Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
771ed689 827
771ed689
CM
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
c2790a2e 831 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
832 async_extent->start +
833 async_extent->ram_size - 1,
151a41bc
JB
834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 836 PAGE_SET_WRITEBACK);
771ed689 837 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
838 async_extent->start,
839 async_extent->ram_size,
840 ins.objectid,
841 ins.offset, async_extent->pages,
842 async_extent->nr_pages);
fce2a4e6
FM
843 if (ret) {
844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 struct page *p = async_extent->pages[0];
846 const u64 start = async_extent->start;
847 const u64 end = start + async_extent->ram_size - 1;
848
849 p->mapping = inode->i_mapping;
850 tree->ops->writepage_end_io_hook(p, start, end,
851 NULL, 0);
852 p->mapping = NULL;
853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 PAGE_END_WRITEBACK |
855 PAGE_SET_ERROR);
40ae837b 856 free_async_extent_pages(async_extent);
fce2a4e6 857 }
771ed689
CM
858 alloc_hint = ins.objectid + ins.offset;
859 kfree(async_extent);
860 cond_resched();
861 }
dec8f175 862 return;
3e04e7f1 863out_free_reserve:
e570fd27 864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 865out_free:
c2790a2e 866 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
867 async_extent->start +
868 async_extent->ram_size - 1,
c2790a2e 869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
40ae837b 874 free_async_extent_pages(async_extent);
79787eaa 875 kfree(async_extent);
3e04e7f1 876 goto again;
771ed689
CM
877}
878
4b46fce2
JB
879static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 u64 num_bytes)
881{
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 struct extent_map *em;
884 u64 alloc_hint = 0;
885
886 read_lock(&em_tree->lock);
887 em = search_extent_mapping(em_tree, start, num_bytes);
888 if (em) {
889 /*
890 * if block start isn't an actual block number then find the
891 * first block in this inode and use that as a hint. If that
892 * block is also bogus then just don't worry about it.
893 */
894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 free_extent_map(em);
896 em = search_extent_mapping(em_tree, 0, 0);
897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 alloc_hint = em->block_start;
899 if (em)
900 free_extent_map(em);
901 } else {
902 alloc_hint = em->block_start;
903 free_extent_map(em);
904 }
905 }
906 read_unlock(&em_tree->lock);
907
908 return alloc_hint;
909}
910
771ed689
CM
911/*
912 * when extent_io.c finds a delayed allocation range in the file,
913 * the call backs end up in this code. The basic idea is to
914 * allocate extents on disk for the range, and create ordered data structs
915 * in ram to track those extents.
916 *
917 * locked_page is the page that writepage had locked already. We use
918 * it to make sure we don't do extra locks or unlocks.
919 *
920 * *page_started is set to one if we unlock locked_page and do everything
921 * required to start IO on it. It may be clean and already done with
922 * IO when we return.
923 */
00361589
JB
924static noinline int cow_file_range(struct inode *inode,
925 struct page *locked_page,
926 u64 start, u64 end, int *page_started,
927 unsigned long *nr_written,
928 int unlock)
771ed689 929{
00361589 930 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
931 u64 alloc_hint = 0;
932 u64 num_bytes;
933 unsigned long ram_size;
934 u64 disk_num_bytes;
935 u64 cur_alloc_size;
936 u64 blocksize = root->sectorsize;
771ed689
CM
937 struct btrfs_key ins;
938 struct extent_map *em;
939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 int ret = 0;
941
02ecd2c2
JB
942 if (btrfs_is_free_space_inode(inode)) {
943 WARN_ON_ONCE(1);
29bce2f3
JB
944 ret = -EINVAL;
945 goto out_unlock;
02ecd2c2 946 }
771ed689 947
fda2832f 948 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
949 num_bytes = max(blocksize, num_bytes);
950 disk_num_bytes = num_bytes;
771ed689 951
4cb5300b 952 /* if this is a small write inside eof, kick off defrag */
ee22184b 953 if (num_bytes < SZ_64K &&
4cb13e5d 954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 955 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 956
771ed689
CM
957 if (start == 0) {
958 /* lets try to make an inline extent */
00361589
JB
959 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 NULL);
771ed689 961 if (ret == 0) {
c2790a2e
JB
962 extent_clear_unlock_delalloc(inode, start, end, NULL,
963 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 964 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 PAGE_END_WRITEBACK);
c2167754 967
771ed689 968 *nr_written = *nr_written +
09cbfeaf 969 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 970 *page_started = 1;
771ed689 971 goto out;
79787eaa 972 } else if (ret < 0) {
79787eaa 973 goto out_unlock;
771ed689
CM
974 }
975 }
976
977 BUG_ON(disk_num_bytes >
6c41761f 978 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 979
4b46fce2 980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982
d397712b 983 while (disk_num_bytes > 0) {
a791e35e
CM
984 unsigned long op;
985
287a0ab9 986 cur_alloc_size = disk_num_bytes;
00361589 987 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 988 root->sectorsize, 0, alloc_hint,
e570fd27 989 &ins, 1, 1);
00361589 990 if (ret < 0)
79787eaa 991 goto out_unlock;
d397712b 992
172ddd60 993 em = alloc_extent_map();
b9aa55be
LB
994 if (!em) {
995 ret = -ENOMEM;
ace68bac 996 goto out_reserve;
b9aa55be 997 }
e6dcd2dc 998 em->start = start;
445a6944 999 em->orig_start = em->start;
771ed689
CM
1000 ram_size = ins.offset;
1001 em->len = ins.offset;
2ab28f32
JB
1002 em->mod_start = em->start;
1003 em->mod_len = em->len;
c8b97818 1004
e6dcd2dc 1005 em->block_start = ins.objectid;
c8b97818 1006 em->block_len = ins.offset;
b4939680 1007 em->orig_block_len = ins.offset;
cc95bef6 1008 em->ram_bytes = ram_size;
e6dcd2dc 1009 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1010 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1011 em->generation = -1;
c8b97818 1012
d397712b 1013 while (1) {
890871be 1014 write_lock(&em_tree->lock);
09a2a8f9 1015 ret = add_extent_mapping(em_tree, em, 1);
890871be 1016 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1017 if (ret != -EEXIST) {
1018 free_extent_map(em);
1019 break;
1020 }
1021 btrfs_drop_extent_cache(inode, start,
c8b97818 1022 start + ram_size - 1, 0);
e6dcd2dc 1023 }
ace68bac
LB
1024 if (ret)
1025 goto out_reserve;
e6dcd2dc 1026
98d20f67 1027 cur_alloc_size = ins.offset;
e6dcd2dc 1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1029 ram_size, cur_alloc_size, 0);
ace68bac 1030 if (ret)
d9f85963 1031 goto out_drop_extent_cache;
c8b97818 1032
17d217fe
YZ
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
00361589 1037 if (ret)
d9f85963 1038 goto out_drop_extent_cache;
17d217fe
YZ
1039 }
1040
d397712b 1041 if (disk_num_bytes < cur_alloc_size)
3b951516 1042 break;
d397712b 1043
c8b97818
CM
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
c8b97818 1050 */
c2790a2e
JB
1051 op = unlock ? PAGE_UNLOCK : 0;
1052 op |= PAGE_SET_PRIVATE2;
a791e35e 1053
c2790a2e
JB
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1, locked_page,
1056 EXTENT_LOCKED | EXTENT_DELALLOC,
1057 op);
c8b97818 1058 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1059 num_bytes -= cur_alloc_size;
1060 alloc_hint = ins.objectid + ins.offset;
1061 start += cur_alloc_size;
b888db2b 1062 }
79787eaa 1063out:
be20aa9d 1064 return ret;
b7d5b0a8 1065
d9f85963
FM
1066out_drop_extent_cache:
1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1068out_reserve:
e570fd27 1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1070out_unlock:
c2790a2e 1071 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1076 goto out;
771ed689 1077}
c8b97818 1078
771ed689
CM
1079/*
1080 * work queue call back to started compression on a file and pages
1081 */
1082static noinline void async_cow_start(struct btrfs_work *work)
1083{
1084 struct async_cow *async_cow;
1085 int num_added = 0;
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 compress_file_range(async_cow->inode, async_cow->locked_page,
1089 async_cow->start, async_cow->end, async_cow,
1090 &num_added);
8180ef88 1091 if (num_added == 0) {
cb77fcd8 1092 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1093 async_cow->inode = NULL;
8180ef88 1094 }
771ed689
CM
1095}
1096
1097/*
1098 * work queue call back to submit previously compressed pages
1099 */
1100static noinline void async_cow_submit(struct btrfs_work *work)
1101{
1102 struct async_cow *async_cow;
1103 struct btrfs_root *root;
1104 unsigned long nr_pages;
1105
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 root = async_cow->root;
09cbfeaf
KS
1109 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1110 PAGE_SHIFT;
771ed689 1111
ee863954
DS
1112 /*
1113 * atomic_sub_return implies a barrier for waitqueue_active
1114 */
66657b31 1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1116 5 * SZ_1M &&
771ed689
CM
1117 waitqueue_active(&root->fs_info->async_submit_wait))
1118 wake_up(&root->fs_info->async_submit_wait);
1119
d397712b 1120 if (async_cow->inode)
771ed689 1121 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1122}
c8b97818 1123
771ed689
CM
1124static noinline void async_cow_free(struct btrfs_work *work)
1125{
1126 struct async_cow *async_cow;
1127 async_cow = container_of(work, struct async_cow, work);
8180ef88 1128 if (async_cow->inode)
cb77fcd8 1129 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1130 kfree(async_cow);
1131}
1132
1133static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136{
1137 struct async_cow *async_cow;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 unsigned long nr_pages;
1140 u64 cur_end;
ee22184b 1141 int limit = 10 * SZ_1M;
771ed689 1142
a3429ab7
CM
1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 1, 0, NULL, GFP_NOFS);
d397712b 1145 while (start < end) {
771ed689 1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1147 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1148 async_cow->inode = igrab(inode);
771ed689
CM
1149 async_cow->root = root;
1150 async_cow->locked_page = locked_page;
1151 async_cow->start = start;
1152
f79707b0
WS
1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1155 cur_end = end;
1156 else
ee22184b 1157 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1158
1159 async_cow->end = cur_end;
1160 INIT_LIST_HEAD(&async_cow->extents);
1161
9e0af237
LB
1162 btrfs_init_work(&async_cow->work,
1163 btrfs_delalloc_helper,
1164 async_cow_start, async_cow_submit,
1165 async_cow_free);
771ed689 1166
09cbfeaf
KS
1167 nr_pages = (cur_end - start + PAGE_SIZE) >>
1168 PAGE_SHIFT;
771ed689
CM
1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170
afe3d242
QW
1171 btrfs_queue_work(root->fs_info->delalloc_workers,
1172 &async_cow->work);
771ed689
CM
1173
1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 wait_event(root->fs_info->async_submit_wait,
1176 (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 limit));
1178 }
1179
d397712b 1180 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1181 atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 wait_event(root->fs_info->async_submit_wait,
1183 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 0));
1185 }
1186
1187 *nr_written += nr_pages;
1188 start = cur_end + 1;
1189 }
1190 *page_started = 1;
1191 return 0;
be20aa9d
CM
1192}
1193
d397712b 1194static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1195 u64 bytenr, u64 num_bytes)
1196{
1197 int ret;
1198 struct btrfs_ordered_sum *sums;
1199 LIST_HEAD(list);
1200
07d400a6 1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1202 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1203 if (ret == 0 && list_empty(&list))
1204 return 0;
1205
1206 while (!list_empty(&list)) {
1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 list_del(&sums->list);
1209 kfree(sums);
1210 }
1211 return 1;
1212}
1213
d352ac68
CM
1214/*
1215 * when nowcow writeback call back. This checks for snapshots or COW copies
1216 * of the extents that exist in the file, and COWs the file as required.
1217 *
1218 * If no cow copies or snapshots exist, we write directly to the existing
1219 * blocks on disk
1220 */
7f366cfe
CM
1221static noinline int run_delalloc_nocow(struct inode *inode,
1222 struct page *locked_page,
771ed689
CM
1223 u64 start, u64 end, int *page_started, int force,
1224 unsigned long *nr_written)
be20aa9d 1225{
be20aa9d 1226 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1227 struct btrfs_trans_handle *trans;
be20aa9d 1228 struct extent_buffer *leaf;
be20aa9d 1229 struct btrfs_path *path;
80ff3856 1230 struct btrfs_file_extent_item *fi;
be20aa9d 1231 struct btrfs_key found_key;
80ff3856
YZ
1232 u64 cow_start;
1233 u64 cur_offset;
1234 u64 extent_end;
5d4f98a2 1235 u64 extent_offset;
80ff3856
YZ
1236 u64 disk_bytenr;
1237 u64 num_bytes;
b4939680 1238 u64 disk_num_bytes;
cc95bef6 1239 u64 ram_bytes;
80ff3856 1240 int extent_type;
79787eaa 1241 int ret, err;
d899e052 1242 int type;
80ff3856
YZ
1243 int nocow;
1244 int check_prev = 1;
82d5902d 1245 bool nolock;
33345d01 1246 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1247
1248 path = btrfs_alloc_path();
17ca04af 1249 if (!path) {
c2790a2e
JB
1250 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1252 EXTENT_DO_ACCOUNTING |
1253 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1254 PAGE_CLEAR_DIRTY |
1255 PAGE_SET_WRITEBACK |
1256 PAGE_END_WRITEBACK);
d8926bb3 1257 return -ENOMEM;
17ca04af 1258 }
82d5902d 1259
83eea1f1 1260 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1261
1262 if (nolock)
7a7eaa40 1263 trans = btrfs_join_transaction_nolock(root);
82d5902d 1264 else
7a7eaa40 1265 trans = btrfs_join_transaction(root);
ff5714cc 1266
79787eaa 1267 if (IS_ERR(trans)) {
c2790a2e
JB
1268 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1270 EXTENT_DO_ACCOUNTING |
1271 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1272 PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK |
1274 PAGE_END_WRITEBACK);
79787eaa
JM
1275 btrfs_free_path(path);
1276 return PTR_ERR(trans);
1277 }
1278
74b21075 1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1280
80ff3856
YZ
1281 cow_start = (u64)-1;
1282 cur_offset = start;
1283 while (1) {
33345d01 1284 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1285 cur_offset, 0);
d788a349 1286 if (ret < 0)
79787eaa 1287 goto error;
80ff3856
YZ
1288 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key,
1291 path->slots[0] - 1);
33345d01 1292 if (found_key.objectid == ino &&
80ff3856
YZ
1293 found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 path->slots[0]--;
1295 }
1296 check_prev = 0;
1297next_slot:
1298 leaf = path->nodes[0];
1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 ret = btrfs_next_leaf(root, path);
d788a349 1301 if (ret < 0)
79787eaa 1302 goto error;
80ff3856
YZ
1303 if (ret > 0)
1304 break;
1305 leaf = path->nodes[0];
1306 }
be20aa9d 1307
80ff3856
YZ
1308 nocow = 0;
1309 disk_bytenr = 0;
17d217fe 1310 num_bytes = 0;
80ff3856
YZ
1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312
1d512cb7
FM
1313 if (found_key.objectid > ino)
1314 break;
1315 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 path->slots[0]++;
1318 goto next_slot;
1319 }
1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1321 found_key.offset > end)
1322 break;
1323
1324 if (found_key.offset > cur_offset) {
1325 extent_end = found_key.offset;
e9061e21 1326 extent_type = 0;
80ff3856
YZ
1327 goto out_check;
1328 }
1329
1330 fi = btrfs_item_ptr(leaf, path->slots[0],
1331 struct btrfs_file_extent_item);
1332 extent_type = btrfs_file_extent_type(leaf, fi);
1333
cc95bef6 1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1335 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1338 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1339 extent_end = found_key.offset +
1340 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1341 disk_num_bytes =
1342 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1343 if (extent_end <= start) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
17d217fe
YZ
1347 if (disk_bytenr == 0)
1348 goto out_check;
80ff3856
YZ
1349 if (btrfs_file_extent_compression(leaf, fi) ||
1350 btrfs_file_extent_encryption(leaf, fi) ||
1351 btrfs_file_extent_other_encoding(leaf, fi))
1352 goto out_check;
d899e052
YZ
1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 goto out_check;
d2fb3437 1355 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1356 goto out_check;
33345d01 1357 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1358 found_key.offset -
1359 extent_offset, disk_bytenr))
17d217fe 1360 goto out_check;
5d4f98a2 1361 disk_bytenr += extent_offset;
17d217fe
YZ
1362 disk_bytenr += cur_offset - found_key.offset;
1363 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1364 /*
1365 * if there are pending snapshots for this root,
1366 * we fall into common COW way.
1367 */
1368 if (!nolock) {
9ea24bbe 1369 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1370 if (!err)
1371 goto out_check;
1372 }
17d217fe
YZ
1373 /*
1374 * force cow if csum exists in the range.
1375 * this ensure that csum for a given extent are
1376 * either valid or do not exist.
1377 */
1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 goto out_check;
80ff3856
YZ
1380 nocow = 1;
1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 extent_end = found_key.offset +
514ac8ad
CM
1383 btrfs_file_extent_inline_len(leaf,
1384 path->slots[0], fi);
80ff3856
YZ
1385 extent_end = ALIGN(extent_end, root->sectorsize);
1386 } else {
1387 BUG_ON(1);
1388 }
1389out_check:
1390 if (extent_end <= start) {
1391 path->slots[0]++;
e9894fd3 1392 if (!nolock && nocow)
9ea24bbe 1393 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1394 goto next_slot;
1395 }
1396 if (!nocow) {
1397 if (cow_start == (u64)-1)
1398 cow_start = cur_offset;
1399 cur_offset = extent_end;
1400 if (cur_offset > end)
1401 break;
1402 path->slots[0]++;
1403 goto next_slot;
7ea394f1
YZ
1404 }
1405
b3b4aa74 1406 btrfs_release_path(path);
80ff3856 1407 if (cow_start != (u64)-1) {
00361589
JB
1408 ret = cow_file_range(inode, locked_page,
1409 cow_start, found_key.offset - 1,
1410 page_started, nr_written, 1);
e9894fd3
WS
1411 if (ret) {
1412 if (!nolock && nocow)
9ea24bbe 1413 btrfs_end_write_no_snapshoting(root);
79787eaa 1414 goto error;
e9894fd3 1415 }
80ff3856 1416 cow_start = (u64)-1;
7ea394f1 1417 }
80ff3856 1418
d899e052
YZ
1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 struct extent_map *em;
1421 struct extent_map_tree *em_tree;
1422 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1423 em = alloc_extent_map();
79787eaa 1424 BUG_ON(!em); /* -ENOMEM */
d899e052 1425 em->start = cur_offset;
70c8a91c 1426 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1427 em->len = num_bytes;
1428 em->block_len = num_bytes;
1429 em->block_start = disk_bytenr;
b4939680 1430 em->orig_block_len = disk_num_bytes;
cc95bef6 1431 em->ram_bytes = ram_bytes;
d899e052 1432 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1433 em->mod_start = em->start;
1434 em->mod_len = em->len;
d899e052 1435 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1436 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1437 em->generation = -1;
d899e052 1438 while (1) {
890871be 1439 write_lock(&em_tree->lock);
09a2a8f9 1440 ret = add_extent_mapping(em_tree, em, 1);
890871be 1441 write_unlock(&em_tree->lock);
d899e052
YZ
1442 if (ret != -EEXIST) {
1443 free_extent_map(em);
1444 break;
1445 }
1446 btrfs_drop_extent_cache(inode, em->start,
1447 em->start + em->len - 1, 0);
1448 }
1449 type = BTRFS_ORDERED_PREALLOC;
1450 } else {
1451 type = BTRFS_ORDERED_NOCOW;
1452 }
80ff3856
YZ
1453
1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1455 num_bytes, num_bytes, type);
79787eaa 1456 BUG_ON(ret); /* -ENOMEM */
771ed689 1457
efa56464
YZ
1458 if (root->root_key.objectid ==
1459 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 num_bytes);
e9894fd3
WS
1462 if (ret) {
1463 if (!nolock && nocow)
9ea24bbe 1464 btrfs_end_write_no_snapshoting(root);
79787eaa 1465 goto error;
e9894fd3 1466 }
efa56464
YZ
1467 }
1468
c2790a2e
JB
1469 extent_clear_unlock_delalloc(inode, cur_offset,
1470 cur_offset + num_bytes - 1,
1471 locked_page, EXTENT_LOCKED |
1472 EXTENT_DELALLOC, PAGE_UNLOCK |
1473 PAGE_SET_PRIVATE2);
e9894fd3 1474 if (!nolock && nocow)
9ea24bbe 1475 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1476 cur_offset = extent_end;
1477 if (cur_offset > end)
1478 break;
be20aa9d 1479 }
b3b4aa74 1480 btrfs_release_path(path);
80ff3856 1481
17ca04af 1482 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1483 cow_start = cur_offset;
17ca04af
JB
1484 cur_offset = end;
1485 }
1486
80ff3856 1487 if (cow_start != (u64)-1) {
00361589
JB
1488 ret = cow_file_range(inode, locked_page, cow_start, end,
1489 page_started, nr_written, 1);
d788a349 1490 if (ret)
79787eaa 1491 goto error;
80ff3856
YZ
1492 }
1493
79787eaa 1494error:
a698d075 1495 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1496 if (!ret)
1497 ret = err;
1498
17ca04af 1499 if (ret && cur_offset < end)
c2790a2e
JB
1500 extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 locked_page, EXTENT_LOCKED |
151a41bc
JB
1502 EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1505 PAGE_SET_WRITEBACK |
1506 PAGE_END_WRITEBACK);
7ea394f1 1507 btrfs_free_path(path);
79787eaa 1508 return ret;
be20aa9d
CM
1509}
1510
47059d93
WS
1511static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512{
1513
1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 return 0;
1517
1518 /*
1519 * @defrag_bytes is a hint value, no spinlock held here,
1520 * if is not zero, it means the file is defragging.
1521 * Force cow if given extent needs to be defragged.
1522 */
1523 if (BTRFS_I(inode)->defrag_bytes &&
1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 EXTENT_DEFRAG, 0, NULL))
1526 return 1;
1527
1528 return 0;
1529}
1530
d352ac68
CM
1531/*
1532 * extent_io.c call back to do delayed allocation processing
1533 */
c8b97818 1534static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1535 u64 start, u64 end, int *page_started,
1536 unsigned long *nr_written)
be20aa9d 1537{
be20aa9d 1538 int ret;
47059d93 1539 int force_cow = need_force_cow(inode, start, end);
a2135011 1540
47059d93 1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1542 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1543 page_started, 1, nr_written);
47059d93 1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1545 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1546 page_started, 0, nr_written);
7816030e 1547 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1548 ret = cow_file_range(inode, locked_page, start, end,
1549 page_started, nr_written, 1);
7ddf5a42
JB
1550 } else {
1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags);
771ed689 1553 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1554 page_started, nr_written);
7ddf5a42 1555 }
b888db2b
CM
1556 return ret;
1557}
1558
1bf85046
JM
1559static void btrfs_split_extent_hook(struct inode *inode,
1560 struct extent_state *orig, u64 split)
9ed74f2d 1561{
dcab6a3b
JB
1562 u64 size;
1563
0ca1f7ce 1564 /* not delalloc, ignore it */
9ed74f2d 1565 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1566 return;
9ed74f2d 1567
dcab6a3b
JB
1568 size = orig->end - orig->start + 1;
1569 if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 u64 num_extents;
1571 u64 new_size;
1572
1573 /*
ba117213
JB
1574 * See the explanation in btrfs_merge_extent_hook, the same
1575 * applies here, just in reverse.
dcab6a3b
JB
1576 */
1577 new_size = orig->end - split + 1;
ba117213 1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1579 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1580 new_size = split - orig->start;
1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 BTRFS_MAX_EXTENT_SIZE);
1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1585 return;
1586 }
1587
9e0baf60
JB
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents++;
1590 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1591}
1592
1593/*
1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595 * extents so we can keep track of new extents that are just merged onto old
1596 * extents, such as when we are doing sequential writes, so we can properly
1597 * account for the metadata space we'll need.
1598 */
1bf85046
JM
1599static void btrfs_merge_extent_hook(struct inode *inode,
1600 struct extent_state *new,
1601 struct extent_state *other)
9ed74f2d 1602{
dcab6a3b
JB
1603 u64 new_size, old_size;
1604 u64 num_extents;
1605
9ed74f2d
JB
1606 /* not delalloc, ignore it */
1607 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1608 return;
9ed74f2d 1609
8461a3de
JB
1610 if (new->start > other->start)
1611 new_size = new->end - other->start + 1;
1612 else
1613 new_size = other->end - new->start + 1;
dcab6a3b
JB
1614
1615 /* we're not bigger than the max, unreserve the space and go */
1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 spin_lock(&BTRFS_I(inode)->lock);
1618 BTRFS_I(inode)->outstanding_extents--;
1619 spin_unlock(&BTRFS_I(inode)->lock);
1620 return;
1621 }
1622
1623 /*
ba117213
JB
1624 * We have to add up either side to figure out how many extents were
1625 * accounted for before we merged into one big extent. If the number of
1626 * extents we accounted for is <= the amount we need for the new range
1627 * then we can return, otherwise drop. Think of it like this
1628 *
1629 * [ 4k][MAX_SIZE]
1630 *
1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 * need 2 outstanding extents, on one side we have 1 and the other side
1633 * we have 1 so they are == and we can return. But in this case
1634 *
1635 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 *
1637 * Each range on their own accounts for 2 extents, but merged together
1638 * they are only 3 extents worth of accounting, so we need to drop in
1639 * this case.
dcab6a3b 1640 */
ba117213 1641 old_size = other->end - other->start + 1;
dcab6a3b
JB
1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1644 old_size = new->end - new->start + 1;
1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 BTRFS_MAX_EXTENT_SIZE);
1647
dcab6a3b 1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1650 return;
1651
9e0baf60
JB
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1655}
1656
eb73c1b7
MX
1657static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 struct inode *inode)
1659{
1660 spin_lock(&root->delalloc_lock);
1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 &root->delalloc_inodes);
1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 &BTRFS_I(inode)->runtime_flags);
1666 root->nr_delalloc_inodes++;
1667 if (root->nr_delalloc_inodes == 1) {
1668 spin_lock(&root->fs_info->delalloc_root_lock);
1669 BUG_ON(!list_empty(&root->delalloc_root));
1670 list_add_tail(&root->delalloc_root,
1671 &root->fs_info->delalloc_roots);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676}
1677
1678static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 struct inode *inode)
1680{
1681 spin_lock(&root->delalloc_lock);
1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes--;
1687 if (!root->nr_delalloc_inodes) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(list_empty(&root->delalloc_root));
1690 list_del_init(&root->delalloc_root);
1691 spin_unlock(&root->fs_info->delalloc_root_lock);
1692 }
1693 }
1694 spin_unlock(&root->delalloc_lock);
1695}
1696
d352ac68
CM
1697/*
1698 * extent_io.c set_bit_hook, used to track delayed allocation
1699 * bytes in this file, and to maintain the list of inodes that
1700 * have pending delalloc work to be done.
1701 */
1bf85046 1702static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1703 struct extent_state *state, unsigned *bits)
291d673e 1704{
9ed74f2d 1705
47059d93
WS
1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 WARN_ON(1);
75eff68e
CM
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1710 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1711 * bit, which is only set or cleared with irqs on
1712 */
0ca1f7ce 1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1714 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1715 u64 len = state->end + 1 - state->start;
83eea1f1 1716 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1717
9e0baf60 1718 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1719 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1720 } else {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents++;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 }
287a0ab9 1725
6a3891c5
JB
1726 /* For sanity tests */
1727 if (btrfs_test_is_dummy_root(root))
1728 return;
1729
963d678b
MX
1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 root->fs_info->delalloc_batch);
df0af1a5 1732 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1733 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1734 if (*bits & EXTENT_DEFRAG)
1735 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1737 &BTRFS_I(inode)->runtime_flags))
1738 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1739 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1740 }
291d673e
CM
1741}
1742
d352ac68
CM
1743/*
1744 * extent_io.c clear_bit_hook, see set_bit_hook for why
1745 */
1bf85046 1746static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1747 struct extent_state *state,
9ee49a04 1748 unsigned *bits)
291d673e 1749{
47059d93 1750 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1753
1754 spin_lock(&BTRFS_I(inode)->lock);
1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 BTRFS_I(inode)->defrag_bytes -= len;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1758
75eff68e
CM
1759 /*
1760 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1761 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1762 * bit, which is only set or cleared with irqs on
1763 */
0ca1f7ce 1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1765 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1766 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1767
9e0baf60 1768 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1769 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1772 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774 }
0ca1f7ce 1775
b6d08f06
JB
1776 /*
1777 * We don't reserve metadata space for space cache inodes so we
1778 * don't need to call dellalloc_release_metadata if there is an
1779 * error.
1780 */
1781 if (*bits & EXTENT_DO_ACCOUNTING &&
1782 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1783 btrfs_delalloc_release_metadata(inode, len);
1784
6a3891c5
JB
1785 /* For sanity tests. */
1786 if (btrfs_test_is_dummy_root(root))
1787 return;
1788
0cb59c99 1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1790 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1791 btrfs_free_reserved_data_space_noquota(inode,
1792 state->start, len);
9ed74f2d 1793
963d678b
MX
1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 root->fs_info->delalloc_batch);
df0af1a5 1796 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1797 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1800 &BTRFS_I(inode)->runtime_flags))
1801 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1802 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1803 }
291d673e
CM
1804}
1805
d352ac68
CM
1806/*
1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808 * we don't create bios that span stripes or chunks
1809 */
64a16701 1810int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1811 size_t size, struct bio *bio,
1812 unsigned long bio_flags)
239b14b3
CM
1813{
1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1816 u64 length = 0;
1817 u64 map_length;
239b14b3
CM
1818 int ret;
1819
771ed689
CM
1820 if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 return 0;
1822
4f024f37 1823 length = bio->bi_iter.bi_size;
239b14b3 1824 map_length = length;
64a16701 1825 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1826 &map_length, NULL, 0);
3ec706c8 1827 /* Will always return 0 with map_multi == NULL */
3444a972 1828 BUG_ON(ret < 0);
d397712b 1829 if (map_length < length + size)
239b14b3 1830 return 1;
3444a972 1831 return 0;
239b14b3
CM
1832}
1833
d352ac68
CM
1834/*
1835 * in order to insert checksums into the metadata in large chunks,
1836 * we wait until bio submission time. All the pages in the bio are
1837 * checksummed and sums are attached onto the ordered extent record.
1838 *
1839 * At IO completion time the cums attached on the ordered extent record
1840 * are inserted into the btree
1841 */
d397712b
CM
1842static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 struct bio *bio, int mirror_num,
eaf25d93
CM
1844 unsigned long bio_flags,
1845 u64 bio_offset)
065631f6 1846{
065631f6 1847 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1848 int ret = 0;
e015640f 1849
d20f7043 1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1851 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1852 return 0;
1853}
e015640f 1854
4a69a410
CM
1855/*
1856 * in order to insert checksums into the metadata in large chunks,
1857 * we wait until bio submission time. All the pages in the bio are
1858 * checksummed and sums are attached onto the ordered extent record.
1859 *
1860 * At IO completion time the cums attached on the ordered extent record
1861 * are inserted into the btree
1862 */
b2950863 1863static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
4a69a410
CM
1866{
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1868 int ret;
1869
1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1871 if (ret) {
1872 bio->bi_error = ret;
1873 bio_endio(bio);
1874 }
61891923 1875 return ret;
44b8bd7e
CM
1876}
1877
d352ac68 1878/*
cad321ad
CM
1879 * extent_io.c submission hook. This does the right thing for csum calculation
1880 * on write, or reading the csums from the tree before a read
d352ac68 1881 */
b2950863 1882static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1883 int mirror_num, unsigned long bio_flags,
1884 u64 bio_offset)
44b8bd7e
CM
1885{
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1888 int ret = 0;
19b9bdb0 1889 int skip_sum;
b812ce28 1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1891
6cbff00f 1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1893
83eea1f1 1894 if (btrfs_is_free_space_inode(inode))
0d51e28a 1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1896
7b6d91da 1897 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 if (ret)
61891923 1900 goto out;
5fd02043 1901
d20f7043 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1903 ret = btrfs_submit_compressed_read(inode, bio,
1904 mirror_num,
1905 bio_flags);
1906 goto out;
c2db1073
TI
1907 } else if (!skip_sum) {
1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 if (ret)
61891923 1910 goto out;
c2db1073 1911 }
4d1b5fb4 1912 goto mapit;
b812ce28 1913 } else if (async && !skip_sum) {
17d217fe
YZ
1914 /* csum items have already been cloned */
1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 goto mapit;
19b9bdb0 1917 /* we're doing a write, do the async checksumming */
61891923 1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1919 inode, rw, bio, mirror_num,
eaf25d93
CM
1920 bio_flags, bio_offset,
1921 __btrfs_submit_bio_start,
4a69a410 1922 __btrfs_submit_bio_done);
61891923 1923 goto out;
b812ce28
JB
1924 } else if (!skip_sum) {
1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 if (ret)
1927 goto out;
19b9bdb0
CM
1928 }
1929
0b86a832 1930mapit:
61891923
SB
1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932
1933out:
4246a0b6
CH
1934 if (ret < 0) {
1935 bio->bi_error = ret;
1936 bio_endio(bio);
1937 }
61891923 1938 return ret;
065631f6 1939}
6885f308 1940
d352ac68
CM
1941/*
1942 * given a list of ordered sums record them in the inode. This happens
1943 * at IO completion time based on sums calculated at bio submission time.
1944 */
ba1da2f4 1945static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1946 struct inode *inode, u64 file_offset,
1947 struct list_head *list)
1948{
e6dcd2dc
CM
1949 struct btrfs_ordered_sum *sum;
1950
c6e30871 1951 list_for_each_entry(sum, list, list) {
39847c4d 1952 trans->adding_csums = 1;
d20f7043
CM
1953 btrfs_csum_file_blocks(trans,
1954 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1955 trans->adding_csums = 0;
e6dcd2dc
CM
1956 }
1957 return 0;
1958}
1959
2ac55d41
JB
1960int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 struct extent_state **cached_state)
ea8c2819 1962{
09cbfeaf 1963 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1965 cached_state, GFP_NOFS);
ea8c2819
CM
1966}
1967
d352ac68 1968/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1969struct btrfs_writepage_fixup {
1970 struct page *page;
1971 struct btrfs_work work;
1972};
1973
b2950863 1974static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1975{
1976 struct btrfs_writepage_fixup *fixup;
1977 struct btrfs_ordered_extent *ordered;
2ac55d41 1978 struct extent_state *cached_state = NULL;
247e743c
CM
1979 struct page *page;
1980 struct inode *inode;
1981 u64 page_start;
1982 u64 page_end;
87826df0 1983 int ret;
247e743c
CM
1984
1985 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 page = fixup->page;
4a096752 1987again:
247e743c
CM
1988 lock_page(page);
1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 ClearPageChecked(page);
1991 goto out_page;
1992 }
1993
1994 inode = page->mapping->host;
1995 page_start = page_offset(page);
09cbfeaf 1996 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 1997
ff13db41 1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 1999 &cached_state);
4a096752
CM
2000
2001 /* already ordered? We're done */
8b62b72b 2002 if (PagePrivate2(page))
247e743c 2003 goto out;
4a096752 2004
dbfdb6d1 2005 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2006 PAGE_SIZE);
4a096752 2007 if (ordered) {
2ac55d41
JB
2008 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2009 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2010 unlock_page(page);
2011 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2012 btrfs_put_ordered_extent(ordered);
4a096752
CM
2013 goto again;
2014 }
247e743c 2015
7cf5b976 2016 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2017 PAGE_SIZE);
87826df0
JM
2018 if (ret) {
2019 mapping_set_error(page->mapping, ret);
2020 end_extent_writepage(page, ret, page_start, page_end);
2021 ClearPageChecked(page);
2022 goto out;
2023 }
2024
2ac55d41 2025 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2026 ClearPageChecked(page);
87826df0 2027 set_page_dirty(page);
247e743c 2028out:
2ac55d41
JB
2029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2030 &cached_state, GFP_NOFS);
247e743c
CM
2031out_page:
2032 unlock_page(page);
09cbfeaf 2033 put_page(page);
b897abec 2034 kfree(fixup);
247e743c
CM
2035}
2036
2037/*
2038 * There are a few paths in the higher layers of the kernel that directly
2039 * set the page dirty bit without asking the filesystem if it is a
2040 * good idea. This causes problems because we want to make sure COW
2041 * properly happens and the data=ordered rules are followed.
2042 *
c8b97818 2043 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2044 * hasn't been properly setup for IO. We kick off an async process
2045 * to fix it up. The async helper will wait for ordered extents, set
2046 * the delalloc bit and make it safe to write the page.
2047 */
b2950863 2048static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2049{
2050 struct inode *inode = page->mapping->host;
2051 struct btrfs_writepage_fixup *fixup;
2052 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2053
8b62b72b
CM
2054 /* this page is properly in the ordered list */
2055 if (TestClearPagePrivate2(page))
247e743c
CM
2056 return 0;
2057
2058 if (PageChecked(page))
2059 return -EAGAIN;
2060
2061 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2062 if (!fixup)
2063 return -EAGAIN;
f421950f 2064
247e743c 2065 SetPageChecked(page);
09cbfeaf 2066 get_page(page);
9e0af237
LB
2067 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2068 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2069 fixup->page = page;
dc6e3209 2070 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2071 return -EBUSY;
247e743c
CM
2072}
2073
d899e052
YZ
2074static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2075 struct inode *inode, u64 file_pos,
2076 u64 disk_bytenr, u64 disk_num_bytes,
2077 u64 num_bytes, u64 ram_bytes,
2078 u8 compression, u8 encryption,
2079 u16 other_encoding, int extent_type)
2080{
2081 struct btrfs_root *root = BTRFS_I(inode)->root;
2082 struct btrfs_file_extent_item *fi;
2083 struct btrfs_path *path;
2084 struct extent_buffer *leaf;
2085 struct btrfs_key ins;
1acae57b 2086 int extent_inserted = 0;
d899e052
YZ
2087 int ret;
2088
2089 path = btrfs_alloc_path();
d8926bb3
MF
2090 if (!path)
2091 return -ENOMEM;
d899e052 2092
a1ed835e
CM
2093 /*
2094 * we may be replacing one extent in the tree with another.
2095 * The new extent is pinned in the extent map, and we don't want
2096 * to drop it from the cache until it is completely in the btree.
2097 *
2098 * So, tell btrfs_drop_extents to leave this extent in the cache.
2099 * the caller is expected to unpin it and allow it to be merged
2100 * with the others.
2101 */
1acae57b
FDBM
2102 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2103 file_pos + num_bytes, NULL, 0,
2104 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2105 if (ret)
2106 goto out;
d899e052 2107
1acae57b
FDBM
2108 if (!extent_inserted) {
2109 ins.objectid = btrfs_ino(inode);
2110 ins.offset = file_pos;
2111 ins.type = BTRFS_EXTENT_DATA_KEY;
2112
2113 path->leave_spinning = 1;
2114 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2115 sizeof(*fi));
2116 if (ret)
2117 goto out;
2118 }
d899e052
YZ
2119 leaf = path->nodes[0];
2120 fi = btrfs_item_ptr(leaf, path->slots[0],
2121 struct btrfs_file_extent_item);
2122 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2123 btrfs_set_file_extent_type(leaf, fi, extent_type);
2124 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2125 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2126 btrfs_set_file_extent_offset(leaf, fi, 0);
2127 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2129 btrfs_set_file_extent_compression(leaf, fi, compression);
2130 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2131 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2132
d899e052 2133 btrfs_mark_buffer_dirty(leaf);
ce195332 2134 btrfs_release_path(path);
d899e052
YZ
2135
2136 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2137
2138 ins.objectid = disk_bytenr;
2139 ins.offset = disk_num_bytes;
2140 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2141 ret = btrfs_alloc_reserved_file_extent(trans, root,
2142 root->root_key.objectid,
5846a3c2
QW
2143 btrfs_ino(inode), file_pos,
2144 ram_bytes, &ins);
297d750b 2145 /*
5846a3c2
QW
2146 * Release the reserved range from inode dirty range map, as it is
2147 * already moved into delayed_ref_head
297d750b
QW
2148 */
2149 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2150out:
d899e052 2151 btrfs_free_path(path);
b9473439 2152
79787eaa 2153 return ret;
d899e052
YZ
2154}
2155
38c227d8
LB
2156/* snapshot-aware defrag */
2157struct sa_defrag_extent_backref {
2158 struct rb_node node;
2159 struct old_sa_defrag_extent *old;
2160 u64 root_id;
2161 u64 inum;
2162 u64 file_pos;
2163 u64 extent_offset;
2164 u64 num_bytes;
2165 u64 generation;
2166};
2167
2168struct old_sa_defrag_extent {
2169 struct list_head list;
2170 struct new_sa_defrag_extent *new;
2171
2172 u64 extent_offset;
2173 u64 bytenr;
2174 u64 offset;
2175 u64 len;
2176 int count;
2177};
2178
2179struct new_sa_defrag_extent {
2180 struct rb_root root;
2181 struct list_head head;
2182 struct btrfs_path *path;
2183 struct inode *inode;
2184 u64 file_pos;
2185 u64 len;
2186 u64 bytenr;
2187 u64 disk_len;
2188 u8 compress_type;
2189};
2190
2191static int backref_comp(struct sa_defrag_extent_backref *b1,
2192 struct sa_defrag_extent_backref *b2)
2193{
2194 if (b1->root_id < b2->root_id)
2195 return -1;
2196 else if (b1->root_id > b2->root_id)
2197 return 1;
2198
2199 if (b1->inum < b2->inum)
2200 return -1;
2201 else if (b1->inum > b2->inum)
2202 return 1;
2203
2204 if (b1->file_pos < b2->file_pos)
2205 return -1;
2206 else if (b1->file_pos > b2->file_pos)
2207 return 1;
2208
2209 /*
2210 * [------------------------------] ===> (a range of space)
2211 * |<--->| |<---->| =============> (fs/file tree A)
2212 * |<---------------------------->| ===> (fs/file tree B)
2213 *
2214 * A range of space can refer to two file extents in one tree while
2215 * refer to only one file extent in another tree.
2216 *
2217 * So we may process a disk offset more than one time(two extents in A)
2218 * and locate at the same extent(one extent in B), then insert two same
2219 * backrefs(both refer to the extent in B).
2220 */
2221 return 0;
2222}
2223
2224static void backref_insert(struct rb_root *root,
2225 struct sa_defrag_extent_backref *backref)
2226{
2227 struct rb_node **p = &root->rb_node;
2228 struct rb_node *parent = NULL;
2229 struct sa_defrag_extent_backref *entry;
2230 int ret;
2231
2232 while (*p) {
2233 parent = *p;
2234 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2235
2236 ret = backref_comp(backref, entry);
2237 if (ret < 0)
2238 p = &(*p)->rb_left;
2239 else
2240 p = &(*p)->rb_right;
2241 }
2242
2243 rb_link_node(&backref->node, parent, p);
2244 rb_insert_color(&backref->node, root);
2245}
2246
2247/*
2248 * Note the backref might has changed, and in this case we just return 0.
2249 */
2250static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2251 void *ctx)
2252{
2253 struct btrfs_file_extent_item *extent;
2254 struct btrfs_fs_info *fs_info;
2255 struct old_sa_defrag_extent *old = ctx;
2256 struct new_sa_defrag_extent *new = old->new;
2257 struct btrfs_path *path = new->path;
2258 struct btrfs_key key;
2259 struct btrfs_root *root;
2260 struct sa_defrag_extent_backref *backref;
2261 struct extent_buffer *leaf;
2262 struct inode *inode = new->inode;
2263 int slot;
2264 int ret;
2265 u64 extent_offset;
2266 u64 num_bytes;
2267
2268 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2269 inum == btrfs_ino(inode))
2270 return 0;
2271
2272 key.objectid = root_id;
2273 key.type = BTRFS_ROOT_ITEM_KEY;
2274 key.offset = (u64)-1;
2275
2276 fs_info = BTRFS_I(inode)->root->fs_info;
2277 root = btrfs_read_fs_root_no_name(fs_info, &key);
2278 if (IS_ERR(root)) {
2279 if (PTR_ERR(root) == -ENOENT)
2280 return 0;
2281 WARN_ON(1);
2282 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2283 inum, offset, root_id);
2284 return PTR_ERR(root);
2285 }
2286
2287 key.objectid = inum;
2288 key.type = BTRFS_EXTENT_DATA_KEY;
2289 if (offset > (u64)-1 << 32)
2290 key.offset = 0;
2291 else
2292 key.offset = offset;
2293
2294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2295 if (WARN_ON(ret < 0))
38c227d8 2296 return ret;
50f1319c 2297 ret = 0;
38c227d8
LB
2298
2299 while (1) {
2300 cond_resched();
2301
2302 leaf = path->nodes[0];
2303 slot = path->slots[0];
2304
2305 if (slot >= btrfs_header_nritems(leaf)) {
2306 ret = btrfs_next_leaf(root, path);
2307 if (ret < 0) {
2308 goto out;
2309 } else if (ret > 0) {
2310 ret = 0;
2311 goto out;
2312 }
2313 continue;
2314 }
2315
2316 path->slots[0]++;
2317
2318 btrfs_item_key_to_cpu(leaf, &key, slot);
2319
2320 if (key.objectid > inum)
2321 goto out;
2322
2323 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2324 continue;
2325
2326 extent = btrfs_item_ptr(leaf, slot,
2327 struct btrfs_file_extent_item);
2328
2329 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2330 continue;
2331
e68afa49
LB
2332 /*
2333 * 'offset' refers to the exact key.offset,
2334 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2335 * (key.offset - extent_offset).
2336 */
2337 if (key.offset != offset)
38c227d8
LB
2338 continue;
2339
e68afa49 2340 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2341 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2342
38c227d8
LB
2343 if (extent_offset >= old->extent_offset + old->offset +
2344 old->len || extent_offset + num_bytes <=
2345 old->extent_offset + old->offset)
2346 continue;
38c227d8
LB
2347 break;
2348 }
2349
2350 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2351 if (!backref) {
2352 ret = -ENOENT;
2353 goto out;
2354 }
2355
2356 backref->root_id = root_id;
2357 backref->inum = inum;
e68afa49 2358 backref->file_pos = offset;
38c227d8
LB
2359 backref->num_bytes = num_bytes;
2360 backref->extent_offset = extent_offset;
2361 backref->generation = btrfs_file_extent_generation(leaf, extent);
2362 backref->old = old;
2363 backref_insert(&new->root, backref);
2364 old->count++;
2365out:
2366 btrfs_release_path(path);
2367 WARN_ON(ret);
2368 return ret;
2369}
2370
2371static noinline bool record_extent_backrefs(struct btrfs_path *path,
2372 struct new_sa_defrag_extent *new)
2373{
2374 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2375 struct old_sa_defrag_extent *old, *tmp;
2376 int ret;
2377
2378 new->path = path;
2379
2380 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2381 ret = iterate_inodes_from_logical(old->bytenr +
2382 old->extent_offset, fs_info,
38c227d8
LB
2383 path, record_one_backref,
2384 old);
4724b106
JB
2385 if (ret < 0 && ret != -ENOENT)
2386 return false;
38c227d8
LB
2387
2388 /* no backref to be processed for this extent */
2389 if (!old->count) {
2390 list_del(&old->list);
2391 kfree(old);
2392 }
2393 }
2394
2395 if (list_empty(&new->head))
2396 return false;
2397
2398 return true;
2399}
2400
2401static int relink_is_mergable(struct extent_buffer *leaf,
2402 struct btrfs_file_extent_item *fi,
116e0024 2403 struct new_sa_defrag_extent *new)
38c227d8 2404{
116e0024 2405 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2406 return 0;
2407
2408 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2409 return 0;
2410
116e0024
LB
2411 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2412 return 0;
2413
2414 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2415 btrfs_file_extent_other_encoding(leaf, fi))
2416 return 0;
2417
2418 return 1;
2419}
2420
2421/*
2422 * Note the backref might has changed, and in this case we just return 0.
2423 */
2424static noinline int relink_extent_backref(struct btrfs_path *path,
2425 struct sa_defrag_extent_backref *prev,
2426 struct sa_defrag_extent_backref *backref)
2427{
2428 struct btrfs_file_extent_item *extent;
2429 struct btrfs_file_extent_item *item;
2430 struct btrfs_ordered_extent *ordered;
2431 struct btrfs_trans_handle *trans;
2432 struct btrfs_fs_info *fs_info;
2433 struct btrfs_root *root;
2434 struct btrfs_key key;
2435 struct extent_buffer *leaf;
2436 struct old_sa_defrag_extent *old = backref->old;
2437 struct new_sa_defrag_extent *new = old->new;
2438 struct inode *src_inode = new->inode;
2439 struct inode *inode;
2440 struct extent_state *cached = NULL;
2441 int ret = 0;
2442 u64 start;
2443 u64 len;
2444 u64 lock_start;
2445 u64 lock_end;
2446 bool merge = false;
2447 int index;
2448
2449 if (prev && prev->root_id == backref->root_id &&
2450 prev->inum == backref->inum &&
2451 prev->file_pos + prev->num_bytes == backref->file_pos)
2452 merge = true;
2453
2454 /* step 1: get root */
2455 key.objectid = backref->root_id;
2456 key.type = BTRFS_ROOT_ITEM_KEY;
2457 key.offset = (u64)-1;
2458
2459 fs_info = BTRFS_I(src_inode)->root->fs_info;
2460 index = srcu_read_lock(&fs_info->subvol_srcu);
2461
2462 root = btrfs_read_fs_root_no_name(fs_info, &key);
2463 if (IS_ERR(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 if (PTR_ERR(root) == -ENOENT)
2466 return 0;
2467 return PTR_ERR(root);
2468 }
38c227d8 2469
bcbba5e6
WS
2470 if (btrfs_root_readonly(root)) {
2471 srcu_read_unlock(&fs_info->subvol_srcu, index);
2472 return 0;
2473 }
2474
38c227d8
LB
2475 /* step 2: get inode */
2476 key.objectid = backref->inum;
2477 key.type = BTRFS_INODE_ITEM_KEY;
2478 key.offset = 0;
2479
2480 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2481 if (IS_ERR(inode)) {
2482 srcu_read_unlock(&fs_info->subvol_srcu, index);
2483 return 0;
2484 }
2485
2486 srcu_read_unlock(&fs_info->subvol_srcu, index);
2487
2488 /* step 3: relink backref */
2489 lock_start = backref->file_pos;
2490 lock_end = backref->file_pos + backref->num_bytes - 1;
2491 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2492 &cached);
38c227d8
LB
2493
2494 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2495 if (ordered) {
2496 btrfs_put_ordered_extent(ordered);
2497 goto out_unlock;
2498 }
2499
2500 trans = btrfs_join_transaction(root);
2501 if (IS_ERR(trans)) {
2502 ret = PTR_ERR(trans);
2503 goto out_unlock;
2504 }
2505
2506 key.objectid = backref->inum;
2507 key.type = BTRFS_EXTENT_DATA_KEY;
2508 key.offset = backref->file_pos;
2509
2510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2511 if (ret < 0) {
2512 goto out_free_path;
2513 } else if (ret > 0) {
2514 ret = 0;
2515 goto out_free_path;
2516 }
2517
2518 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2519 struct btrfs_file_extent_item);
2520
2521 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2522 backref->generation)
2523 goto out_free_path;
2524
2525 btrfs_release_path(path);
2526
2527 start = backref->file_pos;
2528 if (backref->extent_offset < old->extent_offset + old->offset)
2529 start += old->extent_offset + old->offset -
2530 backref->extent_offset;
2531
2532 len = min(backref->extent_offset + backref->num_bytes,
2533 old->extent_offset + old->offset + old->len);
2534 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2535
2536 ret = btrfs_drop_extents(trans, root, inode, start,
2537 start + len, 1);
2538 if (ret)
2539 goto out_free_path;
2540again:
2541 key.objectid = btrfs_ino(inode);
2542 key.type = BTRFS_EXTENT_DATA_KEY;
2543 key.offset = start;
2544
a09a0a70 2545 path->leave_spinning = 1;
38c227d8
LB
2546 if (merge) {
2547 struct btrfs_file_extent_item *fi;
2548 u64 extent_len;
2549 struct btrfs_key found_key;
2550
3c9665df 2551 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2552 if (ret < 0)
2553 goto out_free_path;
2554
2555 path->slots[0]--;
2556 leaf = path->nodes[0];
2557 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2558
2559 fi = btrfs_item_ptr(leaf, path->slots[0],
2560 struct btrfs_file_extent_item);
2561 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2562
116e0024
LB
2563 if (extent_len + found_key.offset == start &&
2564 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2565 btrfs_set_file_extent_num_bytes(leaf, fi,
2566 extent_len + len);
2567 btrfs_mark_buffer_dirty(leaf);
2568 inode_add_bytes(inode, len);
2569
2570 ret = 1;
2571 goto out_free_path;
2572 } else {
2573 merge = false;
2574 btrfs_release_path(path);
2575 goto again;
2576 }
2577 }
2578
2579 ret = btrfs_insert_empty_item(trans, root, path, &key,
2580 sizeof(*extent));
2581 if (ret) {
2582 btrfs_abort_transaction(trans, root, ret);
2583 goto out_free_path;
2584 }
2585
2586 leaf = path->nodes[0];
2587 item = btrfs_item_ptr(leaf, path->slots[0],
2588 struct btrfs_file_extent_item);
2589 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2590 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2591 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2592 btrfs_set_file_extent_num_bytes(leaf, item, len);
2593 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2594 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2595 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2596 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2597 btrfs_set_file_extent_encryption(leaf, item, 0);
2598 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2599
2600 btrfs_mark_buffer_dirty(leaf);
2601 inode_add_bytes(inode, len);
a09a0a70 2602 btrfs_release_path(path);
38c227d8
LB
2603
2604 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2605 new->disk_len, 0,
2606 backref->root_id, backref->inum,
b06c4bf5 2607 new->file_pos); /* start - extent_offset */
38c227d8
LB
2608 if (ret) {
2609 btrfs_abort_transaction(trans, root, ret);
2610 goto out_free_path;
2611 }
2612
2613 ret = 1;
2614out_free_path:
2615 btrfs_release_path(path);
a09a0a70 2616 path->leave_spinning = 0;
38c227d8
LB
2617 btrfs_end_transaction(trans, root);
2618out_unlock:
2619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2620 &cached, GFP_NOFS);
2621 iput(inode);
2622 return ret;
2623}
2624
6f519564
LB
2625static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2626{
2627 struct old_sa_defrag_extent *old, *tmp;
2628
2629 if (!new)
2630 return;
2631
2632 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2633 kfree(old);
2634 }
2635 kfree(new);
2636}
2637
38c227d8
LB
2638static void relink_file_extents(struct new_sa_defrag_extent *new)
2639{
2640 struct btrfs_path *path;
38c227d8
LB
2641 struct sa_defrag_extent_backref *backref;
2642 struct sa_defrag_extent_backref *prev = NULL;
2643 struct inode *inode;
2644 struct btrfs_root *root;
2645 struct rb_node *node;
2646 int ret;
2647
2648 inode = new->inode;
2649 root = BTRFS_I(inode)->root;
2650
2651 path = btrfs_alloc_path();
2652 if (!path)
2653 return;
2654
2655 if (!record_extent_backrefs(path, new)) {
2656 btrfs_free_path(path);
2657 goto out;
2658 }
2659 btrfs_release_path(path);
2660
2661 while (1) {
2662 node = rb_first(&new->root);
2663 if (!node)
2664 break;
2665 rb_erase(node, &new->root);
2666
2667 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2668
2669 ret = relink_extent_backref(path, prev, backref);
2670 WARN_ON(ret < 0);
2671
2672 kfree(prev);
2673
2674 if (ret == 1)
2675 prev = backref;
2676 else
2677 prev = NULL;
2678 cond_resched();
2679 }
2680 kfree(prev);
2681
2682 btrfs_free_path(path);
38c227d8 2683out:
6f519564
LB
2684 free_sa_defrag_extent(new);
2685
38c227d8
LB
2686 atomic_dec(&root->fs_info->defrag_running);
2687 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2688}
2689
2690static struct new_sa_defrag_extent *
2691record_old_file_extents(struct inode *inode,
2692 struct btrfs_ordered_extent *ordered)
2693{
2694 struct btrfs_root *root = BTRFS_I(inode)->root;
2695 struct btrfs_path *path;
2696 struct btrfs_key key;
6f519564 2697 struct old_sa_defrag_extent *old;
38c227d8
LB
2698 struct new_sa_defrag_extent *new;
2699 int ret;
2700
2701 new = kmalloc(sizeof(*new), GFP_NOFS);
2702 if (!new)
2703 return NULL;
2704
2705 new->inode = inode;
2706 new->file_pos = ordered->file_offset;
2707 new->len = ordered->len;
2708 new->bytenr = ordered->start;
2709 new->disk_len = ordered->disk_len;
2710 new->compress_type = ordered->compress_type;
2711 new->root = RB_ROOT;
2712 INIT_LIST_HEAD(&new->head);
2713
2714 path = btrfs_alloc_path();
2715 if (!path)
2716 goto out_kfree;
2717
2718 key.objectid = btrfs_ino(inode);
2719 key.type = BTRFS_EXTENT_DATA_KEY;
2720 key.offset = new->file_pos;
2721
2722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2723 if (ret < 0)
2724 goto out_free_path;
2725 if (ret > 0 && path->slots[0] > 0)
2726 path->slots[0]--;
2727
2728 /* find out all the old extents for the file range */
2729 while (1) {
2730 struct btrfs_file_extent_item *extent;
2731 struct extent_buffer *l;
2732 int slot;
2733 u64 num_bytes;
2734 u64 offset;
2735 u64 end;
2736 u64 disk_bytenr;
2737 u64 extent_offset;
2738
2739 l = path->nodes[0];
2740 slot = path->slots[0];
2741
2742 if (slot >= btrfs_header_nritems(l)) {
2743 ret = btrfs_next_leaf(root, path);
2744 if (ret < 0)
6f519564 2745 goto out_free_path;
38c227d8
LB
2746 else if (ret > 0)
2747 break;
2748 continue;
2749 }
2750
2751 btrfs_item_key_to_cpu(l, &key, slot);
2752
2753 if (key.objectid != btrfs_ino(inode))
2754 break;
2755 if (key.type != BTRFS_EXTENT_DATA_KEY)
2756 break;
2757 if (key.offset >= new->file_pos + new->len)
2758 break;
2759
2760 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2761
2762 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2763 if (key.offset + num_bytes < new->file_pos)
2764 goto next;
2765
2766 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2767 if (!disk_bytenr)
2768 goto next;
2769
2770 extent_offset = btrfs_file_extent_offset(l, extent);
2771
2772 old = kmalloc(sizeof(*old), GFP_NOFS);
2773 if (!old)
6f519564 2774 goto out_free_path;
38c227d8
LB
2775
2776 offset = max(new->file_pos, key.offset);
2777 end = min(new->file_pos + new->len, key.offset + num_bytes);
2778
2779 old->bytenr = disk_bytenr;
2780 old->extent_offset = extent_offset;
2781 old->offset = offset - key.offset;
2782 old->len = end - offset;
2783 old->new = new;
2784 old->count = 0;
2785 list_add_tail(&old->list, &new->head);
2786next:
2787 path->slots[0]++;
2788 cond_resched();
2789 }
2790
2791 btrfs_free_path(path);
2792 atomic_inc(&root->fs_info->defrag_running);
2793
2794 return new;
2795
38c227d8
LB
2796out_free_path:
2797 btrfs_free_path(path);
2798out_kfree:
6f519564 2799 free_sa_defrag_extent(new);
38c227d8
LB
2800 return NULL;
2801}
2802
e570fd27
MX
2803static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2804 u64 start, u64 len)
2805{
2806 struct btrfs_block_group_cache *cache;
2807
2808 cache = btrfs_lookup_block_group(root->fs_info, start);
2809 ASSERT(cache);
2810
2811 spin_lock(&cache->lock);
2812 cache->delalloc_bytes -= len;
2813 spin_unlock(&cache->lock);
2814
2815 btrfs_put_block_group(cache);
2816}
2817
d352ac68
CM
2818/* as ordered data IO finishes, this gets called so we can finish
2819 * an ordered extent if the range of bytes in the file it covers are
2820 * fully written.
2821 */
5fd02043 2822static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2823{
5fd02043 2824 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2825 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2826 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2828 struct extent_state *cached_state = NULL;
38c227d8 2829 struct new_sa_defrag_extent *new = NULL;
261507a0 2830 int compress_type = 0;
77cef2ec
JB
2831 int ret = 0;
2832 u64 logical_len = ordered_extent->len;
82d5902d 2833 bool nolock;
77cef2ec 2834 bool truncated = false;
e6dcd2dc 2835
83eea1f1 2836 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2837
5fd02043
JB
2838 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2839 ret = -EIO;
2840 goto out;
2841 }
2842
f612496b
MX
2843 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2844 ordered_extent->file_offset +
2845 ordered_extent->len - 1);
2846
77cef2ec
JB
2847 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2848 truncated = true;
2849 logical_len = ordered_extent->truncated_len;
2850 /* Truncated the entire extent, don't bother adding */
2851 if (!logical_len)
2852 goto out;
2853 }
2854
c2167754 2855 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2856 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2857
2858 /*
2859 * For mwrite(mmap + memset to write) case, we still reserve
2860 * space for NOCOW range.
2861 * As NOCOW won't cause a new delayed ref, just free the space
2862 */
2863 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2864 ordered_extent->len);
6c760c07
JB
2865 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2866 if (nolock)
2867 trans = btrfs_join_transaction_nolock(root);
2868 else
2869 trans = btrfs_join_transaction(root);
2870 if (IS_ERR(trans)) {
2871 ret = PTR_ERR(trans);
2872 trans = NULL;
2873 goto out;
c2167754 2874 }
6c760c07
JB
2875 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2876 ret = btrfs_update_inode_fallback(trans, root, inode);
2877 if (ret) /* -ENOMEM or corruption */
2878 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2879 goto out;
2880 }
e6dcd2dc 2881
2ac55d41
JB
2882 lock_extent_bits(io_tree, ordered_extent->file_offset,
2883 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2884 &cached_state);
e6dcd2dc 2885
38c227d8
LB
2886 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2887 ordered_extent->file_offset + ordered_extent->len - 1,
2888 EXTENT_DEFRAG, 1, cached_state);
2889 if (ret) {
2890 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2891 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2892 /* the inode is shared */
2893 new = record_old_file_extents(inode, ordered_extent);
2894
2895 clear_extent_bit(io_tree, ordered_extent->file_offset,
2896 ordered_extent->file_offset + ordered_extent->len - 1,
2897 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2898 }
2899
0cb59c99 2900 if (nolock)
7a7eaa40 2901 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2902 else
7a7eaa40 2903 trans = btrfs_join_transaction(root);
79787eaa
JM
2904 if (IS_ERR(trans)) {
2905 ret = PTR_ERR(trans);
2906 trans = NULL;
2907 goto out_unlock;
2908 }
a79b7d4b 2909
0ca1f7ce 2910 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2911
c8b97818 2912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2913 compress_type = ordered_extent->compress_type;
d899e052 2914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2915 BUG_ON(compress_type);
920bbbfb 2916 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2917 ordered_extent->file_offset,
2918 ordered_extent->file_offset +
77cef2ec 2919 logical_len);
d899e052 2920 } else {
0af3d00b 2921 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2922 ret = insert_reserved_file_extent(trans, inode,
2923 ordered_extent->file_offset,
2924 ordered_extent->start,
2925 ordered_extent->disk_len,
77cef2ec 2926 logical_len, logical_len,
261507a0 2927 compress_type, 0, 0,
d899e052 2928 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2929 if (!ret)
2930 btrfs_release_delalloc_bytes(root,
2931 ordered_extent->start,
2932 ordered_extent->disk_len);
d899e052 2933 }
5dc562c5
JB
2934 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2935 ordered_extent->file_offset, ordered_extent->len,
2936 trans->transid);
79787eaa
JM
2937 if (ret < 0) {
2938 btrfs_abort_transaction(trans, root, ret);
5fd02043 2939 goto out_unlock;
79787eaa 2940 }
2ac55d41 2941
e6dcd2dc
CM
2942 add_pending_csums(trans, inode, ordered_extent->file_offset,
2943 &ordered_extent->list);
2944
6c760c07
JB
2945 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2946 ret = btrfs_update_inode_fallback(trans, root, inode);
2947 if (ret) { /* -ENOMEM or corruption */
2948 btrfs_abort_transaction(trans, root, ret);
2949 goto out_unlock;
1ef30be1
JB
2950 }
2951 ret = 0;
5fd02043
JB
2952out_unlock:
2953 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2954 ordered_extent->file_offset +
2955 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2956out:
5b0e95bf 2957 if (root != root->fs_info->tree_root)
0cb59c99 2958 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2959 if (trans)
2960 btrfs_end_transaction(trans, root);
0cb59c99 2961
77cef2ec
JB
2962 if (ret || truncated) {
2963 u64 start, end;
2964
2965 if (truncated)
2966 start = ordered_extent->file_offset + logical_len;
2967 else
2968 start = ordered_extent->file_offset;
2969 end = ordered_extent->file_offset + ordered_extent->len - 1;
2970 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2971
2972 /* Drop the cache for the part of the extent we didn't write. */
2973 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2974
0bec9ef5
JB
2975 /*
2976 * If the ordered extent had an IOERR or something else went
2977 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2978 * back to the allocator. We only free the extent in the
2979 * truncated case if we didn't write out the extent at all.
0bec9ef5 2980 */
77cef2ec
JB
2981 if ((ret || !logical_len) &&
2982 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2983 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2984 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2985 ordered_extent->disk_len, 1);
0bec9ef5
JB
2986 }
2987
2988
5fd02043 2989 /*
8bad3c02
LB
2990 * This needs to be done to make sure anybody waiting knows we are done
2991 * updating everything for this ordered extent.
5fd02043
JB
2992 */
2993 btrfs_remove_ordered_extent(inode, ordered_extent);
2994
38c227d8 2995 /* for snapshot-aware defrag */
6f519564
LB
2996 if (new) {
2997 if (ret) {
2998 free_sa_defrag_extent(new);
2999 atomic_dec(&root->fs_info->defrag_running);
3000 } else {
3001 relink_file_extents(new);
3002 }
3003 }
38c227d8 3004
e6dcd2dc
CM
3005 /* once for us */
3006 btrfs_put_ordered_extent(ordered_extent);
3007 /* once for the tree */
3008 btrfs_put_ordered_extent(ordered_extent);
3009
5fd02043
JB
3010 return ret;
3011}
3012
3013static void finish_ordered_fn(struct btrfs_work *work)
3014{
3015 struct btrfs_ordered_extent *ordered_extent;
3016 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3017 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3018}
3019
b2950863 3020static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3021 struct extent_state *state, int uptodate)
3022{
5fd02043
JB
3023 struct inode *inode = page->mapping->host;
3024 struct btrfs_root *root = BTRFS_I(inode)->root;
3025 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3026 struct btrfs_workqueue *wq;
3027 btrfs_work_func_t func;
5fd02043 3028
1abe9b8a 3029 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3030
8b62b72b 3031 ClearPagePrivate2(page);
5fd02043
JB
3032 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3033 end - start + 1, uptodate))
3034 return 0;
3035
9e0af237
LB
3036 if (btrfs_is_free_space_inode(inode)) {
3037 wq = root->fs_info->endio_freespace_worker;
3038 func = btrfs_freespace_write_helper;
3039 } else {
3040 wq = root->fs_info->endio_write_workers;
3041 func = btrfs_endio_write_helper;
3042 }
5fd02043 3043
9e0af237
LB
3044 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3045 NULL);
3046 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3047
3048 return 0;
211f90e6
CM
3049}
3050
dc380aea
MX
3051static int __readpage_endio_check(struct inode *inode,
3052 struct btrfs_io_bio *io_bio,
3053 int icsum, struct page *page,
3054 int pgoff, u64 start, size_t len)
3055{
3056 char *kaddr;
3057 u32 csum_expected;
3058 u32 csum = ~(u32)0;
dc380aea
MX
3059
3060 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3061
3062 kaddr = kmap_atomic(page);
3063 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3064 btrfs_csum_final(csum, (char *)&csum);
3065 if (csum != csum_expected)
3066 goto zeroit;
3067
3068 kunmap_atomic(kaddr);
3069 return 0;
3070zeroit:
94647322
DS
3071 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3072 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3073 btrfs_ino(inode), start, csum, csum_expected);
3074 memset(kaddr + pgoff, 1, len);
3075 flush_dcache_page(page);
3076 kunmap_atomic(kaddr);
3077 if (csum_expected == 0)
3078 return 0;
3079 return -EIO;
3080}
3081
d352ac68
CM
3082/*
3083 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3084 * if there's a match, we allow the bio to finish. If not, the code in
3085 * extent_io.c will try to find good copies for us.
d352ac68 3086 */
facc8a22
MX
3087static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3088 u64 phy_offset, struct page *page,
3089 u64 start, u64 end, int mirror)
07157aac 3090{
4eee4fa4 3091 size_t offset = start - page_offset(page);
07157aac 3092 struct inode *inode = page->mapping->host;
d1310b2e 3093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3094 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3095
d20f7043
CM
3096 if (PageChecked(page)) {
3097 ClearPageChecked(page);
dc380aea 3098 return 0;
d20f7043 3099 }
6cbff00f
CH
3100
3101 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3102 return 0;
17d217fe
YZ
3103
3104 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3105 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3106 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3107 GFP_NOFS);
b6cda9bc 3108 return 0;
17d217fe 3109 }
d20f7043 3110
facc8a22 3111 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3112 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3113 start, (size_t)(end - start + 1));
07157aac 3114}
b888db2b 3115
24bbcf04
YZ
3116void btrfs_add_delayed_iput(struct inode *inode)
3117{
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3119 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
24bbcf04 3124 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3125 if (binode->delayed_iput_count == 0) {
3126 ASSERT(list_empty(&binode->delayed_iput));
3127 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3128 } else {
3129 binode->delayed_iput_count++;
3130 }
24bbcf04
YZ
3131 spin_unlock(&fs_info->delayed_iput_lock);
3132}
3133
3134void btrfs_run_delayed_iputs(struct btrfs_root *root)
3135{
24bbcf04 3136 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3137
24bbcf04 3138 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3139 while (!list_empty(&fs_info->delayed_iputs)) {
3140 struct btrfs_inode *inode;
3141
3142 inode = list_first_entry(&fs_info->delayed_iputs,
3143 struct btrfs_inode, delayed_iput);
3144 if (inode->delayed_iput_count) {
3145 inode->delayed_iput_count--;
3146 list_move_tail(&inode->delayed_iput,
3147 &fs_info->delayed_iputs);
3148 } else {
3149 list_del_init(&inode->delayed_iput);
3150 }
3151 spin_unlock(&fs_info->delayed_iput_lock);
3152 iput(&inode->vfs_inode);
3153 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3154 }
8089fe62 3155 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3156}
3157
d68fc57b 3158/*
42b2aa86 3159 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3160 * files in the subvolume, it removes orphan item and frees block_rsv
3161 * structure.
3162 */
3163void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3164 struct btrfs_root *root)
3165{
90290e19 3166 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3167 int ret;
3168
8a35d95f 3169 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3170 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3171 return;
3172
90290e19 3173 spin_lock(&root->orphan_lock);
8a35d95f 3174 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3175 spin_unlock(&root->orphan_lock);
3176 return;
3177 }
3178
3179 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3180 spin_unlock(&root->orphan_lock);
3181 return;
3182 }
3183
3184 block_rsv = root->orphan_block_rsv;
3185 root->orphan_block_rsv = NULL;
3186 spin_unlock(&root->orphan_lock);
3187
27cdeb70 3188 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3189 btrfs_root_refs(&root->root_item) > 0) {
3190 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3191 root->root_key.objectid);
4ef31a45
JB
3192 if (ret)
3193 btrfs_abort_transaction(trans, root, ret);
3194 else
27cdeb70
MX
3195 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3196 &root->state);
d68fc57b
YZ
3197 }
3198
90290e19
JB
3199 if (block_rsv) {
3200 WARN_ON(block_rsv->size > 0);
3201 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3202 }
3203}
3204
7b128766
JB
3205/*
3206 * This creates an orphan entry for the given inode in case something goes
3207 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3208 *
3209 * NOTE: caller of this function should reserve 5 units of metadata for
3210 * this function.
7b128766
JB
3211 */
3212int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3213{
3214 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3215 struct btrfs_block_rsv *block_rsv = NULL;
3216 int reserve = 0;
3217 int insert = 0;
3218 int ret;
7b128766 3219
d68fc57b 3220 if (!root->orphan_block_rsv) {
66d8f3dd 3221 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3222 if (!block_rsv)
3223 return -ENOMEM;
d68fc57b 3224 }
7b128766 3225
d68fc57b
YZ
3226 spin_lock(&root->orphan_lock);
3227 if (!root->orphan_block_rsv) {
3228 root->orphan_block_rsv = block_rsv;
3229 } else if (block_rsv) {
3230 btrfs_free_block_rsv(root, block_rsv);
3231 block_rsv = NULL;
7b128766 3232 }
7b128766 3233
8a35d95f
JB
3234 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3235 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3236#if 0
3237 /*
3238 * For proper ENOSPC handling, we should do orphan
3239 * cleanup when mounting. But this introduces backward
3240 * compatibility issue.
3241 */
3242 if (!xchg(&root->orphan_item_inserted, 1))
3243 insert = 2;
3244 else
3245 insert = 1;
3246#endif
3247 insert = 1;
321f0e70 3248 atomic_inc(&root->orphan_inodes);
7b128766
JB
3249 }
3250
72ac3c0d
JB
3251 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3252 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3253 reserve = 1;
d68fc57b 3254 spin_unlock(&root->orphan_lock);
7b128766 3255
d68fc57b
YZ
3256 /* grab metadata reservation from transaction handle */
3257 if (reserve) {
3258 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3259 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3260 }
7b128766 3261
d68fc57b
YZ
3262 /* insert an orphan item to track this unlinked/truncated file */
3263 if (insert >= 1) {
33345d01 3264 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3265 if (ret) {
703c88e0 3266 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3267 if (reserve) {
3268 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3269 &BTRFS_I(inode)->runtime_flags);
3270 btrfs_orphan_release_metadata(inode);
3271 }
3272 if (ret != -EEXIST) {
e8e7cff6
JB
3273 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3274 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3275 btrfs_abort_transaction(trans, root, ret);
3276 return ret;
3277 }
79787eaa
JM
3278 }
3279 ret = 0;
d68fc57b
YZ
3280 }
3281
3282 /* insert an orphan item to track subvolume contains orphan files */
3283 if (insert >= 2) {
3284 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3285 root->root_key.objectid);
79787eaa
JM
3286 if (ret && ret != -EEXIST) {
3287 btrfs_abort_transaction(trans, root, ret);
3288 return ret;
3289 }
d68fc57b
YZ
3290 }
3291 return 0;
7b128766
JB
3292}
3293
3294/*
3295 * We have done the truncate/delete so we can go ahead and remove the orphan
3296 * item for this particular inode.
3297 */
48a3b636
ES
3298static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3299 struct inode *inode)
7b128766
JB
3300{
3301 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3302 int delete_item = 0;
3303 int release_rsv = 0;
7b128766
JB
3304 int ret = 0;
3305
d68fc57b 3306 spin_lock(&root->orphan_lock);
8a35d95f
JB
3307 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3308 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3309 delete_item = 1;
7b128766 3310
72ac3c0d
JB
3311 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3312 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3313 release_rsv = 1;
d68fc57b 3314 spin_unlock(&root->orphan_lock);
7b128766 3315
703c88e0 3316 if (delete_item) {
8a35d95f 3317 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3318 if (trans)
3319 ret = btrfs_del_orphan_item(trans, root,
3320 btrfs_ino(inode));
8a35d95f 3321 }
7b128766 3322
703c88e0
FDBM
3323 if (release_rsv)
3324 btrfs_orphan_release_metadata(inode);
3325
4ef31a45 3326 return ret;
7b128766
JB
3327}
3328
3329/*
3330 * this cleans up any orphans that may be left on the list from the last use
3331 * of this root.
3332 */
66b4ffd1 3333int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3334{
3335 struct btrfs_path *path;
3336 struct extent_buffer *leaf;
7b128766
JB
3337 struct btrfs_key key, found_key;
3338 struct btrfs_trans_handle *trans;
3339 struct inode *inode;
8f6d7f4f 3340 u64 last_objectid = 0;
7b128766
JB
3341 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3342
d68fc57b 3343 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3344 return 0;
c71bf099
YZ
3345
3346 path = btrfs_alloc_path();
66b4ffd1
JB
3347 if (!path) {
3348 ret = -ENOMEM;
3349 goto out;
3350 }
e4058b54 3351 path->reada = READA_BACK;
7b128766
JB
3352
3353 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3354 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3355 key.offset = (u64)-1;
3356
7b128766
JB
3357 while (1) {
3358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3359 if (ret < 0)
3360 goto out;
7b128766
JB
3361
3362 /*
3363 * if ret == 0 means we found what we were searching for, which
25985edc 3364 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3365 * find the key and see if we have stuff that matches
3366 */
3367 if (ret > 0) {
66b4ffd1 3368 ret = 0;
7b128766
JB
3369 if (path->slots[0] == 0)
3370 break;
3371 path->slots[0]--;
3372 }
3373
3374 /* pull out the item */
3375 leaf = path->nodes[0];
7b128766
JB
3376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3377
3378 /* make sure the item matches what we want */
3379 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3380 break;
962a298f 3381 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3382 break;
3383
3384 /* release the path since we're done with it */
b3b4aa74 3385 btrfs_release_path(path);
7b128766
JB
3386
3387 /*
3388 * this is where we are basically btrfs_lookup, without the
3389 * crossing root thing. we store the inode number in the
3390 * offset of the orphan item.
3391 */
8f6d7f4f
JB
3392
3393 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3394 btrfs_err(root->fs_info,
3395 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3396 ret = -EINVAL;
3397 goto out;
3398 }
3399
3400 last_objectid = found_key.offset;
3401
5d4f98a2
YZ
3402 found_key.objectid = found_key.offset;
3403 found_key.type = BTRFS_INODE_ITEM_KEY;
3404 found_key.offset = 0;
73f73415 3405 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3406 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3407 if (ret && ret != -ESTALE)
66b4ffd1 3408 goto out;
7b128766 3409
f8e9e0b0
AJ
3410 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3411 struct btrfs_root *dead_root;
3412 struct btrfs_fs_info *fs_info = root->fs_info;
3413 int is_dead_root = 0;
3414
3415 /*
3416 * this is an orphan in the tree root. Currently these
3417 * could come from 2 sources:
3418 * a) a snapshot deletion in progress
3419 * b) a free space cache inode
3420 * We need to distinguish those two, as the snapshot
3421 * orphan must not get deleted.
3422 * find_dead_roots already ran before us, so if this
3423 * is a snapshot deletion, we should find the root
3424 * in the dead_roots list
3425 */
3426 spin_lock(&fs_info->trans_lock);
3427 list_for_each_entry(dead_root, &fs_info->dead_roots,
3428 root_list) {
3429 if (dead_root->root_key.objectid ==
3430 found_key.objectid) {
3431 is_dead_root = 1;
3432 break;
3433 }
3434 }
3435 spin_unlock(&fs_info->trans_lock);
3436 if (is_dead_root) {
3437 /* prevent this orphan from being found again */
3438 key.offset = found_key.objectid - 1;
3439 continue;
3440 }
3441 }
7b128766 3442 /*
a8c9e576
JB
3443 * Inode is already gone but the orphan item is still there,
3444 * kill the orphan item.
7b128766 3445 */
a8c9e576
JB
3446 if (ret == -ESTALE) {
3447 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3448 if (IS_ERR(trans)) {
3449 ret = PTR_ERR(trans);
3450 goto out;
3451 }
c2cf52eb
SK
3452 btrfs_debug(root->fs_info, "auto deleting %Lu",
3453 found_key.objectid);
a8c9e576
JB
3454 ret = btrfs_del_orphan_item(trans, root,
3455 found_key.objectid);
5b21f2ed 3456 btrfs_end_transaction(trans, root);
4ef31a45
JB
3457 if (ret)
3458 goto out;
7b128766
JB
3459 continue;
3460 }
3461
a8c9e576
JB
3462 /*
3463 * add this inode to the orphan list so btrfs_orphan_del does
3464 * the proper thing when we hit it
3465 */
8a35d95f
JB
3466 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3467 &BTRFS_I(inode)->runtime_flags);
925396ec 3468 atomic_inc(&root->orphan_inodes);
a8c9e576 3469
7b128766
JB
3470 /* if we have links, this was a truncate, lets do that */
3471 if (inode->i_nlink) {
fae7f21c 3472 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3473 iput(inode);
3474 continue;
3475 }
7b128766 3476 nr_truncate++;
f3fe820c
JB
3477
3478 /* 1 for the orphan item deletion. */
3479 trans = btrfs_start_transaction(root, 1);
3480 if (IS_ERR(trans)) {
c69b26b0 3481 iput(inode);
f3fe820c
JB
3482 ret = PTR_ERR(trans);
3483 goto out;
3484 }
3485 ret = btrfs_orphan_add(trans, inode);
3486 btrfs_end_transaction(trans, root);
c69b26b0
JB
3487 if (ret) {
3488 iput(inode);
f3fe820c 3489 goto out;
c69b26b0 3490 }
f3fe820c 3491
66b4ffd1 3492 ret = btrfs_truncate(inode);
4a7d0f68
JB
3493 if (ret)
3494 btrfs_orphan_del(NULL, inode);
7b128766
JB
3495 } else {
3496 nr_unlink++;
3497 }
3498
3499 /* this will do delete_inode and everything for us */
3500 iput(inode);
66b4ffd1
JB
3501 if (ret)
3502 goto out;
7b128766 3503 }
3254c876
MX
3504 /* release the path since we're done with it */
3505 btrfs_release_path(path);
3506
d68fc57b
YZ
3507 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3508
3509 if (root->orphan_block_rsv)
3510 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3511 (u64)-1);
3512
27cdeb70
MX
3513 if (root->orphan_block_rsv ||
3514 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3515 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3516 if (!IS_ERR(trans))
3517 btrfs_end_transaction(trans, root);
d68fc57b 3518 }
7b128766
JB
3519
3520 if (nr_unlink)
4884b476 3521 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3522 if (nr_truncate)
4884b476 3523 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3524
3525out:
3526 if (ret)
68b663d1 3527 btrfs_err(root->fs_info,
c2cf52eb 3528 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3529 btrfs_free_path(path);
3530 return ret;
7b128766
JB
3531}
3532
46a53cca
CM
3533/*
3534 * very simple check to peek ahead in the leaf looking for xattrs. If we
3535 * don't find any xattrs, we know there can't be any acls.
3536 *
3537 * slot is the slot the inode is in, objectid is the objectid of the inode
3538 */
3539static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3540 int slot, u64 objectid,
3541 int *first_xattr_slot)
46a53cca
CM
3542{
3543 u32 nritems = btrfs_header_nritems(leaf);
3544 struct btrfs_key found_key;
f23b5a59
JB
3545 static u64 xattr_access = 0;
3546 static u64 xattr_default = 0;
46a53cca
CM
3547 int scanned = 0;
3548
f23b5a59 3549 if (!xattr_access) {
97d79299
AG
3550 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3551 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3552 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3553 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3554 }
3555
46a53cca 3556 slot++;
63541927 3557 *first_xattr_slot = -1;
46a53cca
CM
3558 while (slot < nritems) {
3559 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3560
3561 /* we found a different objectid, there must not be acls */
3562 if (found_key.objectid != objectid)
3563 return 0;
3564
3565 /* we found an xattr, assume we've got an acl */
f23b5a59 3566 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3567 if (*first_xattr_slot == -1)
3568 *first_xattr_slot = slot;
f23b5a59
JB
3569 if (found_key.offset == xattr_access ||
3570 found_key.offset == xattr_default)
3571 return 1;
3572 }
46a53cca
CM
3573
3574 /*
3575 * we found a key greater than an xattr key, there can't
3576 * be any acls later on
3577 */
3578 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3579 return 0;
3580
3581 slot++;
3582 scanned++;
3583
3584 /*
3585 * it goes inode, inode backrefs, xattrs, extents,
3586 * so if there are a ton of hard links to an inode there can
3587 * be a lot of backrefs. Don't waste time searching too hard,
3588 * this is just an optimization
3589 */
3590 if (scanned >= 8)
3591 break;
3592 }
3593 /* we hit the end of the leaf before we found an xattr or
3594 * something larger than an xattr. We have to assume the inode
3595 * has acls
3596 */
63541927
FDBM
3597 if (*first_xattr_slot == -1)
3598 *first_xattr_slot = slot;
46a53cca
CM
3599 return 1;
3600}
3601
d352ac68
CM
3602/*
3603 * read an inode from the btree into the in-memory inode
3604 */
5d4f98a2 3605static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3606{
3607 struct btrfs_path *path;
5f39d397 3608 struct extent_buffer *leaf;
39279cc3
CM
3609 struct btrfs_inode_item *inode_item;
3610 struct btrfs_root *root = BTRFS_I(inode)->root;
3611 struct btrfs_key location;
67de1176 3612 unsigned long ptr;
46a53cca 3613 int maybe_acls;
618e21d5 3614 u32 rdev;
39279cc3 3615 int ret;
2f7e33d4 3616 bool filled = false;
63541927 3617 int first_xattr_slot;
2f7e33d4
MX
3618
3619 ret = btrfs_fill_inode(inode, &rdev);
3620 if (!ret)
3621 filled = true;
39279cc3
CM
3622
3623 path = btrfs_alloc_path();
1748f843
MF
3624 if (!path)
3625 goto make_bad;
3626
39279cc3 3627 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3628
39279cc3 3629 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3630 if (ret)
39279cc3 3631 goto make_bad;
39279cc3 3632
5f39d397 3633 leaf = path->nodes[0];
2f7e33d4
MX
3634
3635 if (filled)
67de1176 3636 goto cache_index;
2f7e33d4 3637
5f39d397
CM
3638 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3639 struct btrfs_inode_item);
5f39d397 3640 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3641 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3642 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3643 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3644 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3645
a937b979
DS
3646 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3647 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3648
a937b979
DS
3649 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3650 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3651
a937b979
DS
3652 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3653 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3654
9cc97d64 3655 BTRFS_I(inode)->i_otime.tv_sec =
3656 btrfs_timespec_sec(leaf, &inode_item->otime);
3657 BTRFS_I(inode)->i_otime.tv_nsec =
3658 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3659
a76a3cd4 3660 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3661 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3662 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3663
6e17d30b
YD
3664 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3665 inode->i_generation = BTRFS_I(inode)->generation;
3666 inode->i_rdev = 0;
3667 rdev = btrfs_inode_rdev(leaf, inode_item);
3668
3669 BTRFS_I(inode)->index_cnt = (u64)-1;
3670 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3671
3672cache_index:
5dc562c5
JB
3673 /*
3674 * If we were modified in the current generation and evicted from memory
3675 * and then re-read we need to do a full sync since we don't have any
3676 * idea about which extents were modified before we were evicted from
3677 * cache.
6e17d30b
YD
3678 *
3679 * This is required for both inode re-read from disk and delayed inode
3680 * in delayed_nodes_tree.
5dc562c5
JB
3681 */
3682 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3683 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3684 &BTRFS_I(inode)->runtime_flags);
3685
bde6c242
FM
3686 /*
3687 * We don't persist the id of the transaction where an unlink operation
3688 * against the inode was last made. So here we assume the inode might
3689 * have been evicted, and therefore the exact value of last_unlink_trans
3690 * lost, and set it to last_trans to avoid metadata inconsistencies
3691 * between the inode and its parent if the inode is fsync'ed and the log
3692 * replayed. For example, in the scenario:
3693 *
3694 * touch mydir/foo
3695 * ln mydir/foo mydir/bar
3696 * sync
3697 * unlink mydir/bar
3698 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3699 * xfs_io -c fsync mydir/foo
3700 * <power failure>
3701 * mount fs, triggers fsync log replay
3702 *
3703 * We must make sure that when we fsync our inode foo we also log its
3704 * parent inode, otherwise after log replay the parent still has the
3705 * dentry with the "bar" name but our inode foo has a link count of 1
3706 * and doesn't have an inode ref with the name "bar" anymore.
3707 *
3708 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3709 * but it guarantees correctness at the expense of ocassional full
3710 * transaction commits on fsync if our inode is a directory, or if our
3711 * inode is not a directory, logging its parent unnecessarily.
3712 */
3713 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3714
67de1176
MX
3715 path->slots[0]++;
3716 if (inode->i_nlink != 1 ||
3717 path->slots[0] >= btrfs_header_nritems(leaf))
3718 goto cache_acl;
3719
3720 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3721 if (location.objectid != btrfs_ino(inode))
3722 goto cache_acl;
3723
3724 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3725 if (location.type == BTRFS_INODE_REF_KEY) {
3726 struct btrfs_inode_ref *ref;
3727
3728 ref = (struct btrfs_inode_ref *)ptr;
3729 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3730 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3731 struct btrfs_inode_extref *extref;
3732
3733 extref = (struct btrfs_inode_extref *)ptr;
3734 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3735 extref);
3736 }
2f7e33d4 3737cache_acl:
46a53cca
CM
3738 /*
3739 * try to precache a NULL acl entry for files that don't have
3740 * any xattrs or acls
3741 */
33345d01 3742 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3743 btrfs_ino(inode), &first_xattr_slot);
3744 if (first_xattr_slot != -1) {
3745 path->slots[0] = first_xattr_slot;
3746 ret = btrfs_load_inode_props(inode, path);
3747 if (ret)
3748 btrfs_err(root->fs_info,
351fd353 3749 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3750 btrfs_ino(inode),
3751 root->root_key.objectid, ret);
3752 }
3753 btrfs_free_path(path);
3754
72c04902
AV
3755 if (!maybe_acls)
3756 cache_no_acl(inode);
46a53cca 3757
39279cc3 3758 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3759 case S_IFREG:
3760 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3761 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3762 inode->i_fop = &btrfs_file_operations;
3763 inode->i_op = &btrfs_file_inode_operations;
3764 break;
3765 case S_IFDIR:
3766 inode->i_fop = &btrfs_dir_file_operations;
3767 if (root == root->fs_info->tree_root)
3768 inode->i_op = &btrfs_dir_ro_inode_operations;
3769 else
3770 inode->i_op = &btrfs_dir_inode_operations;
3771 break;
3772 case S_IFLNK:
3773 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3774 inode_nohighmem(inode);
39279cc3
CM
3775 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3776 break;
618e21d5 3777 default:
0279b4cd 3778 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3779 init_special_inode(inode, inode->i_mode, rdev);
3780 break;
39279cc3 3781 }
6cbff00f
CH
3782
3783 btrfs_update_iflags(inode);
39279cc3
CM
3784 return;
3785
3786make_bad:
39279cc3 3787 btrfs_free_path(path);
39279cc3
CM
3788 make_bad_inode(inode);
3789}
3790
d352ac68
CM
3791/*
3792 * given a leaf and an inode, copy the inode fields into the leaf
3793 */
e02119d5
CM
3794static void fill_inode_item(struct btrfs_trans_handle *trans,
3795 struct extent_buffer *leaf,
5f39d397 3796 struct btrfs_inode_item *item,
39279cc3
CM
3797 struct inode *inode)
3798{
51fab693
LB
3799 struct btrfs_map_token token;
3800
3801 btrfs_init_map_token(&token);
5f39d397 3802
51fab693
LB
3803 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3804 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3805 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3806 &token);
3807 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3808 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3809
a937b979 3810 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3811 inode->i_atime.tv_sec, &token);
a937b979 3812 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3813 inode->i_atime.tv_nsec, &token);
5f39d397 3814
a937b979 3815 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3816 inode->i_mtime.tv_sec, &token);
a937b979 3817 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3818 inode->i_mtime.tv_nsec, &token);
5f39d397 3819
a937b979 3820 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3821 inode->i_ctime.tv_sec, &token);
a937b979 3822 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3823 inode->i_ctime.tv_nsec, &token);
5f39d397 3824
9cc97d64 3825 btrfs_set_token_timespec_sec(leaf, &item->otime,
3826 BTRFS_I(inode)->i_otime.tv_sec, &token);
3827 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3828 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3829
51fab693
LB
3830 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3831 &token);
3832 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3833 &token);
3834 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3835 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3836 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3837 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3838 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3839}
3840
d352ac68
CM
3841/*
3842 * copy everything in the in-memory inode into the btree.
3843 */
2115133f 3844static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3845 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3846{
3847 struct btrfs_inode_item *inode_item;
3848 struct btrfs_path *path;
5f39d397 3849 struct extent_buffer *leaf;
39279cc3
CM
3850 int ret;
3851
3852 path = btrfs_alloc_path();
16cdcec7
MX
3853 if (!path)
3854 return -ENOMEM;
3855
b9473439 3856 path->leave_spinning = 1;
16cdcec7
MX
3857 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3858 1);
39279cc3
CM
3859 if (ret) {
3860 if (ret > 0)
3861 ret = -ENOENT;
3862 goto failed;
3863 }
3864
5f39d397
CM
3865 leaf = path->nodes[0];
3866 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3867 struct btrfs_inode_item);
39279cc3 3868
e02119d5 3869 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3870 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3871 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3872 ret = 0;
3873failed:
39279cc3
CM
3874 btrfs_free_path(path);
3875 return ret;
3876}
3877
2115133f
CM
3878/*
3879 * copy everything in the in-memory inode into the btree.
3880 */
3881noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root, struct inode *inode)
3883{
3884 int ret;
3885
3886 /*
3887 * If the inode is a free space inode, we can deadlock during commit
3888 * if we put it into the delayed code.
3889 *
3890 * The data relocation inode should also be directly updated
3891 * without delay
3892 */
83eea1f1 3893 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3894 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3895 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3896 btrfs_update_root_times(trans, root);
3897
2115133f
CM
3898 ret = btrfs_delayed_update_inode(trans, root, inode);
3899 if (!ret)
3900 btrfs_set_inode_last_trans(trans, inode);
3901 return ret;
3902 }
3903
3904 return btrfs_update_inode_item(trans, root, inode);
3905}
3906
be6aef60
JB
3907noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root,
3909 struct inode *inode)
2115133f
CM
3910{
3911 int ret;
3912
3913 ret = btrfs_update_inode(trans, root, inode);
3914 if (ret == -ENOSPC)
3915 return btrfs_update_inode_item(trans, root, inode);
3916 return ret;
3917}
3918
d352ac68
CM
3919/*
3920 * unlink helper that gets used here in inode.c and in the tree logging
3921 * recovery code. It remove a link in a directory with a given name, and
3922 * also drops the back refs in the inode to the directory
3923 */
92986796
AV
3924static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3925 struct btrfs_root *root,
3926 struct inode *dir, struct inode *inode,
3927 const char *name, int name_len)
39279cc3
CM
3928{
3929 struct btrfs_path *path;
39279cc3 3930 int ret = 0;
5f39d397 3931 struct extent_buffer *leaf;
39279cc3 3932 struct btrfs_dir_item *di;
5f39d397 3933 struct btrfs_key key;
aec7477b 3934 u64 index;
33345d01
LZ
3935 u64 ino = btrfs_ino(inode);
3936 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3937
3938 path = btrfs_alloc_path();
54aa1f4d
CM
3939 if (!path) {
3940 ret = -ENOMEM;
554233a6 3941 goto out;
54aa1f4d
CM
3942 }
3943
b9473439 3944 path->leave_spinning = 1;
33345d01 3945 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3946 name, name_len, -1);
3947 if (IS_ERR(di)) {
3948 ret = PTR_ERR(di);
3949 goto err;
3950 }
3951 if (!di) {
3952 ret = -ENOENT;
3953 goto err;
3954 }
5f39d397
CM
3955 leaf = path->nodes[0];
3956 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3958 if (ret)
3959 goto err;
b3b4aa74 3960 btrfs_release_path(path);
39279cc3 3961
67de1176
MX
3962 /*
3963 * If we don't have dir index, we have to get it by looking up
3964 * the inode ref, since we get the inode ref, remove it directly,
3965 * it is unnecessary to do delayed deletion.
3966 *
3967 * But if we have dir index, needn't search inode ref to get it.
3968 * Since the inode ref is close to the inode item, it is better
3969 * that we delay to delete it, and just do this deletion when
3970 * we update the inode item.
3971 */
3972 if (BTRFS_I(inode)->dir_index) {
3973 ret = btrfs_delayed_delete_inode_ref(inode);
3974 if (!ret) {
3975 index = BTRFS_I(inode)->dir_index;
3976 goto skip_backref;
3977 }
3978 }
3979
33345d01
LZ
3980 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3981 dir_ino, &index);
aec7477b 3982 if (ret) {
c2cf52eb
SK
3983 btrfs_info(root->fs_info,
3984 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3985 name_len, name, ino, dir_ino);
79787eaa 3986 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3987 goto err;
3988 }
67de1176 3989skip_backref:
16cdcec7 3990 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3991 if (ret) {
3992 btrfs_abort_transaction(trans, root, ret);
39279cc3 3993 goto err;
79787eaa 3994 }
39279cc3 3995
e02119d5 3996 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3997 inode, dir_ino);
79787eaa
JM
3998 if (ret != 0 && ret != -ENOENT) {
3999 btrfs_abort_transaction(trans, root, ret);
4000 goto err;
4001 }
e02119d5
CM
4002
4003 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4004 dir, index);
6418c961
CM
4005 if (ret == -ENOENT)
4006 ret = 0;
d4e3991b
ZB
4007 else if (ret)
4008 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4009err:
4010 btrfs_free_path(path);
e02119d5
CM
4011 if (ret)
4012 goto out;
4013
4014 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4015 inode_inc_iversion(inode);
4016 inode_inc_iversion(dir);
04b285f3
DD
4017 inode->i_ctime = dir->i_mtime =
4018 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4019 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4020out:
39279cc3
CM
4021 return ret;
4022}
4023
92986796
AV
4024int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4025 struct btrfs_root *root,
4026 struct inode *dir, struct inode *inode,
4027 const char *name, int name_len)
4028{
4029 int ret;
4030 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4031 if (!ret) {
8b558c5f 4032 drop_nlink(inode);
92986796
AV
4033 ret = btrfs_update_inode(trans, root, inode);
4034 }
4035 return ret;
4036}
39279cc3 4037
a22285a6
YZ
4038/*
4039 * helper to start transaction for unlink and rmdir.
4040 *
d52be818
JB
4041 * unlink and rmdir are special in btrfs, they do not always free space, so
4042 * if we cannot make our reservations the normal way try and see if there is
4043 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4044 * allow the unlink to occur.
a22285a6 4045 */
d52be818 4046static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4047{
a22285a6 4048 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4049
e70bea5f
JB
4050 /*
4051 * 1 for the possible orphan item
4052 * 1 for the dir item
4053 * 1 for the dir index
4054 * 1 for the inode ref
e70bea5f
JB
4055 * 1 for the inode
4056 */
8eab77ff 4057 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4058}
4059
4060static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4061{
4062 struct btrfs_root *root = BTRFS_I(dir)->root;
4063 struct btrfs_trans_handle *trans;
2b0143b5 4064 struct inode *inode = d_inode(dentry);
a22285a6 4065 int ret;
a22285a6 4066
d52be818 4067 trans = __unlink_start_trans(dir);
a22285a6
YZ
4068 if (IS_ERR(trans))
4069 return PTR_ERR(trans);
5f39d397 4070
2b0143b5 4071 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4072
2b0143b5 4073 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4074 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4075 if (ret)
4076 goto out;
7b128766 4077
a22285a6 4078 if (inode->i_nlink == 0) {
7b128766 4079 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4080 if (ret)
4081 goto out;
a22285a6 4082 }
7b128766 4083
b532402e 4084out:
d52be818 4085 btrfs_end_transaction(trans, root);
b53d3f5d 4086 btrfs_btree_balance_dirty(root);
39279cc3
CM
4087 return ret;
4088}
4089
4df27c4d
YZ
4090int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4091 struct btrfs_root *root,
4092 struct inode *dir, u64 objectid,
4093 const char *name, int name_len)
4094{
4095 struct btrfs_path *path;
4096 struct extent_buffer *leaf;
4097 struct btrfs_dir_item *di;
4098 struct btrfs_key key;
4099 u64 index;
4100 int ret;
33345d01 4101 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4102
4103 path = btrfs_alloc_path();
4104 if (!path)
4105 return -ENOMEM;
4106
33345d01 4107 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4108 name, name_len, -1);
79787eaa
JM
4109 if (IS_ERR_OR_NULL(di)) {
4110 if (!di)
4111 ret = -ENOENT;
4112 else
4113 ret = PTR_ERR(di);
4114 goto out;
4115 }
4df27c4d
YZ
4116
4117 leaf = path->nodes[0];
4118 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4119 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4120 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4121 if (ret) {
4122 btrfs_abort_transaction(trans, root, ret);
4123 goto out;
4124 }
b3b4aa74 4125 btrfs_release_path(path);
4df27c4d
YZ
4126
4127 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4128 objectid, root->root_key.objectid,
33345d01 4129 dir_ino, &index, name, name_len);
4df27c4d 4130 if (ret < 0) {
79787eaa
JM
4131 if (ret != -ENOENT) {
4132 btrfs_abort_transaction(trans, root, ret);
4133 goto out;
4134 }
33345d01 4135 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4136 name, name_len);
79787eaa
JM
4137 if (IS_ERR_OR_NULL(di)) {
4138 if (!di)
4139 ret = -ENOENT;
4140 else
4141 ret = PTR_ERR(di);
4142 btrfs_abort_transaction(trans, root, ret);
4143 goto out;
4144 }
4df27c4d
YZ
4145
4146 leaf = path->nodes[0];
4147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4148 btrfs_release_path(path);
4df27c4d
YZ
4149 index = key.offset;
4150 }
945d8962 4151 btrfs_release_path(path);
4df27c4d 4152
16cdcec7 4153 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4154 if (ret) {
4155 btrfs_abort_transaction(trans, root, ret);
4156 goto out;
4157 }
4df27c4d
YZ
4158
4159 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4160 inode_inc_iversion(dir);
04b285f3 4161 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4162 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4163 if (ret)
4164 btrfs_abort_transaction(trans, root, ret);
4165out:
71d7aed0 4166 btrfs_free_path(path);
79787eaa 4167 return ret;
4df27c4d
YZ
4168}
4169
39279cc3
CM
4170static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4171{
2b0143b5 4172 struct inode *inode = d_inode(dentry);
1832a6d5 4173 int err = 0;
39279cc3 4174 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4175 struct btrfs_trans_handle *trans;
39279cc3 4176
b3ae244e 4177 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4178 return -ENOTEMPTY;
b3ae244e
DS
4179 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4180 return -EPERM;
134d4512 4181
d52be818 4182 trans = __unlink_start_trans(dir);
a22285a6 4183 if (IS_ERR(trans))
5df6a9f6 4184 return PTR_ERR(trans);
5df6a9f6 4185
33345d01 4186 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4187 err = btrfs_unlink_subvol(trans, root, dir,
4188 BTRFS_I(inode)->location.objectid,
4189 dentry->d_name.name,
4190 dentry->d_name.len);
4191 goto out;
4192 }
4193
7b128766
JB
4194 err = btrfs_orphan_add(trans, inode);
4195 if (err)
4df27c4d 4196 goto out;
7b128766 4197
39279cc3 4198 /* now the directory is empty */
2b0143b5 4199 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4200 dentry->d_name.name, dentry->d_name.len);
d397712b 4201 if (!err)
dbe674a9 4202 btrfs_i_size_write(inode, 0);
4df27c4d 4203out:
d52be818 4204 btrfs_end_transaction(trans, root);
b53d3f5d 4205 btrfs_btree_balance_dirty(root);
3954401f 4206
39279cc3
CM
4207 return err;
4208}
4209
28f75a0e
CM
4210static int truncate_space_check(struct btrfs_trans_handle *trans,
4211 struct btrfs_root *root,
4212 u64 bytes_deleted)
4213{
4214 int ret;
4215
dc95f7bf
JB
4216 /*
4217 * This is only used to apply pressure to the enospc system, we don't
4218 * intend to use this reservation at all.
4219 */
28f75a0e 4220 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4221 bytes_deleted *= root->nodesize;
28f75a0e
CM
4222 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4223 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4224 if (!ret) {
4225 trace_btrfs_space_reservation(root->fs_info, "transaction",
4226 trans->transid,
4227 bytes_deleted, 1);
28f75a0e 4228 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4229 }
28f75a0e
CM
4230 return ret;
4231
4232}
4233
0305cd5f
FM
4234static int truncate_inline_extent(struct inode *inode,
4235 struct btrfs_path *path,
4236 struct btrfs_key *found_key,
4237 const u64 item_end,
4238 const u64 new_size)
4239{
4240 struct extent_buffer *leaf = path->nodes[0];
4241 int slot = path->slots[0];
4242 struct btrfs_file_extent_item *fi;
4243 u32 size = (u32)(new_size - found_key->offset);
4244 struct btrfs_root *root = BTRFS_I(inode)->root;
4245
4246 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4247
4248 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4249 loff_t offset = new_size;
09cbfeaf 4250 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4251
4252 /*
4253 * Zero out the remaining of the last page of our inline extent,
4254 * instead of directly truncating our inline extent here - that
4255 * would be much more complex (decompressing all the data, then
4256 * compressing the truncated data, which might be bigger than
4257 * the size of the inline extent, resize the extent, etc).
4258 * We release the path because to get the page we might need to
4259 * read the extent item from disk (data not in the page cache).
4260 */
4261 btrfs_release_path(path);
9703fefe
CR
4262 return btrfs_truncate_block(inode, offset, page_end - offset,
4263 0);
0305cd5f
FM
4264 }
4265
4266 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4267 size = btrfs_file_extent_calc_inline_size(size);
4268 btrfs_truncate_item(root, path, size, 1);
4269
4270 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4271 inode_sub_bytes(inode, item_end + 1 - new_size);
4272
4273 return 0;
4274}
4275
39279cc3
CM
4276/*
4277 * this can truncate away extent items, csum items and directory items.
4278 * It starts at a high offset and removes keys until it can't find
d352ac68 4279 * any higher than new_size
39279cc3
CM
4280 *
4281 * csum items that cross the new i_size are truncated to the new size
4282 * as well.
7b128766
JB
4283 *
4284 * min_type is the minimum key type to truncate down to. If set to 0, this
4285 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4286 */
8082510e
YZ
4287int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4288 struct btrfs_root *root,
4289 struct inode *inode,
4290 u64 new_size, u32 min_type)
39279cc3 4291{
39279cc3 4292 struct btrfs_path *path;
5f39d397 4293 struct extent_buffer *leaf;
39279cc3 4294 struct btrfs_file_extent_item *fi;
8082510e
YZ
4295 struct btrfs_key key;
4296 struct btrfs_key found_key;
39279cc3 4297 u64 extent_start = 0;
db94535d 4298 u64 extent_num_bytes = 0;
5d4f98a2 4299 u64 extent_offset = 0;
39279cc3 4300 u64 item_end = 0;
c1aa4575 4301 u64 last_size = new_size;
8082510e 4302 u32 found_type = (u8)-1;
39279cc3
CM
4303 int found_extent;
4304 int del_item;
85e21bac
CM
4305 int pending_del_nr = 0;
4306 int pending_del_slot = 0;
179e29e4 4307 int extent_type = -1;
8082510e
YZ
4308 int ret;
4309 int err = 0;
33345d01 4310 u64 ino = btrfs_ino(inode);
28ed1345 4311 u64 bytes_deleted = 0;
1262133b
JB
4312 bool be_nice = 0;
4313 bool should_throttle = 0;
28f75a0e 4314 bool should_end = 0;
8082510e
YZ
4315
4316 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4317
28ed1345
CM
4318 /*
4319 * for non-free space inodes and ref cows, we want to back off from
4320 * time to time
4321 */
4322 if (!btrfs_is_free_space_inode(inode) &&
4323 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4324 be_nice = 1;
4325
0eb0e19c
MF
4326 path = btrfs_alloc_path();
4327 if (!path)
4328 return -ENOMEM;
e4058b54 4329 path->reada = READA_BACK;
0eb0e19c 4330
5dc562c5
JB
4331 /*
4332 * We want to drop from the next block forward in case this new size is
4333 * not block aligned since we will be keeping the last block of the
4334 * extent just the way it is.
4335 */
27cdeb70
MX
4336 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4337 root == root->fs_info->tree_root)
fda2832f
QW
4338 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4339 root->sectorsize), (u64)-1, 0);
8082510e 4340
16cdcec7
MX
4341 /*
4342 * This function is also used to drop the items in the log tree before
4343 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4344 * it is used to drop the loged items. So we shouldn't kill the delayed
4345 * items.
4346 */
4347 if (min_type == 0 && root == BTRFS_I(inode)->root)
4348 btrfs_kill_delayed_inode_items(inode);
4349
33345d01 4350 key.objectid = ino;
39279cc3 4351 key.offset = (u64)-1;
5f39d397
CM
4352 key.type = (u8)-1;
4353
85e21bac 4354search_again:
28ed1345
CM
4355 /*
4356 * with a 16K leaf size and 128MB extents, you can actually queue
4357 * up a huge file in a single leaf. Most of the time that
4358 * bytes_deleted is > 0, it will be huge by the time we get here
4359 */
ee22184b 4360 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4361 if (btrfs_should_end_transaction(trans, root)) {
4362 err = -EAGAIN;
4363 goto error;
4364 }
4365 }
4366
4367
b9473439 4368 path->leave_spinning = 1;
85e21bac 4369 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4370 if (ret < 0) {
4371 err = ret;
4372 goto out;
4373 }
d397712b 4374
85e21bac 4375 if (ret > 0) {
e02119d5
CM
4376 /* there are no items in the tree for us to truncate, we're
4377 * done
4378 */
8082510e
YZ
4379 if (path->slots[0] == 0)
4380 goto out;
85e21bac
CM
4381 path->slots[0]--;
4382 }
4383
d397712b 4384 while (1) {
39279cc3 4385 fi = NULL;
5f39d397
CM
4386 leaf = path->nodes[0];
4387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4388 found_type = found_key.type;
39279cc3 4389
33345d01 4390 if (found_key.objectid != ino)
39279cc3 4391 break;
5f39d397 4392
85e21bac 4393 if (found_type < min_type)
39279cc3
CM
4394 break;
4395
5f39d397 4396 item_end = found_key.offset;
39279cc3 4397 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4398 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4399 struct btrfs_file_extent_item);
179e29e4
CM
4400 extent_type = btrfs_file_extent_type(leaf, fi);
4401 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4402 item_end +=
db94535d 4403 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4405 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4406 path->slots[0], fi);
39279cc3 4407 }
008630c1 4408 item_end--;
39279cc3 4409 }
8082510e
YZ
4410 if (found_type > min_type) {
4411 del_item = 1;
4412 } else {
4413 if (item_end < new_size)
b888db2b 4414 break;
8082510e
YZ
4415 if (found_key.offset >= new_size)
4416 del_item = 1;
4417 else
4418 del_item = 0;
39279cc3 4419 }
39279cc3 4420 found_extent = 0;
39279cc3 4421 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4422 if (found_type != BTRFS_EXTENT_DATA_KEY)
4423 goto delete;
4424
7f4f6e0a
JB
4425 if (del_item)
4426 last_size = found_key.offset;
4427 else
4428 last_size = new_size;
4429
179e29e4 4430 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4431 u64 num_dec;
db94535d 4432 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4433 if (!del_item) {
db94535d
CM
4434 u64 orig_num_bytes =
4435 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4436 extent_num_bytes = ALIGN(new_size -
4437 found_key.offset,
4438 root->sectorsize);
db94535d
CM
4439 btrfs_set_file_extent_num_bytes(leaf, fi,
4440 extent_num_bytes);
4441 num_dec = (orig_num_bytes -
9069218d 4442 extent_num_bytes);
27cdeb70
MX
4443 if (test_bit(BTRFS_ROOT_REF_COWS,
4444 &root->state) &&
4445 extent_start != 0)
a76a3cd4 4446 inode_sub_bytes(inode, num_dec);
5f39d397 4447 btrfs_mark_buffer_dirty(leaf);
39279cc3 4448 } else {
db94535d
CM
4449 extent_num_bytes =
4450 btrfs_file_extent_disk_num_bytes(leaf,
4451 fi);
5d4f98a2
YZ
4452 extent_offset = found_key.offset -
4453 btrfs_file_extent_offset(leaf, fi);
4454
39279cc3 4455 /* FIXME blocksize != 4096 */
9069218d 4456 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4457 if (extent_start != 0) {
4458 found_extent = 1;
27cdeb70
MX
4459 if (test_bit(BTRFS_ROOT_REF_COWS,
4460 &root->state))
a76a3cd4 4461 inode_sub_bytes(inode, num_dec);
e02119d5 4462 }
39279cc3 4463 }
9069218d 4464 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4465 /*
4466 * we can't truncate inline items that have had
4467 * special encodings
4468 */
4469 if (!del_item &&
c8b97818
CM
4470 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4471 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4472
4473 /*
0305cd5f
FM
4474 * Need to release path in order to truncate a
4475 * compressed extent. So delete any accumulated
4476 * extent items so far.
514ac8ad 4477 */
0305cd5f
FM
4478 if (btrfs_file_extent_compression(leaf, fi) !=
4479 BTRFS_COMPRESS_NONE && pending_del_nr) {
4480 err = btrfs_del_items(trans, root, path,
4481 pending_del_slot,
4482 pending_del_nr);
4483 if (err) {
4484 btrfs_abort_transaction(trans,
4485 root,
4486 err);
4487 goto error;
4488 }
4489 pending_del_nr = 0;
4490 }
4491
4492 err = truncate_inline_extent(inode, path,
4493 &found_key,
4494 item_end,
4495 new_size);
4496 if (err) {
4497 btrfs_abort_transaction(trans,
4498 root, err);
4499 goto error;
4500 }
27cdeb70
MX
4501 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4502 &root->state)) {
0305cd5f 4503 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4504 }
39279cc3 4505 }
179e29e4 4506delete:
39279cc3 4507 if (del_item) {
85e21bac
CM
4508 if (!pending_del_nr) {
4509 /* no pending yet, add ourselves */
4510 pending_del_slot = path->slots[0];
4511 pending_del_nr = 1;
4512 } else if (pending_del_nr &&
4513 path->slots[0] + 1 == pending_del_slot) {
4514 /* hop on the pending chunk */
4515 pending_del_nr++;
4516 pending_del_slot = path->slots[0];
4517 } else {
d397712b 4518 BUG();
85e21bac 4519 }
39279cc3
CM
4520 } else {
4521 break;
4522 }
28f75a0e
CM
4523 should_throttle = 0;
4524
27cdeb70
MX
4525 if (found_extent &&
4526 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4527 root == root->fs_info->tree_root)) {
b9473439 4528 btrfs_set_path_blocking(path);
28ed1345 4529 bytes_deleted += extent_num_bytes;
39279cc3 4530 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4531 extent_num_bytes, 0,
4532 btrfs_header_owner(leaf),
b06c4bf5 4533 ino, extent_offset);
39279cc3 4534 BUG_ON(ret);
1262133b 4535 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4536 btrfs_async_run_delayed_refs(root,
4537 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4538 if (be_nice) {
4539 if (truncate_space_check(trans, root,
4540 extent_num_bytes)) {
4541 should_end = 1;
4542 }
4543 if (btrfs_should_throttle_delayed_refs(trans,
4544 root)) {
4545 should_throttle = 1;
4546 }
4547 }
39279cc3 4548 }
85e21bac 4549
8082510e
YZ
4550 if (found_type == BTRFS_INODE_ITEM_KEY)
4551 break;
4552
4553 if (path->slots[0] == 0 ||
1262133b 4554 path->slots[0] != pending_del_slot ||
28f75a0e 4555 should_throttle || should_end) {
8082510e
YZ
4556 if (pending_del_nr) {
4557 ret = btrfs_del_items(trans, root, path,
4558 pending_del_slot,
4559 pending_del_nr);
79787eaa
JM
4560 if (ret) {
4561 btrfs_abort_transaction(trans,
4562 root, ret);
4563 goto error;
4564 }
8082510e
YZ
4565 pending_del_nr = 0;
4566 }
b3b4aa74 4567 btrfs_release_path(path);
28f75a0e 4568 if (should_throttle) {
1262133b
JB
4569 unsigned long updates = trans->delayed_ref_updates;
4570 if (updates) {
4571 trans->delayed_ref_updates = 0;
4572 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4573 if (ret && !err)
4574 err = ret;
4575 }
4576 }
28f75a0e
CM
4577 /*
4578 * if we failed to refill our space rsv, bail out
4579 * and let the transaction restart
4580 */
4581 if (should_end) {
4582 err = -EAGAIN;
4583 goto error;
4584 }
85e21bac 4585 goto search_again;
8082510e
YZ
4586 } else {
4587 path->slots[0]--;
85e21bac 4588 }
39279cc3 4589 }
8082510e 4590out:
85e21bac
CM
4591 if (pending_del_nr) {
4592 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4593 pending_del_nr);
79787eaa
JM
4594 if (ret)
4595 btrfs_abort_transaction(trans, root, ret);
85e21bac 4596 }
79787eaa 4597error:
c1aa4575 4598 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4599 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4600
39279cc3 4601 btrfs_free_path(path);
28ed1345 4602
ee22184b 4603 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4604 unsigned long updates = trans->delayed_ref_updates;
4605 if (updates) {
4606 trans->delayed_ref_updates = 0;
4607 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4608 if (ret && !err)
4609 err = ret;
4610 }
4611 }
8082510e 4612 return err;
39279cc3
CM
4613}
4614
4615/*
9703fefe 4616 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4617 * @inode - inode that we're zeroing
4618 * @from - the offset to start zeroing
4619 * @len - the length to zero, 0 to zero the entire range respective to the
4620 * offset
4621 * @front - zero up to the offset instead of from the offset on
4622 *
9703fefe 4623 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4624 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4625 */
9703fefe 4626int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4627 int front)
39279cc3 4628{
2aaa6655 4629 struct address_space *mapping = inode->i_mapping;
db94535d 4630 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4631 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4632 struct btrfs_ordered_extent *ordered;
2ac55d41 4633 struct extent_state *cached_state = NULL;
e6dcd2dc 4634 char *kaddr;
db94535d 4635 u32 blocksize = root->sectorsize;
09cbfeaf 4636 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4637 unsigned offset = from & (blocksize - 1);
39279cc3 4638 struct page *page;
3b16a4e3 4639 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4640 int ret = 0;
9703fefe
CR
4641 u64 block_start;
4642 u64 block_end;
39279cc3 4643
2aaa6655
JB
4644 if ((offset & (blocksize - 1)) == 0 &&
4645 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4646 goto out;
9703fefe 4647
7cf5b976 4648 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4649 round_down(from, blocksize), blocksize);
5d5e103a
JB
4650 if (ret)
4651 goto out;
39279cc3 4652
211c17f5 4653again:
3b16a4e3 4654 page = find_or_create_page(mapping, index, mask);
5d5e103a 4655 if (!page) {
7cf5b976 4656 btrfs_delalloc_release_space(inode,
9703fefe
CR
4657 round_down(from, blocksize),
4658 blocksize);
ac6a2b36 4659 ret = -ENOMEM;
39279cc3 4660 goto out;
5d5e103a 4661 }
e6dcd2dc 4662
9703fefe
CR
4663 block_start = round_down(from, blocksize);
4664 block_end = block_start + blocksize - 1;
e6dcd2dc 4665
39279cc3 4666 if (!PageUptodate(page)) {
9ebefb18 4667 ret = btrfs_readpage(NULL, page);
39279cc3 4668 lock_page(page);
211c17f5
CM
4669 if (page->mapping != mapping) {
4670 unlock_page(page);
09cbfeaf 4671 put_page(page);
211c17f5
CM
4672 goto again;
4673 }
39279cc3
CM
4674 if (!PageUptodate(page)) {
4675 ret = -EIO;
89642229 4676 goto out_unlock;
39279cc3
CM
4677 }
4678 }
211c17f5 4679 wait_on_page_writeback(page);
e6dcd2dc 4680
9703fefe 4681 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4682 set_page_extent_mapped(page);
4683
9703fefe 4684 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4685 if (ordered) {
9703fefe 4686 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4687 &cached_state, GFP_NOFS);
e6dcd2dc 4688 unlock_page(page);
09cbfeaf 4689 put_page(page);
eb84ae03 4690 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4691 btrfs_put_ordered_extent(ordered);
4692 goto again;
4693 }
4694
9703fefe 4695 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4696 EXTENT_DIRTY | EXTENT_DELALLOC |
4697 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4698 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4699
9703fefe 4700 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4701 &cached_state);
9ed74f2d 4702 if (ret) {
9703fefe 4703 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4704 &cached_state, GFP_NOFS);
9ed74f2d
JB
4705 goto out_unlock;
4706 }
4707
9703fefe 4708 if (offset != blocksize) {
2aaa6655 4709 if (!len)
9703fefe 4710 len = blocksize - offset;
e6dcd2dc 4711 kaddr = kmap(page);
2aaa6655 4712 if (front)
9703fefe
CR
4713 memset(kaddr + (block_start - page_offset(page)),
4714 0, offset);
2aaa6655 4715 else
9703fefe
CR
4716 memset(kaddr + (block_start - page_offset(page)) + offset,
4717 0, len);
e6dcd2dc
CM
4718 flush_dcache_page(page);
4719 kunmap(page);
4720 }
247e743c 4721 ClearPageChecked(page);
e6dcd2dc 4722 set_page_dirty(page);
9703fefe 4723 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4724 GFP_NOFS);
39279cc3 4725
89642229 4726out_unlock:
5d5e103a 4727 if (ret)
9703fefe
CR
4728 btrfs_delalloc_release_space(inode, block_start,
4729 blocksize);
39279cc3 4730 unlock_page(page);
09cbfeaf 4731 put_page(page);
39279cc3
CM
4732out:
4733 return ret;
4734}
4735
16e7549f
JB
4736static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4737 u64 offset, u64 len)
4738{
4739 struct btrfs_trans_handle *trans;
4740 int ret;
4741
4742 /*
4743 * Still need to make sure the inode looks like it's been updated so
4744 * that any holes get logged if we fsync.
4745 */
4746 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4747 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4748 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4749 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4750 return 0;
4751 }
4752
4753 /*
4754 * 1 - for the one we're dropping
4755 * 1 - for the one we're adding
4756 * 1 - for updating the inode.
4757 */
4758 trans = btrfs_start_transaction(root, 3);
4759 if (IS_ERR(trans))
4760 return PTR_ERR(trans);
4761
4762 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4763 if (ret) {
4764 btrfs_abort_transaction(trans, root, ret);
4765 btrfs_end_transaction(trans, root);
4766 return ret;
4767 }
4768
4769 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4770 0, 0, len, 0, len, 0, 0, 0);
4771 if (ret)
4772 btrfs_abort_transaction(trans, root, ret);
4773 else
4774 btrfs_update_inode(trans, root, inode);
4775 btrfs_end_transaction(trans, root);
4776 return ret;
4777}
4778
695a0d0d
JB
4779/*
4780 * This function puts in dummy file extents for the area we're creating a hole
4781 * for. So if we are truncating this file to a larger size we need to insert
4782 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4783 * the range between oldsize and size
4784 */
a41ad394 4785int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4786{
9036c102
YZ
4787 struct btrfs_root *root = BTRFS_I(inode)->root;
4788 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4789 struct extent_map *em = NULL;
2ac55d41 4790 struct extent_state *cached_state = NULL;
5dc562c5 4791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4792 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4793 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4794 u64 last_byte;
4795 u64 cur_offset;
4796 u64 hole_size;
9ed74f2d 4797 int err = 0;
39279cc3 4798
a71754fc 4799 /*
9703fefe
CR
4800 * If our size started in the middle of a block we need to zero out the
4801 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4802 * expose stale data.
4803 */
9703fefe 4804 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4805 if (err)
4806 return err;
4807
9036c102
YZ
4808 if (size <= hole_start)
4809 return 0;
4810
9036c102
YZ
4811 while (1) {
4812 struct btrfs_ordered_extent *ordered;
fa7c1494 4813
ff13db41 4814 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4815 &cached_state);
fa7c1494
MX
4816 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4817 block_end - hole_start);
9036c102
YZ
4818 if (!ordered)
4819 break;
2ac55d41
JB
4820 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4821 &cached_state, GFP_NOFS);
fa7c1494 4822 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4823 btrfs_put_ordered_extent(ordered);
4824 }
39279cc3 4825
9036c102
YZ
4826 cur_offset = hole_start;
4827 while (1) {
4828 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4829 block_end - cur_offset, 0);
79787eaa
JM
4830 if (IS_ERR(em)) {
4831 err = PTR_ERR(em);
f2767956 4832 em = NULL;
79787eaa
JM
4833 break;
4834 }
9036c102 4835 last_byte = min(extent_map_end(em), block_end);
fda2832f 4836 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4837 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4838 struct extent_map *hole_em;
9036c102 4839 hole_size = last_byte - cur_offset;
9ed74f2d 4840
16e7549f
JB
4841 err = maybe_insert_hole(root, inode, cur_offset,
4842 hole_size);
4843 if (err)
3893e33b 4844 break;
5dc562c5
JB
4845 btrfs_drop_extent_cache(inode, cur_offset,
4846 cur_offset + hole_size - 1, 0);
4847 hole_em = alloc_extent_map();
4848 if (!hole_em) {
4849 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4850 &BTRFS_I(inode)->runtime_flags);
4851 goto next;
4852 }
4853 hole_em->start = cur_offset;
4854 hole_em->len = hole_size;
4855 hole_em->orig_start = cur_offset;
8082510e 4856
5dc562c5
JB
4857 hole_em->block_start = EXTENT_MAP_HOLE;
4858 hole_em->block_len = 0;
b4939680 4859 hole_em->orig_block_len = 0;
cc95bef6 4860 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4861 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4862 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4863 hole_em->generation = root->fs_info->generation;
8082510e 4864
5dc562c5
JB
4865 while (1) {
4866 write_lock(&em_tree->lock);
09a2a8f9 4867 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4868 write_unlock(&em_tree->lock);
4869 if (err != -EEXIST)
4870 break;
4871 btrfs_drop_extent_cache(inode, cur_offset,
4872 cur_offset +
4873 hole_size - 1, 0);
4874 }
4875 free_extent_map(hole_em);
9036c102 4876 }
16e7549f 4877next:
9036c102 4878 free_extent_map(em);
a22285a6 4879 em = NULL;
9036c102 4880 cur_offset = last_byte;
8082510e 4881 if (cur_offset >= block_end)
9036c102
YZ
4882 break;
4883 }
a22285a6 4884 free_extent_map(em);
2ac55d41
JB
4885 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4886 GFP_NOFS);
9036c102
YZ
4887 return err;
4888}
39279cc3 4889
3972f260 4890static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4891{
f4a2f4c5
MX
4892 struct btrfs_root *root = BTRFS_I(inode)->root;
4893 struct btrfs_trans_handle *trans;
a41ad394 4894 loff_t oldsize = i_size_read(inode);
3972f260
ES
4895 loff_t newsize = attr->ia_size;
4896 int mask = attr->ia_valid;
8082510e
YZ
4897 int ret;
4898
3972f260
ES
4899 /*
4900 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4901 * special case where we need to update the times despite not having
4902 * these flags set. For all other operations the VFS set these flags
4903 * explicitly if it wants a timestamp update.
4904 */
dff6efc3
CH
4905 if (newsize != oldsize) {
4906 inode_inc_iversion(inode);
4907 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4908 inode->i_ctime = inode->i_mtime =
4909 current_fs_time(inode->i_sb);
4910 }
3972f260 4911
a41ad394 4912 if (newsize > oldsize) {
9ea24bbe
FM
4913 /*
4914 * Don't do an expanding truncate while snapshoting is ongoing.
4915 * This is to ensure the snapshot captures a fully consistent
4916 * state of this file - if the snapshot captures this expanding
4917 * truncation, it must capture all writes that happened before
4918 * this truncation.
4919 */
0bc19f90 4920 btrfs_wait_for_snapshot_creation(root);
a41ad394 4921 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4922 if (ret) {
4923 btrfs_end_write_no_snapshoting(root);
8082510e 4924 return ret;
9ea24bbe 4925 }
8082510e 4926
f4a2f4c5 4927 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4928 if (IS_ERR(trans)) {
4929 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4930 return PTR_ERR(trans);
9ea24bbe 4931 }
f4a2f4c5
MX
4932
4933 i_size_write(inode, newsize);
4934 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4935 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4936 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4937 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4938 btrfs_end_transaction(trans, root);
a41ad394 4939 } else {
8082510e 4940
a41ad394
JB
4941 /*
4942 * We're truncating a file that used to have good data down to
4943 * zero. Make sure it gets into the ordered flush list so that
4944 * any new writes get down to disk quickly.
4945 */
4946 if (newsize == 0)
72ac3c0d
JB
4947 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4948 &BTRFS_I(inode)->runtime_flags);
8082510e 4949
f3fe820c
JB
4950 /*
4951 * 1 for the orphan item we're going to add
4952 * 1 for the orphan item deletion.
4953 */
4954 trans = btrfs_start_transaction(root, 2);
4955 if (IS_ERR(trans))
4956 return PTR_ERR(trans);
4957
4958 /*
4959 * We need to do this in case we fail at _any_ point during the
4960 * actual truncate. Once we do the truncate_setsize we could
4961 * invalidate pages which forces any outstanding ordered io to
4962 * be instantly completed which will give us extents that need
4963 * to be truncated. If we fail to get an orphan inode down we
4964 * could have left over extents that were never meant to live,
4965 * so we need to garuntee from this point on that everything
4966 * will be consistent.
4967 */
4968 ret = btrfs_orphan_add(trans, inode);
4969 btrfs_end_transaction(trans, root);
4970 if (ret)
4971 return ret;
4972
a41ad394
JB
4973 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4974 truncate_setsize(inode, newsize);
2e60a51e
MX
4975
4976 /* Disable nonlocked read DIO to avoid the end less truncate */
4977 btrfs_inode_block_unlocked_dio(inode);
4978 inode_dio_wait(inode);
4979 btrfs_inode_resume_unlocked_dio(inode);
4980
a41ad394 4981 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4982 if (ret && inode->i_nlink) {
4983 int err;
4984
4985 /*
4986 * failed to truncate, disk_i_size is only adjusted down
4987 * as we remove extents, so it should represent the true
4988 * size of the inode, so reset the in memory size and
4989 * delete our orphan entry.
4990 */
4991 trans = btrfs_join_transaction(root);
4992 if (IS_ERR(trans)) {
4993 btrfs_orphan_del(NULL, inode);
4994 return ret;
4995 }
4996 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4997 err = btrfs_orphan_del(trans, inode);
4998 if (err)
4999 btrfs_abort_transaction(trans, root, err);
5000 btrfs_end_transaction(trans, root);
5001 }
8082510e
YZ
5002 }
5003
a41ad394 5004 return ret;
8082510e
YZ
5005}
5006
9036c102
YZ
5007static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5008{
2b0143b5 5009 struct inode *inode = d_inode(dentry);
b83cc969 5010 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5011 int err;
39279cc3 5012
b83cc969
LZ
5013 if (btrfs_root_readonly(root))
5014 return -EROFS;
5015
9036c102
YZ
5016 err = inode_change_ok(inode, attr);
5017 if (err)
5018 return err;
2bf5a725 5019
5a3f23d5 5020 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5021 err = btrfs_setsize(inode, attr);
8082510e
YZ
5022 if (err)
5023 return err;
39279cc3 5024 }
9036c102 5025
1025774c
CH
5026 if (attr->ia_valid) {
5027 setattr_copy(inode, attr);
0c4d2d95 5028 inode_inc_iversion(inode);
22c44fe6 5029 err = btrfs_dirty_inode(inode);
1025774c 5030
22c44fe6 5031 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5032 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5033 }
33268eaf 5034
39279cc3
CM
5035 return err;
5036}
61295eb8 5037
131e404a
FDBM
5038/*
5039 * While truncating the inode pages during eviction, we get the VFS calling
5040 * btrfs_invalidatepage() against each page of the inode. This is slow because
5041 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5042 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5043 * extent_state structures over and over, wasting lots of time.
5044 *
5045 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5046 * those expensive operations on a per page basis and do only the ordered io
5047 * finishing, while we release here the extent_map and extent_state structures,
5048 * without the excessive merging and splitting.
5049 */
5050static void evict_inode_truncate_pages(struct inode *inode)
5051{
5052 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5053 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5054 struct rb_node *node;
5055
5056 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5057 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5058
5059 write_lock(&map_tree->lock);
5060 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5061 struct extent_map *em;
5062
5063 node = rb_first(&map_tree->map);
5064 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5065 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5066 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5067 remove_extent_mapping(map_tree, em);
5068 free_extent_map(em);
7064dd5c
FM
5069 if (need_resched()) {
5070 write_unlock(&map_tree->lock);
5071 cond_resched();
5072 write_lock(&map_tree->lock);
5073 }
131e404a
FDBM
5074 }
5075 write_unlock(&map_tree->lock);
5076
6ca07097
FM
5077 /*
5078 * Keep looping until we have no more ranges in the io tree.
5079 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5080 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5081 * still in progress (unlocked the pages in the bio but did not yet
5082 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5083 * ranges can still be locked and eviction started because before
5084 * submitting those bios, which are executed by a separate task (work
5085 * queue kthread), inode references (inode->i_count) were not taken
5086 * (which would be dropped in the end io callback of each bio).
5087 * Therefore here we effectively end up waiting for those bios and
5088 * anyone else holding locked ranges without having bumped the inode's
5089 * reference count - if we don't do it, when they access the inode's
5090 * io_tree to unlock a range it may be too late, leading to an
5091 * use-after-free issue.
5092 */
131e404a
FDBM
5093 spin_lock(&io_tree->lock);
5094 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5095 struct extent_state *state;
5096 struct extent_state *cached_state = NULL;
6ca07097
FM
5097 u64 start;
5098 u64 end;
131e404a
FDBM
5099
5100 node = rb_first(&io_tree->state);
5101 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5102 start = state->start;
5103 end = state->end;
131e404a
FDBM
5104 spin_unlock(&io_tree->lock);
5105
ff13db41 5106 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5107
5108 /*
5109 * If still has DELALLOC flag, the extent didn't reach disk,
5110 * and its reserved space won't be freed by delayed_ref.
5111 * So we need to free its reserved space here.
5112 * (Refer to comment in btrfs_invalidatepage, case 2)
5113 *
5114 * Note, end is the bytenr of last byte, so we need + 1 here.
5115 */
5116 if (state->state & EXTENT_DELALLOC)
5117 btrfs_qgroup_free_data(inode, start, end - start + 1);
5118
6ca07097 5119 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5120 EXTENT_LOCKED | EXTENT_DIRTY |
5121 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5122 EXTENT_DEFRAG, 1, 1,
5123 &cached_state, GFP_NOFS);
131e404a 5124
7064dd5c 5125 cond_resched();
131e404a
FDBM
5126 spin_lock(&io_tree->lock);
5127 }
5128 spin_unlock(&io_tree->lock);
5129}
5130
bd555975 5131void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5132{
5133 struct btrfs_trans_handle *trans;
5134 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5135 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5136 int steal_from_global = 0;
07127184 5137 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5138 int ret;
5139
1abe9b8a 5140 trace_btrfs_inode_evict(inode);
5141
131e404a
FDBM
5142 evict_inode_truncate_pages(inode);
5143
69e9c6c6
SB
5144 if (inode->i_nlink &&
5145 ((btrfs_root_refs(&root->root_item) != 0 &&
5146 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5147 btrfs_is_free_space_inode(inode)))
bd555975
AV
5148 goto no_delete;
5149
39279cc3 5150 if (is_bad_inode(inode)) {
7b128766 5151 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5152 goto no_delete;
5153 }
bd555975 5154 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5155 if (!special_file(inode->i_mode))
5156 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5157
f612496b
MX
5158 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5159
c71bf099 5160 if (root->fs_info->log_root_recovering) {
6bf02314 5161 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5162 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5163 goto no_delete;
5164 }
5165
76dda93c 5166 if (inode->i_nlink > 0) {
69e9c6c6
SB
5167 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5168 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5169 goto no_delete;
5170 }
5171
0e8c36a9
MX
5172 ret = btrfs_commit_inode_delayed_inode(inode);
5173 if (ret) {
5174 btrfs_orphan_del(NULL, inode);
5175 goto no_delete;
5176 }
5177
66d8f3dd 5178 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5179 if (!rsv) {
5180 btrfs_orphan_del(NULL, inode);
5181 goto no_delete;
5182 }
4a338542 5183 rsv->size = min_size;
ca7e70f5 5184 rsv->failfast = 1;
726c35fa 5185 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5186
dbe674a9 5187 btrfs_i_size_write(inode, 0);
5f39d397 5188
4289a667 5189 /*
8407aa46
MX
5190 * This is a bit simpler than btrfs_truncate since we've already
5191 * reserved our space for our orphan item in the unlink, so we just
5192 * need to reserve some slack space in case we add bytes and update
5193 * inode item when doing the truncate.
4289a667 5194 */
8082510e 5195 while (1) {
08e007d2
MX
5196 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5197 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5198
5199 /*
5200 * Try and steal from the global reserve since we will
5201 * likely not use this space anyway, we want to try as
5202 * hard as possible to get this to work.
5203 */
5204 if (ret)
3bce876f
JB
5205 steal_from_global++;
5206 else
5207 steal_from_global = 0;
5208 ret = 0;
d68fc57b 5209
3bce876f
JB
5210 /*
5211 * steal_from_global == 0: we reserved stuff, hooray!
5212 * steal_from_global == 1: we didn't reserve stuff, boo!
5213 * steal_from_global == 2: we've committed, still not a lot of
5214 * room but maybe we'll have room in the global reserve this
5215 * time.
5216 * steal_from_global == 3: abandon all hope!
5217 */
5218 if (steal_from_global > 2) {
c2cf52eb
SK
5219 btrfs_warn(root->fs_info,
5220 "Could not get space for a delete, will truncate on mount %d",
5221 ret);
4289a667
JB
5222 btrfs_orphan_del(NULL, inode);
5223 btrfs_free_block_rsv(root, rsv);
5224 goto no_delete;
d68fc57b 5225 }
7b128766 5226
0e8c36a9 5227 trans = btrfs_join_transaction(root);
4289a667
JB
5228 if (IS_ERR(trans)) {
5229 btrfs_orphan_del(NULL, inode);
5230 btrfs_free_block_rsv(root, rsv);
5231 goto no_delete;
d68fc57b 5232 }
7b128766 5233
3bce876f
JB
5234 /*
5235 * We can't just steal from the global reserve, we need tomake
5236 * sure there is room to do it, if not we need to commit and try
5237 * again.
5238 */
5239 if (steal_from_global) {
5240 if (!btrfs_check_space_for_delayed_refs(trans, root))
5241 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5242 min_size);
5243 else
5244 ret = -ENOSPC;
5245 }
5246
5247 /*
5248 * Couldn't steal from the global reserve, we have too much
5249 * pending stuff built up, commit the transaction and try it
5250 * again.
5251 */
5252 if (ret) {
5253 ret = btrfs_commit_transaction(trans, root);
5254 if (ret) {
5255 btrfs_orphan_del(NULL, inode);
5256 btrfs_free_block_rsv(root, rsv);
5257 goto no_delete;
5258 }
5259 continue;
5260 } else {
5261 steal_from_global = 0;
5262 }
5263
4289a667
JB
5264 trans->block_rsv = rsv;
5265
d68fc57b 5266 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5267 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5268 break;
85e21bac 5269
8407aa46 5270 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5271 btrfs_end_transaction(trans, root);
5272 trans = NULL;
b53d3f5d 5273 btrfs_btree_balance_dirty(root);
8082510e 5274 }
5f39d397 5275
4289a667
JB
5276 btrfs_free_block_rsv(root, rsv);
5277
4ef31a45
JB
5278 /*
5279 * Errors here aren't a big deal, it just means we leave orphan items
5280 * in the tree. They will be cleaned up on the next mount.
5281 */
8082510e 5282 if (ret == 0) {
4289a667 5283 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5284 btrfs_orphan_del(trans, inode);
5285 } else {
5286 btrfs_orphan_del(NULL, inode);
8082510e 5287 }
54aa1f4d 5288
4289a667 5289 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5290 if (!(root == root->fs_info->tree_root ||
5291 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5292 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5293
54aa1f4d 5294 btrfs_end_transaction(trans, root);
b53d3f5d 5295 btrfs_btree_balance_dirty(root);
39279cc3 5296no_delete:
89042e5a 5297 btrfs_remove_delayed_node(inode);
dbd5768f 5298 clear_inode(inode);
39279cc3
CM
5299}
5300
5301/*
5302 * this returns the key found in the dir entry in the location pointer.
5303 * If no dir entries were found, location->objectid is 0.
5304 */
5305static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5306 struct btrfs_key *location)
5307{
5308 const char *name = dentry->d_name.name;
5309 int namelen = dentry->d_name.len;
5310 struct btrfs_dir_item *di;
5311 struct btrfs_path *path;
5312 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5313 int ret = 0;
39279cc3
CM
5314
5315 path = btrfs_alloc_path();
d8926bb3
MF
5316 if (!path)
5317 return -ENOMEM;
3954401f 5318
33345d01 5319 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5320 namelen, 0);
0d9f7f3e
Y
5321 if (IS_ERR(di))
5322 ret = PTR_ERR(di);
d397712b 5323
c704005d 5324 if (IS_ERR_OR_NULL(di))
3954401f 5325 goto out_err;
d397712b 5326
5f39d397 5327 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5328out:
39279cc3
CM
5329 btrfs_free_path(path);
5330 return ret;
3954401f
CM
5331out_err:
5332 location->objectid = 0;
5333 goto out;
39279cc3
CM
5334}
5335
5336/*
5337 * when we hit a tree root in a directory, the btrfs part of the inode
5338 * needs to be changed to reflect the root directory of the tree root. This
5339 * is kind of like crossing a mount point.
5340 */
5341static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5342 struct inode *dir,
5343 struct dentry *dentry,
5344 struct btrfs_key *location,
5345 struct btrfs_root **sub_root)
39279cc3 5346{
4df27c4d
YZ
5347 struct btrfs_path *path;
5348 struct btrfs_root *new_root;
5349 struct btrfs_root_ref *ref;
5350 struct extent_buffer *leaf;
1d4c08e0 5351 struct btrfs_key key;
4df27c4d
YZ
5352 int ret;
5353 int err = 0;
39279cc3 5354
4df27c4d
YZ
5355 path = btrfs_alloc_path();
5356 if (!path) {
5357 err = -ENOMEM;
5358 goto out;
5359 }
39279cc3 5360
4df27c4d 5361 err = -ENOENT;
1d4c08e0
DS
5362 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5363 key.type = BTRFS_ROOT_REF_KEY;
5364 key.offset = location->objectid;
5365
5366 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5367 0, 0);
4df27c4d
YZ
5368 if (ret) {
5369 if (ret < 0)
5370 err = ret;
5371 goto out;
5372 }
39279cc3 5373
4df27c4d
YZ
5374 leaf = path->nodes[0];
5375 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5376 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5377 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5378 goto out;
39279cc3 5379
4df27c4d
YZ
5380 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5381 (unsigned long)(ref + 1),
5382 dentry->d_name.len);
5383 if (ret)
5384 goto out;
5385
b3b4aa74 5386 btrfs_release_path(path);
4df27c4d
YZ
5387
5388 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5389 if (IS_ERR(new_root)) {
5390 err = PTR_ERR(new_root);
5391 goto out;
5392 }
5393
4df27c4d
YZ
5394 *sub_root = new_root;
5395 location->objectid = btrfs_root_dirid(&new_root->root_item);
5396 location->type = BTRFS_INODE_ITEM_KEY;
5397 location->offset = 0;
5398 err = 0;
5399out:
5400 btrfs_free_path(path);
5401 return err;
39279cc3
CM
5402}
5403
5d4f98a2
YZ
5404static void inode_tree_add(struct inode *inode)
5405{
5406 struct btrfs_root *root = BTRFS_I(inode)->root;
5407 struct btrfs_inode *entry;
03e860bd
FNP
5408 struct rb_node **p;
5409 struct rb_node *parent;
cef21937 5410 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5411 u64 ino = btrfs_ino(inode);
5d4f98a2 5412
1d3382cb 5413 if (inode_unhashed(inode))
76dda93c 5414 return;
e1409cef 5415 parent = NULL;
5d4f98a2 5416 spin_lock(&root->inode_lock);
e1409cef 5417 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5418 while (*p) {
5419 parent = *p;
5420 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5421
33345d01 5422 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5423 p = &parent->rb_left;
33345d01 5424 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5425 p = &parent->rb_right;
5d4f98a2
YZ
5426 else {
5427 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5428 (I_WILL_FREE | I_FREEING)));
cef21937 5429 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5430 RB_CLEAR_NODE(parent);
5431 spin_unlock(&root->inode_lock);
cef21937 5432 return;
5d4f98a2
YZ
5433 }
5434 }
cef21937
FDBM
5435 rb_link_node(new, parent, p);
5436 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5437 spin_unlock(&root->inode_lock);
5438}
5439
5440static void inode_tree_del(struct inode *inode)
5441{
5442 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5443 int empty = 0;
5d4f98a2 5444
03e860bd 5445 spin_lock(&root->inode_lock);
5d4f98a2 5446 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5447 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5448 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5449 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5450 }
03e860bd 5451 spin_unlock(&root->inode_lock);
76dda93c 5452
69e9c6c6 5453 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5454 synchronize_srcu(&root->fs_info->subvol_srcu);
5455 spin_lock(&root->inode_lock);
5456 empty = RB_EMPTY_ROOT(&root->inode_tree);
5457 spin_unlock(&root->inode_lock);
5458 if (empty)
5459 btrfs_add_dead_root(root);
5460 }
5461}
5462
143bede5 5463void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5464{
5465 struct rb_node *node;
5466 struct rb_node *prev;
5467 struct btrfs_inode *entry;
5468 struct inode *inode;
5469 u64 objectid = 0;
5470
7813b3db
LB
5471 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5472 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5473
5474 spin_lock(&root->inode_lock);
5475again:
5476 node = root->inode_tree.rb_node;
5477 prev = NULL;
5478 while (node) {
5479 prev = node;
5480 entry = rb_entry(node, struct btrfs_inode, rb_node);
5481
33345d01 5482 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5483 node = node->rb_left;
33345d01 5484 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5485 node = node->rb_right;
5486 else
5487 break;
5488 }
5489 if (!node) {
5490 while (prev) {
5491 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5492 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5493 node = prev;
5494 break;
5495 }
5496 prev = rb_next(prev);
5497 }
5498 }
5499 while (node) {
5500 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5501 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5502 inode = igrab(&entry->vfs_inode);
5503 if (inode) {
5504 spin_unlock(&root->inode_lock);
5505 if (atomic_read(&inode->i_count) > 1)
5506 d_prune_aliases(inode);
5507 /*
45321ac5 5508 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5509 * the inode cache when its usage count
5510 * hits zero.
5511 */
5512 iput(inode);
5513 cond_resched();
5514 spin_lock(&root->inode_lock);
5515 goto again;
5516 }
5517
5518 if (cond_resched_lock(&root->inode_lock))
5519 goto again;
5520
5521 node = rb_next(node);
5522 }
5523 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5524}
5525
e02119d5
CM
5526static int btrfs_init_locked_inode(struct inode *inode, void *p)
5527{
5528 struct btrfs_iget_args *args = p;
90d3e592
CM
5529 inode->i_ino = args->location->objectid;
5530 memcpy(&BTRFS_I(inode)->location, args->location,
5531 sizeof(*args->location));
e02119d5 5532 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5533 return 0;
5534}
5535
5536static int btrfs_find_actor(struct inode *inode, void *opaque)
5537{
5538 struct btrfs_iget_args *args = opaque;
90d3e592 5539 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5540 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5541}
5542
5d4f98a2 5543static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5544 struct btrfs_key *location,
5d4f98a2 5545 struct btrfs_root *root)
39279cc3
CM
5546{
5547 struct inode *inode;
5548 struct btrfs_iget_args args;
90d3e592 5549 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5550
90d3e592 5551 args.location = location;
39279cc3
CM
5552 args.root = root;
5553
778ba82b 5554 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5555 btrfs_init_locked_inode,
5556 (void *)&args);
5557 return inode;
5558}
5559
1a54ef8c
BR
5560/* Get an inode object given its location and corresponding root.
5561 * Returns in *is_new if the inode was read from disk
5562 */
5563struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5564 struct btrfs_root *root, int *new)
1a54ef8c
BR
5565{
5566 struct inode *inode;
5567
90d3e592 5568 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5569 if (!inode)
5d4f98a2 5570 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5571
5572 if (inode->i_state & I_NEW) {
1a54ef8c 5573 btrfs_read_locked_inode(inode);
1748f843
MF
5574 if (!is_bad_inode(inode)) {
5575 inode_tree_add(inode);
5576 unlock_new_inode(inode);
5577 if (new)
5578 *new = 1;
5579 } else {
e0b6d65b
ST
5580 unlock_new_inode(inode);
5581 iput(inode);
5582 inode = ERR_PTR(-ESTALE);
1748f843
MF
5583 }
5584 }
5585
1a54ef8c
BR
5586 return inode;
5587}
5588
4df27c4d
YZ
5589static struct inode *new_simple_dir(struct super_block *s,
5590 struct btrfs_key *key,
5591 struct btrfs_root *root)
5592{
5593 struct inode *inode = new_inode(s);
5594
5595 if (!inode)
5596 return ERR_PTR(-ENOMEM);
5597
4df27c4d
YZ
5598 BTRFS_I(inode)->root = root;
5599 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5600 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5601
5602 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5603 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5604 inode->i_fop = &simple_dir_operations;
5605 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5606 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5607 inode->i_atime = inode->i_mtime;
5608 inode->i_ctime = inode->i_mtime;
5609 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5610
5611 return inode;
5612}
5613
3de4586c 5614struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5615{
d397712b 5616 struct inode *inode;
4df27c4d 5617 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5618 struct btrfs_root *sub_root = root;
5619 struct btrfs_key location;
76dda93c 5620 int index;
b4aff1f8 5621 int ret = 0;
39279cc3
CM
5622
5623 if (dentry->d_name.len > BTRFS_NAME_LEN)
5624 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5625
39e3c955 5626 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5627 if (ret < 0)
5628 return ERR_PTR(ret);
5f39d397 5629
4df27c4d 5630 if (location.objectid == 0)
5662344b 5631 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5632
5633 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5634 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5635 return inode;
5636 }
5637
5638 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5639
76dda93c 5640 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5641 ret = fixup_tree_root_location(root, dir, dentry,
5642 &location, &sub_root);
5643 if (ret < 0) {
5644 if (ret != -ENOENT)
5645 inode = ERR_PTR(ret);
5646 else
5647 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5648 } else {
73f73415 5649 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5650 }
76dda93c
YZ
5651 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5652
34d19bad 5653 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5654 down_read(&root->fs_info->cleanup_work_sem);
5655 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5656 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5657 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5658 if (ret) {
5659 iput(inode);
66b4ffd1 5660 inode = ERR_PTR(ret);
01cd3367 5661 }
c71bf099
YZ
5662 }
5663
3de4586c
CM
5664 return inode;
5665}
5666
fe15ce44 5667static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5668{
5669 struct btrfs_root *root;
2b0143b5 5670 struct inode *inode = d_inode(dentry);
76dda93c 5671
848cce0d 5672 if (!inode && !IS_ROOT(dentry))
2b0143b5 5673 inode = d_inode(dentry->d_parent);
76dda93c 5674
848cce0d
LZ
5675 if (inode) {
5676 root = BTRFS_I(inode)->root;
efefb143
YZ
5677 if (btrfs_root_refs(&root->root_item) == 0)
5678 return 1;
848cce0d
LZ
5679
5680 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5681 return 1;
efefb143 5682 }
76dda93c
YZ
5683 return 0;
5684}
5685
b4aff1f8
JB
5686static void btrfs_dentry_release(struct dentry *dentry)
5687{
944a4515 5688 kfree(dentry->d_fsdata);
b4aff1f8
JB
5689}
5690
3de4586c 5691static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5692 unsigned int flags)
3de4586c 5693{
5662344b 5694 struct inode *inode;
a66e7cc6 5695
5662344b
TI
5696 inode = btrfs_lookup_dentry(dir, dentry);
5697 if (IS_ERR(inode)) {
5698 if (PTR_ERR(inode) == -ENOENT)
5699 inode = NULL;
5700 else
5701 return ERR_CAST(inode);
5702 }
5703
41d28bca 5704 return d_splice_alias(inode, dentry);
39279cc3
CM
5705}
5706
16cdcec7 5707unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5708 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5709};
5710
9cdda8d3 5711static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5712{
9cdda8d3 5713 struct inode *inode = file_inode(file);
39279cc3
CM
5714 struct btrfs_root *root = BTRFS_I(inode)->root;
5715 struct btrfs_item *item;
5716 struct btrfs_dir_item *di;
5717 struct btrfs_key key;
5f39d397 5718 struct btrfs_key found_key;
39279cc3 5719 struct btrfs_path *path;
16cdcec7
MX
5720 struct list_head ins_list;
5721 struct list_head del_list;
39279cc3 5722 int ret;
5f39d397 5723 struct extent_buffer *leaf;
39279cc3 5724 int slot;
39279cc3
CM
5725 unsigned char d_type;
5726 int over = 0;
5727 u32 di_cur;
5728 u32 di_total;
5729 u32 di_len;
5730 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5731 char tmp_name[32];
5732 char *name_ptr;
5733 int name_len;
9cdda8d3 5734 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5735 bool emitted;
39279cc3
CM
5736
5737 /* FIXME, use a real flag for deciding about the key type */
5738 if (root->fs_info->tree_root == root)
5739 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5740
9cdda8d3
AV
5741 if (!dir_emit_dots(file, ctx))
5742 return 0;
5743
49593bfa 5744 path = btrfs_alloc_path();
16cdcec7
MX
5745 if (!path)
5746 return -ENOMEM;
ff5714cc 5747
e4058b54 5748 path->reada = READA_FORWARD;
49593bfa 5749
16cdcec7
MX
5750 if (key_type == BTRFS_DIR_INDEX_KEY) {
5751 INIT_LIST_HEAD(&ins_list);
5752 INIT_LIST_HEAD(&del_list);
5753 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5754 }
5755
962a298f 5756 key.type = key_type;
9cdda8d3 5757 key.offset = ctx->pos;
33345d01 5758 key.objectid = btrfs_ino(inode);
5f39d397 5759
39279cc3
CM
5760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5761 if (ret < 0)
5762 goto err;
49593bfa 5763
bc4ef759 5764 emitted = false;
49593bfa 5765 while (1) {
5f39d397 5766 leaf = path->nodes[0];
39279cc3 5767 slot = path->slots[0];
b9e03af0
LZ
5768 if (slot >= btrfs_header_nritems(leaf)) {
5769 ret = btrfs_next_leaf(root, path);
5770 if (ret < 0)
5771 goto err;
5772 else if (ret > 0)
5773 break;
5774 continue;
39279cc3 5775 }
3de4586c 5776
dd3cc16b 5777 item = btrfs_item_nr(slot);
5f39d397
CM
5778 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5779
5780 if (found_key.objectid != key.objectid)
39279cc3 5781 break;
962a298f 5782 if (found_key.type != key_type)
39279cc3 5783 break;
9cdda8d3 5784 if (found_key.offset < ctx->pos)
b9e03af0 5785 goto next;
16cdcec7
MX
5786 if (key_type == BTRFS_DIR_INDEX_KEY &&
5787 btrfs_should_delete_dir_index(&del_list,
5788 found_key.offset))
5789 goto next;
5f39d397 5790
9cdda8d3 5791 ctx->pos = found_key.offset;
16cdcec7 5792 is_curr = 1;
49593bfa 5793
39279cc3
CM
5794 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5795 di_cur = 0;
5f39d397 5796 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5797
5798 while (di_cur < di_total) {
5f39d397
CM
5799 struct btrfs_key location;
5800
22a94d44
JB
5801 if (verify_dir_item(root, leaf, di))
5802 break;
5803
5f39d397 5804 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5805 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5806 name_ptr = tmp_name;
5807 } else {
49e350a4 5808 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5809 if (!name_ptr) {
5810 ret = -ENOMEM;
5811 goto err;
5812 }
5f39d397
CM
5813 }
5814 read_extent_buffer(leaf, name_ptr,
5815 (unsigned long)(di + 1), name_len);
5816
5817 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5818 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5819
fede766f 5820
3de4586c 5821 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5822 * skip it.
5823 *
5824 * In contrast to old kernels, we insert the snapshot's
5825 * dir item and dir index after it has been created, so
5826 * we won't find a reference to our own snapshot. We
5827 * still keep the following code for backward
5828 * compatibility.
3de4586c
CM
5829 */
5830 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5831 location.objectid == root->root_key.objectid) {
5832 over = 0;
5833 goto skip;
5834 }
9cdda8d3
AV
5835 over = !dir_emit(ctx, name_ptr, name_len,
5836 location.objectid, d_type);
5f39d397 5837
3de4586c 5838skip:
5f39d397
CM
5839 if (name_ptr != tmp_name)
5840 kfree(name_ptr);
5841
39279cc3
CM
5842 if (over)
5843 goto nopos;
bc4ef759 5844 emitted = true;
5103e947 5845 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5846 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5847 di_cur += di_len;
5848 di = (struct btrfs_dir_item *)((char *)di + di_len);
5849 }
b9e03af0
LZ
5850next:
5851 path->slots[0]++;
39279cc3 5852 }
49593bfa 5853
16cdcec7
MX
5854 if (key_type == BTRFS_DIR_INDEX_KEY) {
5855 if (is_curr)
9cdda8d3 5856 ctx->pos++;
bc4ef759 5857 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5858 if (ret)
5859 goto nopos;
5860 }
5861
bc4ef759
DS
5862 /*
5863 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5864 * it was was set to the termination value in previous call. We assume
5865 * that "." and ".." were emitted if we reach this point and set the
5866 * termination value as well for an empty directory.
5867 */
5868 if (ctx->pos > 2 && !emitted)
5869 goto nopos;
5870
49593bfa 5871 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5872 ctx->pos++;
5873
5874 /*
5875 * Stop new entries from being returned after we return the last
5876 * entry.
5877 *
5878 * New directory entries are assigned a strictly increasing
5879 * offset. This means that new entries created during readdir
5880 * are *guaranteed* to be seen in the future by that readdir.
5881 * This has broken buggy programs which operate on names as
5882 * they're returned by readdir. Until we re-use freed offsets
5883 * we have this hack to stop new entries from being returned
5884 * under the assumption that they'll never reach this huge
5885 * offset.
5886 *
5887 * This is being careful not to overflow 32bit loff_t unless the
5888 * last entry requires it because doing so has broken 32bit apps
5889 * in the past.
5890 */
5891 if (key_type == BTRFS_DIR_INDEX_KEY) {
5892 if (ctx->pos >= INT_MAX)
5893 ctx->pos = LLONG_MAX;
5894 else
5895 ctx->pos = INT_MAX;
5896 }
39279cc3
CM
5897nopos:
5898 ret = 0;
5899err:
16cdcec7
MX
5900 if (key_type == BTRFS_DIR_INDEX_KEY)
5901 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5902 btrfs_free_path(path);
39279cc3
CM
5903 return ret;
5904}
5905
a9185b41 5906int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5907{
5908 struct btrfs_root *root = BTRFS_I(inode)->root;
5909 struct btrfs_trans_handle *trans;
5910 int ret = 0;
0af3d00b 5911 bool nolock = false;
39279cc3 5912
72ac3c0d 5913 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5914 return 0;
5915
83eea1f1 5916 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5917 nolock = true;
0af3d00b 5918
a9185b41 5919 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5920 if (nolock)
7a7eaa40 5921 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5922 else
7a7eaa40 5923 trans = btrfs_join_transaction(root);
3612b495
TI
5924 if (IS_ERR(trans))
5925 return PTR_ERR(trans);
a698d075 5926 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5927 }
5928 return ret;
5929}
5930
5931/*
54aa1f4d 5932 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5933 * inode changes. But, it is most likely to find the inode in cache.
5934 * FIXME, needs more benchmarking...there are no reasons other than performance
5935 * to keep or drop this code.
5936 */
48a3b636 5937static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5938{
5939 struct btrfs_root *root = BTRFS_I(inode)->root;
5940 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5941 int ret;
5942
72ac3c0d 5943 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5944 return 0;
39279cc3 5945
7a7eaa40 5946 trans = btrfs_join_transaction(root);
22c44fe6
JB
5947 if (IS_ERR(trans))
5948 return PTR_ERR(trans);
8929ecfa
YZ
5949
5950 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5951 if (ret && ret == -ENOSPC) {
5952 /* whoops, lets try again with the full transaction */
5953 btrfs_end_transaction(trans, root);
5954 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5955 if (IS_ERR(trans))
5956 return PTR_ERR(trans);
8929ecfa 5957
94b60442 5958 ret = btrfs_update_inode(trans, root, inode);
94b60442 5959 }
39279cc3 5960 btrfs_end_transaction(trans, root);
16cdcec7
MX
5961 if (BTRFS_I(inode)->delayed_node)
5962 btrfs_balance_delayed_items(root);
22c44fe6
JB
5963
5964 return ret;
5965}
5966
5967/*
5968 * This is a copy of file_update_time. We need this so we can return error on
5969 * ENOSPC for updating the inode in the case of file write and mmap writes.
5970 */
e41f941a
JB
5971static int btrfs_update_time(struct inode *inode, struct timespec *now,
5972 int flags)
22c44fe6 5973{
2bc55652
AB
5974 struct btrfs_root *root = BTRFS_I(inode)->root;
5975
5976 if (btrfs_root_readonly(root))
5977 return -EROFS;
5978
e41f941a 5979 if (flags & S_VERSION)
22c44fe6 5980 inode_inc_iversion(inode);
e41f941a
JB
5981 if (flags & S_CTIME)
5982 inode->i_ctime = *now;
5983 if (flags & S_MTIME)
5984 inode->i_mtime = *now;
5985 if (flags & S_ATIME)
5986 inode->i_atime = *now;
5987 return btrfs_dirty_inode(inode);
39279cc3
CM
5988}
5989
d352ac68
CM
5990/*
5991 * find the highest existing sequence number in a directory
5992 * and then set the in-memory index_cnt variable to reflect
5993 * free sequence numbers
5994 */
aec7477b
JB
5995static int btrfs_set_inode_index_count(struct inode *inode)
5996{
5997 struct btrfs_root *root = BTRFS_I(inode)->root;
5998 struct btrfs_key key, found_key;
5999 struct btrfs_path *path;
6000 struct extent_buffer *leaf;
6001 int ret;
6002
33345d01 6003 key.objectid = btrfs_ino(inode);
962a298f 6004 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6005 key.offset = (u64)-1;
6006
6007 path = btrfs_alloc_path();
6008 if (!path)
6009 return -ENOMEM;
6010
6011 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6012 if (ret < 0)
6013 goto out;
6014 /* FIXME: we should be able to handle this */
6015 if (ret == 0)
6016 goto out;
6017 ret = 0;
6018
6019 /*
6020 * MAGIC NUMBER EXPLANATION:
6021 * since we search a directory based on f_pos we have to start at 2
6022 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6023 * else has to start at 2
6024 */
6025 if (path->slots[0] == 0) {
6026 BTRFS_I(inode)->index_cnt = 2;
6027 goto out;
6028 }
6029
6030 path->slots[0]--;
6031
6032 leaf = path->nodes[0];
6033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6034
33345d01 6035 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6036 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6037 BTRFS_I(inode)->index_cnt = 2;
6038 goto out;
6039 }
6040
6041 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6042out:
6043 btrfs_free_path(path);
6044 return ret;
6045}
6046
d352ac68
CM
6047/*
6048 * helper to find a free sequence number in a given directory. This current
6049 * code is very simple, later versions will do smarter things in the btree
6050 */
3de4586c 6051int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6052{
6053 int ret = 0;
6054
6055 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6056 ret = btrfs_inode_delayed_dir_index_count(dir);
6057 if (ret) {
6058 ret = btrfs_set_inode_index_count(dir);
6059 if (ret)
6060 return ret;
6061 }
aec7477b
JB
6062 }
6063
00e4e6b3 6064 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6065 BTRFS_I(dir)->index_cnt++;
6066
6067 return ret;
6068}
6069
b0d5d10f
CM
6070static int btrfs_insert_inode_locked(struct inode *inode)
6071{
6072 struct btrfs_iget_args args;
6073 args.location = &BTRFS_I(inode)->location;
6074 args.root = BTRFS_I(inode)->root;
6075
6076 return insert_inode_locked4(inode,
6077 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6078 btrfs_find_actor, &args);
6079}
6080
39279cc3
CM
6081static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6082 struct btrfs_root *root,
aec7477b 6083 struct inode *dir,
9c58309d 6084 const char *name, int name_len,
175a4eb7
AV
6085 u64 ref_objectid, u64 objectid,
6086 umode_t mode, u64 *index)
39279cc3
CM
6087{
6088 struct inode *inode;
5f39d397 6089 struct btrfs_inode_item *inode_item;
39279cc3 6090 struct btrfs_key *location;
5f39d397 6091 struct btrfs_path *path;
9c58309d
CM
6092 struct btrfs_inode_ref *ref;
6093 struct btrfs_key key[2];
6094 u32 sizes[2];
ef3b9af5 6095 int nitems = name ? 2 : 1;
9c58309d 6096 unsigned long ptr;
39279cc3 6097 int ret;
39279cc3 6098
5f39d397 6099 path = btrfs_alloc_path();
d8926bb3
MF
6100 if (!path)
6101 return ERR_PTR(-ENOMEM);
5f39d397 6102
39279cc3 6103 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6104 if (!inode) {
6105 btrfs_free_path(path);
39279cc3 6106 return ERR_PTR(-ENOMEM);
8fb27640 6107 }
39279cc3 6108
5762b5c9
FM
6109 /*
6110 * O_TMPFILE, set link count to 0, so that after this point,
6111 * we fill in an inode item with the correct link count.
6112 */
6113 if (!name)
6114 set_nlink(inode, 0);
6115
581bb050
LZ
6116 /*
6117 * we have to initialize this early, so we can reclaim the inode
6118 * number if we fail afterwards in this function.
6119 */
6120 inode->i_ino = objectid;
6121
ef3b9af5 6122 if (dir && name) {
1abe9b8a 6123 trace_btrfs_inode_request(dir);
6124
3de4586c 6125 ret = btrfs_set_inode_index(dir, index);
09771430 6126 if (ret) {
8fb27640 6127 btrfs_free_path(path);
09771430 6128 iput(inode);
aec7477b 6129 return ERR_PTR(ret);
09771430 6130 }
ef3b9af5
FM
6131 } else if (dir) {
6132 *index = 0;
aec7477b
JB
6133 }
6134 /*
6135 * index_cnt is ignored for everything but a dir,
6136 * btrfs_get_inode_index_count has an explanation for the magic
6137 * number
6138 */
6139 BTRFS_I(inode)->index_cnt = 2;
67de1176 6140 BTRFS_I(inode)->dir_index = *index;
39279cc3 6141 BTRFS_I(inode)->root = root;
e02119d5 6142 BTRFS_I(inode)->generation = trans->transid;
76195853 6143 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6144
5dc562c5
JB
6145 /*
6146 * We could have gotten an inode number from somebody who was fsynced
6147 * and then removed in this same transaction, so let's just set full
6148 * sync since it will be a full sync anyway and this will blow away the
6149 * old info in the log.
6150 */
6151 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6152
9c58309d 6153 key[0].objectid = objectid;
962a298f 6154 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6155 key[0].offset = 0;
6156
9c58309d 6157 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6158
6159 if (name) {
6160 /*
6161 * Start new inodes with an inode_ref. This is slightly more
6162 * efficient for small numbers of hard links since they will
6163 * be packed into one item. Extended refs will kick in if we
6164 * add more hard links than can fit in the ref item.
6165 */
6166 key[1].objectid = objectid;
962a298f 6167 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6168 key[1].offset = ref_objectid;
6169
6170 sizes[1] = name_len + sizeof(*ref);
6171 }
9c58309d 6172
b0d5d10f
CM
6173 location = &BTRFS_I(inode)->location;
6174 location->objectid = objectid;
6175 location->offset = 0;
962a298f 6176 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6177
6178 ret = btrfs_insert_inode_locked(inode);
6179 if (ret < 0)
6180 goto fail;
6181
b9473439 6182 path->leave_spinning = 1;
ef3b9af5 6183 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6184 if (ret != 0)
b0d5d10f 6185 goto fail_unlock;
5f39d397 6186
ecc11fab 6187 inode_init_owner(inode, dir, mode);
a76a3cd4 6188 inode_set_bytes(inode, 0);
9cc97d64 6189
04b285f3 6190 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6191 inode->i_atime = inode->i_mtime;
6192 inode->i_ctime = inode->i_mtime;
6193 BTRFS_I(inode)->i_otime = inode->i_mtime;
6194
5f39d397
CM
6195 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6196 struct btrfs_inode_item);
293f7e07
LZ
6197 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6198 sizeof(*inode_item));
e02119d5 6199 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6200
ef3b9af5
FM
6201 if (name) {
6202 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6203 struct btrfs_inode_ref);
6204 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6205 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6206 ptr = (unsigned long)(ref + 1);
6207 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6208 }
9c58309d 6209
5f39d397
CM
6210 btrfs_mark_buffer_dirty(path->nodes[0]);
6211 btrfs_free_path(path);
6212
6cbff00f
CH
6213 btrfs_inherit_iflags(inode, dir);
6214
569254b0 6215 if (S_ISREG(mode)) {
94272164
CM
6216 if (btrfs_test_opt(root, NODATASUM))
6217 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6218 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6219 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6220 BTRFS_INODE_NODATASUM;
94272164
CM
6221 }
6222
5d4f98a2 6223 inode_tree_add(inode);
1abe9b8a 6224
6225 trace_btrfs_inode_new(inode);
1973f0fa 6226 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6227
8ea05e3a
AB
6228 btrfs_update_root_times(trans, root);
6229
63541927
FDBM
6230 ret = btrfs_inode_inherit_props(trans, inode, dir);
6231 if (ret)
6232 btrfs_err(root->fs_info,
6233 "error inheriting props for ino %llu (root %llu): %d",
6234 btrfs_ino(inode), root->root_key.objectid, ret);
6235
39279cc3 6236 return inode;
b0d5d10f
CM
6237
6238fail_unlock:
6239 unlock_new_inode(inode);
5f39d397 6240fail:
ef3b9af5 6241 if (dir && name)
aec7477b 6242 BTRFS_I(dir)->index_cnt--;
5f39d397 6243 btrfs_free_path(path);
09771430 6244 iput(inode);
5f39d397 6245 return ERR_PTR(ret);
39279cc3
CM
6246}
6247
6248static inline u8 btrfs_inode_type(struct inode *inode)
6249{
6250 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6251}
6252
d352ac68
CM
6253/*
6254 * utility function to add 'inode' into 'parent_inode' with
6255 * a give name and a given sequence number.
6256 * if 'add_backref' is true, also insert a backref from the
6257 * inode to the parent directory.
6258 */
e02119d5
CM
6259int btrfs_add_link(struct btrfs_trans_handle *trans,
6260 struct inode *parent_inode, struct inode *inode,
6261 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6262{
4df27c4d 6263 int ret = 0;
39279cc3 6264 struct btrfs_key key;
e02119d5 6265 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6266 u64 ino = btrfs_ino(inode);
6267 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6268
33345d01 6269 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6270 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6271 } else {
33345d01 6272 key.objectid = ino;
962a298f 6273 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6274 key.offset = 0;
6275 }
6276
33345d01 6277 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6278 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6279 key.objectid, root->root_key.objectid,
33345d01 6280 parent_ino, index, name, name_len);
4df27c4d 6281 } else if (add_backref) {
33345d01
LZ
6282 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6283 parent_ino, index);
4df27c4d 6284 }
39279cc3 6285
79787eaa
JM
6286 /* Nothing to clean up yet */
6287 if (ret)
6288 return ret;
4df27c4d 6289
79787eaa
JM
6290 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6291 parent_inode, &key,
6292 btrfs_inode_type(inode), index);
9c52057c 6293 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6294 goto fail_dir_item;
6295 else if (ret) {
6296 btrfs_abort_transaction(trans, root, ret);
6297 return ret;
39279cc3 6298 }
79787eaa
JM
6299
6300 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6301 name_len * 2);
0c4d2d95 6302 inode_inc_iversion(parent_inode);
04b285f3
DD
6303 parent_inode->i_mtime = parent_inode->i_ctime =
6304 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6305 ret = btrfs_update_inode(trans, root, parent_inode);
6306 if (ret)
6307 btrfs_abort_transaction(trans, root, ret);
39279cc3 6308 return ret;
fe66a05a
CM
6309
6310fail_dir_item:
6311 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6312 u64 local_index;
6313 int err;
6314 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6315 key.objectid, root->root_key.objectid,
6316 parent_ino, &local_index, name, name_len);
6317
6318 } else if (add_backref) {
6319 u64 local_index;
6320 int err;
6321
6322 err = btrfs_del_inode_ref(trans, root, name, name_len,
6323 ino, parent_ino, &local_index);
6324 }
6325 return ret;
39279cc3
CM
6326}
6327
6328static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6329 struct inode *dir, struct dentry *dentry,
6330 struct inode *inode, int backref, u64 index)
39279cc3 6331{
a1b075d2
JB
6332 int err = btrfs_add_link(trans, dir, inode,
6333 dentry->d_name.name, dentry->d_name.len,
6334 backref, index);
39279cc3
CM
6335 if (err > 0)
6336 err = -EEXIST;
6337 return err;
6338}
6339
618e21d5 6340static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6341 umode_t mode, dev_t rdev)
618e21d5
JB
6342{
6343 struct btrfs_trans_handle *trans;
6344 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6345 struct inode *inode = NULL;
618e21d5
JB
6346 int err;
6347 int drop_inode = 0;
6348 u64 objectid;
00e4e6b3 6349 u64 index = 0;
618e21d5 6350
9ed74f2d
JB
6351 /*
6352 * 2 for inode item and ref
6353 * 2 for dir items
6354 * 1 for xattr if selinux is on
6355 */
a22285a6
YZ
6356 trans = btrfs_start_transaction(root, 5);
6357 if (IS_ERR(trans))
6358 return PTR_ERR(trans);
1832a6d5 6359
581bb050
LZ
6360 err = btrfs_find_free_ino(root, &objectid);
6361 if (err)
6362 goto out_unlock;
6363
aec7477b 6364 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6365 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6366 mode, &index);
7cf96da3
TI
6367 if (IS_ERR(inode)) {
6368 err = PTR_ERR(inode);
618e21d5 6369 goto out_unlock;
7cf96da3 6370 }
618e21d5 6371
ad19db71
CS
6372 /*
6373 * If the active LSM wants to access the inode during
6374 * d_instantiate it needs these. Smack checks to see
6375 * if the filesystem supports xattrs by looking at the
6376 * ops vector.
6377 */
ad19db71 6378 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6379 init_special_inode(inode, inode->i_mode, rdev);
6380
6381 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6382 if (err)
b0d5d10f
CM
6383 goto out_unlock_inode;
6384
6385 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6386 if (err) {
6387 goto out_unlock_inode;
6388 } else {
1b4ab1bb 6389 btrfs_update_inode(trans, root, inode);
b0d5d10f 6390 unlock_new_inode(inode);
08c422c2 6391 d_instantiate(dentry, inode);
618e21d5 6392 }
b0d5d10f 6393
618e21d5 6394out_unlock:
7ad85bb7 6395 btrfs_end_transaction(trans, root);
c581afc8 6396 btrfs_balance_delayed_items(root);
b53d3f5d 6397 btrfs_btree_balance_dirty(root);
618e21d5
JB
6398 if (drop_inode) {
6399 inode_dec_link_count(inode);
6400 iput(inode);
6401 }
618e21d5 6402 return err;
b0d5d10f
CM
6403
6404out_unlock_inode:
6405 drop_inode = 1;
6406 unlock_new_inode(inode);
6407 goto out_unlock;
6408
618e21d5
JB
6409}
6410
39279cc3 6411static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6412 umode_t mode, bool excl)
39279cc3
CM
6413{
6414 struct btrfs_trans_handle *trans;
6415 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6416 struct inode *inode = NULL;
43baa579 6417 int drop_inode_on_err = 0;
a22285a6 6418 int err;
39279cc3 6419 u64 objectid;
00e4e6b3 6420 u64 index = 0;
39279cc3 6421
9ed74f2d
JB
6422 /*
6423 * 2 for inode item and ref
6424 * 2 for dir items
6425 * 1 for xattr if selinux is on
6426 */
a22285a6
YZ
6427 trans = btrfs_start_transaction(root, 5);
6428 if (IS_ERR(trans))
6429 return PTR_ERR(trans);
9ed74f2d 6430
581bb050
LZ
6431 err = btrfs_find_free_ino(root, &objectid);
6432 if (err)
6433 goto out_unlock;
6434
aec7477b 6435 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6436 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6437 mode, &index);
7cf96da3
TI
6438 if (IS_ERR(inode)) {
6439 err = PTR_ERR(inode);
39279cc3 6440 goto out_unlock;
7cf96da3 6441 }
43baa579 6442 drop_inode_on_err = 1;
ad19db71
CS
6443 /*
6444 * If the active LSM wants to access the inode during
6445 * d_instantiate it needs these. Smack checks to see
6446 * if the filesystem supports xattrs by looking at the
6447 * ops vector.
6448 */
6449 inode->i_fop = &btrfs_file_operations;
6450 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6451 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6452
6453 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6454 if (err)
6455 goto out_unlock_inode;
6456
6457 err = btrfs_update_inode(trans, root, inode);
6458 if (err)
6459 goto out_unlock_inode;
ad19db71 6460
a1b075d2 6461 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6462 if (err)
b0d5d10f 6463 goto out_unlock_inode;
43baa579 6464
43baa579 6465 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6466 unlock_new_inode(inode);
43baa579
FB
6467 d_instantiate(dentry, inode);
6468
39279cc3 6469out_unlock:
7ad85bb7 6470 btrfs_end_transaction(trans, root);
43baa579 6471 if (err && drop_inode_on_err) {
39279cc3
CM
6472 inode_dec_link_count(inode);
6473 iput(inode);
6474 }
c581afc8 6475 btrfs_balance_delayed_items(root);
b53d3f5d 6476 btrfs_btree_balance_dirty(root);
39279cc3 6477 return err;
b0d5d10f
CM
6478
6479out_unlock_inode:
6480 unlock_new_inode(inode);
6481 goto out_unlock;
6482
39279cc3
CM
6483}
6484
6485static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6486 struct dentry *dentry)
6487{
271dba45 6488 struct btrfs_trans_handle *trans = NULL;
39279cc3 6489 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6490 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6491 u64 index;
39279cc3
CM
6492 int err;
6493 int drop_inode = 0;
6494
4a8be425
TH
6495 /* do not allow sys_link's with other subvols of the same device */
6496 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6497 return -EXDEV;
4a8be425 6498
f186373f 6499 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6500 return -EMLINK;
4a8be425 6501
3de4586c 6502 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6503 if (err)
6504 goto fail;
6505
a22285a6 6506 /*
7e6b6465 6507 * 2 items for inode and inode ref
a22285a6 6508 * 2 items for dir items
7e6b6465 6509 * 1 item for parent inode
a22285a6 6510 */
7e6b6465 6511 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6512 if (IS_ERR(trans)) {
6513 err = PTR_ERR(trans);
271dba45 6514 trans = NULL;
a22285a6
YZ
6515 goto fail;
6516 }
5f39d397 6517
67de1176
MX
6518 /* There are several dir indexes for this inode, clear the cache. */
6519 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6520 inc_nlink(inode);
0c4d2d95 6521 inode_inc_iversion(inode);
04b285f3 6522 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6523 ihold(inode);
e9976151 6524 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6525
a1b075d2 6526 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6527
a5719521 6528 if (err) {
54aa1f4d 6529 drop_inode = 1;
a5719521 6530 } else {
10d9f309 6531 struct dentry *parent = dentry->d_parent;
a5719521 6532 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6533 if (err)
6534 goto fail;
ef3b9af5
FM
6535 if (inode->i_nlink == 1) {
6536 /*
6537 * If new hard link count is 1, it's a file created
6538 * with open(2) O_TMPFILE flag.
6539 */
6540 err = btrfs_orphan_del(trans, inode);
6541 if (err)
6542 goto fail;
6543 }
08c422c2 6544 d_instantiate(dentry, inode);
6a912213 6545 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6546 }
39279cc3 6547
c581afc8 6548 btrfs_balance_delayed_items(root);
1832a6d5 6549fail:
271dba45
FM
6550 if (trans)
6551 btrfs_end_transaction(trans, root);
39279cc3
CM
6552 if (drop_inode) {
6553 inode_dec_link_count(inode);
6554 iput(inode);
6555 }
b53d3f5d 6556 btrfs_btree_balance_dirty(root);
39279cc3
CM
6557 return err;
6558}
6559
18bb1db3 6560static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6561{
b9d86667 6562 struct inode *inode = NULL;
39279cc3
CM
6563 struct btrfs_trans_handle *trans;
6564 struct btrfs_root *root = BTRFS_I(dir)->root;
6565 int err = 0;
6566 int drop_on_err = 0;
b9d86667 6567 u64 objectid = 0;
00e4e6b3 6568 u64 index = 0;
39279cc3 6569
9ed74f2d
JB
6570 /*
6571 * 2 items for inode and ref
6572 * 2 items for dir items
6573 * 1 for xattr if selinux is on
6574 */
a22285a6
YZ
6575 trans = btrfs_start_transaction(root, 5);
6576 if (IS_ERR(trans))
6577 return PTR_ERR(trans);
39279cc3 6578
581bb050
LZ
6579 err = btrfs_find_free_ino(root, &objectid);
6580 if (err)
6581 goto out_fail;
6582
aec7477b 6583 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6584 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6585 S_IFDIR | mode, &index);
39279cc3
CM
6586 if (IS_ERR(inode)) {
6587 err = PTR_ERR(inode);
6588 goto out_fail;
6589 }
5f39d397 6590
39279cc3 6591 drop_on_err = 1;
b0d5d10f
CM
6592 /* these must be set before we unlock the inode */
6593 inode->i_op = &btrfs_dir_inode_operations;
6594 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6595
2a7dba39 6596 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6597 if (err)
b0d5d10f 6598 goto out_fail_inode;
39279cc3 6599
dbe674a9 6600 btrfs_i_size_write(inode, 0);
39279cc3
CM
6601 err = btrfs_update_inode(trans, root, inode);
6602 if (err)
b0d5d10f 6603 goto out_fail_inode;
5f39d397 6604
a1b075d2
JB
6605 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6606 dentry->d_name.len, 0, index);
39279cc3 6607 if (err)
b0d5d10f 6608 goto out_fail_inode;
5f39d397 6609
39279cc3 6610 d_instantiate(dentry, inode);
b0d5d10f
CM
6611 /*
6612 * mkdir is special. We're unlocking after we call d_instantiate
6613 * to avoid a race with nfsd calling d_instantiate.
6614 */
6615 unlock_new_inode(inode);
39279cc3 6616 drop_on_err = 0;
39279cc3
CM
6617
6618out_fail:
7ad85bb7 6619 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6620 if (drop_on_err) {
6621 inode_dec_link_count(inode);
39279cc3 6622 iput(inode);
c7cfb8a5 6623 }
c581afc8 6624 btrfs_balance_delayed_items(root);
b53d3f5d 6625 btrfs_btree_balance_dirty(root);
39279cc3 6626 return err;
b0d5d10f
CM
6627
6628out_fail_inode:
6629 unlock_new_inode(inode);
6630 goto out_fail;
39279cc3
CM
6631}
6632
e6c4efd8
QW
6633/* Find next extent map of a given extent map, caller needs to ensure locks */
6634static struct extent_map *next_extent_map(struct extent_map *em)
6635{
6636 struct rb_node *next;
6637
6638 next = rb_next(&em->rb_node);
6639 if (!next)
6640 return NULL;
6641 return container_of(next, struct extent_map, rb_node);
6642}
6643
6644static struct extent_map *prev_extent_map(struct extent_map *em)
6645{
6646 struct rb_node *prev;
6647
6648 prev = rb_prev(&em->rb_node);
6649 if (!prev)
6650 return NULL;
6651 return container_of(prev, struct extent_map, rb_node);
6652}
6653
d352ac68 6654/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6655 * the existing extent is the nearest extent to map_start,
d352ac68 6656 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6657 * the best fitted new extent into the tree.
d352ac68 6658 */
3b951516
CM
6659static int merge_extent_mapping(struct extent_map_tree *em_tree,
6660 struct extent_map *existing,
e6dcd2dc 6661 struct extent_map *em,
51f395ad 6662 u64 map_start)
3b951516 6663{
e6c4efd8
QW
6664 struct extent_map *prev;
6665 struct extent_map *next;
6666 u64 start;
6667 u64 end;
3b951516 6668 u64 start_diff;
3b951516 6669
e6dcd2dc 6670 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6671
6672 if (existing->start > map_start) {
6673 next = existing;
6674 prev = prev_extent_map(next);
6675 } else {
6676 prev = existing;
6677 next = next_extent_map(prev);
6678 }
6679
6680 start = prev ? extent_map_end(prev) : em->start;
6681 start = max_t(u64, start, em->start);
6682 end = next ? next->start : extent_map_end(em);
6683 end = min_t(u64, end, extent_map_end(em));
6684 start_diff = start - em->start;
6685 em->start = start;
6686 em->len = end - start;
c8b97818
CM
6687 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6688 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6689 em->block_start += start_diff;
c8b97818
CM
6690 em->block_len -= start_diff;
6691 }
09a2a8f9 6692 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6693}
6694
c8b97818 6695static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6696 struct page *page,
c8b97818
CM
6697 size_t pg_offset, u64 extent_offset,
6698 struct btrfs_file_extent_item *item)
6699{
6700 int ret;
6701 struct extent_buffer *leaf = path->nodes[0];
6702 char *tmp;
6703 size_t max_size;
6704 unsigned long inline_size;
6705 unsigned long ptr;
261507a0 6706 int compress_type;
c8b97818
CM
6707
6708 WARN_ON(pg_offset != 0);
261507a0 6709 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6710 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6711 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6712 btrfs_item_nr(path->slots[0]));
c8b97818 6713 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6714 if (!tmp)
6715 return -ENOMEM;
c8b97818
CM
6716 ptr = btrfs_file_extent_inline_start(item);
6717
6718 read_extent_buffer(leaf, tmp, ptr, inline_size);
6719
09cbfeaf 6720 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6721 ret = btrfs_decompress(compress_type, tmp, page,
6722 extent_offset, inline_size, max_size);
c8b97818 6723 kfree(tmp);
166ae5a4 6724 return ret;
c8b97818
CM
6725}
6726
d352ac68
CM
6727/*
6728 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6729 * the ugly parts come from merging extents from the disk with the in-ram
6730 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6731 * where the in-ram extents might be locked pending data=ordered completion.
6732 *
6733 * This also copies inline extents directly into the page.
6734 */
d397712b 6735
a52d9a80 6736struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6737 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6738 int create)
6739{
6740 int ret;
6741 int err = 0;
a52d9a80
CM
6742 u64 extent_start = 0;
6743 u64 extent_end = 0;
33345d01 6744 u64 objectid = btrfs_ino(inode);
a52d9a80 6745 u32 found_type;
f421950f 6746 struct btrfs_path *path = NULL;
a52d9a80
CM
6747 struct btrfs_root *root = BTRFS_I(inode)->root;
6748 struct btrfs_file_extent_item *item;
5f39d397
CM
6749 struct extent_buffer *leaf;
6750 struct btrfs_key found_key;
a52d9a80
CM
6751 struct extent_map *em = NULL;
6752 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6753 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6754 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6755 const bool new_inline = !page || create;
a52d9a80 6756
a52d9a80 6757again:
890871be 6758 read_lock(&em_tree->lock);
d1310b2e 6759 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6760 if (em)
6761 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6762 read_unlock(&em_tree->lock);
d1310b2e 6763
a52d9a80 6764 if (em) {
e1c4b745
CM
6765 if (em->start > start || em->start + em->len <= start)
6766 free_extent_map(em);
6767 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6768 free_extent_map(em);
6769 else
6770 goto out;
a52d9a80 6771 }
172ddd60 6772 em = alloc_extent_map();
a52d9a80 6773 if (!em) {
d1310b2e
CM
6774 err = -ENOMEM;
6775 goto out;
a52d9a80 6776 }
e6dcd2dc 6777 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6778 em->start = EXTENT_MAP_HOLE;
445a6944 6779 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6780 em->len = (u64)-1;
c8b97818 6781 em->block_len = (u64)-1;
f421950f
CM
6782
6783 if (!path) {
6784 path = btrfs_alloc_path();
026fd317
JB
6785 if (!path) {
6786 err = -ENOMEM;
6787 goto out;
6788 }
6789 /*
6790 * Chances are we'll be called again, so go ahead and do
6791 * readahead
6792 */
e4058b54 6793 path->reada = READA_FORWARD;
f421950f
CM
6794 }
6795
179e29e4
CM
6796 ret = btrfs_lookup_file_extent(trans, root, path,
6797 objectid, start, trans != NULL);
a52d9a80
CM
6798 if (ret < 0) {
6799 err = ret;
6800 goto out;
6801 }
6802
6803 if (ret != 0) {
6804 if (path->slots[0] == 0)
6805 goto not_found;
6806 path->slots[0]--;
6807 }
6808
5f39d397
CM
6809 leaf = path->nodes[0];
6810 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6811 struct btrfs_file_extent_item);
a52d9a80 6812 /* are we inside the extent that was found? */
5f39d397 6813 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6814 found_type = found_key.type;
5f39d397 6815 if (found_key.objectid != objectid ||
a52d9a80 6816 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6817 /*
6818 * If we backup past the first extent we want to move forward
6819 * and see if there is an extent in front of us, otherwise we'll
6820 * say there is a hole for our whole search range which can
6821 * cause problems.
6822 */
6823 extent_end = start;
6824 goto next;
a52d9a80
CM
6825 }
6826
5f39d397
CM
6827 found_type = btrfs_file_extent_type(leaf, item);
6828 extent_start = found_key.offset;
d899e052
YZ
6829 if (found_type == BTRFS_FILE_EXTENT_REG ||
6830 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6831 extent_end = extent_start +
db94535d 6832 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6833 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6834 size_t size;
514ac8ad 6835 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6836 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6837 }
25a50341 6838next:
9036c102
YZ
6839 if (start >= extent_end) {
6840 path->slots[0]++;
6841 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6842 ret = btrfs_next_leaf(root, path);
6843 if (ret < 0) {
6844 err = ret;
6845 goto out;
a52d9a80 6846 }
9036c102
YZ
6847 if (ret > 0)
6848 goto not_found;
6849 leaf = path->nodes[0];
a52d9a80 6850 }
9036c102
YZ
6851 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6852 if (found_key.objectid != objectid ||
6853 found_key.type != BTRFS_EXTENT_DATA_KEY)
6854 goto not_found;
6855 if (start + len <= found_key.offset)
6856 goto not_found;
e2eca69d
WS
6857 if (start > found_key.offset)
6858 goto next;
9036c102 6859 em->start = start;
70c8a91c 6860 em->orig_start = start;
9036c102
YZ
6861 em->len = found_key.offset - start;
6862 goto not_found_em;
6863 }
6864
7ffbb598
FM
6865 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6866
d899e052
YZ
6867 if (found_type == BTRFS_FILE_EXTENT_REG ||
6868 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6869 goto insert;
6870 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6871 unsigned long ptr;
a52d9a80 6872 char *map;
3326d1b0
CM
6873 size_t size;
6874 size_t extent_offset;
6875 size_t copy_size;
a52d9a80 6876
7ffbb598 6877 if (new_inline)
689f9346 6878 goto out;
5f39d397 6879
514ac8ad 6880 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6881 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6882 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6883 size - extent_offset);
3326d1b0 6884 em->start = extent_start + extent_offset;
fda2832f 6885 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6886 em->orig_block_len = em->len;
70c8a91c 6887 em->orig_start = em->start;
689f9346 6888 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6889 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6890 if (btrfs_file_extent_compression(leaf, item) !=
6891 BTRFS_COMPRESS_NONE) {
e40da0e5 6892 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6893 extent_offset, item);
166ae5a4
ZB
6894 if (ret) {
6895 err = ret;
6896 goto out;
6897 }
c8b97818
CM
6898 } else {
6899 map = kmap(page);
6900 read_extent_buffer(leaf, map + pg_offset, ptr,
6901 copy_size);
09cbfeaf 6902 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6903 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6904 PAGE_SIZE - pg_offset -
93c82d57
CM
6905 copy_size);
6906 }
c8b97818
CM
6907 kunmap(page);
6908 }
179e29e4
CM
6909 flush_dcache_page(page);
6910 } else if (create && PageUptodate(page)) {
6bf7e080 6911 BUG();
179e29e4
CM
6912 if (!trans) {
6913 kunmap(page);
6914 free_extent_map(em);
6915 em = NULL;
ff5714cc 6916
b3b4aa74 6917 btrfs_release_path(path);
7a7eaa40 6918 trans = btrfs_join_transaction(root);
ff5714cc 6919
3612b495
TI
6920 if (IS_ERR(trans))
6921 return ERR_CAST(trans);
179e29e4
CM
6922 goto again;
6923 }
c8b97818 6924 map = kmap(page);
70dec807 6925 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6926 copy_size);
c8b97818 6927 kunmap(page);
179e29e4 6928 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6929 }
d1310b2e 6930 set_extent_uptodate(io_tree, em->start,
507903b8 6931 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6932 goto insert;
a52d9a80
CM
6933 }
6934not_found:
6935 em->start = start;
70c8a91c 6936 em->orig_start = start;
d1310b2e 6937 em->len = len;
a52d9a80 6938not_found_em:
5f39d397 6939 em->block_start = EXTENT_MAP_HOLE;
9036c102 6940 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6941insert:
b3b4aa74 6942 btrfs_release_path(path);
d1310b2e 6943 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6944 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6945 em->start, em->len, start, len);
a52d9a80
CM
6946 err = -EIO;
6947 goto out;
6948 }
d1310b2e
CM
6949
6950 err = 0;
890871be 6951 write_lock(&em_tree->lock);
09a2a8f9 6952 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6953 /* it is possible that someone inserted the extent into the tree
6954 * while we had the lock dropped. It is also possible that
6955 * an overlapping map exists in the tree
6956 */
a52d9a80 6957 if (ret == -EEXIST) {
3b951516 6958 struct extent_map *existing;
e6dcd2dc
CM
6959
6960 ret = 0;
6961
e6c4efd8
QW
6962 existing = search_extent_mapping(em_tree, start, len);
6963 /*
6964 * existing will always be non-NULL, since there must be
6965 * extent causing the -EEXIST.
6966 */
6967 if (start >= extent_map_end(existing) ||
32be3a1a 6968 start <= existing->start) {
e6c4efd8
QW
6969 /*
6970 * The existing extent map is the one nearest to
6971 * the [start, start + len) range which overlaps
6972 */
6973 err = merge_extent_mapping(em_tree, existing,
6974 em, start);
e1c4b745 6975 free_extent_map(existing);
e6c4efd8 6976 if (err) {
3b951516
CM
6977 free_extent_map(em);
6978 em = NULL;
6979 }
6980 } else {
6981 free_extent_map(em);
6982 em = existing;
e6dcd2dc 6983 err = 0;
a52d9a80 6984 }
a52d9a80 6985 }
890871be 6986 write_unlock(&em_tree->lock);
a52d9a80 6987out:
1abe9b8a 6988
4cd8587c 6989 trace_btrfs_get_extent(root, em);
1abe9b8a 6990
527afb44 6991 btrfs_free_path(path);
a52d9a80
CM
6992 if (trans) {
6993 ret = btrfs_end_transaction(trans, root);
d397712b 6994 if (!err)
a52d9a80
CM
6995 err = ret;
6996 }
a52d9a80
CM
6997 if (err) {
6998 free_extent_map(em);
a52d9a80
CM
6999 return ERR_PTR(err);
7000 }
79787eaa 7001 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7002 return em;
7003}
7004
ec29ed5b
CM
7005struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7006 size_t pg_offset, u64 start, u64 len,
7007 int create)
7008{
7009 struct extent_map *em;
7010 struct extent_map *hole_em = NULL;
7011 u64 range_start = start;
7012 u64 end;
7013 u64 found;
7014 u64 found_end;
7015 int err = 0;
7016
7017 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7018 if (IS_ERR(em))
7019 return em;
7020 if (em) {
7021 /*
f9e4fb53
LB
7022 * if our em maps to
7023 * - a hole or
7024 * - a pre-alloc extent,
7025 * there might actually be delalloc bytes behind it.
ec29ed5b 7026 */
f9e4fb53
LB
7027 if (em->block_start != EXTENT_MAP_HOLE &&
7028 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7029 return em;
7030 else
7031 hole_em = em;
7032 }
7033
7034 /* check to see if we've wrapped (len == -1 or similar) */
7035 end = start + len;
7036 if (end < start)
7037 end = (u64)-1;
7038 else
7039 end -= 1;
7040
7041 em = NULL;
7042
7043 /* ok, we didn't find anything, lets look for delalloc */
7044 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7045 end, len, EXTENT_DELALLOC, 1);
7046 found_end = range_start + found;
7047 if (found_end < range_start)
7048 found_end = (u64)-1;
7049
7050 /*
7051 * we didn't find anything useful, return
7052 * the original results from get_extent()
7053 */
7054 if (range_start > end || found_end <= start) {
7055 em = hole_em;
7056 hole_em = NULL;
7057 goto out;
7058 }
7059
7060 /* adjust the range_start to make sure it doesn't
7061 * go backwards from the start they passed in
7062 */
67871254 7063 range_start = max(start, range_start);
ec29ed5b
CM
7064 found = found_end - range_start;
7065
7066 if (found > 0) {
7067 u64 hole_start = start;
7068 u64 hole_len = len;
7069
172ddd60 7070 em = alloc_extent_map();
ec29ed5b
CM
7071 if (!em) {
7072 err = -ENOMEM;
7073 goto out;
7074 }
7075 /*
7076 * when btrfs_get_extent can't find anything it
7077 * returns one huge hole
7078 *
7079 * make sure what it found really fits our range, and
7080 * adjust to make sure it is based on the start from
7081 * the caller
7082 */
7083 if (hole_em) {
7084 u64 calc_end = extent_map_end(hole_em);
7085
7086 if (calc_end <= start || (hole_em->start > end)) {
7087 free_extent_map(hole_em);
7088 hole_em = NULL;
7089 } else {
7090 hole_start = max(hole_em->start, start);
7091 hole_len = calc_end - hole_start;
7092 }
7093 }
7094 em->bdev = NULL;
7095 if (hole_em && range_start > hole_start) {
7096 /* our hole starts before our delalloc, so we
7097 * have to return just the parts of the hole
7098 * that go until the delalloc starts
7099 */
7100 em->len = min(hole_len,
7101 range_start - hole_start);
7102 em->start = hole_start;
7103 em->orig_start = hole_start;
7104 /*
7105 * don't adjust block start at all,
7106 * it is fixed at EXTENT_MAP_HOLE
7107 */
7108 em->block_start = hole_em->block_start;
7109 em->block_len = hole_len;
f9e4fb53
LB
7110 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7111 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7112 } else {
7113 em->start = range_start;
7114 em->len = found;
7115 em->orig_start = range_start;
7116 em->block_start = EXTENT_MAP_DELALLOC;
7117 em->block_len = found;
7118 }
7119 } else if (hole_em) {
7120 return hole_em;
7121 }
7122out:
7123
7124 free_extent_map(hole_em);
7125 if (err) {
7126 free_extent_map(em);
7127 return ERR_PTR(err);
7128 }
7129 return em;
7130}
7131
4b46fce2
JB
7132static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7133 u64 start, u64 len)
7134{
7135 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7136 struct extent_map *em;
4b46fce2
JB
7137 struct btrfs_key ins;
7138 u64 alloc_hint;
7139 int ret;
4b46fce2 7140
4b46fce2 7141 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7142 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7143 alloc_hint, &ins, 1, 1);
00361589
JB
7144 if (ret)
7145 return ERR_PTR(ret);
4b46fce2 7146
de0ee0ed
FM
7147 /*
7148 * Create the ordered extent before the extent map. This is to avoid
7149 * races with the fast fsync path that would lead to it logging file
7150 * extent items that point to disk extents that were not yet written to.
7151 * The fast fsync path collects ordered extents into a local list and
7152 * then collects all the new extent maps, so we must create the ordered
7153 * extent first and make sure the fast fsync path collects any new
7154 * ordered extents after collecting new extent maps as well.
7155 * The fsync path simply can not rely on inode_dio_wait() because it
7156 * causes deadlock with AIO.
7157 */
4b46fce2
JB
7158 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7159 ins.offset, ins.offset, 0);
7160 if (ret) {
e570fd27 7161 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589 7162 return ERR_PTR(ret);
4b46fce2 7163 }
00361589 7164
de0ee0ed
FM
7165 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7166 ins.offset, ins.offset, ins.offset, 0);
7167 if (IS_ERR(em)) {
7168 struct btrfs_ordered_extent *oe;
7169
7170 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7171 oe = btrfs_lookup_ordered_extent(inode, start);
7172 ASSERT(oe);
7173 if (WARN_ON(!oe))
7174 return em;
7175 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7176 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7177 btrfs_remove_ordered_extent(inode, oe);
7178 /* Once for our lookup and once for the ordered extents tree. */
7179 btrfs_put_ordered_extent(oe);
7180 btrfs_put_ordered_extent(oe);
7181 }
4b46fce2
JB
7182 return em;
7183}
7184
46bfbb5c
CM
7185/*
7186 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7187 * block must be cow'd
7188 */
00361589 7189noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7190 u64 *orig_start, u64 *orig_block_len,
7191 u64 *ram_bytes)
46bfbb5c 7192{
00361589 7193 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7194 struct btrfs_path *path;
7195 int ret;
7196 struct extent_buffer *leaf;
7197 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7198 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7199 struct btrfs_file_extent_item *fi;
7200 struct btrfs_key key;
7201 u64 disk_bytenr;
7202 u64 backref_offset;
7203 u64 extent_end;
7204 u64 num_bytes;
7205 int slot;
7206 int found_type;
7ee9e440 7207 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7208
46bfbb5c
CM
7209 path = btrfs_alloc_path();
7210 if (!path)
7211 return -ENOMEM;
7212
00361589 7213 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7214 offset, 0);
7215 if (ret < 0)
7216 goto out;
7217
7218 slot = path->slots[0];
7219 if (ret == 1) {
7220 if (slot == 0) {
7221 /* can't find the item, must cow */
7222 ret = 0;
7223 goto out;
7224 }
7225 slot--;
7226 }
7227 ret = 0;
7228 leaf = path->nodes[0];
7229 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7230 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7231 key.type != BTRFS_EXTENT_DATA_KEY) {
7232 /* not our file or wrong item type, must cow */
7233 goto out;
7234 }
7235
7236 if (key.offset > offset) {
7237 /* Wrong offset, must cow */
7238 goto out;
7239 }
7240
7241 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7242 found_type = btrfs_file_extent_type(leaf, fi);
7243 if (found_type != BTRFS_FILE_EXTENT_REG &&
7244 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7245 /* not a regular extent, must cow */
7246 goto out;
7247 }
7ee9e440
JB
7248
7249 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7250 goto out;
7251
e77751aa
MX
7252 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7253 if (extent_end <= offset)
7254 goto out;
7255
46bfbb5c 7256 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7257 if (disk_bytenr == 0)
7258 goto out;
7259
7260 if (btrfs_file_extent_compression(leaf, fi) ||
7261 btrfs_file_extent_encryption(leaf, fi) ||
7262 btrfs_file_extent_other_encoding(leaf, fi))
7263 goto out;
7264
46bfbb5c
CM
7265 backref_offset = btrfs_file_extent_offset(leaf, fi);
7266
7ee9e440
JB
7267 if (orig_start) {
7268 *orig_start = key.offset - backref_offset;
7269 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7270 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7271 }
eb384b55 7272
46bfbb5c
CM
7273 if (btrfs_extent_readonly(root, disk_bytenr))
7274 goto out;
7b2b7085
MX
7275
7276 num_bytes = min(offset + *len, extent_end) - offset;
7277 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7278 u64 range_end;
7279
7280 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7281 ret = test_range_bit(io_tree, offset, range_end,
7282 EXTENT_DELALLOC, 0, NULL);
7283 if (ret) {
7284 ret = -EAGAIN;
7285 goto out;
7286 }
7287 }
7288
1bda19eb 7289 btrfs_release_path(path);
46bfbb5c
CM
7290
7291 /*
7292 * look for other files referencing this extent, if we
7293 * find any we must cow
7294 */
00361589
JB
7295 trans = btrfs_join_transaction(root);
7296 if (IS_ERR(trans)) {
7297 ret = 0;
46bfbb5c 7298 goto out;
00361589
JB
7299 }
7300
7301 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7302 key.offset - backref_offset, disk_bytenr);
7303 btrfs_end_transaction(trans, root);
7304 if (ret) {
7305 ret = 0;
7306 goto out;
7307 }
46bfbb5c
CM
7308
7309 /*
7310 * adjust disk_bytenr and num_bytes to cover just the bytes
7311 * in this extent we are about to write. If there
7312 * are any csums in that range we have to cow in order
7313 * to keep the csums correct
7314 */
7315 disk_bytenr += backref_offset;
7316 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7317 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7318 goto out;
7319 /*
7320 * all of the above have passed, it is safe to overwrite this extent
7321 * without cow
7322 */
eb384b55 7323 *len = num_bytes;
46bfbb5c
CM
7324 ret = 1;
7325out:
7326 btrfs_free_path(path);
7327 return ret;
7328}
7329
fc4adbff
AG
7330bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7331{
7332 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7333 int found = false;
7334 void **pagep = NULL;
7335 struct page *page = NULL;
7336 int start_idx;
7337 int end_idx;
7338
09cbfeaf 7339 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7340
7341 /*
7342 * end is the last byte in the last page. end == start is legal
7343 */
09cbfeaf 7344 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7345
7346 rcu_read_lock();
7347
7348 /* Most of the code in this while loop is lifted from
7349 * find_get_page. It's been modified to begin searching from a
7350 * page and return just the first page found in that range. If the
7351 * found idx is less than or equal to the end idx then we know that
7352 * a page exists. If no pages are found or if those pages are
7353 * outside of the range then we're fine (yay!) */
7354 while (page == NULL &&
7355 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7356 page = radix_tree_deref_slot(pagep);
7357 if (unlikely(!page))
7358 break;
7359
7360 if (radix_tree_exception(page)) {
809f9016
FM
7361 if (radix_tree_deref_retry(page)) {
7362 page = NULL;
fc4adbff 7363 continue;
809f9016 7364 }
fc4adbff
AG
7365 /*
7366 * Otherwise, shmem/tmpfs must be storing a swap entry
7367 * here as an exceptional entry: so return it without
7368 * attempting to raise page count.
7369 */
6fdef6d4 7370 page = NULL;
fc4adbff
AG
7371 break; /* TODO: Is this relevant for this use case? */
7372 }
7373
91405151
FM
7374 if (!page_cache_get_speculative(page)) {
7375 page = NULL;
fc4adbff 7376 continue;
91405151 7377 }
fc4adbff
AG
7378
7379 /*
7380 * Has the page moved?
7381 * This is part of the lockless pagecache protocol. See
7382 * include/linux/pagemap.h for details.
7383 */
7384 if (unlikely(page != *pagep)) {
09cbfeaf 7385 put_page(page);
fc4adbff
AG
7386 page = NULL;
7387 }
7388 }
7389
7390 if (page) {
7391 if (page->index <= end_idx)
7392 found = true;
09cbfeaf 7393 put_page(page);
fc4adbff
AG
7394 }
7395
7396 rcu_read_unlock();
7397 return found;
7398}
7399
eb838e73
JB
7400static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7401 struct extent_state **cached_state, int writing)
7402{
7403 struct btrfs_ordered_extent *ordered;
7404 int ret = 0;
7405
7406 while (1) {
7407 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7408 cached_state);
eb838e73
JB
7409 /*
7410 * We're concerned with the entire range that we're going to be
7411 * doing DIO to, so we need to make sure theres no ordered
7412 * extents in this range.
7413 */
7414 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7415 lockend - lockstart + 1);
7416
7417 /*
7418 * We need to make sure there are no buffered pages in this
7419 * range either, we could have raced between the invalidate in
7420 * generic_file_direct_write and locking the extent. The
7421 * invalidate needs to happen so that reads after a write do not
7422 * get stale data.
7423 */
fc4adbff
AG
7424 if (!ordered &&
7425 (!writing ||
7426 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7427 break;
7428
7429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7430 cached_state, GFP_NOFS);
7431
7432 if (ordered) {
ade77029
FM
7433 /*
7434 * If we are doing a DIO read and the ordered extent we
7435 * found is for a buffered write, we can not wait for it
7436 * to complete and retry, because if we do so we can
7437 * deadlock with concurrent buffered writes on page
7438 * locks. This happens only if our DIO read covers more
7439 * than one extent map, if at this point has already
7440 * created an ordered extent for a previous extent map
7441 * and locked its range in the inode's io tree, and a
7442 * concurrent write against that previous extent map's
7443 * range and this range started (we unlock the ranges
7444 * in the io tree only when the bios complete and
7445 * buffered writes always lock pages before attempting
7446 * to lock range in the io tree).
7447 */
7448 if (writing ||
7449 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7450 btrfs_start_ordered_extent(inode, ordered, 1);
7451 else
7452 ret = -ENOTBLK;
eb838e73
JB
7453 btrfs_put_ordered_extent(ordered);
7454 } else {
eb838e73 7455 /*
b850ae14
FM
7456 * We could trigger writeback for this range (and wait
7457 * for it to complete) and then invalidate the pages for
7458 * this range (through invalidate_inode_pages2_range()),
7459 * but that can lead us to a deadlock with a concurrent
7460 * call to readpages() (a buffered read or a defrag call
7461 * triggered a readahead) on a page lock due to an
7462 * ordered dio extent we created before but did not have
7463 * yet a corresponding bio submitted (whence it can not
7464 * complete), which makes readpages() wait for that
7465 * ordered extent to complete while holding a lock on
7466 * that page.
eb838e73 7467 */
b850ae14 7468 ret = -ENOTBLK;
eb838e73
JB
7469 }
7470
ade77029
FM
7471 if (ret)
7472 break;
7473
eb838e73
JB
7474 cond_resched();
7475 }
7476
7477 return ret;
7478}
7479
69ffb543
JB
7480static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7481 u64 len, u64 orig_start,
7482 u64 block_start, u64 block_len,
cc95bef6
JB
7483 u64 orig_block_len, u64 ram_bytes,
7484 int type)
69ffb543
JB
7485{
7486 struct extent_map_tree *em_tree;
7487 struct extent_map *em;
7488 struct btrfs_root *root = BTRFS_I(inode)->root;
7489 int ret;
7490
7491 em_tree = &BTRFS_I(inode)->extent_tree;
7492 em = alloc_extent_map();
7493 if (!em)
7494 return ERR_PTR(-ENOMEM);
7495
7496 em->start = start;
7497 em->orig_start = orig_start;
2ab28f32
JB
7498 em->mod_start = start;
7499 em->mod_len = len;
69ffb543
JB
7500 em->len = len;
7501 em->block_len = block_len;
7502 em->block_start = block_start;
7503 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7504 em->orig_block_len = orig_block_len;
cc95bef6 7505 em->ram_bytes = ram_bytes;
70c8a91c 7506 em->generation = -1;
69ffb543
JB
7507 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7508 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7509 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7510
7511 do {
7512 btrfs_drop_extent_cache(inode, em->start,
7513 em->start + em->len - 1, 0);
7514 write_lock(&em_tree->lock);
09a2a8f9 7515 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7516 write_unlock(&em_tree->lock);
7517 } while (ret == -EEXIST);
7518
7519 if (ret) {
7520 free_extent_map(em);
7521 return ERR_PTR(ret);
7522 }
7523
7524 return em;
7525}
7526
9c9464cc
FM
7527static void adjust_dio_outstanding_extents(struct inode *inode,
7528 struct btrfs_dio_data *dio_data,
7529 const u64 len)
7530{
7531 unsigned num_extents;
7532
7533 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7534 BTRFS_MAX_EXTENT_SIZE);
7535 /*
7536 * If we have an outstanding_extents count still set then we're
7537 * within our reservation, otherwise we need to adjust our inode
7538 * counter appropriately.
7539 */
7540 if (dio_data->outstanding_extents) {
7541 dio_data->outstanding_extents -= num_extents;
7542 } else {
7543 spin_lock(&BTRFS_I(inode)->lock);
7544 BTRFS_I(inode)->outstanding_extents += num_extents;
7545 spin_unlock(&BTRFS_I(inode)->lock);
7546 }
7547}
7548
4b46fce2
JB
7549static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7550 struct buffer_head *bh_result, int create)
7551{
7552 struct extent_map *em;
7553 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7554 struct extent_state *cached_state = NULL;
50745b0a 7555 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7556 u64 start = iblock << inode->i_blkbits;
eb838e73 7557 u64 lockstart, lockend;
4b46fce2 7558 u64 len = bh_result->b_size;
eb838e73 7559 int unlock_bits = EXTENT_LOCKED;
0934856d 7560 int ret = 0;
eb838e73 7561
172a5049 7562 if (create)
3266789f 7563 unlock_bits |= EXTENT_DIRTY;
172a5049 7564 else
c329861d 7565 len = min_t(u64, len, root->sectorsize);
eb838e73 7566
c329861d
JB
7567 lockstart = start;
7568 lockend = start + len - 1;
7569
e1cbbfa5
JB
7570 if (current->journal_info) {
7571 /*
7572 * Need to pull our outstanding extents and set journal_info to NULL so
7573 * that anything that needs to check if there's a transction doesn't get
7574 * confused.
7575 */
50745b0a 7576 dio_data = current->journal_info;
e1cbbfa5
JB
7577 current->journal_info = NULL;
7578 }
7579
eb838e73
JB
7580 /*
7581 * If this errors out it's because we couldn't invalidate pagecache for
7582 * this range and we need to fallback to buffered.
7583 */
9c9464cc
FM
7584 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7585 create)) {
7586 ret = -ENOTBLK;
7587 goto err;
7588 }
eb838e73 7589
4b46fce2 7590 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7591 if (IS_ERR(em)) {
7592 ret = PTR_ERR(em);
7593 goto unlock_err;
7594 }
4b46fce2
JB
7595
7596 /*
7597 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7598 * io. INLINE is special, and we could probably kludge it in here, but
7599 * it's still buffered so for safety lets just fall back to the generic
7600 * buffered path.
7601 *
7602 * For COMPRESSED we _have_ to read the entire extent in so we can
7603 * decompress it, so there will be buffering required no matter what we
7604 * do, so go ahead and fallback to buffered.
7605 *
7606 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7607 * to buffered IO. Don't blame me, this is the price we pay for using
7608 * the generic code.
7609 */
7610 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7611 em->block_start == EXTENT_MAP_INLINE) {
7612 free_extent_map(em);
eb838e73
JB
7613 ret = -ENOTBLK;
7614 goto unlock_err;
4b46fce2
JB
7615 }
7616
7617 /* Just a good old fashioned hole, return */
7618 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7619 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7620 free_extent_map(em);
eb838e73 7621 goto unlock_err;
4b46fce2
JB
7622 }
7623
7624 /*
7625 * We don't allocate a new extent in the following cases
7626 *
7627 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7628 * existing extent.
7629 * 2) The extent is marked as PREALLOC. We're good to go here and can
7630 * just use the extent.
7631 *
7632 */
46bfbb5c 7633 if (!create) {
eb838e73
JB
7634 len = min(len, em->len - (start - em->start));
7635 lockstart = start + len;
7636 goto unlock;
46bfbb5c 7637 }
4b46fce2
JB
7638
7639 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7640 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7641 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7642 int type;
eb384b55 7643 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7644
7645 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7646 type = BTRFS_ORDERED_PREALLOC;
7647 else
7648 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7649 len = min(len, em->len - (start - em->start));
4b46fce2 7650 block_start = em->block_start + (start - em->start);
46bfbb5c 7651
00361589 7652 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7653 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7654 if (type == BTRFS_ORDERED_PREALLOC) {
7655 free_extent_map(em);
7656 em = create_pinned_em(inode, start, len,
7657 orig_start,
b4939680 7658 block_start, len,
cc95bef6
JB
7659 orig_block_len,
7660 ram_bytes, type);
555e1286
FM
7661 if (IS_ERR(em)) {
7662 ret = PTR_ERR(em);
69ffb543 7663 goto unlock_err;
555e1286 7664 }
69ffb543
JB
7665 }
7666
46bfbb5c
CM
7667 ret = btrfs_add_ordered_extent_dio(inode, start,
7668 block_start, len, len, type);
46bfbb5c
CM
7669 if (ret) {
7670 free_extent_map(em);
eb838e73 7671 goto unlock_err;
46bfbb5c
CM
7672 }
7673 goto unlock;
4b46fce2 7674 }
4b46fce2 7675 }
00361589 7676
46bfbb5c
CM
7677 /*
7678 * this will cow the extent, reset the len in case we changed
7679 * it above
7680 */
7681 len = bh_result->b_size;
70c8a91c
JB
7682 free_extent_map(em);
7683 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7684 if (IS_ERR(em)) {
7685 ret = PTR_ERR(em);
7686 goto unlock_err;
7687 }
46bfbb5c
CM
7688 len = min(len, em->len - (start - em->start));
7689unlock:
4b46fce2
JB
7690 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7691 inode->i_blkbits;
46bfbb5c 7692 bh_result->b_size = len;
4b46fce2
JB
7693 bh_result->b_bdev = em->bdev;
7694 set_buffer_mapped(bh_result);
c3473e83
JB
7695 if (create) {
7696 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7697 set_buffer_new(bh_result);
7698
7699 /*
7700 * Need to update the i_size under the extent lock so buffered
7701 * readers will get the updated i_size when we unlock.
7702 */
7703 if (start + len > i_size_read(inode))
7704 i_size_write(inode, start + len);
0934856d 7705
9c9464cc 7706 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7707 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7708 WARN_ON(dio_data->reserve < len);
7709 dio_data->reserve -= len;
f28a4928 7710 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7711 current->journal_info = dio_data;
c3473e83 7712 }
4b46fce2 7713
eb838e73
JB
7714 /*
7715 * In the case of write we need to clear and unlock the entire range,
7716 * in the case of read we need to unlock only the end area that we
7717 * aren't using if there is any left over space.
7718 */
24c03fa5 7719 if (lockstart < lockend) {
0934856d
MX
7720 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7721 lockend, unlock_bits, 1, 0,
7722 &cached_state, GFP_NOFS);
24c03fa5 7723 } else {
eb838e73 7724 free_extent_state(cached_state);
24c03fa5 7725 }
eb838e73 7726
4b46fce2
JB
7727 free_extent_map(em);
7728
7729 return 0;
eb838e73
JB
7730
7731unlock_err:
eb838e73
JB
7732 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7733 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7734err:
50745b0a 7735 if (dio_data)
7736 current->journal_info = dio_data;
9c9464cc
FM
7737 /*
7738 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7739 * write less data then expected, so that we don't underflow our inode's
7740 * outstanding extents counter.
7741 */
7742 if (create && dio_data)
7743 adjust_dio_outstanding_extents(inode, dio_data, len);
7744
eb838e73 7745 return ret;
4b46fce2
JB
7746}
7747
8b110e39
MX
7748static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7749 int rw, int mirror_num)
7750{
7751 struct btrfs_root *root = BTRFS_I(inode)->root;
7752 int ret;
7753
7754 BUG_ON(rw & REQ_WRITE);
7755
7756 bio_get(bio);
7757
7758 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7759 BTRFS_WQ_ENDIO_DIO_REPAIR);
7760 if (ret)
7761 goto err;
7762
7763 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7764err:
7765 bio_put(bio);
7766 return ret;
7767}
7768
7769static int btrfs_check_dio_repairable(struct inode *inode,
7770 struct bio *failed_bio,
7771 struct io_failure_record *failrec,
7772 int failed_mirror)
7773{
7774 int num_copies;
7775
7776 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7777 failrec->logical, failrec->len);
7778 if (num_copies == 1) {
7779 /*
7780 * we only have a single copy of the data, so don't bother with
7781 * all the retry and error correction code that follows. no
7782 * matter what the error is, it is very likely to persist.
7783 */
7784 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7785 num_copies, failrec->this_mirror, failed_mirror);
7786 return 0;
7787 }
7788
7789 failrec->failed_mirror = failed_mirror;
7790 failrec->this_mirror++;
7791 if (failrec->this_mirror == failed_mirror)
7792 failrec->this_mirror++;
7793
7794 if (failrec->this_mirror > num_copies) {
7795 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7796 num_copies, failrec->this_mirror, failed_mirror);
7797 return 0;
7798 }
7799
7800 return 1;
7801}
7802
7803static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7804 struct page *page, unsigned int pgoff,
7805 u64 start, u64 end, int failed_mirror,
7806 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7807{
7808 struct io_failure_record *failrec;
7809 struct bio *bio;
7810 int isector;
7811 int read_mode;
7812 int ret;
7813
7814 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7815
7816 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7817 if (ret)
7818 return ret;
7819
7820 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7821 failed_mirror);
7822 if (!ret) {
7823 free_io_failure(inode, failrec);
7824 return -EIO;
7825 }
7826
2dabb324
CR
7827 if ((failed_bio->bi_vcnt > 1)
7828 || (failed_bio->bi_io_vec->bv_len
7829 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7830 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7831 else
7832 read_mode = READ_SYNC;
7833
7834 isector = start - btrfs_io_bio(failed_bio)->logical;
7835 isector >>= inode->i_sb->s_blocksize_bits;
7836 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7837 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7838 if (!bio) {
7839 free_io_failure(inode, failrec);
7840 return -EIO;
7841 }
7842
7843 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7844 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7845 read_mode, failrec->this_mirror, failrec->in_validation);
7846
7847 ret = submit_dio_repair_bio(inode, bio, read_mode,
7848 failrec->this_mirror);
7849 if (ret) {
7850 free_io_failure(inode, failrec);
7851 bio_put(bio);
7852 }
7853
7854 return ret;
7855}
7856
7857struct btrfs_retry_complete {
7858 struct completion done;
7859 struct inode *inode;
7860 u64 start;
7861 int uptodate;
7862};
7863
4246a0b6 7864static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7865{
7866 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7867 struct inode *inode;
8b110e39
MX
7868 struct bio_vec *bvec;
7869 int i;
7870
4246a0b6 7871 if (bio->bi_error)
8b110e39
MX
7872 goto end;
7873
2dabb324
CR
7874 ASSERT(bio->bi_vcnt == 1);
7875 inode = bio->bi_io_vec->bv_page->mapping->host;
7876 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7877
8b110e39
MX
7878 done->uptodate = 1;
7879 bio_for_each_segment_all(bvec, bio, i)
7880 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7881end:
7882 complete(&done->done);
7883 bio_put(bio);
7884}
7885
7886static int __btrfs_correct_data_nocsum(struct inode *inode,
7887 struct btrfs_io_bio *io_bio)
4b46fce2 7888{
2dabb324 7889 struct btrfs_fs_info *fs_info;
2c30c71b 7890 struct bio_vec *bvec;
8b110e39 7891 struct btrfs_retry_complete done;
4b46fce2 7892 u64 start;
2dabb324
CR
7893 unsigned int pgoff;
7894 u32 sectorsize;
7895 int nr_sectors;
2c30c71b 7896 int i;
c1dc0896 7897 int ret;
4b46fce2 7898
2dabb324
CR
7899 fs_info = BTRFS_I(inode)->root->fs_info;
7900 sectorsize = BTRFS_I(inode)->root->sectorsize;
7901
8b110e39
MX
7902 start = io_bio->logical;
7903 done.inode = inode;
7904
7905 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7906 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7907 pgoff = bvec->bv_offset;
7908
7909next_block_or_try_again:
8b110e39
MX
7910 done.uptodate = 0;
7911 done.start = start;
7912 init_completion(&done.done);
7913
2dabb324
CR
7914 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7915 pgoff, start, start + sectorsize - 1,
7916 io_bio->mirror_num,
7917 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7918 if (ret)
7919 return ret;
7920
7921 wait_for_completion(&done.done);
7922
7923 if (!done.uptodate) {
7924 /* We might have another mirror, so try again */
2dabb324 7925 goto next_block_or_try_again;
8b110e39
MX
7926 }
7927
2dabb324
CR
7928 start += sectorsize;
7929
7930 if (nr_sectors--) {
7931 pgoff += sectorsize;
7932 goto next_block_or_try_again;
7933 }
8b110e39
MX
7934 }
7935
7936 return 0;
7937}
7938
4246a0b6 7939static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7940{
7941 struct btrfs_retry_complete *done = bio->bi_private;
7942 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7943 struct inode *inode;
8b110e39 7944 struct bio_vec *bvec;
2dabb324 7945 u64 start;
8b110e39
MX
7946 int uptodate;
7947 int ret;
7948 int i;
7949
4246a0b6 7950 if (bio->bi_error)
8b110e39
MX
7951 goto end;
7952
7953 uptodate = 1;
2dabb324
CR
7954
7955 start = done->start;
7956
7957 ASSERT(bio->bi_vcnt == 1);
7958 inode = bio->bi_io_vec->bv_page->mapping->host;
7959 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7960
8b110e39
MX
7961 bio_for_each_segment_all(bvec, bio, i) {
7962 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
7963 bvec->bv_page, bvec->bv_offset,
7964 done->start, bvec->bv_len);
8b110e39
MX
7965 if (!ret)
7966 clean_io_failure(done->inode, done->start,
2dabb324 7967 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
7968 else
7969 uptodate = 0;
7970 }
7971
7972 done->uptodate = uptodate;
7973end:
7974 complete(&done->done);
7975 bio_put(bio);
7976}
7977
7978static int __btrfs_subio_endio_read(struct inode *inode,
7979 struct btrfs_io_bio *io_bio, int err)
7980{
2dabb324 7981 struct btrfs_fs_info *fs_info;
8b110e39
MX
7982 struct bio_vec *bvec;
7983 struct btrfs_retry_complete done;
7984 u64 start;
7985 u64 offset = 0;
2dabb324
CR
7986 u32 sectorsize;
7987 int nr_sectors;
7988 unsigned int pgoff;
7989 int csum_pos;
8b110e39
MX
7990 int i;
7991 int ret;
dc380aea 7992
2dabb324
CR
7993 fs_info = BTRFS_I(inode)->root->fs_info;
7994 sectorsize = BTRFS_I(inode)->root->sectorsize;
7995
8b110e39 7996 err = 0;
c1dc0896 7997 start = io_bio->logical;
8b110e39
MX
7998 done.inode = inode;
7999
c1dc0896 8000 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8001 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8002
8003 pgoff = bvec->bv_offset;
8004next_block:
8005 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8006 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8007 bvec->bv_page, pgoff, start,
8008 sectorsize);
8b110e39
MX
8009 if (likely(!ret))
8010 goto next;
8011try_again:
8012 done.uptodate = 0;
8013 done.start = start;
8014 init_completion(&done.done);
8015
2dabb324
CR
8016 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8017 pgoff, start, start + sectorsize - 1,
8018 io_bio->mirror_num,
8019 btrfs_retry_endio, &done);
8b110e39
MX
8020 if (ret) {
8021 err = ret;
8022 goto next;
8023 }
8024
8025 wait_for_completion(&done.done);
8026
8027 if (!done.uptodate) {
8028 /* We might have another mirror, so try again */
8029 goto try_again;
8030 }
8031next:
2dabb324
CR
8032 offset += sectorsize;
8033 start += sectorsize;
8034
8035 ASSERT(nr_sectors);
8036
8037 if (--nr_sectors) {
8038 pgoff += sectorsize;
8039 goto next_block;
8040 }
2c30c71b 8041 }
c1dc0896
MX
8042
8043 return err;
8044}
8045
8b110e39
MX
8046static int btrfs_subio_endio_read(struct inode *inode,
8047 struct btrfs_io_bio *io_bio, int err)
8048{
8049 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8050
8051 if (skip_csum) {
8052 if (unlikely(err))
8053 return __btrfs_correct_data_nocsum(inode, io_bio);
8054 else
8055 return 0;
8056 } else {
8057 return __btrfs_subio_endio_read(inode, io_bio, err);
8058 }
8059}
8060
4246a0b6 8061static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8062{
8063 struct btrfs_dio_private *dip = bio->bi_private;
8064 struct inode *inode = dip->inode;
8065 struct bio *dio_bio;
8066 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8067 int err = bio->bi_error;
c1dc0896 8068
8b110e39
MX
8069 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8070 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8071
4b46fce2 8072 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8073 dip->logical_offset + dip->bytes - 1);
9be3395b 8074 dio_bio = dip->dio_bio;
4b46fce2 8075
4b46fce2 8076 kfree(dip);
c0da7aa1 8077
1636d1d7 8078 dio_bio->bi_error = bio->bi_error;
4246a0b6 8079 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8080
8081 if (io_bio->end_io)
8082 io_bio->end_io(io_bio, err);
9be3395b 8083 bio_put(bio);
4b46fce2
JB
8084}
8085
14543774
FM
8086static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8087 const u64 offset,
8088 const u64 bytes,
8089 const int uptodate)
4b46fce2 8090{
4b46fce2 8091 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8092 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8093 u64 ordered_offset = offset;
8094 u64 ordered_bytes = bytes;
4b46fce2
JB
8095 int ret;
8096
163cf09c
CM
8097again:
8098 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8099 &ordered_offset,
4246a0b6 8100 ordered_bytes,
14543774 8101 uptodate);
4b46fce2 8102 if (!ret)
163cf09c 8103 goto out_test;
4b46fce2 8104
9e0af237
LB
8105 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8106 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8107 btrfs_queue_work(root->fs_info->endio_write_workers,
8108 &ordered->work);
163cf09c
CM
8109out_test:
8110 /*
8111 * our bio might span multiple ordered extents. If we haven't
8112 * completed the accounting for the whole dio, go back and try again
8113 */
14543774
FM
8114 if (ordered_offset < offset + bytes) {
8115 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8116 ordered = NULL;
163cf09c
CM
8117 goto again;
8118 }
14543774
FM
8119}
8120
8121static void btrfs_endio_direct_write(struct bio *bio)
8122{
8123 struct btrfs_dio_private *dip = bio->bi_private;
8124 struct bio *dio_bio = dip->dio_bio;
8125
8126 btrfs_endio_direct_write_update_ordered(dip->inode,
8127 dip->logical_offset,
8128 dip->bytes,
8129 !bio->bi_error);
4b46fce2 8130
4b46fce2 8131 kfree(dip);
c0da7aa1 8132
1636d1d7 8133 dio_bio->bi_error = bio->bi_error;
4246a0b6 8134 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8135 bio_put(bio);
4b46fce2
JB
8136}
8137
eaf25d93
CM
8138static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8139 struct bio *bio, int mirror_num,
8140 unsigned long bio_flags, u64 offset)
8141{
8142 int ret;
8143 struct btrfs_root *root = BTRFS_I(inode)->root;
8144 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8145 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8146 return 0;
8147}
8148
4246a0b6 8149static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8150{
8151 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8152 int err = bio->bi_error;
e65e1535 8153
8b110e39
MX
8154 if (err)
8155 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8156 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8157 btrfs_ino(dip->inode), bio->bi_rw,
8158 (unsigned long long)bio->bi_iter.bi_sector,
8159 bio->bi_iter.bi_size, err);
8160
8161 if (dip->subio_endio)
8162 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8163
8164 if (err) {
e65e1535
MX
8165 dip->errors = 1;
8166
8167 /*
8168 * before atomic variable goto zero, we must make sure
8169 * dip->errors is perceived to be set.
8170 */
4e857c58 8171 smp_mb__before_atomic();
e65e1535
MX
8172 }
8173
8174 /* if there are more bios still pending for this dio, just exit */
8175 if (!atomic_dec_and_test(&dip->pending_bios))
8176 goto out;
8177
9be3395b 8178 if (dip->errors) {
e65e1535 8179 bio_io_error(dip->orig_bio);
9be3395b 8180 } else {
4246a0b6
CH
8181 dip->dio_bio->bi_error = 0;
8182 bio_endio(dip->orig_bio);
e65e1535
MX
8183 }
8184out:
8185 bio_put(bio);
8186}
8187
8188static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8189 u64 first_sector, gfp_t gfp_flags)
8190{
da2f0f74 8191 struct bio *bio;
22365979 8192 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8193 if (bio)
8194 bio_associate_current(bio);
8195 return bio;
e65e1535
MX
8196}
8197
c1dc0896
MX
8198static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8199 struct inode *inode,
8200 struct btrfs_dio_private *dip,
8201 struct bio *bio,
8202 u64 file_offset)
8203{
8204 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8205 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8206 int ret;
8207
8208 /*
8209 * We load all the csum data we need when we submit
8210 * the first bio to reduce the csum tree search and
8211 * contention.
8212 */
8213 if (dip->logical_offset == file_offset) {
8214 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8215 file_offset);
8216 if (ret)
8217 return ret;
8218 }
8219
8220 if (bio == dip->orig_bio)
8221 return 0;
8222
8223 file_offset -= dip->logical_offset;
8224 file_offset >>= inode->i_sb->s_blocksize_bits;
8225 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8226
8227 return 0;
8228}
8229
e65e1535
MX
8230static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8231 int rw, u64 file_offset, int skip_sum,
c329861d 8232 int async_submit)
e65e1535 8233{
facc8a22 8234 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8235 int write = rw & REQ_WRITE;
8236 struct btrfs_root *root = BTRFS_I(inode)->root;
8237 int ret;
8238
b812ce28
JB
8239 if (async_submit)
8240 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8241
e65e1535 8242 bio_get(bio);
5fd02043
JB
8243
8244 if (!write) {
bfebd8b5
DS
8245 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8246 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8247 if (ret)
8248 goto err;
8249 }
e65e1535 8250
1ae39938
JB
8251 if (skip_sum)
8252 goto map;
8253
8254 if (write && async_submit) {
e65e1535
MX
8255 ret = btrfs_wq_submit_bio(root->fs_info,
8256 inode, rw, bio, 0, 0,
8257 file_offset,
8258 __btrfs_submit_bio_start_direct_io,
8259 __btrfs_submit_bio_done);
8260 goto err;
1ae39938
JB
8261 } else if (write) {
8262 /*
8263 * If we aren't doing async submit, calculate the csum of the
8264 * bio now.
8265 */
8266 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8267 if (ret)
8268 goto err;
23ea8e5a 8269 } else {
c1dc0896
MX
8270 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8271 file_offset);
c2db1073
TI
8272 if (ret)
8273 goto err;
8274 }
1ae39938
JB
8275map:
8276 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8277err:
8278 bio_put(bio);
8279 return ret;
8280}
8281
8282static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8283 int skip_sum)
8284{
8285 struct inode *inode = dip->inode;
8286 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8287 struct bio *bio;
8288 struct bio *orig_bio = dip->orig_bio;
8289 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8290 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8291 u64 file_offset = dip->logical_offset;
8292 u64 submit_len = 0;
8293 u64 map_length;
5f4dc8fc 8294 u32 blocksize = root->sectorsize;
1ae39938 8295 int async_submit = 0;
5f4dc8fc
CR
8296 int nr_sectors;
8297 int ret;
8298 int i;
e65e1535 8299
4f024f37 8300 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8301 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8302 &map_length, NULL, 0);
7a5c3c9b 8303 if (ret)
e65e1535 8304 return -EIO;
facc8a22 8305
4f024f37 8306 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8307 bio = orig_bio;
c1dc0896 8308 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8309 goto submit;
8310 }
8311
53b381b3 8312 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8313 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8314 async_submit = 0;
8315 else
8316 async_submit = 1;
8317
02f57c7a
JB
8318 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8319 if (!bio)
8320 return -ENOMEM;
7a5c3c9b 8321
02f57c7a
JB
8322 bio->bi_private = dip;
8323 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8324 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8325 atomic_inc(&dip->pending_bios);
8326
e65e1535 8327 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8328 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8329 i = 0;
8330next_block:
8331 if (unlikely(map_length < submit_len + blocksize ||
8332 bio_add_page(bio, bvec->bv_page, blocksize,
8333 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8334 /*
8335 * inc the count before we submit the bio so
8336 * we know the end IO handler won't happen before
8337 * we inc the count. Otherwise, the dip might get freed
8338 * before we're done setting it up
8339 */
8340 atomic_inc(&dip->pending_bios);
8341 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8342 file_offset, skip_sum,
c329861d 8343 async_submit);
e65e1535
MX
8344 if (ret) {
8345 bio_put(bio);
8346 atomic_dec(&dip->pending_bios);
8347 goto out_err;
8348 }
8349
e65e1535
MX
8350 start_sector += submit_len >> 9;
8351 file_offset += submit_len;
8352
8353 submit_len = 0;
e65e1535
MX
8354
8355 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8356 start_sector, GFP_NOFS);
8357 if (!bio)
8358 goto out_err;
8359 bio->bi_private = dip;
8360 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8361 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8362
4f024f37 8363 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8364 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8365 start_sector << 9,
e65e1535
MX
8366 &map_length, NULL, 0);
8367 if (ret) {
8368 bio_put(bio);
8369 goto out_err;
8370 }
5f4dc8fc
CR
8371
8372 goto next_block;
e65e1535 8373 } else {
5f4dc8fc
CR
8374 submit_len += blocksize;
8375 if (--nr_sectors) {
8376 i++;
8377 goto next_block;
8378 }
e65e1535
MX
8379 bvec++;
8380 }
8381 }
8382
02f57c7a 8383submit:
e65e1535 8384 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8385 async_submit);
e65e1535
MX
8386 if (!ret)
8387 return 0;
8388
8389 bio_put(bio);
8390out_err:
8391 dip->errors = 1;
8392 /*
8393 * before atomic variable goto zero, we must
8394 * make sure dip->errors is perceived to be set.
8395 */
4e857c58 8396 smp_mb__before_atomic();
e65e1535
MX
8397 if (atomic_dec_and_test(&dip->pending_bios))
8398 bio_io_error(dip->orig_bio);
8399
8400 /* bio_end_io() will handle error, so we needn't return it */
8401 return 0;
8402}
8403
9be3395b
CM
8404static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8405 struct inode *inode, loff_t file_offset)
4b46fce2 8406{
61de718f
FM
8407 struct btrfs_dio_private *dip = NULL;
8408 struct bio *io_bio = NULL;
23ea8e5a 8409 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8410 int skip_sum;
7b6d91da 8411 int write = rw & REQ_WRITE;
4b46fce2
JB
8412 int ret = 0;
8413
8414 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8415
9be3395b 8416 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8417 if (!io_bio) {
8418 ret = -ENOMEM;
8419 goto free_ordered;
8420 }
8421
c1dc0896 8422 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8423 if (!dip) {
8424 ret = -ENOMEM;
61de718f 8425 goto free_ordered;
4b46fce2 8426 }
4b46fce2 8427
9be3395b 8428 dip->private = dio_bio->bi_private;
4b46fce2
JB
8429 dip->inode = inode;
8430 dip->logical_offset = file_offset;
4f024f37
KO
8431 dip->bytes = dio_bio->bi_iter.bi_size;
8432 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8433 io_bio->bi_private = dip;
9be3395b
CM
8434 dip->orig_bio = io_bio;
8435 dip->dio_bio = dio_bio;
e65e1535 8436 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8437 btrfs_bio = btrfs_io_bio(io_bio);
8438 btrfs_bio->logical = file_offset;
4b46fce2 8439
c1dc0896 8440 if (write) {
9be3395b 8441 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8442 } else {
9be3395b 8443 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8444 dip->subio_endio = btrfs_subio_endio_read;
8445 }
4b46fce2 8446
f28a4928
FM
8447 /*
8448 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8449 * even if we fail to submit a bio, because in such case we do the
8450 * corresponding error handling below and it must not be done a second
8451 * time by btrfs_direct_IO().
8452 */
8453 if (write) {
8454 struct btrfs_dio_data *dio_data = current->journal_info;
8455
8456 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8457 dip->bytes;
8458 dio_data->unsubmitted_oe_range_start =
8459 dio_data->unsubmitted_oe_range_end;
8460 }
8461
e65e1535
MX
8462 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8463 if (!ret)
eaf25d93 8464 return;
9be3395b 8465
23ea8e5a
MX
8466 if (btrfs_bio->end_io)
8467 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8468
4b46fce2
JB
8469free_ordered:
8470 /*
61de718f
FM
8471 * If we arrived here it means either we failed to submit the dip
8472 * or we either failed to clone the dio_bio or failed to allocate the
8473 * dip. If we cloned the dio_bio and allocated the dip, we can just
8474 * call bio_endio against our io_bio so that we get proper resource
8475 * cleanup if we fail to submit the dip, otherwise, we must do the
8476 * same as btrfs_endio_direct_[write|read] because we can't call these
8477 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8478 */
61de718f 8479 if (io_bio && dip) {
4246a0b6
CH
8480 io_bio->bi_error = -EIO;
8481 bio_endio(io_bio);
61de718f
FM
8482 /*
8483 * The end io callbacks free our dip, do the final put on io_bio
8484 * and all the cleanup and final put for dio_bio (through
8485 * dio_end_io()).
8486 */
8487 dip = NULL;
8488 io_bio = NULL;
8489 } else {
14543774
FM
8490 if (write)
8491 btrfs_endio_direct_write_update_ordered(inode,
8492 file_offset,
8493 dio_bio->bi_iter.bi_size,
8494 0);
8495 else
61de718f
FM
8496 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8497 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8498
4246a0b6 8499 dio_bio->bi_error = -EIO;
61de718f
FM
8500 /*
8501 * Releases and cleans up our dio_bio, no need to bio_put()
8502 * nor bio_endio()/bio_io_error() against dio_bio.
8503 */
8504 dio_end_io(dio_bio, ret);
4b46fce2 8505 }
61de718f
FM
8506 if (io_bio)
8507 bio_put(io_bio);
8508 kfree(dip);
4b46fce2
JB
8509}
8510
6f673763 8511static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8512 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8513{
8514 int seg;
a1b75f7d 8515 int i;
5a5f79b5
CM
8516 unsigned blocksize_mask = root->sectorsize - 1;
8517 ssize_t retval = -EINVAL;
5a5f79b5
CM
8518
8519 if (offset & blocksize_mask)
8520 goto out;
8521
28060d5d
AV
8522 if (iov_iter_alignment(iter) & blocksize_mask)
8523 goto out;
a1b75f7d 8524
28060d5d 8525 /* If this is a write we don't need to check anymore */
6f673763 8526 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8527 return 0;
8528 /*
8529 * Check to make sure we don't have duplicate iov_base's in this
8530 * iovec, if so return EINVAL, otherwise we'll get csum errors
8531 * when reading back.
8532 */
8533 for (seg = 0; seg < iter->nr_segs; seg++) {
8534 for (i = seg + 1; i < iter->nr_segs; i++) {
8535 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8536 goto out;
8537 }
5a5f79b5
CM
8538 }
8539 retval = 0;
8540out:
8541 return retval;
8542}
eb838e73 8543
22c6186e
OS
8544static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8545 loff_t offset)
16432985 8546{
4b46fce2
JB
8547 struct file *file = iocb->ki_filp;
8548 struct inode *inode = file->f_mapping->host;
50745b0a 8549 struct btrfs_root *root = BTRFS_I(inode)->root;
8550 struct btrfs_dio_data dio_data = { 0 };
0934856d 8551 size_t count = 0;
2e60a51e 8552 int flags = 0;
38851cc1
MX
8553 bool wakeup = true;
8554 bool relock = false;
0934856d 8555 ssize_t ret;
4b46fce2 8556
6f673763 8557 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8558 return 0;
3f7c579c 8559
fe0f07d0 8560 inode_dio_begin(inode);
4e857c58 8561 smp_mb__after_atomic();
38851cc1 8562
0e267c44 8563 /*
41bd9ca4
MX
8564 * The generic stuff only does filemap_write_and_wait_range, which
8565 * isn't enough if we've written compressed pages to this area, so
8566 * we need to flush the dirty pages again to make absolutely sure
8567 * that any outstanding dirty pages are on disk.
0e267c44 8568 */
a6cbcd4a 8569 count = iov_iter_count(iter);
41bd9ca4
MX
8570 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8571 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8572 filemap_fdatawrite_range(inode->i_mapping, offset,
8573 offset + count - 1);
0e267c44 8574
6f673763 8575 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8576 /*
8577 * If the write DIO is beyond the EOF, we need update
8578 * the isize, but it is protected by i_mutex. So we can
8579 * not unlock the i_mutex at this case.
8580 */
8581 if (offset + count <= inode->i_size) {
5955102c 8582 inode_unlock(inode);
38851cc1
MX
8583 relock = true;
8584 }
7cf5b976 8585 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8586 if (ret)
38851cc1 8587 goto out;
50745b0a 8588 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8589 BTRFS_MAX_EXTENT_SIZE - 1,
8590 BTRFS_MAX_EXTENT_SIZE);
8591
8592 /*
8593 * We need to know how many extents we reserved so that we can
8594 * do the accounting properly if we go over the number we
8595 * originally calculated. Abuse current->journal_info for this.
8596 */
50745b0a 8597 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8598 dio_data.unsubmitted_oe_range_start = (u64)offset;
8599 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8600 current->journal_info = &dio_data;
ee39b432
DS
8601 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8602 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8603 inode_dio_end(inode);
38851cc1
MX
8604 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8605 wakeup = false;
0934856d
MX
8606 }
8607
17f8c842
OS
8608 ret = __blockdev_direct_IO(iocb, inode,
8609 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8610 iter, offset, btrfs_get_blocks_direct, NULL,
8611 btrfs_submit_direct, flags);
6f673763 8612 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8613 current->journal_info = NULL;
ddba1bfc 8614 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8615 if (dio_data.reserve)
7cf5b976
QW
8616 btrfs_delalloc_release_space(inode, offset,
8617 dio_data.reserve);
f28a4928
FM
8618 /*
8619 * On error we might have left some ordered extents
8620 * without submitting corresponding bios for them, so
8621 * cleanup them up to avoid other tasks getting them
8622 * and waiting for them to complete forever.
8623 */
8624 if (dio_data.unsubmitted_oe_range_start <
8625 dio_data.unsubmitted_oe_range_end)
8626 btrfs_endio_direct_write_update_ordered(inode,
8627 dio_data.unsubmitted_oe_range_start,
8628 dio_data.unsubmitted_oe_range_end -
8629 dio_data.unsubmitted_oe_range_start,
8630 0);
ddba1bfc 8631 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8632 btrfs_delalloc_release_space(inode, offset,
8633 count - (size_t)ret);
0934856d 8634 }
38851cc1 8635out:
2e60a51e 8636 if (wakeup)
fe0f07d0 8637 inode_dio_end(inode);
38851cc1 8638 if (relock)
5955102c 8639 inode_lock(inode);
0934856d
MX
8640
8641 return ret;
16432985
CM
8642}
8643
05dadc09
TI
8644#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8645
1506fcc8
YS
8646static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8647 __u64 start, __u64 len)
8648{
05dadc09
TI
8649 int ret;
8650
8651 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8652 if (ret)
8653 return ret;
8654
ec29ed5b 8655 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8656}
8657
a52d9a80 8658int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8659{
d1310b2e
CM
8660 struct extent_io_tree *tree;
8661 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8662 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8663}
1832a6d5 8664
a52d9a80 8665static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8666{
d1310b2e 8667 struct extent_io_tree *tree;
be7bd730
JB
8668 struct inode *inode = page->mapping->host;
8669 int ret;
b888db2b
CM
8670
8671 if (current->flags & PF_MEMALLOC) {
8672 redirty_page_for_writepage(wbc, page);
8673 unlock_page(page);
8674 return 0;
8675 }
be7bd730
JB
8676
8677 /*
8678 * If we are under memory pressure we will call this directly from the
8679 * VM, we need to make sure we have the inode referenced for the ordered
8680 * extent. If not just return like we didn't do anything.
8681 */
8682 if (!igrab(inode)) {
8683 redirty_page_for_writepage(wbc, page);
8684 return AOP_WRITEPAGE_ACTIVATE;
8685 }
d1310b2e 8686 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8687 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8688 btrfs_add_delayed_iput(inode);
8689 return ret;
9ebefb18
CM
8690}
8691
48a3b636
ES
8692static int btrfs_writepages(struct address_space *mapping,
8693 struct writeback_control *wbc)
b293f02e 8694{
d1310b2e 8695 struct extent_io_tree *tree;
771ed689 8696
d1310b2e 8697 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8698 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8699}
8700
3ab2fb5a
CM
8701static int
8702btrfs_readpages(struct file *file, struct address_space *mapping,
8703 struct list_head *pages, unsigned nr_pages)
8704{
d1310b2e
CM
8705 struct extent_io_tree *tree;
8706 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8707 return extent_readpages(tree, mapping, pages, nr_pages,
8708 btrfs_get_extent);
8709}
e6dcd2dc 8710static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8711{
d1310b2e
CM
8712 struct extent_io_tree *tree;
8713 struct extent_map_tree *map;
a52d9a80 8714 int ret;
8c2383c3 8715
d1310b2e
CM
8716 tree = &BTRFS_I(page->mapping->host)->io_tree;
8717 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8718 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8719 if (ret == 1) {
8720 ClearPagePrivate(page);
8721 set_page_private(page, 0);
09cbfeaf 8722 put_page(page);
39279cc3 8723 }
a52d9a80 8724 return ret;
39279cc3
CM
8725}
8726
e6dcd2dc
CM
8727static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8728{
98509cfc
CM
8729 if (PageWriteback(page) || PageDirty(page))
8730 return 0;
b335b003 8731 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8732}
8733
d47992f8
LC
8734static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8735 unsigned int length)
39279cc3 8736{
5fd02043 8737 struct inode *inode = page->mapping->host;
d1310b2e 8738 struct extent_io_tree *tree;
e6dcd2dc 8739 struct btrfs_ordered_extent *ordered;
2ac55d41 8740 struct extent_state *cached_state = NULL;
e6dcd2dc 8741 u64 page_start = page_offset(page);
09cbfeaf 8742 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8743 u64 start;
8744 u64 end;
131e404a 8745 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8746
8b62b72b
CM
8747 /*
8748 * we have the page locked, so new writeback can't start,
8749 * and the dirty bit won't be cleared while we are here.
8750 *
8751 * Wait for IO on this page so that we can safely clear
8752 * the PagePrivate2 bit and do ordered accounting
8753 */
e6dcd2dc 8754 wait_on_page_writeback(page);
8b62b72b 8755
5fd02043 8756 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8757 if (offset) {
8758 btrfs_releasepage(page, GFP_NOFS);
8759 return;
8760 }
131e404a
FDBM
8761
8762 if (!inode_evicting)
ff13db41 8763 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8764again:
8765 start = page_start;
8766 ordered = btrfs_lookup_ordered_range(inode, start,
8767 page_end - start + 1);
e6dcd2dc 8768 if (ordered) {
dbfdb6d1 8769 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8770 /*
8771 * IO on this page will never be started, so we need
8772 * to account for any ordered extents now
8773 */
131e404a 8774 if (!inode_evicting)
dbfdb6d1 8775 clear_extent_bit(tree, start, end,
131e404a
FDBM
8776 EXTENT_DIRTY | EXTENT_DELALLOC |
8777 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8778 EXTENT_DEFRAG, 1, 0, &cached_state,
8779 GFP_NOFS);
8b62b72b
CM
8780 /*
8781 * whoever cleared the private bit is responsible
8782 * for the finish_ordered_io
8783 */
77cef2ec
JB
8784 if (TestClearPagePrivate2(page)) {
8785 struct btrfs_ordered_inode_tree *tree;
8786 u64 new_len;
8787
8788 tree = &BTRFS_I(inode)->ordered_tree;
8789
8790 spin_lock_irq(&tree->lock);
8791 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8792 new_len = start - ordered->file_offset;
77cef2ec
JB
8793 if (new_len < ordered->truncated_len)
8794 ordered->truncated_len = new_len;
8795 spin_unlock_irq(&tree->lock);
8796
8797 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8798 start,
8799 end - start + 1, 1))
77cef2ec 8800 btrfs_finish_ordered_io(ordered);
8b62b72b 8801 }
e6dcd2dc 8802 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8803 if (!inode_evicting) {
8804 cached_state = NULL;
dbfdb6d1 8805 lock_extent_bits(tree, start, end,
131e404a
FDBM
8806 &cached_state);
8807 }
dbfdb6d1
CR
8808
8809 start = end + 1;
8810 if (start < page_end)
8811 goto again;
131e404a
FDBM
8812 }
8813
b9d0b389
QW
8814 /*
8815 * Qgroup reserved space handler
8816 * Page here will be either
8817 * 1) Already written to disk
8818 * In this case, its reserved space is released from data rsv map
8819 * and will be freed by delayed_ref handler finally.
8820 * So even we call qgroup_free_data(), it won't decrease reserved
8821 * space.
8822 * 2) Not written to disk
8823 * This means the reserved space should be freed here.
8824 */
09cbfeaf 8825 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8826 if (!inode_evicting) {
8827 clear_extent_bit(tree, page_start, page_end,
8828 EXTENT_LOCKED | EXTENT_DIRTY |
8829 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8830 EXTENT_DEFRAG, 1, 1,
8831 &cached_state, GFP_NOFS);
8832
8833 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8834 }
e6dcd2dc 8835
4a096752 8836 ClearPageChecked(page);
9ad6b7bc 8837 if (PagePrivate(page)) {
9ad6b7bc
CM
8838 ClearPagePrivate(page);
8839 set_page_private(page, 0);
09cbfeaf 8840 put_page(page);
9ad6b7bc 8841 }
39279cc3
CM
8842}
8843
9ebefb18
CM
8844/*
8845 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8846 * called from a page fault handler when a page is first dirtied. Hence we must
8847 * be careful to check for EOF conditions here. We set the page up correctly
8848 * for a written page which means we get ENOSPC checking when writing into
8849 * holes and correct delalloc and unwritten extent mapping on filesystems that
8850 * support these features.
8851 *
8852 * We are not allowed to take the i_mutex here so we have to play games to
8853 * protect against truncate races as the page could now be beyond EOF. Because
8854 * vmtruncate() writes the inode size before removing pages, once we have the
8855 * page lock we can determine safely if the page is beyond EOF. If it is not
8856 * beyond EOF, then the page is guaranteed safe against truncation until we
8857 * unlock the page.
8858 */
c2ec175c 8859int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8860{
c2ec175c 8861 struct page *page = vmf->page;
496ad9aa 8862 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8863 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8864 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8865 struct btrfs_ordered_extent *ordered;
2ac55d41 8866 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8867 char *kaddr;
8868 unsigned long zero_start;
9ebefb18 8869 loff_t size;
1832a6d5 8870 int ret;
9998eb70 8871 int reserved = 0;
d0b7da88 8872 u64 reserved_space;
a52d9a80 8873 u64 page_start;
e6dcd2dc 8874 u64 page_end;
d0b7da88
CR
8875 u64 end;
8876
09cbfeaf 8877 reserved_space = PAGE_SIZE;
9ebefb18 8878
b2b5ef5c 8879 sb_start_pagefault(inode->i_sb);
df480633 8880 page_start = page_offset(page);
09cbfeaf 8881 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8882 end = page_end;
df480633 8883
d0b7da88
CR
8884 /*
8885 * Reserving delalloc space after obtaining the page lock can lead to
8886 * deadlock. For example, if a dirty page is locked by this function
8887 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8888 * dirty page write out, then the btrfs_writepage() function could
8889 * end up waiting indefinitely to get a lock on the page currently
8890 * being processed by btrfs_page_mkwrite() function.
8891 */
7cf5b976 8892 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8893 reserved_space);
9998eb70 8894 if (!ret) {
e41f941a 8895 ret = file_update_time(vma->vm_file);
9998eb70
CM
8896 reserved = 1;
8897 }
56a76f82
NP
8898 if (ret) {
8899 if (ret == -ENOMEM)
8900 ret = VM_FAULT_OOM;
8901 else /* -ENOSPC, -EIO, etc */
8902 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8903 if (reserved)
8904 goto out;
8905 goto out_noreserve;
56a76f82 8906 }
1832a6d5 8907
56a76f82 8908 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8909again:
9ebefb18 8910 lock_page(page);
9ebefb18 8911 size = i_size_read(inode);
a52d9a80 8912
9ebefb18 8913 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8914 (page_start >= size)) {
9ebefb18
CM
8915 /* page got truncated out from underneath us */
8916 goto out_unlock;
8917 }
e6dcd2dc
CM
8918 wait_on_page_writeback(page);
8919
ff13db41 8920 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8921 set_page_extent_mapped(page);
8922
eb84ae03
CM
8923 /*
8924 * we can't set the delalloc bits if there are pending ordered
8925 * extents. Drop our locks and wait for them to finish
8926 */
d0b7da88 8927 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8928 if (ordered) {
2ac55d41
JB
8929 unlock_extent_cached(io_tree, page_start, page_end,
8930 &cached_state, GFP_NOFS);
e6dcd2dc 8931 unlock_page(page);
eb84ae03 8932 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8933 btrfs_put_ordered_extent(ordered);
8934 goto again;
8935 }
8936
09cbfeaf 8937 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8938 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8939 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8940 end = page_start + reserved_space - 1;
8941 spin_lock(&BTRFS_I(inode)->lock);
8942 BTRFS_I(inode)->outstanding_extents++;
8943 spin_unlock(&BTRFS_I(inode)->lock);
8944 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8945 PAGE_SIZE - reserved_space);
d0b7da88
CR
8946 }
8947 }
8948
fbf19087
JB
8949 /*
8950 * XXX - page_mkwrite gets called every time the page is dirtied, even
8951 * if it was already dirty, so for space accounting reasons we need to
8952 * clear any delalloc bits for the range we are fixing to save. There
8953 * is probably a better way to do this, but for now keep consistent with
8954 * prepare_pages in the normal write path.
8955 */
d0b7da88 8956 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8957 EXTENT_DIRTY | EXTENT_DELALLOC |
8958 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8959 0, 0, &cached_state, GFP_NOFS);
fbf19087 8960
d0b7da88 8961 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 8962 &cached_state);
9ed74f2d 8963 if (ret) {
2ac55d41
JB
8964 unlock_extent_cached(io_tree, page_start, page_end,
8965 &cached_state, GFP_NOFS);
9ed74f2d
JB
8966 ret = VM_FAULT_SIGBUS;
8967 goto out_unlock;
8968 }
e6dcd2dc 8969 ret = 0;
9ebefb18
CM
8970
8971 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8972 if (page_start + PAGE_SIZE > size)
8973 zero_start = size & ~PAGE_MASK;
9ebefb18 8974 else
09cbfeaf 8975 zero_start = PAGE_SIZE;
9ebefb18 8976
09cbfeaf 8977 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8978 kaddr = kmap(page);
09cbfeaf 8979 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8980 flush_dcache_page(page);
8981 kunmap(page);
8982 }
247e743c 8983 ClearPageChecked(page);
e6dcd2dc 8984 set_page_dirty(page);
50a9b214 8985 SetPageUptodate(page);
5a3f23d5 8986
257c62e1
CM
8987 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8988 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8989 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8990
2ac55d41 8991 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8992
8993out_unlock:
b2b5ef5c
JK
8994 if (!ret) {
8995 sb_end_pagefault(inode->i_sb);
50a9b214 8996 return VM_FAULT_LOCKED;
b2b5ef5c 8997 }
9ebefb18 8998 unlock_page(page);
1832a6d5 8999out:
d0b7da88 9000 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9001out_noreserve:
b2b5ef5c 9002 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9003 return ret;
9004}
9005
a41ad394 9006static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9007{
9008 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9009 struct btrfs_block_rsv *rsv;
a71754fc 9010 int ret = 0;
3893e33b 9011 int err = 0;
39279cc3 9012 struct btrfs_trans_handle *trans;
dbe674a9 9013 u64 mask = root->sectorsize - 1;
07127184 9014 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9015
0ef8b726
JB
9016 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9017 (u64)-1);
9018 if (ret)
9019 return ret;
39279cc3 9020
fcb80c2a
JB
9021 /*
9022 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
9023 * 3 things going on here
9024 *
9025 * 1) We need to reserve space for our orphan item and the space to
9026 * delete our orphan item. Lord knows we don't want to have a dangling
9027 * orphan item because we didn't reserve space to remove it.
9028 *
9029 * 2) We need to reserve space to update our inode.
9030 *
9031 * 3) We need to have something to cache all the space that is going to
9032 * be free'd up by the truncate operation, but also have some slack
9033 * space reserved in case it uses space during the truncate (thank you
9034 * very much snapshotting).
9035 *
9036 * And we need these to all be seperate. The fact is we can use alot of
9037 * space doing the truncate, and we have no earthly idea how much space
9038 * we will use, so we need the truncate reservation to be seperate so it
9039 * doesn't end up using space reserved for updating the inode or
9040 * removing the orphan item. We also need to be able to stop the
9041 * transaction and start a new one, which means we need to be able to
9042 * update the inode several times, and we have no idea of knowing how
9043 * many times that will be, so we can't just reserve 1 item for the
9044 * entirety of the opration, so that has to be done seperately as well.
9045 * Then there is the orphan item, which does indeed need to be held on
9046 * to for the whole operation, and we need nobody to touch this reserved
9047 * space except the orphan code.
9048 *
9049 * So that leaves us with
9050 *
9051 * 1) root->orphan_block_rsv - for the orphan deletion.
9052 * 2) rsv - for the truncate reservation, which we will steal from the
9053 * transaction reservation.
9054 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9055 * updating the inode.
9056 */
66d8f3dd 9057 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9058 if (!rsv)
9059 return -ENOMEM;
4a338542 9060 rsv->size = min_size;
ca7e70f5 9061 rsv->failfast = 1;
f0cd846e 9062
907cbceb 9063 /*
07127184 9064 * 1 for the truncate slack space
907cbceb
JB
9065 * 1 for updating the inode.
9066 */
f3fe820c 9067 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9068 if (IS_ERR(trans)) {
9069 err = PTR_ERR(trans);
9070 goto out;
9071 }
f0cd846e 9072
907cbceb
JB
9073 /* Migrate the slack space for the truncate to our reserve */
9074 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9075 min_size);
fcb80c2a 9076 BUG_ON(ret);
f0cd846e 9077
5dc562c5
JB
9078 /*
9079 * So if we truncate and then write and fsync we normally would just
9080 * write the extents that changed, which is a problem if we need to
9081 * first truncate that entire inode. So set this flag so we write out
9082 * all of the extents in the inode to the sync log so we're completely
9083 * safe.
9084 */
9085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9086 trans->block_rsv = rsv;
907cbceb 9087
8082510e
YZ
9088 while (1) {
9089 ret = btrfs_truncate_inode_items(trans, root, inode,
9090 inode->i_size,
9091 BTRFS_EXTENT_DATA_KEY);
28ed1345 9092 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9093 err = ret;
8082510e 9094 break;
3893e33b 9095 }
39279cc3 9096
fcb80c2a 9097 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9098 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9099 if (ret) {
9100 err = ret;
9101 break;
9102 }
ca7e70f5 9103
8082510e 9104 btrfs_end_transaction(trans, root);
b53d3f5d 9105 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9106
9107 trans = btrfs_start_transaction(root, 2);
9108 if (IS_ERR(trans)) {
9109 ret = err = PTR_ERR(trans);
9110 trans = NULL;
9111 break;
9112 }
9113
9114 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9115 rsv, min_size);
9116 BUG_ON(ret); /* shouldn't happen */
9117 trans->block_rsv = rsv;
8082510e
YZ
9118 }
9119
9120 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9121 trans->block_rsv = root->orphan_block_rsv;
8082510e 9122 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9123 if (ret)
9124 err = ret;
8082510e
YZ
9125 }
9126
917c16b2
CM
9127 if (trans) {
9128 trans->block_rsv = &root->fs_info->trans_block_rsv;
9129 ret = btrfs_update_inode(trans, root, inode);
9130 if (ret && !err)
9131 err = ret;
7b128766 9132
7ad85bb7 9133 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9134 btrfs_btree_balance_dirty(root);
917c16b2 9135 }
fcb80c2a
JB
9136
9137out:
9138 btrfs_free_block_rsv(root, rsv);
9139
3893e33b
JB
9140 if (ret && !err)
9141 err = ret;
a41ad394 9142
3893e33b 9143 return err;
39279cc3
CM
9144}
9145
d352ac68
CM
9146/*
9147 * create a new subvolume directory/inode (helper for the ioctl).
9148 */
d2fb3437 9149int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9150 struct btrfs_root *new_root,
9151 struct btrfs_root *parent_root,
9152 u64 new_dirid)
39279cc3 9153{
39279cc3 9154 struct inode *inode;
76dda93c 9155 int err;
00e4e6b3 9156 u64 index = 0;
39279cc3 9157
12fc9d09
FA
9158 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9159 new_dirid, new_dirid,
9160 S_IFDIR | (~current_umask() & S_IRWXUGO),
9161 &index);
54aa1f4d 9162 if (IS_ERR(inode))
f46b5a66 9163 return PTR_ERR(inode);
39279cc3
CM
9164 inode->i_op = &btrfs_dir_inode_operations;
9165 inode->i_fop = &btrfs_dir_file_operations;
9166
bfe86848 9167 set_nlink(inode, 1);
dbe674a9 9168 btrfs_i_size_write(inode, 0);
b0d5d10f 9169 unlock_new_inode(inode);
3b96362c 9170
63541927
FDBM
9171 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9172 if (err)
9173 btrfs_err(new_root->fs_info,
351fd353 9174 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9175 new_root->root_key.objectid, err);
9176
76dda93c 9177 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9178
76dda93c 9179 iput(inode);
ce598979 9180 return err;
39279cc3
CM
9181}
9182
39279cc3
CM
9183struct inode *btrfs_alloc_inode(struct super_block *sb)
9184{
9185 struct btrfs_inode *ei;
2ead6ae7 9186 struct inode *inode;
39279cc3
CM
9187
9188 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9189 if (!ei)
9190 return NULL;
2ead6ae7
YZ
9191
9192 ei->root = NULL;
2ead6ae7 9193 ei->generation = 0;
15ee9bc7 9194 ei->last_trans = 0;
257c62e1 9195 ei->last_sub_trans = 0;
e02119d5 9196 ei->logged_trans = 0;
2ead6ae7 9197 ei->delalloc_bytes = 0;
47059d93 9198 ei->defrag_bytes = 0;
2ead6ae7
YZ
9199 ei->disk_i_size = 0;
9200 ei->flags = 0;
7709cde3 9201 ei->csum_bytes = 0;
2ead6ae7 9202 ei->index_cnt = (u64)-1;
67de1176 9203 ei->dir_index = 0;
2ead6ae7 9204 ei->last_unlink_trans = 0;
46d8bc34 9205 ei->last_log_commit = 0;
8089fe62 9206 ei->delayed_iput_count = 0;
2ead6ae7 9207
9e0baf60
JB
9208 spin_lock_init(&ei->lock);
9209 ei->outstanding_extents = 0;
9210 ei->reserved_extents = 0;
2ead6ae7 9211
72ac3c0d 9212 ei->runtime_flags = 0;
261507a0 9213 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9214
16cdcec7
MX
9215 ei->delayed_node = NULL;
9216
9cc97d64 9217 ei->i_otime.tv_sec = 0;
9218 ei->i_otime.tv_nsec = 0;
9219
2ead6ae7 9220 inode = &ei->vfs_inode;
a8067e02 9221 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9222 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9223 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9224 ei->io_tree.track_uptodate = 1;
9225 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9226 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9227 mutex_init(&ei->log_mutex);
f248679e 9228 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9229 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9230 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9231 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7
YZ
9232 RB_CLEAR_NODE(&ei->rb_node);
9233
9234 return inode;
39279cc3
CM
9235}
9236
aaedb55b
JB
9237#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9238void btrfs_test_destroy_inode(struct inode *inode)
9239{
9240 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9241 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9242}
9243#endif
9244
fa0d7e3d
NP
9245static void btrfs_i_callback(struct rcu_head *head)
9246{
9247 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9248 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9249}
9250
39279cc3
CM
9251void btrfs_destroy_inode(struct inode *inode)
9252{
e6dcd2dc 9253 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9254 struct btrfs_root *root = BTRFS_I(inode)->root;
9255
b3d9b7a3 9256 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9257 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9258 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9259 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9260 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9261 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9262 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9263
a6dbd429
JB
9264 /*
9265 * This can happen where we create an inode, but somebody else also
9266 * created the same inode and we need to destroy the one we already
9267 * created.
9268 */
9269 if (!root)
9270 goto free;
9271
8a35d95f
JB
9272 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9273 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9274 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9275 btrfs_ino(inode));
8a35d95f 9276 atomic_dec(&root->orphan_inodes);
7b128766 9277 }
7b128766 9278
d397712b 9279 while (1) {
e6dcd2dc
CM
9280 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9281 if (!ordered)
9282 break;
9283 else {
c2cf52eb 9284 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9285 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9286 btrfs_remove_ordered_extent(inode, ordered);
9287 btrfs_put_ordered_extent(ordered);
9288 btrfs_put_ordered_extent(ordered);
9289 }
9290 }
56fa9d07 9291 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9292 inode_tree_del(inode);
5b21f2ed 9293 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9294free:
fa0d7e3d 9295 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9296}
9297
45321ac5 9298int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9299{
9300 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9301
6379ef9f
NA
9302 if (root == NULL)
9303 return 1;
9304
fa6ac876 9305 /* the snap/subvol tree is on deleting */
69e9c6c6 9306 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9307 return 1;
76dda93c 9308 else
45321ac5 9309 return generic_drop_inode(inode);
76dda93c
YZ
9310}
9311
0ee0fda0 9312static void init_once(void *foo)
39279cc3
CM
9313{
9314 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9315
9316 inode_init_once(&ei->vfs_inode);
9317}
9318
9319void btrfs_destroy_cachep(void)
9320{
8c0a8537
KS
9321 /*
9322 * Make sure all delayed rcu free inodes are flushed before we
9323 * destroy cache.
9324 */
9325 rcu_barrier();
5598e900
KM
9326 kmem_cache_destroy(btrfs_inode_cachep);
9327 kmem_cache_destroy(btrfs_trans_handle_cachep);
9328 kmem_cache_destroy(btrfs_transaction_cachep);
9329 kmem_cache_destroy(btrfs_path_cachep);
9330 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9331}
9332
9333int btrfs_init_cachep(void)
9334{
837e1972 9335 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9336 sizeof(struct btrfs_inode), 0,
5d097056
VD
9337 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9338 init_once);
39279cc3
CM
9339 if (!btrfs_inode_cachep)
9340 goto fail;
9601e3f6 9341
837e1972 9342 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9343 sizeof(struct btrfs_trans_handle), 0,
9344 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9345 if (!btrfs_trans_handle_cachep)
9346 goto fail;
9601e3f6 9347
837e1972 9348 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9349 sizeof(struct btrfs_transaction), 0,
9350 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9351 if (!btrfs_transaction_cachep)
9352 goto fail;
9601e3f6 9353
837e1972 9354 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9355 sizeof(struct btrfs_path), 0,
9356 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9357 if (!btrfs_path_cachep)
9358 goto fail;
9601e3f6 9359
837e1972 9360 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9361 sizeof(struct btrfs_free_space), 0,
9362 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9363 if (!btrfs_free_space_cachep)
9364 goto fail;
9365
39279cc3
CM
9366 return 0;
9367fail:
9368 btrfs_destroy_cachep();
9369 return -ENOMEM;
9370}
9371
9372static int btrfs_getattr(struct vfsmount *mnt,
9373 struct dentry *dentry, struct kstat *stat)
9374{
df0af1a5 9375 u64 delalloc_bytes;
2b0143b5 9376 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9377 u32 blocksize = inode->i_sb->s_blocksize;
9378
39279cc3 9379 generic_fillattr(inode, stat);
0ee5dc67 9380 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9381
9382 spin_lock(&BTRFS_I(inode)->lock);
9383 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9384 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9385 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9386 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9387 return 0;
9388}
9389
d397712b
CM
9390static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9391 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9392{
9393 struct btrfs_trans_handle *trans;
9394 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9395 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9396 struct inode *new_inode = d_inode(new_dentry);
9397 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9398 u64 index = 0;
4df27c4d 9399 u64 root_objectid;
39279cc3 9400 int ret;
33345d01 9401 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9402
33345d01 9403 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9404 return -EPERM;
9405
4df27c4d 9406 /* we only allow rename subvolume link between subvolumes */
33345d01 9407 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9408 return -EXDEV;
9409
33345d01
LZ
9410 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9411 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9412 return -ENOTEMPTY;
5f39d397 9413
4df27c4d
YZ
9414 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9415 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9416 return -ENOTEMPTY;
9c52057c
CM
9417
9418
9419 /* check for collisions, even if the name isn't there */
4871c158 9420 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9421 new_dentry->d_name.name,
9422 new_dentry->d_name.len);
9423
9424 if (ret) {
9425 if (ret == -EEXIST) {
9426 /* we shouldn't get
9427 * eexist without a new_inode */
fae7f21c 9428 if (WARN_ON(!new_inode)) {
9c52057c
CM
9429 return ret;
9430 }
9431 } else {
9432 /* maybe -EOVERFLOW */
9433 return ret;
9434 }
9435 }
9436 ret = 0;
9437
5a3f23d5 9438 /*
8d875f95
CM
9439 * we're using rename to replace one file with another. Start IO on it
9440 * now so we don't add too much work to the end of the transaction
5a3f23d5 9441 */
8d875f95 9442 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9443 filemap_flush(old_inode->i_mapping);
9444
76dda93c 9445 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9446 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9447 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9448 /*
9449 * We want to reserve the absolute worst case amount of items. So if
9450 * both inodes are subvols and we need to unlink them then that would
9451 * require 4 item modifications, but if they are both normal inodes it
9452 * would require 5 item modifications, so we'll assume their normal
9453 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9454 * should cover the worst case number of items we'll modify.
9455 */
6e137ed3 9456 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9457 if (IS_ERR(trans)) {
9458 ret = PTR_ERR(trans);
9459 goto out_notrans;
9460 }
76dda93c 9461
4df27c4d
YZ
9462 if (dest != root)
9463 btrfs_record_root_in_trans(trans, dest);
5f39d397 9464
a5719521
YZ
9465 ret = btrfs_set_inode_index(new_dir, &index);
9466 if (ret)
9467 goto out_fail;
5a3f23d5 9468
67de1176 9469 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9471 /* force full log commit if subvolume involved. */
995946dd 9472 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9473 } else {
a5719521
YZ
9474 ret = btrfs_insert_inode_ref(trans, dest,
9475 new_dentry->d_name.name,
9476 new_dentry->d_name.len,
33345d01
LZ
9477 old_ino,
9478 btrfs_ino(new_dir), index);
a5719521
YZ
9479 if (ret)
9480 goto out_fail;
4df27c4d
YZ
9481 /*
9482 * this is an ugly little race, but the rename is required
9483 * to make sure that if we crash, the inode is either at the
9484 * old name or the new one. pinning the log transaction lets
9485 * us make sure we don't allow a log commit to come in after
9486 * we unlink the name but before we add the new name back in.
9487 */
9488 btrfs_pin_log_trans(root);
9489 }
5a3f23d5 9490
0c4d2d95
JB
9491 inode_inc_iversion(old_dir);
9492 inode_inc_iversion(new_dir);
9493 inode_inc_iversion(old_inode);
04b285f3
DD
9494 old_dir->i_ctime = old_dir->i_mtime =
9495 new_dir->i_ctime = new_dir->i_mtime =
9496 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9497
12fcfd22
CM
9498 if (old_dentry->d_parent != new_dentry->d_parent)
9499 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9500
33345d01 9501 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9502 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9503 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9504 old_dentry->d_name.name,
9505 old_dentry->d_name.len);
9506 } else {
92986796 9507 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9508 d_inode(old_dentry),
92986796
AV
9509 old_dentry->d_name.name,
9510 old_dentry->d_name.len);
9511 if (!ret)
9512 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9513 }
79787eaa
JM
9514 if (ret) {
9515 btrfs_abort_transaction(trans, root, ret);
9516 goto out_fail;
9517 }
39279cc3
CM
9518
9519 if (new_inode) {
0c4d2d95 9520 inode_inc_iversion(new_inode);
04b285f3 9521 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9522 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9523 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9524 root_objectid = BTRFS_I(new_inode)->location.objectid;
9525 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9526 root_objectid,
9527 new_dentry->d_name.name,
9528 new_dentry->d_name.len);
9529 BUG_ON(new_inode->i_nlink == 0);
9530 } else {
9531 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9532 d_inode(new_dentry),
4df27c4d
YZ
9533 new_dentry->d_name.name,
9534 new_dentry->d_name.len);
9535 }
4ef31a45 9536 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9537 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9538 if (ret) {
9539 btrfs_abort_transaction(trans, root, ret);
9540 goto out_fail;
9541 }
39279cc3 9542 }
aec7477b 9543
4df27c4d
YZ
9544 ret = btrfs_add_link(trans, new_dir, old_inode,
9545 new_dentry->d_name.name,
a5719521 9546 new_dentry->d_name.len, 0, index);
79787eaa
JM
9547 if (ret) {
9548 btrfs_abort_transaction(trans, root, ret);
9549 goto out_fail;
9550 }
39279cc3 9551
67de1176
MX
9552 if (old_inode->i_nlink == 1)
9553 BTRFS_I(old_inode)->dir_index = index;
9554
33345d01 9555 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9556 struct dentry *parent = new_dentry->d_parent;
6a912213 9557 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9558 btrfs_end_log_trans(root);
9559 }
39279cc3 9560out_fail:
7ad85bb7 9561 btrfs_end_transaction(trans, root);
b44c59a8 9562out_notrans:
33345d01 9563 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9564 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9565
39279cc3
CM
9566 return ret;
9567}
9568
80ace85c
MS
9569static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9570 struct inode *new_dir, struct dentry *new_dentry,
9571 unsigned int flags)
9572{
9573 if (flags & ~RENAME_NOREPLACE)
9574 return -EINVAL;
9575
9576 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9577}
9578
8ccf6f19
MX
9579static void btrfs_run_delalloc_work(struct btrfs_work *work)
9580{
9581 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9582 struct inode *inode;
8ccf6f19
MX
9583
9584 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9585 work);
9f23e289 9586 inode = delalloc_work->inode;
30424601
DS
9587 filemap_flush(inode->i_mapping);
9588 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9589 &BTRFS_I(inode)->runtime_flags))
9f23e289 9590 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9591
9592 if (delalloc_work->delay_iput)
9f23e289 9593 btrfs_add_delayed_iput(inode);
8ccf6f19 9594 else
9f23e289 9595 iput(inode);
8ccf6f19
MX
9596 complete(&delalloc_work->completion);
9597}
9598
9599struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9600 int delay_iput)
8ccf6f19
MX
9601{
9602 struct btrfs_delalloc_work *work;
9603
100d5702 9604 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9605 if (!work)
9606 return NULL;
9607
9608 init_completion(&work->completion);
9609 INIT_LIST_HEAD(&work->list);
9610 work->inode = inode;
8ccf6f19 9611 work->delay_iput = delay_iput;
9e0af237
LB
9612 WARN_ON_ONCE(!inode);
9613 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9614 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9615
9616 return work;
9617}
9618
9619void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9620{
9621 wait_for_completion(&work->completion);
100d5702 9622 kfree(work);
8ccf6f19
MX
9623}
9624
d352ac68
CM
9625/*
9626 * some fairly slow code that needs optimization. This walks the list
9627 * of all the inodes with pending delalloc and forces them to disk.
9628 */
6c255e67
MX
9629static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9630 int nr)
ea8c2819 9631{
ea8c2819 9632 struct btrfs_inode *binode;
5b21f2ed 9633 struct inode *inode;
8ccf6f19
MX
9634 struct btrfs_delalloc_work *work, *next;
9635 struct list_head works;
1eafa6c7 9636 struct list_head splice;
8ccf6f19 9637 int ret = 0;
ea8c2819 9638
8ccf6f19 9639 INIT_LIST_HEAD(&works);
1eafa6c7 9640 INIT_LIST_HEAD(&splice);
63607cc8 9641
573bfb72 9642 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9643 spin_lock(&root->delalloc_lock);
9644 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9645 while (!list_empty(&splice)) {
9646 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9647 delalloc_inodes);
1eafa6c7 9648
eb73c1b7
MX
9649 list_move_tail(&binode->delalloc_inodes,
9650 &root->delalloc_inodes);
5b21f2ed 9651 inode = igrab(&binode->vfs_inode);
df0af1a5 9652 if (!inode) {
eb73c1b7 9653 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9654 continue;
df0af1a5 9655 }
eb73c1b7 9656 spin_unlock(&root->delalloc_lock);
1eafa6c7 9657
651d494a 9658 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 9659 if (!work) {
f4ab9ea7
JB
9660 if (delay_iput)
9661 btrfs_add_delayed_iput(inode);
9662 else
9663 iput(inode);
1eafa6c7 9664 ret = -ENOMEM;
a1ecaabb 9665 goto out;
5b21f2ed 9666 }
1eafa6c7 9667 list_add_tail(&work->list, &works);
a44903ab
QW
9668 btrfs_queue_work(root->fs_info->flush_workers,
9669 &work->work);
6c255e67
MX
9670 ret++;
9671 if (nr != -1 && ret >= nr)
a1ecaabb 9672 goto out;
5b21f2ed 9673 cond_resched();
eb73c1b7 9674 spin_lock(&root->delalloc_lock);
ea8c2819 9675 }
eb73c1b7 9676 spin_unlock(&root->delalloc_lock);
8c8bee1d 9677
a1ecaabb 9678out:
eb73c1b7
MX
9679 list_for_each_entry_safe(work, next, &works, list) {
9680 list_del_init(&work->list);
9681 btrfs_wait_and_free_delalloc_work(work);
9682 }
9683
9684 if (!list_empty_careful(&splice)) {
9685 spin_lock(&root->delalloc_lock);
9686 list_splice_tail(&splice, &root->delalloc_inodes);
9687 spin_unlock(&root->delalloc_lock);
9688 }
573bfb72 9689 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9690 return ret;
9691}
1eafa6c7 9692
eb73c1b7
MX
9693int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9694{
9695 int ret;
1eafa6c7 9696
2c21b4d7 9697 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9698 return -EROFS;
9699
6c255e67
MX
9700 ret = __start_delalloc_inodes(root, delay_iput, -1);
9701 if (ret > 0)
9702 ret = 0;
eb73c1b7
MX
9703 /*
9704 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9705 * we have to make sure the IO is actually started and that
9706 * ordered extents get created before we return
9707 */
9708 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9709 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9710 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9711 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9712 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9713 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9714 }
9715 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9716 return ret;
9717}
9718
6c255e67
MX
9719int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9720 int nr)
eb73c1b7
MX
9721{
9722 struct btrfs_root *root;
9723 struct list_head splice;
9724 int ret;
9725
2c21b4d7 9726 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9727 return -EROFS;
9728
9729 INIT_LIST_HEAD(&splice);
9730
573bfb72 9731 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9732 spin_lock(&fs_info->delalloc_root_lock);
9733 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9734 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9735 root = list_first_entry(&splice, struct btrfs_root,
9736 delalloc_root);
9737 root = btrfs_grab_fs_root(root);
9738 BUG_ON(!root);
9739 list_move_tail(&root->delalloc_root,
9740 &fs_info->delalloc_roots);
9741 spin_unlock(&fs_info->delalloc_root_lock);
9742
6c255e67 9743 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9744 btrfs_put_fs_root(root);
6c255e67 9745 if (ret < 0)
eb73c1b7
MX
9746 goto out;
9747
6c255e67
MX
9748 if (nr != -1) {
9749 nr -= ret;
9750 WARN_ON(nr < 0);
9751 }
eb73c1b7 9752 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9753 }
eb73c1b7 9754 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9755
6c255e67 9756 ret = 0;
eb73c1b7
MX
9757 atomic_inc(&fs_info->async_submit_draining);
9758 while (atomic_read(&fs_info->nr_async_submits) ||
9759 atomic_read(&fs_info->async_delalloc_pages)) {
9760 wait_event(fs_info->async_submit_wait,
9761 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9762 atomic_read(&fs_info->async_delalloc_pages) == 0));
9763 }
9764 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9765out:
1eafa6c7 9766 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9767 spin_lock(&fs_info->delalloc_root_lock);
9768 list_splice_tail(&splice, &fs_info->delalloc_roots);
9769 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9770 }
573bfb72 9771 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9772 return ret;
ea8c2819
CM
9773}
9774
39279cc3
CM
9775static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9776 const char *symname)
9777{
9778 struct btrfs_trans_handle *trans;
9779 struct btrfs_root *root = BTRFS_I(dir)->root;
9780 struct btrfs_path *path;
9781 struct btrfs_key key;
1832a6d5 9782 struct inode *inode = NULL;
39279cc3
CM
9783 int err;
9784 int drop_inode = 0;
9785 u64 objectid;
67871254 9786 u64 index = 0;
39279cc3
CM
9787 int name_len;
9788 int datasize;
5f39d397 9789 unsigned long ptr;
39279cc3 9790 struct btrfs_file_extent_item *ei;
5f39d397 9791 struct extent_buffer *leaf;
39279cc3 9792
f06becc4 9793 name_len = strlen(symname);
39279cc3
CM
9794 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9795 return -ENAMETOOLONG;
1832a6d5 9796
9ed74f2d
JB
9797 /*
9798 * 2 items for inode item and ref
9799 * 2 items for dir items
9269d12b
FM
9800 * 1 item for updating parent inode item
9801 * 1 item for the inline extent item
9ed74f2d
JB
9802 * 1 item for xattr if selinux is on
9803 */
9269d12b 9804 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9805 if (IS_ERR(trans))
9806 return PTR_ERR(trans);
1832a6d5 9807
581bb050
LZ
9808 err = btrfs_find_free_ino(root, &objectid);
9809 if (err)
9810 goto out_unlock;
9811
aec7477b 9812 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9813 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9814 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9815 if (IS_ERR(inode)) {
9816 err = PTR_ERR(inode);
39279cc3 9817 goto out_unlock;
7cf96da3 9818 }
39279cc3 9819
ad19db71
CS
9820 /*
9821 * If the active LSM wants to access the inode during
9822 * d_instantiate it needs these. Smack checks to see
9823 * if the filesystem supports xattrs by looking at the
9824 * ops vector.
9825 */
9826 inode->i_fop = &btrfs_file_operations;
9827 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9828 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9829 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9830
9831 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9832 if (err)
9833 goto out_unlock_inode;
ad19db71 9834
39279cc3 9835 path = btrfs_alloc_path();
d8926bb3
MF
9836 if (!path) {
9837 err = -ENOMEM;
b0d5d10f 9838 goto out_unlock_inode;
d8926bb3 9839 }
33345d01 9840 key.objectid = btrfs_ino(inode);
39279cc3 9841 key.offset = 0;
962a298f 9842 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9843 datasize = btrfs_file_extent_calc_inline_size(name_len);
9844 err = btrfs_insert_empty_item(trans, root, path, &key,
9845 datasize);
54aa1f4d 9846 if (err) {
b0839166 9847 btrfs_free_path(path);
b0d5d10f 9848 goto out_unlock_inode;
54aa1f4d 9849 }
5f39d397
CM
9850 leaf = path->nodes[0];
9851 ei = btrfs_item_ptr(leaf, path->slots[0],
9852 struct btrfs_file_extent_item);
9853 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9854 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9855 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9856 btrfs_set_file_extent_encryption(leaf, ei, 0);
9857 btrfs_set_file_extent_compression(leaf, ei, 0);
9858 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9859 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9860
39279cc3 9861 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9862 write_extent_buffer(leaf, symname, ptr, name_len);
9863 btrfs_mark_buffer_dirty(leaf);
39279cc3 9864 btrfs_free_path(path);
5f39d397 9865
39279cc3 9866 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9867 inode_nohighmem(inode);
39279cc3 9868 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9869 inode_set_bytes(inode, name_len);
f06becc4 9870 btrfs_i_size_write(inode, name_len);
54aa1f4d 9871 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9872 /*
9873 * Last step, add directory indexes for our symlink inode. This is the
9874 * last step to avoid extra cleanup of these indexes if an error happens
9875 * elsewhere above.
9876 */
9877 if (!err)
9878 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 9879 if (err) {
54aa1f4d 9880 drop_inode = 1;
b0d5d10f
CM
9881 goto out_unlock_inode;
9882 }
9883
9884 unlock_new_inode(inode);
9885 d_instantiate(dentry, inode);
39279cc3
CM
9886
9887out_unlock:
7ad85bb7 9888 btrfs_end_transaction(trans, root);
39279cc3
CM
9889 if (drop_inode) {
9890 inode_dec_link_count(inode);
9891 iput(inode);
9892 }
b53d3f5d 9893 btrfs_btree_balance_dirty(root);
39279cc3 9894 return err;
b0d5d10f
CM
9895
9896out_unlock_inode:
9897 drop_inode = 1;
9898 unlock_new_inode(inode);
9899 goto out_unlock;
39279cc3 9900}
16432985 9901
0af3d00b
JB
9902static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9903 u64 start, u64 num_bytes, u64 min_size,
9904 loff_t actual_len, u64 *alloc_hint,
9905 struct btrfs_trans_handle *trans)
d899e052 9906{
5dc562c5
JB
9907 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9908 struct extent_map *em;
d899e052
YZ
9909 struct btrfs_root *root = BTRFS_I(inode)->root;
9910 struct btrfs_key ins;
d899e052 9911 u64 cur_offset = start;
55a61d1d 9912 u64 i_size;
154ea289 9913 u64 cur_bytes;
0b670dc4 9914 u64 last_alloc = (u64)-1;
d899e052 9915 int ret = 0;
0af3d00b 9916 bool own_trans = true;
d899e052 9917
0af3d00b
JB
9918 if (trans)
9919 own_trans = false;
d899e052 9920 while (num_bytes > 0) {
0af3d00b
JB
9921 if (own_trans) {
9922 trans = btrfs_start_transaction(root, 3);
9923 if (IS_ERR(trans)) {
9924 ret = PTR_ERR(trans);
9925 break;
9926 }
5a303d5d
YZ
9927 }
9928
ee22184b 9929 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9930 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9931 /*
9932 * If we are severely fragmented we could end up with really
9933 * small allocations, so if the allocator is returning small
9934 * chunks lets make its job easier by only searching for those
9935 * sized chunks.
9936 */
9937 cur_bytes = min(cur_bytes, last_alloc);
00361589 9938 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9939 *alloc_hint, &ins, 1, 0);
5a303d5d 9940 if (ret) {
0af3d00b
JB
9941 if (own_trans)
9942 btrfs_end_transaction(trans, root);
a22285a6 9943 break;
d899e052 9944 }
5a303d5d 9945
0b670dc4 9946 last_alloc = ins.offset;
d899e052
YZ
9947 ret = insert_reserved_file_extent(trans, inode,
9948 cur_offset, ins.objectid,
9949 ins.offset, ins.offset,
920bbbfb 9950 ins.offset, 0, 0, 0,
d899e052 9951 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9952 if (ret) {
857cc2fc 9953 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9954 ins.offset, 0);
79787eaa
JM
9955 btrfs_abort_transaction(trans, root, ret);
9956 if (own_trans)
9957 btrfs_end_transaction(trans, root);
9958 break;
9959 }
31193213 9960
a1ed835e
CM
9961 btrfs_drop_extent_cache(inode, cur_offset,
9962 cur_offset + ins.offset -1, 0);
5a303d5d 9963
5dc562c5
JB
9964 em = alloc_extent_map();
9965 if (!em) {
9966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9967 &BTRFS_I(inode)->runtime_flags);
9968 goto next;
9969 }
9970
9971 em->start = cur_offset;
9972 em->orig_start = cur_offset;
9973 em->len = ins.offset;
9974 em->block_start = ins.objectid;
9975 em->block_len = ins.offset;
b4939680 9976 em->orig_block_len = ins.offset;
cc95bef6 9977 em->ram_bytes = ins.offset;
5dc562c5
JB
9978 em->bdev = root->fs_info->fs_devices->latest_bdev;
9979 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9980 em->generation = trans->transid;
9981
9982 while (1) {
9983 write_lock(&em_tree->lock);
09a2a8f9 9984 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9985 write_unlock(&em_tree->lock);
9986 if (ret != -EEXIST)
9987 break;
9988 btrfs_drop_extent_cache(inode, cur_offset,
9989 cur_offset + ins.offset - 1,
9990 0);
9991 }
9992 free_extent_map(em);
9993next:
d899e052
YZ
9994 num_bytes -= ins.offset;
9995 cur_offset += ins.offset;
efa56464 9996 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9997
0c4d2d95 9998 inode_inc_iversion(inode);
04b285f3 9999 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10000 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10001 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10002 (actual_len > inode->i_size) &&
10003 (cur_offset > inode->i_size)) {
d1ea6a61 10004 if (cur_offset > actual_len)
55a61d1d 10005 i_size = actual_len;
d1ea6a61 10006 else
55a61d1d
JB
10007 i_size = cur_offset;
10008 i_size_write(inode, i_size);
10009 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10010 }
10011
d899e052 10012 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10013
10014 if (ret) {
10015 btrfs_abort_transaction(trans, root, ret);
10016 if (own_trans)
10017 btrfs_end_transaction(trans, root);
10018 break;
10019 }
d899e052 10020
0af3d00b
JB
10021 if (own_trans)
10022 btrfs_end_transaction(trans, root);
5a303d5d 10023 }
d899e052
YZ
10024 return ret;
10025}
10026
0af3d00b
JB
10027int btrfs_prealloc_file_range(struct inode *inode, int mode,
10028 u64 start, u64 num_bytes, u64 min_size,
10029 loff_t actual_len, u64 *alloc_hint)
10030{
10031 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10032 min_size, actual_len, alloc_hint,
10033 NULL);
10034}
10035
10036int btrfs_prealloc_file_range_trans(struct inode *inode,
10037 struct btrfs_trans_handle *trans, int mode,
10038 u64 start, u64 num_bytes, u64 min_size,
10039 loff_t actual_len, u64 *alloc_hint)
10040{
10041 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10042 min_size, actual_len, alloc_hint, trans);
10043}
10044
e6dcd2dc
CM
10045static int btrfs_set_page_dirty(struct page *page)
10046{
e6dcd2dc
CM
10047 return __set_page_dirty_nobuffers(page);
10048}
10049
10556cb2 10050static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10051{
b83cc969 10052 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10053 umode_t mode = inode->i_mode;
b83cc969 10054
cb6db4e5
JM
10055 if (mask & MAY_WRITE &&
10056 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10057 if (btrfs_root_readonly(root))
10058 return -EROFS;
10059 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10060 return -EACCES;
10061 }
2830ba7f 10062 return generic_permission(inode, mask);
fdebe2bd 10063}
39279cc3 10064
ef3b9af5
FM
10065static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10066{
10067 struct btrfs_trans_handle *trans;
10068 struct btrfs_root *root = BTRFS_I(dir)->root;
10069 struct inode *inode = NULL;
10070 u64 objectid;
10071 u64 index;
10072 int ret = 0;
10073
10074 /*
10075 * 5 units required for adding orphan entry
10076 */
10077 trans = btrfs_start_transaction(root, 5);
10078 if (IS_ERR(trans))
10079 return PTR_ERR(trans);
10080
10081 ret = btrfs_find_free_ino(root, &objectid);
10082 if (ret)
10083 goto out;
10084
10085 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10086 btrfs_ino(dir), objectid, mode, &index);
10087 if (IS_ERR(inode)) {
10088 ret = PTR_ERR(inode);
10089 inode = NULL;
10090 goto out;
10091 }
10092
ef3b9af5
FM
10093 inode->i_fop = &btrfs_file_operations;
10094 inode->i_op = &btrfs_file_inode_operations;
10095
10096 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10097 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10098
b0d5d10f
CM
10099 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10100 if (ret)
10101 goto out_inode;
10102
10103 ret = btrfs_update_inode(trans, root, inode);
10104 if (ret)
10105 goto out_inode;
ef3b9af5
FM
10106 ret = btrfs_orphan_add(trans, inode);
10107 if (ret)
b0d5d10f 10108 goto out_inode;
ef3b9af5 10109
5762b5c9
FM
10110 /*
10111 * We set number of links to 0 in btrfs_new_inode(), and here we set
10112 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10113 * through:
10114 *
10115 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10116 */
10117 set_nlink(inode, 1);
b0d5d10f 10118 unlock_new_inode(inode);
ef3b9af5
FM
10119 d_tmpfile(dentry, inode);
10120 mark_inode_dirty(inode);
10121
10122out:
10123 btrfs_end_transaction(trans, root);
10124 if (ret)
10125 iput(inode);
10126 btrfs_balance_delayed_items(root);
10127 btrfs_btree_balance_dirty(root);
ef3b9af5 10128 return ret;
b0d5d10f
CM
10129
10130out_inode:
10131 unlock_new_inode(inode);
10132 goto out;
10133
ef3b9af5
FM
10134}
10135
b38ef71c
FM
10136/* Inspired by filemap_check_errors() */
10137int btrfs_inode_check_errors(struct inode *inode)
10138{
10139 int ret = 0;
10140
10141 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10142 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10143 ret = -ENOSPC;
10144 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10145 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10146 ret = -EIO;
10147
10148 return ret;
10149}
10150
6e1d5dcc 10151static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10152 .getattr = btrfs_getattr,
39279cc3
CM
10153 .lookup = btrfs_lookup,
10154 .create = btrfs_create,
10155 .unlink = btrfs_unlink,
10156 .link = btrfs_link,
10157 .mkdir = btrfs_mkdir,
10158 .rmdir = btrfs_rmdir,
80ace85c 10159 .rename2 = btrfs_rename2,
39279cc3
CM
10160 .symlink = btrfs_symlink,
10161 .setattr = btrfs_setattr,
618e21d5 10162 .mknod = btrfs_mknod,
95819c05 10163 .setxattr = btrfs_setxattr,
9172abbc 10164 .getxattr = generic_getxattr,
5103e947 10165 .listxattr = btrfs_listxattr,
95819c05 10166 .removexattr = btrfs_removexattr,
fdebe2bd 10167 .permission = btrfs_permission,
4e34e719 10168 .get_acl = btrfs_get_acl,
996a710d 10169 .set_acl = btrfs_set_acl,
93fd63c2 10170 .update_time = btrfs_update_time,
ef3b9af5 10171 .tmpfile = btrfs_tmpfile,
39279cc3 10172};
6e1d5dcc 10173static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10174 .lookup = btrfs_lookup,
fdebe2bd 10175 .permission = btrfs_permission,
4e34e719 10176 .get_acl = btrfs_get_acl,
996a710d 10177 .set_acl = btrfs_set_acl,
93fd63c2 10178 .update_time = btrfs_update_time,
39279cc3 10179};
76dda93c 10180
828c0950 10181static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10182 .llseek = generic_file_llseek,
10183 .read = generic_read_dir,
9cdda8d3 10184 .iterate = btrfs_real_readdir,
34287aa3 10185 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10186#ifdef CONFIG_COMPAT
34287aa3 10187 .compat_ioctl = btrfs_ioctl,
39279cc3 10188#endif
6bf13c0c 10189 .release = btrfs_release_file,
e02119d5 10190 .fsync = btrfs_sync_file,
39279cc3
CM
10191};
10192
20e5506b 10193static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10194 .fill_delalloc = run_delalloc_range,
065631f6 10195 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10196 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10197 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10198 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10199 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10200 .set_bit_hook = btrfs_set_bit_hook,
10201 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10202 .merge_extent_hook = btrfs_merge_extent_hook,
10203 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10204};
10205
35054394
CM
10206/*
10207 * btrfs doesn't support the bmap operation because swapfiles
10208 * use bmap to make a mapping of extents in the file. They assume
10209 * these extents won't change over the life of the file and they
10210 * use the bmap result to do IO directly to the drive.
10211 *
10212 * the btrfs bmap call would return logical addresses that aren't
10213 * suitable for IO and they also will change frequently as COW
10214 * operations happen. So, swapfile + btrfs == corruption.
10215 *
10216 * For now we're avoiding this by dropping bmap.
10217 */
7f09410b 10218static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10219 .readpage = btrfs_readpage,
10220 .writepage = btrfs_writepage,
b293f02e 10221 .writepages = btrfs_writepages,
3ab2fb5a 10222 .readpages = btrfs_readpages,
16432985 10223 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10224 .invalidatepage = btrfs_invalidatepage,
10225 .releasepage = btrfs_releasepage,
e6dcd2dc 10226 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10227 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10228};
10229
7f09410b 10230static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10231 .readpage = btrfs_readpage,
10232 .writepage = btrfs_writepage,
2bf5a725
CM
10233 .invalidatepage = btrfs_invalidatepage,
10234 .releasepage = btrfs_releasepage,
39279cc3
CM
10235};
10236
6e1d5dcc 10237static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10238 .getattr = btrfs_getattr,
10239 .setattr = btrfs_setattr,
95819c05 10240 .setxattr = btrfs_setxattr,
9172abbc 10241 .getxattr = generic_getxattr,
5103e947 10242 .listxattr = btrfs_listxattr,
95819c05 10243 .removexattr = btrfs_removexattr,
fdebe2bd 10244 .permission = btrfs_permission,
1506fcc8 10245 .fiemap = btrfs_fiemap,
4e34e719 10246 .get_acl = btrfs_get_acl,
996a710d 10247 .set_acl = btrfs_set_acl,
e41f941a 10248 .update_time = btrfs_update_time,
39279cc3 10249};
6e1d5dcc 10250static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10251 .getattr = btrfs_getattr,
10252 .setattr = btrfs_setattr,
fdebe2bd 10253 .permission = btrfs_permission,
95819c05 10254 .setxattr = btrfs_setxattr,
9172abbc 10255 .getxattr = generic_getxattr,
33268eaf 10256 .listxattr = btrfs_listxattr,
95819c05 10257 .removexattr = btrfs_removexattr,
4e34e719 10258 .get_acl = btrfs_get_acl,
996a710d 10259 .set_acl = btrfs_set_acl,
e41f941a 10260 .update_time = btrfs_update_time,
618e21d5 10261};
6e1d5dcc 10262static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10263 .readlink = generic_readlink,
6b255391 10264 .get_link = page_get_link,
f209561a 10265 .getattr = btrfs_getattr,
22c44fe6 10266 .setattr = btrfs_setattr,
fdebe2bd 10267 .permission = btrfs_permission,
0279b4cd 10268 .setxattr = btrfs_setxattr,
9172abbc 10269 .getxattr = generic_getxattr,
0279b4cd
JO
10270 .listxattr = btrfs_listxattr,
10271 .removexattr = btrfs_removexattr,
e41f941a 10272 .update_time = btrfs_update_time,
39279cc3 10273};
76dda93c 10274
82d339d9 10275const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10276 .d_delete = btrfs_dentry_delete,
b4aff1f8 10277 .d_release = btrfs_dentry_release,
76dda93c 10278};