arm64: dts: clearfog-gt-8k: describe mini-PCIe CON2 USB
[linux-2.6-block.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
57c8a661 29#include <linux/memblock.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 263 kfree(external_name(dentry));
f1782c9b 264 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
265}
266
810bb172
AV
267static inline int dname_external(const struct dentry *dentry)
268{
269 return dentry->d_name.name != dentry->d_iname;
270}
271
49d31c2f
AV
272void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273{
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
6cd00a01
TH
281 memcpy(name->inline_name, dentry->d_iname,
282 dentry->d_name.len + 1);
49d31c2f
AV
283 spin_unlock(&dentry->d_lock);
284 name->name = name->inline_name;
285 }
286}
287EXPORT_SYMBOL(take_dentry_name_snapshot);
288
289void release_dentry_name_snapshot(struct name_snapshot *name)
290{
291 if (unlikely(name->name != name->inline_name)) {
292 struct external_name *p;
293 p = container_of(name->name, struct external_name, name[0]);
294 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 295 kfree_rcu(p, u.head);
49d31c2f
AV
296 }
297}
298EXPORT_SYMBOL(release_dentry_name_snapshot);
299
4bf46a27
DH
300static inline void __d_set_inode_and_type(struct dentry *dentry,
301 struct inode *inode,
302 unsigned type_flags)
303{
304 unsigned flags;
305
306 dentry->d_inode = inode;
4bf46a27
DH
307 flags = READ_ONCE(dentry->d_flags);
308 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309 flags |= type_flags;
310 WRITE_ONCE(dentry->d_flags, flags);
311}
312
4bf46a27
DH
313static inline void __d_clear_type_and_inode(struct dentry *dentry)
314{
315 unsigned flags = READ_ONCE(dentry->d_flags);
316
317 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
319 dentry->d_inode = NULL;
320}
321
b4f0354e
AV
322static void dentry_free(struct dentry *dentry)
323{
946e51f2 324 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
325 if (unlikely(dname_external(dentry))) {
326 struct external_name *p = external_name(dentry);
327 if (likely(atomic_dec_and_test(&p->u.count))) {
328 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329 return;
330 }
331 }
b4f0354e
AV
332 /* if dentry was never visible to RCU, immediate free is OK */
333 if (!(dentry->d_flags & DCACHE_RCUACCESS))
334 __d_free(&dentry->d_u.d_rcu);
335 else
336 call_rcu(&dentry->d_u.d_rcu, __d_free);
337}
338
1da177e4
LT
339/*
340 * Release the dentry's inode, using the filesystem
550dce01 341 * d_iput() operation if defined.
31e6b01f
NP
342 */
343static void dentry_unlink_inode(struct dentry * dentry)
344 __releases(dentry->d_lock)
873feea0 345 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
346{
347 struct inode *inode = dentry->d_inode;
a528aca7 348
4c0d7cd5 349 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 350 __d_clear_type_and_inode(dentry);
946e51f2 351 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 352 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 353 spin_unlock(&dentry->d_lock);
873feea0 354 spin_unlock(&inode->i_lock);
31e6b01f
NP
355 if (!inode->i_nlink)
356 fsnotify_inoderemove(inode);
357 if (dentry->d_op && dentry->d_op->d_iput)
358 dentry->d_op->d_iput(dentry, inode);
359 else
360 iput(inode);
361}
362
89dc77bc
LT
363/*
364 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
365 * is in use - which includes both the "real" per-superblock
366 * LRU list _and_ the DCACHE_SHRINK_LIST use.
367 *
368 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
369 * on the shrink list (ie not on the superblock LRU list).
370 *
371 * The per-cpu "nr_dentry_unused" counters are updated with
372 * the DCACHE_LRU_LIST bit.
373 *
374 * These helper functions make sure we always follow the
375 * rules. d_lock must be held by the caller.
376 */
377#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
378static void d_lru_add(struct dentry *dentry)
379{
380 D_FLAG_VERIFY(dentry, 0);
381 dentry->d_flags |= DCACHE_LRU_LIST;
382 this_cpu_inc(nr_dentry_unused);
383 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
384}
385
386static void d_lru_del(struct dentry *dentry)
387{
388 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
389 dentry->d_flags &= ~DCACHE_LRU_LIST;
390 this_cpu_dec(nr_dentry_unused);
391 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
392}
393
394static void d_shrink_del(struct dentry *dentry)
395{
396 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
397 list_del_init(&dentry->d_lru);
398 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
399 this_cpu_dec(nr_dentry_unused);
400}
401
402static void d_shrink_add(struct dentry *dentry, struct list_head *list)
403{
404 D_FLAG_VERIFY(dentry, 0);
405 list_add(&dentry->d_lru, list);
406 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
407 this_cpu_inc(nr_dentry_unused);
408}
409
410/*
411 * These can only be called under the global LRU lock, ie during the
412 * callback for freeing the LRU list. "isolate" removes it from the
413 * LRU lists entirely, while shrink_move moves it to the indicated
414 * private list.
415 */
3f97b163 416static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
417{
418 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
419 dentry->d_flags &= ~DCACHE_LRU_LIST;
420 this_cpu_dec(nr_dentry_unused);
3f97b163 421 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
422}
423
3f97b163
VD
424static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
425 struct list_head *list)
89dc77bc
LT
426{
427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 429 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
430}
431
789680d1
NP
432/**
433 * d_drop - drop a dentry
434 * @dentry: dentry to drop
435 *
436 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
437 * be found through a VFS lookup any more. Note that this is different from
438 * deleting the dentry - d_delete will try to mark the dentry negative if
439 * possible, giving a successful _negative_ lookup, while d_drop will
440 * just make the cache lookup fail.
441 *
442 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
443 * reason (NFS timeouts or autofs deletes).
444 *
61647823
N
445 * __d_drop requires dentry->d_lock
446 * ___d_drop doesn't mark dentry as "unhashed"
447 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 448 */
61647823 449static void ___d_drop(struct dentry *dentry)
789680d1 450{
0632a9ac
AV
451 struct hlist_bl_head *b;
452 /*
453 * Hashed dentries are normally on the dentry hashtable,
454 * with the exception of those newly allocated by
455 * d_obtain_root, which are always IS_ROOT:
456 */
457 if (unlikely(IS_ROOT(dentry)))
458 b = &dentry->d_sb->s_roots;
459 else
460 b = d_hash(dentry->d_name.hash);
b61625d2 461
0632a9ac
AV
462 hlist_bl_lock(b);
463 __hlist_bl_del(&dentry->d_hash);
464 hlist_bl_unlock(b);
789680d1 465}
61647823
N
466
467void __d_drop(struct dentry *dentry)
468{
0632a9ac
AV
469 if (!d_unhashed(dentry)) {
470 ___d_drop(dentry);
471 dentry->d_hash.pprev = NULL;
472 write_seqcount_invalidate(&dentry->d_seq);
473 }
61647823 474}
789680d1
NP
475EXPORT_SYMBOL(__d_drop);
476
477void d_drop(struct dentry *dentry)
478{
789680d1
NP
479 spin_lock(&dentry->d_lock);
480 __d_drop(dentry);
481 spin_unlock(&dentry->d_lock);
789680d1
NP
482}
483EXPORT_SYMBOL(d_drop);
484
ba65dc5e
AV
485static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
486{
487 struct dentry *next;
488 /*
489 * Inform d_walk() and shrink_dentry_list() that we are no longer
490 * attached to the dentry tree
491 */
492 dentry->d_flags |= DCACHE_DENTRY_KILLED;
493 if (unlikely(list_empty(&dentry->d_child)))
494 return;
495 __list_del_entry(&dentry->d_child);
496 /*
497 * Cursors can move around the list of children. While we'd been
498 * a normal list member, it didn't matter - ->d_child.next would've
499 * been updated. However, from now on it won't be and for the
500 * things like d_walk() it might end up with a nasty surprise.
501 * Normally d_walk() doesn't care about cursors moving around -
502 * ->d_lock on parent prevents that and since a cursor has no children
503 * of its own, we get through it without ever unlocking the parent.
504 * There is one exception, though - if we ascend from a child that
505 * gets killed as soon as we unlock it, the next sibling is found
506 * using the value left in its ->d_child.next. And if _that_
507 * pointed to a cursor, and cursor got moved (e.g. by lseek())
508 * before d_walk() regains parent->d_lock, we'll end up skipping
509 * everything the cursor had been moved past.
510 *
511 * Solution: make sure that the pointer left behind in ->d_child.next
512 * points to something that won't be moving around. I.e. skip the
513 * cursors.
514 */
515 while (dentry->d_child.next != &parent->d_subdirs) {
516 next = list_entry(dentry->d_child.next, struct dentry, d_child);
517 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
518 break;
519 dentry->d_child.next = next->d_child.next;
520 }
521}
522
e55fd011 523static void __dentry_kill(struct dentry *dentry)
77812a1e 524{
41edf278
AV
525 struct dentry *parent = NULL;
526 bool can_free = true;
41edf278 527 if (!IS_ROOT(dentry))
77812a1e 528 parent = dentry->d_parent;
31e6b01f 529
0d98439e
LT
530 /*
531 * The dentry is now unrecoverably dead to the world.
532 */
533 lockref_mark_dead(&dentry->d_lockref);
534
f0023bc6 535 /*
f0023bc6
SW
536 * inform the fs via d_prune that this dentry is about to be
537 * unhashed and destroyed.
538 */
29266201 539 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
540 dentry->d_op->d_prune(dentry);
541
01b60351
AV
542 if (dentry->d_flags & DCACHE_LRU_LIST) {
543 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
544 d_lru_del(dentry);
01b60351 545 }
77812a1e
NP
546 /* if it was on the hash then remove it */
547 __d_drop(dentry);
ba65dc5e 548 dentry_unlist(dentry, parent);
03b3b889
AV
549 if (parent)
550 spin_unlock(&parent->d_lock);
550dce01
AV
551 if (dentry->d_inode)
552 dentry_unlink_inode(dentry);
553 else
554 spin_unlock(&dentry->d_lock);
03b3b889
AV
555 this_cpu_dec(nr_dentry);
556 if (dentry->d_op && dentry->d_op->d_release)
557 dentry->d_op->d_release(dentry);
558
41edf278
AV
559 spin_lock(&dentry->d_lock);
560 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
561 dentry->d_flags |= DCACHE_MAY_FREE;
562 can_free = false;
563 }
564 spin_unlock(&dentry->d_lock);
41edf278
AV
565 if (likely(can_free))
566 dentry_free(dentry);
9c5f1d30 567 cond_resched();
e55fd011
AV
568}
569
8b987a46 570static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 571{
8b987a46 572 struct dentry *parent;
046b961b 573 rcu_read_lock();
c2338f2d 574 spin_unlock(&dentry->d_lock);
046b961b 575again:
66702eb5 576 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
577 spin_lock(&parent->d_lock);
578 /*
579 * We can't blindly lock dentry until we are sure
580 * that we won't violate the locking order.
581 * Any changes of dentry->d_parent must have
582 * been done with parent->d_lock held, so
583 * spin_lock() above is enough of a barrier
584 * for checking if it's still our child.
585 */
586 if (unlikely(parent != dentry->d_parent)) {
587 spin_unlock(&parent->d_lock);
588 goto again;
589 }
65d8eb5a
AV
590 rcu_read_unlock();
591 if (parent != dentry)
9f12600f 592 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 593 else
046b961b
AV
594 parent = NULL;
595 return parent;
596}
597
8b987a46
AV
598static inline struct dentry *lock_parent(struct dentry *dentry)
599{
600 struct dentry *parent = dentry->d_parent;
601 if (IS_ROOT(dentry))
602 return NULL;
603 if (likely(spin_trylock(&parent->d_lock)))
604 return parent;
605 return __lock_parent(dentry);
606}
607
a338579f
AV
608static inline bool retain_dentry(struct dentry *dentry)
609{
610 WARN_ON(d_in_lookup(dentry));
611
612 /* Unreachable? Get rid of it */
613 if (unlikely(d_unhashed(dentry)))
614 return false;
615
616 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
617 return false;
618
619 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
620 if (dentry->d_op->d_delete(dentry))
621 return false;
622 }
62d9956c
AV
623 /* retain; LRU fodder */
624 dentry->d_lockref.count--;
625 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
626 d_lru_add(dentry);
627 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
628 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
629 return true;
630}
631
c1d0c1a2
JO
632/*
633 * Finish off a dentry we've decided to kill.
634 * dentry->d_lock must be held, returns with it unlocked.
635 * Returns dentry requiring refcount drop, or NULL if we're done.
636 */
637static struct dentry *dentry_kill(struct dentry *dentry)
638 __releases(dentry->d_lock)
639{
640 struct inode *inode = dentry->d_inode;
641 struct dentry *parent = NULL;
642
643 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 644 goto slow_positive;
c1d0c1a2
JO
645
646 if (!IS_ROOT(dentry)) {
647 parent = dentry->d_parent;
648 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
649 parent = __lock_parent(dentry);
650 if (likely(inode || !dentry->d_inode))
651 goto got_locks;
652 /* negative that became positive */
653 if (parent)
654 spin_unlock(&parent->d_lock);
655 inode = dentry->d_inode;
656 goto slow_positive;
c1d0c1a2
JO
657 }
658 }
c1d0c1a2
JO
659 __dentry_kill(dentry);
660 return parent;
661
f657a666
AV
662slow_positive:
663 spin_unlock(&dentry->d_lock);
664 spin_lock(&inode->i_lock);
665 spin_lock(&dentry->d_lock);
666 parent = lock_parent(dentry);
667got_locks:
668 if (unlikely(dentry->d_lockref.count != 1)) {
669 dentry->d_lockref.count--;
670 } else if (likely(!retain_dentry(dentry))) {
671 __dentry_kill(dentry);
672 return parent;
673 }
674 /* we are keeping it, after all */
675 if (inode)
676 spin_unlock(&inode->i_lock);
677 if (parent)
678 spin_unlock(&parent->d_lock);
c1d0c1a2 679 spin_unlock(&dentry->d_lock);
f657a666 680 return NULL;
c1d0c1a2
JO
681}
682
360f5479
LT
683/*
684 * Try to do a lockless dput(), and return whether that was successful.
685 *
686 * If unsuccessful, we return false, having already taken the dentry lock.
687 *
688 * The caller needs to hold the RCU read lock, so that the dentry is
689 * guaranteed to stay around even if the refcount goes down to zero!
690 */
691static inline bool fast_dput(struct dentry *dentry)
692{
693 int ret;
694 unsigned int d_flags;
695
696 /*
697 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 698 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
699 */
700 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
701 return lockref_put_or_lock(&dentry->d_lockref);
702
703 /*
704 * .. otherwise, we can try to just decrement the
705 * lockref optimistically.
706 */
707 ret = lockref_put_return(&dentry->d_lockref);
708
709 /*
710 * If the lockref_put_return() failed due to the lock being held
711 * by somebody else, the fast path has failed. We will need to
712 * get the lock, and then check the count again.
713 */
714 if (unlikely(ret < 0)) {
715 spin_lock(&dentry->d_lock);
716 if (dentry->d_lockref.count > 1) {
717 dentry->d_lockref.count--;
718 spin_unlock(&dentry->d_lock);
7964410f 719 return true;
360f5479 720 }
7964410f 721 return false;
360f5479
LT
722 }
723
724 /*
725 * If we weren't the last ref, we're done.
726 */
727 if (ret)
7964410f 728 return true;
360f5479
LT
729
730 /*
731 * Careful, careful. The reference count went down
732 * to zero, but we don't hold the dentry lock, so
733 * somebody else could get it again, and do another
734 * dput(), and we need to not race with that.
735 *
736 * However, there is a very special and common case
737 * where we don't care, because there is nothing to
738 * do: the dentry is still hashed, it does not have
739 * a 'delete' op, and it's referenced and already on
740 * the LRU list.
741 *
742 * NOTE! Since we aren't locked, these values are
743 * not "stable". However, it is sufficient that at
744 * some point after we dropped the reference the
745 * dentry was hashed and the flags had the proper
746 * value. Other dentry users may have re-gotten
747 * a reference to the dentry and change that, but
748 * our work is done - we can leave the dentry
749 * around with a zero refcount.
750 */
751 smp_rmb();
66702eb5 752 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 753 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
754
755 /* Nothing to do? Dropping the reference was all we needed? */
756 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 757 return true;
360f5479
LT
758
759 /*
760 * Not the fast normal case? Get the lock. We've already decremented
761 * the refcount, but we'll need to re-check the situation after
762 * getting the lock.
763 */
764 spin_lock(&dentry->d_lock);
765
766 /*
767 * Did somebody else grab a reference to it in the meantime, and
768 * we're no longer the last user after all? Alternatively, somebody
769 * else could have killed it and marked it dead. Either way, we
770 * don't need to do anything else.
771 */
772 if (dentry->d_lockref.count) {
773 spin_unlock(&dentry->d_lock);
7964410f 774 return true;
360f5479
LT
775 }
776
777 /*
778 * Re-get the reference we optimistically dropped. We hold the
779 * lock, and we just tested that it was zero, so we can just
780 * set it to 1.
781 */
782 dentry->d_lockref.count = 1;
7964410f 783 return false;
360f5479
LT
784}
785
786
1da177e4
LT
787/*
788 * This is dput
789 *
790 * This is complicated by the fact that we do not want to put
791 * dentries that are no longer on any hash chain on the unused
792 * list: we'd much rather just get rid of them immediately.
793 *
794 * However, that implies that we have to traverse the dentry
795 * tree upwards to the parents which might _also_ now be
796 * scheduled for deletion (it may have been only waiting for
797 * its last child to go away).
798 *
799 * This tail recursion is done by hand as we don't want to depend
800 * on the compiler to always get this right (gcc generally doesn't).
801 * Real recursion would eat up our stack space.
802 */
803
804/*
805 * dput - release a dentry
806 * @dentry: dentry to release
807 *
808 * Release a dentry. This will drop the usage count and if appropriate
809 * call the dentry unlink method as well as removing it from the queues and
810 * releasing its resources. If the parent dentries were scheduled for release
811 * they too may now get deleted.
1da177e4 812 */
1da177e4
LT
813void dput(struct dentry *dentry)
814{
1088a640
AV
815 while (dentry) {
816 might_sleep();
1da177e4 817
1088a640
AV
818 rcu_read_lock();
819 if (likely(fast_dput(dentry))) {
820 rcu_read_unlock();
821 return;
822 }
47be6184 823
1088a640 824 /* Slow case: now with the dentry lock held */
360f5479 825 rcu_read_unlock();
360f5479 826
1088a640
AV
827 if (likely(retain_dentry(dentry))) {
828 spin_unlock(&dentry->d_lock);
829 return;
830 }
265ac902 831
1088a640 832 dentry = dentry_kill(dentry);
47be6184 833 }
1da177e4 834}
ec4f8605 835EXPORT_SYMBOL(dput);
1da177e4 836
1da177e4 837
b5c84bf6 838/* This must be called with d_lock held */
dc0474be 839static inline void __dget_dlock(struct dentry *dentry)
23044507 840{
98474236 841 dentry->d_lockref.count++;
23044507
NP
842}
843
dc0474be 844static inline void __dget(struct dentry *dentry)
1da177e4 845{
98474236 846 lockref_get(&dentry->d_lockref);
1da177e4
LT
847}
848
b7ab39f6
NP
849struct dentry *dget_parent(struct dentry *dentry)
850{
df3d0bbc 851 int gotref;
b7ab39f6
NP
852 struct dentry *ret;
853
df3d0bbc
WL
854 /*
855 * Do optimistic parent lookup without any
856 * locking.
857 */
858 rcu_read_lock();
66702eb5 859 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
860 gotref = lockref_get_not_zero(&ret->d_lockref);
861 rcu_read_unlock();
862 if (likely(gotref)) {
66702eb5 863 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
864 return ret;
865 dput(ret);
866 }
867
b7ab39f6 868repeat:
a734eb45
NP
869 /*
870 * Don't need rcu_dereference because we re-check it was correct under
871 * the lock.
872 */
873 rcu_read_lock();
b7ab39f6 874 ret = dentry->d_parent;
a734eb45
NP
875 spin_lock(&ret->d_lock);
876 if (unlikely(ret != dentry->d_parent)) {
877 spin_unlock(&ret->d_lock);
878 rcu_read_unlock();
b7ab39f6
NP
879 goto repeat;
880 }
a734eb45 881 rcu_read_unlock();
98474236
WL
882 BUG_ON(!ret->d_lockref.count);
883 ret->d_lockref.count++;
b7ab39f6 884 spin_unlock(&ret->d_lock);
b7ab39f6
NP
885 return ret;
886}
887EXPORT_SYMBOL(dget_parent);
888
61fec493
AV
889static struct dentry * __d_find_any_alias(struct inode *inode)
890{
891 struct dentry *alias;
892
893 if (hlist_empty(&inode->i_dentry))
894 return NULL;
895 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
896 __dget(alias);
897 return alias;
898}
899
900/**
901 * d_find_any_alias - find any alias for a given inode
902 * @inode: inode to find an alias for
903 *
904 * If any aliases exist for the given inode, take and return a
905 * reference for one of them. If no aliases exist, return %NULL.
906 */
907struct dentry *d_find_any_alias(struct inode *inode)
908{
909 struct dentry *de;
910
911 spin_lock(&inode->i_lock);
912 de = __d_find_any_alias(inode);
913 spin_unlock(&inode->i_lock);
914 return de;
915}
916EXPORT_SYMBOL(d_find_any_alias);
917
1da177e4
LT
918/**
919 * d_find_alias - grab a hashed alias of inode
920 * @inode: inode in question
1da177e4
LT
921 *
922 * If inode has a hashed alias, or is a directory and has any alias,
923 * acquire the reference to alias and return it. Otherwise return NULL.
924 * Notice that if inode is a directory there can be only one alias and
925 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
926 * of a filesystem, or if the directory was renamed and d_revalidate
927 * was the first vfs operation to notice.
1da177e4 928 *
21c0d8fd 929 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 930 * any other hashed alias over that one.
1da177e4 931 */
52ed46f0 932static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 933{
61fec493
AV
934 struct dentry *alias;
935
936 if (S_ISDIR(inode->i_mode))
937 return __d_find_any_alias(inode);
1da177e4 938
946e51f2 939 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 940 spin_lock(&alias->d_lock);
61fec493 941 if (!d_unhashed(alias)) {
8d80d7da
BF
942 __dget_dlock(alias);
943 spin_unlock(&alias->d_lock);
944 return alias;
1da177e4 945 }
da502956 946 spin_unlock(&alias->d_lock);
1da177e4 947 }
da502956 948 return NULL;
1da177e4
LT
949}
950
da502956 951struct dentry *d_find_alias(struct inode *inode)
1da177e4 952{
214fda1f
DH
953 struct dentry *de = NULL;
954
b3d9b7a3 955 if (!hlist_empty(&inode->i_dentry)) {
873feea0 956 spin_lock(&inode->i_lock);
52ed46f0 957 de = __d_find_alias(inode);
873feea0 958 spin_unlock(&inode->i_lock);
214fda1f 959 }
1da177e4
LT
960 return de;
961}
ec4f8605 962EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
963
964/*
965 * Try to kill dentries associated with this inode.
966 * WARNING: you must own a reference to inode.
967 */
968void d_prune_aliases(struct inode *inode)
969{
0cdca3f9 970 struct dentry *dentry;
1da177e4 971restart:
873feea0 972 spin_lock(&inode->i_lock);
946e51f2 973 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 974 spin_lock(&dentry->d_lock);
98474236 975 if (!dentry->d_lockref.count) {
29355c39
AV
976 struct dentry *parent = lock_parent(dentry);
977 if (likely(!dentry->d_lockref.count)) {
978 __dentry_kill(dentry);
4a7795d3 979 dput(parent);
29355c39
AV
980 goto restart;
981 }
982 if (parent)
983 spin_unlock(&parent->d_lock);
1da177e4
LT
984 }
985 spin_unlock(&dentry->d_lock);
986 }
873feea0 987 spin_unlock(&inode->i_lock);
1da177e4 988}
ec4f8605 989EXPORT_SYMBOL(d_prune_aliases);
1da177e4 990
3b3f09f4
AV
991/*
992 * Lock a dentry from shrink list.
8f04da2a
JO
993 * Called under rcu_read_lock() and dentry->d_lock; the former
994 * guarantees that nothing we access will be freed under us.
3b3f09f4 995 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
996 * d_delete(), etc.
997 *
3b3f09f4
AV
998 * Return false if dentry has been disrupted or grabbed, leaving
999 * the caller to kick it off-list. Otherwise, return true and have
1000 * that dentry's inode and parent both locked.
1001 */
1002static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1003{
3b3f09f4
AV
1004 struct inode *inode;
1005 struct dentry *parent;
da3bbdd4 1006
3b3f09f4
AV
1007 if (dentry->d_lockref.count)
1008 return false;
1009
1010 inode = dentry->d_inode;
1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1012 spin_unlock(&dentry->d_lock);
1013 spin_lock(&inode->i_lock);
ec33679d 1014 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1015 if (unlikely(dentry->d_lockref.count))
1016 goto out;
1017 /* changed inode means that somebody had grabbed it */
1018 if (unlikely(inode != dentry->d_inode))
1019 goto out;
3b3f09f4 1020 }
046b961b 1021
3b3f09f4
AV
1022 parent = dentry->d_parent;
1023 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1024 return true;
dd1f6b2e 1025
3b3f09f4 1026 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1027 spin_lock(&parent->d_lock);
1028 if (unlikely(parent != dentry->d_parent)) {
1029 spin_unlock(&parent->d_lock);
1030 spin_lock(&dentry->d_lock);
1031 goto out;
1032 }
1033 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1034 if (likely(!dentry->d_lockref.count))
3b3f09f4 1035 return true;
3b3f09f4
AV
1036 spin_unlock(&parent->d_lock);
1037out:
1038 if (inode)
1039 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1040 return false;
1041}
77812a1e 1042
3b3f09f4
AV
1043static void shrink_dentry_list(struct list_head *list)
1044{
1045 while (!list_empty(list)) {
1046 struct dentry *dentry, *parent;
64fd72e0 1047
3b3f09f4
AV
1048 dentry = list_entry(list->prev, struct dentry, d_lru);
1049 spin_lock(&dentry->d_lock);
8f04da2a 1050 rcu_read_lock();
3b3f09f4
AV
1051 if (!shrink_lock_dentry(dentry)) {
1052 bool can_free = false;
8f04da2a 1053 rcu_read_unlock();
3b3f09f4
AV
1054 d_shrink_del(dentry);
1055 if (dentry->d_lockref.count < 0)
1056 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1057 spin_unlock(&dentry->d_lock);
1058 if (can_free)
1059 dentry_free(dentry);
1060 continue;
1061 }
8f04da2a 1062 rcu_read_unlock();
3b3f09f4
AV
1063 d_shrink_del(dentry);
1064 parent = dentry->d_parent;
ff2fde99 1065 __dentry_kill(dentry);
3b3f09f4
AV
1066 if (parent == dentry)
1067 continue;
5c47e6d0
AV
1068 /*
1069 * We need to prune ancestors too. This is necessary to prevent
1070 * quadratic behavior of shrink_dcache_parent(), but is also
1071 * expected to be beneficial in reducing dentry cache
1072 * fragmentation.
1073 */
1074 dentry = parent;
8f04da2a
JO
1075 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1076 dentry = dentry_kill(dentry);
da3bbdd4 1077 }
3049cfe2
CH
1078}
1079
3f97b163
VD
1080static enum lru_status dentry_lru_isolate(struct list_head *item,
1081 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1082{
1083 struct list_head *freeable = arg;
1084 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1085
1086
1087 /*
1088 * we are inverting the lru lock/dentry->d_lock here,
1089 * so use a trylock. If we fail to get the lock, just skip
1090 * it
1091 */
1092 if (!spin_trylock(&dentry->d_lock))
1093 return LRU_SKIP;
1094
1095 /*
1096 * Referenced dentries are still in use. If they have active
1097 * counts, just remove them from the LRU. Otherwise give them
1098 * another pass through the LRU.
1099 */
1100 if (dentry->d_lockref.count) {
3f97b163 1101 d_lru_isolate(lru, dentry);
f6041567
DC
1102 spin_unlock(&dentry->d_lock);
1103 return LRU_REMOVED;
1104 }
1105
1106 if (dentry->d_flags & DCACHE_REFERENCED) {
1107 dentry->d_flags &= ~DCACHE_REFERENCED;
1108 spin_unlock(&dentry->d_lock);
1109
1110 /*
1111 * The list move itself will be made by the common LRU code. At
1112 * this point, we've dropped the dentry->d_lock but keep the
1113 * lru lock. This is safe to do, since every list movement is
1114 * protected by the lru lock even if both locks are held.
1115 *
1116 * This is guaranteed by the fact that all LRU management
1117 * functions are intermediated by the LRU API calls like
1118 * list_lru_add and list_lru_del. List movement in this file
1119 * only ever occur through this functions or through callbacks
1120 * like this one, that are called from the LRU API.
1121 *
1122 * The only exceptions to this are functions like
1123 * shrink_dentry_list, and code that first checks for the
1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1125 * operating only with stack provided lists after they are
1126 * properly isolated from the main list. It is thus, always a
1127 * local access.
1128 */
1129 return LRU_ROTATE;
1130 }
1131
3f97b163 1132 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1133 spin_unlock(&dentry->d_lock);
1134
1135 return LRU_REMOVED;
1136}
1137
3049cfe2 1138/**
b48f03b3
DC
1139 * prune_dcache_sb - shrink the dcache
1140 * @sb: superblock
503c358c 1141 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1142 *
503c358c
VD
1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1145 * function.
3049cfe2 1146 *
b48f03b3
DC
1147 * This function may fail to free any resources if all the dentries are in
1148 * use.
3049cfe2 1149 */
503c358c 1150long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1151{
f6041567
DC
1152 LIST_HEAD(dispose);
1153 long freed;
3049cfe2 1154
503c358c
VD
1155 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1156 dentry_lru_isolate, &dispose);
f6041567 1157 shrink_dentry_list(&dispose);
0a234c6d 1158 return freed;
da3bbdd4 1159}
23044507 1160
4e717f5c 1161static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1162 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1163{
4e717f5c
GC
1164 struct list_head *freeable = arg;
1165 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1166
4e717f5c
GC
1167 /*
1168 * we are inverting the lru lock/dentry->d_lock here,
1169 * so use a trylock. If we fail to get the lock, just skip
1170 * it
1171 */
1172 if (!spin_trylock(&dentry->d_lock))
1173 return LRU_SKIP;
1174
3f97b163 1175 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1176 spin_unlock(&dentry->d_lock);
ec33679d 1177
4e717f5c 1178 return LRU_REMOVED;
da3bbdd4
KM
1179}
1180
4e717f5c 1181
1da177e4
LT
1182/**
1183 * shrink_dcache_sb - shrink dcache for a superblock
1184 * @sb: superblock
1185 *
3049cfe2
CH
1186 * Shrink the dcache for the specified super block. This is used to free
1187 * the dcache before unmounting a file system.
1da177e4 1188 */
3049cfe2 1189void shrink_dcache_sb(struct super_block *sb)
1da177e4 1190{
4e717f5c
GC
1191 long freed;
1192
1193 do {
1194 LIST_HEAD(dispose);
1195
1196 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1197 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1198
4e717f5c
GC
1199 this_cpu_sub(nr_dentry_unused, freed);
1200 shrink_dentry_list(&dispose);
b17c070f 1201 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1202}
ec4f8605 1203EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1204
db14fc3a
MS
1205/**
1206 * enum d_walk_ret - action to talke during tree walk
1207 * @D_WALK_CONTINUE: contrinue walk
1208 * @D_WALK_QUIT: quit walk
1209 * @D_WALK_NORETRY: quit when retry is needed
1210 * @D_WALK_SKIP: skip this dentry and its children
1211 */
1212enum d_walk_ret {
1213 D_WALK_CONTINUE,
1214 D_WALK_QUIT,
1215 D_WALK_NORETRY,
1216 D_WALK_SKIP,
1217};
c826cb7d 1218
1da177e4 1219/**
db14fc3a
MS
1220 * d_walk - walk the dentry tree
1221 * @parent: start of walk
1222 * @data: data passed to @enter() and @finish()
1223 * @enter: callback when first entering the dentry
1da177e4 1224 *
3a8e3611 1225 * The @enter() callbacks are called with d_lock held.
1da177e4 1226 */
db14fc3a 1227static void d_walk(struct dentry *parent, void *data,
3a8e3611 1228 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1229{
949854d0 1230 struct dentry *this_parent;
1da177e4 1231 struct list_head *next;
48f5ec21 1232 unsigned seq = 0;
db14fc3a
MS
1233 enum d_walk_ret ret;
1234 bool retry = true;
949854d0 1235
58db63d0 1236again:
48f5ec21 1237 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1238 this_parent = parent;
2fd6b7f5 1239 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1240
1241 ret = enter(data, this_parent);
1242 switch (ret) {
1243 case D_WALK_CONTINUE:
1244 break;
1245 case D_WALK_QUIT:
1246 case D_WALK_SKIP:
1247 goto out_unlock;
1248 case D_WALK_NORETRY:
1249 retry = false;
1250 break;
1251 }
1da177e4
LT
1252repeat:
1253 next = this_parent->d_subdirs.next;
1254resume:
1255 while (next != &this_parent->d_subdirs) {
1256 struct list_head *tmp = next;
946e51f2 1257 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1258 next = tmp->next;
2fd6b7f5 1259
ba65dc5e
AV
1260 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1261 continue;
1262
2fd6b7f5 1263 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1264
1265 ret = enter(data, dentry);
1266 switch (ret) {
1267 case D_WALK_CONTINUE:
1268 break;
1269 case D_WALK_QUIT:
2fd6b7f5 1270 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1271 goto out_unlock;
1272 case D_WALK_NORETRY:
1273 retry = false;
1274 break;
1275 case D_WALK_SKIP:
1276 spin_unlock(&dentry->d_lock);
1277 continue;
2fd6b7f5 1278 }
db14fc3a 1279
1da177e4 1280 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1281 spin_unlock(&this_parent->d_lock);
1282 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1283 this_parent = dentry;
2fd6b7f5 1284 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1285 goto repeat;
1286 }
2fd6b7f5 1287 spin_unlock(&dentry->d_lock);
1da177e4
LT
1288 }
1289 /*
1290 * All done at this level ... ascend and resume the search.
1291 */
ca5358ef
AV
1292 rcu_read_lock();
1293ascend:
1da177e4 1294 if (this_parent != parent) {
c826cb7d 1295 struct dentry *child = this_parent;
31dec132
AV
1296 this_parent = child->d_parent;
1297
31dec132
AV
1298 spin_unlock(&child->d_lock);
1299 spin_lock(&this_parent->d_lock);
1300
ca5358ef
AV
1301 /* might go back up the wrong parent if we have had a rename. */
1302 if (need_seqretry(&rename_lock, seq))
949854d0 1303 goto rename_retry;
2159184e
AV
1304 /* go into the first sibling still alive */
1305 do {
1306 next = child->d_child.next;
ca5358ef
AV
1307 if (next == &this_parent->d_subdirs)
1308 goto ascend;
1309 child = list_entry(next, struct dentry, d_child);
2159184e 1310 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1311 rcu_read_unlock();
1da177e4
LT
1312 goto resume;
1313 }
ca5358ef 1314 if (need_seqretry(&rename_lock, seq))
949854d0 1315 goto rename_retry;
ca5358ef 1316 rcu_read_unlock();
db14fc3a
MS
1317
1318out_unlock:
1319 spin_unlock(&this_parent->d_lock);
48f5ec21 1320 done_seqretry(&rename_lock, seq);
db14fc3a 1321 return;
58db63d0
NP
1322
1323rename_retry:
ca5358ef
AV
1324 spin_unlock(&this_parent->d_lock);
1325 rcu_read_unlock();
1326 BUG_ON(seq & 1);
db14fc3a
MS
1327 if (!retry)
1328 return;
48f5ec21 1329 seq = 1;
58db63d0 1330 goto again;
1da177e4 1331}
db14fc3a 1332
01619491
IK
1333struct check_mount {
1334 struct vfsmount *mnt;
1335 unsigned int mounted;
1336};
1337
1338static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1339{
1340 struct check_mount *info = data;
1341 struct path path = { .mnt = info->mnt, .dentry = dentry };
1342
1343 if (likely(!d_mountpoint(dentry)))
1344 return D_WALK_CONTINUE;
1345 if (__path_is_mountpoint(&path)) {
1346 info->mounted = 1;
1347 return D_WALK_QUIT;
1348 }
1349 return D_WALK_CONTINUE;
1350}
1351
1352/**
1353 * path_has_submounts - check for mounts over a dentry in the
1354 * current namespace.
1355 * @parent: path to check.
1356 *
1357 * Return true if the parent or its subdirectories contain
1358 * a mount point in the current namespace.
1359 */
1360int path_has_submounts(const struct path *parent)
1361{
1362 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1363
1364 read_seqlock_excl(&mount_lock);
3a8e3611 1365 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1366 read_sequnlock_excl(&mount_lock);
1367
1368 return data.mounted;
1369}
1370EXPORT_SYMBOL(path_has_submounts);
1371
eed81007
MS
1372/*
1373 * Called by mount code to set a mountpoint and check if the mountpoint is
1374 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1375 * subtree can become unreachable).
1376 *
1ffe46d1 1377 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1378 * this reason take rename_lock and d_lock on dentry and ancestors.
1379 */
1380int d_set_mounted(struct dentry *dentry)
1381{
1382 struct dentry *p;
1383 int ret = -ENOENT;
1384 write_seqlock(&rename_lock);
1385 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1386 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1387 spin_lock(&p->d_lock);
1388 if (unlikely(d_unhashed(p))) {
1389 spin_unlock(&p->d_lock);
1390 goto out;
1391 }
1392 spin_unlock(&p->d_lock);
1393 }
1394 spin_lock(&dentry->d_lock);
1395 if (!d_unlinked(dentry)) {
3895dbf8
EB
1396 ret = -EBUSY;
1397 if (!d_mountpoint(dentry)) {
1398 dentry->d_flags |= DCACHE_MOUNTED;
1399 ret = 0;
1400 }
eed81007
MS
1401 }
1402 spin_unlock(&dentry->d_lock);
1403out:
1404 write_sequnlock(&rename_lock);
1405 return ret;
1406}
1407
1da177e4 1408/*
fd517909 1409 * Search the dentry child list of the specified parent,
1da177e4
LT
1410 * and move any unused dentries to the end of the unused
1411 * list for prune_dcache(). We descend to the next level
1412 * whenever the d_subdirs list is non-empty and continue
1413 * searching.
1414 *
1415 * It returns zero iff there are no unused children,
1416 * otherwise it returns the number of children moved to
1417 * the end of the unused list. This may not be the total
1418 * number of unused children, because select_parent can
1419 * drop the lock and return early due to latency
1420 * constraints.
1421 */
1da177e4 1422
db14fc3a
MS
1423struct select_data {
1424 struct dentry *start;
1425 struct list_head dispose;
1426 int found;
1427};
23044507 1428
db14fc3a
MS
1429static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1430{
1431 struct select_data *data = _data;
1432 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1433
db14fc3a
MS
1434 if (data->start == dentry)
1435 goto out;
2fd6b7f5 1436
fe91522a 1437 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1438 data->found++;
fe91522a
AV
1439 } else {
1440 if (dentry->d_flags & DCACHE_LRU_LIST)
1441 d_lru_del(dentry);
1442 if (!dentry->d_lockref.count) {
1443 d_shrink_add(dentry, &data->dispose);
1444 data->found++;
1445 }
1da177e4 1446 }
db14fc3a
MS
1447 /*
1448 * We can return to the caller if we have found some (this
1449 * ensures forward progress). We'll be coming back to find
1450 * the rest.
1451 */
fe91522a
AV
1452 if (!list_empty(&data->dispose))
1453 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1454out:
db14fc3a 1455 return ret;
1da177e4
LT
1456}
1457
1458/**
1459 * shrink_dcache_parent - prune dcache
1460 * @parent: parent of entries to prune
1461 *
1462 * Prune the dcache to remove unused children of the parent dentry.
1463 */
db14fc3a 1464void shrink_dcache_parent(struct dentry *parent)
1da177e4 1465{
db14fc3a
MS
1466 for (;;) {
1467 struct select_data data;
1da177e4 1468
db14fc3a
MS
1469 INIT_LIST_HEAD(&data.dispose);
1470 data.start = parent;
1471 data.found = 0;
1472
3a8e3611 1473 d_walk(parent, &data, select_collect);
4fb48871
AV
1474
1475 if (!list_empty(&data.dispose)) {
1476 shrink_dentry_list(&data.dispose);
1477 continue;
1478 }
1479
1480 cond_resched();
db14fc3a
MS
1481 if (!data.found)
1482 break;
421348f1 1483 }
1da177e4 1484}
ec4f8605 1485EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1486
9c8c10e2 1487static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1488{
9c8c10e2
AV
1489 /* it has busy descendents; complain about those instead */
1490 if (!list_empty(&dentry->d_subdirs))
1491 return D_WALK_CONTINUE;
42c32608 1492
9c8c10e2
AV
1493 /* root with refcount 1 is fine */
1494 if (dentry == _data && dentry->d_lockref.count == 1)
1495 return D_WALK_CONTINUE;
1496
1497 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1498 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1499 dentry,
1500 dentry->d_inode ?
1501 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1502 dentry,
42c32608
AV
1503 dentry->d_lockref.count,
1504 dentry->d_sb->s_type->name,
1505 dentry->d_sb->s_id);
9c8c10e2
AV
1506 WARN_ON(1);
1507 return D_WALK_CONTINUE;
1508}
1509
1510static void do_one_tree(struct dentry *dentry)
1511{
1512 shrink_dcache_parent(dentry);
3a8e3611 1513 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1514 d_drop(dentry);
1515 dput(dentry);
42c32608
AV
1516}
1517
1518/*
1519 * destroy the dentries attached to a superblock on unmounting
1520 */
1521void shrink_dcache_for_umount(struct super_block *sb)
1522{
1523 struct dentry *dentry;
1524
9c8c10e2 1525 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1526
1527 dentry = sb->s_root;
1528 sb->s_root = NULL;
9c8c10e2 1529 do_one_tree(dentry);
42c32608 1530
f1ee6162
N
1531 while (!hlist_bl_empty(&sb->s_roots)) {
1532 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1533 do_one_tree(dentry);
42c32608
AV
1534 }
1535}
1536
ff17fa56 1537static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1538{
ff17fa56 1539 struct dentry **victim = _data;
848ac114 1540 if (d_mountpoint(dentry)) {
8ed936b5 1541 __dget_dlock(dentry);
ff17fa56 1542 *victim = dentry;
848ac114
MS
1543 return D_WALK_QUIT;
1544 }
ff17fa56 1545 return D_WALK_CONTINUE;
848ac114
MS
1546}
1547
1548/**
1ffe46d1
EB
1549 * d_invalidate - detach submounts, prune dcache, and drop
1550 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1551 */
5542aa2f 1552void d_invalidate(struct dentry *dentry)
848ac114 1553{
ff17fa56 1554 bool had_submounts = false;
1ffe46d1
EB
1555 spin_lock(&dentry->d_lock);
1556 if (d_unhashed(dentry)) {
1557 spin_unlock(&dentry->d_lock);
5542aa2f 1558 return;
1ffe46d1 1559 }
ff17fa56 1560 __d_drop(dentry);
1ffe46d1
EB
1561 spin_unlock(&dentry->d_lock);
1562
848ac114 1563 /* Negative dentries can be dropped without further checks */
ff17fa56 1564 if (!dentry->d_inode)
5542aa2f 1565 return;
848ac114 1566
ff17fa56 1567 shrink_dcache_parent(dentry);
848ac114 1568 for (;;) {
ff17fa56 1569 struct dentry *victim = NULL;
3a8e3611 1570 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1571 if (!victim) {
1572 if (had_submounts)
1573 shrink_dcache_parent(dentry);
81be24d2 1574 return;
8ed936b5 1575 }
ff17fa56
AV
1576 had_submounts = true;
1577 detach_mounts(victim);
1578 dput(victim);
848ac114 1579 }
848ac114 1580}
1ffe46d1 1581EXPORT_SYMBOL(d_invalidate);
848ac114 1582
1da177e4 1583/**
a4464dbc
AV
1584 * __d_alloc - allocate a dcache entry
1585 * @sb: filesystem it will belong to
1da177e4
LT
1586 * @name: qstr of the name
1587 *
1588 * Allocates a dentry. It returns %NULL if there is insufficient memory
1589 * available. On a success the dentry is returned. The name passed in is
1590 * copied and the copy passed in may be reused after this call.
1591 */
1592
a4464dbc 1593struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1594{
1595 struct dentry *dentry;
1596 char *dname;
285b102d 1597 int err;
1da177e4 1598
e12ba74d 1599 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1600 if (!dentry)
1601 return NULL;
1602
6326c71f
LT
1603 /*
1604 * We guarantee that the inline name is always NUL-terminated.
1605 * This way the memcpy() done by the name switching in rename
1606 * will still always have a NUL at the end, even if we might
1607 * be overwriting an internal NUL character
1608 */
1609 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1610 if (unlikely(!name)) {
cdf01226 1611 name = &slash_name;
798434bd
AV
1612 dname = dentry->d_iname;
1613 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1614 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1615 struct external_name *p = kmalloc(size + name->len,
1616 GFP_KERNEL_ACCOUNT |
1617 __GFP_RECLAIMABLE);
1618 if (!p) {
1da177e4
LT
1619 kmem_cache_free(dentry_cache, dentry);
1620 return NULL;
1621 }
2e03b4bc
VB
1622 atomic_set(&p->u.count, 1);
1623 dname = p->name;
1da177e4
LT
1624 } else {
1625 dname = dentry->d_iname;
1626 }
1da177e4
LT
1627
1628 dentry->d_name.len = name->len;
1629 dentry->d_name.hash = name->hash;
1630 memcpy(dname, name->name, name->len);
1631 dname[name->len] = 0;
1632
6326c71f 1633 /* Make sure we always see the terminating NUL character */
7088efa9 1634 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1635
98474236 1636 dentry->d_lockref.count = 1;
dea3667b 1637 dentry->d_flags = 0;
1da177e4 1638 spin_lock_init(&dentry->d_lock);
31e6b01f 1639 seqcount_init(&dentry->d_seq);
1da177e4 1640 dentry->d_inode = NULL;
a4464dbc
AV
1641 dentry->d_parent = dentry;
1642 dentry->d_sb = sb;
1da177e4
LT
1643 dentry->d_op = NULL;
1644 dentry->d_fsdata = NULL;
ceb5bdc2 1645 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1646 INIT_LIST_HEAD(&dentry->d_lru);
1647 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1648 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1649 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1650 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1651
285b102d
MS
1652 if (dentry->d_op && dentry->d_op->d_init) {
1653 err = dentry->d_op->d_init(dentry);
1654 if (err) {
1655 if (dname_external(dentry))
1656 kfree(external_name(dentry));
1657 kmem_cache_free(dentry_cache, dentry);
1658 return NULL;
1659 }
1660 }
1661
3e880fb5 1662 this_cpu_inc(nr_dentry);
312d3ca8 1663
1da177e4
LT
1664 return dentry;
1665}
a4464dbc
AV
1666
1667/**
1668 * d_alloc - allocate a dcache entry
1669 * @parent: parent of entry to allocate
1670 * @name: qstr of the name
1671 *
1672 * Allocates a dentry. It returns %NULL if there is insufficient memory
1673 * available. On a success the dentry is returned. The name passed in is
1674 * copied and the copy passed in may be reused after this call.
1675 */
1676struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1677{
1678 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1679 if (!dentry)
1680 return NULL;
3d56c25e 1681 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1682 spin_lock(&parent->d_lock);
1683 /*
1684 * don't need child lock because it is not subject
1685 * to concurrency here
1686 */
1687 __dget_dlock(parent);
1688 dentry->d_parent = parent;
946e51f2 1689 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1690 spin_unlock(&parent->d_lock);
1691
1692 return dentry;
1693}
ec4f8605 1694EXPORT_SYMBOL(d_alloc);
1da177e4 1695
f9c34674
MS
1696struct dentry *d_alloc_anon(struct super_block *sb)
1697{
1698 return __d_alloc(sb, NULL);
1699}
1700EXPORT_SYMBOL(d_alloc_anon);
1701
ba65dc5e
AV
1702struct dentry *d_alloc_cursor(struct dentry * parent)
1703{
f9c34674 1704 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1705 if (dentry) {
1706 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1707 dentry->d_parent = dget(parent);
1708 }
1709 return dentry;
1710}
1711
e1a24bb0
BF
1712/**
1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714 * @sb: the superblock
1715 * @name: qstr of the name
1716 *
1717 * For a filesystem that just pins its dentries in memory and never
1718 * performs lookups at all, return an unhashed IS_ROOT dentry.
1719 */
4b936885
NP
1720struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721{
e1a24bb0 1722 return __d_alloc(sb, name);
4b936885
NP
1723}
1724EXPORT_SYMBOL(d_alloc_pseudo);
1725
1da177e4
LT
1726struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1727{
1728 struct qstr q;
1729
1730 q.name = name;
8387ff25 1731 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1732 return d_alloc(parent, &q);
1733}
ef26ca97 1734EXPORT_SYMBOL(d_alloc_name);
1da177e4 1735
fb045adb
NP
1736void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1737{
6f7f7caa
LT
1738 WARN_ON_ONCE(dentry->d_op);
1739 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1740 DCACHE_OP_COMPARE |
1741 DCACHE_OP_REVALIDATE |
ecf3d1f1 1742 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1743 DCACHE_OP_DELETE |
d101a125 1744 DCACHE_OP_REAL));
fb045adb
NP
1745 dentry->d_op = op;
1746 if (!op)
1747 return;
1748 if (op->d_hash)
1749 dentry->d_flags |= DCACHE_OP_HASH;
1750 if (op->d_compare)
1751 dentry->d_flags |= DCACHE_OP_COMPARE;
1752 if (op->d_revalidate)
1753 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1754 if (op->d_weak_revalidate)
1755 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1756 if (op->d_delete)
1757 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1758 if (op->d_prune)
1759 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1760 if (op->d_real)
1761 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1762
1763}
1764EXPORT_SYMBOL(d_set_d_op);
1765
df1a085a
DH
1766
1767/*
1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769 * @dentry - The dentry to mark
1770 *
1771 * Mark a dentry as falling through to the lower layer (as set with
1772 * d_pin_lower()). This flag may be recorded on the medium.
1773 */
1774void d_set_fallthru(struct dentry *dentry)
1775{
1776 spin_lock(&dentry->d_lock);
1777 dentry->d_flags |= DCACHE_FALLTHRU;
1778 spin_unlock(&dentry->d_lock);
1779}
1780EXPORT_SYMBOL(d_set_fallthru);
1781
b18825a7
DH
1782static unsigned d_flags_for_inode(struct inode *inode)
1783{
44bdb5e5 1784 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1785
1786 if (!inode)
1787 return DCACHE_MISS_TYPE;
1788
1789 if (S_ISDIR(inode->i_mode)) {
1790 add_flags = DCACHE_DIRECTORY_TYPE;
1791 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1792 if (unlikely(!inode->i_op->lookup))
1793 add_flags = DCACHE_AUTODIR_TYPE;
1794 else
1795 inode->i_opflags |= IOP_LOOKUP;
1796 }
44bdb5e5
DH
1797 goto type_determined;
1798 }
1799
1800 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1801 if (unlikely(inode->i_op->get_link)) {
b18825a7 1802 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1803 goto type_determined;
1804 }
1805 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1806 }
1807
44bdb5e5
DH
1808 if (unlikely(!S_ISREG(inode->i_mode)))
1809 add_flags = DCACHE_SPECIAL_TYPE;
1810
1811type_determined:
b18825a7
DH
1812 if (unlikely(IS_AUTOMOUNT(inode)))
1813 add_flags |= DCACHE_NEED_AUTOMOUNT;
1814 return add_flags;
1815}
1816
360da900
OH
1817static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1818{
b18825a7 1819 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1820 WARN_ON(d_in_lookup(dentry));
b18825a7 1821
b23fb0a6 1822 spin_lock(&dentry->d_lock);
de689f5e 1823 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1824 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1825 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1826 raw_write_seqcount_end(&dentry->d_seq);
affda484 1827 fsnotify_update_flags(dentry);
b23fb0a6 1828 spin_unlock(&dentry->d_lock);
360da900
OH
1829}
1830
1da177e4
LT
1831/**
1832 * d_instantiate - fill in inode information for a dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1835 *
1836 * Fill in inode information in the entry.
1837 *
1838 * This turns negative dentries into productive full members
1839 * of society.
1840 *
1841 * NOTE! This assumes that the inode count has been incremented
1842 * (or otherwise set) by the caller to indicate that it is now
1843 * in use by the dcache.
1844 */
1845
1846void d_instantiate(struct dentry *entry, struct inode * inode)
1847{
946e51f2 1848 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1849 if (inode) {
b9680917 1850 security_d_instantiate(entry, inode);
873feea0 1851 spin_lock(&inode->i_lock);
de689f5e 1852 __d_instantiate(entry, inode);
873feea0 1853 spin_unlock(&inode->i_lock);
de689f5e 1854 }
1da177e4 1855}
ec4f8605 1856EXPORT_SYMBOL(d_instantiate);
1da177e4 1857
1e2e547a
AV
1858/*
1859 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1860 * with lockdep-related part of unlock_new_inode() done before
1861 * anything else. Use that instead of open-coding d_instantiate()/
1862 * unlock_new_inode() combinations.
1863 */
1864void d_instantiate_new(struct dentry *entry, struct inode *inode)
1865{
1866 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1867 BUG_ON(!inode);
1868 lockdep_annotate_inode_mutex_key(inode);
1869 security_d_instantiate(entry, inode);
1870 spin_lock(&inode->i_lock);
1871 __d_instantiate(entry, inode);
1872 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1873 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1874 smp_mb();
1875 wake_up_bit(&inode->i_state, __I_NEW);
1876 spin_unlock(&inode->i_lock);
1877}
1878EXPORT_SYMBOL(d_instantiate_new);
1879
adc0e91a
AV
1880struct dentry *d_make_root(struct inode *root_inode)
1881{
1882 struct dentry *res = NULL;
1883
1884 if (root_inode) {
f9c34674 1885 res = d_alloc_anon(root_inode->i_sb);
90bad5e0
AV
1886 if (res) {
1887 res->d_flags |= DCACHE_RCUACCESS;
adc0e91a 1888 d_instantiate(res, root_inode);
90bad5e0 1889 } else {
adc0e91a 1890 iput(root_inode);
90bad5e0 1891 }
adc0e91a
AV
1892 }
1893 return res;
1894}
1895EXPORT_SYMBOL(d_make_root);
1896
f9c34674
MS
1897static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1898 struct inode *inode,
1899 bool disconnected)
4ea3ada2 1900{
9308a612 1901 struct dentry *res;
b18825a7 1902 unsigned add_flags;
4ea3ada2 1903
f9c34674 1904 security_d_instantiate(dentry, inode);
873feea0 1905 spin_lock(&inode->i_lock);
d891eedb 1906 res = __d_find_any_alias(inode);
9308a612 1907 if (res) {
873feea0 1908 spin_unlock(&inode->i_lock);
f9c34674 1909 dput(dentry);
9308a612
CH
1910 goto out_iput;
1911 }
1912
1913 /* attach a disconnected dentry */
1a0a397e
BF
1914 add_flags = d_flags_for_inode(inode);
1915
1916 if (disconnected)
1917 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1918
f9c34674
MS
1919 spin_lock(&dentry->d_lock);
1920 __d_set_inode_and_type(dentry, inode, add_flags);
1921 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1922 if (!disconnected) {
139351f1
LT
1923 hlist_bl_lock(&dentry->d_sb->s_roots);
1924 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1925 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1926 }
f9c34674 1927 spin_unlock(&dentry->d_lock);
873feea0 1928 spin_unlock(&inode->i_lock);
9308a612 1929
f9c34674 1930 return dentry;
9308a612
CH
1931
1932 out_iput:
1933 iput(inode);
1934 return res;
4ea3ada2 1935}
1a0a397e 1936
f9c34674
MS
1937struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1938{
1939 return __d_instantiate_anon(dentry, inode, true);
1940}
1941EXPORT_SYMBOL(d_instantiate_anon);
1942
1943static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1944{
1945 struct dentry *tmp;
1946 struct dentry *res;
1947
1948 if (!inode)
1949 return ERR_PTR(-ESTALE);
1950 if (IS_ERR(inode))
1951 return ERR_CAST(inode);
1952
1953 res = d_find_any_alias(inode);
1954 if (res)
1955 goto out_iput;
1956
1957 tmp = d_alloc_anon(inode->i_sb);
1958 if (!tmp) {
1959 res = ERR_PTR(-ENOMEM);
1960 goto out_iput;
1961 }
1962
1963 return __d_instantiate_anon(tmp, inode, disconnected);
1964
1965out_iput:
1966 iput(inode);
1967 return res;
1968}
1969
1a0a397e
BF
1970/**
1971 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1972 * @inode: inode to allocate the dentry for
1973 *
1974 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1975 * similar open by handle operations. The returned dentry may be anonymous,
1976 * or may have a full name (if the inode was already in the cache).
1977 *
1978 * When called on a directory inode, we must ensure that the inode only ever
1979 * has one dentry. If a dentry is found, that is returned instead of
1980 * allocating a new one.
1981 *
1982 * On successful return, the reference to the inode has been transferred
1983 * to the dentry. In case of an error the reference on the inode is released.
1984 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1985 * be passed in and the error will be propagated to the return value,
1986 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1987 */
1988struct dentry *d_obtain_alias(struct inode *inode)
1989{
f9c34674 1990 return __d_obtain_alias(inode, true);
1a0a397e 1991}
adc48720 1992EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1993
1a0a397e
BF
1994/**
1995 * d_obtain_root - find or allocate a dentry for a given inode
1996 * @inode: inode to allocate the dentry for
1997 *
1998 * Obtain an IS_ROOT dentry for the root of a filesystem.
1999 *
2000 * We must ensure that directory inodes only ever have one dentry. If a
2001 * dentry is found, that is returned instead of allocating a new one.
2002 *
2003 * On successful return, the reference to the inode has been transferred
2004 * to the dentry. In case of an error the reference on the inode is
2005 * released. A %NULL or IS_ERR inode may be passed in and will be the
2006 * error will be propagate to the return value, with a %NULL @inode
2007 * replaced by ERR_PTR(-ESTALE).
2008 */
2009struct dentry *d_obtain_root(struct inode *inode)
2010{
f9c34674 2011 return __d_obtain_alias(inode, false);
1a0a397e
BF
2012}
2013EXPORT_SYMBOL(d_obtain_root);
2014
9403540c
BN
2015/**
2016 * d_add_ci - lookup or allocate new dentry with case-exact name
2017 * @inode: the inode case-insensitive lookup has found
2018 * @dentry: the negative dentry that was passed to the parent's lookup func
2019 * @name: the case-exact name to be associated with the returned dentry
2020 *
2021 * This is to avoid filling the dcache with case-insensitive names to the
2022 * same inode, only the actual correct case is stored in the dcache for
2023 * case-insensitive filesystems.
2024 *
2025 * For a case-insensitive lookup match and if the the case-exact dentry
2026 * already exists in in the dcache, use it and return it.
2027 *
2028 * If no entry exists with the exact case name, allocate new dentry with
2029 * the exact case, and return the spliced entry.
2030 */
e45b590b 2031struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2032 struct qstr *name)
2033{
d9171b93 2034 struct dentry *found, *res;
9403540c 2035
b6520c81
CH
2036 /*
2037 * First check if a dentry matching the name already exists,
2038 * if not go ahead and create it now.
2039 */
9403540c 2040 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2041 if (found) {
2042 iput(inode);
2043 return found;
2044 }
2045 if (d_in_lookup(dentry)) {
2046 found = d_alloc_parallel(dentry->d_parent, name,
2047 dentry->d_wait);
2048 if (IS_ERR(found) || !d_in_lookup(found)) {
2049 iput(inode);
2050 return found;
9403540c 2051 }
d9171b93
AV
2052 } else {
2053 found = d_alloc(dentry->d_parent, name);
2054 if (!found) {
2055 iput(inode);
2056 return ERR_PTR(-ENOMEM);
2057 }
2058 }
2059 res = d_splice_alias(inode, found);
2060 if (res) {
2061 dput(found);
2062 return res;
9403540c 2063 }
4f522a24 2064 return found;
9403540c 2065}
ec4f8605 2066EXPORT_SYMBOL(d_add_ci);
1da177e4 2067
12f8ad4b 2068
d4c91a8f
AV
2069static inline bool d_same_name(const struct dentry *dentry,
2070 const struct dentry *parent,
2071 const struct qstr *name)
12f8ad4b 2072{
d4c91a8f
AV
2073 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2074 if (dentry->d_name.len != name->len)
2075 return false;
2076 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2077 }
6fa67e70 2078 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2079 dentry->d_name.len, dentry->d_name.name,
2080 name) == 0;
12f8ad4b
LT
2081}
2082
31e6b01f
NP
2083/**
2084 * __d_lookup_rcu - search for a dentry (racy, store-free)
2085 * @parent: parent dentry
2086 * @name: qstr of name we wish to find
1f1e6e52 2087 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2088 * Returns: dentry, or NULL
2089 *
2090 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2091 * resolution (store-free path walking) design described in
2092 * Documentation/filesystems/path-lookup.txt.
2093 *
2094 * This is not to be used outside core vfs.
2095 *
2096 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2097 * held, and rcu_read_lock held. The returned dentry must not be stored into
2098 * without taking d_lock and checking d_seq sequence count against @seq
2099 * returned here.
2100 *
15570086 2101 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2102 * function.
2103 *
2104 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2105 * the returned dentry, so long as its parent's seqlock is checked after the
2106 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2107 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2108 *
2109 * NOTE! The caller *has* to check the resulting dentry against the sequence
2110 * number we've returned before using any of the resulting dentry state!
31e6b01f 2111 */
8966be90
LT
2112struct dentry *__d_lookup_rcu(const struct dentry *parent,
2113 const struct qstr *name,
da53be12 2114 unsigned *seqp)
31e6b01f 2115{
26fe5750 2116 u64 hashlen = name->hash_len;
31e6b01f 2117 const unsigned char *str = name->name;
8387ff25 2118 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2119 struct hlist_bl_node *node;
31e6b01f
NP
2120 struct dentry *dentry;
2121
2122 /*
2123 * Note: There is significant duplication with __d_lookup_rcu which is
2124 * required to prevent single threaded performance regressions
2125 * especially on architectures where smp_rmb (in seqcounts) are costly.
2126 * Keep the two functions in sync.
2127 */
2128
2129 /*
2130 * The hash list is protected using RCU.
2131 *
2132 * Carefully use d_seq when comparing a candidate dentry, to avoid
2133 * races with d_move().
2134 *
2135 * It is possible that concurrent renames can mess up our list
2136 * walk here and result in missing our dentry, resulting in the
2137 * false-negative result. d_lookup() protects against concurrent
2138 * renames using rename_lock seqlock.
2139 *
b0a4bb83 2140 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2141 */
b07ad996 2142 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2143 unsigned seq;
31e6b01f 2144
31e6b01f 2145seqretry:
12f8ad4b
LT
2146 /*
2147 * The dentry sequence count protects us from concurrent
da53be12 2148 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2149 *
2150 * The caller must perform a seqcount check in order
da53be12 2151 * to do anything useful with the returned dentry.
12f8ad4b
LT
2152 *
2153 * NOTE! We do a "raw" seqcount_begin here. That means that
2154 * we don't wait for the sequence count to stabilize if it
2155 * is in the middle of a sequence change. If we do the slow
2156 * dentry compare, we will do seqretries until it is stable,
2157 * and if we end up with a successful lookup, we actually
2158 * want to exit RCU lookup anyway.
d4c91a8f
AV
2159 *
2160 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2161 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2162 */
2163 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2164 if (dentry->d_parent != parent)
2165 continue;
2e321806
LT
2166 if (d_unhashed(dentry))
2167 continue;
12f8ad4b 2168
830c0f0e 2169 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2170 int tlen;
2171 const char *tname;
26fe5750
LT
2172 if (dentry->d_name.hash != hashlen_hash(hashlen))
2173 continue;
d4c91a8f
AV
2174 tlen = dentry->d_name.len;
2175 tname = dentry->d_name.name;
2176 /* we want a consistent (name,len) pair */
2177 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2178 cpu_relax();
12f8ad4b
LT
2179 goto seqretry;
2180 }
6fa67e70 2181 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2182 tlen, tname, name) != 0)
2183 continue;
2184 } else {
2185 if (dentry->d_name.hash_len != hashlen)
2186 continue;
2187 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2188 continue;
31e6b01f 2189 }
da53be12 2190 *seqp = seq;
d4c91a8f 2191 return dentry;
31e6b01f
NP
2192 }
2193 return NULL;
2194}
2195
1da177e4
LT
2196/**
2197 * d_lookup - search for a dentry
2198 * @parent: parent dentry
2199 * @name: qstr of name we wish to find
b04f784e 2200 * Returns: dentry, or NULL
1da177e4 2201 *
b04f784e
NP
2202 * d_lookup searches the children of the parent dentry for the name in
2203 * question. If the dentry is found its reference count is incremented and the
2204 * dentry is returned. The caller must use dput to free the entry when it has
2205 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2206 */
da2d8455 2207struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2208{
31e6b01f 2209 struct dentry *dentry;
949854d0 2210 unsigned seq;
1da177e4 2211
b8314f93
DY
2212 do {
2213 seq = read_seqbegin(&rename_lock);
2214 dentry = __d_lookup(parent, name);
2215 if (dentry)
1da177e4
LT
2216 break;
2217 } while (read_seqretry(&rename_lock, seq));
2218 return dentry;
2219}
ec4f8605 2220EXPORT_SYMBOL(d_lookup);
1da177e4 2221
31e6b01f 2222/**
b04f784e
NP
2223 * __d_lookup - search for a dentry (racy)
2224 * @parent: parent dentry
2225 * @name: qstr of name we wish to find
2226 * Returns: dentry, or NULL
2227 *
2228 * __d_lookup is like d_lookup, however it may (rarely) return a
2229 * false-negative result due to unrelated rename activity.
2230 *
2231 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2232 * however it must be used carefully, eg. with a following d_lookup in
2233 * the case of failure.
2234 *
2235 * __d_lookup callers must be commented.
2236 */
a713ca2a 2237struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2238{
1da177e4 2239 unsigned int hash = name->hash;
8387ff25 2240 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2241 struct hlist_bl_node *node;
31e6b01f 2242 struct dentry *found = NULL;
665a7583 2243 struct dentry *dentry;
1da177e4 2244
31e6b01f
NP
2245 /*
2246 * Note: There is significant duplication with __d_lookup_rcu which is
2247 * required to prevent single threaded performance regressions
2248 * especially on architectures where smp_rmb (in seqcounts) are costly.
2249 * Keep the two functions in sync.
2250 */
2251
b04f784e
NP
2252 /*
2253 * The hash list is protected using RCU.
2254 *
2255 * Take d_lock when comparing a candidate dentry, to avoid races
2256 * with d_move().
2257 *
2258 * It is possible that concurrent renames can mess up our list
2259 * walk here and result in missing our dentry, resulting in the
2260 * false-negative result. d_lookup() protects against concurrent
2261 * renames using rename_lock seqlock.
2262 *
b0a4bb83 2263 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2264 */
1da177e4
LT
2265 rcu_read_lock();
2266
b07ad996 2267 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2268
1da177e4
LT
2269 if (dentry->d_name.hash != hash)
2270 continue;
1da177e4
LT
2271
2272 spin_lock(&dentry->d_lock);
1da177e4
LT
2273 if (dentry->d_parent != parent)
2274 goto next;
d0185c08
LT
2275 if (d_unhashed(dentry))
2276 goto next;
2277
d4c91a8f
AV
2278 if (!d_same_name(dentry, parent, name))
2279 goto next;
1da177e4 2280
98474236 2281 dentry->d_lockref.count++;
d0185c08 2282 found = dentry;
1da177e4
LT
2283 spin_unlock(&dentry->d_lock);
2284 break;
2285next:
2286 spin_unlock(&dentry->d_lock);
2287 }
2288 rcu_read_unlock();
2289
2290 return found;
2291}
2292
3e7e241f
EB
2293/**
2294 * d_hash_and_lookup - hash the qstr then search for a dentry
2295 * @dir: Directory to search in
2296 * @name: qstr of name we wish to find
2297 *
4f522a24 2298 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2299 */
2300struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2301{
3e7e241f
EB
2302 /*
2303 * Check for a fs-specific hash function. Note that we must
2304 * calculate the standard hash first, as the d_op->d_hash()
2305 * routine may choose to leave the hash value unchanged.
2306 */
8387ff25 2307 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2308 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2309 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2310 if (unlikely(err < 0))
2311 return ERR_PTR(err);
3e7e241f 2312 }
4f522a24 2313 return d_lookup(dir, name);
3e7e241f 2314}
4f522a24 2315EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2316
1da177e4
LT
2317/*
2318 * When a file is deleted, we have two options:
2319 * - turn this dentry into a negative dentry
2320 * - unhash this dentry and free it.
2321 *
2322 * Usually, we want to just turn this into
2323 * a negative dentry, but if anybody else is
2324 * currently using the dentry or the inode
2325 * we can't do that and we fall back on removing
2326 * it from the hash queues and waiting for
2327 * it to be deleted later when it has no users
2328 */
2329
2330/**
2331 * d_delete - delete a dentry
2332 * @dentry: The dentry to delete
2333 *
2334 * Turn the dentry into a negative dentry if possible, otherwise
2335 * remove it from the hash queues so it can be deleted later
2336 */
2337
2338void d_delete(struct dentry * dentry)
2339{
c19457f0
AV
2340 struct inode *inode = dentry->d_inode;
2341 int isdir = d_is_dir(dentry);
2342
2343 spin_lock(&inode->i_lock);
2344 spin_lock(&dentry->d_lock);
1da177e4
LT
2345 /*
2346 * Are we the only user?
2347 */
98474236 2348 if (dentry->d_lockref.count == 1) {
13e3c5e5 2349 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2350 dentry_unlink_inode(dentry);
c19457f0 2351 } else {
1da177e4 2352 __d_drop(dentry);
c19457f0
AV
2353 spin_unlock(&dentry->d_lock);
2354 spin_unlock(&inode->i_lock);
2355 }
7a91bf7f 2356 fsnotify_nameremove(dentry, isdir);
1da177e4 2357}
ec4f8605 2358EXPORT_SYMBOL(d_delete);
1da177e4 2359
15d3c589 2360static void __d_rehash(struct dentry *entry)
1da177e4 2361{
15d3c589 2362 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2363
1879fd6a 2364 hlist_bl_lock(b);
b07ad996 2365 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2366 hlist_bl_unlock(b);
1da177e4
LT
2367}
2368
2369/**
2370 * d_rehash - add an entry back to the hash
2371 * @entry: dentry to add to the hash
2372 *
2373 * Adds a dentry to the hash according to its name.
2374 */
2375
2376void d_rehash(struct dentry * entry)
2377{
1da177e4 2378 spin_lock(&entry->d_lock);
15d3c589 2379 __d_rehash(entry);
1da177e4 2380 spin_unlock(&entry->d_lock);
1da177e4 2381}
ec4f8605 2382EXPORT_SYMBOL(d_rehash);
1da177e4 2383
84e710da
AV
2384static inline unsigned start_dir_add(struct inode *dir)
2385{
2386
2387 for (;;) {
2388 unsigned n = dir->i_dir_seq;
2389 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2390 return n;
2391 cpu_relax();
2392 }
2393}
2394
2395static inline void end_dir_add(struct inode *dir, unsigned n)
2396{
2397 smp_store_release(&dir->i_dir_seq, n + 2);
2398}
2399
d9171b93
AV
2400static void d_wait_lookup(struct dentry *dentry)
2401{
2402 if (d_in_lookup(dentry)) {
2403 DECLARE_WAITQUEUE(wait, current);
2404 add_wait_queue(dentry->d_wait, &wait);
2405 do {
2406 set_current_state(TASK_UNINTERRUPTIBLE);
2407 spin_unlock(&dentry->d_lock);
2408 schedule();
2409 spin_lock(&dentry->d_lock);
2410 } while (d_in_lookup(dentry));
2411 }
2412}
2413
94bdd655 2414struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2415 const struct qstr *name,
2416 wait_queue_head_t *wq)
94bdd655 2417{
94bdd655 2418 unsigned int hash = name->hash;
94bdd655
AV
2419 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2420 struct hlist_bl_node *node;
2421 struct dentry *new = d_alloc(parent, name);
2422 struct dentry *dentry;
2423 unsigned seq, r_seq, d_seq;
2424
2425 if (unlikely(!new))
2426 return ERR_PTR(-ENOMEM);
2427
2428retry:
2429 rcu_read_lock();
015555fd 2430 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2431 r_seq = read_seqbegin(&rename_lock);
2432 dentry = __d_lookup_rcu(parent, name, &d_seq);
2433 if (unlikely(dentry)) {
2434 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2435 rcu_read_unlock();
2436 goto retry;
2437 }
2438 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2439 rcu_read_unlock();
2440 dput(dentry);
2441 goto retry;
2442 }
2443 rcu_read_unlock();
2444 dput(new);
2445 return dentry;
2446 }
2447 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2448 rcu_read_unlock();
2449 goto retry;
2450 }
015555fd
WD
2451
2452 if (unlikely(seq & 1)) {
2453 rcu_read_unlock();
2454 goto retry;
2455 }
2456
94bdd655 2457 hlist_bl_lock(b);
8cc07c80 2458 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2459 hlist_bl_unlock(b);
2460 rcu_read_unlock();
2461 goto retry;
2462 }
94bdd655
AV
2463 /*
2464 * No changes for the parent since the beginning of d_lookup().
2465 * Since all removals from the chain happen with hlist_bl_lock(),
2466 * any potential in-lookup matches are going to stay here until
2467 * we unlock the chain. All fields are stable in everything
2468 * we encounter.
2469 */
2470 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2471 if (dentry->d_name.hash != hash)
2472 continue;
2473 if (dentry->d_parent != parent)
2474 continue;
d4c91a8f
AV
2475 if (!d_same_name(dentry, parent, name))
2476 continue;
94bdd655 2477 hlist_bl_unlock(b);
e7d6ef97
AV
2478 /* now we can try to grab a reference */
2479 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2480 rcu_read_unlock();
2481 goto retry;
2482 }
2483
2484 rcu_read_unlock();
2485 /*
2486 * somebody is likely to be still doing lookup for it;
2487 * wait for them to finish
2488 */
d9171b93
AV
2489 spin_lock(&dentry->d_lock);
2490 d_wait_lookup(dentry);
2491 /*
2492 * it's not in-lookup anymore; in principle we should repeat
2493 * everything from dcache lookup, but it's likely to be what
2494 * d_lookup() would've found anyway. If it is, just return it;
2495 * otherwise we really have to repeat the whole thing.
2496 */
2497 if (unlikely(dentry->d_name.hash != hash))
2498 goto mismatch;
2499 if (unlikely(dentry->d_parent != parent))
2500 goto mismatch;
2501 if (unlikely(d_unhashed(dentry)))
2502 goto mismatch;
d4c91a8f
AV
2503 if (unlikely(!d_same_name(dentry, parent, name)))
2504 goto mismatch;
d9171b93
AV
2505 /* OK, it *is* a hashed match; return it */
2506 spin_unlock(&dentry->d_lock);
94bdd655
AV
2507 dput(new);
2508 return dentry;
2509 }
e7d6ef97 2510 rcu_read_unlock();
94bdd655
AV
2511 /* we can't take ->d_lock here; it's OK, though. */
2512 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2513 new->d_wait = wq;
94bdd655
AV
2514 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2515 hlist_bl_unlock(b);
2516 return new;
d9171b93
AV
2517mismatch:
2518 spin_unlock(&dentry->d_lock);
2519 dput(dentry);
2520 goto retry;
94bdd655
AV
2521}
2522EXPORT_SYMBOL(d_alloc_parallel);
2523
85c7f810
AV
2524void __d_lookup_done(struct dentry *dentry)
2525{
94bdd655
AV
2526 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2527 dentry->d_name.hash);
2528 hlist_bl_lock(b);
85c7f810 2529 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2530 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2531 wake_up_all(dentry->d_wait);
2532 dentry->d_wait = NULL;
94bdd655
AV
2533 hlist_bl_unlock(b);
2534 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2535 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2536}
2537EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2538
2539/* inode->i_lock held if inode is non-NULL */
2540
2541static inline void __d_add(struct dentry *dentry, struct inode *inode)
2542{
84e710da
AV
2543 struct inode *dir = NULL;
2544 unsigned n;
0568d705 2545 spin_lock(&dentry->d_lock);
84e710da
AV
2546 if (unlikely(d_in_lookup(dentry))) {
2547 dir = dentry->d_parent->d_inode;
2548 n = start_dir_add(dir);
85c7f810 2549 __d_lookup_done(dentry);
84e710da 2550 }
ed782b5a 2551 if (inode) {
0568d705
AV
2552 unsigned add_flags = d_flags_for_inode(inode);
2553 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2554 raw_write_seqcount_begin(&dentry->d_seq);
2555 __d_set_inode_and_type(dentry, inode, add_flags);
2556 raw_write_seqcount_end(&dentry->d_seq);
affda484 2557 fsnotify_update_flags(dentry);
ed782b5a 2558 }
15d3c589 2559 __d_rehash(dentry);
84e710da
AV
2560 if (dir)
2561 end_dir_add(dir, n);
0568d705
AV
2562 spin_unlock(&dentry->d_lock);
2563 if (inode)
2564 spin_unlock(&inode->i_lock);
ed782b5a
AV
2565}
2566
34d0d19d
AV
2567/**
2568 * d_add - add dentry to hash queues
2569 * @entry: dentry to add
2570 * @inode: The inode to attach to this dentry
2571 *
2572 * This adds the entry to the hash queues and initializes @inode.
2573 * The entry was actually filled in earlier during d_alloc().
2574 */
2575
2576void d_add(struct dentry *entry, struct inode *inode)
2577{
b9680917
AV
2578 if (inode) {
2579 security_d_instantiate(entry, inode);
ed782b5a 2580 spin_lock(&inode->i_lock);
b9680917 2581 }
ed782b5a 2582 __d_add(entry, inode);
34d0d19d
AV
2583}
2584EXPORT_SYMBOL(d_add);
2585
668d0cd5
AV
2586/**
2587 * d_exact_alias - find and hash an exact unhashed alias
2588 * @entry: dentry to add
2589 * @inode: The inode to go with this dentry
2590 *
2591 * If an unhashed dentry with the same name/parent and desired
2592 * inode already exists, hash and return it. Otherwise, return
2593 * NULL.
2594 *
2595 * Parent directory should be locked.
2596 */
2597struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2598{
2599 struct dentry *alias;
668d0cd5
AV
2600 unsigned int hash = entry->d_name.hash;
2601
2602 spin_lock(&inode->i_lock);
2603 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2604 /*
2605 * Don't need alias->d_lock here, because aliases with
2606 * d_parent == entry->d_parent are not subject to name or
2607 * parent changes, because the parent inode i_mutex is held.
2608 */
2609 if (alias->d_name.hash != hash)
2610 continue;
2611 if (alias->d_parent != entry->d_parent)
2612 continue;
d4c91a8f 2613 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2614 continue;
2615 spin_lock(&alias->d_lock);
2616 if (!d_unhashed(alias)) {
2617 spin_unlock(&alias->d_lock);
2618 alias = NULL;
2619 } else {
2620 __dget_dlock(alias);
15d3c589 2621 __d_rehash(alias);
668d0cd5
AV
2622 spin_unlock(&alias->d_lock);
2623 }
2624 spin_unlock(&inode->i_lock);
2625 return alias;
2626 }
2627 spin_unlock(&inode->i_lock);
2628 return NULL;
2629}
2630EXPORT_SYMBOL(d_exact_alias);
2631
8d85b484 2632static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2633{
8d85b484
AV
2634 if (unlikely(dname_external(target))) {
2635 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2636 /*
2637 * Both external: swap the pointers
2638 */
9a8d5bb4 2639 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2640 } else {
2641 /*
2642 * dentry:internal, target:external. Steal target's
2643 * storage and make target internal.
2644 */
321bcf92
BF
2645 memcpy(target->d_iname, dentry->d_name.name,
2646 dentry->d_name.len + 1);
1da177e4
LT
2647 dentry->d_name.name = target->d_name.name;
2648 target->d_name.name = target->d_iname;
2649 }
2650 } else {
8d85b484 2651 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2652 /*
2653 * dentry:external, target:internal. Give dentry's
2654 * storage to target and make dentry internal
2655 */
2656 memcpy(dentry->d_iname, target->d_name.name,
2657 target->d_name.len + 1);
2658 target->d_name.name = dentry->d_name.name;
2659 dentry->d_name.name = dentry->d_iname;
2660 } else {
2661 /*
da1ce067 2662 * Both are internal.
1da177e4 2663 */
da1ce067
MS
2664 unsigned int i;
2665 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2666 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2667 swap(((long *) &dentry->d_iname)[i],
2668 ((long *) &target->d_iname)[i]);
2669 }
1da177e4
LT
2670 }
2671 }
a28ddb87 2672 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2673}
2674
8d85b484
AV
2675static void copy_name(struct dentry *dentry, struct dentry *target)
2676{
2677 struct external_name *old_name = NULL;
2678 if (unlikely(dname_external(dentry)))
2679 old_name = external_name(dentry);
2680 if (unlikely(dname_external(target))) {
2681 atomic_inc(&external_name(target)->u.count);
2682 dentry->d_name = target->d_name;
2683 } else {
2684 memcpy(dentry->d_iname, target->d_name.name,
2685 target->d_name.len + 1);
2686 dentry->d_name.name = dentry->d_iname;
2687 dentry->d_name.hash_len = target->d_name.hash_len;
2688 }
2689 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2690 kfree_rcu(old_name, u.head);
8d85b484
AV
2691}
2692
9eaef27b 2693/*
18367501 2694 * __d_move - move a dentry
1da177e4
LT
2695 * @dentry: entry to move
2696 * @target: new dentry
da1ce067 2697 * @exchange: exchange the two dentries
1da177e4
LT
2698 *
2699 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2700 * dcache entries should not be moved in this way. Caller must hold
2701 * rename_lock, the i_mutex of the source and target directories,
2702 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2703 */
da1ce067
MS
2704static void __d_move(struct dentry *dentry, struct dentry *target,
2705 bool exchange)
1da177e4 2706{
42177007 2707 struct dentry *old_parent, *p;
84e710da
AV
2708 struct inode *dir = NULL;
2709 unsigned n;
1da177e4 2710
42177007
AV
2711 WARN_ON(!dentry->d_inode);
2712 if (WARN_ON(dentry == target))
2713 return;
2714
2fd6b7f5 2715 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2716 old_parent = dentry->d_parent;
2717 p = d_ancestor(old_parent, target);
2718 if (IS_ROOT(dentry)) {
2719 BUG_ON(p);
2720 spin_lock(&target->d_parent->d_lock);
2721 } else if (!p) {
2722 /* target is not a descendent of dentry->d_parent */
2723 spin_lock(&target->d_parent->d_lock);
2724 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2725 } else {
2726 BUG_ON(p == dentry);
2727 spin_lock(&old_parent->d_lock);
2728 if (p != target)
2729 spin_lock_nested(&target->d_parent->d_lock,
2730 DENTRY_D_LOCK_NESTED);
2731 }
2732 spin_lock_nested(&dentry->d_lock, 2);
2733 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2734
84e710da
AV
2735 if (unlikely(d_in_lookup(target))) {
2736 dir = target->d_parent->d_inode;
2737 n = start_dir_add(dir);
85c7f810 2738 __d_lookup_done(target);
84e710da 2739 }
1da177e4 2740
31e6b01f 2741 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2742 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2743
15d3c589 2744 /* unhash both */
0632a9ac
AV
2745 if (!d_unhashed(dentry))
2746 ___d_drop(dentry);
2747 if (!d_unhashed(target))
2748 ___d_drop(target);
1da177e4 2749
076515fc
AV
2750 /* ... and switch them in the tree */
2751 dentry->d_parent = target->d_parent;
2752 if (!exchange) {
8d85b484 2753 copy_name(dentry, target);
61647823 2754 target->d_hash.pprev = NULL;
076515fc
AV
2755 dentry->d_parent->d_lockref.count++;
2756 if (dentry == old_parent)
2757 dentry->d_flags |= DCACHE_RCUACCESS;
2758 else
2759 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2760 } else {
076515fc
AV
2761 target->d_parent = old_parent;
2762 swap_names(dentry, target);
946e51f2 2763 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2764 __d_rehash(target);
2765 fsnotify_update_flags(target);
1da177e4 2766 }
076515fc
AV
2767 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2768 __d_rehash(dentry);
2769 fsnotify_update_flags(dentry);
1da177e4 2770
31e6b01f
NP
2771 write_seqcount_end(&target->d_seq);
2772 write_seqcount_end(&dentry->d_seq);
2773
84e710da
AV
2774 if (dir)
2775 end_dir_add(dir, n);
076515fc
AV
2776
2777 if (dentry->d_parent != old_parent)
2778 spin_unlock(&dentry->d_parent->d_lock);
2779 if (dentry != old_parent)
2780 spin_unlock(&old_parent->d_lock);
2781 spin_unlock(&target->d_lock);
2782 spin_unlock(&dentry->d_lock);
18367501
AV
2783}
2784
2785/*
2786 * d_move - move a dentry
2787 * @dentry: entry to move
2788 * @target: new dentry
2789 *
2790 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2791 * dcache entries should not be moved in this way. See the locking
2792 * requirements for __d_move.
18367501
AV
2793 */
2794void d_move(struct dentry *dentry, struct dentry *target)
2795{
2796 write_seqlock(&rename_lock);
da1ce067 2797 __d_move(dentry, target, false);
1da177e4 2798 write_sequnlock(&rename_lock);
9eaef27b 2799}
ec4f8605 2800EXPORT_SYMBOL(d_move);
1da177e4 2801
da1ce067
MS
2802/*
2803 * d_exchange - exchange two dentries
2804 * @dentry1: first dentry
2805 * @dentry2: second dentry
2806 */
2807void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2808{
2809 write_seqlock(&rename_lock);
2810
2811 WARN_ON(!dentry1->d_inode);
2812 WARN_ON(!dentry2->d_inode);
2813 WARN_ON(IS_ROOT(dentry1));
2814 WARN_ON(IS_ROOT(dentry2));
2815
2816 __d_move(dentry1, dentry2, true);
2817
2818 write_sequnlock(&rename_lock);
2819}
2820
e2761a11
OH
2821/**
2822 * d_ancestor - search for an ancestor
2823 * @p1: ancestor dentry
2824 * @p2: child dentry
2825 *
2826 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2827 * an ancestor of p2, else NULL.
9eaef27b 2828 */
e2761a11 2829struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2830{
2831 struct dentry *p;
2832
871c0067 2833 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2834 if (p->d_parent == p1)
e2761a11 2835 return p;
9eaef27b 2836 }
e2761a11 2837 return NULL;
9eaef27b
TM
2838}
2839
2840/*
2841 * This helper attempts to cope with remotely renamed directories
2842 *
2843 * It assumes that the caller is already holding
a03e283b 2844 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2845 *
2846 * Note: If ever the locking in lock_rename() changes, then please
2847 * remember to update this too...
9eaef27b 2848 */
b5ae6b15 2849static int __d_unalias(struct inode *inode,
873feea0 2850 struct dentry *dentry, struct dentry *alias)
9eaef27b 2851{
9902af79
AV
2852 struct mutex *m1 = NULL;
2853 struct rw_semaphore *m2 = NULL;
3d330dc1 2854 int ret = -ESTALE;
9eaef27b
TM
2855
2856 /* If alias and dentry share a parent, then no extra locks required */
2857 if (alias->d_parent == dentry->d_parent)
2858 goto out_unalias;
2859
9eaef27b 2860 /* See lock_rename() */
9eaef27b
TM
2861 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2862 goto out_err;
2863 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2864 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2865 goto out_err;
9902af79 2866 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2867out_unalias:
8ed936b5 2868 __d_move(alias, dentry, false);
b5ae6b15 2869 ret = 0;
9eaef27b 2870out_err:
9eaef27b 2871 if (m2)
9902af79 2872 up_read(m2);
9eaef27b
TM
2873 if (m1)
2874 mutex_unlock(m1);
2875 return ret;
2876}
2877
3f70bd51
BF
2878/**
2879 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2880 * @inode: the inode which may have a disconnected dentry
2881 * @dentry: a negative dentry which we want to point to the inode.
2882 *
da093a9b
BF
2883 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2884 * place of the given dentry and return it, else simply d_add the inode
2885 * to the dentry and return NULL.
3f70bd51 2886 *
908790fa
BF
2887 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2888 * we should error out: directories can't have multiple aliases.
2889 *
3f70bd51
BF
2890 * This is needed in the lookup routine of any filesystem that is exportable
2891 * (via knfsd) so that we can build dcache paths to directories effectively.
2892 *
2893 * If a dentry was found and moved, then it is returned. Otherwise NULL
2894 * is returned. This matches the expected return value of ->lookup.
2895 *
2896 * Cluster filesystems may call this function with a negative, hashed dentry.
2897 * In that case, we know that the inode will be a regular file, and also this
2898 * will only occur during atomic_open. So we need to check for the dentry
2899 * being already hashed only in the final case.
2900 */
2901struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2902{
3f70bd51
BF
2903 if (IS_ERR(inode))
2904 return ERR_CAST(inode);
2905
770bfad8
DH
2906 BUG_ON(!d_unhashed(dentry));
2907
de689f5e 2908 if (!inode)
b5ae6b15 2909 goto out;
de689f5e 2910
b9680917 2911 security_d_instantiate(dentry, inode);
873feea0 2912 spin_lock(&inode->i_lock);
9eaef27b 2913 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2914 struct dentry *new = __d_find_any_alias(inode);
2915 if (unlikely(new)) {
a03e283b
EB
2916 /* The reference to new ensures it remains an alias */
2917 spin_unlock(&inode->i_lock);
18367501 2918 write_seqlock(&rename_lock);
b5ae6b15
AV
2919 if (unlikely(d_ancestor(new, dentry))) {
2920 write_sequnlock(&rename_lock);
b5ae6b15
AV
2921 dput(new);
2922 new = ERR_PTR(-ELOOP);
2923 pr_warn_ratelimited(
2924 "VFS: Lookup of '%s' in %s %s"
2925 " would have caused loop\n",
2926 dentry->d_name.name,
2927 inode->i_sb->s_type->name,
2928 inode->i_sb->s_id);
2929 } else if (!IS_ROOT(new)) {
076515fc 2930 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 2931 int err = __d_unalias(inode, dentry, new);
18367501 2932 write_sequnlock(&rename_lock);
b5ae6b15
AV
2933 if (err) {
2934 dput(new);
2935 new = ERR_PTR(err);
2936 }
076515fc 2937 dput(old_parent);
18367501 2938 } else {
b5ae6b15
AV
2939 __d_move(new, dentry, false);
2940 write_sequnlock(&rename_lock);
dd179946 2941 }
b5ae6b15
AV
2942 iput(inode);
2943 return new;
9eaef27b 2944 }
770bfad8 2945 }
b5ae6b15 2946out:
ed782b5a 2947 __d_add(dentry, inode);
b5ae6b15 2948 return NULL;
770bfad8 2949}
b5ae6b15 2950EXPORT_SYMBOL(d_splice_alias);
770bfad8 2951
1da177e4
LT
2952/*
2953 * Test whether new_dentry is a subdirectory of old_dentry.
2954 *
2955 * Trivially implemented using the dcache structure
2956 */
2957
2958/**
2959 * is_subdir - is new dentry a subdirectory of old_dentry
2960 * @new_dentry: new dentry
2961 * @old_dentry: old dentry
2962 *
a6e5787f
YB
2963 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2964 * Returns false otherwise.
1da177e4
LT
2965 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2966 */
2967
a6e5787f 2968bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 2969{
a6e5787f 2970 bool result;
949854d0 2971 unsigned seq;
1da177e4 2972
e2761a11 2973 if (new_dentry == old_dentry)
a6e5787f 2974 return true;
e2761a11 2975
e2761a11 2976 do {
1da177e4 2977 /* for restarting inner loop in case of seq retry */
1da177e4 2978 seq = read_seqbegin(&rename_lock);
949854d0
NP
2979 /*
2980 * Need rcu_readlock to protect against the d_parent trashing
2981 * due to d_move
2982 */
2983 rcu_read_lock();
e2761a11 2984 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 2985 result = true;
e2761a11 2986 else
a6e5787f 2987 result = false;
949854d0 2988 rcu_read_unlock();
1da177e4 2989 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2990
2991 return result;
2992}
e8f9e5b7 2993EXPORT_SYMBOL(is_subdir);
1da177e4 2994
db14fc3a 2995static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 2996{
db14fc3a
MS
2997 struct dentry *root = data;
2998 if (dentry != root) {
2999 if (d_unhashed(dentry) || !dentry->d_inode)
3000 return D_WALK_SKIP;
1da177e4 3001
01ddc4ed
MS
3002 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3003 dentry->d_flags |= DCACHE_GENOCIDE;
3004 dentry->d_lockref.count--;
3005 }
1da177e4 3006 }
db14fc3a
MS
3007 return D_WALK_CONTINUE;
3008}
58db63d0 3009
db14fc3a
MS
3010void d_genocide(struct dentry *parent)
3011{
3a8e3611 3012 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3013}
3014
cbd4a5bc
AV
3015EXPORT_SYMBOL(d_genocide);
3016
60545d0d 3017void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3018{
60545d0d
AV
3019 inode_dec_link_count(inode);
3020 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3021 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3022 !d_unlinked(dentry));
3023 spin_lock(&dentry->d_parent->d_lock);
3024 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3025 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3026 (unsigned long long)inode->i_ino);
3027 spin_unlock(&dentry->d_lock);
3028 spin_unlock(&dentry->d_parent->d_lock);
3029 d_instantiate(dentry, inode);
1da177e4 3030}
60545d0d 3031EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3032
3033static __initdata unsigned long dhash_entries;
3034static int __init set_dhash_entries(char *str)
3035{
3036 if (!str)
3037 return 0;
3038 dhash_entries = simple_strtoul(str, &str, 0);
3039 return 1;
3040}
3041__setup("dhash_entries=", set_dhash_entries);
3042
3043static void __init dcache_init_early(void)
3044{
1da177e4
LT
3045 /* If hashes are distributed across NUMA nodes, defer
3046 * hash allocation until vmalloc space is available.
3047 */
3048 if (hashdist)
3049 return;
3050
3051 dentry_hashtable =
3052 alloc_large_system_hash("Dentry cache",
b07ad996 3053 sizeof(struct hlist_bl_head),
1da177e4
LT
3054 dhash_entries,
3055 13,
3d375d78 3056 HASH_EARLY | HASH_ZERO,
1da177e4 3057 &d_hash_shift,
b35d786b 3058 NULL,
31fe62b9 3059 0,
1da177e4 3060 0);
854d3e63 3061 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3062}
3063
74bf17cf 3064static void __init dcache_init(void)
1da177e4 3065{
3d375d78 3066 /*
1da177e4
LT
3067 * A constructor could be added for stable state like the lists,
3068 * but it is probably not worth it because of the cache nature
3d375d78 3069 * of the dcache.
1da177e4 3070 */
80344266
DW
3071 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3072 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3073 d_iname);
1da177e4
LT
3074
3075 /* Hash may have been set up in dcache_init_early */
3076 if (!hashdist)
3077 return;
3078
3079 dentry_hashtable =
3080 alloc_large_system_hash("Dentry cache",
b07ad996 3081 sizeof(struct hlist_bl_head),
1da177e4
LT
3082 dhash_entries,
3083 13,
3d375d78 3084 HASH_ZERO,
1da177e4 3085 &d_hash_shift,
b35d786b 3086 NULL,
31fe62b9 3087 0,
1da177e4 3088 0);
854d3e63 3089 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3090}
3091
3092/* SLAB cache for __getname() consumers */
e18b890b 3093struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3094EXPORT_SYMBOL(names_cachep);
1da177e4 3095
1da177e4
LT
3096void __init vfs_caches_init_early(void)
3097{
6916363f
SAS
3098 int i;
3099
3100 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3101 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3102
1da177e4
LT
3103 dcache_init_early();
3104 inode_init_early();
3105}
3106
4248b0da 3107void __init vfs_caches_init(void)
1da177e4 3108{
6a9b8820
DW
3109 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3110 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3111
74bf17cf
DC
3112 dcache_init();
3113 inode_init();
4248b0da
MG
3114 files_init();
3115 files_maxfiles_init();
74bf17cf 3116 mnt_init();
1da177e4
LT
3117 bdev_cache_init();
3118 chrdev_init();
3119}