, flags);
440 io_schedule();
441 /* wake up sets us TASK_RUNNING */
442 spin_lock_irqsave(&dio->bio_lock, flags);
443 dio->waiter = NULL;
1da177e4 444 }
0273201e
ZB
445 if (dio->bio_list) {
446 bio = dio->bio_list;
447 dio->bio_list = bio->bi_private;
448 }
1da177e4
LT
449 spin_unlock_irqrestore(&dio->bio_lock, flags);
450 return bio;
451}
452
453/*
454 * Process one completed BIO. No locks are held.
455 */
456static int dio_bio_complete(struct dio *dio, struct bio *bio)
457{
458 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
cb34e057
KO
459 struct bio_vec *bvec;
460 unsigned i;
1da177e4
LT
461
462 if (!uptodate)
174e27c6 463 dio->io_error = -EIO;
1da177e4
LT
464
465 if (dio->is_async && dio->rw == READ) {
466 bio_check_pages_dirty(bio); /* transfers ownership */
467 } else {
cb34e057
KO
468 bio_for_each_segment_all(bvec, bio, i) {
469 struct page *page = bvec->bv_page;
1da177e4
LT
470
471 if (dio->rw == READ && !PageCompound(page))
472 set_page_dirty_lock(page);
473 page_cache_release(page);
474 }
475 bio_put(bio);
476 }
1da177e4
LT
477 return uptodate ? 0 : -EIO;
478}
479
480/*
0273201e
ZB
481 * Wait on and process all in-flight BIOs. This must only be called once
482 * all bios have been issued so that the refcount can only decrease.
483 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 484 * errors are propagated through dio->io_error and should be propagated via
0273201e 485 * dio_complete().
1da177e4 486 */
6d544bb4 487static void dio_await_completion(struct dio *dio)
1da177e4 488{
0273201e
ZB
489 struct bio *bio;
490 do {
491 bio = dio_await_one(dio);
492 if (bio)
493 dio_bio_complete(dio, bio);
494 } while (bio);
1da177e4
LT
495}
496
497/*
498 * A really large O_DIRECT read or write can generate a lot of BIOs. So
499 * to keep the memory consumption sane we periodically reap any completed BIOs
500 * during the BIO generation phase.
501 *
502 * This also helps to limit the peak amount of pinned userspace memory.
503 */
ba253fbf 504static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
505{
506 int ret = 0;
507
eb28be2b 508 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
509 while (dio->bio_list) {
510 unsigned long flags;
511 struct bio *bio;
512 int ret2;
513
514 spin_lock_irqsave(&dio->bio_lock, flags);
515 bio = dio->bio_list;
516 dio->bio_list = bio->bi_private;
517 spin_unlock_irqrestore(&dio->bio_lock, flags);
518 ret2 = dio_bio_complete(dio, bio);
519 if (ret == 0)
520 ret = ret2;
521 }
eb28be2b 522 sdio->reap_counter = 0;
1da177e4
LT
523 }
524 return ret;
525}
526
7b7a8665
CH
527/*
528 * Create workqueue for deferred direct IO completions. We allocate the
529 * workqueue when it's first needed. This avoids creating workqueue for
530 * filesystems that don't need it and also allows us to create the workqueue
531 * late enough so the we can include s_id in the name of the workqueue.
532 */
533static int sb_init_dio_done_wq(struct super_block *sb)
534{
45150c43 535 struct workqueue_struct *old;
7b7a8665
CH
536 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
537 WQ_MEM_RECLAIM, 0,
538 sb->s_id);
539 if (!wq)
540 return -ENOMEM;
541 /*
542 * This has to be atomic as more DIOs can race to create the workqueue
543 */
45150c43 544 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 545 /* Someone created workqueue before us? Free ours... */
45150c43 546 if (old)
7b7a8665
CH
547 destroy_workqueue(wq);
548 return 0;
549}
550
551static int dio_set_defer_completion(struct dio *dio)
552{
553 struct super_block *sb = dio->inode->i_sb;
554
555 if (dio->defer_completion)
556 return 0;
557 dio->defer_completion = true;
558 if (!sb->s_dio_done_wq)
559 return sb_init_dio_done_wq(sb);
560 return 0;
561}
562
1da177e4
LT
563/*
564 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 565 * of available blocks at sdio->blocks_available. These are in units of the
1da177e4
LT
566 * fs blocksize, (1 << inode->i_blkbits).
567 *
568 * The fs is allowed to map lots of blocks at once. If it wants to do that,
569 * it uses the passed inode-relative block number as the file offset, as usual.
570 *
1d8fa7a2 571 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
572 * has remaining to do. The fs should not map more than this number of blocks.
573 *
574 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
575 * indicate how much contiguous disk space has been made available at
576 * bh->b_blocknr.
577 *
578 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
579 * This isn't very efficient...
580 *
581 * In the case of filesystem holes: the fs may return an arbitrarily-large
582 * hole by returning an appropriate value in b_size and by clearing
583 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 584 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 585 */
18772641
AK
586static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
587 struct buffer_head *map_bh)
1da177e4
LT
588{
589 int ret;
1da177e4 590 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 591 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 592 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 593 int create;
ab73857e 594 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
595
596 /*
597 * If there was a memory error and we've overwritten all the
598 * mapped blocks then we can now return that memory error
599 */
600 ret = dio->page_errors;
601 if (ret == 0) {
eb28be2b
AK
602 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
603 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
604 fs_endblk = (sdio->final_block_in_request - 1) >>
605 sdio->blkfactor;
606 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 607
3c674e74 608 map_bh->b_state = 0;
ab73857e 609 map_bh->b_size = fs_count << i_blkbits;
3c674e74 610
5fe878ae
CH
611 /*
612 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
613 * forbid block creations: only overwrites are permitted.
614 * We will return early to the caller once we see an
615 * unmapped buffer head returned, and the caller will fall
616 * back to buffered I/O.
617 *
618 * Otherwise the decision is left to the get_blocks method,
619 * which may decide to handle it or also return an unmapped
620 * buffer head.
621 */
b31dc66a 622 create = dio->rw & WRITE;
5fe878ae 623 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
624 if (sdio->block_in_file < (i_size_read(dio->inode) >>
625 sdio->blkbits))
1da177e4 626 create = 0;
1da177e4 627 }
3c674e74 628
eb28be2b 629 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 630 map_bh, create);
18772641
AK
631
632 /* Store for completion */
633 dio->private = map_bh->b_private;
7b7a8665
CH
634
635 if (ret == 0 && buffer_defer_completion(map_bh))
636 ret = dio_set_defer_completion(dio);
1da177e4
LT
637 }
638 return ret;
639}
640
641/*
642 * There is no bio. Make one now.
643 */
ba253fbf
AK
644static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
645 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
646{
647 sector_t sector;
648 int ret, nr_pages;
649
eb28be2b 650 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
651 if (ret)
652 goto out;
eb28be2b 653 sector = start_sector << (sdio->blkbits - 9);
18772641 654 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
1da177e4 655 BUG_ON(nr_pages <= 0);
18772641 656 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 657 sdio->boundary = 0;
1da177e4
LT
658out:
659 return ret;
660}
661
662/*
663 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
664 * that was successful then update final_block_in_bio and take a ref against
665 * the just-added page.
666 *
667 * Return zero on success. Non-zero means the caller needs to start a new BIO.
668 */
ba253fbf 669static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
670{
671 int ret;
672
eb28be2b
AK
673 ret = bio_add_page(sdio->bio, sdio->cur_page,
674 sdio->cur_page_len, sdio->cur_page_offset);
675 if (ret == sdio->cur_page_len) {
1da177e4
LT
676 /*
677 * Decrement count only, if we are done with this page
678 */
eb28be2b
AK
679 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
680 sdio->pages_in_io--;
681 page_cache_get(sdio->cur_page);
682 sdio->final_block_in_bio = sdio->cur_page_block +
683 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
684 ret = 0;
685 } else {
686 ret = 1;
687 }
688 return ret;
689}
690
691/*
692 * Put cur_page under IO. The section of cur_page which is described by
693 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
694 * starts on-disk at cur_page_block.
695 *
696 * We take a ref against the page here (on behalf of its presence in the bio).
697 *
698 * The caller of this function is responsible for removing cur_page from the
699 * dio, and for dropping the refcount which came from that presence.
700 */
ba253fbf
AK
701static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
702 struct buffer_head *map_bh)
1da177e4
LT
703{
704 int ret = 0;
705
eb28be2b
AK
706 if (sdio->bio) {
707 loff_t cur_offset = sdio->cur_page_fs_offset;
708 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 709 sdio->bio->bi_iter.bi_size;
c2c6ca41 710
1da177e4 711 /*
c2c6ca41
JB
712 * See whether this new request is contiguous with the old.
713 *
f0940cee
NK
714 * Btrfs cannot handle having logically non-contiguous requests
715 * submitted. For example if you have
c2c6ca41
JB
716 *
717 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 718 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
719 *
720 * We cannot submit those pages together as one BIO. So if our
721 * current logical offset in the file does not equal what would
722 * be the next logical offset in the bio, submit the bio we
723 * have.
1da177e4 724 */
eb28be2b 725 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 726 cur_offset != bio_next_offset)
eb28be2b 727 dio_bio_submit(dio, sdio);
1da177e4
LT
728 }
729
eb28be2b 730 if (sdio->bio == NULL) {
18772641 731 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
732 if (ret)
733 goto out;
734 }
735
eb28be2b
AK
736 if (dio_bio_add_page(sdio) != 0) {
737 dio_bio_submit(dio, sdio);
18772641 738 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 739 if (ret == 0) {
eb28be2b 740 ret = dio_bio_add_page(sdio);
1da177e4
LT
741 BUG_ON(ret != 0);
742 }
743 }
744out:
745 return ret;
746}
747
748/*
749 * An autonomous function to put a chunk of a page under deferred IO.
750 *
751 * The caller doesn't actually know (or care) whether this piece of page is in
752 * a BIO, or is under IO or whatever. We just take care of all possible
753 * situations here. The separation between the logic of do_direct_IO() and
754 * that of submit_page_section() is important for clarity. Please don't break.
755 *
756 * The chunk of page starts on-disk at blocknr.
757 *
758 * We perform deferred IO, by recording the last-submitted page inside our
759 * private part of the dio structure. If possible, we just expand the IO
760 * across that page here.
761 *
762 * If that doesn't work out then we put the old page into the bio and add this
763 * page to the dio instead.
764 */
ba253fbf 765static inline int
eb28be2b 766submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
767 unsigned offset, unsigned len, sector_t blocknr,
768 struct buffer_head *map_bh)
1da177e4
LT
769{
770 int ret = 0;
771
98c4d57d
AM
772 if (dio->rw & WRITE) {
773 /*
774 * Read accounting is performed in submit_bio()
775 */
776 task_io_account_write(len);
777 }
778
1da177e4
LT
779 /*
780 * Can we just grow the current page's presence in the dio?
781 */
eb28be2b
AK
782 if (sdio->cur_page == page &&
783 sdio->cur_page_offset + sdio->cur_page_len == offset &&
784 sdio->cur_page_block +
785 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
786 sdio->cur_page_len += len;
1da177e4
LT
787 goto out;
788 }
789
790 /*
791 * If there's a deferred page already there then send it.
792 */
eb28be2b 793 if (sdio->cur_page) {
18772641 794 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
795 page_cache_release(sdio->cur_page);
796 sdio->cur_page = NULL;
1da177e4 797 if (ret)
b1058b98 798 return ret;
1da177e4
LT
799 }
800
801 page_cache_get(page); /* It is in dio */
eb28be2b
AK
802 sdio->cur_page = page;
803 sdio->cur_page_offset = offset;
804 sdio->cur_page_len = len;
805 sdio->cur_page_block = blocknr;
806 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 807out:
b1058b98
JK
808 /*
809 * If sdio->boundary then we want to schedule the IO now to
810 * avoid metadata seeks.
811 */
812 if (sdio->boundary) {
813 ret = dio_send_cur_page(dio, sdio, map_bh);
814 dio_bio_submit(dio, sdio);
815 page_cache_release(sdio->cur_page);
816 sdio->cur_page = NULL;
817 }
1da177e4
LT
818 return ret;
819}
820
821/*
822 * Clean any dirty buffers in the blockdev mapping which alias newly-created
823 * file blocks. Only called for S_ISREG files - blockdevs do not set
824 * buffer_new
825 */
18772641 826static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
1da177e4
LT
827{
828 unsigned i;
829 unsigned nblocks;
830
18772641 831 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
1da177e4
LT
832
833 for (i = 0; i < nblocks; i++) {
18772641
AK
834 unmap_underlying_metadata(map_bh->b_bdev,
835 map_bh->b_blocknr + i);
1da177e4
LT
836 }
837}
838
839/*
840 * If we are not writing the entire block and get_block() allocated
841 * the block for us, we need to fill-in the unused portion of the
842 * block with zeros. This happens only if user-buffer, fileoffset or
843 * io length is not filesystem block-size multiple.
844 *
845 * `end' is zero if we're doing the start of the IO, 1 at the end of the
846 * IO.
847 */
ba253fbf
AK
848static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
849 int end, struct buffer_head *map_bh)
1da177e4
LT
850{
851 unsigned dio_blocks_per_fs_block;
852 unsigned this_chunk_blocks; /* In dio_blocks */
853 unsigned this_chunk_bytes;
854 struct page *page;
855
eb28be2b 856 sdio->start_zero_done = 1;
18772641 857 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
858 return;
859
eb28be2b
AK
860 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
861 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
862
863 if (!this_chunk_blocks)
864 return;
865
866 /*
867 * We need to zero out part of an fs block. It is either at the
868 * beginning or the end of the fs block.
869 */
870 if (end)
871 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
872
eb28be2b 873 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 874
557ed1fa 875 page = ZERO_PAGE(0);
eb28be2b 876 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 877 sdio->next_block_for_io, map_bh))
1da177e4
LT
878 return;
879
eb28be2b 880 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
881}
882
883/*
884 * Walk the user pages, and the file, mapping blocks to disk and generating
885 * a sequence of (page,offset,len,block) mappings. These mappings are injected
886 * into submit_page_section(), which takes care of the next stage of submission
887 *
888 * Direct IO against a blockdev is different from a file. Because we can
889 * happily perform page-sized but 512-byte aligned IOs. It is important that
890 * blockdev IO be able to have fine alignment and large sizes.
891 *
1d8fa7a2 892 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
893 * with the size of IO which is permitted at this offset and this i_blkbits.
894 *
895 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 896 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
897 * fine alignment but still allows this function to work in PAGE_SIZE units.
898 */
18772641
AK
899static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
900 struct buffer_head *map_bh)
1da177e4 901{
eb28be2b 902 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
903 int ret = 0;
904
eb28be2b 905 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
906 struct page *page;
907 size_t from, to;
6fcc5420
BH
908
909 page = dio_get_page(dio, sdio);
1da177e4
LT
910 if (IS_ERR(page)) {
911 ret = PTR_ERR(page);
912 goto out;
913 }
6fcc5420
BH
914 from = sdio->head ? 0 : sdio->from;
915 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
916 sdio->head++;
1da177e4 917
7b2c99d1 918 while (from < to) {
1da177e4
LT
919 unsigned this_chunk_bytes; /* # of bytes mapped */
920 unsigned this_chunk_blocks; /* # of blocks */
921 unsigned u;
922
eb28be2b 923 if (sdio->blocks_available == 0) {
1da177e4
LT
924 /*
925 * Need to go and map some more disk
926 */
927 unsigned long blkmask;
928 unsigned long dio_remainder;
929
18772641 930 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4
LT
931 if (ret) {
932 page_cache_release(page);
933 goto out;
934 }
935 if (!buffer_mapped(map_bh))
936 goto do_holes;
937
eb28be2b
AK
938 sdio->blocks_available =
939 map_bh->b_size >> sdio->blkbits;
940 sdio->next_block_for_io =
941 map_bh->b_blocknr << sdio->blkfactor;
1da177e4 942 if (buffer_new(map_bh))
18772641 943 clean_blockdev_aliases(dio, map_bh);
1da177e4 944
eb28be2b 945 if (!sdio->blkfactor)
1da177e4
LT
946 goto do_holes;
947
eb28be2b
AK
948 blkmask = (1 << sdio->blkfactor) - 1;
949 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
950
951 /*
952 * If we are at the start of IO and that IO
953 * starts partway into a fs-block,
954 * dio_remainder will be non-zero. If the IO
955 * is a read then we can simply advance the IO
956 * cursor to the first block which is to be
957 * read. But if the IO is a write and the
958 * block was newly allocated we cannot do that;
959 * the start of the fs block must be zeroed out
960 * on-disk
961 */
962 if (!buffer_new(map_bh))
eb28be2b
AK
963 sdio->next_block_for_io += dio_remainder;
964 sdio->blocks_available -= dio_remainder;
1da177e4
LT
965 }
966do_holes:
967 /* Handle holes */
968 if (!buffer_mapped(map_bh)) {
35dc8161 969 loff_t i_size_aligned;
1da177e4
LT
970
971 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 972 if (dio->rw & WRITE) {
1da177e4
LT
973 page_cache_release(page);
974 return -ENOTBLK;
975 }
976
35dc8161
JM
977 /*
978 * Be sure to account for a partial block as the
979 * last block in the file
980 */
981 i_size_aligned = ALIGN(i_size_read(dio->inode),
982 1 << blkbits);
eb28be2b 983 if (sdio->block_in_file >=
35dc8161 984 i_size_aligned >> blkbits) {
1da177e4
LT
985 /* We hit eof */
986 page_cache_release(page);
987 goto out;
988 }
7b2c99d1 989 zero_user(page, from, 1 << blkbits);
eb28be2b 990 sdio->block_in_file++;
7b2c99d1 991 from += 1 << blkbits;
3320c60b 992 dio->result += 1 << blkbits;
1da177e4
LT
993 goto next_block;
994 }
995
996 /*
997 * If we're performing IO which has an alignment which
998 * is finer than the underlying fs, go check to see if
999 * we must zero out the start of this block.
1000 */
eb28be2b 1001 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1002 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1003
1004 /*
1005 * Work out, in this_chunk_blocks, how much disk we
1006 * can add to this page
1007 */
eb28be2b 1008 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1009 u = (to - from) >> blkbits;
1da177e4
LT
1010 if (this_chunk_blocks > u)
1011 this_chunk_blocks = u;
eb28be2b 1012 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1013 if (this_chunk_blocks > u)
1014 this_chunk_blocks = u;
1015 this_chunk_bytes = this_chunk_blocks << blkbits;
1016 BUG_ON(this_chunk_bytes == 0);
1017
092c8d46
JK
1018 if (this_chunk_blocks == sdio->blocks_available)
1019 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1020 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1021 from,
eb28be2b 1022 this_chunk_bytes,
18772641
AK
1023 sdio->next_block_for_io,
1024 map_bh);
1da177e4
LT
1025 if (ret) {
1026 page_cache_release(page);
1027 goto out;
1028 }
eb28be2b 1029 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1030
eb28be2b 1031 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1032 from += this_chunk_bytes;
1033 dio->result += this_chunk_bytes;
eb28be2b 1034 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1035next_block:
eb28be2b
AK
1036 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1037 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1038 break;
1039 }
1040
1041 /* Drop the ref which was taken in get_user_pages() */
1042 page_cache_release(page);
1da177e4
LT
1043 }
1044out:
1045 return ret;
1046}
1047
847cc637 1048static inline int drop_refcount(struct dio *dio)
1da177e4 1049{
847cc637 1050 int ret2;
5eb6c7a2 1051 unsigned long flags;
1da177e4 1052
8459d86a
ZB
1053 /*
1054 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1055 * operation. AIO can if it was a broken operation described above or
1056 * in fact if all the bios race to complete before we get here. In
1057 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1058 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1059 *
1060 * This is managed by the bio_lock instead of being an atomic_t so that
1061 * completion paths can drop their ref and use the remaining count to
1062 * decide to wake the submission path atomically.
8459d86a 1063 */
5eb6c7a2
ZB
1064 spin_lock_irqsave(&dio->bio_lock, flags);
1065 ret2 = --dio->refcount;
1066 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1067 return ret2;
1da177e4
LT
1068}
1069
eafdc7d1
CH
1070/*
1071 * This is a library function for use by filesystem drivers.
1072 *
1073 * The locking rules are governed by the flags parameter:
1074 * - if the flags value contains DIO_LOCKING we use a fancy locking
1075 * scheme for dumb filesystems.
1076 * For writes this function is called under i_mutex and returns with
1077 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1078 * taken and dropped again before returning.
eafdc7d1
CH
1079 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1080 * internal locking but rather rely on the filesystem to synchronize
1081 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1082 *
1083 * To help with locking against truncate we incremented the i_dio_count
1084 * counter before starting direct I/O, and decrement it once we are done.
1085 * Truncate can wait for it to reach zero to provide exclusion. It is
1086 * expected that filesystem provide exclusion between new direct I/O
1087 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1088 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1089 *
1090 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1091 * is always inlined. Otherwise gcc is unable to split the structure into
1092 * individual fields and will generate much worse code. This is important
1093 * for the whole file.
eafdc7d1 1094 */
65dd2aa9
AK
1095static inline ssize_t
1096do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
31b14039
AV
1097 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1098 get_block_t get_block, dio_iodone_t end_io,
facd07b0 1099 dio_submit_t submit_io, int flags)
1da177e4 1100{
ab73857e
LT
1101 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1102 unsigned blkbits = i_blkbits;
1da177e4
LT
1103 unsigned blocksize_mask = (1 << blkbits) - 1;
1104 ssize_t retval = -EINVAL;
af436472
CH
1105 size_t count = iov_iter_count(iter);
1106 loff_t end = offset + count;
1da177e4 1107 struct dio *dio;
eb28be2b 1108 struct dio_submit sdio = { 0, };
847cc637 1109 struct buffer_head map_bh = { 0, };
647d1e4c 1110 struct blk_plug plug;
886a3911 1111 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4
LT
1112
1113 if (rw & WRITE)
721a9602 1114 rw = WRITE_ODIRECT;
1da177e4 1115
65dd2aa9
AK
1116 /*
1117 * Avoid references to bdev if not absolutely needed to give
1118 * the early prefetch in the caller enough time.
1119 */
1da177e4 1120
886a3911 1121 if (align & blocksize_mask) {
1da177e4 1122 if (bdev)
65dd2aa9 1123 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1124 blocksize_mask = (1 << blkbits) - 1;
886a3911 1125 if (align & blocksize_mask)
1da177e4
LT
1126 goto out;
1127 }
1128
f9b5570d 1129 /* watch out for a 0 len io from a tricksy fs */
886a3911 1130 if (rw == READ && !iov_iter_count(iter))
f9b5570d
CH
1131 return 0;
1132
6e8267f5 1133 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1134 retval = -ENOMEM;
1135 if (!dio)
1136 goto out;
23aee091
JM
1137 /*
1138 * Believe it or not, zeroing out the page array caused a .5%
1139 * performance regression in a database benchmark. So, we take
1140 * care to only zero out what's needed.
1141 */
1142 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1143
5fe878ae
CH
1144 dio->flags = flags;
1145 if (dio->flags & DIO_LOCKING) {
f9b5570d 1146 if (rw == READ) {
5fe878ae
CH
1147 struct address_space *mapping =
1148 iocb->ki_filp->f_mapping;
1da177e4 1149
5fe878ae
CH
1150 /* will be released by direct_io_worker */
1151 mutex_lock(&inode->i_mutex);
1da177e4
LT
1152
1153 retval = filemap_write_and_wait_range(mapping, offset,
1154 end - 1);
1155 if (retval) {
5fe878ae 1156 mutex_unlock(&inode->i_mutex);
6e8267f5 1157 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1158 goto out;
1159 }
1da177e4 1160 }
1da177e4
LT
1161 }
1162
1163 /*
60392573
CH
1164 * For file extending writes updating i_size before data writeouts
1165 * complete can expose uninitialized blocks in dumb filesystems.
1166 * In that case we need to wait for I/O completion even if asked
1167 * for an asynchronous write.
1da177e4 1168 */
60392573
CH
1169 if (is_sync_kiocb(iocb))
1170 dio->is_async = false;
1171 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1172 (rw & WRITE) && end > i_size_read(inode))
1173 dio->is_async = false;
1174 else
1175 dio->is_async = true;
1176
847cc637
AK
1177 dio->inode = inode;
1178 dio->rw = rw;
02afc27f
CH
1179
1180 /*
1181 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1182 * so that we can call ->fsync.
1183 */
1184 if (dio->is_async && (rw & WRITE) &&
1185 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1186 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1187 retval = dio_set_defer_completion(dio);
1188 if (retval) {
1189 /*
1190 * We grab i_mutex only for reads so we don't have
1191 * to release it here
1192 */
1193 kmem_cache_free(dio_cache, dio);
1194 goto out;
1195 }
1196 }
1197
1198 /*
1199 * Will be decremented at I/O completion time.
1200 */
1201 atomic_inc(&inode->i_dio_count);
1202
1203 retval = 0;
847cc637 1204 sdio.blkbits = blkbits;
ab73857e 1205 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1206 sdio.block_in_file = offset >> blkbits;
1207
1208 sdio.get_block = get_block;
1209 dio->end_io = end_io;
1210 sdio.submit_io = submit_io;
1211 sdio.final_block_in_bio = -1;
1212 sdio.next_block_for_io = -1;
1213
1214 dio->iocb = iocb;
1215 dio->i_size = i_size_read(inode);
1216
1217 spin_lock_init(&dio->bio_lock);
1218 dio->refcount = 1;
1219
7b2c99d1
AV
1220 sdio.iter = iter;
1221 sdio.final_block_in_request =
1222 (offset + iov_iter_count(iter)) >> blkbits;
1223
847cc637
AK
1224 /*
1225 * In case of non-aligned buffers, we may need 2 more
1226 * pages since we need to zero out first and last block.
1227 */
1228 if (unlikely(sdio.blkfactor))
1229 sdio.pages_in_io = 2;
1230
f67da30c 1231 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1232
647d1e4c
FW
1233 blk_start_plug(&plug);
1234
7b2c99d1
AV
1235 retval = do_direct_IO(dio, &sdio, &map_bh);
1236 if (retval)
1237 dio_cleanup(dio, &sdio);
847cc637
AK
1238
1239 if (retval == -ENOTBLK) {
1240 /*
1241 * The remaining part of the request will be
1242 * be handled by buffered I/O when we return
1243 */
1244 retval = 0;
1245 }
1246 /*
1247 * There may be some unwritten disk at the end of a part-written
1248 * fs-block-sized block. Go zero that now.
1249 */
1250 dio_zero_block(dio, &sdio, 1, &map_bh);
1251
1252 if (sdio.cur_page) {
1253 ssize_t ret2;
1254
1255 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1256 if (retval == 0)
1257 retval = ret2;
1258 page_cache_release(sdio.cur_page);
1259 sdio.cur_page = NULL;
1260 }
1261 if (sdio.bio)
1262 dio_bio_submit(dio, &sdio);
1263
647d1e4c
FW
1264 blk_finish_plug(&plug);
1265
847cc637
AK
1266 /*
1267 * It is possible that, we return short IO due to end of file.
1268 * In that case, we need to release all the pages we got hold on.
1269 */
1270 dio_cleanup(dio, &sdio);
1271
1272 /*
1273 * All block lookups have been performed. For READ requests
1274 * we can let i_mutex go now that its achieved its purpose
1275 * of protecting us from looking up uninitialized blocks.
1276 */
1277 if (rw == READ && (dio->flags & DIO_LOCKING))
1278 mutex_unlock(&dio->inode->i_mutex);
1279
1280 /*
1281 * The only time we want to leave bios in flight is when a successful
1282 * partial aio read or full aio write have been setup. In that case
1283 * bio completion will call aio_complete. The only time it's safe to
1284 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1285 * This had *better* be the only place that raises -EIOCBQUEUED.
1286 */
1287 BUG_ON(retval == -EIOCBQUEUED);
1288 if (dio->is_async && retval == 0 && dio->result &&
af436472 1289 (rw == READ || dio->result == count))
847cc637 1290 retval = -EIOCBQUEUED;
af436472 1291 else
847cc637
AK
1292 dio_await_completion(dio);
1293
1294 if (drop_refcount(dio) == 0) {
1295 retval = dio_complete(dio, offset, retval, false);
847cc637
AK
1296 } else
1297 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1298
7bb46a67 1299out:
1300 return retval;
1301}
65dd2aa9
AK
1302
1303ssize_t
1304__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
31b14039
AV
1305 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1306 get_block_t get_block, dio_iodone_t end_io,
65dd2aa9
AK
1307 dio_submit_t submit_io, int flags)
1308{
1309 /*
1310 * The block device state is needed in the end to finally
1311 * submit everything. Since it's likely to be cache cold
1312 * prefetch it here as first thing to hide some of the
1313 * latency.
1314 *
1315 * Attempt to prefetch the pieces we likely need later.
1316 */
1317 prefetch(&bdev->bd_disk->part_tbl);
1318 prefetch(bdev->bd_queue);
1319 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1320
31b14039
AV
1321 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
1322 get_block, end_io, submit_io, flags);
65dd2aa9
AK
1323}
1324
1da177e4 1325EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1326
1327static __init int dio_init(void)
1328{
1329 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1330 return 0;
1331}
1332module_init(dio_init)