Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
fcebe456
JB
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
99 int level, struct btrfs_key *ins,
100 int no_quota);
6a63209f 101static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
11833d66
YZ
104static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
9ed74f2d
JB
106static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
fb25e914 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
109 u64 num_bytes, int reserve,
110 int delalloc);
5d80366e
JB
111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
48a3b636
ES
113int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 115
817d52f8
JB
116static noinline int
117block_group_cache_done(struct btrfs_block_group_cache *cache)
118{
119 smp_mb();
36cce922
JB
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
122}
123
0f9dd46c
JB
124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125{
126 return (cache->flags & bits) == bits;
127}
128
62a45b60 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
130{
131 atomic_inc(&cache->count);
132}
133
134void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135{
f0486c68
YZ
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
34d52cb6 139 kfree(cache->free_space_ctl);
11dfe35a 140 kfree(cache);
f0486c68 141 }
11dfe35a
JB
142}
143
0f9dd46c
JB
144/*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
b2950863 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
149 struct btrfs_block_group_cache *block_group)
150{
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
a1897fdd
LB
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
0f9dd46c
JB
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182}
183
184/*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188static struct btrfs_block_group_cache *
189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191{
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
a1897fdd 220 if (ret) {
11dfe35a 221 btrfs_get_block_group(ret);
a1897fdd
LB
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
0f9dd46c
JB
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228}
229
11833d66
YZ
230static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
817d52f8 232{
11833d66
YZ
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239}
817d52f8 240
11833d66
YZ
241static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243{
244 u64 start, end;
817d52f8 245
11833d66
YZ
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
253}
254
11833d66
YZ
255static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
817d52f8 257{
817d52f8
JB
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
06b2331f
YZ
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
835d974f
JB
268 if (ret)
269 return ret;
06b2331f
YZ
270 }
271
817d52f8
JB
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
11833d66 279
817d52f8 280 while (nr--) {
51bf5f0b
JB
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
835d974f
JB
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
817d52f8 306 }
11833d66 307
817d52f8
JB
308 kfree(logical);
309 }
817d52f8
JB
310 return 0;
311}
312
11833d66
YZ
313static struct btrfs_caching_control *
314get_caching_control(struct btrfs_block_group_cache *cache)
315{
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
dde5abee
JB
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
11833d66
YZ
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328}
329
330static void put_caching_control(struct btrfs_caching_control *ctl)
331{
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334}
335
0f9dd46c
JB
336/*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
817d52f8 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
342 struct btrfs_fs_info *info, u64 start, u64 end)
343{
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
d458b054 379static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 380{
bab39bf9
JB
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
e37c9e69 385 struct btrfs_path *path;
5f39d397 386 struct extent_buffer *leaf;
11833d66 387 struct btrfs_key key;
817d52f8 388 u64 total_found = 0;
11833d66
YZ
389 u64 last = 0;
390 u32 nritems;
36cce922 391 int ret = -ENOMEM;
f510cfec 392
bab39bf9
JB
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
e37c9e69
CM
398 path = btrfs_alloc_path();
399 if (!path)
bab39bf9 400 goto out;
7d7d6068 401
817d52f8 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 403
5cd57b2c 404 /*
817d52f8
JB
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
5cd57b2c
CM
409 */
410 path->skip_locking = 1;
817d52f8 411 path->search_commit_root = 1;
026fd317 412 path->reada = 1;
817d52f8 413
e4404d6e 414 key.objectid = last;
e37c9e69 415 key.offset = 0;
11833d66 416 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 417again:
11833d66 418 mutex_lock(&caching_ctl->mutex);
013f1b12 419 /* need to make sure the commit_root doesn't disappear */
9e351cc8 420 down_read(&fs_info->commit_root_sem);
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
ef8bbdfe 425 goto err;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 445 caching_ctl->progress = last;
ff5714cc 446 btrfs_release_path(path);
9e351cc8 447 up_read(&fs_info->commit_root_sem);
589d8ade 448 mutex_unlock(&caching_ctl->mutex);
11833d66 449 cond_resched();
589d8ade
JB
450 goto again;
451 }
0a3896d0
JB
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
589d8ade
JB
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
11833d66 461 }
817d52f8 462
52ee28d2
LB
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
11833d66
YZ
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
817d52f8 475 continue;
e37c9e69 476 }
0f9dd46c 477
e37c9e69 478 if (key.objectid >= block_group->key.objectid +
0f9dd46c 479 block_group->key.offset)
e37c9e69 480 break;
7d7d6068 481
3173a18f
JB
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
3173a18f
JB
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
707e8a07 489 fs_info->tree_root->nodesize;
3173a18f
JB
490 else
491 last = key.objectid + key.offset;
817d52f8 492
11833d66
YZ
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
817d52f8 497 }
e37c9e69
CM
498 path->slots[0]++;
499 }
817d52f8 500 ret = 0;
e37c9e69 501
817d52f8
JB
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
11833d66 505 caching_ctl->progress = (u64)-1;
817d52f8
JB
506
507 spin_lock(&block_group->lock);
11833d66 508 block_group->caching_ctl = NULL;
817d52f8
JB
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
0f9dd46c 511
54aa1f4d 512err:
e37c9e69 513 btrfs_free_path(path);
9e351cc8 514 up_read(&fs_info->commit_root_sem);
817d52f8 515
11833d66
YZ
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
bab39bf9 519out:
36cce922
JB
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
11833d66
YZ
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
11dfe35a 529 btrfs_put_block_group(block_group);
817d52f8
JB
530}
531
9d66e233 532static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 533 int load_cache_only)
817d52f8 534{
291c7d2f 535 DEFINE_WAIT(wait);
11833d66
YZ
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
538 int ret = 0;
539
291c7d2f 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
541 if (!caching_ctl)
542 return -ENOMEM;
291c7d2f
JB
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
291c7d2f
JB
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
11833d66 584 return 0;
291c7d2f
JB
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
11833d66 590
d53ba474 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 592 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
291c7d2f 597 cache->caching_ctl = NULL;
9d66e233
JB
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 600 caching_ctl->progress = (u64)-1;
9d66e233 601 } else {
291c7d2f
JB
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 607 cache->has_caching_ctl = 1;
291c7d2f 608 }
9d66e233
JB
609 }
610 spin_unlock(&cache->lock);
cb83b7b8
JB
611 mutex_unlock(&caching_ctl->mutex);
612
291c7d2f 613 wake_up(&caching_ctl->wait);
3c14874a 614 if (ret == 1) {
291c7d2f 615 put_caching_control(caching_ctl);
3c14874a 616 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 617 return 0;
3c14874a 618 }
291c7d2f
JB
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 630 cache->has_caching_ctl = 1;
291c7d2f
JB
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
9d66e233
JB
634 }
635
291c7d2f
JB
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
11833d66 638 return 0;
817d52f8 639 }
817d52f8 640
9e351cc8 641 down_write(&fs_info->commit_root_sem);
291c7d2f 642 atomic_inc(&caching_ctl->count);
11833d66 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 644 up_write(&fs_info->commit_root_sem);
11833d66 645
11dfe35a 646 btrfs_get_block_group(cache);
11833d66 647
e66f0bb1 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 649
ef8bbdfe 650 return ret;
e37c9e69
CM
651}
652
0f9dd46c
JB
653/*
654 * return the block group that starts at or after bytenr
655 */
d397712b
CM
656static struct btrfs_block_group_cache *
657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 658{
0f9dd46c 659 struct btrfs_block_group_cache *cache;
0ef3e66b 660
0f9dd46c 661 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 662
0f9dd46c 663 return cache;
0ef3e66b
CM
664}
665
0f9dd46c 666/*
9f55684c 667 * return the block group that contains the given bytenr
0f9dd46c 668 */
d397712b
CM
669struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
be744175 672{
0f9dd46c 673 struct btrfs_block_group_cache *cache;
be744175 674
0f9dd46c 675 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 676
0f9dd46c 677 return cache;
be744175 678}
0b86a832 679
0f9dd46c
JB
680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
6324fbf3 682{
0f9dd46c 683 struct list_head *head = &info->space_info;
0f9dd46c 684 struct btrfs_space_info *found;
4184ea7f 685
52ba6929 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 687
4184ea7f
CM
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
67377734 690 if (found->flags & flags) {
4184ea7f 691 rcu_read_unlock();
0f9dd46c 692 return found;
4184ea7f 693 }
0f9dd46c 694 }
4184ea7f 695 rcu_read_unlock();
0f9dd46c 696 return NULL;
6324fbf3
CM
697}
698
4184ea7f
CM
699/*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704{
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712}
713
1a4ed8fd
FM
714/* simple helper to search for an existing data extent at a given offset */
715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
716{
717 int ret;
718 struct btrfs_key key;
31840ae1 719 struct btrfs_path *path;
e02119d5 720
31840ae1 721 path = btrfs_alloc_path();
d8926bb3
MF
722 if (!path)
723 return -ENOMEM;
724
e02119d5
CM
725 key.objectid = start;
726 key.offset = len;
3173a18f 727 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
31840ae1 730 btrfs_free_path(path);
7bb86316
CM
731 return ret;
732}
733
a22285a6 734/*
3173a18f 735 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
3173a18f 745 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
746{
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
3173a18f
JB
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 763 offset = root->nodesize;
3173a18f
JB
764 metadata = 0;
765 }
766
a22285a6
YZ
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
a22285a6
YZ
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
639eefc8
FDBM
775
776search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
a22285a6
YZ
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
3173a18f 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 796 key.offset == root->nodesize)
74be9510
FDBM
797 ret = 0;
798 }
3173a18f
JB
799 }
800
a22285a6
YZ
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818#else
819 BUG();
820#endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
b3b4aa74 840 btrfs_release_path(path);
a22285a6 841
8cc33e5c
DS
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
a22285a6
YZ
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
639eefc8 849 goto search_again;
a22285a6 850 }
d7df2c79 851 spin_lock(&head->lock);
a22285a6
YZ
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
d7df2c79 858 spin_unlock(&head->lock);
a22285a6
YZ
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868out_free:
869 btrfs_free_path(path);
870 return ret;
871}
872
d8d5f3e1
CM
873/*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
5d4f98a2
YZ
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
d8d5f3e1
CM
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 935 * - different files inside a single subvolume
d8d5f3e1
CM
936 * - different offsets inside a file (bookend extents in file.c)
937 *
5d4f98a2 938 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
939 *
940 * - Objectid of the subvolume root
d8d5f3e1 941 * - objectid of the file holding the reference
5d4f98a2
YZ
942 * - original offset in the file
943 * - how many bookend extents
d8d5f3e1 944 *
5d4f98a2
YZ
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
d8d5f3e1 947 *
5d4f98a2 948 * The extent ref structure for the full back refs has field for:
d8d5f3e1 949 *
5d4f98a2 950 * - number of pointers in the tree leaf
d8d5f3e1 951 *
5d4f98a2
YZ
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
d8d5f3e1 954 *
5d4f98a2
YZ
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
d8d5f3e1 957 *
5d4f98a2 958 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 959 *
5d4f98a2
YZ
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
d8d5f3e1 962 *
5d4f98a2 963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 964 *
5d4f98a2 965 * Btree extents can be referenced by:
d8d5f3e1 966 *
5d4f98a2 967 * - Different subvolumes
d8d5f3e1 968 *
5d4f98a2
YZ
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
d8d5f3e1 973 *
5d4f98a2
YZ
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
d8d5f3e1 977 */
31840ae1 978
5d4f98a2
YZ
979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
7bb86316 984{
5d4f98a2
YZ
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
7bb86316 990 struct btrfs_key key;
5d4f98a2
YZ
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
79787eaa 1010 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
b3b4aa74 1026 btrfs_release_path(path);
5d4f98a2
YZ
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
79787eaa 1036 BUG_ON(ret); /* Corruption */
5d4f98a2 1037
4b90c680 1038 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058}
1059#endif
1060
1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062{
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
14a958e6 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1069 lenum = cpu_to_le64(owner);
14a958e6 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1071 lenum = cpu_to_le64(offset);
14a958e6 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075}
1076
1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079{
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083}
1084
1085static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088{
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094}
1095
1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102{
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
31840ae1 1105 struct extent_buffer *leaf;
5d4f98a2 1106 u32 nritems;
74493f7a 1107 int ret;
5d4f98a2
YZ
1108 int recow;
1109 int err = -ENOENT;
74493f7a 1110
31840ae1 1111 key.objectid = bytenr;
5d4f98a2
YZ
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
31840ae1 1127
5d4f98a2
YZ
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1133 btrfs_release_path(path);
5d4f98a2
YZ
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141#endif
1142 goto fail;
31840ae1
ZY
1143 }
1144
1145 leaf = path->nodes[0];
5d4f98a2
YZ
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
b3b4aa74 1171 btrfs_release_path(path);
5d4f98a2
YZ
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
31840ae1 1178 }
5d4f98a2
YZ
1179fail:
1180 return err;
31840ae1
ZY
1181}
1182
5d4f98a2
YZ
1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
31840ae1
ZY
1189{
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
5d4f98a2 1192 u32 size;
31840ae1
ZY
1193 u32 num_refs;
1194 int ret;
74493f7a 1195
74493f7a 1196 key.objectid = bytenr;
5d4f98a2
YZ
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
74493f7a 1207
5d4f98a2
YZ
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
31840ae1 1215 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1223 }
5d4f98a2
YZ
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
b3b4aa74 1232 btrfs_release_path(path);
5d4f98a2
YZ
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
31840ae1 1238
5d4f98a2
YZ
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1253 }
31840ae1 1254 }
5d4f98a2
YZ
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257fail:
b3b4aa74 1258 btrfs_release_path(path);
7bb86316 1259 return ret;
74493f7a
CM
1260}
1261
5d4f98a2
YZ
1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
fcebe456 1265 int refs_to_drop, int *last_ref)
31840ae1 1266{
5d4f98a2
YZ
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1270 struct extent_buffer *leaf;
5d4f98a2 1271 u32 num_refs = 0;
31840ae1
ZY
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
5d4f98a2
YZ
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291#endif
1292 } else {
1293 BUG();
1294 }
1295
56bec294
CM
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
5d4f98a2 1298
31840ae1
ZY
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
fcebe456 1301 *last_ref = 1;
31840ae1 1302 } else {
5d4f98a2
YZ
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314#endif
31840ae1
ZY
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
31840ae1
ZY
1317 return ret;
1318}
1319
5d4f98a2
YZ
1320static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
15916de8 1323{
5d4f98a2
YZ
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1355#endif
5d4f98a2
YZ
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360}
15916de8 1361
5d4f98a2
YZ
1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1f3c79a2 1367{
5d4f98a2 1368 struct btrfs_key key;
1f3c79a2 1369 int ret;
1f3c79a2 1370
5d4f98a2
YZ
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1f3c79a2
LH
1378 }
1379
5d4f98a2
YZ
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
b3b4aa74 1385 btrfs_release_path(path);
5d4f98a2
YZ
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1f3c79a2 1391#endif
5d4f98a2 1392 return ret;
1f3c79a2
LH
1393}
1394
5d4f98a2
YZ
1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
31840ae1 1400{
5d4f98a2 1401 struct btrfs_key key;
31840ae1 1402 int ret;
31840ae1 1403
5d4f98a2
YZ
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1414 btrfs_release_path(path);
31840ae1
ZY
1415 return ret;
1416}
1417
5d4f98a2 1418static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1419{
5d4f98a2
YZ
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
31840ae1 1433}
56bec294 1434
2c47e605
YZ
1435static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
56bec294 1437
02217ed2 1438{
2c47e605 1439 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1440 if (!path->nodes[level])
1441 break;
5d4f98a2
YZ
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454}
037e6390 1455
5d4f98a2
YZ
1456/*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469static noinline_for_stack
1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477{
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
3173a18f
JB
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
26b8003f 1493
db94535d 1494 key.objectid = bytenr;
31840ae1 1495 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1496 key.offset = num_bytes;
31840ae1 1497
5d4f98a2
YZ
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1501 path->keep_locks = 1;
5d4f98a2
YZ
1502 } else
1503 extra_size = -1;
3173a18f
JB
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514again:
5d4f98a2 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1516 if (ret < 0) {
5d4f98a2
YZ
1517 err = ret;
1518 goto out;
1519 }
3173a18f
JB
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
9ce49a0b 1537 key.objectid = bytenr;
3173a18f
JB
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
79787eaa
JM
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
fae7f21c 1548 } else if (WARN_ON(ret)) {
492104c8 1549 err = -EIO;
492104c8 1550 goto out;
79787eaa 1551 }
5d4f98a2
YZ
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570#endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
5d4f98a2
YZ
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
3173a18f 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
5d4f98a2
YZ
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
2c47e605
YZ
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
85d4198e 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651out:
85d4198e 1652 if (insert) {
5d4f98a2
YZ
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657}
1658
1659/*
1660 * helper to add new inline back ref
1661 */
1662static noinline_for_stack
fd279fae 1663void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1669{
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
5d4f98a2
YZ
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
4b90c680 1686 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1721}
1722
1723static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729{
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
54aa1f4d 1736 return ret;
5d4f98a2 1737
b3b4aa74 1738 btrfs_release_path(path);
5d4f98a2
YZ
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
b9473439 1747 }
5d4f98a2
YZ
1748 return ret;
1749}
31840ae1 1750
5d4f98a2
YZ
1751/*
1752 * helper to update/remove inline back ref
1753 */
1754static noinline_for_stack
afe5fea7 1755void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
fcebe456
JB
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
5d4f98a2
YZ
1761{
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
56bec294 1793 }
31840ae1 1794
5d4f98a2
YZ
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
fcebe456 1804 *last_ref = 1;
5d4f98a2
YZ
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
afe5fea7 1813 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1816}
1817
1818static noinline_for_stack
1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826{
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1835 update_inline_extent_backref(root, path, iref,
fcebe456 1836 refs_to_add, extent_op, NULL);
5d4f98a2 1837 } else if (ret == -ENOENT) {
fd279fae 1838 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
771ed689 1842 }
5d4f98a2
YZ
1843 return ret;
1844}
31840ae1 1845
5d4f98a2
YZ
1846static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851{
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863}
56bec294 1864
5d4f98a2
YZ
1865static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
fcebe456 1869 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1870{
143bede5 1871 int ret = 0;
b9473439 1872
5d4f98a2
YZ
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
afe5fea7 1875 update_inline_extent_backref(root, path, iref,
fcebe456 1876 -refs_to_drop, NULL, last_ref);
5d4f98a2 1877 } else if (is_data) {
fcebe456
JB
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
5d4f98a2 1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885}
1886
5378e607 1887static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1888 u64 start, u64 len)
1889{
5378e607 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1891}
5d4f98a2 1892
1edb647b
FM
1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1895{
5d4f98a2 1896 int ret;
5378e607 1897 u64 discarded_bytes = 0;
a1d3c478 1898 struct btrfs_bio *bbio = NULL;
5d4f98a2 1899
e244a0ae 1900
5d4f98a2 1901 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1903 bytenr, &num_bytes, &bbio, 0);
79787eaa 1904 /* Error condition is -ENOMEM */
5d4f98a2 1905 if (!ret) {
a1d3c478 1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1907 int i;
1908
5d4f98a2 1909
a1d3c478 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
5378e607
LD
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
79787eaa 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
5d4f98a2 1928 }
6e9606d2 1929 btrfs_put_bbio(bbio);
5d4f98a2 1930 }
5378e607
LD
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
5d4f98a2 1935
53b381b3
DW
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
5d4f98a2 1938 return ret;
5d4f98a2
YZ
1939}
1940
79787eaa 1941/* Can return -ENOMEM */
5d4f98a2
YZ
1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
5d4f98a2
YZ
1947{
1948 int ret;
66d7e7f0
AJ
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
5d4f98a2
YZ
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
5d4f98a2 1957 parent, root_objectid, (int)owner,
fcebe456 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1959 } else {
66d7e7f0
AJ
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
5d4f98a2 1962 parent, root_objectid, owner, offset,
fcebe456 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1964 }
1965 return ret;
1966}
1967
1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
fcebe456 1973 int no_quota,
5d4f98a2
YZ
1974 struct btrfs_delayed_extent_op *extent_op)
1975{
fcebe456 1976 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
fcebe456 1980 struct btrfs_key key;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
fcebe456 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
fcebe456 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
5d4f98a2 2000 goto out;
fcebe456
JB
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
5d4f98a2 2014
fcebe456
JB
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
5d4f98a2 2025 leaf = path->nodes[0];
fcebe456 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
fcebe456
JB
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
5d4f98a2
YZ
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2034
5d4f98a2 2035 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2036 btrfs_release_path(path);
56bec294 2037
fcebe456
JB
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
56bec294 2045 path->reada = 1;
b9473439 2046 path->leave_spinning = 1;
56bec294
CM
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
79787eaa
JM
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2053out:
56bec294 2054 btrfs_free_path(path);
30d133fc 2055 return ret;
56bec294
CM
2056}
2057
5d4f98a2
YZ
2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
56bec294 2063{
5d4f98a2
YZ
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
5d4f98a2
YZ
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
fcebe456 2080 ref_root = ref->root;
5d4f98a2
YZ
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2083 if (extent_op)
5d4f98a2 2084 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
5d4f98a2
YZ
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
fcebe456 2094 node->no_quota, extent_op);
5d4f98a2
YZ
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
fcebe456 2100 extent_op, node->no_quota);
5d4f98a2
YZ
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105}
2106
2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110{
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123}
2124
2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129{
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
56bec294 2135 int ret;
5d4f98a2 2136 int err = 0;
b1c79e09 2137 int metadata = !extent_op->is_data;
5d4f98a2 2138
79787eaa
JM
2139 if (trans->aborted)
2140 return 0;
2141
3173a18f
JB
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
5d4f98a2
YZ
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
5d4f98a2 2150
3173a18f 2151 if (metadata) {
3173a18f 2152 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2153 key.offset = extent_op->level;
3173a18f
JB
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159again:
5d4f98a2
YZ
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
3173a18f 2169 if (metadata) {
55994887
FDBM
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
3173a18f 2182
55994887
FDBM
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
3173a18f 2191 }
5d4f98a2
YZ
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207#endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2211
5d4f98a2
YZ
2212 btrfs_mark_buffer_dirty(leaf);
2213out:
2214 btrfs_free_path(path);
2215 return err;
56bec294
CM
2216}
2217
5d4f98a2
YZ
2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
56bec294
CM
2223{
2224 int ret = 0;
5d4f98a2
YZ
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
3173a18f
JB
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
56bec294 2231
5d4f98a2 2232 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
5d4f98a2
YZ
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
fcebe456 2237 ref_root = ref->root;
5d4f98a2 2238
3173a18f
JB
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
5d4f98a2
YZ
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2250 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
fcebe456
JB
2255 ref->level, &ins,
2256 node->no_quota);
5d4f98a2
YZ
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
fcebe456
JB
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
5d4f98a2
YZ
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
fcebe456
JB
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
5d4f98a2
YZ
2267 } else {
2268 BUG();
2269 }
56bec294
CM
2270 return ret;
2271}
2272
2273/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
79787eaa
JM
2280 int ret = 0;
2281
857cc2fc
JB
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
79787eaa 2286 return 0;
857cc2fc 2287 }
79787eaa 2288
5d4f98a2 2289 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
5d4f98a2
YZ
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
56bec294 2301 if (insert_reserved) {
f0486c68
YZ
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
5d4f98a2
YZ
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
5d4f98a2 2308 }
56bec294 2309 }
79787eaa 2310 return ret;
56bec294
CM
2311 }
2312
5d4f98a2
YZ
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
56bec294
CM
2324}
2325
2326static noinline struct btrfs_delayed_ref_node *
2327select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328{
2329 struct rb_node *node;
d7df2c79
JB
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
56bec294
CM
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
d7df2c79
JB
2337 node = rb_first(&head->ref_root);
2338 while (node) {
56bec294
CM
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
d7df2c79 2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
56bec294 2342 return ref;
d7df2c79
JB
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
56bec294 2346 }
d7df2c79 2347 return last;
56bec294
CM
2348}
2349
79787eaa
JM
2350/*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
d7df2c79
JB
2354static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
56bec294 2357{
56bec294
CM
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2361 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2362 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2363 ktime_t start = ktime_get();
56bec294 2364 int ret;
d7df2c79 2365 unsigned long count = 0;
0a2b2a84 2366 unsigned long actual_count = 0;
56bec294 2367 int must_insert_reserved = 0;
56bec294
CM
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2370 while (1) {
2371 if (!locked_ref) {
d7df2c79 2372 if (count >= nr)
56bec294 2373 break;
56bec294 2374
d7df2c79
JB
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
c3e69d58
CM
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2385 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
56bec294
CM
2396 }
2397 }
a28ec197 2398
ae1e206b
JB
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
d7df2c79 2406 spin_lock(&locked_ref->lock);
ae1e206b
JB
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
d1270cd9
AJ
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
097b8a7c 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2418 spin_unlock(&locked_ref->lock);
093486c4 2419 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
d1270cd9
AJ
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
d7df2c79 2424 locked_ref = NULL;
d1270cd9 2425 cond_resched();
27a377db 2426 count++;
d1270cd9
AJ
2427 continue;
2428 }
2429
56bec294
CM
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
7bb86316 2436
5d4f98a2
YZ
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
56bec294 2440 if (!ref) {
d7df2c79
JB
2441
2442
56bec294
CM
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
5d4f98a2
YZ
2448
2449 if (extent_op && must_insert_reserved) {
78a6184a 2450 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
d7df2c79 2455 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
78a6184a 2458 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2459
79787eaa 2460 if (ret) {
857cc2fc
JB
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
d7df2c79 2469 locked_ref->processing = 0;
c2cf52eb 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2471 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2472 return ret;
2473 }
d7df2c79 2474 continue;
5d4f98a2 2475 }
02217ed2 2476
d7df2c79
JB
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
573a0755
JB
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
d7df2c79
JB
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
c46effa6
LB
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
d7df2c79
JB
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
0a2b2a84 2497 actual_count++;
d7df2c79
JB
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
c46effa6 2500 }
d7df2c79
JB
2501 atomic_dec(&delayed_refs->num_entries);
2502
093486c4 2503 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
d7df2c79 2520 spin_unlock(&locked_ref->lock);
925baedd 2521
5d4f98a2 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2523 must_insert_reserved);
eb099670 2524
78a6184a 2525 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2526 if (ret) {
d7df2c79 2527 locked_ref->processing = 0;
093486c4
MX
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
c2cf52eb 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2531 return ret;
2532 }
2533
093486c4
MX
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
093486c4
MX
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
c3e69d58 2552 cond_resched();
c3e69d58 2553 }
0a2b2a84
JB
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2571 spin_unlock(&delayed_refs->lock);
2572 }
d7df2c79 2573 return 0;
c3e69d58
CM
2574}
2575
709c0486
AJ
2576#ifdef SCRAMBLE_DELAYED_REFS
2577/*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582static u64 find_middle(struct rb_root *root)
2583{
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616}
2617#endif
2618
1be41b78
JB
2619static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620{
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
f8c269d7 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2633}
2634
1262133b
JB
2635/*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
28f75a0e 2639u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2640{
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652}
2653
0a2b2a84 2654int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2655 struct btrfs_root *root)
2656{
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
707e8a07 2667 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2668 num_bytes <<= 1;
28f75a0e 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
1be41b78
JB
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
cb723e49
JB
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
1be41b78 2680 num_bytes <<= 1;
cb723e49 2681 }
1be41b78
JB
2682
2683 spin_lock(&global_rsv->lock);
cb723e49 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688}
2689
0a2b2a84
JB
2690int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692{
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
a79b7d4b 2697 u64 val;
0a2b2a84
JB
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2701 val = num_entries * avg_runtime;
0a2b2a84
JB
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
a79b7d4b
CM
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
0a2b2a84
JB
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708}
2709
a79b7d4b
CM
2710struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717};
2718
2719static void delayed_ref_async_start(struct btrfs_work *work)
2720{
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750}
2751
2752int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754{
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
9e0af237
LB
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783}
2784
c3e69d58
CM
2785/*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
79787eaa
JM
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2794 */
2795int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797{
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2800 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
c3e69d58 2803
79787eaa
JM
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
c3e69d58
CM
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2812 if (count == 0)
d7df2c79 2813 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2814
c3e69d58 2815again:
709c0486
AJ
2816#ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818#endif
d7df2c79
JB
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
eb099670 2823 }
c3e69d58 2824
56bec294 2825 if (run_all) {
d7df2c79 2826 if (!list_empty(&trans->new_bgs))
ea658bad 2827 btrfs_create_pending_block_groups(trans, root);
ea658bad 2828
d7df2c79 2829 spin_lock(&delayed_refs->lock);
c46effa6 2830 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
56bec294 2833 goto out;
d7df2c79 2834 }
c3e69d58 2835 count = (unsigned long)-1;
e9d0b13b 2836
56bec294 2837 while (node) {
c46effa6
LB
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
5caf2a00 2842
c46effa6 2843 ref = &head->node;
56bec294
CM
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
56bec294
CM
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
1887be66 2855 cond_resched();
56bec294 2856 goto again;
c46effa6
LB
2857 } else {
2858 WARN_ON(1);
56bec294
CM
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
d7df2c79 2863 cond_resched();
56bec294 2864 goto again;
5f39d397 2865 }
54aa1f4d 2866out:
fcebe456
JB
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
edf39272 2870 assert_qgroups_uptodate(trans);
a28ec197
CM
2871 return 0;
2872}
2873
5d4f98a2
YZ
2874int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2877 int level, int is_data)
5d4f98a2
YZ
2878{
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
78a6184a 2882 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2890 extent_op->level = level;
5d4f98a2 2891
66d7e7f0
AJ
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
5d4f98a2 2894 if (ret)
78a6184a 2895 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2896 return ret;
2897}
2898
2899static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903{
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
5d4f98a2
YZ
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
5d4f98a2
YZ
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
b3b4aa74 2923 btrfs_release_path(path);
5d4f98a2 2924
8cc33e5c
DS
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
5d4f98a2
YZ
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
d7df2c79 2934 spin_unlock(&delayed_refs->lock);
5d4f98a2 2935
d7df2c79
JB
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
5d4f98a2 2941
d7df2c79
JB
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
5d4f98a2 2947
d7df2c79 2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2949
d7df2c79
JB
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
5d4f98a2 2960 }
d7df2c79 2961 spin_unlock(&head->lock);
5d4f98a2 2962 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2963 return ret;
2964}
2965
2966static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2970{
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2972 struct extent_buffer *leaf;
5d4f98a2
YZ
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
f321e491 2976 struct btrfs_key key;
5d4f98a2 2977 u32 item_size;
be20aa9d 2978 int ret;
925baedd 2979
be20aa9d 2980 key.objectid = bytenr;
31840ae1 2981 key.offset = (u64)-1;
f321e491 2982 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2983
be20aa9d
CM
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
79787eaa 2987 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
31840ae1 2991 goto out;
be20aa9d 2992
31840ae1 2993 path->slots[0]--;
f321e491 2994 leaf = path->nodes[0];
5d4f98a2 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2996
5d4f98a2 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2998 goto out;
f321e491 2999
5d4f98a2
YZ
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007#endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3009
5d4f98a2
YZ
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
be20aa9d 3013
5d4f98a2
YZ
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033out:
3034 return ret;
3035}
3036
3037int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040{
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
f321e491 3053 goto out;
80ff3856 3054
5d4f98a2
YZ
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
f321e491 3062 }
5d4f98a2
YZ
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
be20aa9d 3066out:
80ff3856 3067 btrfs_free_path(path);
f0486c68
YZ
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
f321e491 3070 return ret;
be20aa9d 3071}
c5739bba 3072
5d4f98a2 3073static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3074 struct btrfs_root *root,
5d4f98a2 3075 struct extent_buffer *buf,
e339a6b0 3076 int full_backref, int inc)
31840ae1
ZY
3077{
3078 u64 bytenr;
5d4f98a2
YZ
3079 u64 num_bytes;
3080 u64 parent;
31840ae1 3081 u64 ref_root;
31840ae1 3082 u32 nritems;
31840ae1
ZY
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
31840ae1 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3089 u64, u64, u64, u64, u64, u64, int);
31840ae1 3090
fccb84c9
DS
3091
3092 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3093 return 0;
fccb84c9 3094
31840ae1 3095 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
27cdeb70 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3100 return 0;
31840ae1 3101
5d4f98a2
YZ
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
31840ae1 3106
5d4f98a2
YZ
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
31840ae1 3113 if (level == 0) {
5d4f98a2 3114 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3116 continue;
5d4f98a2 3117 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
5d4f98a2
YZ
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
e339a6b0 3130 key.offset, 1);
31840ae1
ZY
3131 if (ret)
3132 goto fail;
3133 } else {
5d4f98a2 3134 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3135 num_bytes = root->nodesize;
5d4f98a2 3136 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3137 parent, ref_root, level - 1, 0,
e339a6b0 3138 1);
31840ae1
ZY
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144fail:
5d4f98a2
YZ
3145 return ret;
3146}
3147
3148int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3149 struct extent_buffer *buf, int full_backref)
5d4f98a2 3150{
e339a6b0 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3152}
3153
3154int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3155 struct extent_buffer *buf, int full_backref)
5d4f98a2 3156{
e339a6b0 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3158}
3159
9078a3e1
CM
3160static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164{
3165 int ret;
9078a3e1 3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
9078a3e1 3169
9078a3e1 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
54aa1f4d 3174 goto fail;
df95e7f0 3175 }
5f39d397
CM
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3181fail:
24b89d08 3182 btrfs_release_path(path);
df95e7f0 3183 if (ret)
79787eaa 3184 btrfs_abort_transaction(trans, root, ret);
df95e7f0 3185 return ret;
9078a3e1
CM
3186
3187}
3188
4a8c9a62
YZ
3189static struct btrfs_block_group_cache *
3190next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 struct rb_node *node;
292cbd51 3194
4a8c9a62 3195 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
4a8c9a62
YZ
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
11dfe35a 3212 btrfs_get_block_group(cache);
4a8c9a62
YZ
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217}
3218
0af3d00b
JB
3219static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222{
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
2b20982e 3226 int dcs = BTRFS_DC_ERROR;
f8c269d7 3227 u64 num_pages = 0;
0af3d00b
JB
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
0c0ef4bc
JB
3242 if (trans->aborted)
3243 return 0;
0af3d00b
JB
3244again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
b3b4aa74 3248 btrfs_release_path(path);
0af3d00b
JB
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
5b0e95bf
JB
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
0af3d00b
JB
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
0af3d00b
JB
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
7b61cd92
MX
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
1bbc621e 3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
cf7c1ef6 3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3308 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3309 /*
3310 * don't bother trying to write stuff out _if_
3311 * a) we're not cached,
3312 * b) we're with nospace_cache mount option.
3313 */
2b20982e 3314 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3315 spin_unlock(&block_group->lock);
3316 goto out_put;
3317 }
3318 spin_unlock(&block_group->lock);
3319
6fc823b1
JB
3320 /*
3321 * Try to preallocate enough space based on how big the block group is.
3322 * Keep in mind this has to include any pinned space which could end up
3323 * taking up quite a bit since it's not folded into the other space
3324 * cache.
3325 */
f8c269d7 3326 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3327 if (!num_pages)
3328 num_pages = 1;
3329
0af3d00b
JB
3330 num_pages *= 16;
3331 num_pages *= PAGE_CACHE_SIZE;
3332
e2d1f923 3333 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3334 if (ret)
3335 goto out_put;
3336
3337 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3338 num_pages, num_pages,
3339 &alloc_hint);
2b20982e
JB
3340 if (!ret)
3341 dcs = BTRFS_DC_SETUP;
0af3d00b 3342 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3343
0af3d00b
JB
3344out_put:
3345 iput(inode);
3346out_free:
b3b4aa74 3347 btrfs_release_path(path);
0af3d00b
JB
3348out:
3349 spin_lock(&block_group->lock);
e65cbb94 3350 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3351 block_group->cache_generation = trans->transid;
2b20982e 3352 block_group->disk_cache_state = dcs;
0af3d00b
JB
3353 spin_unlock(&block_group->lock);
3354
3355 return ret;
3356}
3357
dcdf7f6d
JB
3358int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3359 struct btrfs_root *root)
3360{
3361 struct btrfs_block_group_cache *cache, *tmp;
3362 struct btrfs_transaction *cur_trans = trans->transaction;
3363 struct btrfs_path *path;
3364
3365 if (list_empty(&cur_trans->dirty_bgs) ||
3366 !btrfs_test_opt(root, SPACE_CACHE))
3367 return 0;
3368
3369 path = btrfs_alloc_path();
3370 if (!path)
3371 return -ENOMEM;
3372
3373 /* Could add new block groups, use _safe just in case */
3374 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3375 dirty_list) {
3376 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3377 cache_save_setup(cache, trans, path);
3378 }
3379
3380 btrfs_free_path(path);
3381 return 0;
3382}
3383
1bbc621e
CM
3384/*
3385 * transaction commit does final block group cache writeback during a
3386 * critical section where nothing is allowed to change the FS. This is
3387 * required in order for the cache to actually match the block group,
3388 * but can introduce a lot of latency into the commit.
3389 *
3390 * So, btrfs_start_dirty_block_groups is here to kick off block group
3391 * cache IO. There's a chance we'll have to redo some of it if the
3392 * block group changes again during the commit, but it greatly reduces
3393 * the commit latency by getting rid of the easy block groups while
3394 * we're still allowing others to join the commit.
3395 */
3396int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3397 struct btrfs_root *root)
9078a3e1 3398{
4a8c9a62 3399 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3400 struct btrfs_transaction *cur_trans = trans->transaction;
3401 int ret = 0;
c9dc4c65 3402 int should_put;
1bbc621e
CM
3403 struct btrfs_path *path = NULL;
3404 LIST_HEAD(dirty);
3405 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3406 int num_started = 0;
1bbc621e
CM
3407 int loops = 0;
3408
3409 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3410 if (list_empty(&cur_trans->dirty_bgs)) {
3411 spin_unlock(&cur_trans->dirty_bgs_lock);
3412 return 0;
1bbc621e 3413 }
b58d1a9e 3414 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3415 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3416
1bbc621e 3417again:
1bbc621e
CM
3418 /*
3419 * make sure all the block groups on our dirty list actually
3420 * exist
3421 */
3422 btrfs_create_pending_block_groups(trans, root);
3423
3424 if (!path) {
3425 path = btrfs_alloc_path();
3426 if (!path)
3427 return -ENOMEM;
3428 }
3429
b58d1a9e
FM
3430 /*
3431 * cache_write_mutex is here only to save us from balance or automatic
3432 * removal of empty block groups deleting this block group while we are
3433 * writing out the cache
3434 */
3435 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3436 while (!list_empty(&dirty)) {
3437 cache = list_first_entry(&dirty,
3438 struct btrfs_block_group_cache,
3439 dirty_list);
1bbc621e
CM
3440 /*
3441 * this can happen if something re-dirties a block
3442 * group that is already under IO. Just wait for it to
3443 * finish and then do it all again
3444 */
3445 if (!list_empty(&cache->io_list)) {
3446 list_del_init(&cache->io_list);
3447 btrfs_wait_cache_io(root, trans, cache,
3448 &cache->io_ctl, path,
3449 cache->key.objectid);
3450 btrfs_put_block_group(cache);
3451 }
3452
3453
3454 /*
3455 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3456 * if it should update the cache_state. Don't delete
3457 * until after we wait.
3458 *
3459 * Since we're not running in the commit critical section
3460 * we need the dirty_bgs_lock to protect from update_block_group
3461 */
3462 spin_lock(&cur_trans->dirty_bgs_lock);
3463 list_del_init(&cache->dirty_list);
3464 spin_unlock(&cur_trans->dirty_bgs_lock);
3465
3466 should_put = 1;
3467
3468 cache_save_setup(cache, trans, path);
3469
3470 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3471 cache->io_ctl.inode = NULL;
3472 ret = btrfs_write_out_cache(root, trans, cache, path);
3473 if (ret == 0 && cache->io_ctl.inode) {
3474 num_started++;
3475 should_put = 0;
3476
3477 /*
3478 * the cache_write_mutex is protecting
3479 * the io_list
3480 */
3481 list_add_tail(&cache->io_list, io);
3482 } else {
3483 /*
3484 * if we failed to write the cache, the
3485 * generation will be bad and life goes on
3486 */
3487 ret = 0;
3488 }
3489 }
3490 if (!ret)
3491 ret = write_one_cache_group(trans, root, path, cache);
1bbc621e
CM
3492
3493 /* if its not on the io list, we need to put the block group */
3494 if (should_put)
3495 btrfs_put_block_group(cache);
3496
3497 if (ret)
3498 break;
b58d1a9e
FM
3499
3500 /*
3501 * Avoid blocking other tasks for too long. It might even save
3502 * us from writing caches for block groups that are going to be
3503 * removed.
3504 */
3505 mutex_unlock(&trans->transaction->cache_write_mutex);
3506 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3507 }
b58d1a9e 3508 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3509
3510 /*
3511 * go through delayed refs for all the stuff we've just kicked off
3512 * and then loop back (just once)
3513 */
3514 ret = btrfs_run_delayed_refs(trans, root, 0);
3515 if (!ret && loops == 0) {
3516 loops++;
3517 spin_lock(&cur_trans->dirty_bgs_lock);
3518 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3519 /*
3520 * dirty_bgs_lock protects us from concurrent block group
3521 * deletes too (not just cache_write_mutex).
3522 */
3523 if (!list_empty(&dirty)) {
3524 spin_unlock(&cur_trans->dirty_bgs_lock);
3525 goto again;
3526 }
1bbc621e 3527 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3528 }
3529
3530 btrfs_free_path(path);
3531 return ret;
3532}
3533
3534int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root)
3536{
3537 struct btrfs_block_group_cache *cache;
3538 struct btrfs_transaction *cur_trans = trans->transaction;
3539 int ret = 0;
3540 int should_put;
3541 struct btrfs_path *path;
3542 struct list_head *io = &cur_trans->io_bgs;
3543 int num_started = 0;
9078a3e1
CM
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
ce93ec54
JB
3549 /*
3550 * We don't need the lock here since we are protected by the transaction
3551 * commit. We want to do the cache_save_setup first and then run the
3552 * delayed refs to make sure we have the best chance at doing this all
3553 * in one shot.
3554 */
3555 while (!list_empty(&cur_trans->dirty_bgs)) {
3556 cache = list_first_entry(&cur_trans->dirty_bgs,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
c9dc4c65
CM
3559
3560 /*
3561 * this can happen if cache_save_setup re-dirties a block
3562 * group that is already under IO. Just wait for it to
3563 * finish and then do it all again
3564 */
3565 if (!list_empty(&cache->io_list)) {
3566 list_del_init(&cache->io_list);
3567 btrfs_wait_cache_io(root, trans, cache,
3568 &cache->io_ctl, path,
3569 cache->key.objectid);
3570 btrfs_put_block_group(cache);
c9dc4c65
CM
3571 }
3572
1bbc621e
CM
3573 /*
3574 * don't remove from the dirty list until after we've waited
3575 * on any pending IO
3576 */
ce93ec54 3577 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3578 should_put = 1;
3579
1bbc621e 3580 cache_save_setup(cache, trans, path);
c9dc4c65 3581
ce93ec54 3582 if (!ret)
c9dc4c65
CM
3583 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3584
3585 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 cache->io_ctl.inode = NULL;
3587 ret = btrfs_write_out_cache(root, trans, cache, path);
3588 if (ret == 0 && cache->io_ctl.inode) {
3589 num_started++;
3590 should_put = 0;
1bbc621e 3591 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3592 } else {
3593 /*
3594 * if we failed to write the cache, the
3595 * generation will be bad and life goes on
3596 */
3597 ret = 0;
3598 }
3599 }
ce93ec54
JB
3600 if (!ret)
3601 ret = write_one_cache_group(trans, root, path, cache);
c9dc4c65
CM
3602
3603 /* if its not on the io list, we need to put the block group */
3604 if (should_put)
3605 btrfs_put_block_group(cache);
3606 }
3607
1bbc621e
CM
3608 while (!list_empty(io)) {
3609 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3610 io_list);
3611 list_del_init(&cache->io_list);
c9dc4c65
CM
3612 btrfs_wait_cache_io(root, trans, cache,
3613 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3614 btrfs_put_block_group(cache);
3615 }
3616
9078a3e1 3617 btrfs_free_path(path);
ce93ec54 3618 return ret;
9078a3e1
CM
3619}
3620
d2fb3437
YZ
3621int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3622{
3623 struct btrfs_block_group_cache *block_group;
3624 int readonly = 0;
3625
3626 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3627 if (!block_group || block_group->ro)
3628 readonly = 1;
3629 if (block_group)
fa9c0d79 3630 btrfs_put_block_group(block_group);
d2fb3437
YZ
3631 return readonly;
3632}
3633
6ab0a202
JM
3634static const char *alloc_name(u64 flags)
3635{
3636 switch (flags) {
3637 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3638 return "mixed";
3639 case BTRFS_BLOCK_GROUP_METADATA:
3640 return "metadata";
3641 case BTRFS_BLOCK_GROUP_DATA:
3642 return "data";
3643 case BTRFS_BLOCK_GROUP_SYSTEM:
3644 return "system";
3645 default:
3646 WARN_ON(1);
3647 return "invalid-combination";
3648 };
3649}
3650
593060d7
CM
3651static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3652 u64 total_bytes, u64 bytes_used,
3653 struct btrfs_space_info **space_info)
3654{
3655 struct btrfs_space_info *found;
b742bb82
YZ
3656 int i;
3657 int factor;
b150a4f1 3658 int ret;
b742bb82
YZ
3659
3660 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3661 BTRFS_BLOCK_GROUP_RAID10))
3662 factor = 2;
3663 else
3664 factor = 1;
593060d7
CM
3665
3666 found = __find_space_info(info, flags);
3667 if (found) {
25179201 3668 spin_lock(&found->lock);
593060d7 3669 found->total_bytes += total_bytes;
89a55897 3670 found->disk_total += total_bytes * factor;
593060d7 3671 found->bytes_used += bytes_used;
b742bb82 3672 found->disk_used += bytes_used * factor;
8f18cf13 3673 found->full = 0;
25179201 3674 spin_unlock(&found->lock);
593060d7
CM
3675 *space_info = found;
3676 return 0;
3677 }
c146afad 3678 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3679 if (!found)
3680 return -ENOMEM;
3681
908c7f19 3682 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3683 if (ret) {
3684 kfree(found);
3685 return ret;
3686 }
3687
c1895442 3688 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3689 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3690 init_rwsem(&found->groups_sem);
0f9dd46c 3691 spin_lock_init(&found->lock);
52ba6929 3692 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3693 found->total_bytes = total_bytes;
89a55897 3694 found->disk_total = total_bytes * factor;
593060d7 3695 found->bytes_used = bytes_used;
b742bb82 3696 found->disk_used = bytes_used * factor;
593060d7 3697 found->bytes_pinned = 0;
e8569813 3698 found->bytes_reserved = 0;
c146afad 3699 found->bytes_readonly = 0;
f0486c68 3700 found->bytes_may_use = 0;
593060d7 3701 found->full = 0;
0e4f8f88 3702 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3703 found->chunk_alloc = 0;
fdb5effd
JB
3704 found->flush = 0;
3705 init_waitqueue_head(&found->wait);
633c0aad 3706 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3707
3708 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3709 info->space_info_kobj, "%s",
3710 alloc_name(found->flags));
3711 if (ret) {
3712 kfree(found);
3713 return ret;
3714 }
3715
593060d7 3716 *space_info = found;
4184ea7f 3717 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3718 if (flags & BTRFS_BLOCK_GROUP_DATA)
3719 info->data_sinfo = found;
6ab0a202
JM
3720
3721 return ret;
593060d7
CM
3722}
3723
8790d502
CM
3724static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3725{
899c81ea
ID
3726 u64 extra_flags = chunk_to_extended(flags) &
3727 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3728
de98ced9 3729 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3730 if (flags & BTRFS_BLOCK_GROUP_DATA)
3731 fs_info->avail_data_alloc_bits |= extra_flags;
3732 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3733 fs_info->avail_metadata_alloc_bits |= extra_flags;
3734 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3735 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3736 write_sequnlock(&fs_info->profiles_lock);
8790d502 3737}
593060d7 3738
fc67c450
ID
3739/*
3740 * returns target flags in extended format or 0 if restripe for this
3741 * chunk_type is not in progress
c6664b42
ID
3742 *
3743 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3744 */
3745static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3746{
3747 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3748 u64 target = 0;
3749
fc67c450
ID
3750 if (!bctl)
3751 return 0;
3752
3753 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3754 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3756 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3757 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3759 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3760 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3762 }
3763
3764 return target;
3765}
3766
a46d11a8
ID
3767/*
3768 * @flags: available profiles in extended format (see ctree.h)
3769 *
e4d8ec0f
ID
3770 * Returns reduced profile in chunk format. If profile changing is in
3771 * progress (either running or paused) picks the target profile (if it's
3772 * already available), otherwise falls back to plain reducing.
a46d11a8 3773 */
48a3b636 3774static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3775{
95669976 3776 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3777 u64 target;
53b381b3 3778 u64 tmp;
a061fc8d 3779
fc67c450
ID
3780 /*
3781 * see if restripe for this chunk_type is in progress, if so
3782 * try to reduce to the target profile
3783 */
e4d8ec0f 3784 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3785 target = get_restripe_target(root->fs_info, flags);
3786 if (target) {
3787 /* pick target profile only if it's already available */
3788 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3789 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3790 return extended_to_chunk(target);
e4d8ec0f
ID
3791 }
3792 }
3793 spin_unlock(&root->fs_info->balance_lock);
3794
53b381b3 3795 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3796 if (num_devices == 1)
53b381b3
DW
3797 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3798 BTRFS_BLOCK_GROUP_RAID5);
3799 if (num_devices < 3)
3800 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3801 if (num_devices < 4)
3802 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3803
53b381b3
DW
3804 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3805 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3806 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3807 flags &= ~tmp;
ec44a35c 3808
53b381b3
DW
3809 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3810 tmp = BTRFS_BLOCK_GROUP_RAID6;
3811 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3812 tmp = BTRFS_BLOCK_GROUP_RAID5;
3813 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3814 tmp = BTRFS_BLOCK_GROUP_RAID10;
3815 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3816 tmp = BTRFS_BLOCK_GROUP_RAID1;
3817 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3818 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3819
53b381b3 3820 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3821}
3822
f8213bdc 3823static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3824{
de98ced9 3825 unsigned seq;
f8213bdc 3826 u64 flags;
de98ced9
MX
3827
3828 do {
f8213bdc 3829 flags = orig_flags;
de98ced9
MX
3830 seq = read_seqbegin(&root->fs_info->profiles_lock);
3831
3832 if (flags & BTRFS_BLOCK_GROUP_DATA)
3833 flags |= root->fs_info->avail_data_alloc_bits;
3834 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3835 flags |= root->fs_info->avail_system_alloc_bits;
3836 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3837 flags |= root->fs_info->avail_metadata_alloc_bits;
3838 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3839
b742bb82 3840 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3841}
3842
6d07bcec 3843u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3844{
b742bb82 3845 u64 flags;
53b381b3 3846 u64 ret;
9ed74f2d 3847
b742bb82
YZ
3848 if (data)
3849 flags = BTRFS_BLOCK_GROUP_DATA;
3850 else if (root == root->fs_info->chunk_root)
3851 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3852 else
b742bb82 3853 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3854
53b381b3
DW
3855 ret = get_alloc_profile(root, flags);
3856 return ret;
6a63209f 3857}
9ed74f2d 3858
6a63209f 3859/*
6a63209f
JB
3860 * This will check the space that the inode allocates from to make sure we have
3861 * enough space for bytes.
6a63209f 3862 */
e2d1f923 3863int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3864{
6a63209f 3865 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3866 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3867 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3868 u64 used;
94b947b2 3869 int ret = 0;
c99f1b0c
ZL
3870 int need_commit = 2;
3871 int have_pinned_space;
6a63209f 3872
6a63209f 3873 /* make sure bytes are sectorsize aligned */
fda2832f 3874 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3875
9dced186 3876 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3877 need_commit = 0;
9dced186 3878 ASSERT(current->journal_info);
0af3d00b
JB
3879 }
3880
b4d7c3c9 3881 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3882 if (!data_sinfo)
3883 goto alloc;
9ed74f2d 3884
6a63209f
JB
3885again:
3886 /* make sure we have enough space to handle the data first */
3887 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3888 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3889 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3890 data_sinfo->bytes_may_use;
ab6e2410
JB
3891
3892 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3893 struct btrfs_trans_handle *trans;
9ed74f2d 3894
6a63209f
JB
3895 /*
3896 * if we don't have enough free bytes in this space then we need
3897 * to alloc a new chunk.
3898 */
b9fd47cd 3899 if (!data_sinfo->full) {
6a63209f 3900 u64 alloc_target;
9ed74f2d 3901
0e4f8f88 3902 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3903 spin_unlock(&data_sinfo->lock);
33b4d47f 3904alloc:
6a63209f 3905 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3906 /*
3907 * It is ugly that we don't call nolock join
3908 * transaction for the free space inode case here.
3909 * But it is safe because we only do the data space
3910 * reservation for the free space cache in the
3911 * transaction context, the common join transaction
3912 * just increase the counter of the current transaction
3913 * handler, doesn't try to acquire the trans_lock of
3914 * the fs.
3915 */
7a7eaa40 3916 trans = btrfs_join_transaction(root);
a22285a6
YZ
3917 if (IS_ERR(trans))
3918 return PTR_ERR(trans);
9ed74f2d 3919
6a63209f 3920 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3921 alloc_target,
3922 CHUNK_ALLOC_NO_FORCE);
6a63209f 3923 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3924 if (ret < 0) {
3925 if (ret != -ENOSPC)
3926 return ret;
c99f1b0c
ZL
3927 else {
3928 have_pinned_space = 1;
d52a5b5f 3929 goto commit_trans;
c99f1b0c 3930 }
d52a5b5f 3931 }
9ed74f2d 3932
b4d7c3c9
LZ
3933 if (!data_sinfo)
3934 data_sinfo = fs_info->data_sinfo;
3935
6a63209f
JB
3936 goto again;
3937 }
f2bb8f5c
JB
3938
3939 /*
b150a4f1 3940 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3941 * allocation, and no removed chunk in current transaction,
3942 * don't bother committing the transaction.
f2bb8f5c 3943 */
c99f1b0c
ZL
3944 have_pinned_space = percpu_counter_compare(
3945 &data_sinfo->total_bytes_pinned,
3946 used + bytes - data_sinfo->total_bytes);
6a63209f 3947 spin_unlock(&data_sinfo->lock);
6a63209f 3948
4e06bdd6 3949 /* commit the current transaction and try again */
d52a5b5f 3950commit_trans:
c99f1b0c 3951 if (need_commit &&
a4abeea4 3952 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3953 need_commit--;
b150a4f1 3954
7a7eaa40 3955 trans = btrfs_join_transaction(root);
a22285a6
YZ
3956 if (IS_ERR(trans))
3957 return PTR_ERR(trans);
c99f1b0c
ZL
3958 if (have_pinned_space >= 0 ||
3959 trans->transaction->have_free_bgs ||
3960 need_commit > 0) {
94b947b2
ZL
3961 ret = btrfs_commit_transaction(trans, root);
3962 if (ret)
3963 return ret;
d7c15171
ZL
3964 /*
3965 * make sure that all running delayed iput are
3966 * done
3967 */
3968 down_write(&root->fs_info->delayed_iput_sem);
3969 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3970 goto again;
3971 } else {
3972 btrfs_end_transaction(trans, root);
3973 }
4e06bdd6 3974 }
9ed74f2d 3975
cab45e22
JM
3976 trace_btrfs_space_reservation(root->fs_info,
3977 "space_info:enospc",
3978 data_sinfo->flags, bytes, 1);
6a63209f
JB
3979 return -ENOSPC;
3980 }
e2d1f923 3981 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3982 if (ret)
3983 goto out;
6a63209f 3984 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3985 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3986 data_sinfo->flags, bytes, 1);
237c0e9f 3987out:
6a63209f 3988 spin_unlock(&data_sinfo->lock);
6a63209f 3989
237c0e9f 3990 return ret;
9ed74f2d 3991}
6a63209f 3992
6a63209f 3993/*
fb25e914 3994 * Called if we need to clear a data reservation for this inode.
6a63209f 3995 */
0ca1f7ce 3996void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3997{
0ca1f7ce 3998 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3999 struct btrfs_space_info *data_sinfo;
e3ccfa98 4000
6a63209f 4001 /* make sure bytes are sectorsize aligned */
fda2832f 4002 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4003
b4d7c3c9 4004 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4005 spin_lock(&data_sinfo->lock);
7ee9e440 4006 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4007 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4008 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4009 data_sinfo->flags, bytes, 0);
6a63209f 4010 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4011}
4012
97e728d4 4013static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4014{
97e728d4
JB
4015 struct list_head *head = &info->space_info;
4016 struct btrfs_space_info *found;
e3ccfa98 4017
97e728d4
JB
4018 rcu_read_lock();
4019 list_for_each_entry_rcu(found, head, list) {
4020 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4021 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4022 }
97e728d4 4023 rcu_read_unlock();
e3ccfa98
JB
4024}
4025
3c76cd84
MX
4026static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4027{
4028 return (global->size << 1);
4029}
4030
e5bc2458 4031static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4032 struct btrfs_space_info *sinfo, int force)
32c00aff 4033{
fb25e914 4034 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4035 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4036 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4037 u64 thresh;
e3ccfa98 4038
0e4f8f88
CM
4039 if (force == CHUNK_ALLOC_FORCE)
4040 return 1;
4041
fb25e914
JB
4042 /*
4043 * We need to take into account the global rsv because for all intents
4044 * and purposes it's used space. Don't worry about locking the
4045 * global_rsv, it doesn't change except when the transaction commits.
4046 */
54338b5c 4047 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4048 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4049
0e4f8f88
CM
4050 /*
4051 * in limited mode, we want to have some free space up to
4052 * about 1% of the FS size.
4053 */
4054 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4055 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4056 thresh = max_t(u64, 64 * 1024 * 1024,
4057 div_factor_fine(thresh, 1));
4058
4059 if (num_bytes - num_allocated < thresh)
4060 return 1;
4061 }
0e4f8f88 4062
698d0082 4063 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4064 return 0;
424499db 4065 return 1;
32c00aff
JB
4066}
4067
15d1ff81
LB
4068static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4069{
4070 u64 num_dev;
4071
53b381b3
DW
4072 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4073 BTRFS_BLOCK_GROUP_RAID0 |
4074 BTRFS_BLOCK_GROUP_RAID5 |
4075 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4076 num_dev = root->fs_info->fs_devices->rw_devices;
4077 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4078 num_dev = 2;
4079 else
4080 num_dev = 1; /* DUP or single */
4081
4082 /* metadata for updaing devices and chunk tree */
4083 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4084}
4085
4086static void check_system_chunk(struct btrfs_trans_handle *trans,
4087 struct btrfs_root *root, u64 type)
4088{
4089 struct btrfs_space_info *info;
4090 u64 left;
4091 u64 thresh;
4092
4093 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4094 spin_lock(&info->lock);
4095 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4096 info->bytes_reserved - info->bytes_readonly;
4097 spin_unlock(&info->lock);
4098
4099 thresh = get_system_chunk_thresh(root, type);
4100 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4101 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4102 left, thresh, type);
15d1ff81
LB
4103 dump_space_info(info, 0, 0);
4104 }
4105
4106 if (left < thresh) {
4107 u64 flags;
4108
4109 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4110 btrfs_alloc_chunk(trans, root, flags);
4111 }
4112}
4113
6324fbf3 4114static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4115 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4116{
6324fbf3 4117 struct btrfs_space_info *space_info;
97e728d4 4118 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4119 int wait_for_alloc = 0;
9ed74f2d 4120 int ret = 0;
9ed74f2d 4121
c6b305a8
JB
4122 /* Don't re-enter if we're already allocating a chunk */
4123 if (trans->allocating_chunk)
4124 return -ENOSPC;
4125
6324fbf3 4126 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4127 if (!space_info) {
4128 ret = update_space_info(extent_root->fs_info, flags,
4129 0, 0, &space_info);
79787eaa 4130 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4131 }
79787eaa 4132 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4133
6d74119f 4134again:
25179201 4135 spin_lock(&space_info->lock);
9e622d6b 4136 if (force < space_info->force_alloc)
0e4f8f88 4137 force = space_info->force_alloc;
25179201 4138 if (space_info->full) {
09fb99a6
FDBM
4139 if (should_alloc_chunk(extent_root, space_info, force))
4140 ret = -ENOSPC;
4141 else
4142 ret = 0;
25179201 4143 spin_unlock(&space_info->lock);
09fb99a6 4144 return ret;
9ed74f2d
JB
4145 }
4146
698d0082 4147 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4148 spin_unlock(&space_info->lock);
6d74119f
JB
4149 return 0;
4150 } else if (space_info->chunk_alloc) {
4151 wait_for_alloc = 1;
4152 } else {
4153 space_info->chunk_alloc = 1;
9ed74f2d 4154 }
0e4f8f88 4155
25179201 4156 spin_unlock(&space_info->lock);
9ed74f2d 4157
6d74119f
JB
4158 mutex_lock(&fs_info->chunk_mutex);
4159
4160 /*
4161 * The chunk_mutex is held throughout the entirety of a chunk
4162 * allocation, so once we've acquired the chunk_mutex we know that the
4163 * other guy is done and we need to recheck and see if we should
4164 * allocate.
4165 */
4166 if (wait_for_alloc) {
4167 mutex_unlock(&fs_info->chunk_mutex);
4168 wait_for_alloc = 0;
4169 goto again;
4170 }
4171
c6b305a8
JB
4172 trans->allocating_chunk = true;
4173
67377734
JB
4174 /*
4175 * If we have mixed data/metadata chunks we want to make sure we keep
4176 * allocating mixed chunks instead of individual chunks.
4177 */
4178 if (btrfs_mixed_space_info(space_info))
4179 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4180
97e728d4
JB
4181 /*
4182 * if we're doing a data chunk, go ahead and make sure that
4183 * we keep a reasonable number of metadata chunks allocated in the
4184 * FS as well.
4185 */
9ed74f2d 4186 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4187 fs_info->data_chunk_allocations++;
4188 if (!(fs_info->data_chunk_allocations %
4189 fs_info->metadata_ratio))
4190 force_metadata_allocation(fs_info);
9ed74f2d
JB
4191 }
4192
15d1ff81
LB
4193 /*
4194 * Check if we have enough space in SYSTEM chunk because we may need
4195 * to update devices.
4196 */
4197 check_system_chunk(trans, extent_root, flags);
4198
2b82032c 4199 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4200 trans->allocating_chunk = false;
92b8e897 4201
9ed74f2d 4202 spin_lock(&space_info->lock);
a81cb9a2
AO
4203 if (ret < 0 && ret != -ENOSPC)
4204 goto out;
9ed74f2d 4205 if (ret)
6324fbf3 4206 space_info->full = 1;
424499db
YZ
4207 else
4208 ret = 1;
6d74119f 4209
0e4f8f88 4210 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4211out:
6d74119f 4212 space_info->chunk_alloc = 0;
9ed74f2d 4213 spin_unlock(&space_info->lock);
a25c75d5 4214 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4215 return ret;
6324fbf3 4216}
9ed74f2d 4217
a80c8dcf
JB
4218static int can_overcommit(struct btrfs_root *root,
4219 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4220 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4221{
96f1bb57 4222 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4223 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4224 u64 space_size;
a80c8dcf
JB
4225 u64 avail;
4226 u64 used;
4227
4228 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4229 space_info->bytes_pinned + space_info->bytes_readonly;
4230
96f1bb57
JB
4231 /*
4232 * We only want to allow over committing if we have lots of actual space
4233 * free, but if we don't have enough space to handle the global reserve
4234 * space then we could end up having a real enospc problem when trying
4235 * to allocate a chunk or some other such important allocation.
4236 */
3c76cd84
MX
4237 spin_lock(&global_rsv->lock);
4238 space_size = calc_global_rsv_need_space(global_rsv);
4239 spin_unlock(&global_rsv->lock);
4240 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4241 return 0;
4242
4243 used += space_info->bytes_may_use;
a80c8dcf
JB
4244
4245 spin_lock(&root->fs_info->free_chunk_lock);
4246 avail = root->fs_info->free_chunk_space;
4247 spin_unlock(&root->fs_info->free_chunk_lock);
4248
4249 /*
4250 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4251 * space is actually useable. For raid56, the space info used
4252 * doesn't include the parity drive, so we don't have to
4253 * change the math
a80c8dcf
JB
4254 */
4255 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4256 BTRFS_BLOCK_GROUP_RAID1 |
4257 BTRFS_BLOCK_GROUP_RAID10))
4258 avail >>= 1;
4259
4260 /*
561c294d
MX
4261 * If we aren't flushing all things, let us overcommit up to
4262 * 1/2th of the space. If we can flush, don't let us overcommit
4263 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4264 */
08e007d2 4265 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4266 avail >>= 3;
a80c8dcf 4267 else
14575aef 4268 avail >>= 1;
a80c8dcf 4269
14575aef 4270 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4271 return 1;
4272 return 0;
4273}
4274
48a3b636 4275static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4276 unsigned long nr_pages, int nr_items)
da633a42
MX
4277{
4278 struct super_block *sb = root->fs_info->sb;
da633a42 4279
925a6efb
JB
4280 if (down_read_trylock(&sb->s_umount)) {
4281 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4282 up_read(&sb->s_umount);
4283 } else {
da633a42
MX
4284 /*
4285 * We needn't worry the filesystem going from r/w to r/o though
4286 * we don't acquire ->s_umount mutex, because the filesystem
4287 * should guarantee the delalloc inodes list be empty after
4288 * the filesystem is readonly(all dirty pages are written to
4289 * the disk).
4290 */
6c255e67 4291 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4292 if (!current->journal_info)
6c255e67 4293 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4294 }
4295}
4296
18cd8ea6
MX
4297static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4298{
4299 u64 bytes;
4300 int nr;
4301
4302 bytes = btrfs_calc_trans_metadata_size(root, 1);
4303 nr = (int)div64_u64(to_reclaim, bytes);
4304 if (!nr)
4305 nr = 1;
4306 return nr;
4307}
4308
c61a16a7
MX
4309#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4310
9ed74f2d 4311/*
5da9d01b 4312 * shrink metadata reservation for delalloc
9ed74f2d 4313 */
f4c738c2
JB
4314static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4315 bool wait_ordered)
5da9d01b 4316{
0ca1f7ce 4317 struct btrfs_block_rsv *block_rsv;
0019f10d 4318 struct btrfs_space_info *space_info;
663350ac 4319 struct btrfs_trans_handle *trans;
f4c738c2 4320 u64 delalloc_bytes;
5da9d01b 4321 u64 max_reclaim;
b1953bce 4322 long time_left;
d3ee29e3
MX
4323 unsigned long nr_pages;
4324 int loops;
b0244199 4325 int items;
08e007d2 4326 enum btrfs_reserve_flush_enum flush;
5da9d01b 4327
c61a16a7 4328 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4329 items = calc_reclaim_items_nr(root, to_reclaim);
4330 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4331
663350ac 4332 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4333 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4334 space_info = block_rsv->space_info;
bf9022e0 4335
963d678b
MX
4336 delalloc_bytes = percpu_counter_sum_positive(
4337 &root->fs_info->delalloc_bytes);
f4c738c2 4338 if (delalloc_bytes == 0) {
fdb5effd 4339 if (trans)
f4c738c2 4340 return;
38c135af 4341 if (wait_ordered)
b0244199 4342 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4343 return;
fdb5effd
JB
4344 }
4345
d3ee29e3 4346 loops = 0;
f4c738c2
JB
4347 while (delalloc_bytes && loops < 3) {
4348 max_reclaim = min(delalloc_bytes, to_reclaim);
4349 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4350 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4351 /*
4352 * We need to wait for the async pages to actually start before
4353 * we do anything.
4354 */
9f3a074d
MX
4355 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4356 if (!max_reclaim)
4357 goto skip_async;
4358
4359 if (max_reclaim <= nr_pages)
4360 max_reclaim = 0;
4361 else
4362 max_reclaim -= nr_pages;
dea31f52 4363
9f3a074d
MX
4364 wait_event(root->fs_info->async_submit_wait,
4365 atomic_read(&root->fs_info->async_delalloc_pages) <=
4366 (int)max_reclaim);
4367skip_async:
08e007d2
MX
4368 if (!trans)
4369 flush = BTRFS_RESERVE_FLUSH_ALL;
4370 else
4371 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4372 spin_lock(&space_info->lock);
08e007d2 4373 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4374 spin_unlock(&space_info->lock);
4375 break;
4376 }
0019f10d 4377 spin_unlock(&space_info->lock);
5da9d01b 4378
36e39c40 4379 loops++;
f104d044 4380 if (wait_ordered && !trans) {
b0244199 4381 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4382 } else {
f4c738c2 4383 time_left = schedule_timeout_killable(1);
f104d044
JB
4384 if (time_left)
4385 break;
4386 }
963d678b
MX
4387 delalloc_bytes = percpu_counter_sum_positive(
4388 &root->fs_info->delalloc_bytes);
5da9d01b 4389 }
5da9d01b
YZ
4390}
4391
663350ac
JB
4392/**
4393 * maybe_commit_transaction - possibly commit the transaction if its ok to
4394 * @root - the root we're allocating for
4395 * @bytes - the number of bytes we want to reserve
4396 * @force - force the commit
8bb8ab2e 4397 *
663350ac
JB
4398 * This will check to make sure that committing the transaction will actually
4399 * get us somewhere and then commit the transaction if it does. Otherwise it
4400 * will return -ENOSPC.
8bb8ab2e 4401 */
663350ac
JB
4402static int may_commit_transaction(struct btrfs_root *root,
4403 struct btrfs_space_info *space_info,
4404 u64 bytes, int force)
4405{
4406 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4407 struct btrfs_trans_handle *trans;
4408
4409 trans = (struct btrfs_trans_handle *)current->journal_info;
4410 if (trans)
4411 return -EAGAIN;
4412
4413 if (force)
4414 goto commit;
4415
4416 /* See if there is enough pinned space to make this reservation */
b150a4f1 4417 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4418 bytes) >= 0)
663350ac 4419 goto commit;
663350ac
JB
4420
4421 /*
4422 * See if there is some space in the delayed insertion reservation for
4423 * this reservation.
4424 */
4425 if (space_info != delayed_rsv->space_info)
4426 return -ENOSPC;
4427
4428 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4429 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4430 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4431 spin_unlock(&delayed_rsv->lock);
4432 return -ENOSPC;
4433 }
4434 spin_unlock(&delayed_rsv->lock);
4435
4436commit:
4437 trans = btrfs_join_transaction(root);
4438 if (IS_ERR(trans))
4439 return -ENOSPC;
4440
4441 return btrfs_commit_transaction(trans, root);
4442}
4443
96c3f433 4444enum flush_state {
67b0fd63
JB
4445 FLUSH_DELAYED_ITEMS_NR = 1,
4446 FLUSH_DELAYED_ITEMS = 2,
4447 FLUSH_DELALLOC = 3,
4448 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4449 ALLOC_CHUNK = 5,
4450 COMMIT_TRANS = 6,
96c3f433
JB
4451};
4452
4453static int flush_space(struct btrfs_root *root,
4454 struct btrfs_space_info *space_info, u64 num_bytes,
4455 u64 orig_bytes, int state)
4456{
4457 struct btrfs_trans_handle *trans;
4458 int nr;
f4c738c2 4459 int ret = 0;
96c3f433
JB
4460
4461 switch (state) {
96c3f433
JB
4462 case FLUSH_DELAYED_ITEMS_NR:
4463 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4464 if (state == FLUSH_DELAYED_ITEMS_NR)
4465 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4466 else
96c3f433 4467 nr = -1;
18cd8ea6 4468
96c3f433
JB
4469 trans = btrfs_join_transaction(root);
4470 if (IS_ERR(trans)) {
4471 ret = PTR_ERR(trans);
4472 break;
4473 }
4474 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4475 btrfs_end_transaction(trans, root);
4476 break;
67b0fd63
JB
4477 case FLUSH_DELALLOC:
4478 case FLUSH_DELALLOC_WAIT:
24af7dd1 4479 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4480 state == FLUSH_DELALLOC_WAIT);
4481 break;
ea658bad
JB
4482 case ALLOC_CHUNK:
4483 trans = btrfs_join_transaction(root);
4484 if (IS_ERR(trans)) {
4485 ret = PTR_ERR(trans);
4486 break;
4487 }
4488 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4489 btrfs_get_alloc_profile(root, 0),
4490 CHUNK_ALLOC_NO_FORCE);
4491 btrfs_end_transaction(trans, root);
4492 if (ret == -ENOSPC)
4493 ret = 0;
4494 break;
96c3f433
JB
4495 case COMMIT_TRANS:
4496 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4497 break;
4498 default:
4499 ret = -ENOSPC;
4500 break;
4501 }
4502
4503 return ret;
4504}
21c7e756
MX
4505
4506static inline u64
4507btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4508 struct btrfs_space_info *space_info)
4509{
4510 u64 used;
4511 u64 expected;
4512 u64 to_reclaim;
4513
4514 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4515 16 * 1024 * 1024);
4516 spin_lock(&space_info->lock);
4517 if (can_overcommit(root, space_info, to_reclaim,
4518 BTRFS_RESERVE_FLUSH_ALL)) {
4519 to_reclaim = 0;
4520 goto out;
4521 }
4522
4523 used = space_info->bytes_used + space_info->bytes_reserved +
4524 space_info->bytes_pinned + space_info->bytes_readonly +
4525 space_info->bytes_may_use;
4526 if (can_overcommit(root, space_info, 1024 * 1024,
4527 BTRFS_RESERVE_FLUSH_ALL))
4528 expected = div_factor_fine(space_info->total_bytes, 95);
4529 else
4530 expected = div_factor_fine(space_info->total_bytes, 90);
4531
4532 if (used > expected)
4533 to_reclaim = used - expected;
4534 else
4535 to_reclaim = 0;
4536 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4537 space_info->bytes_reserved);
4538out:
4539 spin_unlock(&space_info->lock);
4540
4541 return to_reclaim;
4542}
4543
4544static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4545 struct btrfs_fs_info *fs_info, u64 used)
4546{
365c5313
JB
4547 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4548
4549 /* If we're just plain full then async reclaim just slows us down. */
4550 if (space_info->bytes_used >= thresh)
4551 return 0;
4552
4553 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4554 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4555}
4556
4557static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4558 struct btrfs_fs_info *fs_info,
4559 int flush_state)
21c7e756
MX
4560{
4561 u64 used;
4562
4563 spin_lock(&space_info->lock);
25ce459c
LB
4564 /*
4565 * We run out of space and have not got any free space via flush_space,
4566 * so don't bother doing async reclaim.
4567 */
4568 if (flush_state > COMMIT_TRANS && space_info->full) {
4569 spin_unlock(&space_info->lock);
4570 return 0;
4571 }
4572
21c7e756
MX
4573 used = space_info->bytes_used + space_info->bytes_reserved +
4574 space_info->bytes_pinned + space_info->bytes_readonly +
4575 space_info->bytes_may_use;
4576 if (need_do_async_reclaim(space_info, fs_info, used)) {
4577 spin_unlock(&space_info->lock);
4578 return 1;
4579 }
4580 spin_unlock(&space_info->lock);
4581
4582 return 0;
4583}
4584
4585static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4586{
4587 struct btrfs_fs_info *fs_info;
4588 struct btrfs_space_info *space_info;
4589 u64 to_reclaim;
4590 int flush_state;
4591
4592 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4593 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4594
4595 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4596 space_info);
4597 if (!to_reclaim)
4598 return;
4599
4600 flush_state = FLUSH_DELAYED_ITEMS_NR;
4601 do {
4602 flush_space(fs_info->fs_root, space_info, to_reclaim,
4603 to_reclaim, flush_state);
4604 flush_state++;
25ce459c
LB
4605 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4606 flush_state))
21c7e756 4607 return;
365c5313 4608 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4609}
4610
4611void btrfs_init_async_reclaim_work(struct work_struct *work)
4612{
4613 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4614}
4615
4a92b1b8
JB
4616/**
4617 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4618 * @root - the root we're allocating for
4619 * @block_rsv - the block_rsv we're allocating for
4620 * @orig_bytes - the number of bytes we want
48fc7f7e 4621 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4622 *
4a92b1b8
JB
4623 * This will reserve orgi_bytes number of bytes from the space info associated
4624 * with the block_rsv. If there is not enough space it will make an attempt to
4625 * flush out space to make room. It will do this by flushing delalloc if
4626 * possible or committing the transaction. If flush is 0 then no attempts to
4627 * regain reservations will be made and this will fail if there is not enough
4628 * space already.
8bb8ab2e 4629 */
4a92b1b8 4630static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4631 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4632 u64 orig_bytes,
4633 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4634{
f0486c68 4635 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4636 u64 used;
8bb8ab2e 4637 u64 num_bytes = orig_bytes;
67b0fd63 4638 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4639 int ret = 0;
fdb5effd 4640 bool flushing = false;
9ed74f2d 4641
8bb8ab2e 4642again:
fdb5effd 4643 ret = 0;
8bb8ab2e 4644 spin_lock(&space_info->lock);
fdb5effd 4645 /*
08e007d2
MX
4646 * We only want to wait if somebody other than us is flushing and we
4647 * are actually allowed to flush all things.
fdb5effd 4648 */
08e007d2
MX
4649 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4650 space_info->flush) {
fdb5effd
JB
4651 spin_unlock(&space_info->lock);
4652 /*
4653 * If we have a trans handle we can't wait because the flusher
4654 * may have to commit the transaction, which would mean we would
4655 * deadlock since we are waiting for the flusher to finish, but
4656 * hold the current transaction open.
4657 */
663350ac 4658 if (current->journal_info)
fdb5effd 4659 return -EAGAIN;
b9688bb8
AJ
4660 ret = wait_event_killable(space_info->wait, !space_info->flush);
4661 /* Must have been killed, return */
4662 if (ret)
fdb5effd
JB
4663 return -EINTR;
4664
4665 spin_lock(&space_info->lock);
4666 }
4667
4668 ret = -ENOSPC;
2bf64758
JB
4669 used = space_info->bytes_used + space_info->bytes_reserved +
4670 space_info->bytes_pinned + space_info->bytes_readonly +
4671 space_info->bytes_may_use;
9ed74f2d 4672
8bb8ab2e
JB
4673 /*
4674 * The idea here is that we've not already over-reserved the block group
4675 * then we can go ahead and save our reservation first and then start
4676 * flushing if we need to. Otherwise if we've already overcommitted
4677 * lets start flushing stuff first and then come back and try to make
4678 * our reservation.
4679 */
2bf64758
JB
4680 if (used <= space_info->total_bytes) {
4681 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4682 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4683 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4684 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4685 ret = 0;
4686 } else {
4687 /*
4688 * Ok set num_bytes to orig_bytes since we aren't
4689 * overocmmitted, this way we only try and reclaim what
4690 * we need.
4691 */
4692 num_bytes = orig_bytes;
4693 }
4694 } else {
4695 /*
4696 * Ok we're over committed, set num_bytes to the overcommitted
4697 * amount plus the amount of bytes that we need for this
4698 * reservation.
4699 */
2bf64758 4700 num_bytes = used - space_info->total_bytes +
96c3f433 4701 (orig_bytes * 2);
8bb8ab2e 4702 }
9ed74f2d 4703
44734ed1
JB
4704 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4705 space_info->bytes_may_use += orig_bytes;
4706 trace_btrfs_space_reservation(root->fs_info, "space_info",
4707 space_info->flags, orig_bytes,
4708 1);
4709 ret = 0;
2bf64758
JB
4710 }
4711
8bb8ab2e
JB
4712 /*
4713 * Couldn't make our reservation, save our place so while we're trying
4714 * to reclaim space we can actually use it instead of somebody else
4715 * stealing it from us.
08e007d2
MX
4716 *
4717 * We make the other tasks wait for the flush only when we can flush
4718 * all things.
8bb8ab2e 4719 */
72bcd99d 4720 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4721 flushing = true;
4722 space_info->flush = 1;
21c7e756
MX
4723 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4724 used += orig_bytes;
f6acfd50
JB
4725 /*
4726 * We will do the space reservation dance during log replay,
4727 * which means we won't have fs_info->fs_root set, so don't do
4728 * the async reclaim as we will panic.
4729 */
4730 if (!root->fs_info->log_root_recovering &&
4731 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4732 !work_busy(&root->fs_info->async_reclaim_work))
4733 queue_work(system_unbound_wq,
4734 &root->fs_info->async_reclaim_work);
8bb8ab2e 4735 }
f0486c68 4736 spin_unlock(&space_info->lock);
9ed74f2d 4737
08e007d2 4738 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4739 goto out;
f0486c68 4740
96c3f433
JB
4741 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4742 flush_state);
4743 flush_state++;
08e007d2
MX
4744
4745 /*
4746 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4747 * would happen. So skip delalloc flush.
4748 */
4749 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4750 (flush_state == FLUSH_DELALLOC ||
4751 flush_state == FLUSH_DELALLOC_WAIT))
4752 flush_state = ALLOC_CHUNK;
4753
96c3f433 4754 if (!ret)
8bb8ab2e 4755 goto again;
08e007d2
MX
4756 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4757 flush_state < COMMIT_TRANS)
4758 goto again;
4759 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4760 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4761 goto again;
4762
4763out:
5d80366e
JB
4764 if (ret == -ENOSPC &&
4765 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4766 struct btrfs_block_rsv *global_rsv =
4767 &root->fs_info->global_block_rsv;
4768
4769 if (block_rsv != global_rsv &&
4770 !block_rsv_use_bytes(global_rsv, orig_bytes))
4771 ret = 0;
4772 }
cab45e22
JM
4773 if (ret == -ENOSPC)
4774 trace_btrfs_space_reservation(root->fs_info,
4775 "space_info:enospc",
4776 space_info->flags, orig_bytes, 1);
fdb5effd 4777 if (flushing) {
8bb8ab2e 4778 spin_lock(&space_info->lock);
fdb5effd
JB
4779 space_info->flush = 0;
4780 wake_up_all(&space_info->wait);
8bb8ab2e 4781 spin_unlock(&space_info->lock);
f0486c68 4782 }
f0486c68
YZ
4783 return ret;
4784}
4785
79787eaa
JM
4786static struct btrfs_block_rsv *get_block_rsv(
4787 const struct btrfs_trans_handle *trans,
4788 const struct btrfs_root *root)
f0486c68 4789{
4c13d758
JB
4790 struct btrfs_block_rsv *block_rsv = NULL;
4791
27cdeb70 4792 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4793 block_rsv = trans->block_rsv;
4794
4795 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4796 block_rsv = trans->block_rsv;
4c13d758 4797
f7a81ea4
SB
4798 if (root == root->fs_info->uuid_root)
4799 block_rsv = trans->block_rsv;
4800
4c13d758 4801 if (!block_rsv)
f0486c68
YZ
4802 block_rsv = root->block_rsv;
4803
4804 if (!block_rsv)
4805 block_rsv = &root->fs_info->empty_block_rsv;
4806
4807 return block_rsv;
4808}
4809
4810static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4811 u64 num_bytes)
4812{
4813 int ret = -ENOSPC;
4814 spin_lock(&block_rsv->lock);
4815 if (block_rsv->reserved >= num_bytes) {
4816 block_rsv->reserved -= num_bytes;
4817 if (block_rsv->reserved < block_rsv->size)
4818 block_rsv->full = 0;
4819 ret = 0;
4820 }
4821 spin_unlock(&block_rsv->lock);
4822 return ret;
4823}
4824
4825static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4826 u64 num_bytes, int update_size)
4827{
4828 spin_lock(&block_rsv->lock);
4829 block_rsv->reserved += num_bytes;
4830 if (update_size)
4831 block_rsv->size += num_bytes;
4832 else if (block_rsv->reserved >= block_rsv->size)
4833 block_rsv->full = 1;
4834 spin_unlock(&block_rsv->lock);
4835}
4836
d52be818
JB
4837int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4838 struct btrfs_block_rsv *dest, u64 num_bytes,
4839 int min_factor)
4840{
4841 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4842 u64 min_bytes;
4843
4844 if (global_rsv->space_info != dest->space_info)
4845 return -ENOSPC;
4846
4847 spin_lock(&global_rsv->lock);
4848 min_bytes = div_factor(global_rsv->size, min_factor);
4849 if (global_rsv->reserved < min_bytes + num_bytes) {
4850 spin_unlock(&global_rsv->lock);
4851 return -ENOSPC;
4852 }
4853 global_rsv->reserved -= num_bytes;
4854 if (global_rsv->reserved < global_rsv->size)
4855 global_rsv->full = 0;
4856 spin_unlock(&global_rsv->lock);
4857
4858 block_rsv_add_bytes(dest, num_bytes, 1);
4859 return 0;
4860}
4861
8c2a3ca2
JB
4862static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4863 struct btrfs_block_rsv *block_rsv,
62a45b60 4864 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4865{
4866 struct btrfs_space_info *space_info = block_rsv->space_info;
4867
4868 spin_lock(&block_rsv->lock);
4869 if (num_bytes == (u64)-1)
4870 num_bytes = block_rsv->size;
4871 block_rsv->size -= num_bytes;
4872 if (block_rsv->reserved >= block_rsv->size) {
4873 num_bytes = block_rsv->reserved - block_rsv->size;
4874 block_rsv->reserved = block_rsv->size;
4875 block_rsv->full = 1;
4876 } else {
4877 num_bytes = 0;
4878 }
4879 spin_unlock(&block_rsv->lock);
4880
4881 if (num_bytes > 0) {
4882 if (dest) {
e9e22899
JB
4883 spin_lock(&dest->lock);
4884 if (!dest->full) {
4885 u64 bytes_to_add;
4886
4887 bytes_to_add = dest->size - dest->reserved;
4888 bytes_to_add = min(num_bytes, bytes_to_add);
4889 dest->reserved += bytes_to_add;
4890 if (dest->reserved >= dest->size)
4891 dest->full = 1;
4892 num_bytes -= bytes_to_add;
4893 }
4894 spin_unlock(&dest->lock);
4895 }
4896 if (num_bytes) {
f0486c68 4897 spin_lock(&space_info->lock);
fb25e914 4898 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4899 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4900 space_info->flags, num_bytes, 0);
f0486c68 4901 spin_unlock(&space_info->lock);
4e06bdd6 4902 }
9ed74f2d 4903 }
f0486c68 4904}
4e06bdd6 4905
f0486c68
YZ
4906static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4907 struct btrfs_block_rsv *dst, u64 num_bytes)
4908{
4909 int ret;
9ed74f2d 4910
f0486c68
YZ
4911 ret = block_rsv_use_bytes(src, num_bytes);
4912 if (ret)
4913 return ret;
9ed74f2d 4914
f0486c68 4915 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4916 return 0;
4917}
4918
66d8f3dd 4919void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4920{
f0486c68
YZ
4921 memset(rsv, 0, sizeof(*rsv));
4922 spin_lock_init(&rsv->lock);
66d8f3dd 4923 rsv->type = type;
f0486c68
YZ
4924}
4925
66d8f3dd
MX
4926struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4927 unsigned short type)
f0486c68
YZ
4928{
4929 struct btrfs_block_rsv *block_rsv;
4930 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4931
f0486c68
YZ
4932 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4933 if (!block_rsv)
4934 return NULL;
9ed74f2d 4935
66d8f3dd 4936 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4937 block_rsv->space_info = __find_space_info(fs_info,
4938 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4939 return block_rsv;
4940}
9ed74f2d 4941
f0486c68
YZ
4942void btrfs_free_block_rsv(struct btrfs_root *root,
4943 struct btrfs_block_rsv *rsv)
4944{
2aaa6655
JB
4945 if (!rsv)
4946 return;
dabdb640
JB
4947 btrfs_block_rsv_release(root, rsv, (u64)-1);
4948 kfree(rsv);
9ed74f2d
JB
4949}
4950
cdfb080e
CM
4951void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4952{
4953 kfree(rsv);
4954}
4955
08e007d2
MX
4956int btrfs_block_rsv_add(struct btrfs_root *root,
4957 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4958 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4959{
f0486c68 4960 int ret;
9ed74f2d 4961
f0486c68
YZ
4962 if (num_bytes == 0)
4963 return 0;
8bb8ab2e 4964
61b520a9 4965 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4966 if (!ret) {
4967 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4968 return 0;
4969 }
9ed74f2d 4970
f0486c68 4971 return ret;
f0486c68 4972}
9ed74f2d 4973
4a92b1b8 4974int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 4975 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
4976{
4977 u64 num_bytes = 0;
f0486c68 4978 int ret = -ENOSPC;
9ed74f2d 4979
f0486c68
YZ
4980 if (!block_rsv)
4981 return 0;
9ed74f2d 4982
f0486c68 4983 spin_lock(&block_rsv->lock);
36ba022a
JB
4984 num_bytes = div_factor(block_rsv->size, min_factor);
4985 if (block_rsv->reserved >= num_bytes)
4986 ret = 0;
4987 spin_unlock(&block_rsv->lock);
9ed74f2d 4988
36ba022a
JB
4989 return ret;
4990}
4991
08e007d2
MX
4992int btrfs_block_rsv_refill(struct btrfs_root *root,
4993 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4994 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
4995{
4996 u64 num_bytes = 0;
4997 int ret = -ENOSPC;
4998
4999 if (!block_rsv)
5000 return 0;
5001
5002 spin_lock(&block_rsv->lock);
5003 num_bytes = min_reserved;
13553e52 5004 if (block_rsv->reserved >= num_bytes)
f0486c68 5005 ret = 0;
13553e52 5006 else
f0486c68 5007 num_bytes -= block_rsv->reserved;
f0486c68 5008 spin_unlock(&block_rsv->lock);
13553e52 5009
f0486c68
YZ
5010 if (!ret)
5011 return 0;
5012
aa38a711 5013 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5014 if (!ret) {
5015 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5016 return 0;
6a63209f 5017 }
9ed74f2d 5018
13553e52 5019 return ret;
f0486c68
YZ
5020}
5021
5022int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5023 struct btrfs_block_rsv *dst_rsv,
5024 u64 num_bytes)
5025{
5026 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5027}
5028
5029void btrfs_block_rsv_release(struct btrfs_root *root,
5030 struct btrfs_block_rsv *block_rsv,
5031 u64 num_bytes)
5032{
5033 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5034 if (global_rsv == block_rsv ||
f0486c68
YZ
5035 block_rsv->space_info != global_rsv->space_info)
5036 global_rsv = NULL;
8c2a3ca2
JB
5037 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5038 num_bytes);
6a63209f
JB
5039}
5040
5041/*
8929ecfa
YZ
5042 * helper to calculate size of global block reservation.
5043 * the desired value is sum of space used by extent tree,
5044 * checksum tree and root tree
6a63209f 5045 */
8929ecfa 5046static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5047{
8929ecfa
YZ
5048 struct btrfs_space_info *sinfo;
5049 u64 num_bytes;
5050 u64 meta_used;
5051 u64 data_used;
6c41761f 5052 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5053
8929ecfa
YZ
5054 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5055 spin_lock(&sinfo->lock);
5056 data_used = sinfo->bytes_used;
5057 spin_unlock(&sinfo->lock);
33b4d47f 5058
8929ecfa
YZ
5059 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5060 spin_lock(&sinfo->lock);
6d48755d
JB
5061 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5062 data_used = 0;
8929ecfa
YZ
5063 meta_used = sinfo->bytes_used;
5064 spin_unlock(&sinfo->lock);
ab6e2410 5065
8929ecfa
YZ
5066 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5067 csum_size * 2;
f8c269d7 5068 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5069
8929ecfa 5070 if (num_bytes * 3 > meta_used)
f8c269d7 5071 num_bytes = div_u64(meta_used, 3);
ab6e2410 5072
707e8a07 5073 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5074}
6a63209f 5075
8929ecfa
YZ
5076static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5077{
5078 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5079 struct btrfs_space_info *sinfo = block_rsv->space_info;
5080 u64 num_bytes;
6a63209f 5081
8929ecfa 5082 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5083
8929ecfa 5084 spin_lock(&sinfo->lock);
1f699d38 5085 spin_lock(&block_rsv->lock);
4e06bdd6 5086
fdf30d1c 5087 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5088
8929ecfa 5089 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5090 sinfo->bytes_reserved + sinfo->bytes_readonly +
5091 sinfo->bytes_may_use;
8929ecfa
YZ
5092
5093 if (sinfo->total_bytes > num_bytes) {
5094 num_bytes = sinfo->total_bytes - num_bytes;
5095 block_rsv->reserved += num_bytes;
fb25e914 5096 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5097 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5098 sinfo->flags, num_bytes, 1);
6a63209f 5099 }
6a63209f 5100
8929ecfa
YZ
5101 if (block_rsv->reserved >= block_rsv->size) {
5102 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5103 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5104 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5105 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5106 block_rsv->reserved = block_rsv->size;
5107 block_rsv->full = 1;
5108 }
182608c8 5109
8929ecfa 5110 spin_unlock(&block_rsv->lock);
1f699d38 5111 spin_unlock(&sinfo->lock);
6a63209f
JB
5112}
5113
f0486c68 5114static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5115{
f0486c68 5116 struct btrfs_space_info *space_info;
6a63209f 5117
f0486c68
YZ
5118 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5119 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5120
f0486c68 5121 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5122 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5123 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5124 fs_info->trans_block_rsv.space_info = space_info;
5125 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5126 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5127
8929ecfa
YZ
5128 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5129 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5130 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5131 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5132 if (fs_info->quota_root)
5133 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5134 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5135
8929ecfa 5136 update_global_block_rsv(fs_info);
6a63209f
JB
5137}
5138
8929ecfa 5139static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5140{
8c2a3ca2
JB
5141 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5142 (u64)-1);
8929ecfa
YZ
5143 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5144 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5145 WARN_ON(fs_info->trans_block_rsv.size > 0);
5146 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5147 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5148 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5149 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5150 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5151}
5152
a22285a6
YZ
5153void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5154 struct btrfs_root *root)
6a63209f 5155{
0e721106
JB
5156 if (!trans->block_rsv)
5157 return;
5158
a22285a6
YZ
5159 if (!trans->bytes_reserved)
5160 return;
6a63209f 5161
e77266e4 5162 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5163 trans->transid, trans->bytes_reserved, 0);
b24e03db 5164 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5165 trans->bytes_reserved = 0;
5166}
6a63209f 5167
79787eaa 5168/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5169int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5170 struct inode *inode)
5171{
5172 struct btrfs_root *root = BTRFS_I(inode)->root;
5173 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5174 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5175
5176 /*
fcb80c2a
JB
5177 * We need to hold space in order to delete our orphan item once we've
5178 * added it, so this takes the reservation so we can release it later
5179 * when we are truly done with the orphan item.
d68fc57b 5180 */
ff5714cc 5181 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5182 trace_btrfs_space_reservation(root->fs_info, "orphan",
5183 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5184 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5185}
5186
d68fc57b 5187void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5188{
d68fc57b 5189 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5190 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5191 trace_btrfs_space_reservation(root->fs_info, "orphan",
5192 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5193 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5194}
97e728d4 5195
d5c12070
MX
5196/*
5197 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5198 * root: the root of the parent directory
5199 * rsv: block reservation
5200 * items: the number of items that we need do reservation
5201 * qgroup_reserved: used to return the reserved size in qgroup
5202 *
5203 * This function is used to reserve the space for snapshot/subvolume
5204 * creation and deletion. Those operations are different with the
5205 * common file/directory operations, they change two fs/file trees
5206 * and root tree, the number of items that the qgroup reserves is
5207 * different with the free space reservation. So we can not use
5208 * the space reseravtion mechanism in start_transaction().
5209 */
5210int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5211 struct btrfs_block_rsv *rsv,
5212 int items,
ee3441b4
JM
5213 u64 *qgroup_reserved,
5214 bool use_global_rsv)
a22285a6 5215{
d5c12070
MX
5216 u64 num_bytes;
5217 int ret;
ee3441b4 5218 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5219
5220 if (root->fs_info->quota_enabled) {
5221 /* One for parent inode, two for dir entries */
707e8a07 5222 num_bytes = 3 * root->nodesize;
d5c12070
MX
5223 ret = btrfs_qgroup_reserve(root, num_bytes);
5224 if (ret)
5225 return ret;
5226 } else {
5227 num_bytes = 0;
5228 }
5229
5230 *qgroup_reserved = num_bytes;
5231
5232 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5233 rsv->space_info = __find_space_info(root->fs_info,
5234 BTRFS_BLOCK_GROUP_METADATA);
5235 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5236 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5237
5238 if (ret == -ENOSPC && use_global_rsv)
5239 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5240
d5c12070
MX
5241 if (ret) {
5242 if (*qgroup_reserved)
5243 btrfs_qgroup_free(root, *qgroup_reserved);
5244 }
5245
5246 return ret;
5247}
5248
5249void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5250 struct btrfs_block_rsv *rsv,
5251 u64 qgroup_reserved)
5252{
5253 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5254}
5255
7709cde3
JB
5256/**
5257 * drop_outstanding_extent - drop an outstanding extent
5258 * @inode: the inode we're dropping the extent for
dcab6a3b 5259 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5260 *
5261 * This is called when we are freeing up an outstanding extent, either called
5262 * after an error or after an extent is written. This will return the number of
5263 * reserved extents that need to be freed. This must be called with
5264 * BTRFS_I(inode)->lock held.
5265 */
dcab6a3b 5266static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5267{
7fd2ae21 5268 unsigned drop_inode_space = 0;
9e0baf60 5269 unsigned dropped_extents = 0;
dcab6a3b 5270 unsigned num_extents = 0;
9e0baf60 5271
dcab6a3b
JB
5272 num_extents = (unsigned)div64_u64(num_bytes +
5273 BTRFS_MAX_EXTENT_SIZE - 1,
5274 BTRFS_MAX_EXTENT_SIZE);
5275 ASSERT(num_extents);
5276 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5277 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5278
7fd2ae21 5279 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5280 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5281 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5282 drop_inode_space = 1;
7fd2ae21 5283
9e0baf60
JB
5284 /*
5285 * If we have more or the same amount of outsanding extents than we have
5286 * reserved then we need to leave the reserved extents count alone.
5287 */
5288 if (BTRFS_I(inode)->outstanding_extents >=
5289 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5290 return drop_inode_space;
9e0baf60
JB
5291
5292 dropped_extents = BTRFS_I(inode)->reserved_extents -
5293 BTRFS_I(inode)->outstanding_extents;
5294 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5295 return dropped_extents + drop_inode_space;
9e0baf60
JB
5296}
5297
7709cde3
JB
5298/**
5299 * calc_csum_metadata_size - return the amount of metada space that must be
5300 * reserved/free'd for the given bytes.
5301 * @inode: the inode we're manipulating
5302 * @num_bytes: the number of bytes in question
5303 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5304 *
5305 * This adjusts the number of csum_bytes in the inode and then returns the
5306 * correct amount of metadata that must either be reserved or freed. We
5307 * calculate how many checksums we can fit into one leaf and then divide the
5308 * number of bytes that will need to be checksumed by this value to figure out
5309 * how many checksums will be required. If we are adding bytes then the number
5310 * may go up and we will return the number of additional bytes that must be
5311 * reserved. If it is going down we will return the number of bytes that must
5312 * be freed.
5313 *
5314 * This must be called with BTRFS_I(inode)->lock held.
5315 */
5316static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5317 int reserve)
6324fbf3 5318{
7709cde3 5319 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5320 u64 old_csums, num_csums;
7709cde3
JB
5321
5322 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5323 BTRFS_I(inode)->csum_bytes == 0)
5324 return 0;
5325
28f75a0e 5326 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5327 if (reserve)
5328 BTRFS_I(inode)->csum_bytes += num_bytes;
5329 else
5330 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5331 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5332
5333 /* No change, no need to reserve more */
5334 if (old_csums == num_csums)
5335 return 0;
5336
5337 if (reserve)
5338 return btrfs_calc_trans_metadata_size(root,
5339 num_csums - old_csums);
5340
5341 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5342}
c146afad 5343
0ca1f7ce
YZ
5344int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5345{
5346 struct btrfs_root *root = BTRFS_I(inode)->root;
5347 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5348 u64 to_reserve = 0;
660d3f6c 5349 u64 csum_bytes;
9e0baf60 5350 unsigned nr_extents = 0;
660d3f6c 5351 int extra_reserve = 0;
08e007d2 5352 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5353 int ret = 0;
c64c2bd8 5354 bool delalloc_lock = true;
88e081bf
WS
5355 u64 to_free = 0;
5356 unsigned dropped;
6324fbf3 5357
c64c2bd8
JB
5358 /* If we are a free space inode we need to not flush since we will be in
5359 * the middle of a transaction commit. We also don't need the delalloc
5360 * mutex since we won't race with anybody. We need this mostly to make
5361 * lockdep shut its filthy mouth.
5362 */
5363 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5364 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5365 delalloc_lock = false;
5366 }
c09544e0 5367
08e007d2
MX
5368 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5369 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5370 schedule_timeout(1);
ec44a35c 5371
c64c2bd8
JB
5372 if (delalloc_lock)
5373 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5374
0ca1f7ce 5375 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5376
9e0baf60 5377 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5378 nr_extents = (unsigned)div64_u64(num_bytes +
5379 BTRFS_MAX_EXTENT_SIZE - 1,
5380 BTRFS_MAX_EXTENT_SIZE);
5381 BTRFS_I(inode)->outstanding_extents += nr_extents;
5382 nr_extents = 0;
9e0baf60
JB
5383
5384 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5385 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5386 nr_extents = BTRFS_I(inode)->outstanding_extents -
5387 BTRFS_I(inode)->reserved_extents;
57a45ced 5388
7fd2ae21
JB
5389 /*
5390 * Add an item to reserve for updating the inode when we complete the
5391 * delalloc io.
5392 */
72ac3c0d
JB
5393 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5394 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5395 nr_extents++;
660d3f6c 5396 extra_reserve = 1;
593060d7 5397 }
7fd2ae21
JB
5398
5399 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5400 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5401 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5402 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5403
88e081bf 5404 if (root->fs_info->quota_enabled) {
237c0e9f 5405 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5406 if (ret)
5407 goto out_fail;
5408 }
c5567237 5409
88e081bf
WS
5410 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5411 if (unlikely(ret)) {
5412 if (root->fs_info->quota_enabled)
237c0e9f 5413 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5414 goto out_fail;
9e0baf60 5415 }
25179201 5416
660d3f6c
JB
5417 spin_lock(&BTRFS_I(inode)->lock);
5418 if (extra_reserve) {
72ac3c0d
JB
5419 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5420 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5421 nr_extents--;
5422 }
5423 BTRFS_I(inode)->reserved_extents += nr_extents;
5424 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5425
5426 if (delalloc_lock)
5427 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5428
8c2a3ca2 5429 if (to_reserve)
67871254 5430 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5431 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5432 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5433
0ca1f7ce 5434 return 0;
88e081bf
WS
5435
5436out_fail:
5437 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5438 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5439 /*
5440 * If the inodes csum_bytes is the same as the original
5441 * csum_bytes then we know we haven't raced with any free()ers
5442 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5443 */
f4881bc7 5444 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5445 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5446 } else {
5447 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5448 u64 bytes;
5449
5450 /*
5451 * This is tricky, but first we need to figure out how much we
5452 * free'd from any free-ers that occured during this
5453 * reservation, so we reset ->csum_bytes to the csum_bytes
5454 * before we dropped our lock, and then call the free for the
5455 * number of bytes that were freed while we were trying our
5456 * reservation.
5457 */
5458 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5459 BTRFS_I(inode)->csum_bytes = csum_bytes;
5460 to_free = calc_csum_metadata_size(inode, bytes, 0);
5461
5462
5463 /*
5464 * Now we need to see how much we would have freed had we not
5465 * been making this reservation and our ->csum_bytes were not
5466 * artificially inflated.
5467 */
5468 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5469 bytes = csum_bytes - orig_csum_bytes;
5470 bytes = calc_csum_metadata_size(inode, bytes, 0);
5471
5472 /*
5473 * Now reset ->csum_bytes to what it should be. If bytes is
5474 * more than to_free then we would have free'd more space had we
5475 * not had an artificially high ->csum_bytes, so we need to free
5476 * the remainder. If bytes is the same or less then we don't
5477 * need to do anything, the other free-ers did the correct
5478 * thing.
5479 */
5480 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5481 if (bytes > to_free)
5482 to_free = bytes - to_free;
5483 else
5484 to_free = 0;
5485 }
88e081bf 5486 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5487 if (dropped)
88e081bf
WS
5488 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5489
5490 if (to_free) {
5491 btrfs_block_rsv_release(root, block_rsv, to_free);
5492 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5493 btrfs_ino(inode), to_free, 0);
5494 }
5495 if (delalloc_lock)
5496 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5497 return ret;
0ca1f7ce
YZ
5498}
5499
7709cde3
JB
5500/**
5501 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5502 * @inode: the inode to release the reservation for
5503 * @num_bytes: the number of bytes we're releasing
5504 *
5505 * This will release the metadata reservation for an inode. This can be called
5506 * once we complete IO for a given set of bytes to release their metadata
5507 * reservations.
5508 */
0ca1f7ce
YZ
5509void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5510{
5511 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5512 u64 to_free = 0;
5513 unsigned dropped;
0ca1f7ce
YZ
5514
5515 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5516 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5517 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5518
0934856d
MX
5519 if (num_bytes)
5520 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5521 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5522 if (dropped > 0)
5523 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5524
6a3891c5
JB
5525 if (btrfs_test_is_dummy_root(root))
5526 return;
5527
8c2a3ca2
JB
5528 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5529 btrfs_ino(inode), to_free, 0);
c5567237 5530
0ca1f7ce
YZ
5531 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5532 to_free);
5533}
5534
7709cde3
JB
5535/**
5536 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5537 * @inode: inode we're writing to
5538 * @num_bytes: the number of bytes we want to allocate
5539 *
5540 * This will do the following things
5541 *
5542 * o reserve space in the data space info for num_bytes
5543 * o reserve space in the metadata space info based on number of outstanding
5544 * extents and how much csums will be needed
5545 * o add to the inodes ->delalloc_bytes
5546 * o add it to the fs_info's delalloc inodes list.
5547 *
5548 * This will return 0 for success and -ENOSPC if there is no space left.
5549 */
0ca1f7ce
YZ
5550int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5551{
5552 int ret;
5553
e2d1f923 5554 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5555 if (ret)
0ca1f7ce
YZ
5556 return ret;
5557
5558 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5559 if (ret) {
5560 btrfs_free_reserved_data_space(inode, num_bytes);
5561 return ret;
5562 }
5563
5564 return 0;
5565}
5566
7709cde3
JB
5567/**
5568 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5569 * @inode: inode we're releasing space for
5570 * @num_bytes: the number of bytes we want to free up
5571 *
5572 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5573 * called in the case that we don't need the metadata AND data reservations
5574 * anymore. So if there is an error or we insert an inline extent.
5575 *
5576 * This function will release the metadata space that was not used and will
5577 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5578 * list if there are no delalloc bytes left.
5579 */
0ca1f7ce
YZ
5580void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5581{
5582 btrfs_delalloc_release_metadata(inode, num_bytes);
5583 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5584}
5585
ce93ec54
JB
5586static int update_block_group(struct btrfs_trans_handle *trans,
5587 struct btrfs_root *root, u64 bytenr,
5588 u64 num_bytes, int alloc)
9078a3e1 5589{
0af3d00b 5590 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5591 struct btrfs_fs_info *info = root->fs_info;
db94535d 5592 u64 total = num_bytes;
9078a3e1 5593 u64 old_val;
db94535d 5594 u64 byte_in_group;
0af3d00b 5595 int factor;
3e1ad54f 5596
5d4f98a2 5597 /* block accounting for super block */
eb73c1b7 5598 spin_lock(&info->delalloc_root_lock);
6c41761f 5599 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5600 if (alloc)
5601 old_val += num_bytes;
5602 else
5603 old_val -= num_bytes;
6c41761f 5604 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5605 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5606
d397712b 5607 while (total) {
db94535d 5608 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5609 if (!cache)
79787eaa 5610 return -ENOENT;
b742bb82
YZ
5611 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5612 BTRFS_BLOCK_GROUP_RAID1 |
5613 BTRFS_BLOCK_GROUP_RAID10))
5614 factor = 2;
5615 else
5616 factor = 1;
9d66e233
JB
5617 /*
5618 * If this block group has free space cache written out, we
5619 * need to make sure to load it if we are removing space. This
5620 * is because we need the unpinning stage to actually add the
5621 * space back to the block group, otherwise we will leak space.
5622 */
5623 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5624 cache_block_group(cache, 1);
0af3d00b 5625
db94535d
CM
5626 byte_in_group = bytenr - cache->key.objectid;
5627 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5628
25179201 5629 spin_lock(&cache->space_info->lock);
c286ac48 5630 spin_lock(&cache->lock);
0af3d00b 5631
73bc1876 5632 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5633 cache->disk_cache_state < BTRFS_DC_CLEAR)
5634 cache->disk_cache_state = BTRFS_DC_CLEAR;
5635
9078a3e1 5636 old_val = btrfs_block_group_used(&cache->item);
db94535d 5637 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5638 if (alloc) {
db94535d 5639 old_val += num_bytes;
11833d66
YZ
5640 btrfs_set_block_group_used(&cache->item, old_val);
5641 cache->reserved -= num_bytes;
11833d66 5642 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5643 cache->space_info->bytes_used += num_bytes;
5644 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5645 spin_unlock(&cache->lock);
25179201 5646 spin_unlock(&cache->space_info->lock);
cd1bc465 5647 } else {
db94535d 5648 old_val -= num_bytes;
ae0ab003
FM
5649 btrfs_set_block_group_used(&cache->item, old_val);
5650 cache->pinned += num_bytes;
5651 cache->space_info->bytes_pinned += num_bytes;
5652 cache->space_info->bytes_used -= num_bytes;
5653 cache->space_info->disk_used -= num_bytes * factor;
5654 spin_unlock(&cache->lock);
5655 spin_unlock(&cache->space_info->lock);
47ab2a6c 5656
ae0ab003
FM
5657 set_extent_dirty(info->pinned_extents,
5658 bytenr, bytenr + num_bytes - 1,
5659 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5660 /*
5661 * No longer have used bytes in this block group, queue
5662 * it for deletion.
5663 */
5664 if (old_val == 0) {
5665 spin_lock(&info->unused_bgs_lock);
5666 if (list_empty(&cache->bg_list)) {
5667 btrfs_get_block_group(cache);
5668 list_add_tail(&cache->bg_list,
5669 &info->unused_bgs);
5670 }
5671 spin_unlock(&info->unused_bgs_lock);
5672 }
cd1bc465 5673 }
1bbc621e
CM
5674
5675 spin_lock(&trans->transaction->dirty_bgs_lock);
5676 if (list_empty(&cache->dirty_list)) {
5677 list_add_tail(&cache->dirty_list,
5678 &trans->transaction->dirty_bgs);
5679 trans->transaction->num_dirty_bgs++;
5680 btrfs_get_block_group(cache);
5681 }
5682 spin_unlock(&trans->transaction->dirty_bgs_lock);
5683
fa9c0d79 5684 btrfs_put_block_group(cache);
db94535d
CM
5685 total -= num_bytes;
5686 bytenr += num_bytes;
9078a3e1
CM
5687 }
5688 return 0;
5689}
6324fbf3 5690
a061fc8d
CM
5691static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5692{
0f9dd46c 5693 struct btrfs_block_group_cache *cache;
d2fb3437 5694 u64 bytenr;
0f9dd46c 5695
a1897fdd
LB
5696 spin_lock(&root->fs_info->block_group_cache_lock);
5697 bytenr = root->fs_info->first_logical_byte;
5698 spin_unlock(&root->fs_info->block_group_cache_lock);
5699
5700 if (bytenr < (u64)-1)
5701 return bytenr;
5702
0f9dd46c
JB
5703 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5704 if (!cache)
a061fc8d 5705 return 0;
0f9dd46c 5706
d2fb3437 5707 bytenr = cache->key.objectid;
fa9c0d79 5708 btrfs_put_block_group(cache);
d2fb3437
YZ
5709
5710 return bytenr;
a061fc8d
CM
5711}
5712
f0486c68
YZ
5713static int pin_down_extent(struct btrfs_root *root,
5714 struct btrfs_block_group_cache *cache,
5715 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5716{
11833d66
YZ
5717 spin_lock(&cache->space_info->lock);
5718 spin_lock(&cache->lock);
5719 cache->pinned += num_bytes;
5720 cache->space_info->bytes_pinned += num_bytes;
5721 if (reserved) {
5722 cache->reserved -= num_bytes;
5723 cache->space_info->bytes_reserved -= num_bytes;
5724 }
5725 spin_unlock(&cache->lock);
5726 spin_unlock(&cache->space_info->lock);
68b38550 5727
f0486c68
YZ
5728 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5729 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5730 if (reserved)
0be5dc67 5731 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5732 return 0;
5733}
68b38550 5734
f0486c68
YZ
5735/*
5736 * this function must be called within transaction
5737 */
5738int btrfs_pin_extent(struct btrfs_root *root,
5739 u64 bytenr, u64 num_bytes, int reserved)
5740{
5741 struct btrfs_block_group_cache *cache;
68b38550 5742
f0486c68 5743 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5744 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5745
5746 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5747
5748 btrfs_put_block_group(cache);
11833d66
YZ
5749 return 0;
5750}
5751
f0486c68 5752/*
e688b725
CM
5753 * this function must be called within transaction
5754 */
dcfac415 5755int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5756 u64 bytenr, u64 num_bytes)
5757{
5758 struct btrfs_block_group_cache *cache;
b50c6e25 5759 int ret;
e688b725
CM
5760
5761 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5762 if (!cache)
5763 return -EINVAL;
e688b725
CM
5764
5765 /*
5766 * pull in the free space cache (if any) so that our pin
5767 * removes the free space from the cache. We have load_only set
5768 * to one because the slow code to read in the free extents does check
5769 * the pinned extents.
5770 */
f6373bf3 5771 cache_block_group(cache, 1);
e688b725
CM
5772
5773 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5774
5775 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5776 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5777 btrfs_put_block_group(cache);
b50c6e25 5778 return ret;
e688b725
CM
5779}
5780
8c2a1a30
JB
5781static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5782{
5783 int ret;
5784 struct btrfs_block_group_cache *block_group;
5785 struct btrfs_caching_control *caching_ctl;
5786
5787 block_group = btrfs_lookup_block_group(root->fs_info, start);
5788 if (!block_group)
5789 return -EINVAL;
5790
5791 cache_block_group(block_group, 0);
5792 caching_ctl = get_caching_control(block_group);
5793
5794 if (!caching_ctl) {
5795 /* Logic error */
5796 BUG_ON(!block_group_cache_done(block_group));
5797 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5798 } else {
5799 mutex_lock(&caching_ctl->mutex);
5800
5801 if (start >= caching_ctl->progress) {
5802 ret = add_excluded_extent(root, start, num_bytes);
5803 } else if (start + num_bytes <= caching_ctl->progress) {
5804 ret = btrfs_remove_free_space(block_group,
5805 start, num_bytes);
5806 } else {
5807 num_bytes = caching_ctl->progress - start;
5808 ret = btrfs_remove_free_space(block_group,
5809 start, num_bytes);
5810 if (ret)
5811 goto out_lock;
5812
5813 num_bytes = (start + num_bytes) -
5814 caching_ctl->progress;
5815 start = caching_ctl->progress;
5816 ret = add_excluded_extent(root, start, num_bytes);
5817 }
5818out_lock:
5819 mutex_unlock(&caching_ctl->mutex);
5820 put_caching_control(caching_ctl);
5821 }
5822 btrfs_put_block_group(block_group);
5823 return ret;
5824}
5825
5826int btrfs_exclude_logged_extents(struct btrfs_root *log,
5827 struct extent_buffer *eb)
5828{
5829 struct btrfs_file_extent_item *item;
5830 struct btrfs_key key;
5831 int found_type;
5832 int i;
5833
5834 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5835 return 0;
5836
5837 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5838 btrfs_item_key_to_cpu(eb, &key, i);
5839 if (key.type != BTRFS_EXTENT_DATA_KEY)
5840 continue;
5841 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5842 found_type = btrfs_file_extent_type(eb, item);
5843 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5844 continue;
5845 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5846 continue;
5847 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5848 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5849 __exclude_logged_extent(log, key.objectid, key.offset);
5850 }
5851
5852 return 0;
5853}
5854
fb25e914
JB
5855/**
5856 * btrfs_update_reserved_bytes - update the block_group and space info counters
5857 * @cache: The cache we are manipulating
5858 * @num_bytes: The number of bytes in question
5859 * @reserve: One of the reservation enums
e570fd27 5860 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5861 *
5862 * This is called by the allocator when it reserves space, or by somebody who is
5863 * freeing space that was never actually used on disk. For example if you
5864 * reserve some space for a new leaf in transaction A and before transaction A
5865 * commits you free that leaf, you call this with reserve set to 0 in order to
5866 * clear the reservation.
5867 *
5868 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5869 * ENOSPC accounting. For data we handle the reservation through clearing the
5870 * delalloc bits in the io_tree. We have to do this since we could end up
5871 * allocating less disk space for the amount of data we have reserved in the
5872 * case of compression.
5873 *
5874 * If this is a reservation and the block group has become read only we cannot
5875 * make the reservation and return -EAGAIN, otherwise this function always
5876 * succeeds.
f0486c68 5877 */
fb25e914 5878static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5879 u64 num_bytes, int reserve, int delalloc)
11833d66 5880{
fb25e914 5881 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5882 int ret = 0;
79787eaa 5883
fb25e914
JB
5884 spin_lock(&space_info->lock);
5885 spin_lock(&cache->lock);
5886 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5887 if (cache->ro) {
5888 ret = -EAGAIN;
5889 } else {
fb25e914
JB
5890 cache->reserved += num_bytes;
5891 space_info->bytes_reserved += num_bytes;
5892 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5893 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5894 "space_info", space_info->flags,
5895 num_bytes, 0);
fb25e914
JB
5896 space_info->bytes_may_use -= num_bytes;
5897 }
e570fd27
MX
5898
5899 if (delalloc)
5900 cache->delalloc_bytes += num_bytes;
f0486c68 5901 }
fb25e914
JB
5902 } else {
5903 if (cache->ro)
5904 space_info->bytes_readonly += num_bytes;
5905 cache->reserved -= num_bytes;
5906 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5907
5908 if (delalloc)
5909 cache->delalloc_bytes -= num_bytes;
324ae4df 5910 }
fb25e914
JB
5911 spin_unlock(&cache->lock);
5912 spin_unlock(&space_info->lock);
f0486c68 5913 return ret;
324ae4df 5914}
9078a3e1 5915
143bede5 5916void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5917 struct btrfs_root *root)
e8569813 5918{
e8569813 5919 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5920 struct btrfs_caching_control *next;
5921 struct btrfs_caching_control *caching_ctl;
5922 struct btrfs_block_group_cache *cache;
e8569813 5923
9e351cc8 5924 down_write(&fs_info->commit_root_sem);
25179201 5925
11833d66
YZ
5926 list_for_each_entry_safe(caching_ctl, next,
5927 &fs_info->caching_block_groups, list) {
5928 cache = caching_ctl->block_group;
5929 if (block_group_cache_done(cache)) {
5930 cache->last_byte_to_unpin = (u64)-1;
5931 list_del_init(&caching_ctl->list);
5932 put_caching_control(caching_ctl);
e8569813 5933 } else {
11833d66 5934 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5935 }
e8569813 5936 }
11833d66
YZ
5937
5938 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5939 fs_info->pinned_extents = &fs_info->freed_extents[1];
5940 else
5941 fs_info->pinned_extents = &fs_info->freed_extents[0];
5942
9e351cc8 5943 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5944
5945 update_global_block_rsv(fs_info);
e8569813
ZY
5946}
5947
678886bd
FM
5948static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5949 const bool return_free_space)
ccd467d6 5950{
11833d66
YZ
5951 struct btrfs_fs_info *fs_info = root->fs_info;
5952 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
5953 struct btrfs_space_info *space_info;
5954 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 5955 u64 len;
7b398f8e 5956 bool readonly;
ccd467d6 5957
11833d66 5958 while (start <= end) {
7b398f8e 5959 readonly = false;
11833d66
YZ
5960 if (!cache ||
5961 start >= cache->key.objectid + cache->key.offset) {
5962 if (cache)
5963 btrfs_put_block_group(cache);
5964 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 5965 BUG_ON(!cache); /* Logic error */
11833d66
YZ
5966 }
5967
5968 len = cache->key.objectid + cache->key.offset - start;
5969 len = min(len, end + 1 - start);
5970
5971 if (start < cache->last_byte_to_unpin) {
5972 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
5973 if (return_free_space)
5974 btrfs_add_free_space(cache, start, len);
11833d66
YZ
5975 }
5976
f0486c68 5977 start += len;
7b398f8e 5978 space_info = cache->space_info;
f0486c68 5979
7b398f8e 5980 spin_lock(&space_info->lock);
11833d66
YZ
5981 spin_lock(&cache->lock);
5982 cache->pinned -= len;
7b398f8e 5983 space_info->bytes_pinned -= len;
d288db5d 5984 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
5985 if (cache->ro) {
5986 space_info->bytes_readonly += len;
5987 readonly = true;
5988 }
11833d66 5989 spin_unlock(&cache->lock);
7b398f8e
JB
5990 if (!readonly && global_rsv->space_info == space_info) {
5991 spin_lock(&global_rsv->lock);
5992 if (!global_rsv->full) {
5993 len = min(len, global_rsv->size -
5994 global_rsv->reserved);
5995 global_rsv->reserved += len;
5996 space_info->bytes_may_use += len;
5997 if (global_rsv->reserved >= global_rsv->size)
5998 global_rsv->full = 1;
5999 }
6000 spin_unlock(&global_rsv->lock);
6001 }
6002 spin_unlock(&space_info->lock);
ccd467d6 6003 }
11833d66
YZ
6004
6005 if (cache)
6006 btrfs_put_block_group(cache);
ccd467d6
CM
6007 return 0;
6008}
6009
6010int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6011 struct btrfs_root *root)
a28ec197 6012{
11833d66
YZ
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct extent_io_tree *unpin;
1a5bc167
CM
6015 u64 start;
6016 u64 end;
a28ec197 6017 int ret;
a28ec197 6018
79787eaa
JM
6019 if (trans->aborted)
6020 return 0;
6021
11833d66
YZ
6022 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6023 unpin = &fs_info->freed_extents[1];
6024 else
6025 unpin = &fs_info->freed_extents[0];
6026
d397712b 6027 while (1) {
d4b450cd 6028 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6029 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6030 EXTENT_DIRTY, NULL);
d4b450cd
FM
6031 if (ret) {
6032 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6033 break;
d4b450cd 6034 }
1f3c79a2 6035
5378e607
LD
6036 if (btrfs_test_opt(root, DISCARD))
6037 ret = btrfs_discard_extent(root, start,
6038 end + 1 - start, NULL);
1f3c79a2 6039
1a5bc167 6040 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6041 unpin_extent_range(root, start, end, true);
d4b450cd 6042 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6043 cond_resched();
a28ec197 6044 }
817d52f8 6045
e20d96d6
CM
6046 return 0;
6047}
6048
b150a4f1
JB
6049static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6050 u64 owner, u64 root_objectid)
6051{
6052 struct btrfs_space_info *space_info;
6053 u64 flags;
6054
6055 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6056 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6057 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6058 else
6059 flags = BTRFS_BLOCK_GROUP_METADATA;
6060 } else {
6061 flags = BTRFS_BLOCK_GROUP_DATA;
6062 }
6063
6064 space_info = __find_space_info(fs_info, flags);
6065 BUG_ON(!space_info); /* Logic bug */
6066 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6067}
6068
6069
5d4f98a2
YZ
6070static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6071 struct btrfs_root *root,
6072 u64 bytenr, u64 num_bytes, u64 parent,
6073 u64 root_objectid, u64 owner_objectid,
6074 u64 owner_offset, int refs_to_drop,
fcebe456
JB
6075 struct btrfs_delayed_extent_op *extent_op,
6076 int no_quota)
a28ec197 6077{
e2fa7227 6078 struct btrfs_key key;
5d4f98a2 6079 struct btrfs_path *path;
1261ec42
CM
6080 struct btrfs_fs_info *info = root->fs_info;
6081 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6082 struct extent_buffer *leaf;
5d4f98a2
YZ
6083 struct btrfs_extent_item *ei;
6084 struct btrfs_extent_inline_ref *iref;
a28ec197 6085 int ret;
5d4f98a2 6086 int is_data;
952fccac
CM
6087 int extent_slot = 0;
6088 int found_extent = 0;
6089 int num_to_del = 1;
5d4f98a2
YZ
6090 u32 item_size;
6091 u64 refs;
fcebe456
JB
6092 int last_ref = 0;
6093 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
3173a18f
JB
6094 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6095 SKINNY_METADATA);
037e6390 6096
fcebe456
JB
6097 if (!info->quota_enabled || !is_fstree(root_objectid))
6098 no_quota = 1;
6099
5caf2a00 6100 path = btrfs_alloc_path();
54aa1f4d
CM
6101 if (!path)
6102 return -ENOMEM;
5f26f772 6103
3c12ac72 6104 path->reada = 1;
b9473439 6105 path->leave_spinning = 1;
5d4f98a2
YZ
6106
6107 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6108 BUG_ON(!is_data && refs_to_drop != 1);
6109
3173a18f
JB
6110 if (is_data)
6111 skinny_metadata = 0;
6112
5d4f98a2
YZ
6113 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6114 bytenr, num_bytes, parent,
6115 root_objectid, owner_objectid,
6116 owner_offset);
7bb86316 6117 if (ret == 0) {
952fccac 6118 extent_slot = path->slots[0];
5d4f98a2
YZ
6119 while (extent_slot >= 0) {
6120 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6121 extent_slot);
5d4f98a2 6122 if (key.objectid != bytenr)
952fccac 6123 break;
5d4f98a2
YZ
6124 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6125 key.offset == num_bytes) {
952fccac
CM
6126 found_extent = 1;
6127 break;
6128 }
3173a18f
JB
6129 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6130 key.offset == owner_objectid) {
6131 found_extent = 1;
6132 break;
6133 }
952fccac
CM
6134 if (path->slots[0] - extent_slot > 5)
6135 break;
5d4f98a2 6136 extent_slot--;
952fccac 6137 }
5d4f98a2
YZ
6138#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6139 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6140 if (found_extent && item_size < sizeof(*ei))
6141 found_extent = 0;
6142#endif
31840ae1 6143 if (!found_extent) {
5d4f98a2 6144 BUG_ON(iref);
56bec294 6145 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6146 NULL, refs_to_drop,
fcebe456 6147 is_data, &last_ref);
005d6427
DS
6148 if (ret) {
6149 btrfs_abort_transaction(trans, extent_root, ret);
6150 goto out;
6151 }
b3b4aa74 6152 btrfs_release_path(path);
b9473439 6153 path->leave_spinning = 1;
5d4f98a2
YZ
6154
6155 key.objectid = bytenr;
6156 key.type = BTRFS_EXTENT_ITEM_KEY;
6157 key.offset = num_bytes;
6158
3173a18f
JB
6159 if (!is_data && skinny_metadata) {
6160 key.type = BTRFS_METADATA_ITEM_KEY;
6161 key.offset = owner_objectid;
6162 }
6163
31840ae1
ZY
6164 ret = btrfs_search_slot(trans, extent_root,
6165 &key, path, -1, 1);
3173a18f
JB
6166 if (ret > 0 && skinny_metadata && path->slots[0]) {
6167 /*
6168 * Couldn't find our skinny metadata item,
6169 * see if we have ye olde extent item.
6170 */
6171 path->slots[0]--;
6172 btrfs_item_key_to_cpu(path->nodes[0], &key,
6173 path->slots[0]);
6174 if (key.objectid == bytenr &&
6175 key.type == BTRFS_EXTENT_ITEM_KEY &&
6176 key.offset == num_bytes)
6177 ret = 0;
6178 }
6179
6180 if (ret > 0 && skinny_metadata) {
6181 skinny_metadata = false;
9ce49a0b 6182 key.objectid = bytenr;
3173a18f
JB
6183 key.type = BTRFS_EXTENT_ITEM_KEY;
6184 key.offset = num_bytes;
6185 btrfs_release_path(path);
6186 ret = btrfs_search_slot(trans, extent_root,
6187 &key, path, -1, 1);
6188 }
6189
f3465ca4 6190 if (ret) {
c2cf52eb 6191 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6192 ret, bytenr);
b783e62d
JB
6193 if (ret > 0)
6194 btrfs_print_leaf(extent_root,
6195 path->nodes[0]);
f3465ca4 6196 }
005d6427
DS
6197 if (ret < 0) {
6198 btrfs_abort_transaction(trans, extent_root, ret);
6199 goto out;
6200 }
31840ae1
ZY
6201 extent_slot = path->slots[0];
6202 }
fae7f21c 6203 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6204 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6205 btrfs_err(info,
6206 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6207 bytenr, parent, root_objectid, owner_objectid,
6208 owner_offset);
c4a050bb
JB
6209 btrfs_abort_transaction(trans, extent_root, ret);
6210 goto out;
79787eaa 6211 } else {
005d6427
DS
6212 btrfs_abort_transaction(trans, extent_root, ret);
6213 goto out;
7bb86316 6214 }
5f39d397
CM
6215
6216 leaf = path->nodes[0];
5d4f98a2
YZ
6217 item_size = btrfs_item_size_nr(leaf, extent_slot);
6218#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6219 if (item_size < sizeof(*ei)) {
6220 BUG_ON(found_extent || extent_slot != path->slots[0]);
6221 ret = convert_extent_item_v0(trans, extent_root, path,
6222 owner_objectid, 0);
005d6427
DS
6223 if (ret < 0) {
6224 btrfs_abort_transaction(trans, extent_root, ret);
6225 goto out;
6226 }
5d4f98a2 6227
b3b4aa74 6228 btrfs_release_path(path);
5d4f98a2
YZ
6229 path->leave_spinning = 1;
6230
6231 key.objectid = bytenr;
6232 key.type = BTRFS_EXTENT_ITEM_KEY;
6233 key.offset = num_bytes;
6234
6235 ret = btrfs_search_slot(trans, extent_root, &key, path,
6236 -1, 1);
6237 if (ret) {
c2cf52eb 6238 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6239 ret, bytenr);
5d4f98a2
YZ
6240 btrfs_print_leaf(extent_root, path->nodes[0]);
6241 }
005d6427
DS
6242 if (ret < 0) {
6243 btrfs_abort_transaction(trans, extent_root, ret);
6244 goto out;
6245 }
6246
5d4f98a2
YZ
6247 extent_slot = path->slots[0];
6248 leaf = path->nodes[0];
6249 item_size = btrfs_item_size_nr(leaf, extent_slot);
6250 }
6251#endif
6252 BUG_ON(item_size < sizeof(*ei));
952fccac 6253 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6254 struct btrfs_extent_item);
3173a18f
JB
6255 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6256 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6257 struct btrfs_tree_block_info *bi;
6258 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6259 bi = (struct btrfs_tree_block_info *)(ei + 1);
6260 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6261 }
56bec294 6262
5d4f98a2 6263 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6264 if (refs < refs_to_drop) {
6265 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6266 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6267 ret = -EINVAL;
6268 btrfs_abort_transaction(trans, extent_root, ret);
6269 goto out;
6270 }
56bec294 6271 refs -= refs_to_drop;
5f39d397 6272
5d4f98a2 6273 if (refs > 0) {
fcebe456 6274 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5d4f98a2
YZ
6275 if (extent_op)
6276 __run_delayed_extent_op(extent_op, leaf, ei);
6277 /*
6278 * In the case of inline back ref, reference count will
6279 * be updated by remove_extent_backref
952fccac 6280 */
5d4f98a2
YZ
6281 if (iref) {
6282 BUG_ON(!found_extent);
6283 } else {
6284 btrfs_set_extent_refs(leaf, ei, refs);
6285 btrfs_mark_buffer_dirty(leaf);
6286 }
6287 if (found_extent) {
6288 ret = remove_extent_backref(trans, extent_root, path,
6289 iref, refs_to_drop,
fcebe456 6290 is_data, &last_ref);
005d6427
DS
6291 if (ret) {
6292 btrfs_abort_transaction(trans, extent_root, ret);
6293 goto out;
6294 }
952fccac 6295 }
b150a4f1
JB
6296 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6297 root_objectid);
5d4f98a2 6298 } else {
5d4f98a2
YZ
6299 if (found_extent) {
6300 BUG_ON(is_data && refs_to_drop !=
6301 extent_data_ref_count(root, path, iref));
6302 if (iref) {
6303 BUG_ON(path->slots[0] != extent_slot);
6304 } else {
6305 BUG_ON(path->slots[0] != extent_slot + 1);
6306 path->slots[0] = extent_slot;
6307 num_to_del = 2;
6308 }
78fae27e 6309 }
b9473439 6310
fcebe456 6311 last_ref = 1;
952fccac
CM
6312 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6313 num_to_del);
005d6427
DS
6314 if (ret) {
6315 btrfs_abort_transaction(trans, extent_root, ret);
6316 goto out;
6317 }
b3b4aa74 6318 btrfs_release_path(path);
21af804c 6319
5d4f98a2 6320 if (is_data) {
459931ec 6321 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6322 if (ret) {
6323 btrfs_abort_transaction(trans, extent_root, ret);
6324 goto out;
6325 }
459931ec
CM
6326 }
6327
ce93ec54 6328 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6329 if (ret) {
6330 btrfs_abort_transaction(trans, extent_root, ret);
6331 goto out;
6332 }
a28ec197 6333 }
fcebe456
JB
6334 btrfs_release_path(path);
6335
6336 /* Deal with the quota accounting */
6337 if (!ret && last_ref && !no_quota) {
6338 int mod_seq = 0;
6339
6340 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6341 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6342 mod_seq = 1;
6343
6344 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6345 bytenr, num_bytes, type,
6346 mod_seq);
6347 }
79787eaa 6348out:
5caf2a00 6349 btrfs_free_path(path);
a28ec197
CM
6350 return ret;
6351}
6352
1887be66 6353/*
f0486c68 6354 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6355 * delayed ref for that extent as well. This searches the delayed ref tree for
6356 * a given extent, and if there are no other delayed refs to be processed, it
6357 * removes it from the tree.
6358 */
6359static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6360 struct btrfs_root *root, u64 bytenr)
6361{
6362 struct btrfs_delayed_ref_head *head;
6363 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6364 int ret = 0;
1887be66
CM
6365
6366 delayed_refs = &trans->transaction->delayed_refs;
6367 spin_lock(&delayed_refs->lock);
6368 head = btrfs_find_delayed_ref_head(trans, bytenr);
6369 if (!head)
cf93da7b 6370 goto out_delayed_unlock;
1887be66 6371
d7df2c79
JB
6372 spin_lock(&head->lock);
6373 if (rb_first(&head->ref_root))
1887be66
CM
6374 goto out;
6375
5d4f98a2
YZ
6376 if (head->extent_op) {
6377 if (!head->must_insert_reserved)
6378 goto out;
78a6184a 6379 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6380 head->extent_op = NULL;
6381 }
6382
1887be66
CM
6383 /*
6384 * waiting for the lock here would deadlock. If someone else has it
6385 * locked they are already in the process of dropping it anyway
6386 */
6387 if (!mutex_trylock(&head->mutex))
6388 goto out;
6389
6390 /*
6391 * at this point we have a head with no other entries. Go
6392 * ahead and process it.
6393 */
6394 head->node.in_tree = 0;
c46effa6 6395 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6396
d7df2c79 6397 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6398
6399 /*
6400 * we don't take a ref on the node because we're removing it from the
6401 * tree, so we just steal the ref the tree was holding.
6402 */
c3e69d58 6403 delayed_refs->num_heads--;
d7df2c79 6404 if (head->processing == 0)
c3e69d58 6405 delayed_refs->num_heads_ready--;
d7df2c79
JB
6406 head->processing = 0;
6407 spin_unlock(&head->lock);
1887be66
CM
6408 spin_unlock(&delayed_refs->lock);
6409
f0486c68
YZ
6410 BUG_ON(head->extent_op);
6411 if (head->must_insert_reserved)
6412 ret = 1;
6413
6414 mutex_unlock(&head->mutex);
1887be66 6415 btrfs_put_delayed_ref(&head->node);
f0486c68 6416 return ret;
1887be66 6417out:
d7df2c79 6418 spin_unlock(&head->lock);
cf93da7b
CM
6419
6420out_delayed_unlock:
1887be66
CM
6421 spin_unlock(&delayed_refs->lock);
6422 return 0;
6423}
6424
f0486c68
YZ
6425void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6426 struct btrfs_root *root,
6427 struct extent_buffer *buf,
5581a51a 6428 u64 parent, int last_ref)
f0486c68 6429{
b150a4f1 6430 int pin = 1;
f0486c68
YZ
6431 int ret;
6432
6433 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6434 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6435 buf->start, buf->len,
6436 parent, root->root_key.objectid,
6437 btrfs_header_level(buf),
5581a51a 6438 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6439 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6440 }
6441
6442 if (!last_ref)
6443 return;
6444
f0486c68 6445 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6446 struct btrfs_block_group_cache *cache;
6447
f0486c68
YZ
6448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6449 ret = check_ref_cleanup(trans, root, buf->start);
6450 if (!ret)
37be25bc 6451 goto out;
f0486c68
YZ
6452 }
6453
6219872d
FM
6454 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6455
f0486c68
YZ
6456 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6457 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6458 btrfs_put_block_group(cache);
37be25bc 6459 goto out;
f0486c68
YZ
6460 }
6461
6462 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6463
6464 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6465 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6466 btrfs_put_block_group(cache);
0be5dc67 6467 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6468 pin = 0;
f0486c68
YZ
6469 }
6470out:
b150a4f1
JB
6471 if (pin)
6472 add_pinned_bytes(root->fs_info, buf->len,
6473 btrfs_header_level(buf),
6474 root->root_key.objectid);
6475
a826d6dc
JB
6476 /*
6477 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6478 * anymore.
6479 */
6480 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6481}
6482
79787eaa 6483/* Can return -ENOMEM */
66d7e7f0
AJ
6484int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6485 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6486 u64 owner, u64 offset, int no_quota)
925baedd
CM
6487{
6488 int ret;
66d7e7f0 6489 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6490
fccb84c9 6491 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6492 return 0;
fccb84c9 6493
b150a4f1
JB
6494 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6495
56bec294
CM
6496 /*
6497 * tree log blocks never actually go into the extent allocation
6498 * tree, just update pinning info and exit early.
56bec294 6499 */
5d4f98a2
YZ
6500 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6501 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6502 /* unlocks the pinned mutex */
11833d66 6503 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6504 ret = 0;
5d4f98a2 6505 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6506 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6507 num_bytes,
5d4f98a2 6508 parent, root_objectid, (int)owner,
fcebe456 6509 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6510 } else {
66d7e7f0
AJ
6511 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6512 num_bytes,
6513 parent, root_objectid, owner,
6514 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6515 NULL, no_quota);
56bec294 6516 }
925baedd
CM
6517 return ret;
6518}
6519
817d52f8
JB
6520/*
6521 * when we wait for progress in the block group caching, its because
6522 * our allocation attempt failed at least once. So, we must sleep
6523 * and let some progress happen before we try again.
6524 *
6525 * This function will sleep at least once waiting for new free space to
6526 * show up, and then it will check the block group free space numbers
6527 * for our min num_bytes. Another option is to have it go ahead
6528 * and look in the rbtree for a free extent of a given size, but this
6529 * is a good start.
36cce922
JB
6530 *
6531 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6532 * any of the information in this block group.
817d52f8 6533 */
36cce922 6534static noinline void
817d52f8
JB
6535wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6536 u64 num_bytes)
6537{
11833d66 6538 struct btrfs_caching_control *caching_ctl;
817d52f8 6539
11833d66
YZ
6540 caching_ctl = get_caching_control(cache);
6541 if (!caching_ctl)
36cce922 6542 return;
817d52f8 6543
11833d66 6544 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6545 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6546
6547 put_caching_control(caching_ctl);
11833d66
YZ
6548}
6549
6550static noinline int
6551wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6552{
6553 struct btrfs_caching_control *caching_ctl;
36cce922 6554 int ret = 0;
11833d66
YZ
6555
6556 caching_ctl = get_caching_control(cache);
6557 if (!caching_ctl)
36cce922 6558 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6559
6560 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6561 if (cache->cached == BTRFS_CACHE_ERROR)
6562 ret = -EIO;
11833d66 6563 put_caching_control(caching_ctl);
36cce922 6564 return ret;
817d52f8
JB
6565}
6566
31e50229 6567int __get_raid_index(u64 flags)
b742bb82 6568{
7738a53a 6569 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6570 return BTRFS_RAID_RAID10;
7738a53a 6571 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6572 return BTRFS_RAID_RAID1;
7738a53a 6573 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6574 return BTRFS_RAID_DUP;
7738a53a 6575 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6576 return BTRFS_RAID_RAID0;
53b381b3 6577 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6578 return BTRFS_RAID_RAID5;
53b381b3 6579 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6580 return BTRFS_RAID_RAID6;
7738a53a 6581
e942f883 6582 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6583}
6584
6ab0a202 6585int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6586{
31e50229 6587 return __get_raid_index(cache->flags);
7738a53a
ID
6588}
6589
6ab0a202
JM
6590static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6591 [BTRFS_RAID_RAID10] = "raid10",
6592 [BTRFS_RAID_RAID1] = "raid1",
6593 [BTRFS_RAID_DUP] = "dup",
6594 [BTRFS_RAID_RAID0] = "raid0",
6595 [BTRFS_RAID_SINGLE] = "single",
6596 [BTRFS_RAID_RAID5] = "raid5",
6597 [BTRFS_RAID_RAID6] = "raid6",
6598};
6599
1b8e5df6 6600static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6601{
6602 if (type >= BTRFS_NR_RAID_TYPES)
6603 return NULL;
6604
6605 return btrfs_raid_type_names[type];
6606}
6607
817d52f8 6608enum btrfs_loop_type {
285ff5af
JB
6609 LOOP_CACHING_NOWAIT = 0,
6610 LOOP_CACHING_WAIT = 1,
6611 LOOP_ALLOC_CHUNK = 2,
6612 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6613};
6614
e570fd27
MX
6615static inline void
6616btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6617 int delalloc)
6618{
6619 if (delalloc)
6620 down_read(&cache->data_rwsem);
6621}
6622
6623static inline void
6624btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6625 int delalloc)
6626{
6627 btrfs_get_block_group(cache);
6628 if (delalloc)
6629 down_read(&cache->data_rwsem);
6630}
6631
6632static struct btrfs_block_group_cache *
6633btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6634 struct btrfs_free_cluster *cluster,
6635 int delalloc)
6636{
6637 struct btrfs_block_group_cache *used_bg;
6638 bool locked = false;
6639again:
6640 spin_lock(&cluster->refill_lock);
6641 if (locked) {
6642 if (used_bg == cluster->block_group)
6643 return used_bg;
6644
6645 up_read(&used_bg->data_rwsem);
6646 btrfs_put_block_group(used_bg);
6647 }
6648
6649 used_bg = cluster->block_group;
6650 if (!used_bg)
6651 return NULL;
6652
6653 if (used_bg == block_group)
6654 return used_bg;
6655
6656 btrfs_get_block_group(used_bg);
6657
6658 if (!delalloc)
6659 return used_bg;
6660
6661 if (down_read_trylock(&used_bg->data_rwsem))
6662 return used_bg;
6663
6664 spin_unlock(&cluster->refill_lock);
6665 down_read(&used_bg->data_rwsem);
6666 locked = true;
6667 goto again;
6668}
6669
6670static inline void
6671btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6672 int delalloc)
6673{
6674 if (delalloc)
6675 up_read(&cache->data_rwsem);
6676 btrfs_put_block_group(cache);
6677}
6678
fec577fb
CM
6679/*
6680 * walks the btree of allocated extents and find a hole of a given size.
6681 * The key ins is changed to record the hole:
a4820398 6682 * ins->objectid == start position
62e2749e 6683 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6684 * ins->offset == the size of the hole.
fec577fb 6685 * Any available blocks before search_start are skipped.
a4820398
MX
6686 *
6687 * If there is no suitable free space, we will record the max size of
6688 * the free space extent currently.
fec577fb 6689 */
00361589 6690static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6691 u64 num_bytes, u64 empty_size,
98ed5174 6692 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6693 u64 flags, int delalloc)
fec577fb 6694{
80eb234a 6695 int ret = 0;
d397712b 6696 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6697 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6698 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6699 u64 search_start = 0;
a4820398 6700 u64 max_extent_size = 0;
239b14b3 6701 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6702 struct btrfs_space_info *space_info;
fa9c0d79 6703 int loop = 0;
b6919a58
DS
6704 int index = __get_raid_index(flags);
6705 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6706 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6707 bool failed_cluster_refill = false;
1cdda9b8 6708 bool failed_alloc = false;
67377734 6709 bool use_cluster = true;
60d2adbb 6710 bool have_caching_bg = false;
fec577fb 6711
db94535d 6712 WARN_ON(num_bytes < root->sectorsize);
962a298f 6713 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6714 ins->objectid = 0;
6715 ins->offset = 0;
b1a4d965 6716
b6919a58 6717 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6718
b6919a58 6719 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6720 if (!space_info) {
b6919a58 6721 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6722 return -ENOSPC;
6723 }
2552d17e 6724
67377734
JB
6725 /*
6726 * If the space info is for both data and metadata it means we have a
6727 * small filesystem and we can't use the clustering stuff.
6728 */
6729 if (btrfs_mixed_space_info(space_info))
6730 use_cluster = false;
6731
b6919a58 6732 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6733 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6734 if (!btrfs_test_opt(root, SSD))
6735 empty_cluster = 64 * 1024;
239b14b3
CM
6736 }
6737
b6919a58 6738 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6739 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6740 last_ptr = &root->fs_info->data_alloc_cluster;
6741 }
0f9dd46c 6742
239b14b3 6743 if (last_ptr) {
fa9c0d79
CM
6744 spin_lock(&last_ptr->lock);
6745 if (last_ptr->block_group)
6746 hint_byte = last_ptr->window_start;
6747 spin_unlock(&last_ptr->lock);
239b14b3 6748 }
fa9c0d79 6749
a061fc8d 6750 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6751 search_start = max(search_start, hint_byte);
0b86a832 6752
817d52f8 6753 if (!last_ptr)
fa9c0d79 6754 empty_cluster = 0;
fa9c0d79 6755
2552d17e 6756 if (search_start == hint_byte) {
2552d17e
JB
6757 block_group = btrfs_lookup_block_group(root->fs_info,
6758 search_start);
817d52f8
JB
6759 /*
6760 * we don't want to use the block group if it doesn't match our
6761 * allocation bits, or if its not cached.
ccf0e725
JB
6762 *
6763 * However if we are re-searching with an ideal block group
6764 * picked out then we don't care that the block group is cached.
817d52f8 6765 */
b6919a58 6766 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6767 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6768 down_read(&space_info->groups_sem);
44fb5511
CM
6769 if (list_empty(&block_group->list) ||
6770 block_group->ro) {
6771 /*
6772 * someone is removing this block group,
6773 * we can't jump into the have_block_group
6774 * target because our list pointers are not
6775 * valid
6776 */
6777 btrfs_put_block_group(block_group);
6778 up_read(&space_info->groups_sem);
ccf0e725 6779 } else {
b742bb82 6780 index = get_block_group_index(block_group);
e570fd27 6781 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6782 goto have_block_group;
ccf0e725 6783 }
2552d17e 6784 } else if (block_group) {
fa9c0d79 6785 btrfs_put_block_group(block_group);
2552d17e 6786 }
42e70e7a 6787 }
2552d17e 6788search:
60d2adbb 6789 have_caching_bg = false;
80eb234a 6790 down_read(&space_info->groups_sem);
b742bb82
YZ
6791 list_for_each_entry(block_group, &space_info->block_groups[index],
6792 list) {
6226cb0a 6793 u64 offset;
817d52f8 6794 int cached;
8a1413a2 6795
e570fd27 6796 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6797 search_start = block_group->key.objectid;
42e70e7a 6798
83a50de9
CM
6799 /*
6800 * this can happen if we end up cycling through all the
6801 * raid types, but we want to make sure we only allocate
6802 * for the proper type.
6803 */
b6919a58 6804 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6805 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6806 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6807 BTRFS_BLOCK_GROUP_RAID5 |
6808 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6809 BTRFS_BLOCK_GROUP_RAID10;
6810
6811 /*
6812 * if they asked for extra copies and this block group
6813 * doesn't provide them, bail. This does allow us to
6814 * fill raid0 from raid1.
6815 */
b6919a58 6816 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6817 goto loop;
6818 }
6819
2552d17e 6820have_block_group:
291c7d2f
JB
6821 cached = block_group_cache_done(block_group);
6822 if (unlikely(!cached)) {
f6373bf3 6823 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6824 BUG_ON(ret < 0);
6825 ret = 0;
817d52f8
JB
6826 }
6827
36cce922
JB
6828 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6829 goto loop;
ea6a478e 6830 if (unlikely(block_group->ro))
2552d17e 6831 goto loop;
0f9dd46c 6832
0a24325e 6833 /*
062c05c4
AO
6834 * Ok we want to try and use the cluster allocator, so
6835 * lets look there
0a24325e 6836 */
062c05c4 6837 if (last_ptr) {
215a63d1 6838 struct btrfs_block_group_cache *used_block_group;
8de972b4 6839 unsigned long aligned_cluster;
fa9c0d79
CM
6840 /*
6841 * the refill lock keeps out other
6842 * people trying to start a new cluster
6843 */
e570fd27
MX
6844 used_block_group = btrfs_lock_cluster(block_group,
6845 last_ptr,
6846 delalloc);
6847 if (!used_block_group)
44fb5511 6848 goto refill_cluster;
274bd4fb 6849
e570fd27
MX
6850 if (used_block_group != block_group &&
6851 (used_block_group->ro ||
6852 !block_group_bits(used_block_group, flags)))
6853 goto release_cluster;
44fb5511 6854
274bd4fb 6855 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6856 last_ptr,
6857 num_bytes,
6858 used_block_group->key.objectid,
6859 &max_extent_size);
fa9c0d79
CM
6860 if (offset) {
6861 /* we have a block, we're done */
6862 spin_unlock(&last_ptr->refill_lock);
3f7de037 6863 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6864 used_block_group,
6865 search_start, num_bytes);
215a63d1 6866 if (used_block_group != block_group) {
e570fd27
MX
6867 btrfs_release_block_group(block_group,
6868 delalloc);
215a63d1
MX
6869 block_group = used_block_group;
6870 }
fa9c0d79
CM
6871 goto checks;
6872 }
6873
274bd4fb 6874 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6875release_cluster:
062c05c4
AO
6876 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6877 * set up a new clusters, so lets just skip it
6878 * and let the allocator find whatever block
6879 * it can find. If we reach this point, we
6880 * will have tried the cluster allocator
6881 * plenty of times and not have found
6882 * anything, so we are likely way too
6883 * fragmented for the clustering stuff to find
a5f6f719
AO
6884 * anything.
6885 *
6886 * However, if the cluster is taken from the
6887 * current block group, release the cluster
6888 * first, so that we stand a better chance of
6889 * succeeding in the unclustered
6890 * allocation. */
6891 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6892 used_block_group != block_group) {
062c05c4 6893 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6894 btrfs_release_block_group(used_block_group,
6895 delalloc);
062c05c4
AO
6896 goto unclustered_alloc;
6897 }
6898
fa9c0d79
CM
6899 /*
6900 * this cluster didn't work out, free it and
6901 * start over
6902 */
6903 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6904
e570fd27
MX
6905 if (used_block_group != block_group)
6906 btrfs_release_block_group(used_block_group,
6907 delalloc);
6908refill_cluster:
a5f6f719
AO
6909 if (loop >= LOOP_NO_EMPTY_SIZE) {
6910 spin_unlock(&last_ptr->refill_lock);
6911 goto unclustered_alloc;
6912 }
6913
8de972b4
CM
6914 aligned_cluster = max_t(unsigned long,
6915 empty_cluster + empty_size,
6916 block_group->full_stripe_len);
6917
fa9c0d79 6918 /* allocate a cluster in this block group */
00361589
JB
6919 ret = btrfs_find_space_cluster(root, block_group,
6920 last_ptr, search_start,
6921 num_bytes,
6922 aligned_cluster);
fa9c0d79
CM
6923 if (ret == 0) {
6924 /*
6925 * now pull our allocation out of this
6926 * cluster
6927 */
6928 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6929 last_ptr,
6930 num_bytes,
6931 search_start,
6932 &max_extent_size);
fa9c0d79
CM
6933 if (offset) {
6934 /* we found one, proceed */
6935 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6936 trace_btrfs_reserve_extent_cluster(root,
6937 block_group, search_start,
6938 num_bytes);
fa9c0d79
CM
6939 goto checks;
6940 }
0a24325e
JB
6941 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6942 && !failed_cluster_refill) {
817d52f8
JB
6943 spin_unlock(&last_ptr->refill_lock);
6944
0a24325e 6945 failed_cluster_refill = true;
817d52f8
JB
6946 wait_block_group_cache_progress(block_group,
6947 num_bytes + empty_cluster + empty_size);
6948 goto have_block_group;
fa9c0d79 6949 }
817d52f8 6950
fa9c0d79
CM
6951 /*
6952 * at this point we either didn't find a cluster
6953 * or we weren't able to allocate a block from our
6954 * cluster. Free the cluster we've been trying
6955 * to use, and go to the next block group
6956 */
0a24325e 6957 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 6958 spin_unlock(&last_ptr->refill_lock);
0a24325e 6959 goto loop;
fa9c0d79
CM
6960 }
6961
062c05c4 6962unclustered_alloc:
a5f6f719
AO
6963 spin_lock(&block_group->free_space_ctl->tree_lock);
6964 if (cached &&
6965 block_group->free_space_ctl->free_space <
6966 num_bytes + empty_cluster + empty_size) {
a4820398
MX
6967 if (block_group->free_space_ctl->free_space >
6968 max_extent_size)
6969 max_extent_size =
6970 block_group->free_space_ctl->free_space;
a5f6f719
AO
6971 spin_unlock(&block_group->free_space_ctl->tree_lock);
6972 goto loop;
6973 }
6974 spin_unlock(&block_group->free_space_ctl->tree_lock);
6975
6226cb0a 6976 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
6977 num_bytes, empty_size,
6978 &max_extent_size);
1cdda9b8
JB
6979 /*
6980 * If we didn't find a chunk, and we haven't failed on this
6981 * block group before, and this block group is in the middle of
6982 * caching and we are ok with waiting, then go ahead and wait
6983 * for progress to be made, and set failed_alloc to true.
6984 *
6985 * If failed_alloc is true then we've already waited on this
6986 * block group once and should move on to the next block group.
6987 */
6988 if (!offset && !failed_alloc && !cached &&
6989 loop > LOOP_CACHING_NOWAIT) {
817d52f8 6990 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
6991 num_bytes + empty_size);
6992 failed_alloc = true;
817d52f8 6993 goto have_block_group;
1cdda9b8 6994 } else if (!offset) {
60d2adbb
MX
6995 if (!cached)
6996 have_caching_bg = true;
1cdda9b8 6997 goto loop;
817d52f8 6998 }
fa9c0d79 6999checks:
4e54b17a 7000 search_start = ALIGN(offset, root->stripesize);
25179201 7001
2552d17e
JB
7002 /* move on to the next group */
7003 if (search_start + num_bytes >
215a63d1
MX
7004 block_group->key.objectid + block_group->key.offset) {
7005 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7006 goto loop;
6226cb0a 7007 }
f5a31e16 7008
f0486c68 7009 if (offset < search_start)
215a63d1 7010 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7011 search_start - offset);
7012 BUG_ON(offset > search_start);
2552d17e 7013
215a63d1 7014 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7015 alloc_type, delalloc);
f0486c68 7016 if (ret == -EAGAIN) {
215a63d1 7017 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7018 goto loop;
0f9dd46c 7019 }
0b86a832 7020
f0486c68 7021 /* we are all good, lets return */
2552d17e
JB
7022 ins->objectid = search_start;
7023 ins->offset = num_bytes;
d2fb3437 7024
3f7de037
JB
7025 trace_btrfs_reserve_extent(orig_root, block_group,
7026 search_start, num_bytes);
e570fd27 7027 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7028 break;
7029loop:
0a24325e 7030 failed_cluster_refill = false;
1cdda9b8 7031 failed_alloc = false;
b742bb82 7032 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7033 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7034 }
7035 up_read(&space_info->groups_sem);
7036
60d2adbb
MX
7037 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7038 goto search;
7039
b742bb82
YZ
7040 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7041 goto search;
7042
285ff5af 7043 /*
ccf0e725
JB
7044 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7045 * caching kthreads as we move along
817d52f8
JB
7046 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7047 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7048 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7049 * again
fa9c0d79 7050 */
723bda20 7051 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7052 index = 0;
723bda20 7053 loop++;
817d52f8 7054 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7055 struct btrfs_trans_handle *trans;
f017f15f
WS
7056 int exist = 0;
7057
7058 trans = current->journal_info;
7059 if (trans)
7060 exist = 1;
7061 else
7062 trans = btrfs_join_transaction(root);
00361589 7063
00361589
JB
7064 if (IS_ERR(trans)) {
7065 ret = PTR_ERR(trans);
7066 goto out;
7067 }
7068
b6919a58 7069 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7070 CHUNK_ALLOC_FORCE);
7071 /*
7072 * Do not bail out on ENOSPC since we
7073 * can do more things.
7074 */
00361589 7075 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7076 btrfs_abort_transaction(trans,
7077 root, ret);
00361589
JB
7078 else
7079 ret = 0;
f017f15f
WS
7080 if (!exist)
7081 btrfs_end_transaction(trans, root);
00361589 7082 if (ret)
ea658bad 7083 goto out;
2552d17e
JB
7084 }
7085
723bda20
JB
7086 if (loop == LOOP_NO_EMPTY_SIZE) {
7087 empty_size = 0;
7088 empty_cluster = 0;
fa9c0d79 7089 }
723bda20
JB
7090
7091 goto search;
2552d17e
JB
7092 } else if (!ins->objectid) {
7093 ret = -ENOSPC;
d82a6f1d 7094 } else if (ins->objectid) {
80eb234a 7095 ret = 0;
be744175 7096 }
79787eaa 7097out:
a4820398
MX
7098 if (ret == -ENOSPC)
7099 ins->offset = max_extent_size;
0f70abe2 7100 return ret;
fec577fb 7101}
ec44a35c 7102
9ed74f2d
JB
7103static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7104 int dump_block_groups)
0f9dd46c
JB
7105{
7106 struct btrfs_block_group_cache *cache;
b742bb82 7107 int index = 0;
0f9dd46c 7108
9ed74f2d 7109 spin_lock(&info->lock);
efe120a0 7110 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7111 info->flags,
7112 info->total_bytes - info->bytes_used - info->bytes_pinned -
7113 info->bytes_reserved - info->bytes_readonly,
d397712b 7114 (info->full) ? "" : "not ");
efe120a0 7115 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7116 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7117 info->total_bytes, info->bytes_used, info->bytes_pinned,
7118 info->bytes_reserved, info->bytes_may_use,
7119 info->bytes_readonly);
9ed74f2d
JB
7120 spin_unlock(&info->lock);
7121
7122 if (!dump_block_groups)
7123 return;
0f9dd46c 7124
80eb234a 7125 down_read(&info->groups_sem);
b742bb82
YZ
7126again:
7127 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7128 spin_lock(&cache->lock);
efe120a0
FH
7129 printk(KERN_INFO "BTRFS: "
7130 "block group %llu has %llu bytes, "
7131 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7132 cache->key.objectid, cache->key.offset,
7133 btrfs_block_group_used(&cache->item), cache->pinned,
7134 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7135 btrfs_dump_free_space(cache, bytes);
7136 spin_unlock(&cache->lock);
7137 }
b742bb82
YZ
7138 if (++index < BTRFS_NR_RAID_TYPES)
7139 goto again;
80eb234a 7140 up_read(&info->groups_sem);
0f9dd46c 7141}
e8569813 7142
00361589 7143int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7144 u64 num_bytes, u64 min_alloc_size,
7145 u64 empty_size, u64 hint_byte,
e570fd27 7146 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7147{
9e622d6b 7148 bool final_tried = false;
b6919a58 7149 u64 flags;
fec577fb 7150 int ret;
925baedd 7151
b6919a58 7152 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7153again:
db94535d 7154 WARN_ON(num_bytes < root->sectorsize);
00361589 7155 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7156 flags, delalloc);
3b951516 7157
9e622d6b 7158 if (ret == -ENOSPC) {
a4820398
MX
7159 if (!final_tried && ins->offset) {
7160 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7161 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7162 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7163 if (num_bytes == min_alloc_size)
7164 final_tried = true;
7165 goto again;
7166 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7167 struct btrfs_space_info *sinfo;
7168
b6919a58 7169 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7170 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7171 flags, num_bytes);
53804280
JM
7172 if (sinfo)
7173 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7174 }
925baedd 7175 }
0f9dd46c
JB
7176
7177 return ret;
e6dcd2dc
CM
7178}
7179
e688b725 7180static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7181 u64 start, u64 len,
7182 int pin, int delalloc)
65b51a00 7183{
0f9dd46c 7184 struct btrfs_block_group_cache *cache;
1f3c79a2 7185 int ret = 0;
0f9dd46c 7186
0f9dd46c
JB
7187 cache = btrfs_lookup_block_group(root->fs_info, start);
7188 if (!cache) {
c2cf52eb 7189 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7190 start);
0f9dd46c
JB
7191 return -ENOSPC;
7192 }
1f3c79a2 7193
e688b725
CM
7194 if (pin)
7195 pin_down_extent(root, cache, start, len, 1);
7196 else {
dcc82f47
FM
7197 if (btrfs_test_opt(root, DISCARD))
7198 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7199 btrfs_add_free_space(cache, start, len);
e570fd27 7200 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7201 }
31193213 7202
fa9c0d79 7203 btrfs_put_block_group(cache);
817d52f8 7204
1abe9b8a 7205 trace_btrfs_reserved_extent_free(root, start, len);
7206
e6dcd2dc
CM
7207 return ret;
7208}
7209
e688b725 7210int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7211 u64 start, u64 len, int delalloc)
e688b725 7212{
e570fd27 7213 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7214}
7215
7216int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7217 u64 start, u64 len)
7218{
e570fd27 7219 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7220}
7221
5d4f98a2
YZ
7222static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7223 struct btrfs_root *root,
7224 u64 parent, u64 root_objectid,
7225 u64 flags, u64 owner, u64 offset,
7226 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7227{
7228 int ret;
5d4f98a2 7229 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7230 struct btrfs_extent_item *extent_item;
5d4f98a2 7231 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7232 struct btrfs_path *path;
5d4f98a2
YZ
7233 struct extent_buffer *leaf;
7234 int type;
7235 u32 size;
26b8003f 7236
5d4f98a2
YZ
7237 if (parent > 0)
7238 type = BTRFS_SHARED_DATA_REF_KEY;
7239 else
7240 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7241
5d4f98a2 7242 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7243
7244 path = btrfs_alloc_path();
db5b493a
TI
7245 if (!path)
7246 return -ENOMEM;
47e4bb98 7247
b9473439 7248 path->leave_spinning = 1;
5d4f98a2
YZ
7249 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7250 ins, size);
79787eaa
JM
7251 if (ret) {
7252 btrfs_free_path(path);
7253 return ret;
7254 }
0f9dd46c 7255
5d4f98a2
YZ
7256 leaf = path->nodes[0];
7257 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7258 struct btrfs_extent_item);
5d4f98a2
YZ
7259 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7260 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7261 btrfs_set_extent_flags(leaf, extent_item,
7262 flags | BTRFS_EXTENT_FLAG_DATA);
7263
7264 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7265 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7266 if (parent > 0) {
7267 struct btrfs_shared_data_ref *ref;
7268 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7269 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7270 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7271 } else {
7272 struct btrfs_extent_data_ref *ref;
7273 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7274 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7275 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7276 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7277 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7278 }
47e4bb98
CM
7279
7280 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7281 btrfs_free_path(path);
f510cfec 7282
fcebe456
JB
7283 /* Always set parent to 0 here since its exclusive anyway. */
7284 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7285 ins->objectid, ins->offset,
7286 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7287 if (ret)
7288 return ret;
7289
ce93ec54 7290 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7291 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7292 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7293 ins->objectid, ins->offset);
f5947066
CM
7294 BUG();
7295 }
0be5dc67 7296 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7297 return ret;
7298}
7299
5d4f98a2
YZ
7300static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7301 struct btrfs_root *root,
7302 u64 parent, u64 root_objectid,
7303 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7304 int level, struct btrfs_key *ins,
7305 int no_quota)
e6dcd2dc
CM
7306{
7307 int ret;
5d4f98a2
YZ
7308 struct btrfs_fs_info *fs_info = root->fs_info;
7309 struct btrfs_extent_item *extent_item;
7310 struct btrfs_tree_block_info *block_info;
7311 struct btrfs_extent_inline_ref *iref;
7312 struct btrfs_path *path;
7313 struct extent_buffer *leaf;
3173a18f 7314 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7315 u64 num_bytes = ins->offset;
3173a18f
JB
7316 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7317 SKINNY_METADATA);
7318
7319 if (!skinny_metadata)
7320 size += sizeof(*block_info);
1c2308f8 7321
5d4f98a2 7322 path = btrfs_alloc_path();
857cc2fc
JB
7323 if (!path) {
7324 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7325 root->nodesize);
d8926bb3 7326 return -ENOMEM;
857cc2fc 7327 }
56bec294 7328
5d4f98a2
YZ
7329 path->leave_spinning = 1;
7330 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7331 ins, size);
79787eaa 7332 if (ret) {
dd825259 7333 btrfs_free_path(path);
857cc2fc 7334 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7335 root->nodesize);
79787eaa
JM
7336 return ret;
7337 }
5d4f98a2
YZ
7338
7339 leaf = path->nodes[0];
7340 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7341 struct btrfs_extent_item);
7342 btrfs_set_extent_refs(leaf, extent_item, 1);
7343 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7344 btrfs_set_extent_flags(leaf, extent_item,
7345 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7346
3173a18f
JB
7347 if (skinny_metadata) {
7348 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7349 num_bytes = root->nodesize;
3173a18f
JB
7350 } else {
7351 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7352 btrfs_set_tree_block_key(leaf, block_info, key);
7353 btrfs_set_tree_block_level(leaf, block_info, level);
7354 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7355 }
5d4f98a2 7356
5d4f98a2
YZ
7357 if (parent > 0) {
7358 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7359 btrfs_set_extent_inline_ref_type(leaf, iref,
7360 BTRFS_SHARED_BLOCK_REF_KEY);
7361 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7362 } else {
7363 btrfs_set_extent_inline_ref_type(leaf, iref,
7364 BTRFS_TREE_BLOCK_REF_KEY);
7365 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7366 }
7367
7368 btrfs_mark_buffer_dirty(leaf);
7369 btrfs_free_path(path);
7370
fcebe456
JB
7371 if (!no_quota) {
7372 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7373 ins->objectid, num_bytes,
7374 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7375 if (ret)
7376 return ret;
7377 }
7378
ce93ec54
JB
7379 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7380 1);
79787eaa 7381 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7382 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7383 ins->objectid, ins->offset);
5d4f98a2
YZ
7384 BUG();
7385 }
0be5dc67 7386
707e8a07 7387 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7388 return ret;
7389}
7390
7391int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7392 struct btrfs_root *root,
7393 u64 root_objectid, u64 owner,
7394 u64 offset, struct btrfs_key *ins)
7395{
7396 int ret;
7397
7398 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7399
66d7e7f0
AJ
7400 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7401 ins->offset, 0,
7402 root_objectid, owner, offset,
7403 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7404 return ret;
7405}
e02119d5
CM
7406
7407/*
7408 * this is used by the tree logging recovery code. It records that
7409 * an extent has been allocated and makes sure to clear the free
7410 * space cache bits as well
7411 */
5d4f98a2
YZ
7412int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7413 struct btrfs_root *root,
7414 u64 root_objectid, u64 owner, u64 offset,
7415 struct btrfs_key *ins)
e02119d5
CM
7416{
7417 int ret;
7418 struct btrfs_block_group_cache *block_group;
11833d66 7419
8c2a1a30
JB
7420 /*
7421 * Mixed block groups will exclude before processing the log so we only
7422 * need to do the exlude dance if this fs isn't mixed.
7423 */
7424 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7425 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7426 if (ret)
8c2a1a30 7427 return ret;
11833d66
YZ
7428 }
7429
8c2a1a30
JB
7430 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7431 if (!block_group)
7432 return -EINVAL;
7433
fb25e914 7434 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7435 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7436 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7437 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7438 0, owner, offset, ins, 1);
b50c6e25 7439 btrfs_put_block_group(block_group);
e02119d5
CM
7440 return ret;
7441}
7442
48a3b636
ES
7443static struct extent_buffer *
7444btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7445 u64 bytenr, int level)
65b51a00
CM
7446{
7447 struct extent_buffer *buf;
7448
a83fffb7 7449 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7450 if (!buf)
7451 return ERR_PTR(-ENOMEM);
7452 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7453 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7454 btrfs_tree_lock(buf);
01d58472 7455 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7456 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7457
7458 btrfs_set_lock_blocking(buf);
65b51a00 7459 btrfs_set_buffer_uptodate(buf);
b4ce94de 7460
d0c803c4 7461 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7462 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7463 /*
7464 * we allow two log transactions at a time, use different
7465 * EXENT bit to differentiate dirty pages.
7466 */
656f30db 7467 if (buf->log_index == 0)
8cef4e16
YZ
7468 set_extent_dirty(&root->dirty_log_pages, buf->start,
7469 buf->start + buf->len - 1, GFP_NOFS);
7470 else
7471 set_extent_new(&root->dirty_log_pages, buf->start,
7472 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7473 } else {
656f30db 7474 buf->log_index = -1;
d0c803c4 7475 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7476 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7477 }
65b51a00 7478 trans->blocks_used++;
b4ce94de 7479 /* this returns a buffer locked for blocking */
65b51a00
CM
7480 return buf;
7481}
7482
f0486c68
YZ
7483static struct btrfs_block_rsv *
7484use_block_rsv(struct btrfs_trans_handle *trans,
7485 struct btrfs_root *root, u32 blocksize)
7486{
7487 struct btrfs_block_rsv *block_rsv;
68a82277 7488 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7489 int ret;
d88033db 7490 bool global_updated = false;
f0486c68
YZ
7491
7492 block_rsv = get_block_rsv(trans, root);
7493
b586b323
MX
7494 if (unlikely(block_rsv->size == 0))
7495 goto try_reserve;
d88033db 7496again:
f0486c68
YZ
7497 ret = block_rsv_use_bytes(block_rsv, blocksize);
7498 if (!ret)
7499 return block_rsv;
7500
b586b323
MX
7501 if (block_rsv->failfast)
7502 return ERR_PTR(ret);
7503
d88033db
MX
7504 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7505 global_updated = true;
7506 update_global_block_rsv(root->fs_info);
7507 goto again;
7508 }
7509
b586b323
MX
7510 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7511 static DEFINE_RATELIMIT_STATE(_rs,
7512 DEFAULT_RATELIMIT_INTERVAL * 10,
7513 /*DEFAULT_RATELIMIT_BURST*/ 1);
7514 if (__ratelimit(&_rs))
7515 WARN(1, KERN_DEBUG
efe120a0 7516 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7517 }
7518try_reserve:
7519 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7520 BTRFS_RESERVE_NO_FLUSH);
7521 if (!ret)
7522 return block_rsv;
7523 /*
7524 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7525 * the global reserve if its space type is the same as the global
7526 * reservation.
b586b323 7527 */
5881cfc9
MX
7528 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7529 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7530 ret = block_rsv_use_bytes(global_rsv, blocksize);
7531 if (!ret)
7532 return global_rsv;
7533 }
7534 return ERR_PTR(ret);
f0486c68
YZ
7535}
7536
8c2a3ca2
JB
7537static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7538 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7539{
7540 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7541 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7542}
7543
fec577fb 7544/*
f0486c68
YZ
7545 * finds a free extent and does all the dirty work required for allocation
7546 * returns the key for the extent through ins, and a tree buffer for
7547 * the first block of the extent through buf.
7548 *
67b7859e 7549 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7550 */
4d75f8a9
DS
7551struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7552 struct btrfs_root *root,
5d4f98a2
YZ
7553 u64 parent, u64 root_objectid,
7554 struct btrfs_disk_key *key, int level,
5581a51a 7555 u64 hint, u64 empty_size)
fec577fb 7556{
e2fa7227 7557 struct btrfs_key ins;
f0486c68 7558 struct btrfs_block_rsv *block_rsv;
5f39d397 7559 struct extent_buffer *buf;
67b7859e 7560 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7561 u64 flags = 0;
7562 int ret;
4d75f8a9 7563 u32 blocksize = root->nodesize;
3173a18f
JB
7564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7565 SKINNY_METADATA);
fec577fb 7566
fccb84c9 7567 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7568 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7569 level);
faa2dbf0
JB
7570 if (!IS_ERR(buf))
7571 root->alloc_bytenr += blocksize;
7572 return buf;
7573 }
fccb84c9 7574
f0486c68
YZ
7575 block_rsv = use_block_rsv(trans, root, blocksize);
7576 if (IS_ERR(block_rsv))
7577 return ERR_CAST(block_rsv);
7578
00361589 7579 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7580 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7581 if (ret)
7582 goto out_unuse;
55c69072 7583
fe864576 7584 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7585 if (IS_ERR(buf)) {
7586 ret = PTR_ERR(buf);
7587 goto out_free_reserved;
7588 }
f0486c68
YZ
7589
7590 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7591 if (parent == 0)
7592 parent = ins.objectid;
7593 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7594 } else
7595 BUG_ON(parent > 0);
7596
7597 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7598 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7599 if (!extent_op) {
7600 ret = -ENOMEM;
7601 goto out_free_buf;
7602 }
f0486c68
YZ
7603 if (key)
7604 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7605 else
7606 memset(&extent_op->key, 0, sizeof(extent_op->key));
7607 extent_op->flags_to_set = flags;
3173a18f
JB
7608 if (skinny_metadata)
7609 extent_op->update_key = 0;
7610 else
7611 extent_op->update_key = 1;
f0486c68
YZ
7612 extent_op->update_flags = 1;
7613 extent_op->is_data = 0;
b1c79e09 7614 extent_op->level = level;
f0486c68 7615
66d7e7f0 7616 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7617 ins.objectid, ins.offset,
7618 parent, root_objectid, level,
7619 BTRFS_ADD_DELAYED_EXTENT,
7620 extent_op, 0);
7621 if (ret)
7622 goto out_free_delayed;
f0486c68 7623 }
fec577fb 7624 return buf;
67b7859e
OS
7625
7626out_free_delayed:
7627 btrfs_free_delayed_extent_op(extent_op);
7628out_free_buf:
7629 free_extent_buffer(buf);
7630out_free_reserved:
7631 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7632out_unuse:
7633 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7634 return ERR_PTR(ret);
fec577fb 7635}
a28ec197 7636
2c47e605
YZ
7637struct walk_control {
7638 u64 refs[BTRFS_MAX_LEVEL];
7639 u64 flags[BTRFS_MAX_LEVEL];
7640 struct btrfs_key update_progress;
7641 int stage;
7642 int level;
7643 int shared_level;
7644 int update_ref;
7645 int keep_locks;
1c4850e2
YZ
7646 int reada_slot;
7647 int reada_count;
66d7e7f0 7648 int for_reloc;
2c47e605
YZ
7649};
7650
7651#define DROP_REFERENCE 1
7652#define UPDATE_BACKREF 2
7653
1c4850e2
YZ
7654static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7655 struct btrfs_root *root,
7656 struct walk_control *wc,
7657 struct btrfs_path *path)
6407bf6d 7658{
1c4850e2
YZ
7659 u64 bytenr;
7660 u64 generation;
7661 u64 refs;
94fcca9f 7662 u64 flags;
5d4f98a2 7663 u32 nritems;
1c4850e2
YZ
7664 u32 blocksize;
7665 struct btrfs_key key;
7666 struct extent_buffer *eb;
6407bf6d 7667 int ret;
1c4850e2
YZ
7668 int slot;
7669 int nread = 0;
6407bf6d 7670
1c4850e2
YZ
7671 if (path->slots[wc->level] < wc->reada_slot) {
7672 wc->reada_count = wc->reada_count * 2 / 3;
7673 wc->reada_count = max(wc->reada_count, 2);
7674 } else {
7675 wc->reada_count = wc->reada_count * 3 / 2;
7676 wc->reada_count = min_t(int, wc->reada_count,
7677 BTRFS_NODEPTRS_PER_BLOCK(root));
7678 }
7bb86316 7679
1c4850e2
YZ
7680 eb = path->nodes[wc->level];
7681 nritems = btrfs_header_nritems(eb);
707e8a07 7682 blocksize = root->nodesize;
bd56b302 7683
1c4850e2
YZ
7684 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7685 if (nread >= wc->reada_count)
7686 break;
bd56b302 7687
2dd3e67b 7688 cond_resched();
1c4850e2
YZ
7689 bytenr = btrfs_node_blockptr(eb, slot);
7690 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7691
1c4850e2
YZ
7692 if (slot == path->slots[wc->level])
7693 goto reada;
5d4f98a2 7694
1c4850e2
YZ
7695 if (wc->stage == UPDATE_BACKREF &&
7696 generation <= root->root_key.offset)
bd56b302
CM
7697 continue;
7698
94fcca9f 7699 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7700 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7701 wc->level - 1, 1, &refs,
7702 &flags);
79787eaa
JM
7703 /* We don't care about errors in readahead. */
7704 if (ret < 0)
7705 continue;
94fcca9f
YZ
7706 BUG_ON(refs == 0);
7707
1c4850e2 7708 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7709 if (refs == 1)
7710 goto reada;
bd56b302 7711
94fcca9f
YZ
7712 if (wc->level == 1 &&
7713 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7714 continue;
1c4850e2
YZ
7715 if (!wc->update_ref ||
7716 generation <= root->root_key.offset)
7717 continue;
7718 btrfs_node_key_to_cpu(eb, &key, slot);
7719 ret = btrfs_comp_cpu_keys(&key,
7720 &wc->update_progress);
7721 if (ret < 0)
7722 continue;
94fcca9f
YZ
7723 } else {
7724 if (wc->level == 1 &&
7725 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7726 continue;
6407bf6d 7727 }
1c4850e2 7728reada:
d3e46fea 7729 readahead_tree_block(root, bytenr);
1c4850e2 7730 nread++;
20524f02 7731 }
1c4850e2 7732 wc->reada_slot = slot;
20524f02 7733}
2c47e605 7734
1152651a
MF
7735static int account_leaf_items(struct btrfs_trans_handle *trans,
7736 struct btrfs_root *root,
7737 struct extent_buffer *eb)
7738{
7739 int nr = btrfs_header_nritems(eb);
7740 int i, extent_type, ret;
7741 struct btrfs_key key;
7742 struct btrfs_file_extent_item *fi;
7743 u64 bytenr, num_bytes;
7744
7745 for (i = 0; i < nr; i++) {
7746 btrfs_item_key_to_cpu(eb, &key, i);
7747
7748 if (key.type != BTRFS_EXTENT_DATA_KEY)
7749 continue;
7750
7751 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7752 /* filter out non qgroup-accountable extents */
7753 extent_type = btrfs_file_extent_type(eb, fi);
7754
7755 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7756 continue;
7757
7758 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7759 if (!bytenr)
7760 continue;
7761
7762 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7763
7764 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7765 root->objectid,
7766 bytenr, num_bytes,
7767 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7768 if (ret)
7769 return ret;
7770 }
7771 return 0;
7772}
7773
7774/*
7775 * Walk up the tree from the bottom, freeing leaves and any interior
7776 * nodes which have had all slots visited. If a node (leaf or
7777 * interior) is freed, the node above it will have it's slot
7778 * incremented. The root node will never be freed.
7779 *
7780 * At the end of this function, we should have a path which has all
7781 * slots incremented to the next position for a search. If we need to
7782 * read a new node it will be NULL and the node above it will have the
7783 * correct slot selected for a later read.
7784 *
7785 * If we increment the root nodes slot counter past the number of
7786 * elements, 1 is returned to signal completion of the search.
7787 */
7788static int adjust_slots_upwards(struct btrfs_root *root,
7789 struct btrfs_path *path, int root_level)
7790{
7791 int level = 0;
7792 int nr, slot;
7793 struct extent_buffer *eb;
7794
7795 if (root_level == 0)
7796 return 1;
7797
7798 while (level <= root_level) {
7799 eb = path->nodes[level];
7800 nr = btrfs_header_nritems(eb);
7801 path->slots[level]++;
7802 slot = path->slots[level];
7803 if (slot >= nr || level == 0) {
7804 /*
7805 * Don't free the root - we will detect this
7806 * condition after our loop and return a
7807 * positive value for caller to stop walking the tree.
7808 */
7809 if (level != root_level) {
7810 btrfs_tree_unlock_rw(eb, path->locks[level]);
7811 path->locks[level] = 0;
7812
7813 free_extent_buffer(eb);
7814 path->nodes[level] = NULL;
7815 path->slots[level] = 0;
7816 }
7817 } else {
7818 /*
7819 * We have a valid slot to walk back down
7820 * from. Stop here so caller can process these
7821 * new nodes.
7822 */
7823 break;
7824 }
7825
7826 level++;
7827 }
7828
7829 eb = path->nodes[root_level];
7830 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7831 return 1;
7832
7833 return 0;
7834}
7835
7836/*
7837 * root_eb is the subtree root and is locked before this function is called.
7838 */
7839static int account_shared_subtree(struct btrfs_trans_handle *trans,
7840 struct btrfs_root *root,
7841 struct extent_buffer *root_eb,
7842 u64 root_gen,
7843 int root_level)
7844{
7845 int ret = 0;
7846 int level;
7847 struct extent_buffer *eb = root_eb;
7848 struct btrfs_path *path = NULL;
7849
7850 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7851 BUG_ON(root_eb == NULL);
7852
7853 if (!root->fs_info->quota_enabled)
7854 return 0;
7855
7856 if (!extent_buffer_uptodate(root_eb)) {
7857 ret = btrfs_read_buffer(root_eb, root_gen);
7858 if (ret)
7859 goto out;
7860 }
7861
7862 if (root_level == 0) {
7863 ret = account_leaf_items(trans, root, root_eb);
7864 goto out;
7865 }
7866
7867 path = btrfs_alloc_path();
7868 if (!path)
7869 return -ENOMEM;
7870
7871 /*
7872 * Walk down the tree. Missing extent blocks are filled in as
7873 * we go. Metadata is accounted every time we read a new
7874 * extent block.
7875 *
7876 * When we reach a leaf, we account for file extent items in it,
7877 * walk back up the tree (adjusting slot pointers as we go)
7878 * and restart the search process.
7879 */
7880 extent_buffer_get(root_eb); /* For path */
7881 path->nodes[root_level] = root_eb;
7882 path->slots[root_level] = 0;
7883 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7884walk_down:
7885 level = root_level;
7886 while (level >= 0) {
7887 if (path->nodes[level] == NULL) {
1152651a
MF
7888 int parent_slot;
7889 u64 child_gen;
7890 u64 child_bytenr;
7891
7892 /* We need to get child blockptr/gen from
7893 * parent before we can read it. */
7894 eb = path->nodes[level + 1];
7895 parent_slot = path->slots[level + 1];
7896 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7897 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7898
ce86cd59 7899 eb = read_tree_block(root, child_bytenr, child_gen);
1152651a
MF
7900 if (!eb || !extent_buffer_uptodate(eb)) {
7901 ret = -EIO;
7902 goto out;
7903 }
7904
7905 path->nodes[level] = eb;
7906 path->slots[level] = 0;
7907
7908 btrfs_tree_read_lock(eb);
7909 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7910 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7911
7912 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7913 root->objectid,
7914 child_bytenr,
ce86cd59 7915 root->nodesize,
1152651a
MF
7916 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7917 0);
7918 if (ret)
7919 goto out;
7920
7921 }
7922
7923 if (level == 0) {
7924 ret = account_leaf_items(trans, root, path->nodes[level]);
7925 if (ret)
7926 goto out;
7927
7928 /* Nonzero return here means we completed our search */
7929 ret = adjust_slots_upwards(root, path, root_level);
7930 if (ret)
7931 break;
7932
7933 /* Restart search with new slots */
7934 goto walk_down;
7935 }
7936
7937 level--;
7938 }
7939
7940 ret = 0;
7941out:
7942 btrfs_free_path(path);
7943
7944 return ret;
7945}
7946
f82d02d9 7947/*
2c016dc2 7948 * helper to process tree block while walking down the tree.
2c47e605 7949 *
2c47e605
YZ
7950 * when wc->stage == UPDATE_BACKREF, this function updates
7951 * back refs for pointers in the block.
7952 *
7953 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7954 */
2c47e605 7955static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7956 struct btrfs_root *root,
2c47e605 7957 struct btrfs_path *path,
94fcca9f 7958 struct walk_control *wc, int lookup_info)
f82d02d9 7959{
2c47e605
YZ
7960 int level = wc->level;
7961 struct extent_buffer *eb = path->nodes[level];
2c47e605 7962 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
7963 int ret;
7964
2c47e605
YZ
7965 if (wc->stage == UPDATE_BACKREF &&
7966 btrfs_header_owner(eb) != root->root_key.objectid)
7967 return 1;
f82d02d9 7968
2c47e605
YZ
7969 /*
7970 * when reference count of tree block is 1, it won't increase
7971 * again. once full backref flag is set, we never clear it.
7972 */
94fcca9f
YZ
7973 if (lookup_info &&
7974 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7975 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
7976 BUG_ON(!path->locks[level]);
7977 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 7978 eb->start, level, 1,
2c47e605
YZ
7979 &wc->refs[level],
7980 &wc->flags[level]);
79787eaa
JM
7981 BUG_ON(ret == -ENOMEM);
7982 if (ret)
7983 return ret;
2c47e605
YZ
7984 BUG_ON(wc->refs[level] == 0);
7985 }
5d4f98a2 7986
2c47e605
YZ
7987 if (wc->stage == DROP_REFERENCE) {
7988 if (wc->refs[level] > 1)
7989 return 1;
f82d02d9 7990
2c47e605 7991 if (path->locks[level] && !wc->keep_locks) {
bd681513 7992 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7993 path->locks[level] = 0;
7994 }
7995 return 0;
7996 }
f82d02d9 7997
2c47e605
YZ
7998 /* wc->stage == UPDATE_BACKREF */
7999 if (!(wc->flags[level] & flag)) {
8000 BUG_ON(!path->locks[level]);
e339a6b0 8001 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8002 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8003 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8004 BUG_ON(ret); /* -ENOMEM */
2c47e605 8005 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8006 eb->len, flag,
8007 btrfs_header_level(eb), 0);
79787eaa 8008 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8009 wc->flags[level] |= flag;
8010 }
8011
8012 /*
8013 * the block is shared by multiple trees, so it's not good to
8014 * keep the tree lock
8015 */
8016 if (path->locks[level] && level > 0) {
bd681513 8017 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8018 path->locks[level] = 0;
8019 }
8020 return 0;
8021}
8022
1c4850e2 8023/*
2c016dc2 8024 * helper to process tree block pointer.
1c4850e2
YZ
8025 *
8026 * when wc->stage == DROP_REFERENCE, this function checks
8027 * reference count of the block pointed to. if the block
8028 * is shared and we need update back refs for the subtree
8029 * rooted at the block, this function changes wc->stage to
8030 * UPDATE_BACKREF. if the block is shared and there is no
8031 * need to update back, this function drops the reference
8032 * to the block.
8033 *
8034 * NOTE: return value 1 means we should stop walking down.
8035 */
8036static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8037 struct btrfs_root *root,
8038 struct btrfs_path *path,
94fcca9f 8039 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8040{
8041 u64 bytenr;
8042 u64 generation;
8043 u64 parent;
8044 u32 blocksize;
8045 struct btrfs_key key;
8046 struct extent_buffer *next;
8047 int level = wc->level;
8048 int reada = 0;
8049 int ret = 0;
1152651a 8050 bool need_account = false;
1c4850e2
YZ
8051
8052 generation = btrfs_node_ptr_generation(path->nodes[level],
8053 path->slots[level]);
8054 /*
8055 * if the lower level block was created before the snapshot
8056 * was created, we know there is no need to update back refs
8057 * for the subtree
8058 */
8059 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8060 generation <= root->root_key.offset) {
8061 *lookup_info = 1;
1c4850e2 8062 return 1;
94fcca9f 8063 }
1c4850e2
YZ
8064
8065 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8066 blocksize = root->nodesize;
1c4850e2 8067
01d58472 8068 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8069 if (!next) {
a83fffb7 8070 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8071 if (!next)
8072 return -ENOMEM;
b2aaaa3b
JB
8073 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8074 level - 1);
1c4850e2
YZ
8075 reada = 1;
8076 }
8077 btrfs_tree_lock(next);
8078 btrfs_set_lock_blocking(next);
8079
3173a18f 8080 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8081 &wc->refs[level - 1],
8082 &wc->flags[level - 1]);
79787eaa
JM
8083 if (ret < 0) {
8084 btrfs_tree_unlock(next);
8085 return ret;
8086 }
8087
c2cf52eb
SK
8088 if (unlikely(wc->refs[level - 1] == 0)) {
8089 btrfs_err(root->fs_info, "Missing references.");
8090 BUG();
8091 }
94fcca9f 8092 *lookup_info = 0;
1c4850e2 8093
94fcca9f 8094 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8095 if (wc->refs[level - 1] > 1) {
1152651a 8096 need_account = true;
94fcca9f
YZ
8097 if (level == 1 &&
8098 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8099 goto skip;
8100
1c4850e2
YZ
8101 if (!wc->update_ref ||
8102 generation <= root->root_key.offset)
8103 goto skip;
8104
8105 btrfs_node_key_to_cpu(path->nodes[level], &key,
8106 path->slots[level]);
8107 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8108 if (ret < 0)
8109 goto skip;
8110
8111 wc->stage = UPDATE_BACKREF;
8112 wc->shared_level = level - 1;
8113 }
94fcca9f
YZ
8114 } else {
8115 if (level == 1 &&
8116 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8117 goto skip;
1c4850e2
YZ
8118 }
8119
b9fab919 8120 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8121 btrfs_tree_unlock(next);
8122 free_extent_buffer(next);
8123 next = NULL;
94fcca9f 8124 *lookup_info = 1;
1c4850e2
YZ
8125 }
8126
8127 if (!next) {
8128 if (reada && level == 1)
8129 reada_walk_down(trans, root, wc, path);
ce86cd59 8130 next = read_tree_block(root, bytenr, generation);
416bc658
JB
8131 if (!next || !extent_buffer_uptodate(next)) {
8132 free_extent_buffer(next);
97d9a8a4 8133 return -EIO;
416bc658 8134 }
1c4850e2
YZ
8135 btrfs_tree_lock(next);
8136 btrfs_set_lock_blocking(next);
8137 }
8138
8139 level--;
8140 BUG_ON(level != btrfs_header_level(next));
8141 path->nodes[level] = next;
8142 path->slots[level] = 0;
bd681513 8143 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8144 wc->level = level;
8145 if (wc->level == 1)
8146 wc->reada_slot = 0;
8147 return 0;
8148skip:
8149 wc->refs[level - 1] = 0;
8150 wc->flags[level - 1] = 0;
94fcca9f
YZ
8151 if (wc->stage == DROP_REFERENCE) {
8152 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8153 parent = path->nodes[level]->start;
8154 } else {
8155 BUG_ON(root->root_key.objectid !=
8156 btrfs_header_owner(path->nodes[level]));
8157 parent = 0;
8158 }
1c4850e2 8159
1152651a
MF
8160 if (need_account) {
8161 ret = account_shared_subtree(trans, root, next,
8162 generation, level - 1);
8163 if (ret) {
8164 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8165 "%d accounting shared subtree. Quota "
8166 "is out of sync, rescan required.\n",
8167 root->fs_info->sb->s_id, ret);
8168 }
8169 }
94fcca9f 8170 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8171 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8172 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8173 }
1c4850e2
YZ
8174 btrfs_tree_unlock(next);
8175 free_extent_buffer(next);
94fcca9f 8176 *lookup_info = 1;
1c4850e2
YZ
8177 return 1;
8178}
8179
2c47e605 8180/*
2c016dc2 8181 * helper to process tree block while walking up the tree.
2c47e605
YZ
8182 *
8183 * when wc->stage == DROP_REFERENCE, this function drops
8184 * reference count on the block.
8185 *
8186 * when wc->stage == UPDATE_BACKREF, this function changes
8187 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8188 * to UPDATE_BACKREF previously while processing the block.
8189 *
8190 * NOTE: return value 1 means we should stop walking up.
8191 */
8192static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8193 struct btrfs_root *root,
8194 struct btrfs_path *path,
8195 struct walk_control *wc)
8196{
f0486c68 8197 int ret;
2c47e605
YZ
8198 int level = wc->level;
8199 struct extent_buffer *eb = path->nodes[level];
8200 u64 parent = 0;
8201
8202 if (wc->stage == UPDATE_BACKREF) {
8203 BUG_ON(wc->shared_level < level);
8204 if (level < wc->shared_level)
8205 goto out;
8206
2c47e605
YZ
8207 ret = find_next_key(path, level + 1, &wc->update_progress);
8208 if (ret > 0)
8209 wc->update_ref = 0;
8210
8211 wc->stage = DROP_REFERENCE;
8212 wc->shared_level = -1;
8213 path->slots[level] = 0;
8214
8215 /*
8216 * check reference count again if the block isn't locked.
8217 * we should start walking down the tree again if reference
8218 * count is one.
8219 */
8220 if (!path->locks[level]) {
8221 BUG_ON(level == 0);
8222 btrfs_tree_lock(eb);
8223 btrfs_set_lock_blocking(eb);
bd681513 8224 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8225
8226 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8227 eb->start, level, 1,
2c47e605
YZ
8228 &wc->refs[level],
8229 &wc->flags[level]);
79787eaa
JM
8230 if (ret < 0) {
8231 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8232 path->locks[level] = 0;
79787eaa
JM
8233 return ret;
8234 }
2c47e605
YZ
8235 BUG_ON(wc->refs[level] == 0);
8236 if (wc->refs[level] == 1) {
bd681513 8237 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8238 path->locks[level] = 0;
2c47e605
YZ
8239 return 1;
8240 }
f82d02d9 8241 }
2c47e605 8242 }
f82d02d9 8243
2c47e605
YZ
8244 /* wc->stage == DROP_REFERENCE */
8245 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8246
2c47e605
YZ
8247 if (wc->refs[level] == 1) {
8248 if (level == 0) {
8249 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8250 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8251 else
e339a6b0 8252 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8253 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8254 ret = account_leaf_items(trans, root, eb);
8255 if (ret) {
8256 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8257 "%d accounting leaf items. Quota "
8258 "is out of sync, rescan required.\n",
8259 root->fs_info->sb->s_id, ret);
8260 }
2c47e605
YZ
8261 }
8262 /* make block locked assertion in clean_tree_block happy */
8263 if (!path->locks[level] &&
8264 btrfs_header_generation(eb) == trans->transid) {
8265 btrfs_tree_lock(eb);
8266 btrfs_set_lock_blocking(eb);
bd681513 8267 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8268 }
01d58472 8269 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8270 }
8271
8272 if (eb == root->node) {
8273 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8274 parent = eb->start;
8275 else
8276 BUG_ON(root->root_key.objectid !=
8277 btrfs_header_owner(eb));
8278 } else {
8279 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8280 parent = path->nodes[level + 1]->start;
8281 else
8282 BUG_ON(root->root_key.objectid !=
8283 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8284 }
f82d02d9 8285
5581a51a 8286 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8287out:
8288 wc->refs[level] = 0;
8289 wc->flags[level] = 0;
f0486c68 8290 return 0;
2c47e605
YZ
8291}
8292
8293static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8294 struct btrfs_root *root,
8295 struct btrfs_path *path,
8296 struct walk_control *wc)
8297{
2c47e605 8298 int level = wc->level;
94fcca9f 8299 int lookup_info = 1;
2c47e605
YZ
8300 int ret;
8301
8302 while (level >= 0) {
94fcca9f 8303 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8304 if (ret > 0)
8305 break;
8306
8307 if (level == 0)
8308 break;
8309
7a7965f8
YZ
8310 if (path->slots[level] >=
8311 btrfs_header_nritems(path->nodes[level]))
8312 break;
8313
94fcca9f 8314 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8315 if (ret > 0) {
8316 path->slots[level]++;
8317 continue;
90d2c51d
MX
8318 } else if (ret < 0)
8319 return ret;
1c4850e2 8320 level = wc->level;
f82d02d9 8321 }
f82d02d9
YZ
8322 return 0;
8323}
8324
d397712b 8325static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8326 struct btrfs_root *root,
f82d02d9 8327 struct btrfs_path *path,
2c47e605 8328 struct walk_control *wc, int max_level)
20524f02 8329{
2c47e605 8330 int level = wc->level;
20524f02 8331 int ret;
9f3a7427 8332
2c47e605
YZ
8333 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8334 while (level < max_level && path->nodes[level]) {
8335 wc->level = level;
8336 if (path->slots[level] + 1 <
8337 btrfs_header_nritems(path->nodes[level])) {
8338 path->slots[level]++;
20524f02
CM
8339 return 0;
8340 } else {
2c47e605
YZ
8341 ret = walk_up_proc(trans, root, path, wc);
8342 if (ret > 0)
8343 return 0;
bd56b302 8344
2c47e605 8345 if (path->locks[level]) {
bd681513
CM
8346 btrfs_tree_unlock_rw(path->nodes[level],
8347 path->locks[level]);
2c47e605 8348 path->locks[level] = 0;
f82d02d9 8349 }
2c47e605
YZ
8350 free_extent_buffer(path->nodes[level]);
8351 path->nodes[level] = NULL;
8352 level++;
20524f02
CM
8353 }
8354 }
8355 return 1;
8356}
8357
9aca1d51 8358/*
2c47e605
YZ
8359 * drop a subvolume tree.
8360 *
8361 * this function traverses the tree freeing any blocks that only
8362 * referenced by the tree.
8363 *
8364 * when a shared tree block is found. this function decreases its
8365 * reference count by one. if update_ref is true, this function
8366 * also make sure backrefs for the shared block and all lower level
8367 * blocks are properly updated.
9d1a2a3a
DS
8368 *
8369 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8370 */
2c536799 8371int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8372 struct btrfs_block_rsv *block_rsv, int update_ref,
8373 int for_reloc)
20524f02 8374{
5caf2a00 8375 struct btrfs_path *path;
2c47e605
YZ
8376 struct btrfs_trans_handle *trans;
8377 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8378 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8379 struct walk_control *wc;
8380 struct btrfs_key key;
8381 int err = 0;
8382 int ret;
8383 int level;
d29a9f62 8384 bool root_dropped = false;
20524f02 8385
1152651a
MF
8386 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8387
5caf2a00 8388 path = btrfs_alloc_path();
cb1b69f4
TI
8389 if (!path) {
8390 err = -ENOMEM;
8391 goto out;
8392 }
20524f02 8393
2c47e605 8394 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8395 if (!wc) {
8396 btrfs_free_path(path);
cb1b69f4
TI
8397 err = -ENOMEM;
8398 goto out;
38a1a919 8399 }
2c47e605 8400
a22285a6 8401 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8402 if (IS_ERR(trans)) {
8403 err = PTR_ERR(trans);
8404 goto out_free;
8405 }
98d5dc13 8406
3fd0a558
YZ
8407 if (block_rsv)
8408 trans->block_rsv = block_rsv;
2c47e605 8409
9f3a7427 8410 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8411 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8412 path->nodes[level] = btrfs_lock_root_node(root);
8413 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8414 path->slots[level] = 0;
bd681513 8415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8416 memset(&wc->update_progress, 0,
8417 sizeof(wc->update_progress));
9f3a7427 8418 } else {
9f3a7427 8419 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8420 memcpy(&wc->update_progress, &key,
8421 sizeof(wc->update_progress));
8422
6702ed49 8423 level = root_item->drop_level;
2c47e605 8424 BUG_ON(level == 0);
6702ed49 8425 path->lowest_level = level;
2c47e605
YZ
8426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8427 path->lowest_level = 0;
8428 if (ret < 0) {
8429 err = ret;
79787eaa 8430 goto out_end_trans;
9f3a7427 8431 }
1c4850e2 8432 WARN_ON(ret > 0);
2c47e605 8433
7d9eb12c
CM
8434 /*
8435 * unlock our path, this is safe because only this
8436 * function is allowed to delete this snapshot
8437 */
5d4f98a2 8438 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8439
8440 level = btrfs_header_level(root->node);
8441 while (1) {
8442 btrfs_tree_lock(path->nodes[level]);
8443 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8445
8446 ret = btrfs_lookup_extent_info(trans, root,
8447 path->nodes[level]->start,
3173a18f 8448 level, 1, &wc->refs[level],
2c47e605 8449 &wc->flags[level]);
79787eaa
JM
8450 if (ret < 0) {
8451 err = ret;
8452 goto out_end_trans;
8453 }
2c47e605
YZ
8454 BUG_ON(wc->refs[level] == 0);
8455
8456 if (level == root_item->drop_level)
8457 break;
8458
8459 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8460 path->locks[level] = 0;
2c47e605
YZ
8461 WARN_ON(wc->refs[level] != 1);
8462 level--;
8463 }
9f3a7427 8464 }
2c47e605
YZ
8465
8466 wc->level = level;
8467 wc->shared_level = -1;
8468 wc->stage = DROP_REFERENCE;
8469 wc->update_ref = update_ref;
8470 wc->keep_locks = 0;
66d7e7f0 8471 wc->for_reloc = for_reloc;
1c4850e2 8472 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8473
d397712b 8474 while (1) {
9d1a2a3a 8475
2c47e605
YZ
8476 ret = walk_down_tree(trans, root, path, wc);
8477 if (ret < 0) {
8478 err = ret;
20524f02 8479 break;
2c47e605 8480 }
9aca1d51 8481
2c47e605
YZ
8482 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8483 if (ret < 0) {
8484 err = ret;
20524f02 8485 break;
2c47e605
YZ
8486 }
8487
8488 if (ret > 0) {
8489 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8490 break;
8491 }
2c47e605
YZ
8492
8493 if (wc->stage == DROP_REFERENCE) {
8494 level = wc->level;
8495 btrfs_node_key(path->nodes[level],
8496 &root_item->drop_progress,
8497 path->slots[level]);
8498 root_item->drop_level = level;
8499 }
8500
8501 BUG_ON(wc->level == 0);
3c8f2422
JB
8502 if (btrfs_should_end_transaction(trans, tree_root) ||
8503 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8504 ret = btrfs_update_root(trans, tree_root,
8505 &root->root_key,
8506 root_item);
79787eaa
JM
8507 if (ret) {
8508 btrfs_abort_transaction(trans, tree_root, ret);
8509 err = ret;
8510 goto out_end_trans;
8511 }
2c47e605 8512
1152651a
MF
8513 /*
8514 * Qgroup update accounting is run from
8515 * delayed ref handling. This usually works
8516 * out because delayed refs are normally the
8517 * only way qgroup updates are added. However,
8518 * we may have added updates during our tree
8519 * walk so run qgroups here to make sure we
8520 * don't lose any updates.
8521 */
8522 ret = btrfs_delayed_qgroup_accounting(trans,
8523 root->fs_info);
8524 if (ret)
8525 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8526 "running qgroup updates "
8527 "during snapshot delete. "
8528 "Quota is out of sync, "
8529 "rescan required.\n", ret);
8530
3fd0a558 8531 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8532 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8533 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8534 err = -EAGAIN;
8535 goto out_free;
8536 }
8537
a22285a6 8538 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8539 if (IS_ERR(trans)) {
8540 err = PTR_ERR(trans);
8541 goto out_free;
8542 }
3fd0a558
YZ
8543 if (block_rsv)
8544 trans->block_rsv = block_rsv;
c3e69d58 8545 }
20524f02 8546 }
b3b4aa74 8547 btrfs_release_path(path);
79787eaa
JM
8548 if (err)
8549 goto out_end_trans;
2c47e605
YZ
8550
8551 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8552 if (ret) {
8553 btrfs_abort_transaction(trans, tree_root, ret);
8554 goto out_end_trans;
8555 }
2c47e605 8556
76dda93c 8557 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8558 ret = btrfs_find_root(tree_root, &root->root_key, path,
8559 NULL, NULL);
79787eaa
JM
8560 if (ret < 0) {
8561 btrfs_abort_transaction(trans, tree_root, ret);
8562 err = ret;
8563 goto out_end_trans;
8564 } else if (ret > 0) {
84cd948c
JB
8565 /* if we fail to delete the orphan item this time
8566 * around, it'll get picked up the next time.
8567 *
8568 * The most common failure here is just -ENOENT.
8569 */
8570 btrfs_del_orphan_item(trans, tree_root,
8571 root->root_key.objectid);
76dda93c
YZ
8572 }
8573 }
8574
27cdeb70 8575 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8576 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8577 } else {
8578 free_extent_buffer(root->node);
8579 free_extent_buffer(root->commit_root);
b0feb9d9 8580 btrfs_put_fs_root(root);
76dda93c 8581 }
d29a9f62 8582 root_dropped = true;
79787eaa 8583out_end_trans:
1152651a
MF
8584 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8585 if (ret)
8586 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8587 "running qgroup updates "
8588 "during snapshot delete. "
8589 "Quota is out of sync, "
8590 "rescan required.\n", ret);
8591
3fd0a558 8592 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8593out_free:
2c47e605 8594 kfree(wc);
5caf2a00 8595 btrfs_free_path(path);
cb1b69f4 8596out:
d29a9f62
JB
8597 /*
8598 * So if we need to stop dropping the snapshot for whatever reason we
8599 * need to make sure to add it back to the dead root list so that we
8600 * keep trying to do the work later. This also cleans up roots if we
8601 * don't have it in the radix (like when we recover after a power fail
8602 * or unmount) so we don't leak memory.
8603 */
b37b39cd 8604 if (!for_reloc && root_dropped == false)
d29a9f62 8605 btrfs_add_dead_root(root);
90515e7f 8606 if (err && err != -EAGAIN)
cb1b69f4 8607 btrfs_std_error(root->fs_info, err);
2c536799 8608 return err;
20524f02 8609}
9078a3e1 8610
2c47e605
YZ
8611/*
8612 * drop subtree rooted at tree block 'node'.
8613 *
8614 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8615 * only used by relocation code
2c47e605 8616 */
f82d02d9
YZ
8617int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8618 struct btrfs_root *root,
8619 struct extent_buffer *node,
8620 struct extent_buffer *parent)
8621{
8622 struct btrfs_path *path;
2c47e605 8623 struct walk_control *wc;
f82d02d9
YZ
8624 int level;
8625 int parent_level;
8626 int ret = 0;
8627 int wret;
8628
2c47e605
YZ
8629 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8630
f82d02d9 8631 path = btrfs_alloc_path();
db5b493a
TI
8632 if (!path)
8633 return -ENOMEM;
f82d02d9 8634
2c47e605 8635 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8636 if (!wc) {
8637 btrfs_free_path(path);
8638 return -ENOMEM;
8639 }
2c47e605 8640
b9447ef8 8641 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8642 parent_level = btrfs_header_level(parent);
8643 extent_buffer_get(parent);
8644 path->nodes[parent_level] = parent;
8645 path->slots[parent_level] = btrfs_header_nritems(parent);
8646
b9447ef8 8647 btrfs_assert_tree_locked(node);
f82d02d9 8648 level = btrfs_header_level(node);
f82d02d9
YZ
8649 path->nodes[level] = node;
8650 path->slots[level] = 0;
bd681513 8651 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8652
8653 wc->refs[parent_level] = 1;
8654 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8655 wc->level = level;
8656 wc->shared_level = -1;
8657 wc->stage = DROP_REFERENCE;
8658 wc->update_ref = 0;
8659 wc->keep_locks = 1;
66d7e7f0 8660 wc->for_reloc = 1;
1c4850e2 8661 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8662
8663 while (1) {
2c47e605
YZ
8664 wret = walk_down_tree(trans, root, path, wc);
8665 if (wret < 0) {
f82d02d9 8666 ret = wret;
f82d02d9 8667 break;
2c47e605 8668 }
f82d02d9 8669
2c47e605 8670 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8671 if (wret < 0)
8672 ret = wret;
8673 if (wret != 0)
8674 break;
8675 }
8676
2c47e605 8677 kfree(wc);
f82d02d9
YZ
8678 btrfs_free_path(path);
8679 return ret;
8680}
8681
ec44a35c
CM
8682static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8683{
8684 u64 num_devices;
fc67c450 8685 u64 stripped;
e4d8ec0f 8686
fc67c450
ID
8687 /*
8688 * if restripe for this chunk_type is on pick target profile and
8689 * return, otherwise do the usual balance
8690 */
8691 stripped = get_restripe_target(root->fs_info, flags);
8692 if (stripped)
8693 return extended_to_chunk(stripped);
e4d8ec0f 8694
95669976 8695 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8696
fc67c450 8697 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8698 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8699 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8700
ec44a35c
CM
8701 if (num_devices == 1) {
8702 stripped |= BTRFS_BLOCK_GROUP_DUP;
8703 stripped = flags & ~stripped;
8704
8705 /* turn raid0 into single device chunks */
8706 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8707 return stripped;
8708
8709 /* turn mirroring into duplication */
8710 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8711 BTRFS_BLOCK_GROUP_RAID10))
8712 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8713 } else {
8714 /* they already had raid on here, just return */
ec44a35c
CM
8715 if (flags & stripped)
8716 return flags;
8717
8718 stripped |= BTRFS_BLOCK_GROUP_DUP;
8719 stripped = flags & ~stripped;
8720
8721 /* switch duplicated blocks with raid1 */
8722 if (flags & BTRFS_BLOCK_GROUP_DUP)
8723 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8724
e3176ca2 8725 /* this is drive concat, leave it alone */
ec44a35c 8726 }
e3176ca2 8727
ec44a35c
CM
8728 return flags;
8729}
8730
199c36ea 8731static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8732{
f0486c68
YZ
8733 struct btrfs_space_info *sinfo = cache->space_info;
8734 u64 num_bytes;
199c36ea 8735 u64 min_allocable_bytes;
f0486c68 8736 int ret = -ENOSPC;
0ef3e66b 8737
c286ac48 8738
199c36ea
MX
8739 /*
8740 * We need some metadata space and system metadata space for
8741 * allocating chunks in some corner cases until we force to set
8742 * it to be readonly.
8743 */
8744 if ((sinfo->flags &
8745 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8746 !force)
8747 min_allocable_bytes = 1 * 1024 * 1024;
8748 else
8749 min_allocable_bytes = 0;
8750
f0486c68
YZ
8751 spin_lock(&sinfo->lock);
8752 spin_lock(&cache->lock);
61cfea9b
W
8753
8754 if (cache->ro) {
8755 ret = 0;
8756 goto out;
8757 }
8758
f0486c68
YZ
8759 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8760 cache->bytes_super - btrfs_block_group_used(&cache->item);
8761
8762 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8763 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8764 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8765 sinfo->bytes_readonly += num_bytes;
f0486c68 8766 cache->ro = 1;
633c0aad 8767 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8768 ret = 0;
8769 }
61cfea9b 8770out:
f0486c68
YZ
8771 spin_unlock(&cache->lock);
8772 spin_unlock(&sinfo->lock);
8773 return ret;
8774}
7d9eb12c 8775
f0486c68
YZ
8776int btrfs_set_block_group_ro(struct btrfs_root *root,
8777 struct btrfs_block_group_cache *cache)
c286ac48 8778
f0486c68
YZ
8779{
8780 struct btrfs_trans_handle *trans;
8781 u64 alloc_flags;
8782 int ret;
7d9eb12c 8783
f0486c68 8784 BUG_ON(cache->ro);
0ef3e66b 8785
1bbc621e 8786again:
ff5714cc 8787 trans = btrfs_join_transaction(root);
79787eaa
JM
8788 if (IS_ERR(trans))
8789 return PTR_ERR(trans);
5d4f98a2 8790
1bbc621e
CM
8791 /*
8792 * we're not allowed to set block groups readonly after the dirty
8793 * block groups cache has started writing. If it already started,
8794 * back off and let this transaction commit
8795 */
8796 mutex_lock(&root->fs_info->ro_block_group_mutex);
8797 if (trans->transaction->dirty_bg_run) {
8798 u64 transid = trans->transid;
8799
8800 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8801 btrfs_end_transaction(trans, root);
8802
8803 ret = btrfs_wait_for_commit(root, transid);
8804 if (ret)
8805 return ret;
8806 goto again;
8807 }
8808
8809
199c36ea 8810 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8811 if (!ret)
8812 goto out;
8813 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8814 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8815 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8816 if (ret < 0)
8817 goto out;
199c36ea 8818 ret = set_block_group_ro(cache, 0);
f0486c68 8819out:
2f081088
SL
8820 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8821 alloc_flags = update_block_group_flags(root, cache->flags);
8822 check_system_chunk(trans, root, alloc_flags);
8823 }
1bbc621e 8824 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8825
f0486c68
YZ
8826 btrfs_end_transaction(trans, root);
8827 return ret;
8828}
5d4f98a2 8829
c87f08ca
CM
8830int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8831 struct btrfs_root *root, u64 type)
8832{
8833 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8834 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8835 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8836}
8837
6d07bcec
MX
8838/*
8839 * helper to account the unused space of all the readonly block group in the
633c0aad 8840 * space_info. takes mirrors into account.
6d07bcec 8841 */
633c0aad 8842u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8843{
8844 struct btrfs_block_group_cache *block_group;
8845 u64 free_bytes = 0;
8846 int factor;
8847
633c0aad
JB
8848 /* It's df, we don't care if it's racey */
8849 if (list_empty(&sinfo->ro_bgs))
8850 return 0;
8851
8852 spin_lock(&sinfo->lock);
8853 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8854 spin_lock(&block_group->lock);
8855
8856 if (!block_group->ro) {
8857 spin_unlock(&block_group->lock);
8858 continue;
8859 }
8860
8861 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8862 BTRFS_BLOCK_GROUP_RAID10 |
8863 BTRFS_BLOCK_GROUP_DUP))
8864 factor = 2;
8865 else
8866 factor = 1;
8867
8868 free_bytes += (block_group->key.offset -
8869 btrfs_block_group_used(&block_group->item)) *
8870 factor;
8871
8872 spin_unlock(&block_group->lock);
8873 }
6d07bcec
MX
8874 spin_unlock(&sinfo->lock);
8875
8876 return free_bytes;
8877}
8878
143bede5 8879void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8880 struct btrfs_block_group_cache *cache)
5d4f98a2 8881{
f0486c68
YZ
8882 struct btrfs_space_info *sinfo = cache->space_info;
8883 u64 num_bytes;
8884
8885 BUG_ON(!cache->ro);
8886
8887 spin_lock(&sinfo->lock);
8888 spin_lock(&cache->lock);
8889 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8890 cache->bytes_super - btrfs_block_group_used(&cache->item);
8891 sinfo->bytes_readonly -= num_bytes;
8892 cache->ro = 0;
633c0aad 8893 list_del_init(&cache->ro_list);
f0486c68
YZ
8894 spin_unlock(&cache->lock);
8895 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8896}
8897
ba1bf481
JB
8898/*
8899 * checks to see if its even possible to relocate this block group.
8900 *
8901 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8902 * ok to go ahead and try.
8903 */
8904int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8905{
ba1bf481
JB
8906 struct btrfs_block_group_cache *block_group;
8907 struct btrfs_space_info *space_info;
8908 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8909 struct btrfs_device *device;
6df9a95e 8910 struct btrfs_trans_handle *trans;
cdcb725c 8911 u64 min_free;
6719db6a
JB
8912 u64 dev_min = 1;
8913 u64 dev_nr = 0;
4a5e98f5 8914 u64 target;
cdcb725c 8915 int index;
ba1bf481
JB
8916 int full = 0;
8917 int ret = 0;
1a40e23b 8918
ba1bf481 8919 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8920
ba1bf481
JB
8921 /* odd, couldn't find the block group, leave it alone */
8922 if (!block_group)
8923 return -1;
1a40e23b 8924
cdcb725c 8925 min_free = btrfs_block_group_used(&block_group->item);
8926
ba1bf481 8927 /* no bytes used, we're good */
cdcb725c 8928 if (!min_free)
1a40e23b
ZY
8929 goto out;
8930
ba1bf481
JB
8931 space_info = block_group->space_info;
8932 spin_lock(&space_info->lock);
17d217fe 8933
ba1bf481 8934 full = space_info->full;
17d217fe 8935
ba1bf481
JB
8936 /*
8937 * if this is the last block group we have in this space, we can't
7ce618db
CM
8938 * relocate it unless we're able to allocate a new chunk below.
8939 *
8940 * Otherwise, we need to make sure we have room in the space to handle
8941 * all of the extents from this block group. If we can, we're good
ba1bf481 8942 */
7ce618db 8943 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8944 (space_info->bytes_used + space_info->bytes_reserved +
8945 space_info->bytes_pinned + space_info->bytes_readonly +
8946 min_free < space_info->total_bytes)) {
ba1bf481
JB
8947 spin_unlock(&space_info->lock);
8948 goto out;
17d217fe 8949 }
ba1bf481 8950 spin_unlock(&space_info->lock);
ea8c2819 8951
ba1bf481
JB
8952 /*
8953 * ok we don't have enough space, but maybe we have free space on our
8954 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8955 * alloc devices and guess if we have enough space. if this block
8956 * group is going to be restriped, run checks against the target
8957 * profile instead of the current one.
ba1bf481
JB
8958 */
8959 ret = -1;
ea8c2819 8960
cdcb725c 8961 /*
8962 * index:
8963 * 0: raid10
8964 * 1: raid1
8965 * 2: dup
8966 * 3: raid0
8967 * 4: single
8968 */
4a5e98f5
ID
8969 target = get_restripe_target(root->fs_info, block_group->flags);
8970 if (target) {
31e50229 8971 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
8972 } else {
8973 /*
8974 * this is just a balance, so if we were marked as full
8975 * we know there is no space for a new chunk
8976 */
8977 if (full)
8978 goto out;
8979
8980 index = get_block_group_index(block_group);
8981 }
8982
e6ec716f 8983 if (index == BTRFS_RAID_RAID10) {
cdcb725c 8984 dev_min = 4;
6719db6a
JB
8985 /* Divide by 2 */
8986 min_free >>= 1;
e6ec716f 8987 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 8988 dev_min = 2;
e6ec716f 8989 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
8990 /* Multiply by 2 */
8991 min_free <<= 1;
e6ec716f 8992 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 8993 dev_min = fs_devices->rw_devices;
47c5713f 8994 min_free = div64_u64(min_free, dev_min);
cdcb725c 8995 }
8996
6df9a95e
JB
8997 /* We need to do this so that we can look at pending chunks */
8998 trans = btrfs_join_transaction(root);
8999 if (IS_ERR(trans)) {
9000 ret = PTR_ERR(trans);
9001 goto out;
9002 }
9003
ba1bf481
JB
9004 mutex_lock(&root->fs_info->chunk_mutex);
9005 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9006 u64 dev_offset;
56bec294 9007
ba1bf481
JB
9008 /*
9009 * check to make sure we can actually find a chunk with enough
9010 * space to fit our block group in.
9011 */
63a212ab
SB
9012 if (device->total_bytes > device->bytes_used + min_free &&
9013 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9014 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9015 &dev_offset, NULL);
ba1bf481 9016 if (!ret)
cdcb725c 9017 dev_nr++;
9018
9019 if (dev_nr >= dev_min)
73e48b27 9020 break;
cdcb725c 9021
ba1bf481 9022 ret = -1;
725c8463 9023 }
edbd8d4e 9024 }
ba1bf481 9025 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9026 btrfs_end_transaction(trans, root);
edbd8d4e 9027out:
ba1bf481 9028 btrfs_put_block_group(block_group);
edbd8d4e
CM
9029 return ret;
9030}
9031
b2950863
CH
9032static int find_first_block_group(struct btrfs_root *root,
9033 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9034{
925baedd 9035 int ret = 0;
0b86a832
CM
9036 struct btrfs_key found_key;
9037 struct extent_buffer *leaf;
9038 int slot;
edbd8d4e 9039
0b86a832
CM
9040 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9041 if (ret < 0)
925baedd
CM
9042 goto out;
9043
d397712b 9044 while (1) {
0b86a832 9045 slot = path->slots[0];
edbd8d4e 9046 leaf = path->nodes[0];
0b86a832
CM
9047 if (slot >= btrfs_header_nritems(leaf)) {
9048 ret = btrfs_next_leaf(root, path);
9049 if (ret == 0)
9050 continue;
9051 if (ret < 0)
925baedd 9052 goto out;
0b86a832 9053 break;
edbd8d4e 9054 }
0b86a832 9055 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9056
0b86a832 9057 if (found_key.objectid >= key->objectid &&
925baedd
CM
9058 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9059 ret = 0;
9060 goto out;
9061 }
0b86a832 9062 path->slots[0]++;
edbd8d4e 9063 }
925baedd 9064out:
0b86a832 9065 return ret;
edbd8d4e
CM
9066}
9067
0af3d00b
JB
9068void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9069{
9070 struct btrfs_block_group_cache *block_group;
9071 u64 last = 0;
9072
9073 while (1) {
9074 struct inode *inode;
9075
9076 block_group = btrfs_lookup_first_block_group(info, last);
9077 while (block_group) {
9078 spin_lock(&block_group->lock);
9079 if (block_group->iref)
9080 break;
9081 spin_unlock(&block_group->lock);
9082 block_group = next_block_group(info->tree_root,
9083 block_group);
9084 }
9085 if (!block_group) {
9086 if (last == 0)
9087 break;
9088 last = 0;
9089 continue;
9090 }
9091
9092 inode = block_group->inode;
9093 block_group->iref = 0;
9094 block_group->inode = NULL;
9095 spin_unlock(&block_group->lock);
9096 iput(inode);
9097 last = block_group->key.objectid + block_group->key.offset;
9098 btrfs_put_block_group(block_group);
9099 }
9100}
9101
1a40e23b
ZY
9102int btrfs_free_block_groups(struct btrfs_fs_info *info)
9103{
9104 struct btrfs_block_group_cache *block_group;
4184ea7f 9105 struct btrfs_space_info *space_info;
11833d66 9106 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9107 struct rb_node *n;
9108
9e351cc8 9109 down_write(&info->commit_root_sem);
11833d66
YZ
9110 while (!list_empty(&info->caching_block_groups)) {
9111 caching_ctl = list_entry(info->caching_block_groups.next,
9112 struct btrfs_caching_control, list);
9113 list_del(&caching_ctl->list);
9114 put_caching_control(caching_ctl);
9115 }
9e351cc8 9116 up_write(&info->commit_root_sem);
11833d66 9117
47ab2a6c
JB
9118 spin_lock(&info->unused_bgs_lock);
9119 while (!list_empty(&info->unused_bgs)) {
9120 block_group = list_first_entry(&info->unused_bgs,
9121 struct btrfs_block_group_cache,
9122 bg_list);
9123 list_del_init(&block_group->bg_list);
9124 btrfs_put_block_group(block_group);
9125 }
9126 spin_unlock(&info->unused_bgs_lock);
9127
1a40e23b
ZY
9128 spin_lock(&info->block_group_cache_lock);
9129 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9130 block_group = rb_entry(n, struct btrfs_block_group_cache,
9131 cache_node);
1a40e23b
ZY
9132 rb_erase(&block_group->cache_node,
9133 &info->block_group_cache_tree);
01eacb27 9134 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9135 spin_unlock(&info->block_group_cache_lock);
9136
80eb234a 9137 down_write(&block_group->space_info->groups_sem);
1a40e23b 9138 list_del(&block_group->list);
80eb234a 9139 up_write(&block_group->space_info->groups_sem);
d2fb3437 9140
817d52f8 9141 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9142 wait_block_group_cache_done(block_group);
817d52f8 9143
3c14874a
JB
9144 /*
9145 * We haven't cached this block group, which means we could
9146 * possibly have excluded extents on this block group.
9147 */
36cce922
JB
9148 if (block_group->cached == BTRFS_CACHE_NO ||
9149 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9150 free_excluded_extents(info->extent_root, block_group);
9151
817d52f8 9152 btrfs_remove_free_space_cache(block_group);
11dfe35a 9153 btrfs_put_block_group(block_group);
d899e052
YZ
9154
9155 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9156 }
9157 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9158
9159 /* now that all the block groups are freed, go through and
9160 * free all the space_info structs. This is only called during
9161 * the final stages of unmount, and so we know nobody is
9162 * using them. We call synchronize_rcu() once before we start,
9163 * just to be on the safe side.
9164 */
9165 synchronize_rcu();
9166
8929ecfa
YZ
9167 release_global_block_rsv(info);
9168
67871254 9169 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9170 int i;
9171
4184ea7f
CM
9172 space_info = list_entry(info->space_info.next,
9173 struct btrfs_space_info,
9174 list);
b069e0c3 9175 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9176 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9177 space_info->bytes_reserved > 0 ||
fae7f21c 9178 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9179 dump_space_info(space_info, 0, 0);
9180 }
f0486c68 9181 }
4184ea7f 9182 list_del(&space_info->list);
6ab0a202
JM
9183 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9184 struct kobject *kobj;
c1895442
JM
9185 kobj = space_info->block_group_kobjs[i];
9186 space_info->block_group_kobjs[i] = NULL;
9187 if (kobj) {
6ab0a202
JM
9188 kobject_del(kobj);
9189 kobject_put(kobj);
9190 }
9191 }
9192 kobject_del(&space_info->kobj);
9193 kobject_put(&space_info->kobj);
4184ea7f 9194 }
1a40e23b
ZY
9195 return 0;
9196}
9197
b742bb82
YZ
9198static void __link_block_group(struct btrfs_space_info *space_info,
9199 struct btrfs_block_group_cache *cache)
9200{
9201 int index = get_block_group_index(cache);
ed55b6ac 9202 bool first = false;
b742bb82
YZ
9203
9204 down_write(&space_info->groups_sem);
ed55b6ac
JM
9205 if (list_empty(&space_info->block_groups[index]))
9206 first = true;
9207 list_add_tail(&cache->list, &space_info->block_groups[index]);
9208 up_write(&space_info->groups_sem);
9209
9210 if (first) {
c1895442 9211 struct raid_kobject *rkobj;
6ab0a202
JM
9212 int ret;
9213
c1895442
JM
9214 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9215 if (!rkobj)
9216 goto out_err;
9217 rkobj->raid_type = index;
9218 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9219 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9220 "%s", get_raid_name(index));
6ab0a202 9221 if (ret) {
c1895442
JM
9222 kobject_put(&rkobj->kobj);
9223 goto out_err;
6ab0a202 9224 }
c1895442 9225 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9226 }
c1895442
JM
9227
9228 return;
9229out_err:
9230 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9231}
9232
920e4a58
MX
9233static struct btrfs_block_group_cache *
9234btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9235{
9236 struct btrfs_block_group_cache *cache;
9237
9238 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9239 if (!cache)
9240 return NULL;
9241
9242 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9243 GFP_NOFS);
9244 if (!cache->free_space_ctl) {
9245 kfree(cache);
9246 return NULL;
9247 }
9248
9249 cache->key.objectid = start;
9250 cache->key.offset = size;
9251 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9252
9253 cache->sectorsize = root->sectorsize;
9254 cache->fs_info = root->fs_info;
9255 cache->full_stripe_len = btrfs_full_stripe_len(root,
9256 &root->fs_info->mapping_tree,
9257 start);
9258 atomic_set(&cache->count, 1);
9259 spin_lock_init(&cache->lock);
e570fd27 9260 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9261 INIT_LIST_HEAD(&cache->list);
9262 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9263 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9264 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9265 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9266 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9267 btrfs_init_free_space_ctl(cache);
04216820 9268 atomic_set(&cache->trimming, 0);
920e4a58
MX
9269
9270 return cache;
9271}
9272
9078a3e1
CM
9273int btrfs_read_block_groups(struct btrfs_root *root)
9274{
9275 struct btrfs_path *path;
9276 int ret;
9078a3e1 9277 struct btrfs_block_group_cache *cache;
be744175 9278 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9279 struct btrfs_space_info *space_info;
9078a3e1
CM
9280 struct btrfs_key key;
9281 struct btrfs_key found_key;
5f39d397 9282 struct extent_buffer *leaf;
0af3d00b
JB
9283 int need_clear = 0;
9284 u64 cache_gen;
96b5179d 9285
be744175 9286 root = info->extent_root;
9078a3e1 9287 key.objectid = 0;
0b86a832 9288 key.offset = 0;
962a298f 9289 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9290 path = btrfs_alloc_path();
9291 if (!path)
9292 return -ENOMEM;
026fd317 9293 path->reada = 1;
9078a3e1 9294
6c41761f 9295 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9296 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9297 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9298 need_clear = 1;
88c2ba3b
JB
9299 if (btrfs_test_opt(root, CLEAR_CACHE))
9300 need_clear = 1;
0af3d00b 9301
d397712b 9302 while (1) {
0b86a832 9303 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9304 if (ret > 0)
9305 break;
0b86a832
CM
9306 if (ret != 0)
9307 goto error;
920e4a58 9308
5f39d397
CM
9309 leaf = path->nodes[0];
9310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9311
9312 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9313 found_key.offset);
9078a3e1 9314 if (!cache) {
0b86a832 9315 ret = -ENOMEM;
f0486c68 9316 goto error;
9078a3e1 9317 }
96303081 9318
cf7c1ef6
LB
9319 if (need_clear) {
9320 /*
9321 * When we mount with old space cache, we need to
9322 * set BTRFS_DC_CLEAR and set dirty flag.
9323 *
9324 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9325 * truncate the old free space cache inode and
9326 * setup a new one.
9327 * b) Setting 'dirty flag' makes sure that we flush
9328 * the new space cache info onto disk.
9329 */
cf7c1ef6 9330 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9331 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9332 }
0af3d00b 9333
5f39d397
CM
9334 read_extent_buffer(leaf, &cache->item,
9335 btrfs_item_ptr_offset(leaf, path->slots[0]),
9336 sizeof(cache->item));
920e4a58 9337 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9338
9078a3e1 9339 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9340 btrfs_release_path(path);
34d52cb6 9341
3c14874a
JB
9342 /*
9343 * We need to exclude the super stripes now so that the space
9344 * info has super bytes accounted for, otherwise we'll think
9345 * we have more space than we actually do.
9346 */
835d974f
JB
9347 ret = exclude_super_stripes(root, cache);
9348 if (ret) {
9349 /*
9350 * We may have excluded something, so call this just in
9351 * case.
9352 */
9353 free_excluded_extents(root, cache);
920e4a58 9354 btrfs_put_block_group(cache);
835d974f
JB
9355 goto error;
9356 }
3c14874a 9357
817d52f8
JB
9358 /*
9359 * check for two cases, either we are full, and therefore
9360 * don't need to bother with the caching work since we won't
9361 * find any space, or we are empty, and we can just add all
9362 * the space in and be done with it. This saves us _alot_ of
9363 * time, particularly in the full case.
9364 */
9365 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9366 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9367 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9368 free_excluded_extents(root, cache);
817d52f8 9369 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9370 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9371 cache->cached = BTRFS_CACHE_FINISHED;
9372 add_new_free_space(cache, root->fs_info,
9373 found_key.objectid,
9374 found_key.objectid +
9375 found_key.offset);
11833d66 9376 free_excluded_extents(root, cache);
817d52f8 9377 }
96b5179d 9378
8c579fe7
JB
9379 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9380 if (ret) {
9381 btrfs_remove_free_space_cache(cache);
9382 btrfs_put_block_group(cache);
9383 goto error;
9384 }
9385
6324fbf3
CM
9386 ret = update_space_info(info, cache->flags, found_key.offset,
9387 btrfs_block_group_used(&cache->item),
9388 &space_info);
8c579fe7
JB
9389 if (ret) {
9390 btrfs_remove_free_space_cache(cache);
9391 spin_lock(&info->block_group_cache_lock);
9392 rb_erase(&cache->cache_node,
9393 &info->block_group_cache_tree);
01eacb27 9394 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9395 spin_unlock(&info->block_group_cache_lock);
9396 btrfs_put_block_group(cache);
9397 goto error;
9398 }
9399
6324fbf3 9400 cache->space_info = space_info;
1b2da372 9401 spin_lock(&cache->space_info->lock);
f0486c68 9402 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9403 spin_unlock(&cache->space_info->lock);
9404
b742bb82 9405 __link_block_group(space_info, cache);
0f9dd46c 9406
75ccf47d 9407 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9408 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9409 set_block_group_ro(cache, 1);
47ab2a6c
JB
9410 } else if (btrfs_block_group_used(&cache->item) == 0) {
9411 spin_lock(&info->unused_bgs_lock);
9412 /* Should always be true but just in case. */
9413 if (list_empty(&cache->bg_list)) {
9414 btrfs_get_block_group(cache);
9415 list_add_tail(&cache->bg_list,
9416 &info->unused_bgs);
9417 }
9418 spin_unlock(&info->unused_bgs_lock);
9419 }
9078a3e1 9420 }
b742bb82
YZ
9421
9422 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9423 if (!(get_alloc_profile(root, space_info->flags) &
9424 (BTRFS_BLOCK_GROUP_RAID10 |
9425 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9426 BTRFS_BLOCK_GROUP_RAID5 |
9427 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9428 BTRFS_BLOCK_GROUP_DUP)))
9429 continue;
9430 /*
9431 * avoid allocating from un-mirrored block group if there are
9432 * mirrored block groups.
9433 */
1095cc0d 9434 list_for_each_entry(cache,
9435 &space_info->block_groups[BTRFS_RAID_RAID0],
9436 list)
199c36ea 9437 set_block_group_ro(cache, 1);
1095cc0d 9438 list_for_each_entry(cache,
9439 &space_info->block_groups[BTRFS_RAID_SINGLE],
9440 list)
199c36ea 9441 set_block_group_ro(cache, 1);
9078a3e1 9442 }
f0486c68
YZ
9443
9444 init_global_block_rsv(info);
0b86a832
CM
9445 ret = 0;
9446error:
9078a3e1 9447 btrfs_free_path(path);
0b86a832 9448 return ret;
9078a3e1 9449}
6324fbf3 9450
ea658bad
JB
9451void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9452 struct btrfs_root *root)
9453{
9454 struct btrfs_block_group_cache *block_group, *tmp;
9455 struct btrfs_root *extent_root = root->fs_info->extent_root;
9456 struct btrfs_block_group_item item;
9457 struct btrfs_key key;
9458 int ret = 0;
9459
47ab2a6c 9460 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9461 if (ret)
c92f6be3 9462 goto next;
ea658bad
JB
9463
9464 spin_lock(&block_group->lock);
9465 memcpy(&item, &block_group->item, sizeof(item));
9466 memcpy(&key, &block_group->key, sizeof(key));
9467 spin_unlock(&block_group->lock);
9468
9469 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9470 sizeof(item));
9471 if (ret)
9472 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9473 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9474 key.objectid, key.offset);
9475 if (ret)
9476 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9477next:
9478 list_del_init(&block_group->bg_list);
ea658bad
JB
9479 }
9480}
9481
6324fbf3
CM
9482int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9483 struct btrfs_root *root, u64 bytes_used,
e17cade2 9484 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9485 u64 size)
9486{
9487 int ret;
6324fbf3
CM
9488 struct btrfs_root *extent_root;
9489 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9490
9491 extent_root = root->fs_info->extent_root;
6324fbf3 9492
995946dd 9493 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9494
920e4a58 9495 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9496 if (!cache)
9497 return -ENOMEM;
34d52cb6 9498
6324fbf3 9499 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9500 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9501 btrfs_set_block_group_flags(&cache->item, type);
9502
920e4a58 9503 cache->flags = type;
11833d66 9504 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9505 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9506 ret = exclude_super_stripes(root, cache);
9507 if (ret) {
9508 /*
9509 * We may have excluded something, so call this just in
9510 * case.
9511 */
9512 free_excluded_extents(root, cache);
920e4a58 9513 btrfs_put_block_group(cache);
835d974f
JB
9514 return ret;
9515 }
96303081 9516
817d52f8
JB
9517 add_new_free_space(cache, root->fs_info, chunk_offset,
9518 chunk_offset + size);
9519
11833d66
YZ
9520 free_excluded_extents(root, cache);
9521
8c579fe7
JB
9522 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9523 if (ret) {
9524 btrfs_remove_free_space_cache(cache);
9525 btrfs_put_block_group(cache);
9526 return ret;
9527 }
9528
6324fbf3
CM
9529 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9530 &cache->space_info);
8c579fe7
JB
9531 if (ret) {
9532 btrfs_remove_free_space_cache(cache);
9533 spin_lock(&root->fs_info->block_group_cache_lock);
9534 rb_erase(&cache->cache_node,
9535 &root->fs_info->block_group_cache_tree);
01eacb27 9536 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9537 spin_unlock(&root->fs_info->block_group_cache_lock);
9538 btrfs_put_block_group(cache);
9539 return ret;
9540 }
c7c144db 9541 update_global_block_rsv(root->fs_info);
1b2da372
JB
9542
9543 spin_lock(&cache->space_info->lock);
f0486c68 9544 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9545 spin_unlock(&cache->space_info->lock);
9546
b742bb82 9547 __link_block_group(cache->space_info, cache);
6324fbf3 9548
47ab2a6c 9549 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9550
d18a2c44 9551 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9552
6324fbf3
CM
9553 return 0;
9554}
1a40e23b 9555
10ea00f5
ID
9556static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9557{
899c81ea
ID
9558 u64 extra_flags = chunk_to_extended(flags) &
9559 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9560
de98ced9 9561 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9562 if (flags & BTRFS_BLOCK_GROUP_DATA)
9563 fs_info->avail_data_alloc_bits &= ~extra_flags;
9564 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9565 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9566 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9567 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9568 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9569}
9570
1a40e23b 9571int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9572 struct btrfs_root *root, u64 group_start,
9573 struct extent_map *em)
1a40e23b
ZY
9574{
9575 struct btrfs_path *path;
9576 struct btrfs_block_group_cache *block_group;
44fb5511 9577 struct btrfs_free_cluster *cluster;
0af3d00b 9578 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9579 struct btrfs_key key;
0af3d00b 9580 struct inode *inode;
c1895442 9581 struct kobject *kobj = NULL;
1a40e23b 9582 int ret;
10ea00f5 9583 int index;
89a55897 9584 int factor;
4f69cb98 9585 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9586 bool remove_em;
1a40e23b 9587
1a40e23b
ZY
9588 root = root->fs_info->extent_root;
9589
9590 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9591 BUG_ON(!block_group);
c146afad 9592 BUG_ON(!block_group->ro);
1a40e23b 9593
9f7c43c9 9594 /*
9595 * Free the reserved super bytes from this block group before
9596 * remove it.
9597 */
9598 free_excluded_extents(root, block_group);
9599
1a40e23b 9600 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9601 index = get_block_group_index(block_group);
89a55897
JB
9602 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9603 BTRFS_BLOCK_GROUP_RAID1 |
9604 BTRFS_BLOCK_GROUP_RAID10))
9605 factor = 2;
9606 else
9607 factor = 1;
1a40e23b 9608
44fb5511
CM
9609 /* make sure this block group isn't part of an allocation cluster */
9610 cluster = &root->fs_info->data_alloc_cluster;
9611 spin_lock(&cluster->refill_lock);
9612 btrfs_return_cluster_to_free_space(block_group, cluster);
9613 spin_unlock(&cluster->refill_lock);
9614
9615 /*
9616 * make sure this block group isn't part of a metadata
9617 * allocation cluster
9618 */
9619 cluster = &root->fs_info->meta_alloc_cluster;
9620 spin_lock(&cluster->refill_lock);
9621 btrfs_return_cluster_to_free_space(block_group, cluster);
9622 spin_unlock(&cluster->refill_lock);
9623
1a40e23b 9624 path = btrfs_alloc_path();
d8926bb3
MF
9625 if (!path) {
9626 ret = -ENOMEM;
9627 goto out;
9628 }
1a40e23b 9629
1bbc621e
CM
9630 /*
9631 * get the inode first so any iput calls done for the io_list
9632 * aren't the final iput (no unlinks allowed now)
9633 */
10b2f34d 9634 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9635
9636 mutex_lock(&trans->transaction->cache_write_mutex);
9637 /*
9638 * make sure our free spache cache IO is done before remove the
9639 * free space inode
9640 */
9641 spin_lock(&trans->transaction->dirty_bgs_lock);
9642 if (!list_empty(&block_group->io_list)) {
9643 list_del_init(&block_group->io_list);
9644
9645 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9646
9647 spin_unlock(&trans->transaction->dirty_bgs_lock);
9648 btrfs_wait_cache_io(root, trans, block_group,
9649 &block_group->io_ctl, path,
9650 block_group->key.objectid);
9651 btrfs_put_block_group(block_group);
9652 spin_lock(&trans->transaction->dirty_bgs_lock);
9653 }
9654
9655 if (!list_empty(&block_group->dirty_list)) {
9656 list_del_init(&block_group->dirty_list);
9657 btrfs_put_block_group(block_group);
9658 }
9659 spin_unlock(&trans->transaction->dirty_bgs_lock);
9660 mutex_unlock(&trans->transaction->cache_write_mutex);
9661
0af3d00b 9662 if (!IS_ERR(inode)) {
b532402e 9663 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9664 if (ret) {
9665 btrfs_add_delayed_iput(inode);
9666 goto out;
9667 }
0af3d00b
JB
9668 clear_nlink(inode);
9669 /* One for the block groups ref */
9670 spin_lock(&block_group->lock);
9671 if (block_group->iref) {
9672 block_group->iref = 0;
9673 block_group->inode = NULL;
9674 spin_unlock(&block_group->lock);
9675 iput(inode);
9676 } else {
9677 spin_unlock(&block_group->lock);
9678 }
9679 /* One for our lookup ref */
455757c3 9680 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9681 }
9682
9683 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9684 key.offset = block_group->key.objectid;
9685 key.type = 0;
9686
9687 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9688 if (ret < 0)
9689 goto out;
9690 if (ret > 0)
b3b4aa74 9691 btrfs_release_path(path);
0af3d00b
JB
9692 if (ret == 0) {
9693 ret = btrfs_del_item(trans, tree_root, path);
9694 if (ret)
9695 goto out;
b3b4aa74 9696 btrfs_release_path(path);
0af3d00b
JB
9697 }
9698
3dfdb934 9699 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9700 rb_erase(&block_group->cache_node,
9701 &root->fs_info->block_group_cache_tree);
292cbd51 9702 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9703
9704 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9705 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9706 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9707
80eb234a 9708 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9709 /*
9710 * we must use list_del_init so people can check to see if they
9711 * are still on the list after taking the semaphore
9712 */
9713 list_del_init(&block_group->list);
6ab0a202 9714 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9715 kobj = block_group->space_info->block_group_kobjs[index];
9716 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9717 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9718 }
80eb234a 9719 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9720 if (kobj) {
9721 kobject_del(kobj);
9722 kobject_put(kobj);
9723 }
1a40e23b 9724
4f69cb98
FM
9725 if (block_group->has_caching_ctl)
9726 caching_ctl = get_caching_control(block_group);
817d52f8 9727 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9728 wait_block_group_cache_done(block_group);
4f69cb98
FM
9729 if (block_group->has_caching_ctl) {
9730 down_write(&root->fs_info->commit_root_sem);
9731 if (!caching_ctl) {
9732 struct btrfs_caching_control *ctl;
9733
9734 list_for_each_entry(ctl,
9735 &root->fs_info->caching_block_groups, list)
9736 if (ctl->block_group == block_group) {
9737 caching_ctl = ctl;
9738 atomic_inc(&caching_ctl->count);
9739 break;
9740 }
9741 }
9742 if (caching_ctl)
9743 list_del_init(&caching_ctl->list);
9744 up_write(&root->fs_info->commit_root_sem);
9745 if (caching_ctl) {
9746 /* Once for the caching bgs list and once for us. */
9747 put_caching_control(caching_ctl);
9748 put_caching_control(caching_ctl);
9749 }
9750 }
817d52f8 9751
ce93ec54
JB
9752 spin_lock(&trans->transaction->dirty_bgs_lock);
9753 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9754 WARN_ON(1);
9755 }
9756 if (!list_empty(&block_group->io_list)) {
9757 WARN_ON(1);
ce93ec54
JB
9758 }
9759 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9760 btrfs_remove_free_space_cache(block_group);
9761
c146afad 9762 spin_lock(&block_group->space_info->lock);
75c68e9f 9763 list_del_init(&block_group->ro_list);
18d018ad
ZL
9764
9765 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9766 WARN_ON(block_group->space_info->total_bytes
9767 < block_group->key.offset);
9768 WARN_ON(block_group->space_info->bytes_readonly
9769 < block_group->key.offset);
9770 WARN_ON(block_group->space_info->disk_total
9771 < block_group->key.offset * factor);
9772 }
c146afad
YZ
9773 block_group->space_info->total_bytes -= block_group->key.offset;
9774 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9775 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9776
c146afad 9777 spin_unlock(&block_group->space_info->lock);
283bb197 9778
0af3d00b
JB
9779 memcpy(&key, &block_group->key, sizeof(key));
9780
04216820 9781 lock_chunks(root);
495e64f4
FM
9782 if (!list_empty(&em->list)) {
9783 /* We're in the transaction->pending_chunks list. */
9784 free_extent_map(em);
9785 }
04216820
FM
9786 spin_lock(&block_group->lock);
9787 block_group->removed = 1;
9788 /*
9789 * At this point trimming can't start on this block group, because we
9790 * removed the block group from the tree fs_info->block_group_cache_tree
9791 * so no one can't find it anymore and even if someone already got this
9792 * block group before we removed it from the rbtree, they have already
9793 * incremented block_group->trimming - if they didn't, they won't find
9794 * any free space entries because we already removed them all when we
9795 * called btrfs_remove_free_space_cache().
9796 *
9797 * And we must not remove the extent map from the fs_info->mapping_tree
9798 * to prevent the same logical address range and physical device space
9799 * ranges from being reused for a new block group. This is because our
9800 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9801 * completely transactionless, so while it is trimming a range the
9802 * currently running transaction might finish and a new one start,
9803 * allowing for new block groups to be created that can reuse the same
9804 * physical device locations unless we take this special care.
9805 */
9806 remove_em = (atomic_read(&block_group->trimming) == 0);
9807 /*
9808 * Make sure a trimmer task always sees the em in the pinned_chunks list
9809 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9810 * before checking block_group->removed).
9811 */
9812 if (!remove_em) {
9813 /*
9814 * Our em might be in trans->transaction->pending_chunks which
9815 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9816 * and so is the fs_info->pinned_chunks list.
9817 *
9818 * So at this point we must be holding the chunk_mutex to avoid
9819 * any races with chunk allocation (more specifically at
9820 * volumes.c:contains_pending_extent()), to ensure it always
9821 * sees the em, either in the pending_chunks list or in the
9822 * pinned_chunks list.
9823 */
9824 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9825 }
9826 spin_unlock(&block_group->lock);
04216820
FM
9827
9828 if (remove_em) {
9829 struct extent_map_tree *em_tree;
9830
9831 em_tree = &root->fs_info->mapping_tree.map_tree;
9832 write_lock(&em_tree->lock);
8dbcd10f
FM
9833 /*
9834 * The em might be in the pending_chunks list, so make sure the
9835 * chunk mutex is locked, since remove_extent_mapping() will
9836 * delete us from that list.
9837 */
04216820
FM
9838 remove_extent_mapping(em_tree, em);
9839 write_unlock(&em_tree->lock);
9840 /* once for the tree */
9841 free_extent_map(em);
9842 }
9843
8dbcd10f
FM
9844 unlock_chunks(root);
9845
fa9c0d79
CM
9846 btrfs_put_block_group(block_group);
9847 btrfs_put_block_group(block_group);
1a40e23b
ZY
9848
9849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9850 if (ret > 0)
9851 ret = -EIO;
9852 if (ret < 0)
9853 goto out;
9854
9855 ret = btrfs_del_item(trans, root, path);
9856out:
9857 btrfs_free_path(path);
9858 return ret;
9859}
acce952b 9860
47ab2a6c
JB
9861/*
9862 * Process the unused_bgs list and remove any that don't have any allocated
9863 * space inside of them.
9864 */
9865void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9866{
9867 struct btrfs_block_group_cache *block_group;
9868 struct btrfs_space_info *space_info;
9869 struct btrfs_root *root = fs_info->extent_root;
9870 struct btrfs_trans_handle *trans;
9871 int ret = 0;
9872
9873 if (!fs_info->open)
9874 return;
9875
9876 spin_lock(&fs_info->unused_bgs_lock);
9877 while (!list_empty(&fs_info->unused_bgs)) {
9878 u64 start, end;
9879
9880 block_group = list_first_entry(&fs_info->unused_bgs,
9881 struct btrfs_block_group_cache,
9882 bg_list);
9883 space_info = block_group->space_info;
9884 list_del_init(&block_group->bg_list);
9885 if (ret || btrfs_mixed_space_info(space_info)) {
9886 btrfs_put_block_group(block_group);
9887 continue;
9888 }
9889 spin_unlock(&fs_info->unused_bgs_lock);
9890
9891 /* Don't want to race with allocators so take the groups_sem */
9892 down_write(&space_info->groups_sem);
9893 spin_lock(&block_group->lock);
9894 if (block_group->reserved ||
9895 btrfs_block_group_used(&block_group->item) ||
9896 block_group->ro) {
9897 /*
9898 * We want to bail if we made new allocations or have
9899 * outstanding allocations in this block group. We do
9900 * the ro check in case balance is currently acting on
9901 * this block group.
9902 */
9903 spin_unlock(&block_group->lock);
9904 up_write(&space_info->groups_sem);
9905 goto next;
9906 }
9907 spin_unlock(&block_group->lock);
9908
9909 /* We don't want to force the issue, only flip if it's ok. */
9910 ret = set_block_group_ro(block_group, 0);
9911 up_write(&space_info->groups_sem);
9912 if (ret < 0) {
9913 ret = 0;
9914 goto next;
9915 }
9916
9917 /*
9918 * Want to do this before we do anything else so we can recover
9919 * properly if we fail to join the transaction.
9920 */
3d84be79
FL
9921 /* 1 for btrfs_orphan_reserve_metadata() */
9922 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9923 if (IS_ERR(trans)) {
9924 btrfs_set_block_group_rw(root, block_group);
9925 ret = PTR_ERR(trans);
9926 goto next;
9927 }
9928
9929 /*
9930 * We could have pending pinned extents for this block group,
9931 * just delete them, we don't care about them anymore.
9932 */
9933 start = block_group->key.objectid;
9934 end = start + block_group->key.offset - 1;
d4b450cd
FM
9935 /*
9936 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9937 * btrfs_finish_extent_commit(). If we are at transaction N,
9938 * another task might be running finish_extent_commit() for the
9939 * previous transaction N - 1, and have seen a range belonging
9940 * to the block group in freed_extents[] before we were able to
9941 * clear the whole block group range from freed_extents[]. This
9942 * means that task can lookup for the block group after we
9943 * unpinned it from freed_extents[] and removed it, leading to
9944 * a BUG_ON() at btrfs_unpin_extent_range().
9945 */
9946 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9947 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 9948 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9949 if (ret) {
d4b450cd 9950 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9951 btrfs_set_block_group_rw(root, block_group);
9952 goto end_trans;
9953 }
9954 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 9955 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9956 if (ret) {
d4b450cd 9957 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9958 btrfs_set_block_group_rw(root, block_group);
9959 goto end_trans;
9960 }
d4b450cd 9961 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
9962
9963 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
9964 spin_lock(&space_info->lock);
9965 spin_lock(&block_group->lock);
9966
9967 space_info->bytes_pinned -= block_group->pinned;
9968 space_info->bytes_readonly += block_group->pinned;
9969 percpu_counter_add(&space_info->total_bytes_pinned,
9970 -block_group->pinned);
47ab2a6c
JB
9971 block_group->pinned = 0;
9972
c30666d4
ZL
9973 spin_unlock(&block_group->lock);
9974 spin_unlock(&space_info->lock);
9975
47ab2a6c
JB
9976 /*
9977 * Btrfs_remove_chunk will abort the transaction if things go
9978 * horribly wrong.
9979 */
9980 ret = btrfs_remove_chunk(trans, root,
9981 block_group->key.objectid);
758eb51e 9982end_trans:
47ab2a6c
JB
9983 btrfs_end_transaction(trans, root);
9984next:
9985 btrfs_put_block_group(block_group);
9986 spin_lock(&fs_info->unused_bgs_lock);
9987 }
9988 spin_unlock(&fs_info->unused_bgs_lock);
9989}
9990
c59021f8 9991int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9992{
9993 struct btrfs_space_info *space_info;
1aba86d6 9994 struct btrfs_super_block *disk_super;
9995 u64 features;
9996 u64 flags;
9997 int mixed = 0;
c59021f8 9998 int ret;
9999
6c41761f 10000 disk_super = fs_info->super_copy;
1aba86d6 10001 if (!btrfs_super_root(disk_super))
10002 return 1;
c59021f8 10003
1aba86d6 10004 features = btrfs_super_incompat_flags(disk_super);
10005 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10006 mixed = 1;
c59021f8 10007
1aba86d6 10008 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10009 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10010 if (ret)
1aba86d6 10011 goto out;
c59021f8 10012
1aba86d6 10013 if (mixed) {
10014 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10015 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10016 } else {
10017 flags = BTRFS_BLOCK_GROUP_METADATA;
10018 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10019 if (ret)
10020 goto out;
10021
10022 flags = BTRFS_BLOCK_GROUP_DATA;
10023 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10024 }
10025out:
c59021f8 10026 return ret;
10027}
10028
acce952b 10029int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10030{
678886bd 10031 return unpin_extent_range(root, start, end, false);
acce952b 10032}
10033
f7039b1d
LD
10034int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10035{
10036 struct btrfs_fs_info *fs_info = root->fs_info;
10037 struct btrfs_block_group_cache *cache = NULL;
10038 u64 group_trimmed;
10039 u64 start;
10040 u64 end;
10041 u64 trimmed = 0;
2cac13e4 10042 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10043 int ret = 0;
10044
2cac13e4
LB
10045 /*
10046 * try to trim all FS space, our block group may start from non-zero.
10047 */
10048 if (range->len == total_bytes)
10049 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10050 else
10051 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10052
10053 while (cache) {
10054 if (cache->key.objectid >= (range->start + range->len)) {
10055 btrfs_put_block_group(cache);
10056 break;
10057 }
10058
10059 start = max(range->start, cache->key.objectid);
10060 end = min(range->start + range->len,
10061 cache->key.objectid + cache->key.offset);
10062
10063 if (end - start >= range->minlen) {
10064 if (!block_group_cache_done(cache)) {
f6373bf3 10065 ret = cache_block_group(cache, 0);
1be41b78
JB
10066 if (ret) {
10067 btrfs_put_block_group(cache);
10068 break;
10069 }
10070 ret = wait_block_group_cache_done(cache);
10071 if (ret) {
10072 btrfs_put_block_group(cache);
10073 break;
10074 }
f7039b1d
LD
10075 }
10076 ret = btrfs_trim_block_group(cache,
10077 &group_trimmed,
10078 start,
10079 end,
10080 range->minlen);
10081
10082 trimmed += group_trimmed;
10083 if (ret) {
10084 btrfs_put_block_group(cache);
10085 break;
10086 }
10087 }
10088
10089 cache = next_block_group(fs_info->tree_root, cache);
10090 }
10091
10092 range->len = trimmed;
10093 return ret;
10094}
8257b2dc
MX
10095
10096/*
9ea24bbe
FM
10097 * btrfs_{start,end}_write_no_snapshoting() are similar to
10098 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10099 * data into the page cache through nocow before the subvolume is snapshoted,
10100 * but flush the data into disk after the snapshot creation, or to prevent
10101 * operations while snapshoting is ongoing and that cause the snapshot to be
10102 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10103 */
9ea24bbe 10104void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10105{
10106 percpu_counter_dec(&root->subv_writers->counter);
10107 /*
10108 * Make sure counter is updated before we wake up
10109 * waiters.
10110 */
10111 smp_mb();
10112 if (waitqueue_active(&root->subv_writers->wait))
10113 wake_up(&root->subv_writers->wait);
10114}
10115
9ea24bbe 10116int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10117{
ee39b432 10118 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10119 return 0;
10120
10121 percpu_counter_inc(&root->subv_writers->counter);
10122 /*
10123 * Make sure counter is updated before we check for snapshot creation.
10124 */
10125 smp_mb();
ee39b432 10126 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10127 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10128 return 0;
10129 }
10130 return 1;
10131}