arm64: dts: clearfog-gt-8k: describe mini-PCIe CON2 USB
[linux-2.6-block.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
9f32d221
MW
96static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97{
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99}
100
101static void *dax_make_page_entry(struct page *page)
102{
103 pfn_t pfn = page_to_pfn_t(page);
104 return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
105}
106
cfc93c6c
MW
107static bool dax_is_locked(void *entry)
108{
109 return xa_to_value(entry) & DAX_LOCKED;
110}
111
a77d19f4 112static unsigned int dax_entry_order(void *entry)
527b19d0 113{
3159f943 114 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 115 return PMD_ORDER;
527b19d0
RZ
116 return 0;
117}
118
642261ac 119static int dax_is_pmd_entry(void *entry)
d1a5f2b4 120{
3159f943 121 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
122}
123
642261ac 124static int dax_is_pte_entry(void *entry)
d475c634 125{
3159f943 126 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
127}
128
642261ac 129static int dax_is_zero_entry(void *entry)
d475c634 130{
3159f943 131 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
132}
133
642261ac 134static int dax_is_empty_entry(void *entry)
b2e0d162 135{
3159f943 136 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
137}
138
ac401cc7 139/*
a77d19f4 140 * DAX page cache entry locking
ac401cc7
JK
141 */
142struct exceptional_entry_key {
ec4907ff 143 struct xarray *xa;
63e95b5c 144 pgoff_t entry_start;
ac401cc7
JK
145};
146
147struct wait_exceptional_entry_queue {
ac6424b9 148 wait_queue_entry_t wait;
ac401cc7
JK
149 struct exceptional_entry_key key;
150};
151
b15cd800
MW
152static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
154{
155 unsigned long hash;
b15cd800 156 unsigned long index = xas->xa_index;
63e95b5c
RZ
157
158 /*
159 * If 'entry' is a PMD, align the 'index' that we use for the wait
160 * queue to the start of that PMD. This ensures that all offsets in
161 * the range covered by the PMD map to the same bit lock.
162 */
642261ac 163 if (dax_is_pmd_entry(entry))
917f3452 164 index &= ~PG_PMD_COLOUR;
b15cd800 165 key->xa = xas->xa;
63e95b5c
RZ
166 key->entry_start = index;
167
b15cd800 168 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
169 return wait_table + hash;
170}
171
ec4907ff
MW
172static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
174{
175 struct exceptional_entry_key *key = keyp;
176 struct wait_exceptional_entry_queue *ewait =
177 container_of(wait, struct wait_exceptional_entry_queue, wait);
178
ec4907ff 179 if (key->xa != ewait->key.xa ||
63e95b5c 180 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
181 return 0;
182 return autoremove_wake_function(wait, mode, sync, NULL);
183}
184
e30331ff 185/*
b93b0163
MW
186 * @entry may no longer be the entry at the index in the mapping.
187 * The important information it's conveying is whether the entry at
188 * this index used to be a PMD entry.
e30331ff 189 */
b15cd800 190static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
191{
192 struct exceptional_entry_key key;
193 wait_queue_head_t *wq;
194
b15cd800 195 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
196
197 /*
198 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 199 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
200 * So at this point all tasks that could have seen our entry locked
201 * must be in the waitqueue and the following check will see them.
202 */
203 if (waitqueue_active(wq))
204 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
205}
206
cfc93c6c
MW
207/*
208 * Look up entry in page cache, wait for it to become unlocked if it
209 * is a DAX entry and return it. The caller must subsequently call
210 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
211 * if it did.
212 *
213 * Must be called with the i_pages lock held.
214 */
215static void *get_unlocked_entry(struct xa_state *xas)
216{
217 void *entry;
218 struct wait_exceptional_entry_queue ewait;
219 wait_queue_head_t *wq;
220
221 init_wait(&ewait.wait);
222 ewait.wait.func = wake_exceptional_entry_func;
223
224 for (;;) {
225 entry = xas_load(xas);
226 if (!entry || xa_is_internal(entry) ||
227 WARN_ON_ONCE(!xa_is_value(entry)) ||
228 !dax_is_locked(entry))
229 return entry;
230
b15cd800 231 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
232 prepare_to_wait_exclusive(wq, &ewait.wait,
233 TASK_UNINTERRUPTIBLE);
234 xas_unlock_irq(xas);
235 xas_reset(xas);
236 schedule();
237 finish_wait(wq, &ewait.wait);
238 xas_lock_irq(xas);
239 }
240}
241
242static void put_unlocked_entry(struct xa_state *xas, void *entry)
243{
244 /* If we were the only waiter woken, wake the next one */
245 if (entry)
246 dax_wake_entry(xas, entry, false);
247}
248
249/*
250 * We used the xa_state to get the entry, but then we locked the entry and
251 * dropped the xa_lock, so we know the xa_state is stale and must be reset
252 * before use.
253 */
254static void dax_unlock_entry(struct xa_state *xas, void *entry)
255{
256 void *old;
257
258 xas_reset(xas);
259 xas_lock_irq(xas);
260 old = xas_store(xas, entry);
261 xas_unlock_irq(xas);
262 BUG_ON(!dax_is_locked(old));
263 dax_wake_entry(xas, entry, false);
264}
265
266/*
267 * Return: The entry stored at this location before it was locked.
268 */
269static void *dax_lock_entry(struct xa_state *xas, void *entry)
270{
271 unsigned long v = xa_to_value(entry);
272 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
273}
274
d2c997c0
DW
275static unsigned long dax_entry_size(void *entry)
276{
277 if (dax_is_zero_entry(entry))
278 return 0;
279 else if (dax_is_empty_entry(entry))
280 return 0;
281 else if (dax_is_pmd_entry(entry))
282 return PMD_SIZE;
283 else
284 return PAGE_SIZE;
285}
286
a77d19f4 287static unsigned long dax_end_pfn(void *entry)
d2c997c0 288{
a77d19f4 289 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
290}
291
292/*
293 * Iterate through all mapped pfns represented by an entry, i.e. skip
294 * 'empty' and 'zero' entries.
295 */
296#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
297 for (pfn = dax_to_pfn(entry); \
298 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 299
73449daf
DW
300/*
301 * TODO: for reflink+dax we need a way to associate a single page with
302 * multiple address_space instances at different linear_page_index()
303 * offsets.
304 */
305static void dax_associate_entry(void *entry, struct address_space *mapping,
306 struct vm_area_struct *vma, unsigned long address)
d2c997c0 307{
73449daf
DW
308 unsigned long size = dax_entry_size(entry), pfn, index;
309 int i = 0;
d2c997c0
DW
310
311 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
312 return;
313
73449daf 314 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
315 for_each_mapped_pfn(entry, pfn) {
316 struct page *page = pfn_to_page(pfn);
317
318 WARN_ON_ONCE(page->mapping);
319 page->mapping = mapping;
73449daf 320 page->index = index + i++;
d2c997c0
DW
321 }
322}
323
324static void dax_disassociate_entry(void *entry, struct address_space *mapping,
325 bool trunc)
326{
327 unsigned long pfn;
328
329 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
330 return;
331
332 for_each_mapped_pfn(entry, pfn) {
333 struct page *page = pfn_to_page(pfn);
334
335 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
336 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
337 page->mapping = NULL;
73449daf 338 page->index = 0;
d2c997c0
DW
339 }
340}
341
5fac7408
DW
342static struct page *dax_busy_page(void *entry)
343{
344 unsigned long pfn;
345
346 for_each_mapped_pfn(entry, pfn) {
347 struct page *page = pfn_to_page(pfn);
348
349 if (page_ref_count(page) > 1)
350 return page;
351 }
352 return NULL;
353}
354
c2a7d2a1
DW
355bool dax_lock_mapping_entry(struct page *page)
356{
9f32d221
MW
357 XA_STATE(xas, NULL, 0);
358 void *entry;
c2a7d2a1 359
c2a7d2a1 360 for (;;) {
9f32d221 361 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1
DW
362
363 if (!dax_mapping(mapping))
9f32d221 364 return false;
c2a7d2a1
DW
365
366 /*
367 * In the device-dax case there's no need to lock, a
368 * struct dev_pagemap pin is sufficient to keep the
369 * inode alive, and we assume we have dev_pagemap pin
370 * otherwise we would not have a valid pfn_to_page()
371 * translation.
372 */
9f32d221
MW
373 if (S_ISCHR(mapping->host->i_mode))
374 return true;
c2a7d2a1 375
9f32d221
MW
376 xas.xa = &mapping->i_pages;
377 xas_lock_irq(&xas);
c2a7d2a1 378 if (mapping != page->mapping) {
9f32d221 379 xas_unlock_irq(&xas);
c2a7d2a1
DW
380 continue;
381 }
9f32d221
MW
382 xas_set(&xas, page->index);
383 entry = xas_load(&xas);
384 if (dax_is_locked(entry)) {
385 entry = get_unlocked_entry(&xas);
386 /* Did the page move while we slept? */
387 if (dax_to_pfn(entry) != page_to_pfn(page)) {
388 xas_unlock_irq(&xas);
389 continue;
390 }
c2a7d2a1 391 }
9f32d221
MW
392 dax_lock_entry(&xas, entry);
393 xas_unlock_irq(&xas);
394 return true;
c2a7d2a1 395 }
c2a7d2a1
DW
396}
397
398void dax_unlock_mapping_entry(struct page *page)
399{
400 struct address_space *mapping = page->mapping;
9f32d221 401 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 402
9f32d221 403 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
404 return;
405
9f32d221 406 dax_unlock_entry(&xas, dax_make_page_entry(page));
c2a7d2a1
DW
407}
408
ac401cc7 409/*
a77d19f4
MW
410 * Find page cache entry at given index. If it is a DAX entry, return it
411 * with the entry locked. If the page cache doesn't contain an entry at
412 * that index, add a locked empty entry.
ac401cc7 413 *
3159f943 414 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
415 * either return that locked entry or will return VM_FAULT_FALLBACK.
416 * This will happen if there are any PTE entries within the PMD range
417 * that we are requesting.
642261ac 418 *
b15cd800
MW
419 * We always favor PTE entries over PMD entries. There isn't a flow where we
420 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
421 * insertion will fail if it finds any PTE entries already in the tree, and a
422 * PTE insertion will cause an existing PMD entry to be unmapped and
423 * downgraded to PTE entries. This happens for both PMD zero pages as
424 * well as PMD empty entries.
642261ac 425 *
b15cd800
MW
426 * The exception to this downgrade path is for PMD entries that have
427 * real storage backing them. We will leave these real PMD entries in
428 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 429 *
ac401cc7
JK
430 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
431 * persistent memory the benefit is doubtful. We can add that later if we can
432 * show it helps.
b15cd800
MW
433 *
434 * On error, this function does not return an ERR_PTR. Instead it returns
435 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
436 * overlap with xarray value entries.
ac401cc7 437 */
b15cd800
MW
438static void *grab_mapping_entry(struct xa_state *xas,
439 struct address_space *mapping, unsigned long size_flag)
ac401cc7 440{
b15cd800
MW
441 unsigned long index = xas->xa_index;
442 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
443 void *entry;
642261ac 444
b15cd800
MW
445retry:
446 xas_lock_irq(xas);
447 entry = get_unlocked_entry(xas);
448 if (xa_is_internal(entry))
449 goto fallback;
91d25ba8 450
642261ac 451 if (entry) {
b15cd800
MW
452 if (WARN_ON_ONCE(!xa_is_value(entry))) {
453 xas_set_err(xas, EIO);
454 goto out_unlock;
455 }
456
3159f943 457 if (size_flag & DAX_PMD) {
91d25ba8 458 if (dax_is_pte_entry(entry)) {
b15cd800
MW
459 put_unlocked_entry(xas, entry);
460 goto fallback;
642261ac
RZ
461 }
462 } else { /* trying to grab a PTE entry */
91d25ba8 463 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
464 (dax_is_zero_entry(entry) ||
465 dax_is_empty_entry(entry))) {
466 pmd_downgrade = true;
467 }
468 }
469 }
470
b15cd800
MW
471 if (pmd_downgrade) {
472 /*
473 * Make sure 'entry' remains valid while we drop
474 * the i_pages lock.
475 */
476 dax_lock_entry(xas, entry);
642261ac 477
642261ac
RZ
478 /*
479 * Besides huge zero pages the only other thing that gets
480 * downgraded are empty entries which don't need to be
481 * unmapped.
482 */
b15cd800
MW
483 if (dax_is_zero_entry(entry)) {
484 xas_unlock_irq(xas);
485 unmap_mapping_pages(mapping,
486 xas->xa_index & ~PG_PMD_COLOUR,
487 PG_PMD_NR, false);
488 xas_reset(xas);
489 xas_lock_irq(xas);
e11f8b7b
RZ
490 }
491
b15cd800
MW
492 dax_disassociate_entry(entry, mapping, false);
493 xas_store(xas, NULL); /* undo the PMD join */
494 dax_wake_entry(xas, entry, true);
495 mapping->nrexceptional--;
496 entry = NULL;
497 xas_set(xas, index);
498 }
642261ac 499
b15cd800
MW
500 if (entry) {
501 dax_lock_entry(xas, entry);
502 } else {
503 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
504 dax_lock_entry(xas, entry);
505 if (xas_error(xas))
506 goto out_unlock;
ac401cc7 507 mapping->nrexceptional++;
ac401cc7 508 }
b15cd800
MW
509
510out_unlock:
511 xas_unlock_irq(xas);
512 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
513 goto retry;
514 if (xas->xa_node == XA_ERROR(-ENOMEM))
515 return xa_mk_internal(VM_FAULT_OOM);
516 if (xas_error(xas))
517 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 518 return entry;
b15cd800
MW
519fallback:
520 xas_unlock_irq(xas);
521 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
522}
523
5fac7408
DW
524/**
525 * dax_layout_busy_page - find first pinned page in @mapping
526 * @mapping: address space to scan for a page with ref count > 1
527 *
528 * DAX requires ZONE_DEVICE mapped pages. These pages are never
529 * 'onlined' to the page allocator so they are considered idle when
530 * page->count == 1. A filesystem uses this interface to determine if
531 * any page in the mapping is busy, i.e. for DMA, or other
532 * get_user_pages() usages.
533 *
534 * It is expected that the filesystem is holding locks to block the
535 * establishment of new mappings in this address_space. I.e. it expects
536 * to be able to run unmap_mapping_range() and subsequently not race
537 * mapping_mapped() becoming true.
538 */
539struct page *dax_layout_busy_page(struct address_space *mapping)
540{
084a8990
MW
541 XA_STATE(xas, &mapping->i_pages, 0);
542 void *entry;
543 unsigned int scanned = 0;
5fac7408 544 struct page *page = NULL;
5fac7408
DW
545
546 /*
547 * In the 'limited' case get_user_pages() for dax is disabled.
548 */
549 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
550 return NULL;
551
552 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
553 return NULL;
554
5fac7408
DW
555 /*
556 * If we race get_user_pages_fast() here either we'll see the
084a8990 557 * elevated page count in the iteration and wait, or
5fac7408
DW
558 * get_user_pages_fast() will see that the page it took a reference
559 * against is no longer mapped in the page tables and bail to the
560 * get_user_pages() slow path. The slow path is protected by
561 * pte_lock() and pmd_lock(). New references are not taken without
562 * holding those locks, and unmap_mapping_range() will not zero the
563 * pte or pmd without holding the respective lock, so we are
564 * guaranteed to either see new references or prevent new
565 * references from being established.
566 */
567 unmap_mapping_range(mapping, 0, 0, 1);
568
084a8990
MW
569 xas_lock_irq(&xas);
570 xas_for_each(&xas, entry, ULONG_MAX) {
571 if (WARN_ON_ONCE(!xa_is_value(entry)))
572 continue;
573 if (unlikely(dax_is_locked(entry)))
574 entry = get_unlocked_entry(&xas);
575 if (entry)
576 page = dax_busy_page(entry);
577 put_unlocked_entry(&xas, entry);
5fac7408
DW
578 if (page)
579 break;
084a8990
MW
580 if (++scanned % XA_CHECK_SCHED)
581 continue;
582
583 xas_pause(&xas);
584 xas_unlock_irq(&xas);
585 cond_resched();
586 xas_lock_irq(&xas);
5fac7408 587 }
084a8990 588 xas_unlock_irq(&xas);
5fac7408
DW
589 return page;
590}
591EXPORT_SYMBOL_GPL(dax_layout_busy_page);
592
a77d19f4 593static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
594 pgoff_t index, bool trunc)
595{
07f2d89c 596 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
597 int ret = 0;
598 void *entry;
c6dcf52c 599
07f2d89c
MW
600 xas_lock_irq(&xas);
601 entry = get_unlocked_entry(&xas);
3159f943 602 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
603 goto out;
604 if (!trunc &&
07f2d89c
MW
605 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
606 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 607 goto out;
d2c997c0 608 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 609 xas_store(&xas, NULL);
c6dcf52c
JK
610 mapping->nrexceptional--;
611 ret = 1;
612out:
07f2d89c
MW
613 put_unlocked_entry(&xas, entry);
614 xas_unlock_irq(&xas);
c6dcf52c
JK
615 return ret;
616}
07f2d89c 617
ac401cc7 618/*
3159f943
MW
619 * Delete DAX entry at @index from @mapping. Wait for it
620 * to be unlocked before deleting it.
ac401cc7
JK
621 */
622int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
623{
a77d19f4 624 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 625
ac401cc7
JK
626 /*
627 * This gets called from truncate / punch_hole path. As such, the caller
628 * must hold locks protecting against concurrent modifications of the
a77d19f4 629 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 630 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
631 * at that index as well...
632 */
c6dcf52c
JK
633 WARN_ON_ONCE(!ret);
634 return ret;
635}
636
c6dcf52c 637/*
3159f943 638 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
639 */
640int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
641 pgoff_t index)
642{
a77d19f4 643 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
644}
645
cccbce67
DW
646static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
647 sector_t sector, size_t size, struct page *to,
648 unsigned long vaddr)
f7ca90b1 649{
cccbce67
DW
650 void *vto, *kaddr;
651 pgoff_t pgoff;
cccbce67
DW
652 long rc;
653 int id;
654
655 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
656 if (rc)
657 return rc;
658
659 id = dax_read_lock();
86ed913b 660 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
661 if (rc < 0) {
662 dax_read_unlock(id);
663 return rc;
664 }
f7ca90b1 665 vto = kmap_atomic(to);
cccbce67 666 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 667 kunmap_atomic(vto);
cccbce67 668 dax_read_unlock(id);
f7ca90b1
MW
669 return 0;
670}
671
642261ac
RZ
672/*
673 * By this point grab_mapping_entry() has ensured that we have a locked entry
674 * of the appropriate size so we don't have to worry about downgrading PMDs to
675 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
676 * already in the tree, we will skip the insertion and just dirty the PMD as
677 * appropriate.
678 */
b15cd800
MW
679static void *dax_insert_entry(struct xa_state *xas,
680 struct address_space *mapping, struct vm_fault *vmf,
681 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 682{
b15cd800 683 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 684
f5b7b748 685 if (dirty)
d2b2a28e 686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 687
3159f943 688 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 689 unsigned long index = xas->xa_index;
91d25ba8
RZ
690 /* we are replacing a zero page with block mapping */
691 if (dax_is_pmd_entry(entry))
977fbdcd 692 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 693 PG_PMD_NR, false);
91d25ba8 694 else /* pte entry */
b15cd800 695 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
696 }
697
b15cd800
MW
698 xas_reset(xas);
699 xas_lock_irq(xas);
d2c997c0
DW
700 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
701 dax_disassociate_entry(entry, mapping, false);
73449daf 702 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 703 }
642261ac 704
91d25ba8 705 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 706 /*
a77d19f4 707 * Only swap our new entry into the page cache if the current
642261ac 708 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 709 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
710 * means that if we are trying to insert a PTE and the
711 * existing entry is a PMD, we will just leave the PMD in the
712 * tree and dirty it if necessary.
713 */
b15cd800
MW
714 void *old = dax_lock_entry(xas, new_entry);
715 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
716 DAX_LOCKED));
91d25ba8 717 entry = new_entry;
b15cd800
MW
718 } else {
719 xas_load(xas); /* Walk the xa_state */
9973c98e 720 }
91d25ba8 721
f5b7b748 722 if (dirty)
b15cd800 723 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 724
b15cd800 725 xas_unlock_irq(xas);
91d25ba8 726 return entry;
9973c98e
RZ
727}
728
a77d19f4
MW
729static inline
730unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
731{
732 unsigned long address;
733
734 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
735 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
736 return address;
737}
738
739/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
740static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
741 unsigned long pfn)
4b4bb46d
JK
742{
743 struct vm_area_struct *vma;
f729c8c9
RZ
744 pte_t pte, *ptep = NULL;
745 pmd_t *pmdp = NULL;
4b4bb46d 746 spinlock_t *ptl;
4b4bb46d
JK
747
748 i_mmap_lock_read(mapping);
749 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 750 unsigned long address, start, end;
4b4bb46d
JK
751
752 cond_resched();
753
754 if (!(vma->vm_flags & VM_SHARED))
755 continue;
756
757 address = pgoff_address(index, vma);
a4d1a885
JG
758
759 /*
760 * Note because we provide start/end to follow_pte_pmd it will
761 * call mmu_notifier_invalidate_range_start() on our behalf
762 * before taking any lock.
763 */
764 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 765 continue;
4b4bb46d 766
0f10851e
JG
767 /*
768 * No need to call mmu_notifier_invalidate_range() as we are
769 * downgrading page table protection not changing it to point
770 * to a new page.
771 *
ad56b738 772 * See Documentation/vm/mmu_notifier.rst
0f10851e 773 */
f729c8c9
RZ
774 if (pmdp) {
775#ifdef CONFIG_FS_DAX_PMD
776 pmd_t pmd;
777
778 if (pfn != pmd_pfn(*pmdp))
779 goto unlock_pmd;
f6f37321 780 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
781 goto unlock_pmd;
782
783 flush_cache_page(vma, address, pfn);
784 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
785 pmd = pmd_wrprotect(pmd);
786 pmd = pmd_mkclean(pmd);
787 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 788unlock_pmd:
f729c8c9 789#endif
ee190ca6 790 spin_unlock(ptl);
f729c8c9
RZ
791 } else {
792 if (pfn != pte_pfn(*ptep))
793 goto unlock_pte;
794 if (!pte_dirty(*ptep) && !pte_write(*ptep))
795 goto unlock_pte;
796
797 flush_cache_page(vma, address, pfn);
798 pte = ptep_clear_flush(vma, address, ptep);
799 pte = pte_wrprotect(pte);
800 pte = pte_mkclean(pte);
801 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
802unlock_pte:
803 pte_unmap_unlock(ptep, ptl);
804 }
4b4bb46d 805
a4d1a885 806 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
807 }
808 i_mmap_unlock_read(mapping);
809}
810
9fc747f6
MW
811static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
812 struct address_space *mapping, void *entry)
9973c98e 813{
3fe0791c
DW
814 unsigned long pfn;
815 long ret = 0;
cccbce67 816 size_t size;
9973c98e 817
9973c98e 818 /*
a6abc2c0
JK
819 * A page got tagged dirty in DAX mapping? Something is seriously
820 * wrong.
9973c98e 821 */
3159f943 822 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 823 return -EIO;
9973c98e 824
9fc747f6
MW
825 if (unlikely(dax_is_locked(entry))) {
826 void *old_entry = entry;
827
828 entry = get_unlocked_entry(xas);
829
830 /* Entry got punched out / reallocated? */
831 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
832 goto put_unlocked;
833 /*
834 * Entry got reallocated elsewhere? No need to writeback.
835 * We have to compare pfns as we must not bail out due to
836 * difference in lockbit or entry type.
837 */
838 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
839 goto put_unlocked;
840 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
841 dax_is_zero_entry(entry))) {
842 ret = -EIO;
843 goto put_unlocked;
844 }
845
846 /* Another fsync thread may have already done this entry */
847 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
848 goto put_unlocked;
9973c98e
RZ
849 }
850
a6abc2c0 851 /* Lock the entry to serialize with page faults */
9fc747f6
MW
852 dax_lock_entry(xas, entry);
853
a6abc2c0
JK
854 /*
855 * We can clear the tag now but we have to be careful so that concurrent
856 * dax_writeback_one() calls for the same index cannot finish before we
857 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
858 * at the entry only under the i_pages lock and once they do that
859 * they will see the entry locked and wait for it to unlock.
a6abc2c0 860 */
9fc747f6
MW
861 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
862 xas_unlock_irq(xas);
a6abc2c0 863
642261ac
RZ
864 /*
865 * Even if dax_writeback_mapping_range() was given a wbc->range_start
866 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
867 * the start index of the PMD, as will the pfn we pull from 'entry'.
868 * This allows us to flush for PMD_SIZE and not have to worry about
869 * partial PMD writebacks.
642261ac 870 */
a77d19f4
MW
871 pfn = dax_to_pfn(entry);
872 size = PAGE_SIZE << dax_entry_order(entry);
cccbce67 873
9fc747f6 874 dax_entry_mkclean(mapping, xas->xa_index, pfn);
3fe0791c 875 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
876 /*
877 * After we have flushed the cache, we can clear the dirty tag. There
878 * cannot be new dirty data in the pfn after the flush has completed as
879 * the pfn mappings are writeprotected and fault waits for mapping
880 * entry lock.
881 */
9fc747f6
MW
882 xas_reset(xas);
883 xas_lock_irq(xas);
884 xas_store(xas, entry);
885 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
886 dax_wake_entry(xas, entry, false);
887
888 trace_dax_writeback_one(mapping->host, xas->xa_index,
889 size >> PAGE_SHIFT);
9973c98e
RZ
890 return ret;
891
a6abc2c0 892 put_unlocked:
9fc747f6 893 put_unlocked_entry(xas, entry);
9973c98e
RZ
894 return ret;
895}
896
897/*
898 * Flush the mapping to the persistent domain within the byte range of [start,
899 * end]. This is required by data integrity operations to ensure file data is
900 * on persistent storage prior to completion of the operation.
901 */
7f6d5b52
RZ
902int dax_writeback_mapping_range(struct address_space *mapping,
903 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 904{
9fc747f6 905 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 906 struct inode *inode = mapping->host;
9fc747f6 907 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 908 struct dax_device *dax_dev;
9fc747f6
MW
909 void *entry;
910 int ret = 0;
911 unsigned int scanned = 0;
9973c98e
RZ
912
913 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
914 return -EIO;
915
7f6d5b52
RZ
916 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
917 return 0;
918
cccbce67
DW
919 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
920 if (!dax_dev)
921 return -EIO;
922
9fc747f6 923 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 924
9fc747f6 925 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 926
9fc747f6
MW
927 xas_lock_irq(&xas);
928 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
929 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
930 if (ret < 0) {
931 mapping_set_error(mapping, ret);
9973c98e 932 break;
9973c98e 933 }
9fc747f6
MW
934 if (++scanned % XA_CHECK_SCHED)
935 continue;
936
937 xas_pause(&xas);
938 xas_unlock_irq(&xas);
939 cond_resched();
940 xas_lock_irq(&xas);
9973c98e 941 }
9fc747f6 942 xas_unlock_irq(&xas);
cccbce67 943 put_dax(dax_dev);
9fc747f6
MW
944 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
945 return ret;
9973c98e
RZ
946}
947EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
948
31a6f1a6 949static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 950{
a3841f94 951 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
952}
953
5e161e40
JK
954static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
955 pfn_t *pfnp)
f7ca90b1 956{
31a6f1a6 957 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
958 pgoff_t pgoff;
959 int id, rc;
5e161e40 960 long length;
f7ca90b1 961
5e161e40 962 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
963 if (rc)
964 return rc;
cccbce67 965 id = dax_read_lock();
5e161e40 966 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 967 NULL, pfnp);
5e161e40
JK
968 if (length < 0) {
969 rc = length;
970 goto out;
cccbce67 971 }
5e161e40
JK
972 rc = -EINVAL;
973 if (PFN_PHYS(length) < size)
974 goto out;
975 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
976 goto out;
977 /* For larger pages we need devmap */
978 if (length > 1 && !pfn_t_devmap(*pfnp))
979 goto out;
980 rc = 0;
981out:
cccbce67 982 dax_read_unlock(id);
5e161e40 983 return rc;
0e3b210c 984}
0e3b210c 985
e30331ff 986/*
91d25ba8
RZ
987 * The user has performed a load from a hole in the file. Allocating a new
988 * page in the file would cause excessive storage usage for workloads with
989 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
990 * If this page is ever written to we will re-fault and change the mapping to
991 * point to real DAX storage instead.
e30331ff 992 */
b15cd800
MW
993static vm_fault_t dax_load_hole(struct xa_state *xas,
994 struct address_space *mapping, void **entry,
995 struct vm_fault *vmf)
e30331ff
RZ
996{
997 struct inode *inode = mapping->host;
91d25ba8 998 unsigned long vaddr = vmf->address;
b90ca5cc
MW
999 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1000 vm_fault_t ret;
e30331ff 1001
b15cd800 1002 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1003 DAX_ZERO_PAGE, false);
1004
ab77dab4 1005 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1006 trace_dax_load_hole(inode, vmf, ret);
1007 return ret;
1008}
1009
4b0228fa
VV
1010static bool dax_range_is_aligned(struct block_device *bdev,
1011 unsigned int offset, unsigned int length)
1012{
1013 unsigned short sector_size = bdev_logical_block_size(bdev);
1014
1015 if (!IS_ALIGNED(offset, sector_size))
1016 return false;
1017 if (!IS_ALIGNED(length, sector_size))
1018 return false;
1019
1020 return true;
1021}
1022
cccbce67
DW
1023int __dax_zero_page_range(struct block_device *bdev,
1024 struct dax_device *dax_dev, sector_t sector,
1025 unsigned int offset, unsigned int size)
679c8bd3 1026{
cccbce67
DW
1027 if (dax_range_is_aligned(bdev, offset, size)) {
1028 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1029
1030 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1031 size >> 9, GFP_NOFS, 0);
4b0228fa 1032 } else {
cccbce67
DW
1033 pgoff_t pgoff;
1034 long rc, id;
1035 void *kaddr;
cccbce67 1036
e84b83b9 1037 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1038 if (rc)
1039 return rc;
1040
1041 id = dax_read_lock();
86ed913b 1042 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1043 if (rc < 0) {
1044 dax_read_unlock(id);
1045 return rc;
1046 }
81f55870 1047 memset(kaddr + offset, 0, size);
c3ca015f 1048 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1049 dax_read_unlock(id);
4b0228fa 1050 }
679c8bd3
CH
1051 return 0;
1052}
1053EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1054
a254e568 1055static loff_t
11c59c92 1056dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1057 struct iomap *iomap)
1058{
cccbce67
DW
1059 struct block_device *bdev = iomap->bdev;
1060 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1061 struct iov_iter *iter = data;
1062 loff_t end = pos + length, done = 0;
1063 ssize_t ret = 0;
a77d4786 1064 size_t xfer;
cccbce67 1065 int id;
a254e568
CH
1066
1067 if (iov_iter_rw(iter) == READ) {
1068 end = min(end, i_size_read(inode));
1069 if (pos >= end)
1070 return 0;
1071
1072 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1073 return iov_iter_zero(min(length, end - pos), iter);
1074 }
1075
1076 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1077 return -EIO;
1078
e3fce68c
JK
1079 /*
1080 * Write can allocate block for an area which has a hole page mapped
1081 * into page tables. We have to tear down these mappings so that data
1082 * written by write(2) is visible in mmap.
1083 */
cd656375 1084 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1085 invalidate_inode_pages2_range(inode->i_mapping,
1086 pos >> PAGE_SHIFT,
1087 (end - 1) >> PAGE_SHIFT);
1088 }
1089
cccbce67 1090 id = dax_read_lock();
a254e568
CH
1091 while (pos < end) {
1092 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1093 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1094 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1095 ssize_t map_len;
cccbce67
DW
1096 pgoff_t pgoff;
1097 void *kaddr;
a254e568 1098
d1908f52
MH
1099 if (fatal_signal_pending(current)) {
1100 ret = -EINTR;
1101 break;
1102 }
1103
cccbce67
DW
1104 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1105 if (ret)
1106 break;
1107
1108 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1109 &kaddr, NULL);
a254e568
CH
1110 if (map_len < 0) {
1111 ret = map_len;
1112 break;
1113 }
1114
cccbce67
DW
1115 map_len = PFN_PHYS(map_len);
1116 kaddr += offset;
a254e568
CH
1117 map_len -= offset;
1118 if (map_len > end - pos)
1119 map_len = end - pos;
1120
a2e050f5
RZ
1121 /*
1122 * The userspace address for the memory copy has already been
1123 * validated via access_ok() in either vfs_read() or
1124 * vfs_write(), depending on which operation we are doing.
1125 */
a254e568 1126 if (iov_iter_rw(iter) == WRITE)
a77d4786 1127 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1128 map_len, iter);
a254e568 1129 else
a77d4786 1130 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1131 map_len, iter);
a254e568 1132
a77d4786
DW
1133 pos += xfer;
1134 length -= xfer;
1135 done += xfer;
1136
1137 if (xfer == 0)
1138 ret = -EFAULT;
1139 if (xfer < map_len)
1140 break;
a254e568 1141 }
cccbce67 1142 dax_read_unlock(id);
a254e568
CH
1143
1144 return done ? done : ret;
1145}
1146
1147/**
11c59c92 1148 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1149 * @iocb: The control block for this I/O
1150 * @iter: The addresses to do I/O from or to
1151 * @ops: iomap ops passed from the file system
1152 *
1153 * This function performs read and write operations to directly mapped
1154 * persistent memory. The callers needs to take care of read/write exclusion
1155 * and evicting any page cache pages in the region under I/O.
1156 */
1157ssize_t
11c59c92 1158dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1159 const struct iomap_ops *ops)
a254e568
CH
1160{
1161 struct address_space *mapping = iocb->ki_filp->f_mapping;
1162 struct inode *inode = mapping->host;
1163 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1164 unsigned flags = 0;
1165
168316db
CH
1166 if (iov_iter_rw(iter) == WRITE) {
1167 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1168 flags |= IOMAP_WRITE;
168316db
CH
1169 } else {
1170 lockdep_assert_held(&inode->i_rwsem);
1171 }
a254e568 1172
a254e568
CH
1173 while (iov_iter_count(iter)) {
1174 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1175 iter, dax_iomap_actor);
a254e568
CH
1176 if (ret <= 0)
1177 break;
1178 pos += ret;
1179 done += ret;
1180 }
1181
1182 iocb->ki_pos += done;
1183 return done ? done : ret;
1184}
11c59c92 1185EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1186
ab77dab4 1187static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1188{
1189 if (error == 0)
1190 return VM_FAULT_NOPAGE;
1191 if (error == -ENOMEM)
1192 return VM_FAULT_OOM;
1193 return VM_FAULT_SIGBUS;
1194}
1195
aaa422c4
DW
1196/*
1197 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1198 * flushed on write-faults (non-cow), but not read-faults.
1199 */
1200static bool dax_fault_is_synchronous(unsigned long flags,
1201 struct vm_area_struct *vma, struct iomap *iomap)
1202{
1203 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1204 && (iomap->flags & IOMAP_F_DIRTY);
1205}
1206
ab77dab4 1207static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1208 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1209{
a0987ad5
JK
1210 struct vm_area_struct *vma = vmf->vma;
1211 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1212 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1213 struct inode *inode = mapping->host;
1a29d85e 1214 unsigned long vaddr = vmf->address;
a7d73fe6 1215 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1216 struct iomap iomap = { 0 };
9484ab1b 1217 unsigned flags = IOMAP_FAULT;
a7d73fe6 1218 int error, major = 0;
d2c43ef1 1219 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1220 bool sync;
ab77dab4 1221 vm_fault_t ret = 0;
a7d73fe6 1222 void *entry;
1b5a1cb2 1223 pfn_t pfn;
a7d73fe6 1224
ab77dab4 1225 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1226 /*
1227 * Check whether offset isn't beyond end of file now. Caller is supposed
1228 * to hold locks serializing us with truncate / punch hole so this is
1229 * a reliable test.
1230 */
a9c42b33 1231 if (pos >= i_size_read(inode)) {
ab77dab4 1232 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1233 goto out;
1234 }
a7d73fe6 1235
d2c43ef1 1236 if (write && !vmf->cow_page)
a7d73fe6
CH
1237 flags |= IOMAP_WRITE;
1238
b15cd800
MW
1239 entry = grab_mapping_entry(&xas, mapping, 0);
1240 if (xa_is_internal(entry)) {
1241 ret = xa_to_internal(entry);
13e451fd
JK
1242 goto out;
1243 }
1244
e2093926
RZ
1245 /*
1246 * It is possible, particularly with mixed reads & writes to private
1247 * mappings, that we have raced with a PMD fault that overlaps with
1248 * the PTE we need to set up. If so just return and the fault will be
1249 * retried.
1250 */
1251 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1252 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1253 goto unlock_entry;
1254 }
1255
a7d73fe6
CH
1256 /*
1257 * Note that we don't bother to use iomap_apply here: DAX required
1258 * the file system block size to be equal the page size, which means
1259 * that we never have to deal with more than a single extent here.
1260 */
1261 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1262 if (iomap_errp)
1263 *iomap_errp = error;
a9c42b33 1264 if (error) {
ab77dab4 1265 ret = dax_fault_return(error);
13e451fd 1266 goto unlock_entry;
a9c42b33 1267 }
a7d73fe6 1268 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1269 error = -EIO; /* fs corruption? */
1270 goto error_finish_iomap;
a7d73fe6
CH
1271 }
1272
a7d73fe6 1273 if (vmf->cow_page) {
31a6f1a6
JK
1274 sector_t sector = dax_iomap_sector(&iomap, pos);
1275
a7d73fe6
CH
1276 switch (iomap.type) {
1277 case IOMAP_HOLE:
1278 case IOMAP_UNWRITTEN:
1279 clear_user_highpage(vmf->cow_page, vaddr);
1280 break;
1281 case IOMAP_MAPPED:
cccbce67
DW
1282 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1283 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1284 break;
1285 default:
1286 WARN_ON_ONCE(1);
1287 error = -EIO;
1288 break;
1289 }
1290
1291 if (error)
13e451fd 1292 goto error_finish_iomap;
b1aa812b
JK
1293
1294 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1295 ret = finish_fault(vmf);
1296 if (!ret)
1297 ret = VM_FAULT_DONE_COW;
13e451fd 1298 goto finish_iomap;
a7d73fe6
CH
1299 }
1300
aaa422c4 1301 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1302
a7d73fe6
CH
1303 switch (iomap.type) {
1304 case IOMAP_MAPPED:
1305 if (iomap.flags & IOMAP_F_NEW) {
1306 count_vm_event(PGMAJFAULT);
a0987ad5 1307 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1308 major = VM_FAULT_MAJOR;
1309 }
1b5a1cb2
JK
1310 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1311 if (error < 0)
1312 goto error_finish_iomap;
1313
b15cd800 1314 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1315 0, write && !sync);
1b5a1cb2 1316
caa51d26
JK
1317 /*
1318 * If we are doing synchronous page fault and inode needs fsync,
1319 * we can insert PTE into page tables only after that happens.
1320 * Skip insertion for now and return the pfn so that caller can
1321 * insert it after fsync is done.
1322 */
1323 if (sync) {
1324 if (WARN_ON_ONCE(!pfnp)) {
1325 error = -EIO;
1326 goto error_finish_iomap;
1327 }
1328 *pfnp = pfn;
ab77dab4 1329 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1330 goto finish_iomap;
1331 }
1b5a1cb2
JK
1332 trace_dax_insert_mapping(inode, vmf, entry);
1333 if (write)
ab77dab4 1334 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1335 else
ab77dab4 1336 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1337
ab77dab4 1338 goto finish_iomap;
a7d73fe6
CH
1339 case IOMAP_UNWRITTEN:
1340 case IOMAP_HOLE:
d2c43ef1 1341 if (!write) {
b15cd800 1342 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1343 goto finish_iomap;
1550290b 1344 }
a7d73fe6
CH
1345 /*FALLTHRU*/
1346 default:
1347 WARN_ON_ONCE(1);
1348 error = -EIO;
1349 break;
1350 }
1351
13e451fd 1352 error_finish_iomap:
ab77dab4 1353 ret = dax_fault_return(error);
9f141d6e
JK
1354 finish_iomap:
1355 if (ops->iomap_end) {
1356 int copied = PAGE_SIZE;
1357
ab77dab4 1358 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1359 copied = 0;
1360 /*
1361 * The fault is done by now and there's no way back (other
1362 * thread may be already happily using PTE we have installed).
1363 * Just ignore error from ->iomap_end since we cannot do much
1364 * with it.
1365 */
1366 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1367 }
13e451fd 1368 unlock_entry:
b15cd800 1369 dax_unlock_entry(&xas, entry);
13e451fd 1370 out:
ab77dab4
SJ
1371 trace_dax_pte_fault_done(inode, vmf, ret);
1372 return ret | major;
a7d73fe6 1373}
642261ac
RZ
1374
1375#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1376static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1377 struct iomap *iomap, void **entry)
642261ac 1378{
f4200391
DJ
1379 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1380 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1381 struct inode *inode = mapping->host;
642261ac
RZ
1382 struct page *zero_page;
1383 spinlock_t *ptl;
1384 pmd_t pmd_entry;
3fe0791c 1385 pfn_t pfn;
642261ac 1386
f4200391 1387 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1388
1389 if (unlikely(!zero_page))
653b2ea3 1390 goto fallback;
642261ac 1391
3fe0791c 1392 pfn = page_to_pfn_t(zero_page);
b15cd800 1393 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1394 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1395
f4200391
DJ
1396 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1397 if (!pmd_none(*(vmf->pmd))) {
642261ac 1398 spin_unlock(ptl);
653b2ea3 1399 goto fallback;
642261ac
RZ
1400 }
1401
f4200391 1402 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1403 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1404 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1405 spin_unlock(ptl);
b15cd800 1406 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1407 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1408
1409fallback:
b15cd800 1410 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1411 return VM_FAULT_FALLBACK;
642261ac
RZ
1412}
1413
ab77dab4 1414static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1415 const struct iomap_ops *ops)
642261ac 1416{
f4200391 1417 struct vm_area_struct *vma = vmf->vma;
642261ac 1418 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1419 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1420 unsigned long pmd_addr = vmf->address & PMD_MASK;
1421 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1422 bool sync;
9484ab1b 1423 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1424 struct inode *inode = mapping->host;
ab77dab4 1425 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1426 struct iomap iomap = { 0 };
b15cd800 1427 pgoff_t max_pgoff;
642261ac
RZ
1428 void *entry;
1429 loff_t pos;
1430 int error;
302a5e31 1431 pfn_t pfn;
642261ac 1432
282a8e03
RZ
1433 /*
1434 * Check whether offset isn't beyond end of file now. Caller is
1435 * supposed to hold locks serializing us with truncate / punch hole so
1436 * this is a reliable test.
1437 */
957ac8c4 1438 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1439
f4200391 1440 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1441
fffa281b
RZ
1442 /*
1443 * Make sure that the faulting address's PMD offset (color) matches
1444 * the PMD offset from the start of the file. This is necessary so
1445 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1446 * range in the page cache.
fffa281b
RZ
1447 */
1448 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1449 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1450 goto fallback;
1451
642261ac
RZ
1452 /* Fall back to PTEs if we're going to COW */
1453 if (write && !(vma->vm_flags & VM_SHARED))
1454 goto fallback;
1455
1456 /* If the PMD would extend outside the VMA */
1457 if (pmd_addr < vma->vm_start)
1458 goto fallback;
1459 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1460 goto fallback;
1461
b15cd800 1462 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1463 result = VM_FAULT_SIGBUS;
1464 goto out;
1465 }
642261ac
RZ
1466
1467 /* If the PMD would extend beyond the file size */
b15cd800 1468 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1469 goto fallback;
1470
876f2946 1471 /*
b15cd800
MW
1472 * grab_mapping_entry() will make sure we get an empty PMD entry,
1473 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1474 * entry is already in the array, for instance), it will return
1475 * VM_FAULT_FALLBACK.
876f2946 1476 */
b15cd800
MW
1477 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1478 if (xa_is_internal(entry)) {
1479 result = xa_to_internal(entry);
876f2946 1480 goto fallback;
b15cd800 1481 }
876f2946 1482
e2093926
RZ
1483 /*
1484 * It is possible, particularly with mixed reads & writes to private
1485 * mappings, that we have raced with a PTE fault that overlaps with
1486 * the PMD we need to set up. If so just return and the fault will be
1487 * retried.
1488 */
1489 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1490 !pmd_devmap(*vmf->pmd)) {
1491 result = 0;
1492 goto unlock_entry;
1493 }
1494
642261ac
RZ
1495 /*
1496 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1497 * setting up a mapping, so really we're using iomap_begin() as a way
1498 * to look up our filesystem block.
1499 */
b15cd800 1500 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1501 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1502 if (error)
876f2946 1503 goto unlock_entry;
9f141d6e 1504
642261ac
RZ
1505 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1506 goto finish_iomap;
1507
aaa422c4 1508 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1509
642261ac
RZ
1510 switch (iomap.type) {
1511 case IOMAP_MAPPED:
302a5e31
JK
1512 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1513 if (error < 0)
1514 goto finish_iomap;
1515
b15cd800 1516 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1517 DAX_PMD, write && !sync);
302a5e31 1518
caa51d26
JK
1519 /*
1520 * If we are doing synchronous page fault and inode needs fsync,
1521 * we can insert PMD into page tables only after that happens.
1522 * Skip insertion for now and return the pfn so that caller can
1523 * insert it after fsync is done.
1524 */
1525 if (sync) {
1526 if (WARN_ON_ONCE(!pfnp))
1527 goto finish_iomap;
1528 *pfnp = pfn;
1529 result = VM_FAULT_NEEDDSYNC;
1530 goto finish_iomap;
1531 }
1532
302a5e31
JK
1533 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1534 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1535 write);
642261ac
RZ
1536 break;
1537 case IOMAP_UNWRITTEN:
1538 case IOMAP_HOLE:
1539 if (WARN_ON_ONCE(write))
876f2946 1540 break;
b15cd800 1541 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1542 break;
1543 default:
1544 WARN_ON_ONCE(1);
1545 break;
1546 }
1547
1548 finish_iomap:
1549 if (ops->iomap_end) {
9f141d6e
JK
1550 int copied = PMD_SIZE;
1551
1552 if (result == VM_FAULT_FALLBACK)
1553 copied = 0;
1554 /*
1555 * The fault is done by now and there's no way back (other
1556 * thread may be already happily using PMD we have installed).
1557 * Just ignore error from ->iomap_end since we cannot do much
1558 * with it.
1559 */
1560 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1561 &iomap);
642261ac 1562 }
876f2946 1563 unlock_entry:
b15cd800 1564 dax_unlock_entry(&xas, entry);
642261ac
RZ
1565 fallback:
1566 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1567 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1568 count_vm_event(THP_FAULT_FALLBACK);
1569 }
282a8e03 1570out:
f4200391 1571 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1572 return result;
1573}
a2d58167 1574#else
ab77dab4 1575static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1576 const struct iomap_ops *ops)
a2d58167
DJ
1577{
1578 return VM_FAULT_FALLBACK;
1579}
642261ac 1580#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1581
1582/**
1583 * dax_iomap_fault - handle a page fault on a DAX file
1584 * @vmf: The description of the fault
cec04e8c 1585 * @pe_size: Size of the page to fault in
9a0dd422 1586 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1587 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1588 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1589 *
1590 * When a page fault occurs, filesystems may call this helper in
1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592 * has done all the necessary locking for page fault to proceed
1593 * successfully.
1594 */
ab77dab4 1595vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1597{
c791ace1
DJ
1598 switch (pe_size) {
1599 case PE_SIZE_PTE:
c0b24625 1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1601 case PE_SIZE_PMD:
9a0dd422 1602 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1603 default:
1604 return VM_FAULT_FALLBACK;
1605 }
1606}
1607EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1608
a77d19f4 1609/*
71eab6df
JK
1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611 * @vmf: The description of the fault
71eab6df 1612 * @pfn: PFN to insert
cfc93c6c 1613 * @order: Order of entry to insert.
71eab6df 1614 *
a77d19f4
MW
1615 * This function inserts a writeable PTE or PMD entry into the page tables
1616 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1617 */
cfc93c6c
MW
1618static vm_fault_t
1619dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1620{
1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1623 void *entry;
ab77dab4 1624 vm_fault_t ret;
71eab6df 1625
cfc93c6c
MW
1626 xas_lock_irq(&xas);
1627 entry = get_unlocked_entry(&xas);
71eab6df
JK
1628 /* Did we race with someone splitting entry or so? */
1629 if (!entry ||
cfc93c6c
MW
1630 (order == 0 && !dax_is_pte_entry(entry)) ||
1631 (order == PMD_ORDER && (xa_is_internal(entry) ||
1632 !dax_is_pmd_entry(entry)))) {
1633 put_unlocked_entry(&xas, entry);
1634 xas_unlock_irq(&xas);
71eab6df
JK
1635 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1636 VM_FAULT_NOPAGE);
1637 return VM_FAULT_NOPAGE;
1638 }
cfc93c6c
MW
1639 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1640 dax_lock_entry(&xas, entry);
1641 xas_unlock_irq(&xas);
1642 if (order == 0)
ab77dab4 1643 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1644#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1645 else if (order == PMD_ORDER)
ab77dab4 1646 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1647 pfn, true);
71eab6df 1648#endif
cfc93c6c 1649 else
ab77dab4 1650 ret = VM_FAULT_FALLBACK;
cfc93c6c 1651 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1652 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1653 return ret;
71eab6df
JK
1654}
1655
1656/**
1657 * dax_finish_sync_fault - finish synchronous page fault
1658 * @vmf: The description of the fault
1659 * @pe_size: Size of entry to be inserted
1660 * @pfn: PFN to insert
1661 *
1662 * This function ensures that the file range touched by the page fault is
1663 * stored persistently on the media and handles inserting of appropriate page
1664 * table entry.
1665 */
ab77dab4
SJ
1666vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1667 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1668{
1669 int err;
1670 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1671 unsigned int order = pe_order(pe_size);
1672 size_t len = PAGE_SIZE << order;
71eab6df 1673
71eab6df
JK
1674 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1675 if (err)
1676 return VM_FAULT_SIGBUS;
cfc93c6c 1677 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1678}
1679EXPORT_SYMBOL_GPL(dax_finish_sync_fault);