ARM: SMDK6440: Add audio devices on board
[linux-2.6-block.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
f1970baf 28#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 29
55782138 30#include <trace/events/block.h>
0bfc2455 31
392ddc32
JA
32/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS 4
37
6feef531 38static mempool_t *bio_split_pool __read_mostly;
1da177e4 39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
bb799ca0 46struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
1da177e4 56
bb799ca0
JA
57/*
58 * Our slab pool management
59 */
60struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
76
77 mutex_lock(&bio_slab_lock);
78
79 i = 0;
80 while (i < bio_slab_nr) {
f06f135d 81 bslab = &bio_slabs[i];
bb799ca0
JA
82
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
89 }
90 i++;
91 }
92
93 if (slab)
94 goto out_unlock;
95
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
103 }
104 if (entry == -1)
105 entry = bio_slab_nr++;
106
107 bslab = &bio_slabs[entry];
108
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
113
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
127
128 mutex_lock(&bio_slab_lock);
129
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
134 }
135 }
136
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
139
140 WARN_ON(!bslab->slab_ref);
141
142 if (--bslab->slab_ref)
143 goto out;
144
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7ba1ba12
MP
152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154 return bvec_slabs[idx].nr_vecs;
155}
156
bb799ca0
JA
157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
7ff9345f
JA
170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
7ff9345f
JA
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f
JA
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
227 }
228 }
229
1da177e4
LT
230 return bvl;
231}
232
7ff9345f 233void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 234{
bb799ca0 235 void *p;
1da177e4 236
392ddc32 237 if (bio_has_allocated_vec(bio))
bb799ca0 238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 239
7ba1ba12 240 if (bio_integrity(bio))
7878cba9 241 bio_integrity_free(bio, bs);
7ba1ba12 242
bb799ca0
JA
243 /*
244 * If we have front padding, adjust the bio pointer before freeing
245 */
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
249
250 mempool_free(p, bs->bio_pool);
3676347a 251}
a112a71d 252EXPORT_SYMBOL(bio_free);
3676347a 253
858119e1 254void bio_init(struct bio *bio)
1da177e4 255{
2b94de55 256 memset(bio, 0, sizeof(*bio));
1da177e4 257 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 258 bio->bi_comp_cpu = -1;
1da177e4 259 atomic_set(&bio->bi_cnt, 1);
1da177e4 260}
a112a71d 261EXPORT_SYMBOL(bio_init);
1da177e4
LT
262
263/**
264 * bio_alloc_bioset - allocate a bio for I/O
265 * @gfp_mask: the GFP_ mask given to the slab allocator
266 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 267 * @bs: the bio_set to allocate from.
1da177e4
LT
268 *
269 * Description:
db18efac 270 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 271 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 272 * for a &struct bio to become free.
1da177e4 273 *
af901ca1 274 * Note that the caller must set ->bi_destructor on successful return
bb799ca0
JA
275 * of a bio, to do the appropriate freeing of the bio once the reference
276 * count drops to zero.
1da177e4 277 **/
dd0fc66f 278struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 279{
451a9ebf 280 unsigned long idx = BIO_POOL_NONE;
34053979 281 struct bio_vec *bvl = NULL;
451a9ebf
TH
282 struct bio *bio;
283 void *p;
284
285 p = mempool_alloc(bs->bio_pool, gfp_mask);
286 if (unlikely(!p))
287 return NULL;
288 bio = p + bs->front_pad;
1da177e4 289
34053979
IM
290 bio_init(bio);
291
292 if (unlikely(!nr_iovecs))
293 goto out_set;
294
295 if (nr_iovecs <= BIO_INLINE_VECS) {
296 bvl = bio->bi_inline_vecs;
297 nr_iovecs = BIO_INLINE_VECS;
298 } else {
299 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300 if (unlikely(!bvl))
301 goto err_free;
302
303 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 304 }
451a9ebf 305out_set:
34053979
IM
306 bio->bi_flags |= idx << BIO_POOL_OFFSET;
307 bio->bi_max_vecs = nr_iovecs;
34053979 308 bio->bi_io_vec = bvl;
1da177e4 309 return bio;
34053979
IM
310
311err_free:
451a9ebf 312 mempool_free(p, bs->bio_pool);
34053979 313 return NULL;
1da177e4 314}
a112a71d 315EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 316
451a9ebf
TH
317static void bio_fs_destructor(struct bio *bio)
318{
319 bio_free(bio, fs_bio_set);
320}
321
322/**
323 * bio_alloc - allocate a new bio, memory pool backed
324 * @gfp_mask: allocation mask to use
325 * @nr_iovecs: number of iovecs
326 *
5f04eeb8
AB
327 * bio_alloc will allocate a bio and associated bio_vec array that can hold
328 * at least @nr_iovecs entries. Allocations will be done from the
329 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330 *
331 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332 * a bio. This is due to the mempool guarantees. To make this work, callers
333 * must never allocate more than 1 bio at a time from this pool. Callers
334 * that need to allocate more than 1 bio must always submit the previously
335 * allocated bio for IO before attempting to allocate a new one. Failure to
336 * do so can cause livelocks under memory pressure.
451a9ebf
TH
337 *
338 * RETURNS:
339 * Pointer to new bio on success, NULL on failure.
340 */
341struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342{
343 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344
345 if (bio)
346 bio->bi_destructor = bio_fs_destructor;
347
348 return bio;
349}
a112a71d 350EXPORT_SYMBOL(bio_alloc);
451a9ebf
TH
351
352static void bio_kmalloc_destructor(struct bio *bio)
353{
354 if (bio_integrity(bio))
7878cba9 355 bio_integrity_free(bio, fs_bio_set);
451a9ebf
TH
356 kfree(bio);
357}
358
86c824b9 359/**
5f04eeb8 360 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
361 * @gfp_mask: the GFP_ mask given to the slab allocator
362 * @nr_iovecs: number of iovecs to pre-allocate
363 *
364 * Description:
5f04eeb8
AB
365 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
366 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
367 *
368 **/
0a0d96b0
JA
369struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370{
451a9ebf 371 struct bio *bio;
0a0d96b0 372
451a9ebf
TH
373 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
374 gfp_mask);
375 if (unlikely(!bio))
376 return NULL;
377
378 bio_init(bio);
379 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
380 bio->bi_max_vecs = nr_iovecs;
381 bio->bi_io_vec = bio->bi_inline_vecs;
382 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
383
384 return bio;
385}
a112a71d 386EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 387
1da177e4
LT
388void zero_fill_bio(struct bio *bio)
389{
390 unsigned long flags;
391 struct bio_vec *bv;
392 int i;
393
394 bio_for_each_segment(bv, bio, i) {
395 char *data = bvec_kmap_irq(bv, &flags);
396 memset(data, 0, bv->bv_len);
397 flush_dcache_page(bv->bv_page);
398 bvec_kunmap_irq(data, &flags);
399 }
400}
401EXPORT_SYMBOL(zero_fill_bio);
402
403/**
404 * bio_put - release a reference to a bio
405 * @bio: bio to release reference to
406 *
407 * Description:
408 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 409 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
410 **/
411void bio_put(struct bio *bio)
412{
413 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
414
415 /*
416 * last put frees it
417 */
418 if (atomic_dec_and_test(&bio->bi_cnt)) {
419 bio->bi_next = NULL;
420 bio->bi_destructor(bio);
421 }
422}
a112a71d 423EXPORT_SYMBOL(bio_put);
1da177e4 424
165125e1 425inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
426{
427 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
428 blk_recount_segments(q, bio);
429
430 return bio->bi_phys_segments;
431}
a112a71d 432EXPORT_SYMBOL(bio_phys_segments);
1da177e4 433
1da177e4
LT
434/**
435 * __bio_clone - clone a bio
436 * @bio: destination bio
437 * @bio_src: bio to clone
438 *
439 * Clone a &bio. Caller will own the returned bio, but not
440 * the actual data it points to. Reference count of returned
441 * bio will be one.
442 */
858119e1 443void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 444{
e525e153
AM
445 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
446 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 447
5d84070e
JA
448 /*
449 * most users will be overriding ->bi_bdev with a new target,
450 * so we don't set nor calculate new physical/hw segment counts here
451 */
1da177e4
LT
452 bio->bi_sector = bio_src->bi_sector;
453 bio->bi_bdev = bio_src->bi_bdev;
454 bio->bi_flags |= 1 << BIO_CLONED;
455 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
456 bio->bi_vcnt = bio_src->bi_vcnt;
457 bio->bi_size = bio_src->bi_size;
a5453be4 458 bio->bi_idx = bio_src->bi_idx;
1da177e4 459}
a112a71d 460EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
461
462/**
463 * bio_clone - clone a bio
464 * @bio: bio to clone
465 * @gfp_mask: allocation priority
466 *
467 * Like __bio_clone, only also allocates the returned bio
468 */
dd0fc66f 469struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
470{
471 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
472
7ba1ba12
MP
473 if (!b)
474 return NULL;
475
476 b->bi_destructor = bio_fs_destructor;
477 __bio_clone(b, bio);
478
479 if (bio_integrity(bio)) {
480 int ret;
481
7878cba9 482 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
7ba1ba12 483
059ea331
LZ
484 if (ret < 0) {
485 bio_put(b);
7ba1ba12 486 return NULL;
059ea331 487 }
3676347a 488 }
1da177e4
LT
489
490 return b;
491}
a112a71d 492EXPORT_SYMBOL(bio_clone);
1da177e4
LT
493
494/**
495 * bio_get_nr_vecs - return approx number of vecs
496 * @bdev: I/O target
497 *
498 * Return the approximate number of pages we can send to this target.
499 * There's no guarantee that you will be able to fit this number of pages
500 * into a bio, it does not account for dynamic restrictions that vary
501 * on offset.
502 */
503int bio_get_nr_vecs(struct block_device *bdev)
504{
165125e1 505 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
506 int nr_pages;
507
ae03bf63 508 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
8a78362c
MP
509 if (nr_pages > queue_max_segments(q))
510 nr_pages = queue_max_segments(q);
1da177e4
LT
511
512 return nr_pages;
513}
a112a71d 514EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 515
165125e1 516static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
517 *page, unsigned int len, unsigned int offset,
518 unsigned short max_sectors)
1da177e4
LT
519{
520 int retried_segments = 0;
521 struct bio_vec *bvec;
522
523 /*
524 * cloned bio must not modify vec list
525 */
526 if (unlikely(bio_flagged(bio, BIO_CLONED)))
527 return 0;
528
80cfd548 529 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
530 return 0;
531
80cfd548
JA
532 /*
533 * For filesystems with a blocksize smaller than the pagesize
534 * we will often be called with the same page as last time and
535 * a consecutive offset. Optimize this special case.
536 */
537 if (bio->bi_vcnt > 0) {
538 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
539
540 if (page == prev->bv_page &&
541 offset == prev->bv_offset + prev->bv_len) {
1d616585 542 unsigned int prev_bv_len = prev->bv_len;
80cfd548 543 prev->bv_len += len;
cc371e66
AK
544
545 if (q->merge_bvec_fn) {
546 struct bvec_merge_data bvm = {
1d616585
DM
547 /* prev_bvec is already charged in
548 bi_size, discharge it in order to
549 simulate merging updated prev_bvec
550 as new bvec. */
cc371e66
AK
551 .bi_bdev = bio->bi_bdev,
552 .bi_sector = bio->bi_sector,
1d616585 553 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
554 .bi_rw = bio->bi_rw,
555 };
556
8bf8c376 557 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
558 prev->bv_len -= len;
559 return 0;
560 }
80cfd548
JA
561 }
562
563 goto done;
564 }
565 }
566
567 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
568 return 0;
569
570 /*
571 * we might lose a segment or two here, but rather that than
572 * make this too complex.
573 */
574
8a78362c 575 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
576
577 if (retried_segments)
578 return 0;
579
580 retried_segments = 1;
581 blk_recount_segments(q, bio);
582 }
583
584 /*
585 * setup the new entry, we might clear it again later if we
586 * cannot add the page
587 */
588 bvec = &bio->bi_io_vec[bio->bi_vcnt];
589 bvec->bv_page = page;
590 bvec->bv_len = len;
591 bvec->bv_offset = offset;
592
593 /*
594 * if queue has other restrictions (eg varying max sector size
595 * depending on offset), it can specify a merge_bvec_fn in the
596 * queue to get further control
597 */
598 if (q->merge_bvec_fn) {
cc371e66
AK
599 struct bvec_merge_data bvm = {
600 .bi_bdev = bio->bi_bdev,
601 .bi_sector = bio->bi_sector,
602 .bi_size = bio->bi_size,
603 .bi_rw = bio->bi_rw,
604 };
605
1da177e4
LT
606 /*
607 * merge_bvec_fn() returns number of bytes it can accept
608 * at this offset
609 */
8bf8c376 610 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
611 bvec->bv_page = NULL;
612 bvec->bv_len = 0;
613 bvec->bv_offset = 0;
614 return 0;
615 }
616 }
617
618 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 619 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
620 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
621
622 bio->bi_vcnt++;
623 bio->bi_phys_segments++;
80cfd548 624 done:
1da177e4
LT
625 bio->bi_size += len;
626 return len;
627}
628
6e68af66
MC
629/**
630 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 631 * @q: the target queue
6e68af66
MC
632 * @bio: destination bio
633 * @page: page to add
634 * @len: vec entry length
635 * @offset: vec entry offset
636 *
637 * Attempt to add a page to the bio_vec maplist. This can fail for a
638 * number of reasons, such as the bio being full or target block
639 * device limitations. The target block device must allow bio's
640 * smaller than PAGE_SIZE, so it is always possible to add a single
641 * page to an empty bio. This should only be used by REQ_PC bios.
642 */
165125e1 643int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
644 unsigned int len, unsigned int offset)
645{
ae03bf63
MP
646 return __bio_add_page(q, bio, page, len, offset,
647 queue_max_hw_sectors(q));
6e68af66 648}
a112a71d 649EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 650
1da177e4
LT
651/**
652 * bio_add_page - attempt to add page to bio
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
657 *
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block
660 * device limitations. The target block device must allow bio's
661 * smaller than PAGE_SIZE, so it is always possible to add a single
662 * page to an empty bio.
663 */
664int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
665 unsigned int offset)
666{
defd94b7 667 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 668 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 669}
a112a71d 670EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
671
672struct bio_map_data {
673 struct bio_vec *iovecs;
c5dec1c3 674 struct sg_iovec *sgvecs;
152e283f
FT
675 int nr_sgvecs;
676 int is_our_pages;
1da177e4
LT
677};
678
c5dec1c3 679static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
680 struct sg_iovec *iov, int iov_count,
681 int is_our_pages)
1da177e4
LT
682{
683 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
684 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
685 bmd->nr_sgvecs = iov_count;
152e283f 686 bmd->is_our_pages = is_our_pages;
1da177e4
LT
687 bio->bi_private = bmd;
688}
689
690static void bio_free_map_data(struct bio_map_data *bmd)
691{
692 kfree(bmd->iovecs);
c5dec1c3 693 kfree(bmd->sgvecs);
1da177e4
LT
694 kfree(bmd);
695}
696
76029ff3
FT
697static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
698 gfp_t gfp_mask)
1da177e4 699{
76029ff3 700 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
701
702 if (!bmd)
703 return NULL;
704
76029ff3 705 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
706 if (!bmd->iovecs) {
707 kfree(bmd);
708 return NULL;
709 }
710
76029ff3 711 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 712 if (bmd->sgvecs)
1da177e4
LT
713 return bmd;
714
c5dec1c3 715 kfree(bmd->iovecs);
1da177e4
LT
716 kfree(bmd);
717 return NULL;
718}
719
aefcc28a 720static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
721 struct sg_iovec *iov, int iov_count,
722 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
723{
724 int ret = 0, i;
725 struct bio_vec *bvec;
726 int iov_idx = 0;
727 unsigned int iov_off = 0;
c5dec1c3
FT
728
729 __bio_for_each_segment(bvec, bio, i, 0) {
730 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 731 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
732
733 while (bv_len && iov_idx < iov_count) {
734 unsigned int bytes;
0e0c6212 735 char __user *iov_addr;
c5dec1c3
FT
736
737 bytes = min_t(unsigned int,
738 iov[iov_idx].iov_len - iov_off, bv_len);
739 iov_addr = iov[iov_idx].iov_base + iov_off;
740
741 if (!ret) {
ecb554a8 742 if (to_user)
c5dec1c3
FT
743 ret = copy_to_user(iov_addr, bv_addr,
744 bytes);
745
ecb554a8
FT
746 if (from_user)
747 ret = copy_from_user(bv_addr, iov_addr,
748 bytes);
749
c5dec1c3
FT
750 if (ret)
751 ret = -EFAULT;
752 }
753
754 bv_len -= bytes;
755 bv_addr += bytes;
756 iov_addr += bytes;
757 iov_off += bytes;
758
759 if (iov[iov_idx].iov_len == iov_off) {
760 iov_idx++;
761 iov_off = 0;
762 }
763 }
764
152e283f 765 if (do_free_page)
c5dec1c3
FT
766 __free_page(bvec->bv_page);
767 }
768
769 return ret;
770}
771
1da177e4
LT
772/**
773 * bio_uncopy_user - finish previously mapped bio
774 * @bio: bio being terminated
775 *
776 * Free pages allocated from bio_copy_user() and write back data
777 * to user space in case of a read.
778 */
779int bio_uncopy_user(struct bio *bio)
780{
781 struct bio_map_data *bmd = bio->bi_private;
81882766 782 int ret = 0;
1da177e4 783
81882766
FT
784 if (!bio_flagged(bio, BIO_NULL_MAPPED))
785 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
786 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
787 0, bmd->is_our_pages);
1da177e4
LT
788 bio_free_map_data(bmd);
789 bio_put(bio);
790 return ret;
791}
a112a71d 792EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
793
794/**
c5dec1c3 795 * bio_copy_user_iov - copy user data to bio
1da177e4 796 * @q: destination block queue
152e283f 797 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
798 * @iov: the iovec.
799 * @iov_count: number of elements in the iovec
1da177e4 800 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 801 * @gfp_mask: memory allocation flags
1da177e4
LT
802 *
803 * Prepares and returns a bio for indirect user io, bouncing data
804 * to/from kernel pages as necessary. Must be paired with
805 * call bio_uncopy_user() on io completion.
806 */
152e283f
FT
807struct bio *bio_copy_user_iov(struct request_queue *q,
808 struct rq_map_data *map_data,
809 struct sg_iovec *iov, int iov_count,
810 int write_to_vm, gfp_t gfp_mask)
1da177e4 811{
1da177e4
LT
812 struct bio_map_data *bmd;
813 struct bio_vec *bvec;
814 struct page *page;
815 struct bio *bio;
816 int i, ret;
c5dec1c3
FT
817 int nr_pages = 0;
818 unsigned int len = 0;
56c451f4 819 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 820
c5dec1c3
FT
821 for (i = 0; i < iov_count; i++) {
822 unsigned long uaddr;
823 unsigned long end;
824 unsigned long start;
825
826 uaddr = (unsigned long)iov[i].iov_base;
827 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
828 start = uaddr >> PAGE_SHIFT;
829
830 nr_pages += end - start;
831 len += iov[i].iov_len;
832 }
833
69838727
FT
834 if (offset)
835 nr_pages++;
836
a3bce90e 837 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
838 if (!bmd)
839 return ERR_PTR(-ENOMEM);
840
1da177e4 841 ret = -ENOMEM;
a9e9dc24 842 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
843 if (!bio)
844 goto out_bmd;
845
846 bio->bi_rw |= (!write_to_vm << BIO_RW);
847
848 ret = 0;
56c451f4
FT
849
850 if (map_data) {
e623ddb4 851 nr_pages = 1 << map_data->page_order;
56c451f4
FT
852 i = map_data->offset / PAGE_SIZE;
853 }
1da177e4 854 while (len) {
e623ddb4 855 unsigned int bytes = PAGE_SIZE;
1da177e4 856
56c451f4
FT
857 bytes -= offset;
858
1da177e4
LT
859 if (bytes > len)
860 bytes = len;
861
152e283f 862 if (map_data) {
e623ddb4 863 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
864 ret = -ENOMEM;
865 break;
866 }
e623ddb4
FT
867
868 page = map_data->pages[i / nr_pages];
869 page += (i % nr_pages);
870
871 i++;
872 } else {
152e283f 873 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
874 if (!page) {
875 ret = -ENOMEM;
876 break;
877 }
1da177e4
LT
878 }
879
56c451f4 880 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 881 break;
1da177e4
LT
882
883 len -= bytes;
56c451f4 884 offset = 0;
1da177e4
LT
885 }
886
887 if (ret)
888 goto cleanup;
889
890 /*
891 * success
892 */
ecb554a8
FT
893 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
894 (map_data && map_data->from_user)) {
895 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
896 if (ret)
897 goto cleanup;
1da177e4
LT
898 }
899
152e283f 900 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
901 return bio;
902cleanup:
152e283f
FT
903 if (!map_data)
904 bio_for_each_segment(bvec, bio, i)
905 __free_page(bvec->bv_page);
1da177e4
LT
906
907 bio_put(bio);
908out_bmd:
909 bio_free_map_data(bmd);
910 return ERR_PTR(ret);
911}
912
c5dec1c3
FT
913/**
914 * bio_copy_user - copy user data to bio
915 * @q: destination block queue
152e283f 916 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
917 * @uaddr: start of user address
918 * @len: length in bytes
919 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 920 * @gfp_mask: memory allocation flags
c5dec1c3
FT
921 *
922 * Prepares and returns a bio for indirect user io, bouncing data
923 * to/from kernel pages as necessary. Must be paired with
924 * call bio_uncopy_user() on io completion.
925 */
152e283f
FT
926struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
927 unsigned long uaddr, unsigned int len,
928 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
929{
930 struct sg_iovec iov;
931
932 iov.iov_base = (void __user *)uaddr;
933 iov.iov_len = len;
934
152e283f 935 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 936}
a112a71d 937EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 938
165125e1 939static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
940 struct block_device *bdev,
941 struct sg_iovec *iov, int iov_count,
a3bce90e 942 int write_to_vm, gfp_t gfp_mask)
1da177e4 943{
f1970baf
JB
944 int i, j;
945 int nr_pages = 0;
1da177e4
LT
946 struct page **pages;
947 struct bio *bio;
f1970baf
JB
948 int cur_page = 0;
949 int ret, offset;
1da177e4 950
f1970baf
JB
951 for (i = 0; i < iov_count; i++) {
952 unsigned long uaddr = (unsigned long)iov[i].iov_base;
953 unsigned long len = iov[i].iov_len;
954 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
955 unsigned long start = uaddr >> PAGE_SHIFT;
956
957 nr_pages += end - start;
958 /*
ad2d7225 959 * buffer must be aligned to at least hardsector size for now
f1970baf 960 */
ad2d7225 961 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
962 return ERR_PTR(-EINVAL);
963 }
964
965 if (!nr_pages)
1da177e4
LT
966 return ERR_PTR(-EINVAL);
967
a9e9dc24 968 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
969 if (!bio)
970 return ERR_PTR(-ENOMEM);
971
972 ret = -ENOMEM;
a3bce90e 973 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
974 if (!pages)
975 goto out;
976
f1970baf
JB
977 for (i = 0; i < iov_count; i++) {
978 unsigned long uaddr = (unsigned long)iov[i].iov_base;
979 unsigned long len = iov[i].iov_len;
980 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
981 unsigned long start = uaddr >> PAGE_SHIFT;
982 const int local_nr_pages = end - start;
983 const int page_limit = cur_page + local_nr_pages;
984
f5dd33c4
NP
985 ret = get_user_pages_fast(uaddr, local_nr_pages,
986 write_to_vm, &pages[cur_page]);
99172157
JA
987 if (ret < local_nr_pages) {
988 ret = -EFAULT;
f1970baf 989 goto out_unmap;
99172157 990 }
f1970baf
JB
991
992 offset = uaddr & ~PAGE_MASK;
993 for (j = cur_page; j < page_limit; j++) {
994 unsigned int bytes = PAGE_SIZE - offset;
995
996 if (len <= 0)
997 break;
998
999 if (bytes > len)
1000 bytes = len;
1001
1002 /*
1003 * sorry...
1004 */
defd94b7
MC
1005 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1006 bytes)
f1970baf
JB
1007 break;
1008
1009 len -= bytes;
1010 offset = 0;
1011 }
1da177e4 1012
f1970baf 1013 cur_page = j;
1da177e4 1014 /*
f1970baf 1015 * release the pages we didn't map into the bio, if any
1da177e4 1016 */
f1970baf
JB
1017 while (j < page_limit)
1018 page_cache_release(pages[j++]);
1da177e4
LT
1019 }
1020
1da177e4
LT
1021 kfree(pages);
1022
1023 /*
1024 * set data direction, and check if mapped pages need bouncing
1025 */
1026 if (!write_to_vm)
1027 bio->bi_rw |= (1 << BIO_RW);
1028
f1970baf 1029 bio->bi_bdev = bdev;
1da177e4
LT
1030 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1031 return bio;
f1970baf
JB
1032
1033 out_unmap:
1034 for (i = 0; i < nr_pages; i++) {
1035 if(!pages[i])
1036 break;
1037 page_cache_release(pages[i]);
1038 }
1039 out:
1da177e4
LT
1040 kfree(pages);
1041 bio_put(bio);
1042 return ERR_PTR(ret);
1043}
1044
1045/**
1046 * bio_map_user - map user address into bio
165125e1 1047 * @q: the struct request_queue for the bio
1da177e4
LT
1048 * @bdev: destination block device
1049 * @uaddr: start of user address
1050 * @len: length in bytes
1051 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1052 * @gfp_mask: memory allocation flags
1da177e4
LT
1053 *
1054 * Map the user space address into a bio suitable for io to a block
1055 * device. Returns an error pointer in case of error.
1056 */
165125e1 1057struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1058 unsigned long uaddr, unsigned int len, int write_to_vm,
1059 gfp_t gfp_mask)
f1970baf
JB
1060{
1061 struct sg_iovec iov;
1062
3f70353e 1063 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1064 iov.iov_len = len;
1065
a3bce90e 1066 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1067}
a112a71d 1068EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1069
1070/**
1071 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1072 * @q: the struct request_queue for the bio
f1970baf
JB
1073 * @bdev: destination block device
1074 * @iov: the iovec.
1075 * @iov_count: number of elements in the iovec
1076 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1077 * @gfp_mask: memory allocation flags
f1970baf
JB
1078 *
1079 * Map the user space address into a bio suitable for io to a block
1080 * device. Returns an error pointer in case of error.
1081 */
165125e1 1082struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1083 struct sg_iovec *iov, int iov_count,
a3bce90e 1084 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1085{
1086 struct bio *bio;
1087
a3bce90e
FT
1088 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1089 gfp_mask);
1da177e4
LT
1090 if (IS_ERR(bio))
1091 return bio;
1092
1093 /*
1094 * subtle -- if __bio_map_user() ended up bouncing a bio,
1095 * it would normally disappear when its bi_end_io is run.
1096 * however, we need it for the unmap, so grab an extra
1097 * reference to it
1098 */
1099 bio_get(bio);
1100
0e75f906 1101 return bio;
1da177e4
LT
1102}
1103
1104static void __bio_unmap_user(struct bio *bio)
1105{
1106 struct bio_vec *bvec;
1107 int i;
1108
1109 /*
1110 * make sure we dirty pages we wrote to
1111 */
1112 __bio_for_each_segment(bvec, bio, i, 0) {
1113 if (bio_data_dir(bio) == READ)
1114 set_page_dirty_lock(bvec->bv_page);
1115
1116 page_cache_release(bvec->bv_page);
1117 }
1118
1119 bio_put(bio);
1120}
1121
1122/**
1123 * bio_unmap_user - unmap a bio
1124 * @bio: the bio being unmapped
1125 *
1126 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1127 * a process context.
1128 *
1129 * bio_unmap_user() may sleep.
1130 */
1131void bio_unmap_user(struct bio *bio)
1132{
1133 __bio_unmap_user(bio);
1134 bio_put(bio);
1135}
a112a71d 1136EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1137
6712ecf8 1138static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1139{
b823825e 1140 bio_put(bio);
b823825e
JA
1141}
1142
165125e1 1143static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1144 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1145{
1146 unsigned long kaddr = (unsigned long)data;
1147 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1148 unsigned long start = kaddr >> PAGE_SHIFT;
1149 const int nr_pages = end - start;
1150 int offset, i;
1151 struct bio *bio;
1152
a9e9dc24 1153 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1154 if (!bio)
1155 return ERR_PTR(-ENOMEM);
1156
1157 offset = offset_in_page(kaddr);
1158 for (i = 0; i < nr_pages; i++) {
1159 unsigned int bytes = PAGE_SIZE - offset;
1160
1161 if (len <= 0)
1162 break;
1163
1164 if (bytes > len)
1165 bytes = len;
1166
defd94b7
MC
1167 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1168 offset) < bytes)
df46b9a4
MC
1169 break;
1170
1171 data += bytes;
1172 len -= bytes;
1173 offset = 0;
1174 }
1175
b823825e 1176 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1177 return bio;
1178}
1179
1180/**
1181 * bio_map_kern - map kernel address into bio
165125e1 1182 * @q: the struct request_queue for the bio
df46b9a4
MC
1183 * @data: pointer to buffer to map
1184 * @len: length in bytes
1185 * @gfp_mask: allocation flags for bio allocation
1186 *
1187 * Map the kernel address into a bio suitable for io to a block
1188 * device. Returns an error pointer in case of error.
1189 */
165125e1 1190struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1191 gfp_t gfp_mask)
df46b9a4
MC
1192{
1193 struct bio *bio;
1194
1195 bio = __bio_map_kern(q, data, len, gfp_mask);
1196 if (IS_ERR(bio))
1197 return bio;
1198
1199 if (bio->bi_size == len)
1200 return bio;
1201
1202 /*
1203 * Don't support partial mappings.
1204 */
1205 bio_put(bio);
1206 return ERR_PTR(-EINVAL);
1207}
a112a71d 1208EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1209
68154e90
FT
1210static void bio_copy_kern_endio(struct bio *bio, int err)
1211{
1212 struct bio_vec *bvec;
1213 const int read = bio_data_dir(bio) == READ;
76029ff3 1214 struct bio_map_data *bmd = bio->bi_private;
68154e90 1215 int i;
76029ff3 1216 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1217
1218 __bio_for_each_segment(bvec, bio, i, 0) {
1219 char *addr = page_address(bvec->bv_page);
76029ff3 1220 int len = bmd->iovecs[i].bv_len;
68154e90 1221
4fc981ef 1222 if (read)
76029ff3 1223 memcpy(p, addr, len);
68154e90
FT
1224
1225 __free_page(bvec->bv_page);
76029ff3 1226 p += len;
68154e90
FT
1227 }
1228
76029ff3 1229 bio_free_map_data(bmd);
68154e90
FT
1230 bio_put(bio);
1231}
1232
1233/**
1234 * bio_copy_kern - copy kernel address into bio
1235 * @q: the struct request_queue for the bio
1236 * @data: pointer to buffer to copy
1237 * @len: length in bytes
1238 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1239 * @reading: data direction is READ
68154e90
FT
1240 *
1241 * copy the kernel address into a bio suitable for io to a block
1242 * device. Returns an error pointer in case of error.
1243 */
1244struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1245 gfp_t gfp_mask, int reading)
1246{
68154e90
FT
1247 struct bio *bio;
1248 struct bio_vec *bvec;
4d8ab62e 1249 int i;
68154e90 1250
4d8ab62e
FT
1251 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1252 if (IS_ERR(bio))
1253 return bio;
68154e90
FT
1254
1255 if (!reading) {
1256 void *p = data;
1257
1258 bio_for_each_segment(bvec, bio, i) {
1259 char *addr = page_address(bvec->bv_page);
1260
1261 memcpy(addr, p, bvec->bv_len);
1262 p += bvec->bv_len;
1263 }
1264 }
1265
68154e90 1266 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1267
68154e90 1268 return bio;
68154e90 1269}
a112a71d 1270EXPORT_SYMBOL(bio_copy_kern);
68154e90 1271
1da177e4
LT
1272/*
1273 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1274 * for performing direct-IO in BIOs.
1275 *
1276 * The problem is that we cannot run set_page_dirty() from interrupt context
1277 * because the required locks are not interrupt-safe. So what we can do is to
1278 * mark the pages dirty _before_ performing IO. And in interrupt context,
1279 * check that the pages are still dirty. If so, fine. If not, redirty them
1280 * in process context.
1281 *
1282 * We special-case compound pages here: normally this means reads into hugetlb
1283 * pages. The logic in here doesn't really work right for compound pages
1284 * because the VM does not uniformly chase down the head page in all cases.
1285 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1286 * handle them at all. So we skip compound pages here at an early stage.
1287 *
1288 * Note that this code is very hard to test under normal circumstances because
1289 * direct-io pins the pages with get_user_pages(). This makes
1290 * is_page_cache_freeable return false, and the VM will not clean the pages.
1291 * But other code (eg, pdflush) could clean the pages if they are mapped
1292 * pagecache.
1293 *
1294 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1295 * deferred bio dirtying paths.
1296 */
1297
1298/*
1299 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1300 */
1301void bio_set_pages_dirty(struct bio *bio)
1302{
1303 struct bio_vec *bvec = bio->bi_io_vec;
1304 int i;
1305
1306 for (i = 0; i < bio->bi_vcnt; i++) {
1307 struct page *page = bvec[i].bv_page;
1308
1309 if (page && !PageCompound(page))
1310 set_page_dirty_lock(page);
1311 }
1312}
1313
86b6c7a7 1314static void bio_release_pages(struct bio *bio)
1da177e4
LT
1315{
1316 struct bio_vec *bvec = bio->bi_io_vec;
1317 int i;
1318
1319 for (i = 0; i < bio->bi_vcnt; i++) {
1320 struct page *page = bvec[i].bv_page;
1321
1322 if (page)
1323 put_page(page);
1324 }
1325}
1326
1327/*
1328 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1329 * If they are, then fine. If, however, some pages are clean then they must
1330 * have been written out during the direct-IO read. So we take another ref on
1331 * the BIO and the offending pages and re-dirty the pages in process context.
1332 *
1333 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1334 * here on. It will run one page_cache_release() against each page and will
1335 * run one bio_put() against the BIO.
1336 */
1337
65f27f38 1338static void bio_dirty_fn(struct work_struct *work);
1da177e4 1339
65f27f38 1340static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1341static DEFINE_SPINLOCK(bio_dirty_lock);
1342static struct bio *bio_dirty_list;
1343
1344/*
1345 * This runs in process context
1346 */
65f27f38 1347static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1348{
1349 unsigned long flags;
1350 struct bio *bio;
1351
1352 spin_lock_irqsave(&bio_dirty_lock, flags);
1353 bio = bio_dirty_list;
1354 bio_dirty_list = NULL;
1355 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1356
1357 while (bio) {
1358 struct bio *next = bio->bi_private;
1359
1360 bio_set_pages_dirty(bio);
1361 bio_release_pages(bio);
1362 bio_put(bio);
1363 bio = next;
1364 }
1365}
1366
1367void bio_check_pages_dirty(struct bio *bio)
1368{
1369 struct bio_vec *bvec = bio->bi_io_vec;
1370 int nr_clean_pages = 0;
1371 int i;
1372
1373 for (i = 0; i < bio->bi_vcnt; i++) {
1374 struct page *page = bvec[i].bv_page;
1375
1376 if (PageDirty(page) || PageCompound(page)) {
1377 page_cache_release(page);
1378 bvec[i].bv_page = NULL;
1379 } else {
1380 nr_clean_pages++;
1381 }
1382 }
1383
1384 if (nr_clean_pages) {
1385 unsigned long flags;
1386
1387 spin_lock_irqsave(&bio_dirty_lock, flags);
1388 bio->bi_private = bio_dirty_list;
1389 bio_dirty_list = bio;
1390 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1391 schedule_work(&bio_dirty_work);
1392 } else {
1393 bio_put(bio);
1394 }
1395}
1396
2d4dc890
IL
1397#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1398void bio_flush_dcache_pages(struct bio *bi)
1399{
1400 int i;
1401 struct bio_vec *bvec;
1402
1403 bio_for_each_segment(bvec, bi, i)
1404 flush_dcache_page(bvec->bv_page);
1405}
1406EXPORT_SYMBOL(bio_flush_dcache_pages);
1407#endif
1408
1da177e4
LT
1409/**
1410 * bio_endio - end I/O on a bio
1411 * @bio: bio
1da177e4
LT
1412 * @error: error, if any
1413 *
1414 * Description:
6712ecf8 1415 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1416 * preferred way to end I/O on a bio, it takes care of clearing
1417 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1418 * established -Exxxx (-EIO, for instance) error values in case
1419 * something went wrong. Noone should call bi_end_io() directly on a
1420 * bio unless they own it and thus know that it has an end_io
1421 * function.
1da177e4 1422 **/
6712ecf8 1423void bio_endio(struct bio *bio, int error)
1da177e4
LT
1424{
1425 if (error)
1426 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1427 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1428 error = -EIO;
1da177e4 1429
5bb23a68 1430 if (bio->bi_end_io)
6712ecf8 1431 bio->bi_end_io(bio, error);
1da177e4 1432}
a112a71d 1433EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1434
1435void bio_pair_release(struct bio_pair *bp)
1436{
1437 if (atomic_dec_and_test(&bp->cnt)) {
1438 struct bio *master = bp->bio1.bi_private;
1439
6712ecf8 1440 bio_endio(master, bp->error);
1da177e4
LT
1441 mempool_free(bp, bp->bio2.bi_private);
1442 }
1443}
a112a71d 1444EXPORT_SYMBOL(bio_pair_release);
1da177e4 1445
6712ecf8 1446static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1447{
1448 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1449
1450 if (err)
1451 bp->error = err;
1452
1da177e4 1453 bio_pair_release(bp);
1da177e4
LT
1454}
1455
6712ecf8 1456static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1457{
1458 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1459
1460 if (err)
1461 bp->error = err;
1462
1da177e4 1463 bio_pair_release(bp);
1da177e4
LT
1464}
1465
1466/*
c7eee1b8 1467 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1468 */
6feef531 1469struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1470{
6feef531 1471 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1472
1473 if (!bp)
1474 return bp;
1475
5f3ea37c 1476 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1477 bi->bi_sector + first_sectors);
1478
1da177e4
LT
1479 BUG_ON(bi->bi_vcnt != 1);
1480 BUG_ON(bi->bi_idx != 0);
1481 atomic_set(&bp->cnt, 3);
1482 bp->error = 0;
1483 bp->bio1 = *bi;
1484 bp->bio2 = *bi;
1485 bp->bio2.bi_sector += first_sectors;
1486 bp->bio2.bi_size -= first_sectors << 9;
1487 bp->bio1.bi_size = first_sectors << 9;
1488
1489 bp->bv1 = bi->bi_io_vec[0];
1490 bp->bv2 = bi->bi_io_vec[0];
1491 bp->bv2.bv_offset += first_sectors << 9;
1492 bp->bv2.bv_len -= first_sectors << 9;
1493 bp->bv1.bv_len = first_sectors << 9;
1494
1495 bp->bio1.bi_io_vec = &bp->bv1;
1496 bp->bio2.bi_io_vec = &bp->bv2;
1497
a2eb0c10
N
1498 bp->bio1.bi_max_vecs = 1;
1499 bp->bio2.bi_max_vecs = 1;
1500
1da177e4
LT
1501 bp->bio1.bi_end_io = bio_pair_end_1;
1502 bp->bio2.bi_end_io = bio_pair_end_2;
1503
1504 bp->bio1.bi_private = bi;
6feef531 1505 bp->bio2.bi_private = bio_split_pool;
1da177e4 1506
7ba1ba12
MP
1507 if (bio_integrity(bi))
1508 bio_integrity_split(bi, bp, first_sectors);
1509
1da177e4
LT
1510 return bp;
1511}
a112a71d 1512EXPORT_SYMBOL(bio_split);
1da177e4 1513
ad3316bf
MP
1514/**
1515 * bio_sector_offset - Find hardware sector offset in bio
1516 * @bio: bio to inspect
1517 * @index: bio_vec index
1518 * @offset: offset in bv_page
1519 *
1520 * Return the number of hardware sectors between beginning of bio
1521 * and an end point indicated by a bio_vec index and an offset
1522 * within that vector's page.
1523 */
1524sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1525 unsigned int offset)
1526{
e1defc4f 1527 unsigned int sector_sz;
ad3316bf
MP
1528 struct bio_vec *bv;
1529 sector_t sectors;
1530 int i;
1531
e1defc4f 1532 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1533 sectors = 0;
1534
1535 if (index >= bio->bi_idx)
1536 index = bio->bi_vcnt - 1;
1537
1538 __bio_for_each_segment(bv, bio, i, 0) {
1539 if (i == index) {
1540 if (offset > bv->bv_offset)
1541 sectors += (offset - bv->bv_offset) / sector_sz;
1542 break;
1543 }
1544
1545 sectors += bv->bv_len / sector_sz;
1546 }
1547
1548 return sectors;
1549}
1550EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1551
1552/*
1553 * create memory pools for biovec's in a bio_set.
1554 * use the global biovec slabs created for general use.
1555 */
5972511b 1556static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1557{
7ff9345f 1558 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1559
7ff9345f
JA
1560 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1561 if (!bs->bvec_pool)
1562 return -ENOMEM;
1da177e4 1563
1da177e4
LT
1564 return 0;
1565}
1566
1567static void biovec_free_pools(struct bio_set *bs)
1568{
7ff9345f 1569 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1570}
1571
1572void bioset_free(struct bio_set *bs)
1573{
1574 if (bs->bio_pool)
1575 mempool_destroy(bs->bio_pool);
1576
7878cba9 1577 bioset_integrity_free(bs);
1da177e4 1578 biovec_free_pools(bs);
bb799ca0 1579 bio_put_slab(bs);
1da177e4
LT
1580
1581 kfree(bs);
1582}
a112a71d 1583EXPORT_SYMBOL(bioset_free);
1da177e4 1584
bb799ca0
JA
1585/**
1586 * bioset_create - Create a bio_set
1587 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1588 * @front_pad: Number of bytes to allocate in front of the returned bio
1589 *
1590 * Description:
1591 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1592 * to ask for a number of bytes to be allocated in front of the bio.
1593 * Front pad allocation is useful for embedding the bio inside
1594 * another structure, to avoid allocating extra data to go with the bio.
1595 * Note that the bio must be embedded at the END of that structure always,
1596 * or things will break badly.
1597 */
1598struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1599{
392ddc32 1600 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1601 struct bio_set *bs;
1da177e4 1602
1b434498 1603 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1604 if (!bs)
1605 return NULL;
1606
bb799ca0 1607 bs->front_pad = front_pad;
1b434498 1608
392ddc32 1609 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1610 if (!bs->bio_slab) {
1611 kfree(bs);
1612 return NULL;
1613 }
1614
1615 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1616 if (!bs->bio_pool)
1617 goto bad;
1618
7878cba9
MP
1619 if (bioset_integrity_create(bs, pool_size))
1620 goto bad;
1621
bb799ca0 1622 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1623 return bs;
1624
1625bad:
1626 bioset_free(bs);
1627 return NULL;
1628}
a112a71d 1629EXPORT_SYMBOL(bioset_create);
1da177e4
LT
1630
1631static void __init biovec_init_slabs(void)
1632{
1633 int i;
1634
1635 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1636 int size;
1637 struct biovec_slab *bvs = bvec_slabs + i;
1638
a7fcd37c
JA
1639#ifndef CONFIG_BLK_DEV_INTEGRITY
1640 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1641 bvs->slab = NULL;
1642 continue;
1643 }
1644#endif
1645
1da177e4
LT
1646 size = bvs->nr_vecs * sizeof(struct bio_vec);
1647 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1648 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1649 }
1650}
1651
1652static int __init init_bio(void)
1653{
bb799ca0
JA
1654 bio_slab_max = 2;
1655 bio_slab_nr = 0;
1656 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1657 if (!bio_slabs)
1658 panic("bio: can't allocate bios\n");
1da177e4 1659
7878cba9 1660 bio_integrity_init();
1da177e4
LT
1661 biovec_init_slabs();
1662
bb799ca0 1663 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1664 if (!fs_bio_set)
1665 panic("bio: can't allocate bios\n");
1666
0eaae62a
MD
1667 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1668 sizeof(struct bio_pair));
1da177e4
LT
1669 if (!bio_split_pool)
1670 panic("bio: can't create split pool\n");
1671
1672 return 0;
1673}
1da177e4 1674subsys_initcall(init_bio);