Btrfs: Add delayed iput
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
f34f57a3
YZ
91static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
0279b4cd
JO
93{
94 int err;
95
f34f57a3 96 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 97 if (!err)
f34f57a3 98 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
c2167754
YZ
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
c8b97818
CM
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
c2167754 203
c8b97818
CM
204 return 0;
205fail:
206 btrfs_free_path(path);
207 return err;
208}
209
210
211/*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
7f366cfe 216static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221{
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
70b99e69 235 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
920bbbfb 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 245 &hint_byte, 1);
c8b97818
CM
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
a1ed835e 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
255 return 0;
256}
257
771ed689
CM
258struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265};
266
267struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275};
276
277static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282{
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293}
294
d352ac68 295/*
771ed689
CM
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
c8b97818 299 *
771ed689
CM
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
c8b97818 305 *
771ed689
CM
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
d352ac68 310 */
771ed689
CM
311static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
b888db2b
CM
316{
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
db94535d 319 u64 num_bytes;
c8b97818
CM
320 u64 orig_start;
321 u64 disk_num_bytes;
db94535d 322 u64 blocksize = root->sectorsize;
c8b97818 323 u64 actual_end;
42dc7bab 324 u64 isize = i_size_read(inode);
e6dcd2dc 325 int ret = 0;
c8b97818
CM
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
771ed689 332 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
333 int i;
334 int will_compress;
b888db2b 335
c8b97818
CM
336 orig_start = start;
337
42dc7bab 338 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
339again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 343
f03d9301
CM
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
c8b97818
CM
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
c8b97818
CM
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
db94535d 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 371 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
db94535d 375
771ed689
CM
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
c8b97818 380 */
6cbff00f 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
382 btrfs_test_opt(root, COMPRESS)) {
383 WARN_ON(pages);
cfbc246e 384 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 385
c8b97818
CM
386 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387 total_compressed, pages,
388 nr_pages, &nr_pages_ret,
389 &total_in,
390 &total_compressed,
391 max_compressed);
392
393 if (!ret) {
394 unsigned long offset = total_compressed &
395 (PAGE_CACHE_SIZE - 1);
396 struct page *page = pages[nr_pages_ret - 1];
397 char *kaddr;
398
399 /* zero the tail end of the last page, we might be
400 * sending it down to disk
401 */
402 if (offset) {
403 kaddr = kmap_atomic(page, KM_USER0);
404 memset(kaddr + offset, 0,
405 PAGE_CACHE_SIZE - offset);
406 kunmap_atomic(kaddr, KM_USER0);
407 }
408 will_compress = 1;
409 }
410 }
411 if (start == 0) {
771ed689
CM
412 trans = btrfs_join_transaction(root, 1);
413 BUG_ON(!trans);
414 btrfs_set_trans_block_group(trans, inode);
415
c8b97818 416 /* lets try to make an inline extent */
771ed689 417 if (ret || total_in < (actual_end - start)) {
c8b97818 418 /* we didn't compress the entire range, try
771ed689 419 * to make an uncompressed inline extent.
c8b97818
CM
420 */
421 ret = cow_file_range_inline(trans, root, inode,
422 start, end, 0, NULL);
423 } else {
771ed689 424 /* try making a compressed inline extent */
c8b97818
CM
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end,
427 total_compressed, pages);
428 }
429 if (ret == 0) {
771ed689
CM
430 /*
431 * inline extent creation worked, we don't need
432 * to create any more async work items. Unlock
433 * and free up our temp pages.
434 */
c8b97818 435 extent_clear_unlock_delalloc(inode,
a791e35e
CM
436 &BTRFS_I(inode)->io_tree,
437 start, end, NULL,
438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 439 EXTENT_CLEAR_DELALLOC |
32c00aff 440 EXTENT_CLEAR_ACCOUNTING |
a791e35e 441 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
442
443 btrfs_end_transaction(trans, root);
c8b97818
CM
444 goto free_pages_out;
445 }
c2167754 446 btrfs_end_transaction(trans, root);
c8b97818
CM
447 }
448
449 if (will_compress) {
450 /*
451 * we aren't doing an inline extent round the compressed size
452 * up to a block size boundary so the allocator does sane
453 * things
454 */
455 total_compressed = (total_compressed + blocksize - 1) &
456 ~(blocksize - 1);
457
458 /*
459 * one last check to make sure the compression is really a
460 * win, compare the page count read with the blocks on disk
461 */
462 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463 ~(PAGE_CACHE_SIZE - 1);
464 if (total_compressed >= total_in) {
465 will_compress = 0;
466 } else {
467 disk_num_bytes = total_compressed;
468 num_bytes = total_in;
469 }
470 }
471 if (!will_compress && pages) {
472 /*
473 * the compression code ran but failed to make things smaller,
474 * free any pages it allocated and our page pointer array
475 */
476 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 477 WARN_ON(pages[i]->mapping);
c8b97818
CM
478 page_cache_release(pages[i]);
479 }
480 kfree(pages);
481 pages = NULL;
482 total_compressed = 0;
483 nr_pages_ret = 0;
484
485 /* flag the file so we don't compress in the future */
6cbff00f 486 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 487 }
771ed689
CM
488 if (will_compress) {
489 *num_added += 1;
c8b97818 490
771ed689
CM
491 /* the async work queues will take care of doing actual
492 * allocation on disk for these compressed pages,
493 * and will submit them to the elevator.
494 */
495 add_async_extent(async_cow, start, num_bytes,
496 total_compressed, pages, nr_pages_ret);
179e29e4 497
42dc7bab 498 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
499 start += num_bytes;
500 pages = NULL;
501 cond_resched();
502 goto again;
503 }
504 } else {
f03d9301 505cleanup_and_bail_uncompressed:
771ed689
CM
506 /*
507 * No compression, but we still need to write the pages in
508 * the file we've been given so far. redirty the locked
509 * page if it corresponds to our extent and set things up
510 * for the async work queue to run cow_file_range to do
511 * the normal delalloc dance
512 */
513 if (page_offset(locked_page) >= start &&
514 page_offset(locked_page) <= end) {
515 __set_page_dirty_nobuffers(locked_page);
516 /* unlocked later on in the async handlers */
517 }
518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 *num_added += 1;
520 }
3b951516 521
771ed689
CM
522out:
523 return 0;
524
525free_pages_out:
526 for (i = 0; i < nr_pages_ret; i++) {
527 WARN_ON(pages[i]->mapping);
528 page_cache_release(pages[i]);
529 }
d397712b 530 kfree(pages);
771ed689
CM
531
532 goto out;
533}
534
535/*
536 * phase two of compressed writeback. This is the ordered portion
537 * of the code, which only gets called in the order the work was
538 * queued. We walk all the async extents created by compress_file_range
539 * and send them down to the disk.
540 */
541static noinline int submit_compressed_extents(struct inode *inode,
542 struct async_cow *async_cow)
543{
544 struct async_extent *async_extent;
545 u64 alloc_hint = 0;
546 struct btrfs_trans_handle *trans;
547 struct btrfs_key ins;
548 struct extent_map *em;
549 struct btrfs_root *root = BTRFS_I(inode)->root;
550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 struct extent_io_tree *io_tree;
f5a84ee3 552 int ret = 0;
771ed689
CM
553
554 if (list_empty(&async_cow->extents))
555 return 0;
556
771ed689 557
d397712b 558 while (!list_empty(&async_cow->extents)) {
771ed689
CM
559 async_extent = list_entry(async_cow->extents.next,
560 struct async_extent, list);
561 list_del(&async_extent->list);
c8b97818 562
771ed689
CM
563 io_tree = &BTRFS_I(inode)->io_tree;
564
f5a84ee3 565retry:
771ed689
CM
566 /* did the compression code fall back to uncompressed IO? */
567 if (!async_extent->pages) {
568 int page_started = 0;
569 unsigned long nr_written = 0;
570
571 lock_extent(io_tree, async_extent->start,
d397712b
CM
572 async_extent->start +
573 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
574
575 /* allocate blocks */
f5a84ee3
JB
576 ret = cow_file_range(inode, async_cow->locked_page,
577 async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 &page_started, &nr_written, 0);
771ed689
CM
581
582 /*
583 * if page_started, cow_file_range inserted an
584 * inline extent and took care of all the unlocking
585 * and IO for us. Otherwise, we need to submit
586 * all those pages down to the drive.
587 */
f5a84ee3 588 if (!page_started && !ret)
771ed689
CM
589 extent_write_locked_range(io_tree,
590 inode, async_extent->start,
d397712b 591 async_extent->start +
771ed689
CM
592 async_extent->ram_size - 1,
593 btrfs_get_extent,
594 WB_SYNC_ALL);
595 kfree(async_extent);
596 cond_resched();
597 continue;
598 }
599
600 lock_extent(io_tree, async_extent->start,
601 async_extent->start + async_extent->ram_size - 1,
602 GFP_NOFS);
771ed689 603
c2167754 604 trans = btrfs_join_transaction(root, 1);
771ed689
CM
605 ret = btrfs_reserve_extent(trans, root,
606 async_extent->compressed_size,
607 async_extent->compressed_size,
608 0, alloc_hint,
609 (u64)-1, &ins, 1);
c2167754
YZ
610 btrfs_end_transaction(trans, root);
611
f5a84ee3
JB
612 if (ret) {
613 int i;
614 for (i = 0; i < async_extent->nr_pages; i++) {
615 WARN_ON(async_extent->pages[i]->mapping);
616 page_cache_release(async_extent->pages[i]);
617 }
618 kfree(async_extent->pages);
619 async_extent->nr_pages = 0;
620 async_extent->pages = NULL;
621 unlock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, GFP_NOFS);
624 goto retry;
625 }
626
c2167754
YZ
627 /*
628 * here we're doing allocation and writeback of the
629 * compressed pages
630 */
631 btrfs_drop_extent_cache(inode, async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1, 0);
634
771ed689
CM
635 em = alloc_extent_map(GFP_NOFS);
636 em->start = async_extent->start;
637 em->len = async_extent->ram_size;
445a6944 638 em->orig_start = em->start;
c8b97818 639
771ed689
CM
640 em->block_start = ins.objectid;
641 em->block_len = ins.offset;
642 em->bdev = root->fs_info->fs_devices->latest_bdev;
643 set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645
d397712b 646 while (1) {
890871be 647 write_lock(&em_tree->lock);
771ed689 648 ret = add_extent_mapping(em_tree, em);
890871be 649 write_unlock(&em_tree->lock);
771ed689
CM
650 if (ret != -EEXIST) {
651 free_extent_map(em);
652 break;
653 }
654 btrfs_drop_extent_cache(inode, async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1, 0);
657 }
658
659 ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 ins.objectid,
661 async_extent->ram_size,
662 ins.offset,
663 BTRFS_ORDERED_COMPRESSED);
664 BUG_ON(ret);
665
771ed689
CM
666 /*
667 * clear dirty, set writeback and unlock the pages.
668 */
669 extent_clear_unlock_delalloc(inode,
a791e35e
CM
670 &BTRFS_I(inode)->io_tree,
671 async_extent->start,
672 async_extent->start +
673 async_extent->ram_size - 1,
674 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 EXTENT_CLEAR_UNLOCK |
a3429ab7 676 EXTENT_CLEAR_DELALLOC |
a791e35e 677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
678
679 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
680 async_extent->start,
681 async_extent->ram_size,
682 ins.objectid,
683 ins.offset, async_extent->pages,
684 async_extent->nr_pages);
771ed689
CM
685
686 BUG_ON(ret);
771ed689
CM
687 alloc_hint = ins.objectid + ins.offset;
688 kfree(async_extent);
689 cond_resched();
690 }
691
771ed689
CM
692 return 0;
693}
694
695/*
696 * when extent_io.c finds a delayed allocation range in the file,
697 * the call backs end up in this code. The basic idea is to
698 * allocate extents on disk for the range, and create ordered data structs
699 * in ram to track those extents.
700 *
701 * locked_page is the page that writepage had locked already. We use
702 * it to make sure we don't do extra locks or unlocks.
703 *
704 * *page_started is set to one if we unlock locked_page and do everything
705 * required to start IO on it. It may be clean and already done with
706 * IO when we return.
707 */
708static noinline int cow_file_range(struct inode *inode,
709 struct page *locked_page,
710 u64 start, u64 end, int *page_started,
711 unsigned long *nr_written,
712 int unlock)
713{
714 struct btrfs_root *root = BTRFS_I(inode)->root;
715 struct btrfs_trans_handle *trans;
716 u64 alloc_hint = 0;
717 u64 num_bytes;
718 unsigned long ram_size;
719 u64 disk_num_bytes;
720 u64 cur_alloc_size;
721 u64 blocksize = root->sectorsize;
722 u64 actual_end;
42dc7bab 723 u64 isize = i_size_read(inode);
771ed689
CM
724 struct btrfs_key ins;
725 struct extent_map *em;
726 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
727 int ret = 0;
728
729 trans = btrfs_join_transaction(root, 1);
730 BUG_ON(!trans);
731 btrfs_set_trans_block_group(trans, inode);
732
42dc7bab 733 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
734
735 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
736 num_bytes = max(blocksize, num_bytes);
737 disk_num_bytes = num_bytes;
738 ret = 0;
739
740 if (start == 0) {
741 /* lets try to make an inline extent */
742 ret = cow_file_range_inline(trans, root, inode,
743 start, end, 0, NULL);
744 if (ret == 0) {
745 extent_clear_unlock_delalloc(inode,
a791e35e
CM
746 &BTRFS_I(inode)->io_tree,
747 start, end, NULL,
748 EXTENT_CLEAR_UNLOCK_PAGE |
749 EXTENT_CLEAR_UNLOCK |
750 EXTENT_CLEAR_DELALLOC |
32c00aff 751 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
752 EXTENT_CLEAR_DIRTY |
753 EXTENT_SET_WRITEBACK |
754 EXTENT_END_WRITEBACK);
c2167754 755
771ed689
CM
756 *nr_written = *nr_written +
757 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
758 *page_started = 1;
759 ret = 0;
760 goto out;
761 }
762 }
763
764 BUG_ON(disk_num_bytes >
765 btrfs_super_total_bytes(&root->fs_info->super_copy));
766
b917b7c3
CM
767
768 read_lock(&BTRFS_I(inode)->extent_tree.lock);
769 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
770 start, num_bytes);
771 if (em) {
6346c939
JB
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
b917b7c3
CM
788 }
789 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
790 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
791
d397712b 792 while (disk_num_bytes > 0) {
a791e35e
CM
793 unsigned long op;
794
c8b97818 795 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 796 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 797 root->sectorsize, 0, alloc_hint,
e6dcd2dc 798 (u64)-1, &ins, 1);
d397712b
CM
799 BUG_ON(ret);
800
e6dcd2dc
CM
801 em = alloc_extent_map(GFP_NOFS);
802 em->start = start;
445a6944 803 em->orig_start = em->start;
771ed689
CM
804 ram_size = ins.offset;
805 em->len = ins.offset;
c8b97818 806
e6dcd2dc 807 em->block_start = ins.objectid;
c8b97818 808 em->block_len = ins.offset;
e6dcd2dc 809 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 810 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 811
d397712b 812 while (1) {
890871be 813 write_lock(&em_tree->lock);
e6dcd2dc 814 ret = add_extent_mapping(em_tree, em);
890871be 815 write_unlock(&em_tree->lock);
e6dcd2dc
CM
816 if (ret != -EEXIST) {
817 free_extent_map(em);
818 break;
819 }
820 btrfs_drop_extent_cache(inode, start,
c8b97818 821 start + ram_size - 1, 0);
e6dcd2dc
CM
822 }
823
98d20f67 824 cur_alloc_size = ins.offset;
e6dcd2dc 825 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 826 ram_size, cur_alloc_size, 0);
e6dcd2dc 827 BUG_ON(ret);
c8b97818 828
17d217fe
YZ
829 if (root->root_key.objectid ==
830 BTRFS_DATA_RELOC_TREE_OBJECTID) {
831 ret = btrfs_reloc_clone_csums(inode, start,
832 cur_alloc_size);
833 BUG_ON(ret);
834 }
835
d397712b 836 if (disk_num_bytes < cur_alloc_size)
3b951516 837 break;
d397712b 838
c8b97818
CM
839 /* we're not doing compressed IO, don't unlock the first
840 * page (which the caller expects to stay locked), don't
841 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
842 *
843 * Do set the Private2 bit so we know this page was properly
844 * setup for writepage
c8b97818 845 */
a791e35e
CM
846 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
847 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
848 EXTENT_SET_PRIVATE2;
849
c8b97818
CM
850 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
851 start, start + ram_size - 1,
a791e35e 852 locked_page, op);
c8b97818 853 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
854 num_bytes -= cur_alloc_size;
855 alloc_hint = ins.objectid + ins.offset;
856 start += cur_alloc_size;
b888db2b 857 }
b888db2b 858out:
771ed689 859 ret = 0;
b888db2b 860 btrfs_end_transaction(trans, root);
c8b97818 861
be20aa9d 862 return ret;
771ed689 863}
c8b97818 864
771ed689
CM
865/*
866 * work queue call back to started compression on a file and pages
867 */
868static noinline void async_cow_start(struct btrfs_work *work)
869{
870 struct async_cow *async_cow;
871 int num_added = 0;
872 async_cow = container_of(work, struct async_cow, work);
873
874 compress_file_range(async_cow->inode, async_cow->locked_page,
875 async_cow->start, async_cow->end, async_cow,
876 &num_added);
877 if (num_added == 0)
878 async_cow->inode = NULL;
879}
880
881/*
882 * work queue call back to submit previously compressed pages
883 */
884static noinline void async_cow_submit(struct btrfs_work *work)
885{
886 struct async_cow *async_cow;
887 struct btrfs_root *root;
888 unsigned long nr_pages;
889
890 async_cow = container_of(work, struct async_cow, work);
891
892 root = async_cow->root;
893 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
894 PAGE_CACHE_SHIFT;
895
896 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
897
898 if (atomic_read(&root->fs_info->async_delalloc_pages) <
899 5 * 1042 * 1024 &&
900 waitqueue_active(&root->fs_info->async_submit_wait))
901 wake_up(&root->fs_info->async_submit_wait);
902
d397712b 903 if (async_cow->inode)
771ed689 904 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 905}
c8b97818 906
771ed689
CM
907static noinline void async_cow_free(struct btrfs_work *work)
908{
909 struct async_cow *async_cow;
910 async_cow = container_of(work, struct async_cow, work);
911 kfree(async_cow);
912}
913
914static int cow_file_range_async(struct inode *inode, struct page *locked_page,
915 u64 start, u64 end, int *page_started,
916 unsigned long *nr_written)
917{
918 struct async_cow *async_cow;
919 struct btrfs_root *root = BTRFS_I(inode)->root;
920 unsigned long nr_pages;
921 u64 cur_end;
922 int limit = 10 * 1024 * 1042;
923
a3429ab7
CM
924 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
925 1, 0, NULL, GFP_NOFS);
d397712b 926 while (start < end) {
771ed689
CM
927 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
928 async_cow->inode = inode;
929 async_cow->root = root;
930 async_cow->locked_page = locked_page;
931 async_cow->start = start;
932
6cbff00f 933 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
934 cur_end = end;
935 else
936 cur_end = min(end, start + 512 * 1024 - 1);
937
938 async_cow->end = cur_end;
939 INIT_LIST_HEAD(&async_cow->extents);
940
941 async_cow->work.func = async_cow_start;
942 async_cow->work.ordered_func = async_cow_submit;
943 async_cow->work.ordered_free = async_cow_free;
944 async_cow->work.flags = 0;
945
771ed689
CM
946 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
947 PAGE_CACHE_SHIFT;
948 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
949
950 btrfs_queue_worker(&root->fs_info->delalloc_workers,
951 &async_cow->work);
952
953 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
954 wait_event(root->fs_info->async_submit_wait,
955 (atomic_read(&root->fs_info->async_delalloc_pages) <
956 limit));
957 }
958
d397712b 959 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
960 atomic_read(&root->fs_info->async_delalloc_pages)) {
961 wait_event(root->fs_info->async_submit_wait,
962 (atomic_read(&root->fs_info->async_delalloc_pages) ==
963 0));
964 }
965
966 *nr_written += nr_pages;
967 start = cur_end + 1;
968 }
969 *page_started = 1;
970 return 0;
be20aa9d
CM
971}
972
d397712b 973static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
974 u64 bytenr, u64 num_bytes)
975{
976 int ret;
977 struct btrfs_ordered_sum *sums;
978 LIST_HEAD(list);
979
07d400a6
YZ
980 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
981 bytenr + num_bytes - 1, &list);
17d217fe
YZ
982 if (ret == 0 && list_empty(&list))
983 return 0;
984
985 while (!list_empty(&list)) {
986 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
987 list_del(&sums->list);
988 kfree(sums);
989 }
990 return 1;
991}
992
d352ac68
CM
993/*
994 * when nowcow writeback call back. This checks for snapshots or COW copies
995 * of the extents that exist in the file, and COWs the file as required.
996 *
997 * If no cow copies or snapshots exist, we write directly to the existing
998 * blocks on disk
999 */
7f366cfe
CM
1000static noinline int run_delalloc_nocow(struct inode *inode,
1001 struct page *locked_page,
771ed689
CM
1002 u64 start, u64 end, int *page_started, int force,
1003 unsigned long *nr_written)
be20aa9d 1004{
be20aa9d 1005 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1006 struct btrfs_trans_handle *trans;
be20aa9d 1007 struct extent_buffer *leaf;
be20aa9d 1008 struct btrfs_path *path;
80ff3856 1009 struct btrfs_file_extent_item *fi;
be20aa9d 1010 struct btrfs_key found_key;
80ff3856
YZ
1011 u64 cow_start;
1012 u64 cur_offset;
1013 u64 extent_end;
5d4f98a2 1014 u64 extent_offset;
80ff3856
YZ
1015 u64 disk_bytenr;
1016 u64 num_bytes;
1017 int extent_type;
1018 int ret;
d899e052 1019 int type;
80ff3856
YZ
1020 int nocow;
1021 int check_prev = 1;
be20aa9d
CM
1022
1023 path = btrfs_alloc_path();
1024 BUG_ON(!path);
7ea394f1
YZ
1025 trans = btrfs_join_transaction(root, 1);
1026 BUG_ON(!trans);
be20aa9d 1027
80ff3856
YZ
1028 cow_start = (u64)-1;
1029 cur_offset = start;
1030 while (1) {
1031 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1032 cur_offset, 0);
1033 BUG_ON(ret < 0);
1034 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1035 leaf = path->nodes[0];
1036 btrfs_item_key_to_cpu(leaf, &found_key,
1037 path->slots[0] - 1);
1038 if (found_key.objectid == inode->i_ino &&
1039 found_key.type == BTRFS_EXTENT_DATA_KEY)
1040 path->slots[0]--;
1041 }
1042 check_prev = 0;
1043next_slot:
1044 leaf = path->nodes[0];
1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1046 ret = btrfs_next_leaf(root, path);
1047 if (ret < 0)
1048 BUG_ON(1);
1049 if (ret > 0)
1050 break;
1051 leaf = path->nodes[0];
1052 }
be20aa9d 1053
80ff3856
YZ
1054 nocow = 0;
1055 disk_bytenr = 0;
17d217fe 1056 num_bytes = 0;
80ff3856
YZ
1057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1058
1059 if (found_key.objectid > inode->i_ino ||
1060 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1061 found_key.offset > end)
1062 break;
1063
1064 if (found_key.offset > cur_offset) {
1065 extent_end = found_key.offset;
e9061e21 1066 extent_type = 0;
80ff3856
YZ
1067 goto out_check;
1068 }
1069
1070 fi = btrfs_item_ptr(leaf, path->slots[0],
1071 struct btrfs_file_extent_item);
1072 extent_type = btrfs_file_extent_type(leaf, fi);
1073
d899e052
YZ
1074 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1075 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1076 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1077 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1078 extent_end = found_key.offset +
1079 btrfs_file_extent_num_bytes(leaf, fi);
1080 if (extent_end <= start) {
1081 path->slots[0]++;
1082 goto next_slot;
1083 }
17d217fe
YZ
1084 if (disk_bytenr == 0)
1085 goto out_check;
80ff3856
YZ
1086 if (btrfs_file_extent_compression(leaf, fi) ||
1087 btrfs_file_extent_encryption(leaf, fi) ||
1088 btrfs_file_extent_other_encoding(leaf, fi))
1089 goto out_check;
d899e052
YZ
1090 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1091 goto out_check;
d2fb3437 1092 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1093 goto out_check;
17d217fe 1094 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1095 found_key.offset -
1096 extent_offset, disk_bytenr))
17d217fe 1097 goto out_check;
5d4f98a2 1098 disk_bytenr += extent_offset;
17d217fe
YZ
1099 disk_bytenr += cur_offset - found_key.offset;
1100 num_bytes = min(end + 1, extent_end) - cur_offset;
1101 /*
1102 * force cow if csum exists in the range.
1103 * this ensure that csum for a given extent are
1104 * either valid or do not exist.
1105 */
1106 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1107 goto out_check;
80ff3856
YZ
1108 nocow = 1;
1109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1110 extent_end = found_key.offset +
1111 btrfs_file_extent_inline_len(leaf, fi);
1112 extent_end = ALIGN(extent_end, root->sectorsize);
1113 } else {
1114 BUG_ON(1);
1115 }
1116out_check:
1117 if (extent_end <= start) {
1118 path->slots[0]++;
1119 goto next_slot;
1120 }
1121 if (!nocow) {
1122 if (cow_start == (u64)-1)
1123 cow_start = cur_offset;
1124 cur_offset = extent_end;
1125 if (cur_offset > end)
1126 break;
1127 path->slots[0]++;
1128 goto next_slot;
7ea394f1
YZ
1129 }
1130
1131 btrfs_release_path(root, path);
80ff3856
YZ
1132 if (cow_start != (u64)-1) {
1133 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1134 found_key.offset - 1, page_started,
1135 nr_written, 1);
80ff3856
YZ
1136 BUG_ON(ret);
1137 cow_start = (u64)-1;
7ea394f1 1138 }
80ff3856 1139
d899e052
YZ
1140 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1141 struct extent_map *em;
1142 struct extent_map_tree *em_tree;
1143 em_tree = &BTRFS_I(inode)->extent_tree;
1144 em = alloc_extent_map(GFP_NOFS);
1145 em->start = cur_offset;
445a6944 1146 em->orig_start = em->start;
d899e052
YZ
1147 em->len = num_bytes;
1148 em->block_len = num_bytes;
1149 em->block_start = disk_bytenr;
1150 em->bdev = root->fs_info->fs_devices->latest_bdev;
1151 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1152 while (1) {
890871be 1153 write_lock(&em_tree->lock);
d899e052 1154 ret = add_extent_mapping(em_tree, em);
890871be 1155 write_unlock(&em_tree->lock);
d899e052
YZ
1156 if (ret != -EEXIST) {
1157 free_extent_map(em);
1158 break;
1159 }
1160 btrfs_drop_extent_cache(inode, em->start,
1161 em->start + em->len - 1, 0);
1162 }
1163 type = BTRFS_ORDERED_PREALLOC;
1164 } else {
1165 type = BTRFS_ORDERED_NOCOW;
1166 }
80ff3856
YZ
1167
1168 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1169 num_bytes, num_bytes, type);
1170 BUG_ON(ret);
771ed689 1171
d899e052 1172 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1173 cur_offset, cur_offset + num_bytes - 1,
1174 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1175 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1176 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1177 cur_offset = extent_end;
1178 if (cur_offset > end)
1179 break;
be20aa9d 1180 }
80ff3856
YZ
1181 btrfs_release_path(root, path);
1182
1183 if (cur_offset <= end && cow_start == (u64)-1)
1184 cow_start = cur_offset;
1185 if (cow_start != (u64)-1) {
1186 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1187 page_started, nr_written, 1);
80ff3856
YZ
1188 BUG_ON(ret);
1189 }
1190
1191 ret = btrfs_end_transaction(trans, root);
1192 BUG_ON(ret);
7ea394f1 1193 btrfs_free_path(path);
80ff3856 1194 return 0;
be20aa9d
CM
1195}
1196
d352ac68
CM
1197/*
1198 * extent_io.c call back to do delayed allocation processing
1199 */
c8b97818 1200static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1201 u64 start, u64 end, int *page_started,
1202 unsigned long *nr_written)
be20aa9d 1203{
be20aa9d 1204 int ret;
7f366cfe 1205 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1206
6cbff00f 1207 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1208 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1209 page_started, 1, nr_written);
6cbff00f 1210 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1211 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1212 page_started, 0, nr_written);
7f366cfe
CM
1213 else if (!btrfs_test_opt(root, COMPRESS))
1214 ret = cow_file_range(inode, locked_page, start, end,
1215 page_started, nr_written, 1);
be20aa9d 1216 else
771ed689 1217 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1218 page_started, nr_written);
b888db2b
CM
1219 return ret;
1220}
1221
9ed74f2d
JB
1222static int btrfs_split_extent_hook(struct inode *inode,
1223 struct extent_state *orig, u64 split)
1224{
1225 struct btrfs_root *root = BTRFS_I(inode)->root;
1226 u64 size;
1227
1228 if (!(orig->state & EXTENT_DELALLOC))
1229 return 0;
1230
1231 size = orig->end - orig->start + 1;
1232 if (size > root->fs_info->max_extent) {
1233 u64 num_extents;
1234 u64 new_size;
1235
1236 new_size = orig->end - split + 1;
1237 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1238 root->fs_info->max_extent);
1239
1240 /*
32c00aff
JB
1241 * if we break a large extent up then leave oustanding_extents
1242 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1243 */
1244 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1245 root->fs_info->max_extent) < num_extents)
1246 return 0;
1247 }
1248
32c00aff
JB
1249 spin_lock(&BTRFS_I(inode)->accounting_lock);
1250 BTRFS_I(inode)->outstanding_extents++;
1251 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1252
1253 return 0;
1254}
1255
1256/*
1257 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1258 * extents so we can keep track of new extents that are just merged onto old
1259 * extents, such as when we are doing sequential writes, so we can properly
1260 * account for the metadata space we'll need.
1261 */
1262static int btrfs_merge_extent_hook(struct inode *inode,
1263 struct extent_state *new,
1264 struct extent_state *other)
1265{
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1267 u64 new_size, old_size;
1268 u64 num_extents;
1269
1270 /* not delalloc, ignore it */
1271 if (!(other->state & EXTENT_DELALLOC))
1272 return 0;
1273
1274 old_size = other->end - other->start + 1;
1275 if (new->start < other->start)
1276 new_size = other->end - new->start + 1;
1277 else
1278 new_size = new->end - other->start + 1;
1279
1280 /* we're not bigger than the max, unreserve the space and go */
1281 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1282 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283 BTRFS_I(inode)->outstanding_extents--;
1284 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1285 return 0;
1286 }
1287
1288 /*
1289 * If we grew by another max_extent, just return, we want to keep that
1290 * reserved amount.
1291 */
1292 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1293 root->fs_info->max_extent);
1294 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1295 root->fs_info->max_extent) > num_extents)
1296 return 0;
1297
32c00aff
JB
1298 spin_lock(&BTRFS_I(inode)->accounting_lock);
1299 BTRFS_I(inode)->outstanding_extents--;
1300 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1301
1302 return 0;
1303}
1304
d352ac68
CM
1305/*
1306 * extent_io.c set_bit_hook, used to track delayed allocation
1307 * bytes in this file, and to maintain the list of inodes that
1308 * have pending delalloc work to be done.
1309 */
b2950863 1310static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1311 unsigned long old, unsigned long bits)
291d673e 1312{
9ed74f2d 1313
75eff68e
CM
1314 /*
1315 * set_bit and clear bit hooks normally require _irqsave/restore
1316 * but in this case, we are only testeing for the DELALLOC
1317 * bit, which is only set or cleared with irqs on
1318 */
b0c68f8b 1319 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1320 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1321
32c00aff
JB
1322 spin_lock(&BTRFS_I(inode)->accounting_lock);
1323 BTRFS_I(inode)->outstanding_extents++;
1324 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1325 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1326 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1327 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1328 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1329 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
75eff68e 1333 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1334 }
1335 return 0;
1336}
1337
d352ac68
CM
1338/*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
9ed74f2d
JB
1341static int btrfs_clear_bit_hook(struct inode *inode,
1342 struct extent_state *state, unsigned long bits)
291d673e 1343{
75eff68e
CM
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
9ed74f2d 1349 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1350 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1351
32c00aff
JB
1352 if (bits & EXTENT_DO_ACCOUNTING) {
1353 spin_lock(&BTRFS_I(inode)->accounting_lock);
1354 BTRFS_I(inode)->outstanding_extents--;
1355 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1356 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1357 }
9ed74f2d 1358
75eff68e 1359 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1360 if (state->end - state->start + 1 >
1361 root->fs_info->delalloc_bytes) {
d397712b
CM
1362 printk(KERN_INFO "btrfs warning: delalloc account "
1363 "%llu %llu\n",
9ed74f2d
JB
1364 (unsigned long long)
1365 state->end - state->start + 1,
d397712b
CM
1366 (unsigned long long)
1367 root->fs_info->delalloc_bytes);
6a63209f 1368 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1369 root->fs_info->delalloc_bytes = 0;
9069218d 1370 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1371 } else {
6a63209f 1372 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1373 state->end -
1374 state->start + 1);
1375 root->fs_info->delalloc_bytes -= state->end -
1376 state->start + 1;
1377 BTRFS_I(inode)->delalloc_bytes -= state->end -
1378 state->start + 1;
b0c68f8b 1379 }
ea8c2819
CM
1380 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1381 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1382 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1383 }
75eff68e 1384 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1385 }
1386 return 0;
1387}
1388
d352ac68
CM
1389/*
1390 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1391 * we don't create bios that span stripes or chunks
1392 */
239b14b3 1393int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1394 size_t size, struct bio *bio,
1395 unsigned long bio_flags)
239b14b3
CM
1396{
1397 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1398 struct btrfs_mapping_tree *map_tree;
a62b9401 1399 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1400 u64 length = 0;
1401 u64 map_length;
239b14b3
CM
1402 int ret;
1403
771ed689
CM
1404 if (bio_flags & EXTENT_BIO_COMPRESSED)
1405 return 0;
1406
f2d8d74d 1407 length = bio->bi_size;
239b14b3
CM
1408 map_tree = &root->fs_info->mapping_tree;
1409 map_length = length;
cea9e445 1410 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1411 &map_length, NULL, 0);
cea9e445 1412
d397712b 1413 if (map_length < length + size)
239b14b3 1414 return 1;
239b14b3
CM
1415 return 0;
1416}
1417
d352ac68
CM
1418/*
1419 * in order to insert checksums into the metadata in large chunks,
1420 * we wait until bio submission time. All the pages in the bio are
1421 * checksummed and sums are attached onto the ordered extent record.
1422 *
1423 * At IO completion time the cums attached on the ordered extent record
1424 * are inserted into the btree
1425 */
d397712b
CM
1426static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1427 struct bio *bio, int mirror_num,
1428 unsigned long bio_flags)
065631f6 1429{
065631f6 1430 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1431 int ret = 0;
e015640f 1432
d20f7043 1433 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1434 BUG_ON(ret);
4a69a410
CM
1435 return 0;
1436}
e015640f 1437
4a69a410
CM
1438/*
1439 * in order to insert checksums into the metadata in large chunks,
1440 * we wait until bio submission time. All the pages in the bio are
1441 * checksummed and sums are attached onto the ordered extent record.
1442 *
1443 * At IO completion time the cums attached on the ordered extent record
1444 * are inserted into the btree
1445 */
b2950863 1446static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1447 int mirror_num, unsigned long bio_flags)
1448{
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1450 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1451}
1452
d352ac68 1453/*
cad321ad
CM
1454 * extent_io.c submission hook. This does the right thing for csum calculation
1455 * on write, or reading the csums from the tree before a read
d352ac68 1456 */
b2950863 1457static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1458 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1459{
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
1461 int ret = 0;
19b9bdb0 1462 int skip_sum;
44b8bd7e 1463
6cbff00f 1464 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1465
e6dcd2dc
CM
1466 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1467 BUG_ON(ret);
065631f6 1468
4d1b5fb4 1469 if (!(rw & (1 << BIO_RW))) {
d20f7043 1470 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1471 return btrfs_submit_compressed_read(inode, bio,
1472 mirror_num, bio_flags);
d20f7043
CM
1473 } else if (!skip_sum)
1474 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1475 goto mapit;
19b9bdb0 1476 } else if (!skip_sum) {
17d217fe
YZ
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
19b9bdb0
CM
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1482 inode, rw, bio, mirror_num,
4a69a410
CM
1483 bio_flags, __btrfs_submit_bio_start,
1484 __btrfs_submit_bio_done);
19b9bdb0
CM
1485 }
1486
0b86a832 1487mapit:
8b712842 1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1489}
6885f308 1490
d352ac68
CM
1491/*
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1494 */
ba1da2f4 1495static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1498{
e6dcd2dc
CM
1499 struct btrfs_ordered_sum *sum;
1500
1501 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1502
1503 list_for_each_entry(sum, list, list) {
d20f7043
CM
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1506 }
1507 return 0;
1508}
1509
ea8c2819
CM
1510int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1511{
d397712b 1512 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1513 WARN_ON(1);
ea8c2819
CM
1514 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1515 GFP_NOFS);
1516}
1517
d352ac68 1518/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1519struct btrfs_writepage_fixup {
1520 struct page *page;
1521 struct btrfs_work work;
1522};
1523
b2950863 1524static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1525{
1526 struct btrfs_writepage_fixup *fixup;
1527 struct btrfs_ordered_extent *ordered;
1528 struct page *page;
1529 struct inode *inode;
1530 u64 page_start;
1531 u64 page_end;
1532
1533 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1534 page = fixup->page;
4a096752 1535again:
247e743c
CM
1536 lock_page(page);
1537 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1538 ClearPageChecked(page);
1539 goto out_page;
1540 }
1541
1542 inode = page->mapping->host;
1543 page_start = page_offset(page);
1544 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1545
1546 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1547
1548 /* already ordered? We're done */
8b62b72b 1549 if (PagePrivate2(page))
247e743c 1550 goto out;
4a096752
CM
1551
1552 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1553 if (ordered) {
1554 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1555 page_end, GFP_NOFS);
1556 unlock_page(page);
1557 btrfs_start_ordered_extent(inode, ordered, 1);
1558 goto again;
1559 }
247e743c 1560
ea8c2819 1561 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1562 ClearPageChecked(page);
1563out:
1564 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1565out_page:
1566 unlock_page(page);
1567 page_cache_release(page);
1568}
1569
1570/*
1571 * There are a few paths in the higher layers of the kernel that directly
1572 * set the page dirty bit without asking the filesystem if it is a
1573 * good idea. This causes problems because we want to make sure COW
1574 * properly happens and the data=ordered rules are followed.
1575 *
c8b97818 1576 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1577 * hasn't been properly setup for IO. We kick off an async process
1578 * to fix it up. The async helper will wait for ordered extents, set
1579 * the delalloc bit and make it safe to write the page.
1580 */
b2950863 1581static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1582{
1583 struct inode *inode = page->mapping->host;
1584 struct btrfs_writepage_fixup *fixup;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1586
8b62b72b
CM
1587 /* this page is properly in the ordered list */
1588 if (TestClearPagePrivate2(page))
247e743c
CM
1589 return 0;
1590
1591 if (PageChecked(page))
1592 return -EAGAIN;
1593
1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 if (!fixup)
1596 return -EAGAIN;
f421950f 1597
247e743c
CM
1598 SetPageChecked(page);
1599 page_cache_get(page);
1600 fixup->work.func = btrfs_writepage_fixup_worker;
1601 fixup->page = page;
1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 return -EAGAIN;
1604}
1605
d899e052
YZ
1606static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 struct inode *inode, u64 file_pos,
1608 u64 disk_bytenr, u64 disk_num_bytes,
1609 u64 num_bytes, u64 ram_bytes,
1610 u8 compression, u8 encryption,
1611 u16 other_encoding, int extent_type)
1612{
1613 struct btrfs_root *root = BTRFS_I(inode)->root;
1614 struct btrfs_file_extent_item *fi;
1615 struct btrfs_path *path;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key ins;
1618 u64 hint;
1619 int ret;
1620
1621 path = btrfs_alloc_path();
1622 BUG_ON(!path);
1623
b9473439 1624 path->leave_spinning = 1;
a1ed835e
CM
1625
1626 /*
1627 * we may be replacing one extent in the tree with another.
1628 * The new extent is pinned in the extent map, and we don't want
1629 * to drop it from the cache until it is completely in the btree.
1630 *
1631 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 * the caller is expected to unpin it and allow it to be merged
1633 * with the others.
1634 */
920bbbfb
YZ
1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 &hint, 0);
d899e052
YZ
1637 BUG_ON(ret);
1638
1639 ins.objectid = inode->i_ino;
1640 ins.offset = file_pos;
1641 ins.type = BTRFS_EXTENT_DATA_KEY;
1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 BUG_ON(ret);
1644 leaf = path->nodes[0];
1645 fi = btrfs_item_ptr(leaf, path->slots[0],
1646 struct btrfs_file_extent_item);
1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 btrfs_set_file_extent_offset(leaf, fi, 0);
1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 btrfs_set_file_extent_compression(leaf, fi, compression);
1655 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1657
1658 btrfs_unlock_up_safe(path, 1);
1659 btrfs_set_lock_blocking(leaf);
1660
d899e052
YZ
1661 btrfs_mark_buffer_dirty(leaf);
1662
1663 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1664
1665 ins.objectid = disk_bytenr;
1666 ins.offset = disk_num_bytes;
1667 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1668 ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 root->root_key.objectid,
1670 inode->i_ino, file_pos, &ins);
d899e052 1671 BUG_ON(ret);
d899e052 1672 btrfs_free_path(path);
b9473439 1673
d899e052
YZ
1674 return 0;
1675}
1676
5d13a98f
CM
1677/*
1678 * helper function for btrfs_finish_ordered_io, this
1679 * just reads in some of the csum leaves to prime them into ram
1680 * before we start the transaction. It limits the amount of btree
1681 * reads required while inside the transaction.
1682 */
1683static noinline void reada_csum(struct btrfs_root *root,
1684 struct btrfs_path *path,
1685 struct btrfs_ordered_extent *ordered_extent)
1686{
1687 struct btrfs_ordered_sum *sum;
1688 u64 bytenr;
1689
1690 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1691 list);
1692 bytenr = sum->sums[0].bytenr;
1693
1694 /*
1695 * we don't care about the results, the point of this search is
1696 * just to get the btree leaves into ram
1697 */
1698 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1699}
1700
d352ac68
CM
1701/* as ordered data IO finishes, this gets called so we can finish
1702 * an ordered extent if the range of bytes in the file it covers are
1703 * fully written.
1704 */
211f90e6 1705static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1706{
e6dcd2dc
CM
1707 struct btrfs_root *root = BTRFS_I(inode)->root;
1708 struct btrfs_trans_handle *trans;
5d13a98f 1709 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1710 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1711 struct btrfs_path *path;
d899e052 1712 int compressed = 0;
e6dcd2dc
CM
1713 int ret;
1714
1715 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1716 if (!ret)
e6dcd2dc 1717 return 0;
e6dcd2dc 1718
b7ec40d7
CM
1719 /*
1720 * before we join the transaction, try to do some of our IO.
1721 * This will limit the amount of IO that we have to do with
1722 * the transaction running. We're unlikely to need to do any
1723 * IO if the file extents are new, the disk_i_size checks
1724 * covers the most common case.
1725 */
1726 if (start < BTRFS_I(inode)->disk_i_size) {
1727 path = btrfs_alloc_path();
1728 if (path) {
1729 ret = btrfs_lookup_file_extent(NULL, root, path,
1730 inode->i_ino,
1731 start, 0);
5d13a98f
CM
1732 ordered_extent = btrfs_lookup_ordered_extent(inode,
1733 start);
1734 if (!list_empty(&ordered_extent->list)) {
1735 btrfs_release_path(root, path);
1736 reada_csum(root, path, ordered_extent);
1737 }
b7ec40d7
CM
1738 btrfs_free_path(path);
1739 }
1740 }
1741
5d13a98f
CM
1742 if (!ordered_extent)
1743 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1744 BUG_ON(!ordered_extent);
c2167754
YZ
1745 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1746 BUG_ON(!list_empty(&ordered_extent->list));
1747 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1748 if (!ret) {
1749 trans = btrfs_join_transaction(root, 1);
1750 ret = btrfs_update_inode(trans, root, inode);
1751 BUG_ON(ret);
1752 btrfs_end_transaction(trans, root);
1753 }
1754 goto out;
1755 }
e6dcd2dc
CM
1756
1757 lock_extent(io_tree, ordered_extent->file_offset,
1758 ordered_extent->file_offset + ordered_extent->len - 1,
1759 GFP_NOFS);
1760
c2167754
YZ
1761 trans = btrfs_join_transaction(root, 1);
1762
c8b97818 1763 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1764 compressed = 1;
1765 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766 BUG_ON(compressed);
920bbbfb 1767 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1768 ordered_extent->file_offset,
1769 ordered_extent->file_offset +
1770 ordered_extent->len);
1771 BUG_ON(ret);
1772 } else {
1773 ret = insert_reserved_file_extent(trans, inode,
1774 ordered_extent->file_offset,
1775 ordered_extent->start,
1776 ordered_extent->disk_len,
1777 ordered_extent->len,
1778 ordered_extent->len,
1779 compressed, 0, 0,
1780 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782 ordered_extent->file_offset,
1783 ordered_extent->len);
d899e052
YZ
1784 BUG_ON(ret);
1785 }
e6dcd2dc
CM
1786 unlock_extent(io_tree, ordered_extent->file_offset,
1787 ordered_extent->file_offset + ordered_extent->len - 1,
1788 GFP_NOFS);
1789 add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 &ordered_extent->list);
1791
c2167754
YZ
1792 /* this also removes the ordered extent from the tree */
1793 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794 ret = btrfs_update_inode(trans, root, inode);
1795 BUG_ON(ret);
1796 btrfs_end_transaction(trans, root);
1797out:
e6dcd2dc
CM
1798 /* once for us */
1799 btrfs_put_ordered_extent(ordered_extent);
1800 /* once for the tree */
1801 btrfs_put_ordered_extent(ordered_extent);
1802
e6dcd2dc
CM
1803 return 0;
1804}
1805
b2950863 1806static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1807 struct extent_state *state, int uptodate)
1808{
8b62b72b 1809 ClearPagePrivate2(page);
211f90e6
CM
1810 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1811}
1812
d352ac68
CM
1813/*
1814 * When IO fails, either with EIO or csum verification fails, we
1815 * try other mirrors that might have a good copy of the data. This
1816 * io_failure_record is used to record state as we go through all the
1817 * mirrors. If another mirror has good data, the page is set up to date
1818 * and things continue. If a good mirror can't be found, the original
1819 * bio end_io callback is called to indicate things have failed.
1820 */
7e38326f
CM
1821struct io_failure_record {
1822 struct page *page;
1823 u64 start;
1824 u64 len;
1825 u64 logical;
d20f7043 1826 unsigned long bio_flags;
7e38326f
CM
1827 int last_mirror;
1828};
1829
b2950863 1830static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1831 struct page *page, u64 start, u64 end,
1832 struct extent_state *state)
7e38326f
CM
1833{
1834 struct io_failure_record *failrec = NULL;
1835 u64 private;
1836 struct extent_map *em;
1837 struct inode *inode = page->mapping->host;
1838 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1839 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1840 struct bio *bio;
1841 int num_copies;
1842 int ret;
1259ab75 1843 int rw;
7e38326f
CM
1844 u64 logical;
1845
1846 ret = get_state_private(failure_tree, start, &private);
1847 if (ret) {
7e38326f
CM
1848 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1849 if (!failrec)
1850 return -ENOMEM;
1851 failrec->start = start;
1852 failrec->len = end - start + 1;
1853 failrec->last_mirror = 0;
d20f7043 1854 failrec->bio_flags = 0;
7e38326f 1855
890871be 1856 read_lock(&em_tree->lock);
3b951516
CM
1857 em = lookup_extent_mapping(em_tree, start, failrec->len);
1858 if (em->start > start || em->start + em->len < start) {
1859 free_extent_map(em);
1860 em = NULL;
1861 }
890871be 1862 read_unlock(&em_tree->lock);
7e38326f
CM
1863
1864 if (!em || IS_ERR(em)) {
1865 kfree(failrec);
1866 return -EIO;
1867 }
1868 logical = start - em->start;
1869 logical = em->block_start + logical;
d20f7043
CM
1870 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1871 logical = em->block_start;
1872 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1873 }
7e38326f
CM
1874 failrec->logical = logical;
1875 free_extent_map(em);
1876 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1877 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1878 set_state_private(failure_tree, start,
1879 (u64)(unsigned long)failrec);
7e38326f 1880 } else {
587f7704 1881 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1882 }
1883 num_copies = btrfs_num_copies(
1884 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1885 failrec->logical, failrec->len);
1886 failrec->last_mirror++;
1887 if (!state) {
cad321ad 1888 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1889 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1890 failrec->start,
1891 EXTENT_LOCKED);
1892 if (state && state->start != failrec->start)
1893 state = NULL;
cad321ad 1894 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1895 }
1896 if (!state || failrec->last_mirror > num_copies) {
1897 set_state_private(failure_tree, failrec->start, 0);
1898 clear_extent_bits(failure_tree, failrec->start,
1899 failrec->start + failrec->len - 1,
1900 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1901 kfree(failrec);
1902 return -EIO;
1903 }
1904 bio = bio_alloc(GFP_NOFS, 1);
1905 bio->bi_private = state;
1906 bio->bi_end_io = failed_bio->bi_end_io;
1907 bio->bi_sector = failrec->logical >> 9;
1908 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1909 bio->bi_size = 0;
d20f7043 1910
7e38326f 1911 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1912 if (failed_bio->bi_rw & (1 << BIO_RW))
1913 rw = WRITE;
1914 else
1915 rw = READ;
1916
1917 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1918 failrec->last_mirror,
d20f7043 1919 failrec->bio_flags);
1259ab75
CM
1920 return 0;
1921}
1922
d352ac68
CM
1923/*
1924 * each time an IO finishes, we do a fast check in the IO failure tree
1925 * to see if we need to process or clean up an io_failure_record
1926 */
b2950863 1927static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1928{
1929 u64 private;
1930 u64 private_failure;
1931 struct io_failure_record *failure;
1932 int ret;
1933
1934 private = 0;
1935 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1936 (u64)-1, 1, EXTENT_DIRTY)) {
1937 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 start, &private_failure);
1939 if (ret == 0) {
1940 failure = (struct io_failure_record *)(unsigned long)
1941 private_failure;
1942 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1943 failure->start, 0);
1944 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1945 failure->start,
1946 failure->start + failure->len - 1,
1947 EXTENT_DIRTY | EXTENT_LOCKED,
1948 GFP_NOFS);
1949 kfree(failure);
1950 }
1951 }
7e38326f
CM
1952 return 0;
1953}
1954
d352ac68
CM
1955/*
1956 * when reads are done, we need to check csums to verify the data is correct
1957 * if there's a match, we allow the bio to finish. If not, we go through
1958 * the io_failure_record routines to find good copies
1959 */
b2950863 1960static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1961 struct extent_state *state)
07157aac 1962{
35ebb934 1963 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1964 struct inode *inode = page->mapping->host;
d1310b2e 1965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1966 char *kaddr;
aadfeb6e 1967 u64 private = ~(u32)0;
07157aac 1968 int ret;
ff79f819
CM
1969 struct btrfs_root *root = BTRFS_I(inode)->root;
1970 u32 csum = ~(u32)0;
d1310b2e 1971
d20f7043
CM
1972 if (PageChecked(page)) {
1973 ClearPageChecked(page);
1974 goto good;
1975 }
6cbff00f
CH
1976
1977 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1978 return 0;
1979
1980 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1981 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1982 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1983 GFP_NOFS);
b6cda9bc 1984 return 0;
17d217fe 1985 }
d20f7043 1986
c2e639f0 1987 if (state && state->start == start) {
70dec807
CM
1988 private = state->private;
1989 ret = 0;
1990 } else {
1991 ret = get_state_private(io_tree, start, &private);
1992 }
9ab86c8e 1993 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1994 if (ret)
07157aac 1995 goto zeroit;
d397712b 1996
ff79f819
CM
1997 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1998 btrfs_csum_final(csum, (char *)&csum);
d397712b 1999 if (csum != private)
07157aac 2000 goto zeroit;
d397712b 2001
9ab86c8e 2002 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2003good:
7e38326f
CM
2004 /* if the io failure tree for this inode is non-empty,
2005 * check to see if we've recovered from a failed IO
2006 */
1259ab75 2007 btrfs_clean_io_failures(inode, start);
07157aac
CM
2008 return 0;
2009
2010zeroit:
193f284d
CM
2011 if (printk_ratelimit()) {
2012 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2013 "private %llu\n", page->mapping->host->i_ino,
2014 (unsigned long long)start, csum,
2015 (unsigned long long)private);
2016 }
db94535d
CM
2017 memset(kaddr + offset, 1, end - start + 1);
2018 flush_dcache_page(page);
9ab86c8e 2019 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2020 if (private == 0)
2021 return 0;
7e38326f 2022 return -EIO;
07157aac 2023}
b888db2b 2024
24bbcf04
YZ
2025struct delayed_iput {
2026 struct list_head list;
2027 struct inode *inode;
2028};
2029
2030void btrfs_add_delayed_iput(struct inode *inode)
2031{
2032 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2033 struct delayed_iput *delayed;
2034
2035 if (atomic_add_unless(&inode->i_count, -1, 1))
2036 return;
2037
2038 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2039 delayed->inode = inode;
2040
2041 spin_lock(&fs_info->delayed_iput_lock);
2042 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2043 spin_unlock(&fs_info->delayed_iput_lock);
2044}
2045
2046void btrfs_run_delayed_iputs(struct btrfs_root *root)
2047{
2048 LIST_HEAD(list);
2049 struct btrfs_fs_info *fs_info = root->fs_info;
2050 struct delayed_iput *delayed;
2051 int empty;
2052
2053 spin_lock(&fs_info->delayed_iput_lock);
2054 empty = list_empty(&fs_info->delayed_iputs);
2055 spin_unlock(&fs_info->delayed_iput_lock);
2056 if (empty)
2057 return;
2058
2059 down_read(&root->fs_info->cleanup_work_sem);
2060 spin_lock(&fs_info->delayed_iput_lock);
2061 list_splice_init(&fs_info->delayed_iputs, &list);
2062 spin_unlock(&fs_info->delayed_iput_lock);
2063
2064 while (!list_empty(&list)) {
2065 delayed = list_entry(list.next, struct delayed_iput, list);
2066 list_del(&delayed->list);
2067 iput(delayed->inode);
2068 kfree(delayed);
2069 }
2070 up_read(&root->fs_info->cleanup_work_sem);
2071}
2072
7b128766
JB
2073/*
2074 * This creates an orphan entry for the given inode in case something goes
2075 * wrong in the middle of an unlink/truncate.
2076 */
2077int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2078{
2079 struct btrfs_root *root = BTRFS_I(inode)->root;
2080 int ret = 0;
2081
bcc63abb 2082 spin_lock(&root->list_lock);
7b128766
JB
2083
2084 /* already on the orphan list, we're good */
2085 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2086 spin_unlock(&root->list_lock);
7b128766
JB
2087 return 0;
2088 }
2089
2090 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2091
bcc63abb 2092 spin_unlock(&root->list_lock);
7b128766
JB
2093
2094 /*
2095 * insert an orphan item to track this unlinked/truncated file
2096 */
2097 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2098
2099 return ret;
2100}
2101
2102/*
2103 * We have done the truncate/delete so we can go ahead and remove the orphan
2104 * item for this particular inode.
2105 */
2106int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2107{
2108 struct btrfs_root *root = BTRFS_I(inode)->root;
2109 int ret = 0;
2110
bcc63abb 2111 spin_lock(&root->list_lock);
7b128766
JB
2112
2113 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2114 spin_unlock(&root->list_lock);
7b128766
JB
2115 return 0;
2116 }
2117
2118 list_del_init(&BTRFS_I(inode)->i_orphan);
2119 if (!trans) {
bcc63abb 2120 spin_unlock(&root->list_lock);
7b128766
JB
2121 return 0;
2122 }
2123
bcc63abb 2124 spin_unlock(&root->list_lock);
7b128766
JB
2125
2126 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2127
2128 return ret;
2129}
2130
2131/*
2132 * this cleans up any orphans that may be left on the list from the last use
2133 * of this root.
2134 */
2135void btrfs_orphan_cleanup(struct btrfs_root *root)
2136{
2137 struct btrfs_path *path;
2138 struct extent_buffer *leaf;
2139 struct btrfs_item *item;
2140 struct btrfs_key key, found_key;
2141 struct btrfs_trans_handle *trans;
2142 struct inode *inode;
2143 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2144
c71bf099 2145 if (!xchg(&root->clean_orphans, 0))
7b128766 2146 return;
c71bf099
YZ
2147
2148 path = btrfs_alloc_path();
2149 BUG_ON(!path);
7b128766
JB
2150 path->reada = -1;
2151
2152 key.objectid = BTRFS_ORPHAN_OBJECTID;
2153 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2154 key.offset = (u64)-1;
2155
7b128766
JB
2156 while (1) {
2157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2158 if (ret < 0) {
2159 printk(KERN_ERR "Error searching slot for orphan: %d"
2160 "\n", ret);
2161 break;
2162 }
2163
2164 /*
2165 * if ret == 0 means we found what we were searching for, which
2166 * is weird, but possible, so only screw with path if we didnt
2167 * find the key and see if we have stuff that matches
2168 */
2169 if (ret > 0) {
2170 if (path->slots[0] == 0)
2171 break;
2172 path->slots[0]--;
2173 }
2174
2175 /* pull out the item */
2176 leaf = path->nodes[0];
2177 item = btrfs_item_nr(leaf, path->slots[0]);
2178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2179
2180 /* make sure the item matches what we want */
2181 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2182 break;
2183 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2184 break;
2185
2186 /* release the path since we're done with it */
2187 btrfs_release_path(root, path);
2188
2189 /*
2190 * this is where we are basically btrfs_lookup, without the
2191 * crossing root thing. we store the inode number in the
2192 * offset of the orphan item.
2193 */
5d4f98a2
YZ
2194 found_key.objectid = found_key.offset;
2195 found_key.type = BTRFS_INODE_ITEM_KEY;
2196 found_key.offset = 0;
2197 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2198 if (IS_ERR(inode))
7b128766
JB
2199 break;
2200
7b128766
JB
2201 /*
2202 * add this inode to the orphan list so btrfs_orphan_del does
2203 * the proper thing when we hit it
2204 */
bcc63abb 2205 spin_lock(&root->list_lock);
7b128766 2206 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2207 spin_unlock(&root->list_lock);
7b128766
JB
2208
2209 /*
2210 * if this is a bad inode, means we actually succeeded in
2211 * removing the inode, but not the orphan record, which means
2212 * we need to manually delete the orphan since iput will just
2213 * do a destroy_inode
2214 */
2215 if (is_bad_inode(inode)) {
5b21f2ed 2216 trans = btrfs_start_transaction(root, 1);
7b128766 2217 btrfs_orphan_del(trans, inode);
5b21f2ed 2218 btrfs_end_transaction(trans, root);
7b128766
JB
2219 iput(inode);
2220 continue;
2221 }
2222
2223 /* if we have links, this was a truncate, lets do that */
2224 if (inode->i_nlink) {
2225 nr_truncate++;
2226 btrfs_truncate(inode);
2227 } else {
2228 nr_unlink++;
2229 }
2230
2231 /* this will do delete_inode and everything for us */
2232 iput(inode);
2233 }
2234
2235 if (nr_unlink)
2236 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2237 if (nr_truncate)
2238 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2239
2240 btrfs_free_path(path);
7b128766
JB
2241}
2242
46a53cca
CM
2243/*
2244 * very simple check to peek ahead in the leaf looking for xattrs. If we
2245 * don't find any xattrs, we know there can't be any acls.
2246 *
2247 * slot is the slot the inode is in, objectid is the objectid of the inode
2248 */
2249static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2250 int slot, u64 objectid)
2251{
2252 u32 nritems = btrfs_header_nritems(leaf);
2253 struct btrfs_key found_key;
2254 int scanned = 0;
2255
2256 slot++;
2257 while (slot < nritems) {
2258 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2259
2260 /* we found a different objectid, there must not be acls */
2261 if (found_key.objectid != objectid)
2262 return 0;
2263
2264 /* we found an xattr, assume we've got an acl */
2265 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2266 return 1;
2267
2268 /*
2269 * we found a key greater than an xattr key, there can't
2270 * be any acls later on
2271 */
2272 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2273 return 0;
2274
2275 slot++;
2276 scanned++;
2277
2278 /*
2279 * it goes inode, inode backrefs, xattrs, extents,
2280 * so if there are a ton of hard links to an inode there can
2281 * be a lot of backrefs. Don't waste time searching too hard,
2282 * this is just an optimization
2283 */
2284 if (scanned >= 8)
2285 break;
2286 }
2287 /* we hit the end of the leaf before we found an xattr or
2288 * something larger than an xattr. We have to assume the inode
2289 * has acls
2290 */
2291 return 1;
2292}
2293
d352ac68
CM
2294/*
2295 * read an inode from the btree into the in-memory inode
2296 */
5d4f98a2 2297static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2298{
2299 struct btrfs_path *path;
5f39d397 2300 struct extent_buffer *leaf;
39279cc3 2301 struct btrfs_inode_item *inode_item;
0b86a832 2302 struct btrfs_timespec *tspec;
39279cc3
CM
2303 struct btrfs_root *root = BTRFS_I(inode)->root;
2304 struct btrfs_key location;
46a53cca 2305 int maybe_acls;
39279cc3 2306 u64 alloc_group_block;
618e21d5 2307 u32 rdev;
39279cc3
CM
2308 int ret;
2309
2310 path = btrfs_alloc_path();
2311 BUG_ON(!path);
39279cc3 2312 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2313
39279cc3 2314 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2315 if (ret)
39279cc3 2316 goto make_bad;
39279cc3 2317
5f39d397
CM
2318 leaf = path->nodes[0];
2319 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2320 struct btrfs_inode_item);
2321
2322 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2323 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2324 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2325 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2326 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2327
2328 tspec = btrfs_inode_atime(inode_item);
2329 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2330 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2331
2332 tspec = btrfs_inode_mtime(inode_item);
2333 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2334 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2335
2336 tspec = btrfs_inode_ctime(inode_item);
2337 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2338 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2339
a76a3cd4 2340 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2341 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2342 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2343 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2344 inode->i_rdev = 0;
5f39d397
CM
2345 rdev = btrfs_inode_rdev(leaf, inode_item);
2346
aec7477b 2347 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2348 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2349
5f39d397 2350 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2351
46a53cca
CM
2352 /*
2353 * try to precache a NULL acl entry for files that don't have
2354 * any xattrs or acls
2355 */
2356 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2357 if (!maybe_acls)
2358 cache_no_acl(inode);
46a53cca 2359
d2fb3437
YZ
2360 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2361 alloc_group_block, 0);
39279cc3
CM
2362 btrfs_free_path(path);
2363 inode_item = NULL;
2364
39279cc3 2365 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2366 case S_IFREG:
2367 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2368 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2369 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2370 inode->i_fop = &btrfs_file_operations;
2371 inode->i_op = &btrfs_file_inode_operations;
2372 break;
2373 case S_IFDIR:
2374 inode->i_fop = &btrfs_dir_file_operations;
2375 if (root == root->fs_info->tree_root)
2376 inode->i_op = &btrfs_dir_ro_inode_operations;
2377 else
2378 inode->i_op = &btrfs_dir_inode_operations;
2379 break;
2380 case S_IFLNK:
2381 inode->i_op = &btrfs_symlink_inode_operations;
2382 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2383 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2384 break;
618e21d5 2385 default:
0279b4cd 2386 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2387 init_special_inode(inode, inode->i_mode, rdev);
2388 break;
39279cc3 2389 }
6cbff00f
CH
2390
2391 btrfs_update_iflags(inode);
39279cc3
CM
2392 return;
2393
2394make_bad:
39279cc3 2395 btrfs_free_path(path);
39279cc3
CM
2396 make_bad_inode(inode);
2397}
2398
d352ac68
CM
2399/*
2400 * given a leaf and an inode, copy the inode fields into the leaf
2401 */
e02119d5
CM
2402static void fill_inode_item(struct btrfs_trans_handle *trans,
2403 struct extent_buffer *leaf,
5f39d397 2404 struct btrfs_inode_item *item,
39279cc3
CM
2405 struct inode *inode)
2406{
5f39d397
CM
2407 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2408 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2409 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2410 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2411 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2412
2413 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2414 inode->i_atime.tv_sec);
2415 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2416 inode->i_atime.tv_nsec);
2417
2418 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2419 inode->i_mtime.tv_sec);
2420 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2421 inode->i_mtime.tv_nsec);
2422
2423 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2424 inode->i_ctime.tv_sec);
2425 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2426 inode->i_ctime.tv_nsec);
2427
a76a3cd4 2428 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2429 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2430 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2431 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2432 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2433 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2434 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2435}
2436
d352ac68
CM
2437/*
2438 * copy everything in the in-memory inode into the btree.
2439 */
d397712b
CM
2440noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2442{
2443 struct btrfs_inode_item *inode_item;
2444 struct btrfs_path *path;
5f39d397 2445 struct extent_buffer *leaf;
39279cc3
CM
2446 int ret;
2447
2448 path = btrfs_alloc_path();
2449 BUG_ON(!path);
b9473439 2450 path->leave_spinning = 1;
39279cc3
CM
2451 ret = btrfs_lookup_inode(trans, root, path,
2452 &BTRFS_I(inode)->location, 1);
2453 if (ret) {
2454 if (ret > 0)
2455 ret = -ENOENT;
2456 goto failed;
2457 }
2458
b4ce94de 2459 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2460 leaf = path->nodes[0];
2461 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2462 struct btrfs_inode_item);
2463
e02119d5 2464 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2465 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2466 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2467 ret = 0;
2468failed:
39279cc3
CM
2469 btrfs_free_path(path);
2470 return ret;
2471}
2472
2473
d352ac68
CM
2474/*
2475 * unlink helper that gets used here in inode.c and in the tree logging
2476 * recovery code. It remove a link in a directory with a given name, and
2477 * also drops the back refs in the inode to the directory
2478 */
e02119d5
CM
2479int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2480 struct btrfs_root *root,
2481 struct inode *dir, struct inode *inode,
2482 const char *name, int name_len)
39279cc3
CM
2483{
2484 struct btrfs_path *path;
39279cc3 2485 int ret = 0;
5f39d397 2486 struct extent_buffer *leaf;
39279cc3 2487 struct btrfs_dir_item *di;
5f39d397 2488 struct btrfs_key key;
aec7477b 2489 u64 index;
39279cc3
CM
2490
2491 path = btrfs_alloc_path();
54aa1f4d
CM
2492 if (!path) {
2493 ret = -ENOMEM;
2494 goto err;
2495 }
2496
b9473439 2497 path->leave_spinning = 1;
39279cc3
CM
2498 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2499 name, name_len, -1);
2500 if (IS_ERR(di)) {
2501 ret = PTR_ERR(di);
2502 goto err;
2503 }
2504 if (!di) {
2505 ret = -ENOENT;
2506 goto err;
2507 }
5f39d397
CM
2508 leaf = path->nodes[0];
2509 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2510 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2511 if (ret)
2512 goto err;
39279cc3
CM
2513 btrfs_release_path(root, path);
2514
aec7477b 2515 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2516 inode->i_ino,
2517 dir->i_ino, &index);
aec7477b 2518 if (ret) {
d397712b 2519 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2520 "inode %lu parent %lu\n", name_len, name,
e02119d5 2521 inode->i_ino, dir->i_ino);
aec7477b
JB
2522 goto err;
2523 }
2524
39279cc3 2525 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2526 index, name, name_len, -1);
39279cc3
CM
2527 if (IS_ERR(di)) {
2528 ret = PTR_ERR(di);
2529 goto err;
2530 }
2531 if (!di) {
2532 ret = -ENOENT;
2533 goto err;
2534 }
2535 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2536 btrfs_release_path(root, path);
39279cc3 2537
e02119d5
CM
2538 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2539 inode, dir->i_ino);
49eb7e46 2540 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2541
2542 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2543 dir, index);
2544 BUG_ON(ret);
39279cc3
CM
2545err:
2546 btrfs_free_path(path);
e02119d5
CM
2547 if (ret)
2548 goto out;
2549
2550 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2551 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2552 btrfs_update_inode(trans, root, dir);
2553 btrfs_drop_nlink(inode);
2554 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2555out:
39279cc3
CM
2556 return ret;
2557}
2558
2559static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2560{
2561 struct btrfs_root *root;
2562 struct btrfs_trans_handle *trans;
7b128766 2563 struct inode *inode = dentry->d_inode;
39279cc3 2564 int ret;
1832a6d5 2565 unsigned long nr = 0;
39279cc3
CM
2566
2567 root = BTRFS_I(dir)->root;
1832a6d5 2568
5df6a9f6
JB
2569 /*
2570 * 5 items for unlink inode
2571 * 1 for orphan
2572 */
2573 ret = btrfs_reserve_metadata_space(root, 6);
2574 if (ret)
2575 return ret;
2576
39279cc3 2577 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2578 if (IS_ERR(trans)) {
2579 btrfs_unreserve_metadata_space(root, 6);
2580 return PTR_ERR(trans);
2581 }
5f39d397 2582
39279cc3 2583 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2584
2585 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2586
e02119d5
CM
2587 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2588 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2589
2590 if (inode->i_nlink == 0)
2591 ret = btrfs_orphan_add(trans, inode);
2592
d3c2fdcf 2593 nr = trans->blocks_used;
5f39d397 2594
89ce8a63 2595 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2596 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2597 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2598 return ret;
2599}
2600
4df27c4d
YZ
2601int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2602 struct btrfs_root *root,
2603 struct inode *dir, u64 objectid,
2604 const char *name, int name_len)
2605{
2606 struct btrfs_path *path;
2607 struct extent_buffer *leaf;
2608 struct btrfs_dir_item *di;
2609 struct btrfs_key key;
2610 u64 index;
2611 int ret;
2612
2613 path = btrfs_alloc_path();
2614 if (!path)
2615 return -ENOMEM;
2616
2617 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2618 name, name_len, -1);
2619 BUG_ON(!di || IS_ERR(di));
2620
2621 leaf = path->nodes[0];
2622 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2623 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2624 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2625 BUG_ON(ret);
2626 btrfs_release_path(root, path);
2627
2628 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2629 objectid, root->root_key.objectid,
2630 dir->i_ino, &index, name, name_len);
2631 if (ret < 0) {
2632 BUG_ON(ret != -ENOENT);
2633 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2634 name, name_len);
2635 BUG_ON(!di || IS_ERR(di));
2636
2637 leaf = path->nodes[0];
2638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2639 btrfs_release_path(root, path);
2640 index = key.offset;
2641 }
2642
2643 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2644 index, name, name_len, -1);
2645 BUG_ON(!di || IS_ERR(di));
2646
2647 leaf = path->nodes[0];
2648 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2649 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2650 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2651 BUG_ON(ret);
2652 btrfs_release_path(root, path);
2653
2654 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2655 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2656 ret = btrfs_update_inode(trans, root, dir);
2657 BUG_ON(ret);
2658 dir->i_sb->s_dirt = 1;
2659
2660 btrfs_free_path(path);
2661 return 0;
2662}
2663
39279cc3
CM
2664static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2665{
2666 struct inode *inode = dentry->d_inode;
1832a6d5 2667 int err = 0;
39279cc3
CM
2668 int ret;
2669 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2670 struct btrfs_trans_handle *trans;
1832a6d5 2671 unsigned long nr = 0;
39279cc3 2672
3394e160 2673 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2674 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2675 return -ENOTEMPTY;
2676
5df6a9f6
JB
2677 ret = btrfs_reserve_metadata_space(root, 5);
2678 if (ret)
2679 return ret;
2680
39279cc3 2681 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2682 if (IS_ERR(trans)) {
2683 btrfs_unreserve_metadata_space(root, 5);
2684 return PTR_ERR(trans);
2685 }
2686
39279cc3 2687 btrfs_set_trans_block_group(trans, dir);
39279cc3 2688
4df27c4d
YZ
2689 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2690 err = btrfs_unlink_subvol(trans, root, dir,
2691 BTRFS_I(inode)->location.objectid,
2692 dentry->d_name.name,
2693 dentry->d_name.len);
2694 goto out;
2695 }
2696
7b128766
JB
2697 err = btrfs_orphan_add(trans, inode);
2698 if (err)
4df27c4d 2699 goto out;
7b128766 2700
39279cc3 2701 /* now the directory is empty */
e02119d5
CM
2702 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2703 dentry->d_name.name, dentry->d_name.len);
d397712b 2704 if (!err)
dbe674a9 2705 btrfs_i_size_write(inode, 0);
4df27c4d 2706out:
d3c2fdcf 2707 nr = trans->blocks_used;
89ce8a63 2708 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2709 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2710 btrfs_btree_balance_dirty(root, nr);
3954401f 2711
39279cc3
CM
2712 if (ret && !err)
2713 err = ret;
2714 return err;
2715}
2716
d20f7043 2717#if 0
323ac95b
CM
2718/*
2719 * when truncating bytes in a file, it is possible to avoid reading
2720 * the leaves that contain only checksum items. This can be the
2721 * majority of the IO required to delete a large file, but it must
2722 * be done carefully.
2723 *
2724 * The keys in the level just above the leaves are checked to make sure
2725 * the lowest key in a given leaf is a csum key, and starts at an offset
2726 * after the new size.
2727 *
2728 * Then the key for the next leaf is checked to make sure it also has
2729 * a checksum item for the same file. If it does, we know our target leaf
2730 * contains only checksum items, and it can be safely freed without reading
2731 * it.
2732 *
2733 * This is just an optimization targeted at large files. It may do
2734 * nothing. It will return 0 unless things went badly.
2735 */
2736static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2737 struct btrfs_root *root,
2738 struct btrfs_path *path,
2739 struct inode *inode, u64 new_size)
2740{
2741 struct btrfs_key key;
2742 int ret;
2743 int nritems;
2744 struct btrfs_key found_key;
2745 struct btrfs_key other_key;
5b84e8d6
YZ
2746 struct btrfs_leaf_ref *ref;
2747 u64 leaf_gen;
2748 u64 leaf_start;
323ac95b
CM
2749
2750 path->lowest_level = 1;
2751 key.objectid = inode->i_ino;
2752 key.type = BTRFS_CSUM_ITEM_KEY;
2753 key.offset = new_size;
2754again:
2755 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2756 if (ret < 0)
2757 goto out;
2758
2759 if (path->nodes[1] == NULL) {
2760 ret = 0;
2761 goto out;
2762 }
2763 ret = 0;
2764 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2765 nritems = btrfs_header_nritems(path->nodes[1]);
2766
2767 if (!nritems)
2768 goto out;
2769
2770 if (path->slots[1] >= nritems)
2771 goto next_node;
2772
2773 /* did we find a key greater than anything we want to delete? */
2774 if (found_key.objectid > inode->i_ino ||
2775 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2776 goto out;
2777
2778 /* we check the next key in the node to make sure the leave contains
2779 * only checksum items. This comparison doesn't work if our
2780 * leaf is the last one in the node
2781 */
2782 if (path->slots[1] + 1 >= nritems) {
2783next_node:
2784 /* search forward from the last key in the node, this
2785 * will bring us into the next node in the tree
2786 */
2787 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2788
2789 /* unlikely, but we inc below, so check to be safe */
2790 if (found_key.offset == (u64)-1)
2791 goto out;
2792
2793 /* search_forward needs a path with locks held, do the
2794 * search again for the original key. It is possible
2795 * this will race with a balance and return a path that
2796 * we could modify, but this drop is just an optimization
2797 * and is allowed to miss some leaves.
2798 */
2799 btrfs_release_path(root, path);
2800 found_key.offset++;
2801
2802 /* setup a max key for search_forward */
2803 other_key.offset = (u64)-1;
2804 other_key.type = key.type;
2805 other_key.objectid = key.objectid;
2806
2807 path->keep_locks = 1;
2808 ret = btrfs_search_forward(root, &found_key, &other_key,
2809 path, 0, 0);
2810 path->keep_locks = 0;
2811 if (ret || found_key.objectid != key.objectid ||
2812 found_key.type != key.type) {
2813 ret = 0;
2814 goto out;
2815 }
2816
2817 key.offset = found_key.offset;
2818 btrfs_release_path(root, path);
2819 cond_resched();
2820 goto again;
2821 }
2822
2823 /* we know there's one more slot after us in the tree,
2824 * read that key so we can verify it is also a checksum item
2825 */
2826 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2827
2828 if (found_key.objectid < inode->i_ino)
2829 goto next_key;
2830
2831 if (found_key.type != key.type || found_key.offset < new_size)
2832 goto next_key;
2833
2834 /*
2835 * if the key for the next leaf isn't a csum key from this objectid,
2836 * we can't be sure there aren't good items inside this leaf.
2837 * Bail out
2838 */
2839 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2840 goto out;
2841
5b84e8d6
YZ
2842 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2843 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2844 /*
2845 * it is safe to delete this leaf, it contains only
2846 * csum items from this inode at an offset >= new_size
2847 */
5b84e8d6 2848 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2849 BUG_ON(ret);
2850
5b84e8d6
YZ
2851 if (root->ref_cows && leaf_gen < trans->transid) {
2852 ref = btrfs_alloc_leaf_ref(root, 0);
2853 if (ref) {
2854 ref->root_gen = root->root_key.offset;
2855 ref->bytenr = leaf_start;
2856 ref->owner = 0;
2857 ref->generation = leaf_gen;
2858 ref->nritems = 0;
2859
bd56b302
CM
2860 btrfs_sort_leaf_ref(ref);
2861
5b84e8d6
YZ
2862 ret = btrfs_add_leaf_ref(root, ref, 0);
2863 WARN_ON(ret);
2864 btrfs_free_leaf_ref(root, ref);
2865 } else {
2866 WARN_ON(1);
2867 }
2868 }
323ac95b
CM
2869next_key:
2870 btrfs_release_path(root, path);
2871
2872 if (other_key.objectid == inode->i_ino &&
2873 other_key.type == key.type && other_key.offset > key.offset) {
2874 key.offset = other_key.offset;
2875 cond_resched();
2876 goto again;
2877 }
2878 ret = 0;
2879out:
2880 /* fixup any changes we've made to the path */
2881 path->lowest_level = 0;
2882 path->keep_locks = 0;
2883 btrfs_release_path(root, path);
2884 return ret;
2885}
2886
d20f7043
CM
2887#endif
2888
39279cc3
CM
2889/*
2890 * this can truncate away extent items, csum items and directory items.
2891 * It starts at a high offset and removes keys until it can't find
d352ac68 2892 * any higher than new_size
39279cc3
CM
2893 *
2894 * csum items that cross the new i_size are truncated to the new size
2895 * as well.
7b128766
JB
2896 *
2897 * min_type is the minimum key type to truncate down to. If set to 0, this
2898 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2899 */
8082510e
YZ
2900int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2901 struct btrfs_root *root,
2902 struct inode *inode,
2903 u64 new_size, u32 min_type)
39279cc3 2904{
39279cc3 2905 struct btrfs_path *path;
5f39d397 2906 struct extent_buffer *leaf;
39279cc3 2907 struct btrfs_file_extent_item *fi;
8082510e
YZ
2908 struct btrfs_key key;
2909 struct btrfs_key found_key;
39279cc3 2910 u64 extent_start = 0;
db94535d 2911 u64 extent_num_bytes = 0;
5d4f98a2 2912 u64 extent_offset = 0;
39279cc3 2913 u64 item_end = 0;
8082510e
YZ
2914 u64 mask = root->sectorsize - 1;
2915 u32 found_type = (u8)-1;
39279cc3
CM
2916 int found_extent;
2917 int del_item;
85e21bac
CM
2918 int pending_del_nr = 0;
2919 int pending_del_slot = 0;
179e29e4 2920 int extent_type = -1;
771ed689 2921 int encoding;
8082510e
YZ
2922 int ret;
2923 int err = 0;
2924
2925 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2926
e02119d5 2927 if (root->ref_cows)
5b21f2ed 2928 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2929
39279cc3
CM
2930 path = btrfs_alloc_path();
2931 BUG_ON(!path);
33c17ad5 2932 path->reada = -1;
5f39d397 2933
39279cc3
CM
2934 key.objectid = inode->i_ino;
2935 key.offset = (u64)-1;
5f39d397
CM
2936 key.type = (u8)-1;
2937
85e21bac 2938search_again:
b9473439 2939 path->leave_spinning = 1;
85e21bac 2940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2941 if (ret < 0) {
2942 err = ret;
2943 goto out;
2944 }
d397712b 2945
85e21bac 2946 if (ret > 0) {
e02119d5
CM
2947 /* there are no items in the tree for us to truncate, we're
2948 * done
2949 */
8082510e
YZ
2950 if (path->slots[0] == 0)
2951 goto out;
85e21bac
CM
2952 path->slots[0]--;
2953 }
2954
d397712b 2955 while (1) {
39279cc3 2956 fi = NULL;
5f39d397
CM
2957 leaf = path->nodes[0];
2958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2959 found_type = btrfs_key_type(&found_key);
771ed689 2960 encoding = 0;
39279cc3 2961
5f39d397 2962 if (found_key.objectid != inode->i_ino)
39279cc3 2963 break;
5f39d397 2964
85e21bac 2965 if (found_type < min_type)
39279cc3
CM
2966 break;
2967
5f39d397 2968 item_end = found_key.offset;
39279cc3 2969 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2970 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2971 struct btrfs_file_extent_item);
179e29e4 2972 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2973 encoding = btrfs_file_extent_compression(leaf, fi);
2974 encoding |= btrfs_file_extent_encryption(leaf, fi);
2975 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2976
179e29e4 2977 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2978 item_end +=
db94535d 2979 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2980 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2981 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2982 fi);
39279cc3 2983 }
008630c1 2984 item_end--;
39279cc3 2985 }
8082510e
YZ
2986 if (found_type > min_type) {
2987 del_item = 1;
2988 } else {
2989 if (item_end < new_size)
b888db2b 2990 break;
8082510e
YZ
2991 if (found_key.offset >= new_size)
2992 del_item = 1;
2993 else
2994 del_item = 0;
39279cc3 2995 }
39279cc3 2996 found_extent = 0;
39279cc3 2997 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2998 if (found_type != BTRFS_EXTENT_DATA_KEY)
2999 goto delete;
3000
3001 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3002 u64 num_dec;
db94535d 3003 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3004 if (!del_item && !encoding) {
db94535d
CM
3005 u64 orig_num_bytes =
3006 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3007 extent_num_bytes = new_size -
5f39d397 3008 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3009 extent_num_bytes = extent_num_bytes &
3010 ~((u64)root->sectorsize - 1);
db94535d
CM
3011 btrfs_set_file_extent_num_bytes(leaf, fi,
3012 extent_num_bytes);
3013 num_dec = (orig_num_bytes -
9069218d 3014 extent_num_bytes);
e02119d5 3015 if (root->ref_cows && extent_start != 0)
a76a3cd4 3016 inode_sub_bytes(inode, num_dec);
5f39d397 3017 btrfs_mark_buffer_dirty(leaf);
39279cc3 3018 } else {
db94535d
CM
3019 extent_num_bytes =
3020 btrfs_file_extent_disk_num_bytes(leaf,
3021 fi);
5d4f98a2
YZ
3022 extent_offset = found_key.offset -
3023 btrfs_file_extent_offset(leaf, fi);
3024
39279cc3 3025 /* FIXME blocksize != 4096 */
9069218d 3026 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3027 if (extent_start != 0) {
3028 found_extent = 1;
e02119d5 3029 if (root->ref_cows)
a76a3cd4 3030 inode_sub_bytes(inode, num_dec);
e02119d5 3031 }
39279cc3 3032 }
9069218d 3033 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3034 /*
3035 * we can't truncate inline items that have had
3036 * special encodings
3037 */
3038 if (!del_item &&
3039 btrfs_file_extent_compression(leaf, fi) == 0 &&
3040 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3041 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3042 u32 size = new_size - found_key.offset;
3043
3044 if (root->ref_cows) {
a76a3cd4
YZ
3045 inode_sub_bytes(inode, item_end + 1 -
3046 new_size);
e02119d5
CM
3047 }
3048 size =
3049 btrfs_file_extent_calc_inline_size(size);
9069218d 3050 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3051 size, 1);
9069218d 3052 BUG_ON(ret);
e02119d5 3053 } else if (root->ref_cows) {
a76a3cd4
YZ
3054 inode_sub_bytes(inode, item_end + 1 -
3055 found_key.offset);
9069218d 3056 }
39279cc3 3057 }
179e29e4 3058delete:
39279cc3 3059 if (del_item) {
85e21bac
CM
3060 if (!pending_del_nr) {
3061 /* no pending yet, add ourselves */
3062 pending_del_slot = path->slots[0];
3063 pending_del_nr = 1;
3064 } else if (pending_del_nr &&
3065 path->slots[0] + 1 == pending_del_slot) {
3066 /* hop on the pending chunk */
3067 pending_del_nr++;
3068 pending_del_slot = path->slots[0];
3069 } else {
d397712b 3070 BUG();
85e21bac 3071 }
39279cc3
CM
3072 } else {
3073 break;
3074 }
5d4f98a2 3075 if (found_extent && root->ref_cows) {
b9473439 3076 btrfs_set_path_blocking(path);
39279cc3 3077 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3078 extent_num_bytes, 0,
3079 btrfs_header_owner(leaf),
3080 inode->i_ino, extent_offset);
39279cc3
CM
3081 BUG_ON(ret);
3082 }
85e21bac 3083
8082510e
YZ
3084 if (found_type == BTRFS_INODE_ITEM_KEY)
3085 break;
3086
3087 if (path->slots[0] == 0 ||
3088 path->slots[0] != pending_del_slot) {
3089 if (root->ref_cows) {
3090 err = -EAGAIN;
3091 goto out;
3092 }
3093 if (pending_del_nr) {
3094 ret = btrfs_del_items(trans, root, path,
3095 pending_del_slot,
3096 pending_del_nr);
3097 BUG_ON(ret);
3098 pending_del_nr = 0;
3099 }
85e21bac
CM
3100 btrfs_release_path(root, path);
3101 goto search_again;
8082510e
YZ
3102 } else {
3103 path->slots[0]--;
85e21bac 3104 }
39279cc3 3105 }
8082510e 3106out:
85e21bac
CM
3107 if (pending_del_nr) {
3108 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3109 pending_del_nr);
3110 }
39279cc3 3111 btrfs_free_path(path);
8082510e 3112 return err;
39279cc3
CM
3113}
3114
3115/*
3116 * taken from block_truncate_page, but does cow as it zeros out
3117 * any bytes left in the last page in the file.
3118 */
3119static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3120{
3121 struct inode *inode = mapping->host;
db94535d 3122 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3124 struct btrfs_ordered_extent *ordered;
3125 char *kaddr;
db94535d 3126 u32 blocksize = root->sectorsize;
39279cc3
CM
3127 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3128 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3129 struct page *page;
39279cc3 3130 int ret = 0;
a52d9a80 3131 u64 page_start;
e6dcd2dc 3132 u64 page_end;
39279cc3
CM
3133
3134 if ((offset & (blocksize - 1)) == 0)
3135 goto out;
5d5e103a
JB
3136 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3137 if (ret)
3138 goto out;
3139
3140 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3141 if (ret)
3142 goto out;
39279cc3
CM
3143
3144 ret = -ENOMEM;
211c17f5 3145again:
39279cc3 3146 page = grab_cache_page(mapping, index);
5d5e103a
JB
3147 if (!page) {
3148 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3149 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3150 goto out;
5d5e103a 3151 }
e6dcd2dc
CM
3152
3153 page_start = page_offset(page);
3154 page_end = page_start + PAGE_CACHE_SIZE - 1;
3155
39279cc3 3156 if (!PageUptodate(page)) {
9ebefb18 3157 ret = btrfs_readpage(NULL, page);
39279cc3 3158 lock_page(page);
211c17f5
CM
3159 if (page->mapping != mapping) {
3160 unlock_page(page);
3161 page_cache_release(page);
3162 goto again;
3163 }
39279cc3
CM
3164 if (!PageUptodate(page)) {
3165 ret = -EIO;
89642229 3166 goto out_unlock;
39279cc3
CM
3167 }
3168 }
211c17f5 3169 wait_on_page_writeback(page);
e6dcd2dc
CM
3170
3171 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3172 set_page_extent_mapped(page);
3173
3174 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3175 if (ordered) {
3176 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3177 unlock_page(page);
3178 page_cache_release(page);
eb84ae03 3179 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3180 btrfs_put_ordered_extent(ordered);
3181 goto again;
3182 }
3183
5d5e103a
JB
3184 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3185 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3186 GFP_NOFS);
3187
9ed74f2d
JB
3188 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3189 if (ret) {
3190 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3191 goto out_unlock;
3192 }
3193
e6dcd2dc
CM
3194 ret = 0;
3195 if (offset != PAGE_CACHE_SIZE) {
3196 kaddr = kmap(page);
3197 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3198 flush_dcache_page(page);
3199 kunmap(page);
3200 }
247e743c 3201 ClearPageChecked(page);
e6dcd2dc
CM
3202 set_page_dirty(page);
3203 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3204
89642229 3205out_unlock:
5d5e103a
JB
3206 if (ret)
3207 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3208 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3209 unlock_page(page);
3210 page_cache_release(page);
3211out:
3212 return ret;
3213}
3214
9036c102 3215int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3216{
9036c102
YZ
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_root *root = BTRFS_I(inode)->root;
3219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3220 struct extent_map *em;
3221 u64 mask = root->sectorsize - 1;
3222 u64 hole_start = (inode->i_size + mask) & ~mask;
3223 u64 block_end = (size + mask) & ~mask;
3224 u64 last_byte;
3225 u64 cur_offset;
3226 u64 hole_size;
9ed74f2d 3227 int err = 0;
39279cc3 3228
9036c102
YZ
3229 if (size <= hole_start)
3230 return 0;
3231
9036c102
YZ
3232 while (1) {
3233 struct btrfs_ordered_extent *ordered;
3234 btrfs_wait_ordered_range(inode, hole_start,
3235 block_end - hole_start);
3236 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3237 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3238 if (!ordered)
3239 break;
3240 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3241 btrfs_put_ordered_extent(ordered);
3242 }
39279cc3 3243
9036c102
YZ
3244 cur_offset = hole_start;
3245 while (1) {
3246 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3247 block_end - cur_offset, 0);
3248 BUG_ON(IS_ERR(em) || !em);
3249 last_byte = min(extent_map_end(em), block_end);
3250 last_byte = (last_byte + mask) & ~mask;
8082510e 3251 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3252 u64 hint_byte = 0;
9036c102 3253 hole_size = last_byte - cur_offset;
9ed74f2d 3254
8082510e 3255 err = btrfs_reserve_metadata_space(root, 2);
9ed74f2d
JB
3256 if (err)
3257 break;
3258
8082510e
YZ
3259 trans = btrfs_start_transaction(root, 1);
3260 btrfs_set_trans_block_group(trans, inode);
3261
3262 err = btrfs_drop_extents(trans, inode, cur_offset,
3263 cur_offset + hole_size,
3264 &hint_byte, 1);
3265 BUG_ON(err);
3266
9036c102
YZ
3267 err = btrfs_insert_file_extent(trans, root,
3268 inode->i_ino, cur_offset, 0,
3269 0, hole_size, 0, hole_size,
3270 0, 0, 0);
8082510e
YZ
3271 BUG_ON(err);
3272
9036c102
YZ
3273 btrfs_drop_extent_cache(inode, hole_start,
3274 last_byte - 1, 0);
8082510e
YZ
3275
3276 btrfs_end_transaction(trans, root);
3277 btrfs_unreserve_metadata_space(root, 2);
9036c102
YZ
3278 }
3279 free_extent_map(em);
3280 cur_offset = last_byte;
8082510e 3281 if (cur_offset >= block_end)
9036c102
YZ
3282 break;
3283 }
1832a6d5 3284
9036c102
YZ
3285 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3286 return err;
3287}
39279cc3 3288
8082510e
YZ
3289static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3290{
3291 struct btrfs_root *root = BTRFS_I(inode)->root;
3292 struct btrfs_trans_handle *trans;
3293 unsigned long nr;
3294 int ret;
3295
3296 if (attr->ia_size == inode->i_size)
3297 return 0;
3298
3299 if (attr->ia_size > inode->i_size) {
3300 unsigned long limit;
3301 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3302 if (attr->ia_size > inode->i_sb->s_maxbytes)
3303 return -EFBIG;
3304 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3305 send_sig(SIGXFSZ, current, 0);
3306 return -EFBIG;
3307 }
3308 }
3309
3310 ret = btrfs_reserve_metadata_space(root, 1);
3311 if (ret)
3312 return ret;
3313
3314 trans = btrfs_start_transaction(root, 1);
3315 btrfs_set_trans_block_group(trans, inode);
3316
3317 ret = btrfs_orphan_add(trans, inode);
3318 BUG_ON(ret);
3319
3320 nr = trans->blocks_used;
3321 btrfs_end_transaction(trans, root);
3322 btrfs_unreserve_metadata_space(root, 1);
3323 btrfs_btree_balance_dirty(root, nr);
3324
3325 if (attr->ia_size > inode->i_size) {
3326 ret = btrfs_cont_expand(inode, attr->ia_size);
3327 if (ret) {
3328 btrfs_truncate(inode);
3329 return ret;
3330 }
3331
3332 i_size_write(inode, attr->ia_size);
3333 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3334
3335 trans = btrfs_start_transaction(root, 1);
3336 btrfs_set_trans_block_group(trans, inode);
3337
3338 ret = btrfs_update_inode(trans, root, inode);
3339 BUG_ON(ret);
3340 if (inode->i_nlink > 0) {
3341 ret = btrfs_orphan_del(trans, inode);
3342 BUG_ON(ret);
3343 }
3344 nr = trans->blocks_used;
3345 btrfs_end_transaction(trans, root);
3346 btrfs_btree_balance_dirty(root, nr);
3347 return 0;
3348 }
3349
3350 /*
3351 * We're truncating a file that used to have good data down to
3352 * zero. Make sure it gets into the ordered flush list so that
3353 * any new writes get down to disk quickly.
3354 */
3355 if (attr->ia_size == 0)
3356 BTRFS_I(inode)->ordered_data_close = 1;
3357
3358 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3359 ret = vmtruncate(inode, attr->ia_size);
3360 BUG_ON(ret);
3361
3362 return 0;
3363}
3364
9036c102
YZ
3365static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3366{
3367 struct inode *inode = dentry->d_inode;
3368 int err;
39279cc3 3369
9036c102
YZ
3370 err = inode_change_ok(inode, attr);
3371 if (err)
3372 return err;
2bf5a725 3373
5a3f23d5 3374 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3375 err = btrfs_setattr_size(inode, attr);
3376 if (err)
3377 return err;
39279cc3 3378 }
8082510e 3379 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3380
8082510e
YZ
3381 if (attr->ia_valid)
3382 err = inode_setattr(inode, attr);
33268eaf
JB
3383
3384 if (!err && ((attr->ia_valid & ATTR_MODE)))
3385 err = btrfs_acl_chmod(inode);
39279cc3
CM
3386 return err;
3387}
61295eb8 3388
39279cc3
CM
3389void btrfs_delete_inode(struct inode *inode)
3390{
3391 struct btrfs_trans_handle *trans;
3392 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3393 unsigned long nr;
39279cc3
CM
3394 int ret;
3395
3396 truncate_inode_pages(&inode->i_data, 0);
3397 if (is_bad_inode(inode)) {
7b128766 3398 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3399 goto no_delete;
3400 }
4a096752 3401 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3402
c71bf099
YZ
3403 if (root->fs_info->log_root_recovering) {
3404 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3405 goto no_delete;
3406 }
3407
76dda93c
YZ
3408 if (inode->i_nlink > 0) {
3409 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3410 goto no_delete;
3411 }
3412
dbe674a9 3413 btrfs_i_size_write(inode, 0);
5f39d397 3414
8082510e
YZ
3415 while (1) {
3416 trans = btrfs_start_transaction(root, 1);
3417 btrfs_set_trans_block_group(trans, inode);
3418 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3419
8082510e
YZ
3420 if (ret != -EAGAIN)
3421 break;
85e21bac 3422
8082510e
YZ
3423 nr = trans->blocks_used;
3424 btrfs_end_transaction(trans, root);
3425 trans = NULL;
3426 btrfs_btree_balance_dirty(root, nr);
3427 }
5f39d397 3428
8082510e
YZ
3429 if (ret == 0) {
3430 ret = btrfs_orphan_del(trans, inode);
3431 BUG_ON(ret);
3432 }
54aa1f4d 3433
d3c2fdcf 3434 nr = trans->blocks_used;
54aa1f4d 3435 btrfs_end_transaction(trans, root);
d3c2fdcf 3436 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3437no_delete:
3438 clear_inode(inode);
8082510e 3439 return;
39279cc3
CM
3440}
3441
3442/*
3443 * this returns the key found in the dir entry in the location pointer.
3444 * If no dir entries were found, location->objectid is 0.
3445 */
3446static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3447 struct btrfs_key *location)
3448{
3449 const char *name = dentry->d_name.name;
3450 int namelen = dentry->d_name.len;
3451 struct btrfs_dir_item *di;
3452 struct btrfs_path *path;
3453 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3454 int ret = 0;
39279cc3
CM
3455
3456 path = btrfs_alloc_path();
3457 BUG_ON(!path);
3954401f 3458
39279cc3
CM
3459 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3460 namelen, 0);
0d9f7f3e
Y
3461 if (IS_ERR(di))
3462 ret = PTR_ERR(di);
d397712b
CM
3463
3464 if (!di || IS_ERR(di))
3954401f 3465 goto out_err;
d397712b 3466
5f39d397 3467 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3468out:
39279cc3
CM
3469 btrfs_free_path(path);
3470 return ret;
3954401f
CM
3471out_err:
3472 location->objectid = 0;
3473 goto out;
39279cc3
CM
3474}
3475
3476/*
3477 * when we hit a tree root in a directory, the btrfs part of the inode
3478 * needs to be changed to reflect the root directory of the tree root. This
3479 * is kind of like crossing a mount point.
3480 */
3481static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3482 struct inode *dir,
3483 struct dentry *dentry,
3484 struct btrfs_key *location,
3485 struct btrfs_root **sub_root)
39279cc3 3486{
4df27c4d
YZ
3487 struct btrfs_path *path;
3488 struct btrfs_root *new_root;
3489 struct btrfs_root_ref *ref;
3490 struct extent_buffer *leaf;
3491 int ret;
3492 int err = 0;
39279cc3 3493
4df27c4d
YZ
3494 path = btrfs_alloc_path();
3495 if (!path) {
3496 err = -ENOMEM;
3497 goto out;
3498 }
39279cc3 3499
4df27c4d
YZ
3500 err = -ENOENT;
3501 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3502 BTRFS_I(dir)->root->root_key.objectid,
3503 location->objectid);
3504 if (ret) {
3505 if (ret < 0)
3506 err = ret;
3507 goto out;
3508 }
39279cc3 3509
4df27c4d
YZ
3510 leaf = path->nodes[0];
3511 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3512 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3513 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3514 goto out;
39279cc3 3515
4df27c4d
YZ
3516 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3517 (unsigned long)(ref + 1),
3518 dentry->d_name.len);
3519 if (ret)
3520 goto out;
3521
3522 btrfs_release_path(root->fs_info->tree_root, path);
3523
3524 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3525 if (IS_ERR(new_root)) {
3526 err = PTR_ERR(new_root);
3527 goto out;
3528 }
3529
3530 if (btrfs_root_refs(&new_root->root_item) == 0) {
3531 err = -ENOENT;
3532 goto out;
3533 }
3534
3535 *sub_root = new_root;
3536 location->objectid = btrfs_root_dirid(&new_root->root_item);
3537 location->type = BTRFS_INODE_ITEM_KEY;
3538 location->offset = 0;
3539 err = 0;
3540out:
3541 btrfs_free_path(path);
3542 return err;
39279cc3
CM
3543}
3544
5d4f98a2
YZ
3545static void inode_tree_add(struct inode *inode)
3546{
3547 struct btrfs_root *root = BTRFS_I(inode)->root;
3548 struct btrfs_inode *entry;
03e860bd
FNP
3549 struct rb_node **p;
3550 struct rb_node *parent;
03e860bd
FNP
3551again:
3552 p = &root->inode_tree.rb_node;
3553 parent = NULL;
5d4f98a2 3554
76dda93c
YZ
3555 if (hlist_unhashed(&inode->i_hash))
3556 return;
3557
5d4f98a2
YZ
3558 spin_lock(&root->inode_lock);
3559 while (*p) {
3560 parent = *p;
3561 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3562
3563 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3564 p = &parent->rb_left;
5d4f98a2 3565 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3566 p = &parent->rb_right;
5d4f98a2
YZ
3567 else {
3568 WARN_ON(!(entry->vfs_inode.i_state &
3569 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3570 rb_erase(parent, &root->inode_tree);
3571 RB_CLEAR_NODE(parent);
3572 spin_unlock(&root->inode_lock);
3573 goto again;
5d4f98a2
YZ
3574 }
3575 }
3576 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3577 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3578 spin_unlock(&root->inode_lock);
3579}
3580
3581static void inode_tree_del(struct inode *inode)
3582{
3583 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3584 int empty = 0;
5d4f98a2 3585
03e860bd 3586 spin_lock(&root->inode_lock);
5d4f98a2 3587 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3588 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3589 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3590 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3591 }
03e860bd 3592 spin_unlock(&root->inode_lock);
76dda93c
YZ
3593
3594 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3595 synchronize_srcu(&root->fs_info->subvol_srcu);
3596 spin_lock(&root->inode_lock);
3597 empty = RB_EMPTY_ROOT(&root->inode_tree);
3598 spin_unlock(&root->inode_lock);
3599 if (empty)
3600 btrfs_add_dead_root(root);
3601 }
3602}
3603
3604int btrfs_invalidate_inodes(struct btrfs_root *root)
3605{
3606 struct rb_node *node;
3607 struct rb_node *prev;
3608 struct btrfs_inode *entry;
3609 struct inode *inode;
3610 u64 objectid = 0;
3611
3612 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3613
3614 spin_lock(&root->inode_lock);
3615again:
3616 node = root->inode_tree.rb_node;
3617 prev = NULL;
3618 while (node) {
3619 prev = node;
3620 entry = rb_entry(node, struct btrfs_inode, rb_node);
3621
3622 if (objectid < entry->vfs_inode.i_ino)
3623 node = node->rb_left;
3624 else if (objectid > entry->vfs_inode.i_ino)
3625 node = node->rb_right;
3626 else
3627 break;
3628 }
3629 if (!node) {
3630 while (prev) {
3631 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3632 if (objectid <= entry->vfs_inode.i_ino) {
3633 node = prev;
3634 break;
3635 }
3636 prev = rb_next(prev);
3637 }
3638 }
3639 while (node) {
3640 entry = rb_entry(node, struct btrfs_inode, rb_node);
3641 objectid = entry->vfs_inode.i_ino + 1;
3642 inode = igrab(&entry->vfs_inode);
3643 if (inode) {
3644 spin_unlock(&root->inode_lock);
3645 if (atomic_read(&inode->i_count) > 1)
3646 d_prune_aliases(inode);
3647 /*
3648 * btrfs_drop_inode will remove it from
3649 * the inode cache when its usage count
3650 * hits zero.
3651 */
3652 iput(inode);
3653 cond_resched();
3654 spin_lock(&root->inode_lock);
3655 goto again;
3656 }
3657
3658 if (cond_resched_lock(&root->inode_lock))
3659 goto again;
3660
3661 node = rb_next(node);
3662 }
3663 spin_unlock(&root->inode_lock);
3664 return 0;
5d4f98a2
YZ
3665}
3666
e02119d5 3667static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3668{
e02119d5
CM
3669 struct btrfs_inode *bi = BTRFS_I(inode);
3670
e02119d5 3671 bi->generation = 0;
c3027eb5 3672 bi->sequence = 0;
e02119d5 3673 bi->last_trans = 0;
257c62e1 3674 bi->last_sub_trans = 0;
e02119d5
CM
3675 bi->logged_trans = 0;
3676 bi->delalloc_bytes = 0;
6a63209f 3677 bi->reserved_bytes = 0;
e02119d5
CM
3678 bi->disk_i_size = 0;
3679 bi->flags = 0;
3680 bi->index_cnt = (u64)-1;
12fcfd22 3681 bi->last_unlink_trans = 0;
2757495c 3682 bi->ordered_data_close = 0;
d1310b2e
CM
3683 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3684 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3685 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3686 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3687 inode->i_mapping, GFP_NOFS);
ea8c2819 3688 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3689 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3690 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3691 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3692 mutex_init(&BTRFS_I(inode)->log_mutex);
3693}
3694
3695static int btrfs_init_locked_inode(struct inode *inode, void *p)
3696{
3697 struct btrfs_iget_args *args = p;
3698 inode->i_ino = args->ino;
3699 init_btrfs_i(inode);
3700 BTRFS_I(inode)->root = args->root;
6a63209f 3701 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3702 return 0;
3703}
3704
3705static int btrfs_find_actor(struct inode *inode, void *opaque)
3706{
3707 struct btrfs_iget_args *args = opaque;
d397712b
CM
3708 return args->ino == inode->i_ino &&
3709 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3710}
3711
5d4f98a2
YZ
3712static struct inode *btrfs_iget_locked(struct super_block *s,
3713 u64 objectid,
3714 struct btrfs_root *root)
39279cc3
CM
3715{
3716 struct inode *inode;
3717 struct btrfs_iget_args args;
3718 args.ino = objectid;
3719 args.root = root;
3720
3721 inode = iget5_locked(s, objectid, btrfs_find_actor,
3722 btrfs_init_locked_inode,
3723 (void *)&args);
3724 return inode;
3725}
3726
1a54ef8c
BR
3727/* Get an inode object given its location and corresponding root.
3728 * Returns in *is_new if the inode was read from disk
3729 */
3730struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3731 struct btrfs_root *root)
1a54ef8c
BR
3732{
3733 struct inode *inode;
3734
3735 inode = btrfs_iget_locked(s, location->objectid, root);
3736 if (!inode)
5d4f98a2 3737 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3738
3739 if (inode->i_state & I_NEW) {
3740 BTRFS_I(inode)->root = root;
3741 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3742 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3743
3744 inode_tree_add(inode);
1a54ef8c 3745 unlock_new_inode(inode);
1a54ef8c
BR
3746 }
3747
3748 return inode;
3749}
3750
4df27c4d
YZ
3751static struct inode *new_simple_dir(struct super_block *s,
3752 struct btrfs_key *key,
3753 struct btrfs_root *root)
3754{
3755 struct inode *inode = new_inode(s);
3756
3757 if (!inode)
3758 return ERR_PTR(-ENOMEM);
3759
3760 init_btrfs_i(inode);
3761
3762 BTRFS_I(inode)->root = root;
3763 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3764 BTRFS_I(inode)->dummy_inode = 1;
3765
3766 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3767 inode->i_op = &simple_dir_inode_operations;
3768 inode->i_fop = &simple_dir_operations;
3769 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3770 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3771
3772 return inode;
3773}
3774
3de4586c 3775struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3776{
d397712b 3777 struct inode *inode;
4df27c4d 3778 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3779 struct btrfs_root *sub_root = root;
3780 struct btrfs_key location;
76dda93c 3781 int index;
5d4f98a2 3782 int ret;
39279cc3 3783
76dda93c
YZ
3784 dentry->d_op = &btrfs_dentry_operations;
3785
39279cc3
CM
3786 if (dentry->d_name.len > BTRFS_NAME_LEN)
3787 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3788
39279cc3 3789 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3790
39279cc3
CM
3791 if (ret < 0)
3792 return ERR_PTR(ret);
5f39d397 3793
4df27c4d
YZ
3794 if (location.objectid == 0)
3795 return NULL;
3796
3797 if (location.type == BTRFS_INODE_ITEM_KEY) {
3798 inode = btrfs_iget(dir->i_sb, &location, root);
3799 return inode;
3800 }
3801
3802 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3803
76dda93c 3804 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3805 ret = fixup_tree_root_location(root, dir, dentry,
3806 &location, &sub_root);
3807 if (ret < 0) {
3808 if (ret != -ENOENT)
3809 inode = ERR_PTR(ret);
3810 else
3811 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3812 } else {
5d4f98a2 3813 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3814 }
76dda93c
YZ
3815 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3816
c71bf099
YZ
3817 if (root != sub_root) {
3818 down_read(&root->fs_info->cleanup_work_sem);
3819 if (!(inode->i_sb->s_flags & MS_RDONLY))
3820 btrfs_orphan_cleanup(sub_root);
3821 up_read(&root->fs_info->cleanup_work_sem);
3822 }
3823
3de4586c
CM
3824 return inode;
3825}
3826
76dda93c
YZ
3827static int btrfs_dentry_delete(struct dentry *dentry)
3828{
3829 struct btrfs_root *root;
3830
efefb143
YZ
3831 if (!dentry->d_inode && !IS_ROOT(dentry))
3832 dentry = dentry->d_parent;
76dda93c 3833
efefb143
YZ
3834 if (dentry->d_inode) {
3835 root = BTRFS_I(dentry->d_inode)->root;
3836 if (btrfs_root_refs(&root->root_item) == 0)
3837 return 1;
3838 }
76dda93c
YZ
3839 return 0;
3840}
3841
3de4586c
CM
3842static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3843 struct nameidata *nd)
3844{
3845 struct inode *inode;
3846
3de4586c
CM
3847 inode = btrfs_lookup_dentry(dir, dentry);
3848 if (IS_ERR(inode))
3849 return ERR_CAST(inode);
7b128766 3850
39279cc3
CM
3851 return d_splice_alias(inode, dentry);
3852}
3853
39279cc3
CM
3854static unsigned char btrfs_filetype_table[] = {
3855 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3856};
3857
cbdf5a24
DW
3858static int btrfs_real_readdir(struct file *filp, void *dirent,
3859 filldir_t filldir)
39279cc3 3860{
6da6abae 3861 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3862 struct btrfs_root *root = BTRFS_I(inode)->root;
3863 struct btrfs_item *item;
3864 struct btrfs_dir_item *di;
3865 struct btrfs_key key;
5f39d397 3866 struct btrfs_key found_key;
39279cc3
CM
3867 struct btrfs_path *path;
3868 int ret;
3869 u32 nritems;
5f39d397 3870 struct extent_buffer *leaf;
39279cc3
CM
3871 int slot;
3872 int advance;
3873 unsigned char d_type;
3874 int over = 0;
3875 u32 di_cur;
3876 u32 di_total;
3877 u32 di_len;
3878 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3879 char tmp_name[32];
3880 char *name_ptr;
3881 int name_len;
39279cc3
CM
3882
3883 /* FIXME, use a real flag for deciding about the key type */
3884 if (root->fs_info->tree_root == root)
3885 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3886
3954401f
CM
3887 /* special case for "." */
3888 if (filp->f_pos == 0) {
3889 over = filldir(dirent, ".", 1,
3890 1, inode->i_ino,
3891 DT_DIR);
3892 if (over)
3893 return 0;
3894 filp->f_pos = 1;
3895 }
3954401f
CM
3896 /* special case for .., just use the back ref */
3897 if (filp->f_pos == 1) {
5ecc7e5d 3898 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3899 over = filldir(dirent, "..", 2,
5ecc7e5d 3900 2, pino, DT_DIR);
3954401f 3901 if (over)
49593bfa 3902 return 0;
3954401f
CM
3903 filp->f_pos = 2;
3904 }
49593bfa
DW
3905 path = btrfs_alloc_path();
3906 path->reada = 2;
3907
39279cc3
CM
3908 btrfs_set_key_type(&key, key_type);
3909 key.offset = filp->f_pos;
49593bfa 3910 key.objectid = inode->i_ino;
5f39d397 3911
39279cc3
CM
3912 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3913 if (ret < 0)
3914 goto err;
3915 advance = 0;
49593bfa
DW
3916
3917 while (1) {
5f39d397
CM
3918 leaf = path->nodes[0];
3919 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3920 slot = path->slots[0];
3921 if (advance || slot >= nritems) {
49593bfa 3922 if (slot >= nritems - 1) {
39279cc3
CM
3923 ret = btrfs_next_leaf(root, path);
3924 if (ret)
3925 break;
5f39d397
CM
3926 leaf = path->nodes[0];
3927 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3928 slot = path->slots[0];
3929 } else {
3930 slot++;
3931 path->slots[0]++;
3932 }
3933 }
3de4586c 3934
39279cc3 3935 advance = 1;
5f39d397
CM
3936 item = btrfs_item_nr(leaf, slot);
3937 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3938
3939 if (found_key.objectid != key.objectid)
39279cc3 3940 break;
5f39d397 3941 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3942 break;
5f39d397 3943 if (found_key.offset < filp->f_pos)
39279cc3 3944 continue;
5f39d397
CM
3945
3946 filp->f_pos = found_key.offset;
49593bfa 3947
39279cc3
CM
3948 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3949 di_cur = 0;
5f39d397 3950 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3951
3952 while (di_cur < di_total) {
5f39d397
CM
3953 struct btrfs_key location;
3954
3955 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3956 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3957 name_ptr = tmp_name;
3958 } else {
3959 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3960 if (!name_ptr) {
3961 ret = -ENOMEM;
3962 goto err;
3963 }
5f39d397
CM
3964 }
3965 read_extent_buffer(leaf, name_ptr,
3966 (unsigned long)(di + 1), name_len);
3967
3968 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3969 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3970
3971 /* is this a reference to our own snapshot? If so
3972 * skip it
3973 */
3974 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3975 location.objectid == root->root_key.objectid) {
3976 over = 0;
3977 goto skip;
3978 }
5f39d397 3979 over = filldir(dirent, name_ptr, name_len,
49593bfa 3980 found_key.offset, location.objectid,
39279cc3 3981 d_type);
5f39d397 3982
3de4586c 3983skip:
5f39d397
CM
3984 if (name_ptr != tmp_name)
3985 kfree(name_ptr);
3986
39279cc3
CM
3987 if (over)
3988 goto nopos;
5103e947 3989 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3990 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3991 di_cur += di_len;
3992 di = (struct btrfs_dir_item *)((char *)di + di_len);
3993 }
3994 }
49593bfa
DW
3995
3996 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3997 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3998 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3999 else
4000 filp->f_pos++;
39279cc3
CM
4001nopos:
4002 ret = 0;
4003err:
39279cc3 4004 btrfs_free_path(path);
39279cc3
CM
4005 return ret;
4006}
4007
4008int btrfs_write_inode(struct inode *inode, int wait)
4009{
4010 struct btrfs_root *root = BTRFS_I(inode)->root;
4011 struct btrfs_trans_handle *trans;
4012 int ret = 0;
4013
c146afad 4014 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
4015 return 0;
4016
39279cc3 4017 if (wait) {
f9295749 4018 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4019 btrfs_set_trans_block_group(trans, inode);
4020 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4021 }
4022 return ret;
4023}
4024
4025/*
54aa1f4d 4026 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4027 * inode changes. But, it is most likely to find the inode in cache.
4028 * FIXME, needs more benchmarking...there are no reasons other than performance
4029 * to keep or drop this code.
4030 */
4031void btrfs_dirty_inode(struct inode *inode)
4032{
4033 struct btrfs_root *root = BTRFS_I(inode)->root;
4034 struct btrfs_trans_handle *trans;
4035
f9295749 4036 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4037 btrfs_set_trans_block_group(trans, inode);
4038 btrfs_update_inode(trans, root, inode);
4039 btrfs_end_transaction(trans, root);
39279cc3
CM
4040}
4041
d352ac68
CM
4042/*
4043 * find the highest existing sequence number in a directory
4044 * and then set the in-memory index_cnt variable to reflect
4045 * free sequence numbers
4046 */
aec7477b
JB
4047static int btrfs_set_inode_index_count(struct inode *inode)
4048{
4049 struct btrfs_root *root = BTRFS_I(inode)->root;
4050 struct btrfs_key key, found_key;
4051 struct btrfs_path *path;
4052 struct extent_buffer *leaf;
4053 int ret;
4054
4055 key.objectid = inode->i_ino;
4056 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4057 key.offset = (u64)-1;
4058
4059 path = btrfs_alloc_path();
4060 if (!path)
4061 return -ENOMEM;
4062
4063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4064 if (ret < 0)
4065 goto out;
4066 /* FIXME: we should be able to handle this */
4067 if (ret == 0)
4068 goto out;
4069 ret = 0;
4070
4071 /*
4072 * MAGIC NUMBER EXPLANATION:
4073 * since we search a directory based on f_pos we have to start at 2
4074 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4075 * else has to start at 2
4076 */
4077 if (path->slots[0] == 0) {
4078 BTRFS_I(inode)->index_cnt = 2;
4079 goto out;
4080 }
4081
4082 path->slots[0]--;
4083
4084 leaf = path->nodes[0];
4085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4086
4087 if (found_key.objectid != inode->i_ino ||
4088 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4089 BTRFS_I(inode)->index_cnt = 2;
4090 goto out;
4091 }
4092
4093 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4094out:
4095 btrfs_free_path(path);
4096 return ret;
4097}
4098
d352ac68
CM
4099/*
4100 * helper to find a free sequence number in a given directory. This current
4101 * code is very simple, later versions will do smarter things in the btree
4102 */
3de4586c 4103int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4104{
4105 int ret = 0;
4106
4107 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4108 ret = btrfs_set_inode_index_count(dir);
d397712b 4109 if (ret)
aec7477b
JB
4110 return ret;
4111 }
4112
00e4e6b3 4113 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4114 BTRFS_I(dir)->index_cnt++;
4115
4116 return ret;
4117}
4118
39279cc3
CM
4119static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
aec7477b 4121 struct inode *dir,
9c58309d 4122 const char *name, int name_len,
d2fb3437
YZ
4123 u64 ref_objectid, u64 objectid,
4124 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4125{
4126 struct inode *inode;
5f39d397 4127 struct btrfs_inode_item *inode_item;
39279cc3 4128 struct btrfs_key *location;
5f39d397 4129 struct btrfs_path *path;
9c58309d
CM
4130 struct btrfs_inode_ref *ref;
4131 struct btrfs_key key[2];
4132 u32 sizes[2];
4133 unsigned long ptr;
39279cc3
CM
4134 int ret;
4135 int owner;
4136
5f39d397
CM
4137 path = btrfs_alloc_path();
4138 BUG_ON(!path);
4139
39279cc3
CM
4140 inode = new_inode(root->fs_info->sb);
4141 if (!inode)
4142 return ERR_PTR(-ENOMEM);
4143
aec7477b 4144 if (dir) {
3de4586c 4145 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4146 if (ret) {
4147 iput(inode);
aec7477b 4148 return ERR_PTR(ret);
09771430 4149 }
aec7477b
JB
4150 }
4151 /*
4152 * index_cnt is ignored for everything but a dir,
4153 * btrfs_get_inode_index_count has an explanation for the magic
4154 * number
4155 */
e02119d5 4156 init_btrfs_i(inode);
aec7477b 4157 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4158 BTRFS_I(inode)->root = root;
e02119d5 4159 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4160 btrfs_set_inode_space_info(root, inode);
b888db2b 4161
39279cc3
CM
4162 if (mode & S_IFDIR)
4163 owner = 0;
4164 else
4165 owner = 1;
d2fb3437
YZ
4166 BTRFS_I(inode)->block_group =
4167 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4168
4169 key[0].objectid = objectid;
4170 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4171 key[0].offset = 0;
4172
4173 key[1].objectid = objectid;
4174 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4175 key[1].offset = ref_objectid;
4176
4177 sizes[0] = sizeof(struct btrfs_inode_item);
4178 sizes[1] = name_len + sizeof(*ref);
4179
b9473439 4180 path->leave_spinning = 1;
9c58309d
CM
4181 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4182 if (ret != 0)
5f39d397
CM
4183 goto fail;
4184
79683f2d 4185 inode->i_uid = current_fsuid();
8c087b51 4186
42f15d77 4187 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4188 inode->i_gid = dir->i_gid;
4189 if (S_ISDIR(mode))
4190 mode |= S_ISGID;
4191 } else
4192 inode->i_gid = current_fsgid();
4193
39279cc3
CM
4194 inode->i_mode = mode;
4195 inode->i_ino = objectid;
a76a3cd4 4196 inode_set_bytes(inode, 0);
39279cc3 4197 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4198 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4199 struct btrfs_inode_item);
e02119d5 4200 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4201
4202 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4203 struct btrfs_inode_ref);
4204 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4205 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4206 ptr = (unsigned long)(ref + 1);
4207 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4208
5f39d397
CM
4209 btrfs_mark_buffer_dirty(path->nodes[0]);
4210 btrfs_free_path(path);
4211
39279cc3
CM
4212 location = &BTRFS_I(inode)->location;
4213 location->objectid = objectid;
39279cc3
CM
4214 location->offset = 0;
4215 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4216
6cbff00f
CH
4217 btrfs_inherit_iflags(inode, dir);
4218
94272164
CM
4219 if ((mode & S_IFREG)) {
4220 if (btrfs_test_opt(root, NODATASUM))
4221 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4222 if (btrfs_test_opt(root, NODATACOW))
4223 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4224 }
4225
39279cc3 4226 insert_inode_hash(inode);
5d4f98a2 4227 inode_tree_add(inode);
39279cc3 4228 return inode;
5f39d397 4229fail:
aec7477b
JB
4230 if (dir)
4231 BTRFS_I(dir)->index_cnt--;
5f39d397 4232 btrfs_free_path(path);
09771430 4233 iput(inode);
5f39d397 4234 return ERR_PTR(ret);
39279cc3
CM
4235}
4236
4237static inline u8 btrfs_inode_type(struct inode *inode)
4238{
4239 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4240}
4241
d352ac68
CM
4242/*
4243 * utility function to add 'inode' into 'parent_inode' with
4244 * a give name and a given sequence number.
4245 * if 'add_backref' is true, also insert a backref from the
4246 * inode to the parent directory.
4247 */
e02119d5
CM
4248int btrfs_add_link(struct btrfs_trans_handle *trans,
4249 struct inode *parent_inode, struct inode *inode,
4250 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4251{
4df27c4d 4252 int ret = 0;
39279cc3 4253 struct btrfs_key key;
e02119d5 4254 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4255
4df27c4d
YZ
4256 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4257 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4258 } else {
4259 key.objectid = inode->i_ino;
4260 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4261 key.offset = 0;
4262 }
4263
4264 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4265 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4266 key.objectid, root->root_key.objectid,
4267 parent_inode->i_ino,
4268 index, name, name_len);
4269 } else if (add_backref) {
4270 ret = btrfs_insert_inode_ref(trans, root,
4271 name, name_len, inode->i_ino,
4272 parent_inode->i_ino, index);
4273 }
39279cc3 4274
39279cc3 4275 if (ret == 0) {
4df27c4d
YZ
4276 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4277 parent_inode->i_ino, &key,
4278 btrfs_inode_type(inode), index);
4279 BUG_ON(ret);
4280
dbe674a9 4281 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4282 name_len * 2);
79c44584 4283 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4284 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4285 }
4286 return ret;
4287}
4288
4289static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4290 struct dentry *dentry, struct inode *inode,
00e4e6b3 4291 int backref, u64 index)
39279cc3 4292{
e02119d5
CM
4293 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4294 inode, dentry->d_name.name,
4295 dentry->d_name.len, backref, index);
39279cc3
CM
4296 if (!err) {
4297 d_instantiate(dentry, inode);
4298 return 0;
4299 }
4300 if (err > 0)
4301 err = -EEXIST;
4302 return err;
4303}
4304
618e21d5
JB
4305static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4306 int mode, dev_t rdev)
4307{
4308 struct btrfs_trans_handle *trans;
4309 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4310 struct inode *inode = NULL;
618e21d5
JB
4311 int err;
4312 int drop_inode = 0;
4313 u64 objectid;
1832a6d5 4314 unsigned long nr = 0;
00e4e6b3 4315 u64 index = 0;
618e21d5
JB
4316
4317 if (!new_valid_dev(rdev))
4318 return -EINVAL;
4319
9ed74f2d
JB
4320 /*
4321 * 2 for inode item and ref
4322 * 2 for dir items
4323 * 1 for xattr if selinux is on
4324 */
4325 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4326 if (err)
9ed74f2d 4327 return err;
1832a6d5 4328
618e21d5 4329 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4330 if (!trans)
4331 goto fail;
618e21d5
JB
4332 btrfs_set_trans_block_group(trans, dir);
4333
4334 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4335 if (err) {
4336 err = -ENOSPC;
4337 goto out_unlock;
4338 }
4339
aec7477b 4340 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4341 dentry->d_name.len,
4342 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4343 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4344 err = PTR_ERR(inode);
4345 if (IS_ERR(inode))
4346 goto out_unlock;
4347
f34f57a3 4348 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4349 if (err) {
4350 drop_inode = 1;
4351 goto out_unlock;
4352 }
4353
618e21d5 4354 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4355 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4356 if (err)
4357 drop_inode = 1;
4358 else {
4359 inode->i_op = &btrfs_special_inode_operations;
4360 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4361 btrfs_update_inode(trans, root, inode);
618e21d5 4362 }
618e21d5
JB
4363 btrfs_update_inode_block_group(trans, inode);
4364 btrfs_update_inode_block_group(trans, dir);
4365out_unlock:
d3c2fdcf 4366 nr = trans->blocks_used;
89ce8a63 4367 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4368fail:
9ed74f2d 4369 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4370 if (drop_inode) {
4371 inode_dec_link_count(inode);
4372 iput(inode);
4373 }
d3c2fdcf 4374 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4375 return err;
4376}
4377
39279cc3
CM
4378static int btrfs_create(struct inode *dir, struct dentry *dentry,
4379 int mode, struct nameidata *nd)
4380{
4381 struct btrfs_trans_handle *trans;
4382 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4383 struct inode *inode = NULL;
39279cc3
CM
4384 int err;
4385 int drop_inode = 0;
1832a6d5 4386 unsigned long nr = 0;
39279cc3 4387 u64 objectid;
00e4e6b3 4388 u64 index = 0;
39279cc3 4389
9ed74f2d
JB
4390 /*
4391 * 2 for inode item and ref
4392 * 2 for dir items
4393 * 1 for xattr if selinux is on
4394 */
4395 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4396 if (err)
9ed74f2d
JB
4397 return err;
4398
39279cc3 4399 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4400 if (!trans)
4401 goto fail;
39279cc3
CM
4402 btrfs_set_trans_block_group(trans, dir);
4403
4404 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4405 if (err) {
4406 err = -ENOSPC;
4407 goto out_unlock;
4408 }
4409
aec7477b 4410 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4411 dentry->d_name.len,
4412 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4413 objectid, BTRFS_I(dir)->block_group, mode,
4414 &index);
39279cc3
CM
4415 err = PTR_ERR(inode);
4416 if (IS_ERR(inode))
4417 goto out_unlock;
4418
f34f57a3 4419 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4420 if (err) {
4421 drop_inode = 1;
4422 goto out_unlock;
4423 }
4424
39279cc3 4425 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4426 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4427 if (err)
4428 drop_inode = 1;
4429 else {
4430 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4431 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4432 inode->i_fop = &btrfs_file_operations;
4433 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4434 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4435 }
39279cc3
CM
4436 btrfs_update_inode_block_group(trans, inode);
4437 btrfs_update_inode_block_group(trans, dir);
4438out_unlock:
d3c2fdcf 4439 nr = trans->blocks_used;
ab78c84d 4440 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4441fail:
9ed74f2d 4442 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4443 if (drop_inode) {
4444 inode_dec_link_count(inode);
4445 iput(inode);
4446 }
d3c2fdcf 4447 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4448 return err;
4449}
4450
4451static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4452 struct dentry *dentry)
4453{
4454 struct btrfs_trans_handle *trans;
4455 struct btrfs_root *root = BTRFS_I(dir)->root;
4456 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4457 u64 index;
1832a6d5 4458 unsigned long nr = 0;
39279cc3
CM
4459 int err;
4460 int drop_inode = 0;
4461
4462 if (inode->i_nlink == 0)
4463 return -ENOENT;
4464
9ed74f2d
JB
4465 /*
4466 * 1 item for inode ref
4467 * 2 items for dir items
4468 */
4469 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4470 if (err)
9ed74f2d
JB
4471 return err;
4472
4473 btrfs_inc_nlink(inode);
4474
3de4586c 4475 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4476 if (err)
4477 goto fail;
4478
39279cc3 4479 trans = btrfs_start_transaction(root, 1);
5f39d397 4480
39279cc3
CM
4481 btrfs_set_trans_block_group(trans, dir);
4482 atomic_inc(&inode->i_count);
aec7477b 4483
00e4e6b3 4484 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4485
a5719521 4486 if (err) {
54aa1f4d 4487 drop_inode = 1;
a5719521
YZ
4488 } else {
4489 btrfs_update_inode_block_group(trans, dir);
4490 err = btrfs_update_inode(trans, root, inode);
4491 BUG_ON(err);
4492 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4493 }
39279cc3 4494
d3c2fdcf 4495 nr = trans->blocks_used;
ab78c84d 4496 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4497fail:
9ed74f2d 4498 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4499 if (drop_inode) {
4500 inode_dec_link_count(inode);
4501 iput(inode);
4502 }
d3c2fdcf 4503 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4504 return err;
4505}
4506
39279cc3
CM
4507static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4508{
b9d86667 4509 struct inode *inode = NULL;
39279cc3
CM
4510 struct btrfs_trans_handle *trans;
4511 struct btrfs_root *root = BTRFS_I(dir)->root;
4512 int err = 0;
4513 int drop_on_err = 0;
b9d86667 4514 u64 objectid = 0;
00e4e6b3 4515 u64 index = 0;
d3c2fdcf 4516 unsigned long nr = 1;
39279cc3 4517
9ed74f2d
JB
4518 /*
4519 * 2 items for inode and ref
4520 * 2 items for dir items
4521 * 1 for xattr if selinux is on
4522 */
4523 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4524 if (err)
9ed74f2d 4525 return err;
1832a6d5 4526
39279cc3 4527 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4528 if (!trans) {
4529 err = -ENOMEM;
39279cc3
CM
4530 goto out_unlock;
4531 }
9ed74f2d 4532 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4533
4534 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4535 if (err) {
4536 err = -ENOSPC;
4537 goto out_unlock;
4538 }
4539
aec7477b 4540 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4541 dentry->d_name.len,
4542 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4543 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4544 &index);
39279cc3
CM
4545 if (IS_ERR(inode)) {
4546 err = PTR_ERR(inode);
4547 goto out_fail;
4548 }
5f39d397 4549
39279cc3 4550 drop_on_err = 1;
33268eaf 4551
f34f57a3 4552 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4553 if (err)
4554 goto out_fail;
4555
39279cc3
CM
4556 inode->i_op = &btrfs_dir_inode_operations;
4557 inode->i_fop = &btrfs_dir_file_operations;
4558 btrfs_set_trans_block_group(trans, inode);
4559
dbe674a9 4560 btrfs_i_size_write(inode, 0);
39279cc3
CM
4561 err = btrfs_update_inode(trans, root, inode);
4562 if (err)
4563 goto out_fail;
5f39d397 4564
e02119d5
CM
4565 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4566 inode, dentry->d_name.name,
4567 dentry->d_name.len, 0, index);
39279cc3
CM
4568 if (err)
4569 goto out_fail;
5f39d397 4570
39279cc3
CM
4571 d_instantiate(dentry, inode);
4572 drop_on_err = 0;
39279cc3
CM
4573 btrfs_update_inode_block_group(trans, inode);
4574 btrfs_update_inode_block_group(trans, dir);
4575
4576out_fail:
d3c2fdcf 4577 nr = trans->blocks_used;
ab78c84d 4578 btrfs_end_transaction_throttle(trans, root);
5f39d397 4579
39279cc3 4580out_unlock:
9ed74f2d 4581 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4582 if (drop_on_err)
4583 iput(inode);
d3c2fdcf 4584 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4585 return err;
4586}
4587
d352ac68
CM
4588/* helper for btfs_get_extent. Given an existing extent in the tree,
4589 * and an extent that you want to insert, deal with overlap and insert
4590 * the new extent into the tree.
4591 */
3b951516
CM
4592static int merge_extent_mapping(struct extent_map_tree *em_tree,
4593 struct extent_map *existing,
e6dcd2dc
CM
4594 struct extent_map *em,
4595 u64 map_start, u64 map_len)
3b951516
CM
4596{
4597 u64 start_diff;
3b951516 4598
e6dcd2dc
CM
4599 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4600 start_diff = map_start - em->start;
4601 em->start = map_start;
4602 em->len = map_len;
c8b97818
CM
4603 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4604 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4605 em->block_start += start_diff;
c8b97818
CM
4606 em->block_len -= start_diff;
4607 }
e6dcd2dc 4608 return add_extent_mapping(em_tree, em);
3b951516
CM
4609}
4610
c8b97818
CM
4611static noinline int uncompress_inline(struct btrfs_path *path,
4612 struct inode *inode, struct page *page,
4613 size_t pg_offset, u64 extent_offset,
4614 struct btrfs_file_extent_item *item)
4615{
4616 int ret;
4617 struct extent_buffer *leaf = path->nodes[0];
4618 char *tmp;
4619 size_t max_size;
4620 unsigned long inline_size;
4621 unsigned long ptr;
4622
4623 WARN_ON(pg_offset != 0);
4624 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4625 inline_size = btrfs_file_extent_inline_item_len(leaf,
4626 btrfs_item_nr(leaf, path->slots[0]));
4627 tmp = kmalloc(inline_size, GFP_NOFS);
4628 ptr = btrfs_file_extent_inline_start(item);
4629
4630 read_extent_buffer(leaf, tmp, ptr, inline_size);
4631
5b050f04 4632 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4633 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4634 inline_size, max_size);
4635 if (ret) {
4636 char *kaddr = kmap_atomic(page, KM_USER0);
4637 unsigned long copy_size = min_t(u64,
4638 PAGE_CACHE_SIZE - pg_offset,
4639 max_size - extent_offset);
4640 memset(kaddr + pg_offset, 0, copy_size);
4641 kunmap_atomic(kaddr, KM_USER0);
4642 }
4643 kfree(tmp);
4644 return 0;
4645}
4646
d352ac68
CM
4647/*
4648 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4649 * the ugly parts come from merging extents from the disk with the in-ram
4650 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4651 * where the in-ram extents might be locked pending data=ordered completion.
4652 *
4653 * This also copies inline extents directly into the page.
4654 */
d397712b 4655
a52d9a80 4656struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4657 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4658 int create)
4659{
4660 int ret;
4661 int err = 0;
db94535d 4662 u64 bytenr;
a52d9a80
CM
4663 u64 extent_start = 0;
4664 u64 extent_end = 0;
4665 u64 objectid = inode->i_ino;
4666 u32 found_type;
f421950f 4667 struct btrfs_path *path = NULL;
a52d9a80
CM
4668 struct btrfs_root *root = BTRFS_I(inode)->root;
4669 struct btrfs_file_extent_item *item;
5f39d397
CM
4670 struct extent_buffer *leaf;
4671 struct btrfs_key found_key;
a52d9a80
CM
4672 struct extent_map *em = NULL;
4673 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4674 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4675 struct btrfs_trans_handle *trans = NULL;
c8b97818 4676 int compressed;
a52d9a80 4677
a52d9a80 4678again:
890871be 4679 read_lock(&em_tree->lock);
d1310b2e 4680 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4681 if (em)
4682 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4683 read_unlock(&em_tree->lock);
d1310b2e 4684
a52d9a80 4685 if (em) {
e1c4b745
CM
4686 if (em->start > start || em->start + em->len <= start)
4687 free_extent_map(em);
4688 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4689 free_extent_map(em);
4690 else
4691 goto out;
a52d9a80 4692 }
d1310b2e 4693 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4694 if (!em) {
d1310b2e
CM
4695 err = -ENOMEM;
4696 goto out;
a52d9a80 4697 }
e6dcd2dc 4698 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4699 em->start = EXTENT_MAP_HOLE;
445a6944 4700 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4701 em->len = (u64)-1;
c8b97818 4702 em->block_len = (u64)-1;
f421950f
CM
4703
4704 if (!path) {
4705 path = btrfs_alloc_path();
4706 BUG_ON(!path);
4707 }
4708
179e29e4
CM
4709 ret = btrfs_lookup_file_extent(trans, root, path,
4710 objectid, start, trans != NULL);
a52d9a80
CM
4711 if (ret < 0) {
4712 err = ret;
4713 goto out;
4714 }
4715
4716 if (ret != 0) {
4717 if (path->slots[0] == 0)
4718 goto not_found;
4719 path->slots[0]--;
4720 }
4721
5f39d397
CM
4722 leaf = path->nodes[0];
4723 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4724 struct btrfs_file_extent_item);
a52d9a80 4725 /* are we inside the extent that was found? */
5f39d397
CM
4726 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4727 found_type = btrfs_key_type(&found_key);
4728 if (found_key.objectid != objectid ||
a52d9a80
CM
4729 found_type != BTRFS_EXTENT_DATA_KEY) {
4730 goto not_found;
4731 }
4732
5f39d397
CM
4733 found_type = btrfs_file_extent_type(leaf, item);
4734 extent_start = found_key.offset;
c8b97818 4735 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4736 if (found_type == BTRFS_FILE_EXTENT_REG ||
4737 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4738 extent_end = extent_start +
db94535d 4739 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4740 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4741 size_t size;
4742 size = btrfs_file_extent_inline_len(leaf, item);
4743 extent_end = (extent_start + size + root->sectorsize - 1) &
4744 ~((u64)root->sectorsize - 1);
4745 }
4746
4747 if (start >= extent_end) {
4748 path->slots[0]++;
4749 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4750 ret = btrfs_next_leaf(root, path);
4751 if (ret < 0) {
4752 err = ret;
4753 goto out;
a52d9a80 4754 }
9036c102
YZ
4755 if (ret > 0)
4756 goto not_found;
4757 leaf = path->nodes[0];
a52d9a80 4758 }
9036c102
YZ
4759 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4760 if (found_key.objectid != objectid ||
4761 found_key.type != BTRFS_EXTENT_DATA_KEY)
4762 goto not_found;
4763 if (start + len <= found_key.offset)
4764 goto not_found;
4765 em->start = start;
4766 em->len = found_key.offset - start;
4767 goto not_found_em;
4768 }
4769
d899e052
YZ
4770 if (found_type == BTRFS_FILE_EXTENT_REG ||
4771 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4772 em->start = extent_start;
4773 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4774 em->orig_start = extent_start -
4775 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4776 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4777 if (bytenr == 0) {
5f39d397 4778 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4779 goto insert;
4780 }
c8b97818
CM
4781 if (compressed) {
4782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4783 em->block_start = bytenr;
4784 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4785 item);
4786 } else {
4787 bytenr += btrfs_file_extent_offset(leaf, item);
4788 em->block_start = bytenr;
4789 em->block_len = em->len;
d899e052
YZ
4790 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4791 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4792 }
a52d9a80
CM
4793 goto insert;
4794 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4795 unsigned long ptr;
a52d9a80 4796 char *map;
3326d1b0
CM
4797 size_t size;
4798 size_t extent_offset;
4799 size_t copy_size;
a52d9a80 4800
689f9346 4801 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4802 if (!page || create) {
689f9346 4803 em->start = extent_start;
9036c102 4804 em->len = extent_end - extent_start;
689f9346
Y
4805 goto out;
4806 }
5f39d397 4807
9036c102
YZ
4808 size = btrfs_file_extent_inline_len(leaf, item);
4809 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4810 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4811 size - extent_offset);
3326d1b0 4812 em->start = extent_start + extent_offset;
70dec807
CM
4813 em->len = (copy_size + root->sectorsize - 1) &
4814 ~((u64)root->sectorsize - 1);
ff5b7ee3 4815 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4816 if (compressed)
4817 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4818 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4819 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4820 if (btrfs_file_extent_compression(leaf, item) ==
4821 BTRFS_COMPRESS_ZLIB) {
4822 ret = uncompress_inline(path, inode, page,
4823 pg_offset,
4824 extent_offset, item);
4825 BUG_ON(ret);
4826 } else {
4827 map = kmap(page);
4828 read_extent_buffer(leaf, map + pg_offset, ptr,
4829 copy_size);
93c82d57
CM
4830 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4831 memset(map + pg_offset + copy_size, 0,
4832 PAGE_CACHE_SIZE - pg_offset -
4833 copy_size);
4834 }
c8b97818
CM
4835 kunmap(page);
4836 }
179e29e4
CM
4837 flush_dcache_page(page);
4838 } else if (create && PageUptodate(page)) {
4839 if (!trans) {
4840 kunmap(page);
4841 free_extent_map(em);
4842 em = NULL;
4843 btrfs_release_path(root, path);
f9295749 4844 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4845 goto again;
4846 }
c8b97818 4847 map = kmap(page);
70dec807 4848 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4849 copy_size);
c8b97818 4850 kunmap(page);
179e29e4 4851 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4852 }
d1310b2e
CM
4853 set_extent_uptodate(io_tree, em->start,
4854 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4855 goto insert;
4856 } else {
d397712b 4857 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4858 WARN_ON(1);
4859 }
4860not_found:
4861 em->start = start;
d1310b2e 4862 em->len = len;
a52d9a80 4863not_found_em:
5f39d397 4864 em->block_start = EXTENT_MAP_HOLE;
9036c102 4865 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4866insert:
4867 btrfs_release_path(root, path);
d1310b2e 4868 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4869 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4870 "[%llu %llu]\n", (unsigned long long)em->start,
4871 (unsigned long long)em->len,
4872 (unsigned long long)start,
4873 (unsigned long long)len);
a52d9a80
CM
4874 err = -EIO;
4875 goto out;
4876 }
d1310b2e
CM
4877
4878 err = 0;
890871be 4879 write_lock(&em_tree->lock);
a52d9a80 4880 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4881 /* it is possible that someone inserted the extent into the tree
4882 * while we had the lock dropped. It is also possible that
4883 * an overlapping map exists in the tree
4884 */
a52d9a80 4885 if (ret == -EEXIST) {
3b951516 4886 struct extent_map *existing;
e6dcd2dc
CM
4887
4888 ret = 0;
4889
3b951516 4890 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4891 if (existing && (existing->start > start ||
4892 existing->start + existing->len <= start)) {
4893 free_extent_map(existing);
4894 existing = NULL;
4895 }
3b951516
CM
4896 if (!existing) {
4897 existing = lookup_extent_mapping(em_tree, em->start,
4898 em->len);
4899 if (existing) {
4900 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4901 em, start,
4902 root->sectorsize);
3b951516
CM
4903 free_extent_map(existing);
4904 if (err) {
4905 free_extent_map(em);
4906 em = NULL;
4907 }
4908 } else {
4909 err = -EIO;
3b951516
CM
4910 free_extent_map(em);
4911 em = NULL;
4912 }
4913 } else {
4914 free_extent_map(em);
4915 em = existing;
e6dcd2dc 4916 err = 0;
a52d9a80 4917 }
a52d9a80 4918 }
890871be 4919 write_unlock(&em_tree->lock);
a52d9a80 4920out:
f421950f
CM
4921 if (path)
4922 btrfs_free_path(path);
a52d9a80
CM
4923 if (trans) {
4924 ret = btrfs_end_transaction(trans, root);
d397712b 4925 if (!err)
a52d9a80
CM
4926 err = ret;
4927 }
a52d9a80
CM
4928 if (err) {
4929 free_extent_map(em);
a52d9a80
CM
4930 return ERR_PTR(err);
4931 }
4932 return em;
4933}
4934
16432985
CM
4935static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4936 const struct iovec *iov, loff_t offset,
4937 unsigned long nr_segs)
4938{
e1c4b745 4939 return -EINVAL;
16432985
CM
4940}
4941
1506fcc8
YS
4942static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4943 __u64 start, __u64 len)
4944{
4945 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4946}
4947
a52d9a80 4948int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4949{
d1310b2e
CM
4950 struct extent_io_tree *tree;
4951 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4952 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4953}
1832a6d5 4954
a52d9a80 4955static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4956{
d1310b2e 4957 struct extent_io_tree *tree;
b888db2b
CM
4958
4959
4960 if (current->flags & PF_MEMALLOC) {
4961 redirty_page_for_writepage(wbc, page);
4962 unlock_page(page);
4963 return 0;
4964 }
d1310b2e 4965 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4966 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4967}
4968
f421950f
CM
4969int btrfs_writepages(struct address_space *mapping,
4970 struct writeback_control *wbc)
b293f02e 4971{
d1310b2e 4972 struct extent_io_tree *tree;
771ed689 4973
d1310b2e 4974 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4975 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4976}
4977
3ab2fb5a
CM
4978static int
4979btrfs_readpages(struct file *file, struct address_space *mapping,
4980 struct list_head *pages, unsigned nr_pages)
4981{
d1310b2e
CM
4982 struct extent_io_tree *tree;
4983 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4984 return extent_readpages(tree, mapping, pages, nr_pages,
4985 btrfs_get_extent);
4986}
e6dcd2dc 4987static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4988{
d1310b2e
CM
4989 struct extent_io_tree *tree;
4990 struct extent_map_tree *map;
a52d9a80 4991 int ret;
8c2383c3 4992
d1310b2e
CM
4993 tree = &BTRFS_I(page->mapping->host)->io_tree;
4994 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4995 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4996 if (ret == 1) {
4997 ClearPagePrivate(page);
4998 set_page_private(page, 0);
4999 page_cache_release(page);
39279cc3 5000 }
a52d9a80 5001 return ret;
39279cc3
CM
5002}
5003
e6dcd2dc
CM
5004static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5005{
98509cfc
CM
5006 if (PageWriteback(page) || PageDirty(page))
5007 return 0;
b335b003 5008 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
5009}
5010
a52d9a80 5011static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5012{
d1310b2e 5013 struct extent_io_tree *tree;
e6dcd2dc
CM
5014 struct btrfs_ordered_extent *ordered;
5015 u64 page_start = page_offset(page);
5016 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5017
8b62b72b
CM
5018
5019 /*
5020 * we have the page locked, so new writeback can't start,
5021 * and the dirty bit won't be cleared while we are here.
5022 *
5023 * Wait for IO on this page so that we can safely clear
5024 * the PagePrivate2 bit and do ordered accounting
5025 */
e6dcd2dc 5026 wait_on_page_writeback(page);
8b62b72b 5027
d1310b2e 5028 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5029 if (offset) {
5030 btrfs_releasepage(page, GFP_NOFS);
5031 return;
5032 }
e6dcd2dc
CM
5033 lock_extent(tree, page_start, page_end, GFP_NOFS);
5034 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5035 page_offset(page));
5036 if (ordered) {
eb84ae03
CM
5037 /*
5038 * IO on this page will never be started, so we need
5039 * to account for any ordered extents now
5040 */
e6dcd2dc
CM
5041 clear_extent_bit(tree, page_start, page_end,
5042 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
5043 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5044 NULL, GFP_NOFS);
8b62b72b
CM
5045 /*
5046 * whoever cleared the private bit is responsible
5047 * for the finish_ordered_io
5048 */
5049 if (TestClearPagePrivate2(page)) {
5050 btrfs_finish_ordered_io(page->mapping->host,
5051 page_start, page_end);
5052 }
e6dcd2dc
CM
5053 btrfs_put_ordered_extent(ordered);
5054 lock_extent(tree, page_start, page_end, GFP_NOFS);
5055 }
5056 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
5057 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5058 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
5059 __btrfs_releasepage(page, GFP_NOFS);
5060
4a096752 5061 ClearPageChecked(page);
9ad6b7bc 5062 if (PagePrivate(page)) {
9ad6b7bc
CM
5063 ClearPagePrivate(page);
5064 set_page_private(page, 0);
5065 page_cache_release(page);
5066 }
39279cc3
CM
5067}
5068
9ebefb18
CM
5069/*
5070 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5071 * called from a page fault handler when a page is first dirtied. Hence we must
5072 * be careful to check for EOF conditions here. We set the page up correctly
5073 * for a written page which means we get ENOSPC checking when writing into
5074 * holes and correct delalloc and unwritten extent mapping on filesystems that
5075 * support these features.
5076 *
5077 * We are not allowed to take the i_mutex here so we have to play games to
5078 * protect against truncate races as the page could now be beyond EOF. Because
5079 * vmtruncate() writes the inode size before removing pages, once we have the
5080 * page lock we can determine safely if the page is beyond EOF. If it is not
5081 * beyond EOF, then the page is guaranteed safe against truncation until we
5082 * unlock the page.
5083 */
c2ec175c 5084int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5085{
c2ec175c 5086 struct page *page = vmf->page;
6da6abae 5087 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5088 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5089 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5090 struct btrfs_ordered_extent *ordered;
5091 char *kaddr;
5092 unsigned long zero_start;
9ebefb18 5093 loff_t size;
1832a6d5 5094 int ret;
a52d9a80 5095 u64 page_start;
e6dcd2dc 5096 u64 page_end;
9ebefb18 5097
6a63209f 5098 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
5099 if (ret) {
5100 if (ret == -ENOMEM)
5101 ret = VM_FAULT_OOM;
5102 else /* -ENOSPC, -EIO, etc */
5103 ret = VM_FAULT_SIGBUS;
1832a6d5 5104 goto out;
56a76f82 5105 }
1832a6d5 5106
9ed74f2d
JB
5107 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5108 if (ret) {
5109 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5110 ret = VM_FAULT_SIGBUS;
5111 goto out;
5112 }
5113
56a76f82 5114 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5115again:
9ebefb18 5116 lock_page(page);
9ebefb18 5117 size = i_size_read(inode);
e6dcd2dc
CM
5118 page_start = page_offset(page);
5119 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5120
9ebefb18 5121 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5122 (page_start >= size)) {
6a63209f 5123 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5124 /* page got truncated out from underneath us */
5125 goto out_unlock;
5126 }
e6dcd2dc
CM
5127 wait_on_page_writeback(page);
5128
5129 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5130 set_page_extent_mapped(page);
5131
eb84ae03
CM
5132 /*
5133 * we can't set the delalloc bits if there are pending ordered
5134 * extents. Drop our locks and wait for them to finish
5135 */
e6dcd2dc
CM
5136 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5137 if (ordered) {
5138 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5139 unlock_page(page);
eb84ae03 5140 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5141 btrfs_put_ordered_extent(ordered);
5142 goto again;
5143 }
5144
fbf19087
JB
5145 /*
5146 * XXX - page_mkwrite gets called every time the page is dirtied, even
5147 * if it was already dirty, so for space accounting reasons we need to
5148 * clear any delalloc bits for the range we are fixing to save. There
5149 * is probably a better way to do this, but for now keep consistent with
5150 * prepare_pages in the normal write path.
5151 */
5152 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
5153 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5154 GFP_NOFS);
fbf19087 5155
9ed74f2d
JB
5156 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5157 if (ret) {
5158 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5159 ret = VM_FAULT_SIGBUS;
fbf19087 5160 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5161 goto out_unlock;
5162 }
e6dcd2dc 5163 ret = 0;
9ebefb18
CM
5164
5165 /* page is wholly or partially inside EOF */
a52d9a80 5166 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5167 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5168 else
e6dcd2dc 5169 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5170
e6dcd2dc
CM
5171 if (zero_start != PAGE_CACHE_SIZE) {
5172 kaddr = kmap(page);
5173 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5174 flush_dcache_page(page);
5175 kunmap(page);
5176 }
247e743c 5177 ClearPageChecked(page);
e6dcd2dc 5178 set_page_dirty(page);
50a9b214 5179 SetPageUptodate(page);
5a3f23d5 5180
257c62e1
CM
5181 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5182 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5183
e6dcd2dc 5184 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
5185
5186out_unlock:
9ed74f2d 5187 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5188 if (!ret)
5189 return VM_FAULT_LOCKED;
9ebefb18 5190 unlock_page(page);
1832a6d5 5191out:
9ebefb18
CM
5192 return ret;
5193}
5194
39279cc3
CM
5195static void btrfs_truncate(struct inode *inode)
5196{
5197 struct btrfs_root *root = BTRFS_I(inode)->root;
5198 int ret;
5199 struct btrfs_trans_handle *trans;
d3c2fdcf 5200 unsigned long nr;
dbe674a9 5201 u64 mask = root->sectorsize - 1;
39279cc3 5202
8082510e
YZ
5203 if (!S_ISREG(inode->i_mode)) {
5204 WARN_ON(1);
39279cc3 5205 return;
8082510e 5206 }
39279cc3 5207
5d5e103a
JB
5208 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5209 if (ret)
5210 return;
8082510e 5211
4a096752 5212 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5213 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5214
39279cc3 5215 trans = btrfs_start_transaction(root, 1);
8082510e 5216 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5217
5218 /*
5219 * setattr is responsible for setting the ordered_data_close flag,
5220 * but that is only tested during the last file release. That
5221 * could happen well after the next commit, leaving a great big
5222 * window where new writes may get lost if someone chooses to write
5223 * to this file after truncating to zero
5224 *
5225 * The inode doesn't have any dirty data here, and so if we commit
5226 * this is a noop. If someone immediately starts writing to the inode
5227 * it is very likely we'll catch some of their writes in this
5228 * transaction, and the commit will find this file on the ordered
5229 * data list with good things to send down.
5230 *
5231 * This is a best effort solution, there is still a window where
5232 * using truncate to replace the contents of the file will
5233 * end up with a zero length file after a crash.
5234 */
5235 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5236 btrfs_add_ordered_operation(trans, root, inode);
5237
8082510e
YZ
5238 while (1) {
5239 ret = btrfs_truncate_inode_items(trans, root, inode,
5240 inode->i_size,
5241 BTRFS_EXTENT_DATA_KEY);
5242 if (ret != -EAGAIN)
5243 break;
39279cc3 5244
8082510e
YZ
5245 ret = btrfs_update_inode(trans, root, inode);
5246 BUG_ON(ret);
5f39d397 5247
8082510e
YZ
5248 nr = trans->blocks_used;
5249 btrfs_end_transaction(trans, root);
5250 btrfs_btree_balance_dirty(root, nr);
5251
5252 trans = btrfs_start_transaction(root, 1);
5253 btrfs_set_trans_block_group(trans, inode);
5254 }
5255
5256 if (ret == 0 && inode->i_nlink > 0) {
5257 ret = btrfs_orphan_del(trans, inode);
5258 BUG_ON(ret);
5259 }
5260
5261 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5262 BUG_ON(ret);
5263
7b128766 5264 nr = trans->blocks_used;
89ce8a63 5265 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5266 BUG_ON(ret);
d3c2fdcf 5267 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5268}
5269
d352ac68
CM
5270/*
5271 * create a new subvolume directory/inode (helper for the ioctl).
5272 */
d2fb3437 5273int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5274 struct btrfs_root *new_root,
d2fb3437 5275 u64 new_dirid, u64 alloc_hint)
39279cc3 5276{
39279cc3 5277 struct inode *inode;
76dda93c 5278 int err;
00e4e6b3 5279 u64 index = 0;
39279cc3 5280
aec7477b 5281 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5282 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5283 if (IS_ERR(inode))
f46b5a66 5284 return PTR_ERR(inode);
39279cc3
CM
5285 inode->i_op = &btrfs_dir_inode_operations;
5286 inode->i_fop = &btrfs_dir_file_operations;
5287
39279cc3 5288 inode->i_nlink = 1;
dbe674a9 5289 btrfs_i_size_write(inode, 0);
3b96362c 5290
76dda93c
YZ
5291 err = btrfs_update_inode(trans, new_root, inode);
5292 BUG_ON(err);
cb8e7090 5293
76dda93c 5294 iput(inode);
cb8e7090 5295 return 0;
39279cc3
CM
5296}
5297
d352ac68
CM
5298/* helper function for file defrag and space balancing. This
5299 * forces readahead on a given range of bytes in an inode
5300 */
edbd8d4e 5301unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5302 struct file_ra_state *ra, struct file *file,
5303 pgoff_t offset, pgoff_t last_index)
5304{
8e7bf94f 5305 pgoff_t req_size = last_index - offset + 1;
86479a04 5306
86479a04
CM
5307 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5308 return offset + req_size;
86479a04
CM
5309}
5310
39279cc3
CM
5311struct inode *btrfs_alloc_inode(struct super_block *sb)
5312{
5313 struct btrfs_inode *ei;
5314
5315 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5316 if (!ei)
5317 return NULL;
15ee9bc7 5318 ei->last_trans = 0;
257c62e1 5319 ei->last_sub_trans = 0;
e02119d5 5320 ei->logged_trans = 0;
32c00aff
JB
5321 ei->outstanding_extents = 0;
5322 ei->reserved_extents = 0;
a6dbd429 5323 ei->root = NULL;
32c00aff 5324 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5325 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5326 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5327 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5328 return &ei->vfs_inode;
5329}
5330
5331void btrfs_destroy_inode(struct inode *inode)
5332{
e6dcd2dc 5333 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5334 struct btrfs_root *root = BTRFS_I(inode)->root;
5335
39279cc3
CM
5336 WARN_ON(!list_empty(&inode->i_dentry));
5337 WARN_ON(inode->i_data.nrpages);
5338
a6dbd429
JB
5339 /*
5340 * This can happen where we create an inode, but somebody else also
5341 * created the same inode and we need to destroy the one we already
5342 * created.
5343 */
5344 if (!root)
5345 goto free;
5346
5a3f23d5
CM
5347 /*
5348 * Make sure we're properly removed from the ordered operation
5349 * lists.
5350 */
5351 smp_mb();
5352 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5353 spin_lock(&root->fs_info->ordered_extent_lock);
5354 list_del_init(&BTRFS_I(inode)->ordered_operations);
5355 spin_unlock(&root->fs_info->ordered_extent_lock);
5356 }
5357
5358 spin_lock(&root->list_lock);
7b128766 5359 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5360 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5361 inode->i_ino);
5362 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5363 }
5a3f23d5 5364 spin_unlock(&root->list_lock);
7b128766 5365
d397712b 5366 while (1) {
e6dcd2dc
CM
5367 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5368 if (!ordered)
5369 break;
5370 else {
d397712b
CM
5371 printk(KERN_ERR "btrfs found ordered "
5372 "extent %llu %llu on inode cleanup\n",
5373 (unsigned long long)ordered->file_offset,
5374 (unsigned long long)ordered->len);
e6dcd2dc
CM
5375 btrfs_remove_ordered_extent(inode, ordered);
5376 btrfs_put_ordered_extent(ordered);
5377 btrfs_put_ordered_extent(ordered);
5378 }
5379 }
5d4f98a2 5380 inode_tree_del(inode);
5b21f2ed 5381 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5382free:
39279cc3
CM
5383 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5384}
5385
76dda93c
YZ
5386void btrfs_drop_inode(struct inode *inode)
5387{
5388 struct btrfs_root *root = BTRFS_I(inode)->root;
5389
5390 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5391 generic_delete_inode(inode);
5392 else
5393 generic_drop_inode(inode);
5394}
5395
0ee0fda0 5396static void init_once(void *foo)
39279cc3
CM
5397{
5398 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5399
5400 inode_init_once(&ei->vfs_inode);
5401}
5402
5403void btrfs_destroy_cachep(void)
5404{
5405 if (btrfs_inode_cachep)
5406 kmem_cache_destroy(btrfs_inode_cachep);
5407 if (btrfs_trans_handle_cachep)
5408 kmem_cache_destroy(btrfs_trans_handle_cachep);
5409 if (btrfs_transaction_cachep)
5410 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5411 if (btrfs_path_cachep)
5412 kmem_cache_destroy(btrfs_path_cachep);
5413}
5414
5415int btrfs_init_cachep(void)
5416{
9601e3f6
CH
5417 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5418 sizeof(struct btrfs_inode), 0,
5419 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5420 if (!btrfs_inode_cachep)
5421 goto fail;
9601e3f6
CH
5422
5423 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5424 sizeof(struct btrfs_trans_handle), 0,
5425 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5426 if (!btrfs_trans_handle_cachep)
5427 goto fail;
9601e3f6
CH
5428
5429 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5430 sizeof(struct btrfs_transaction), 0,
5431 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5432 if (!btrfs_transaction_cachep)
5433 goto fail;
9601e3f6
CH
5434
5435 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5436 sizeof(struct btrfs_path), 0,
5437 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5438 if (!btrfs_path_cachep)
5439 goto fail;
9601e3f6 5440
39279cc3
CM
5441 return 0;
5442fail:
5443 btrfs_destroy_cachep();
5444 return -ENOMEM;
5445}
5446
5447static int btrfs_getattr(struct vfsmount *mnt,
5448 struct dentry *dentry, struct kstat *stat)
5449{
5450 struct inode *inode = dentry->d_inode;
5451 generic_fillattr(inode, stat);
3394e160 5452 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5453 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5454 stat->blocks = (inode_get_bytes(inode) +
5455 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5456 return 0;
5457}
5458
d397712b
CM
5459static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5460 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5461{
5462 struct btrfs_trans_handle *trans;
5463 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5464 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5465 struct inode *new_inode = new_dentry->d_inode;
5466 struct inode *old_inode = old_dentry->d_inode;
5467 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5468 u64 index = 0;
4df27c4d 5469 u64 root_objectid;
39279cc3
CM
5470 int ret;
5471
f679a840
YZ
5472 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5473 return -EPERM;
5474
4df27c4d
YZ
5475 /* we only allow rename subvolume link between subvolumes */
5476 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5477 return -EXDEV;
5478
4df27c4d
YZ
5479 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5480 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5481 return -ENOTEMPTY;
5f39d397 5482
4df27c4d
YZ
5483 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5484 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5485 return -ENOTEMPTY;
0660b5af 5486
9ed74f2d 5487 /*
5df6a9f6
JB
5488 * We want to reserve the absolute worst case amount of items. So if
5489 * both inodes are subvols and we need to unlink them then that would
5490 * require 4 item modifications, but if they are both normal inodes it
5491 * would require 5 item modifications, so we'll assume their normal
5492 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5493 * should cover the worst case number of items we'll modify.
9ed74f2d 5494 */
5df6a9f6 5495 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5496 if (ret)
4df27c4d 5497 return ret;
1832a6d5 5498
5a3f23d5
CM
5499 /*
5500 * we're using rename to replace one file with another.
5501 * and the replacement file is large. Start IO on it now so
5502 * we don't add too much work to the end of the transaction
5503 */
4baf8c92 5504 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5505 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5506 filemap_flush(old_inode->i_mapping);
5507
76dda93c
YZ
5508 /* close the racy window with snapshot create/destroy ioctl */
5509 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5510 down_read(&root->fs_info->subvol_sem);
5511
39279cc3 5512 trans = btrfs_start_transaction(root, 1);
a5719521 5513 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5514
4df27c4d
YZ
5515 if (dest != root)
5516 btrfs_record_root_in_trans(trans, dest);
5f39d397 5517
a5719521
YZ
5518 ret = btrfs_set_inode_index(new_dir, &index);
5519 if (ret)
5520 goto out_fail;
5a3f23d5 5521
a5719521 5522 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5523 /* force full log commit if subvolume involved. */
5524 root->fs_info->last_trans_log_full_commit = trans->transid;
5525 } else {
a5719521
YZ
5526 ret = btrfs_insert_inode_ref(trans, dest,
5527 new_dentry->d_name.name,
5528 new_dentry->d_name.len,
5529 old_inode->i_ino,
5530 new_dir->i_ino, index);
5531 if (ret)
5532 goto out_fail;
4df27c4d
YZ
5533 /*
5534 * this is an ugly little race, but the rename is required
5535 * to make sure that if we crash, the inode is either at the
5536 * old name or the new one. pinning the log transaction lets
5537 * us make sure we don't allow a log commit to come in after
5538 * we unlink the name but before we add the new name back in.
5539 */
5540 btrfs_pin_log_trans(root);
5541 }
5a3f23d5
CM
5542 /*
5543 * make sure the inode gets flushed if it is replacing
5544 * something.
5545 */
5546 if (new_inode && new_inode->i_size &&
5547 old_inode && S_ISREG(old_inode->i_mode)) {
5548 btrfs_add_ordered_operation(trans, root, old_inode);
5549 }
5550
39279cc3
CM
5551 old_dir->i_ctime = old_dir->i_mtime = ctime;
5552 new_dir->i_ctime = new_dir->i_mtime = ctime;
5553 old_inode->i_ctime = ctime;
5f39d397 5554
12fcfd22
CM
5555 if (old_dentry->d_parent != new_dentry->d_parent)
5556 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5557
4df27c4d
YZ
5558 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5559 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5560 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5561 old_dentry->d_name.name,
5562 old_dentry->d_name.len);
5563 } else {
5564 btrfs_inc_nlink(old_dentry->d_inode);
5565 ret = btrfs_unlink_inode(trans, root, old_dir,
5566 old_dentry->d_inode,
5567 old_dentry->d_name.name,
5568 old_dentry->d_name.len);
5569 }
5570 BUG_ON(ret);
39279cc3
CM
5571
5572 if (new_inode) {
5573 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5574 if (unlikely(new_inode->i_ino ==
5575 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5576 root_objectid = BTRFS_I(new_inode)->location.objectid;
5577 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5578 root_objectid,
5579 new_dentry->d_name.name,
5580 new_dentry->d_name.len);
5581 BUG_ON(new_inode->i_nlink == 0);
5582 } else {
5583 ret = btrfs_unlink_inode(trans, dest, new_dir,
5584 new_dentry->d_inode,
5585 new_dentry->d_name.name,
5586 new_dentry->d_name.len);
5587 }
5588 BUG_ON(ret);
7b128766 5589 if (new_inode->i_nlink == 0) {
e02119d5 5590 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5591 BUG_ON(ret);
7b128766 5592 }
39279cc3 5593 }
aec7477b 5594
4df27c4d
YZ
5595 ret = btrfs_add_link(trans, new_dir, old_inode,
5596 new_dentry->d_name.name,
a5719521 5597 new_dentry->d_name.len, 0, index);
4df27c4d 5598 BUG_ON(ret);
39279cc3 5599
4df27c4d
YZ
5600 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5601 btrfs_log_new_name(trans, old_inode, old_dir,
5602 new_dentry->d_parent);
5603 btrfs_end_log_trans(root);
5604 }
39279cc3 5605out_fail:
ab78c84d 5606 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5607
76dda93c
YZ
5608 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5609 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5610
5df6a9f6 5611 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5612 return ret;
5613}
5614
d352ac68
CM
5615/*
5616 * some fairly slow code that needs optimization. This walks the list
5617 * of all the inodes with pending delalloc and forces them to disk.
5618 */
24bbcf04 5619int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
5620{
5621 struct list_head *head = &root->fs_info->delalloc_inodes;
5622 struct btrfs_inode *binode;
5b21f2ed 5623 struct inode *inode;
ea8c2819 5624
c146afad
YZ
5625 if (root->fs_info->sb->s_flags & MS_RDONLY)
5626 return -EROFS;
5627
75eff68e 5628 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5629 while (!list_empty(head)) {
ea8c2819
CM
5630 binode = list_entry(head->next, struct btrfs_inode,
5631 delalloc_inodes);
5b21f2ed
ZY
5632 inode = igrab(&binode->vfs_inode);
5633 if (!inode)
5634 list_del_init(&binode->delalloc_inodes);
75eff68e 5635 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5636 if (inode) {
8c8bee1d 5637 filemap_flush(inode->i_mapping);
24bbcf04
YZ
5638 if (delay_iput)
5639 btrfs_add_delayed_iput(inode);
5640 else
5641 iput(inode);
5b21f2ed
ZY
5642 }
5643 cond_resched();
75eff68e 5644 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5645 }
75eff68e 5646 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5647
5648 /* the filemap_flush will queue IO into the worker threads, but
5649 * we have to make sure the IO is actually started and that
5650 * ordered extents get created before we return
5651 */
5652 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5653 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5654 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5655 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5656 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5657 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5658 }
5659 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5660 return 0;
5661}
5662
39279cc3
CM
5663static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5664 const char *symname)
5665{
5666 struct btrfs_trans_handle *trans;
5667 struct btrfs_root *root = BTRFS_I(dir)->root;
5668 struct btrfs_path *path;
5669 struct btrfs_key key;
1832a6d5 5670 struct inode *inode = NULL;
39279cc3
CM
5671 int err;
5672 int drop_inode = 0;
5673 u64 objectid;
00e4e6b3 5674 u64 index = 0 ;
39279cc3
CM
5675 int name_len;
5676 int datasize;
5f39d397 5677 unsigned long ptr;
39279cc3 5678 struct btrfs_file_extent_item *ei;
5f39d397 5679 struct extent_buffer *leaf;
1832a6d5 5680 unsigned long nr = 0;
39279cc3
CM
5681
5682 name_len = strlen(symname) + 1;
5683 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5684 return -ENAMETOOLONG;
1832a6d5 5685
9ed74f2d
JB
5686 /*
5687 * 2 items for inode item and ref
5688 * 2 items for dir items
5689 * 1 item for xattr if selinux is on
5690 */
5691 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5692 if (err)
9ed74f2d 5693 return err;
1832a6d5 5694
39279cc3 5695 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5696 if (!trans)
5697 goto out_fail;
39279cc3
CM
5698 btrfs_set_trans_block_group(trans, dir);
5699
5700 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5701 if (err) {
5702 err = -ENOSPC;
5703 goto out_unlock;
5704 }
5705
aec7477b 5706 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5707 dentry->d_name.len,
5708 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5709 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5710 &index);
39279cc3
CM
5711 err = PTR_ERR(inode);
5712 if (IS_ERR(inode))
5713 goto out_unlock;
5714
f34f57a3 5715 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5716 if (err) {
5717 drop_inode = 1;
5718 goto out_unlock;
5719 }
5720
39279cc3 5721 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5722 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5723 if (err)
5724 drop_inode = 1;
5725 else {
5726 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5727 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5728 inode->i_fop = &btrfs_file_operations;
5729 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5731 }
39279cc3
CM
5732 btrfs_update_inode_block_group(trans, inode);
5733 btrfs_update_inode_block_group(trans, dir);
5734 if (drop_inode)
5735 goto out_unlock;
5736
5737 path = btrfs_alloc_path();
5738 BUG_ON(!path);
5739 key.objectid = inode->i_ino;
5740 key.offset = 0;
39279cc3
CM
5741 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5742 datasize = btrfs_file_extent_calc_inline_size(name_len);
5743 err = btrfs_insert_empty_item(trans, root, path, &key,
5744 datasize);
54aa1f4d
CM
5745 if (err) {
5746 drop_inode = 1;
5747 goto out_unlock;
5748 }
5f39d397
CM
5749 leaf = path->nodes[0];
5750 ei = btrfs_item_ptr(leaf, path->slots[0],
5751 struct btrfs_file_extent_item);
5752 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5753 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5754 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5755 btrfs_set_file_extent_encryption(leaf, ei, 0);
5756 btrfs_set_file_extent_compression(leaf, ei, 0);
5757 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5758 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5759
39279cc3 5760 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5761 write_extent_buffer(leaf, symname, ptr, name_len);
5762 btrfs_mark_buffer_dirty(leaf);
39279cc3 5763 btrfs_free_path(path);
5f39d397 5764
39279cc3
CM
5765 inode->i_op = &btrfs_symlink_inode_operations;
5766 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5767 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5768 inode_set_bytes(inode, name_len);
dbe674a9 5769 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5770 err = btrfs_update_inode(trans, root, inode);
5771 if (err)
5772 drop_inode = 1;
39279cc3
CM
5773
5774out_unlock:
d3c2fdcf 5775 nr = trans->blocks_used;
ab78c84d 5776 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5777out_fail:
9ed74f2d 5778 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5779 if (drop_inode) {
5780 inode_dec_link_count(inode);
5781 iput(inode);
5782 }
d3c2fdcf 5783 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5784 return err;
5785}
16432985 5786
5a303d5d 5787static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
920bbbfb 5788 u64 alloc_hint, int mode)
d899e052 5789{
5a303d5d 5790 struct btrfs_trans_handle *trans;
d899e052
YZ
5791 struct btrfs_root *root = BTRFS_I(inode)->root;
5792 struct btrfs_key ins;
5793 u64 alloc_size;
5794 u64 cur_offset = start;
5795 u64 num_bytes = end - start;
5796 int ret = 0;
5797
d899e052
YZ
5798 while (num_bytes > 0) {
5799 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5800
d899e052
YZ
5801 ret = btrfs_reserve_extent(trans, root, alloc_size,
5802 root->sectorsize, 0, alloc_hint,
5803 (u64)-1, &ins, 1);
5804 if (ret) {
5805 WARN_ON(1);
5a303d5d
YZ
5806 break;
5807 }
5808
5809 ret = btrfs_reserve_metadata_space(root, 3);
5810 if (ret) {
5811 btrfs_free_reserved_extent(root, ins.objectid,
5812 ins.offset);
5813 break;
d899e052 5814 }
5a303d5d
YZ
5815
5816 trans = btrfs_start_transaction(root, 1);
5817
d899e052
YZ
5818 ret = insert_reserved_file_extent(trans, inode,
5819 cur_offset, ins.objectid,
5820 ins.offset, ins.offset,
920bbbfb 5821 ins.offset, 0, 0, 0,
d899e052
YZ
5822 BTRFS_FILE_EXTENT_PREALLOC);
5823 BUG_ON(ret);
a1ed835e
CM
5824 btrfs_drop_extent_cache(inode, cur_offset,
5825 cur_offset + ins.offset -1, 0);
5a303d5d 5826
d899e052
YZ
5827 num_bytes -= ins.offset;
5828 cur_offset += ins.offset;
5829 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5830
d899e052 5831 inode->i_ctime = CURRENT_TIME;
6cbff00f 5832 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5a303d5d
YZ
5834 cur_offset > inode->i_size) {
5835 i_size_write(inode, cur_offset);
5836 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5837 }
5838
d899e052
YZ
5839 ret = btrfs_update_inode(trans, root, inode);
5840 BUG_ON(ret);
d899e052 5841
5a303d5d
YZ
5842 btrfs_end_transaction(trans, root);
5843 btrfs_unreserve_metadata_space(root, 3);
5844 }
d899e052
YZ
5845 return ret;
5846}
5847
5848static long btrfs_fallocate(struct inode *inode, int mode,
5849 loff_t offset, loff_t len)
5850{
5851 u64 cur_offset;
5852 u64 last_byte;
5853 u64 alloc_start;
5854 u64 alloc_end;
5855 u64 alloc_hint = 0;
e980b50c 5856 u64 locked_end;
d899e052
YZ
5857 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5858 struct extent_map *em;
5859 int ret;
5860
5861 alloc_start = offset & ~mask;
5862 alloc_end = (offset + len + mask) & ~mask;
5863
546888da
CM
5864 /*
5865 * wait for ordered IO before we have any locks. We'll loop again
5866 * below with the locks held.
5867 */
5868 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5869
d899e052
YZ
5870 mutex_lock(&inode->i_mutex);
5871 if (alloc_start > inode->i_size) {
5872 ret = btrfs_cont_expand(inode, alloc_start);
5873 if (ret)
5874 goto out;
5875 }
5876
5a303d5d 5877 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5878 alloc_end - alloc_start);
5879 if (ret)
5880 goto out;
5881
e980b50c 5882 locked_end = alloc_end - 1;
d899e052
YZ
5883 while (1) {
5884 struct btrfs_ordered_extent *ordered;
546888da 5885
546888da
CM
5886 /* the extent lock is ordered inside the running
5887 * transaction
5888 */
e980b50c
CM
5889 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5890 GFP_NOFS);
d899e052
YZ
5891 ordered = btrfs_lookup_first_ordered_extent(inode,
5892 alloc_end - 1);
5893 if (ordered &&
5894 ordered->file_offset + ordered->len > alloc_start &&
5895 ordered->file_offset < alloc_end) {
5896 btrfs_put_ordered_extent(ordered);
5897 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5898 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5899 /*
5900 * we can't wait on the range with the transaction
5901 * running or with the extent lock held
5902 */
d899e052
YZ
5903 btrfs_wait_ordered_range(inode, alloc_start,
5904 alloc_end - alloc_start);
5905 } else {
5906 if (ordered)
5907 btrfs_put_ordered_extent(ordered);
5908 break;
5909 }
5910 }
5911
5912 cur_offset = alloc_start;
5913 while (1) {
5914 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5915 alloc_end - cur_offset, 0);
5916 BUG_ON(IS_ERR(em) || !em);
5917 last_byte = min(extent_map_end(em), alloc_end);
5918 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5919 if (em->block_start == EXTENT_MAP_HOLE ||
5920 (cur_offset >= inode->i_size &&
5921 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5922 ret = prealloc_file_range(inode,
5923 cur_offset, last_byte,
5924 alloc_hint, mode);
d899e052
YZ
5925 if (ret < 0) {
5926 free_extent_map(em);
5927 break;
5928 }
5929 }
5930 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5931 alloc_hint = em->block_start;
5932 free_extent_map(em);
5933
5934 cur_offset = last_byte;
5935 if (cur_offset >= alloc_end) {
5936 ret = 0;
5937 break;
5938 }
5939 }
e980b50c 5940 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5941 GFP_NOFS);
546888da 5942
5a303d5d
YZ
5943 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5944 alloc_end - alloc_start);
d899e052
YZ
5945out:
5946 mutex_unlock(&inode->i_mutex);
5947 return ret;
5948}
5949
e6dcd2dc
CM
5950static int btrfs_set_page_dirty(struct page *page)
5951{
e6dcd2dc
CM
5952 return __set_page_dirty_nobuffers(page);
5953}
5954
0ee0fda0 5955static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5956{
6cbff00f 5957 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5958 return -EACCES;
33268eaf 5959 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5960}
39279cc3 5961
6e1d5dcc 5962static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5963 .getattr = btrfs_getattr,
39279cc3
CM
5964 .lookup = btrfs_lookup,
5965 .create = btrfs_create,
5966 .unlink = btrfs_unlink,
5967 .link = btrfs_link,
5968 .mkdir = btrfs_mkdir,
5969 .rmdir = btrfs_rmdir,
5970 .rename = btrfs_rename,
5971 .symlink = btrfs_symlink,
5972 .setattr = btrfs_setattr,
618e21d5 5973 .mknod = btrfs_mknod,
95819c05
CH
5974 .setxattr = btrfs_setxattr,
5975 .getxattr = btrfs_getxattr,
5103e947 5976 .listxattr = btrfs_listxattr,
95819c05 5977 .removexattr = btrfs_removexattr,
fdebe2bd 5978 .permission = btrfs_permission,
39279cc3 5979};
6e1d5dcc 5980static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5981 .lookup = btrfs_lookup,
fdebe2bd 5982 .permission = btrfs_permission,
39279cc3 5983};
76dda93c 5984
828c0950 5985static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5986 .llseek = generic_file_llseek,
5987 .read = generic_read_dir,
cbdf5a24 5988 .readdir = btrfs_real_readdir,
34287aa3 5989 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5990#ifdef CONFIG_COMPAT
34287aa3 5991 .compat_ioctl = btrfs_ioctl,
39279cc3 5992#endif
6bf13c0c 5993 .release = btrfs_release_file,
e02119d5 5994 .fsync = btrfs_sync_file,
39279cc3
CM
5995};
5996
d1310b2e 5997static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5998 .fill_delalloc = run_delalloc_range,
065631f6 5999 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 6000 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 6001 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 6002 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 6003 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 6004 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
6005 .set_bit_hook = btrfs_set_bit_hook,
6006 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
6007 .merge_extent_hook = btrfs_merge_extent_hook,
6008 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
6009};
6010
35054394
CM
6011/*
6012 * btrfs doesn't support the bmap operation because swapfiles
6013 * use bmap to make a mapping of extents in the file. They assume
6014 * these extents won't change over the life of the file and they
6015 * use the bmap result to do IO directly to the drive.
6016 *
6017 * the btrfs bmap call would return logical addresses that aren't
6018 * suitable for IO and they also will change frequently as COW
6019 * operations happen. So, swapfile + btrfs == corruption.
6020 *
6021 * For now we're avoiding this by dropping bmap.
6022 */
7f09410b 6023static const struct address_space_operations btrfs_aops = {
39279cc3
CM
6024 .readpage = btrfs_readpage,
6025 .writepage = btrfs_writepage,
b293f02e 6026 .writepages = btrfs_writepages,
3ab2fb5a 6027 .readpages = btrfs_readpages,
39279cc3 6028 .sync_page = block_sync_page,
16432985 6029 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
6030 .invalidatepage = btrfs_invalidatepage,
6031 .releasepage = btrfs_releasepage,
e6dcd2dc 6032 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 6033 .error_remove_page = generic_error_remove_page,
39279cc3
CM
6034};
6035
7f09410b 6036static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
6037 .readpage = btrfs_readpage,
6038 .writepage = btrfs_writepage,
2bf5a725
CM
6039 .invalidatepage = btrfs_invalidatepage,
6040 .releasepage = btrfs_releasepage,
39279cc3
CM
6041};
6042
6e1d5dcc 6043static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
6044 .truncate = btrfs_truncate,
6045 .getattr = btrfs_getattr,
6046 .setattr = btrfs_setattr,
95819c05
CH
6047 .setxattr = btrfs_setxattr,
6048 .getxattr = btrfs_getxattr,
5103e947 6049 .listxattr = btrfs_listxattr,
95819c05 6050 .removexattr = btrfs_removexattr,
fdebe2bd 6051 .permission = btrfs_permission,
d899e052 6052 .fallocate = btrfs_fallocate,
1506fcc8 6053 .fiemap = btrfs_fiemap,
39279cc3 6054};
6e1d5dcc 6055static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6056 .getattr = btrfs_getattr,
6057 .setattr = btrfs_setattr,
fdebe2bd 6058 .permission = btrfs_permission,
95819c05
CH
6059 .setxattr = btrfs_setxattr,
6060 .getxattr = btrfs_getxattr,
33268eaf 6061 .listxattr = btrfs_listxattr,
95819c05 6062 .removexattr = btrfs_removexattr,
618e21d5 6063};
6e1d5dcc 6064static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6065 .readlink = generic_readlink,
6066 .follow_link = page_follow_link_light,
6067 .put_link = page_put_link,
fdebe2bd 6068 .permission = btrfs_permission,
0279b4cd
JO
6069 .setxattr = btrfs_setxattr,
6070 .getxattr = btrfs_getxattr,
6071 .listxattr = btrfs_listxattr,
6072 .removexattr = btrfs_removexattr,
39279cc3 6073};
76dda93c 6074
82d339d9 6075const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6076 .d_delete = btrfs_dentry_delete,
6077};