sparc: switch to using asm-generic for seccomp.h
[linux-2.6-block.git] / fs / binfmt_elf.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
1da177e4
LT
15#include <linux/mm.h>
16#include <linux/mman.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
1da177e4 22#include <linux/slab.h>
1da177e4
LT
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
1da177e4
LT
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
2aa362c4 30#include <linux/vmalloc.h>
1da177e4 31#include <linux/security.h>
1da177e4 32#include <linux/random.h>
f4e5cc2c 33#include <linux/elf.h>
d1fd836d 34#include <linux/elf-randomize.h>
7e80d0d0 35#include <linux/utsname.h>
088e7af7 36#include <linux/coredump.h>
6fac4829 37#include <linux/sched.h>
1da177e4
LT
38#include <asm/uaccess.h>
39#include <asm/param.h>
40#include <asm/page.h>
41
2aa362c4
DV
42#ifndef user_long_t
43#define user_long_t long
44#endif
49ae4d4b
DV
45#ifndef user_siginfo_t
46#define user_siginfo_t siginfo_t
47#endif
48
71613c3b 49static int load_elf_binary(struct linux_binprm *bprm);
bb1ad820
AM
50static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 int, int, unsigned long);
1da177e4 52
69369a70
JT
53#ifdef CONFIG_USELIB
54static int load_elf_library(struct file *);
55#else
56#define load_elf_library NULL
57#endif
58
1da177e4
LT
59/*
60 * If we don't support core dumping, then supply a NULL so we
61 * don't even try.
62 */
698ba7b5 63#ifdef CONFIG_ELF_CORE
f6151dfe 64static int elf_core_dump(struct coredump_params *cprm);
1da177e4
LT
65#else
66#define elf_core_dump NULL
67#endif
68
69#if ELF_EXEC_PAGESIZE > PAGE_SIZE
f4e5cc2c 70#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
1da177e4 71#else
f4e5cc2c 72#define ELF_MIN_ALIGN PAGE_SIZE
1da177e4
LT
73#endif
74
75#ifndef ELF_CORE_EFLAGS
76#define ELF_CORE_EFLAGS 0
77#endif
78
79#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
80#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
81#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82
83static struct linux_binfmt elf_format = {
f670d0ec
MP
84 .module = THIS_MODULE,
85 .load_binary = load_elf_binary,
86 .load_shlib = load_elf_library,
87 .core_dump = elf_core_dump,
88 .min_coredump = ELF_EXEC_PAGESIZE,
1da177e4
LT
89};
90
d4e3cc38 91#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
1da177e4
LT
92
93static int set_brk(unsigned long start, unsigned long end)
94{
95 start = ELF_PAGEALIGN(start);
96 end = ELF_PAGEALIGN(end);
97 if (end > start) {
98 unsigned long addr;
e4eb1ff6 99 addr = vm_brk(start, end - start);
1da177e4
LT
100 if (BAD_ADDR(addr))
101 return addr;
102 }
103 current->mm->start_brk = current->mm->brk = end;
104 return 0;
105}
106
1da177e4
LT
107/* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
f4e5cc2c
JJ
110 be in memory
111 */
1da177e4
LT
112static int padzero(unsigned long elf_bss)
113{
114 unsigned long nbyte;
115
116 nbyte = ELF_PAGEOFFSET(elf_bss);
117 if (nbyte) {
118 nbyte = ELF_MIN_ALIGN - nbyte;
119 if (clear_user((void __user *) elf_bss, nbyte))
120 return -EFAULT;
121 }
122 return 0;
123}
124
09c6dd3c 125/* Let's use some macros to make this stack manipulation a little clearer */
1da177e4
LT
126#ifdef CONFIG_STACK_GROWSUP
127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128#define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
f4e5cc2c
JJ
130#define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 old_sp; })
1da177e4
LT
133#else
134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135#define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138#endif
139
483fad1c
NL
140#ifndef ELF_BASE_PLATFORM
141/*
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 */
146#define ELF_BASE_PLATFORM NULL
147#endif
148
1da177e4 149static int
f4e5cc2c 150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
d20894a2 151 unsigned long load_addr, unsigned long interp_load_addr)
1da177e4
LT
152{
153 unsigned long p = bprm->p;
154 int argc = bprm->argc;
155 int envc = bprm->envc;
156 elf_addr_t __user *argv;
157 elf_addr_t __user *envp;
158 elf_addr_t __user *sp;
159 elf_addr_t __user *u_platform;
483fad1c 160 elf_addr_t __user *u_base_platform;
f06295b4 161 elf_addr_t __user *u_rand_bytes;
1da177e4 162 const char *k_platform = ELF_PLATFORM;
483fad1c 163 const char *k_base_platform = ELF_BASE_PLATFORM;
f06295b4 164 unsigned char k_rand_bytes[16];
1da177e4
LT
165 int items;
166 elf_addr_t *elf_info;
167 int ei_index = 0;
86a264ab 168 const struct cred *cred = current_cred();
b6a2fea3 169 struct vm_area_struct *vma;
1da177e4 170
d68c9d6a
FBH
171 /*
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
175 */
176
177 p = arch_align_stack(p);
178
1da177e4
LT
179 /*
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
183 * merely difficult.
184 */
1da177e4
LT
185 u_platform = NULL;
186 if (k_platform) {
187 size_t len = strlen(k_platform) + 1;
188
1da177e4
LT
189 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_platform, k_platform, len))
191 return -EFAULT;
192 }
193
483fad1c
NL
194 /*
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
197 */
198 u_base_platform = NULL;
199 if (k_base_platform) {
200 size_t len = strlen(k_base_platform) + 1;
201
202 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_base_platform, k_base_platform, len))
204 return -EFAULT;
205 }
206
f06295b4
KC
207 /*
208 * Generate 16 random bytes for userspace PRNG seeding.
209 */
210 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 u_rand_bytes = (elf_addr_t __user *)
212 STACK_ALLOC(p, sizeof(k_rand_bytes));
213 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 return -EFAULT;
215
1da177e4 216 /* Create the ELF interpreter info */
785d5570 217 elf_info = (elf_addr_t *)current->mm->saved_auxv;
4f9a58d7 218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
1da177e4 219#define NEW_AUX_ENT(id, val) \
f4e5cc2c 220 do { \
785d5570
JJ
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
f4e5cc2c 223 } while (0)
1da177e4
LT
224
225#ifdef ARCH_DLINFO
226 /*
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * AUXV.
4f9a58d7
OH
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
1da177e4
LT
231 */
232 ARCH_DLINFO;
233#endif
234 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
f4e5cc2c 238 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
1da177e4
LT
239 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 NEW_AUX_ENT(AT_FLAGS, 0);
242 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
ebc887b2
EB
243 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
785d5570 247 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
f06295b4 248 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
2171364d
MN
249#ifdef ELF_HWCAP2
250 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251#endif
65191087 252 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
1da177e4 253 if (k_platform) {
f4e5cc2c 254 NEW_AUX_ENT(AT_PLATFORM,
785d5570 255 (elf_addr_t)(unsigned long)u_platform);
1da177e4 256 }
483fad1c
NL
257 if (k_base_platform) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM,
259 (elf_addr_t)(unsigned long)u_base_platform);
260 }
1da177e4 261 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
785d5570 262 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
1da177e4
LT
263 }
264#undef NEW_AUX_ENT
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info[ei_index], 0,
267 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268
269 /* And advance past the AT_NULL entry. */
270 ei_index += 2;
271
272 sp = STACK_ADD(p, ei_index);
273
d20894a2 274 items = (argc + 1) + (envc + 1) + 1;
1da177e4
LT
275 bprm->p = STACK_ROUND(sp, items);
276
277 /* Point sp at the lowest address on the stack */
278#ifdef CONFIG_STACK_GROWSUP
279 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
f4e5cc2c 280 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
1da177e4
LT
281#else
282 sp = (elf_addr_t __user *)bprm->p;
283#endif
284
b6a2fea3
OW
285
286 /*
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
289 */
290 vma = find_extend_vma(current->mm, bprm->p);
291 if (!vma)
292 return -EFAULT;
293
1da177e4
LT
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc, sp++))
296 return -EFAULT;
d20894a2
AK
297 argv = sp;
298 envp = argv + argc + 1;
1da177e4
LT
299
300 /* Populate argv and envp */
a84a5059 301 p = current->mm->arg_end = current->mm->arg_start;
1da177e4
LT
302 while (argc-- > 0) {
303 size_t len;
841d5fb7
HC
304 if (__put_user((elf_addr_t)p, argv++))
305 return -EFAULT;
b6a2fea3
OW
306 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 if (!len || len > MAX_ARG_STRLEN)
23c4971e 308 return -EINVAL;
1da177e4
LT
309 p += len;
310 }
311 if (__put_user(0, argv))
312 return -EFAULT;
313 current->mm->arg_end = current->mm->env_start = p;
314 while (envc-- > 0) {
315 size_t len;
841d5fb7
HC
316 if (__put_user((elf_addr_t)p, envp++))
317 return -EFAULT;
b6a2fea3
OW
318 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 if (!len || len > MAX_ARG_STRLEN)
23c4971e 320 return -EINVAL;
1da177e4
LT
321 p += len;
322 }
323 if (__put_user(0, envp))
324 return -EFAULT;
325 current->mm->env_end = p;
326
327 /* Put the elf_info on the stack in the right place. */
328 sp = (elf_addr_t __user *)envp + 1;
329 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 return -EFAULT;
331 return 0;
332}
333
c07380be
JH
334#ifndef elf_map
335
1da177e4 336static unsigned long elf_map(struct file *filep, unsigned long addr,
cc503c1b
JK
337 struct elf_phdr *eppnt, int prot, int type,
338 unsigned long total_size)
1da177e4
LT
339{
340 unsigned long map_addr;
cc503c1b
JK
341 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 addr = ELF_PAGESTART(addr);
344 size = ELF_PAGEALIGN(size);
1da177e4 345
dda6ebde
DG
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
cc503c1b
JK
348 if (!size)
349 return addr;
350
cc503c1b
JK
351 /*
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
358 */
359 if (total_size) {
360 total_size = ELF_PAGEALIGN(total_size);
5a5e4c2e 361 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
cc503c1b 362 if (!BAD_ADDR(map_addr))
5a5e4c2e 363 vm_munmap(map_addr+size, total_size-size);
cc503c1b 364 } else
5a5e4c2e 365 map_addr = vm_mmap(filep, addr, size, prot, type, off);
cc503c1b 366
1da177e4
LT
367 return(map_addr);
368}
369
c07380be
JH
370#endif /* !elf_map */
371
cc503c1b
JK
372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373{
374 int i, first_idx = -1, last_idx = -1;
375
376 for (i = 0; i < nr; i++) {
377 if (cmds[i].p_type == PT_LOAD) {
378 last_idx = i;
379 if (first_idx == -1)
380 first_idx = i;
381 }
382 }
383 if (first_idx == -1)
384 return 0;
385
386 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 ELF_PAGESTART(cmds[first_idx].p_vaddr);
388}
389
6a8d3894
PB
390/**
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
394 *
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
398 */
399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 struct file *elf_file)
401{
402 struct elf_phdr *elf_phdata = NULL;
403 int retval, size, err = -1;
404
405 /*
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
408 */
409 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
411
412 /* Sanity check the number of program headers... */
413 if (elf_ex->e_phnum < 1 ||
414 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 goto out;
416
417 /* ...and their total size. */
418 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 if (size > ELF_MIN_ALIGN)
420 goto out;
421
422 elf_phdata = kmalloc(size, GFP_KERNEL);
423 if (!elf_phdata)
424 goto out;
425
426 /* Read in the program headers */
427 retval = kernel_read(elf_file, elf_ex->e_phoff,
428 (char *)elf_phdata, size);
429 if (retval != size) {
430 err = (retval < 0) ? retval : -EIO;
431 goto out;
432 }
433
434 /* Success! */
435 err = 0;
436out:
437 if (err) {
438 kfree(elf_phdata);
439 elf_phdata = NULL;
440 }
441 return elf_phdata;
442}
cc503c1b 443
774c105e
PB
444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
445
446/**
447 * struct arch_elf_state - arch-specific ELF loading state
448 *
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
453 *
454 * This implementation is a dummy for architectures which require no
455 * specific state.
456 */
457struct arch_elf_state {
458};
459
460#define INIT_ARCH_ELF_STATE {}
461
462/**
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
471 *
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475 * interpreter.
476 *
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
479 */
480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 struct elf_phdr *phdr,
482 struct file *elf, bool is_interp,
483 struct arch_elf_state *state)
484{
485 /* Dummy implementation, always proceed */
486 return 0;
487}
488
489/**
490 * arch_check_elf() - check a PT_LOPROC..PT_HIPROC ELF program header
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @state: Architecture-specific state preserved throughout the process
494 * of loading the ELF.
495 *
496 * Provides a final opportunity for architecture code to reject the loading
497 * of the ELF & cause an exec syscall to return an error. This is called after
498 * all program headers to be checked by arch_elf_pt_proc have been.
499 *
500 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
501 * with that return code.
502 */
503static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
504 struct arch_elf_state *state)
505{
506 /* Dummy implementation, always proceed */
507 return 0;
508}
509
510#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
cc503c1b 511
1da177e4
LT
512/* This is much more generalized than the library routine read function,
513 so we keep this separate. Technically the library read function
514 is only provided so that we can read a.out libraries that have
515 an ELF header */
516
f4e5cc2c 517static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
cc503c1b 518 struct file *interpreter, unsigned long *interp_map_addr,
a9d9ef13 519 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
1da177e4 520{
1da177e4
LT
521 struct elf_phdr *eppnt;
522 unsigned long load_addr = 0;
523 int load_addr_set = 0;
524 unsigned long last_bss = 0, elf_bss = 0;
525 unsigned long error = ~0UL;
cc503c1b 526 unsigned long total_size;
6a8d3894 527 int i;
1da177e4
LT
528
529 /* First of all, some simple consistency checks */
530 if (interp_elf_ex->e_type != ET_EXEC &&
531 interp_elf_ex->e_type != ET_DYN)
532 goto out;
533 if (!elf_check_arch(interp_elf_ex))
534 goto out;
72c2d531 535 if (!interpreter->f_op->mmap)
1da177e4
LT
536 goto out;
537
a9d9ef13
PB
538 total_size = total_mapping_size(interp_elf_phdata,
539 interp_elf_ex->e_phnum);
cc503c1b
JK
540 if (!total_size) {
541 error = -EINVAL;
a9d9ef13 542 goto out;
cc503c1b
JK
543 }
544
a9d9ef13 545 eppnt = interp_elf_phdata;
f4e5cc2c
JJ
546 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
547 if (eppnt->p_type == PT_LOAD) {
548 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
549 int elf_prot = 0;
550 unsigned long vaddr = 0;
551 unsigned long k, map_addr;
552
553 if (eppnt->p_flags & PF_R)
554 elf_prot = PROT_READ;
555 if (eppnt->p_flags & PF_W)
556 elf_prot |= PROT_WRITE;
557 if (eppnt->p_flags & PF_X)
558 elf_prot |= PROT_EXEC;
559 vaddr = eppnt->p_vaddr;
560 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
561 elf_type |= MAP_FIXED;
cc503c1b
JK
562 else if (no_base && interp_elf_ex->e_type == ET_DYN)
563 load_addr = -vaddr;
f4e5cc2c
JJ
564
565 map_addr = elf_map(interpreter, load_addr + vaddr,
bb1ad820 566 eppnt, elf_prot, elf_type, total_size);
cc503c1b
JK
567 total_size = 0;
568 if (!*interp_map_addr)
569 *interp_map_addr = map_addr;
f4e5cc2c
JJ
570 error = map_addr;
571 if (BAD_ADDR(map_addr))
a9d9ef13 572 goto out;
f4e5cc2c
JJ
573
574 if (!load_addr_set &&
575 interp_elf_ex->e_type == ET_DYN) {
576 load_addr = map_addr - ELF_PAGESTART(vaddr);
577 load_addr_set = 1;
578 }
579
580 /*
581 * Check to see if the section's size will overflow the
582 * allowed task size. Note that p_filesz must always be
583 * <= p_memsize so it's only necessary to check p_memsz.
584 */
585 k = load_addr + eppnt->p_vaddr;
ce51059b 586 if (BAD_ADDR(k) ||
f4e5cc2c
JJ
587 eppnt->p_filesz > eppnt->p_memsz ||
588 eppnt->p_memsz > TASK_SIZE ||
589 TASK_SIZE - eppnt->p_memsz < k) {
590 error = -ENOMEM;
a9d9ef13 591 goto out;
f4e5cc2c
JJ
592 }
593
594 /*
595 * Find the end of the file mapping for this phdr, and
596 * keep track of the largest address we see for this.
597 */
598 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
599 if (k > elf_bss)
600 elf_bss = k;
601
602 /*
603 * Do the same thing for the memory mapping - between
604 * elf_bss and last_bss is the bss section.
605 */
606 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
607 if (k > last_bss)
608 last_bss = k;
609 }
1da177e4
LT
610 }
611
752015d1
RM
612 if (last_bss > elf_bss) {
613 /*
614 * Now fill out the bss section. First pad the last page up
615 * to the page boundary, and then perform a mmap to make sure
616 * that there are zero-mapped pages up to and including the
617 * last bss page.
618 */
619 if (padzero(elf_bss)) {
620 error = -EFAULT;
a9d9ef13 621 goto out;
752015d1 622 }
1da177e4 623
752015d1
RM
624 /* What we have mapped so far */
625 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
1da177e4 626
752015d1 627 /* Map the last of the bss segment */
e4eb1ff6 628 error = vm_brk(elf_bss, last_bss - elf_bss);
1da177e4 629 if (BAD_ADDR(error))
a9d9ef13 630 goto out;
1da177e4
LT
631 }
632
cc503c1b 633 error = load_addr;
1da177e4
LT
634out:
635 return error;
636}
637
1da177e4
LT
638/*
639 * These are the functions used to load ELF style executables and shared
640 * libraries. There is no binary dependent code anywhere else.
641 */
642
913bd906 643#ifndef STACK_RND_MASK
d1cabd63 644#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
913bd906 645#endif
1da177e4
LT
646
647static unsigned long randomize_stack_top(unsigned long stack_top)
648{
4e7c22d4 649 unsigned long random_variable = 0;
1da177e4 650
c16b63e0
AK
651 if ((current->flags & PF_RANDOMIZE) &&
652 !(current->personality & ADDR_NO_RANDOMIZE)) {
4e7c22d4
HMG
653 random_variable = (unsigned long) get_random_int();
654 random_variable &= STACK_RND_MASK;
913bd906
AK
655 random_variable <<= PAGE_SHIFT;
656 }
1da177e4 657#ifdef CONFIG_STACK_GROWSUP
913bd906 658 return PAGE_ALIGN(stack_top) + random_variable;
1da177e4 659#else
913bd906 660 return PAGE_ALIGN(stack_top) - random_variable;
1da177e4
LT
661#endif
662}
663
71613c3b 664static int load_elf_binary(struct linux_binprm *bprm)
1da177e4
LT
665{
666 struct file *interpreter = NULL; /* to shut gcc up */
667 unsigned long load_addr = 0, load_bias = 0;
668 int load_addr_set = 0;
669 char * elf_interpreter = NULL;
1da177e4 670 unsigned long error;
a9d9ef13 671 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
1da177e4 672 unsigned long elf_bss, elf_brk;
1da177e4 673 int retval, i;
cc503c1b
JK
674 unsigned long elf_entry;
675 unsigned long interp_load_addr = 0;
1da177e4 676 unsigned long start_code, end_code, start_data, end_data;
1a530a6f 677 unsigned long reloc_func_desc __maybe_unused = 0;
8de61e69 678 int executable_stack = EXSTACK_DEFAULT;
71613c3b 679 struct pt_regs *regs = current_pt_regs();
1da177e4
LT
680 struct {
681 struct elfhdr elf_ex;
682 struct elfhdr interp_elf_ex;
1da177e4 683 } *loc;
774c105e 684 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
1da177e4
LT
685
686 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
687 if (!loc) {
688 retval = -ENOMEM;
689 goto out_ret;
690 }
691
692 /* Get the exec-header */
f4e5cc2c 693 loc->elf_ex = *((struct elfhdr *)bprm->buf);
1da177e4
LT
694
695 retval = -ENOEXEC;
696 /* First of all, some simple consistency checks */
697 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
698 goto out;
699
700 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
701 goto out;
702 if (!elf_check_arch(&loc->elf_ex))
703 goto out;
72c2d531 704 if (!bprm->file->f_op->mmap)
1da177e4
LT
705 goto out;
706
6a8d3894 707 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
1da177e4
LT
708 if (!elf_phdata)
709 goto out;
710
1da177e4
LT
711 elf_ppnt = elf_phdata;
712 elf_bss = 0;
713 elf_brk = 0;
714
715 start_code = ~0UL;
716 end_code = 0;
717 start_data = 0;
718 end_data = 0;
719
720 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
721 if (elf_ppnt->p_type == PT_INTERP) {
722 /* This is the program interpreter used for
723 * shared libraries - for now assume that this
724 * is an a.out format binary
725 */
1da177e4
LT
726 retval = -ENOEXEC;
727 if (elf_ppnt->p_filesz > PATH_MAX ||
728 elf_ppnt->p_filesz < 2)
e7b9b550 729 goto out_free_ph;
1da177e4
LT
730
731 retval = -ENOMEM;
792db3af 732 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
f4e5cc2c 733 GFP_KERNEL);
1da177e4 734 if (!elf_interpreter)
e7b9b550 735 goto out_free_ph;
1da177e4
LT
736
737 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
f4e5cc2c
JJ
738 elf_interpreter,
739 elf_ppnt->p_filesz);
1da177e4
LT
740 if (retval != elf_ppnt->p_filesz) {
741 if (retval >= 0)
742 retval = -EIO;
743 goto out_free_interp;
744 }
745 /* make sure path is NULL terminated */
746 retval = -ENOEXEC;
747 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
748 goto out_free_interp;
749
1da177e4
LT
750 interpreter = open_exec(elf_interpreter);
751 retval = PTR_ERR(interpreter);
752 if (IS_ERR(interpreter))
753 goto out_free_interp;
1fb84496
AD
754
755 /*
756 * If the binary is not readable then enforce
757 * mm->dumpable = 0 regardless of the interpreter's
758 * permissions.
759 */
1b5d783c 760 would_dump(bprm, interpreter);
1fb84496 761
f4e5cc2c
JJ
762 retval = kernel_read(interpreter, 0, bprm->buf,
763 BINPRM_BUF_SIZE);
1da177e4
LT
764 if (retval != BINPRM_BUF_SIZE) {
765 if (retval >= 0)
766 retval = -EIO;
767 goto out_free_dentry;
768 }
769
770 /* Get the exec headers */
f4e5cc2c 771 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
1da177e4
LT
772 break;
773 }
774 elf_ppnt++;
775 }
776
777 elf_ppnt = elf_phdata;
778 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
774c105e
PB
779 switch (elf_ppnt->p_type) {
780 case PT_GNU_STACK:
1da177e4
LT
781 if (elf_ppnt->p_flags & PF_X)
782 executable_stack = EXSTACK_ENABLE_X;
783 else
784 executable_stack = EXSTACK_DISABLE_X;
785 break;
774c105e
PB
786
787 case PT_LOPROC ... PT_HIPROC:
788 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
789 bprm->file, false,
790 &arch_state);
791 if (retval)
792 goto out_free_dentry;
793 break;
1da177e4 794 }
1da177e4
LT
795
796 /* Some simple consistency checks for the interpreter */
797 if (elf_interpreter) {
1da177e4 798 retval = -ELIBBAD;
d20894a2
AK
799 /* Not an ELF interpreter */
800 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1da177e4 801 goto out_free_dentry;
1da177e4 802 /* Verify the interpreter has a valid arch */
d20894a2 803 if (!elf_check_arch(&loc->interp_elf_ex))
1da177e4 804 goto out_free_dentry;
a9d9ef13
PB
805
806 /* Load the interpreter program headers */
807 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
808 interpreter);
809 if (!interp_elf_phdata)
810 goto out_free_dentry;
774c105e
PB
811
812 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
813 elf_ppnt = interp_elf_phdata;
814 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
815 switch (elf_ppnt->p_type) {
816 case PT_LOPROC ... PT_HIPROC:
817 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
818 elf_ppnt, interpreter,
819 true, &arch_state);
820 if (retval)
821 goto out_free_dentry;
822 break;
823 }
1da177e4
LT
824 }
825
774c105e
PB
826 /*
827 * Allow arch code to reject the ELF at this point, whilst it's
828 * still possible to return an error to the code that invoked
829 * the exec syscall.
830 */
831 retval = arch_check_elf(&loc->elf_ex, !!interpreter, &arch_state);
832 if (retval)
833 goto out_free_dentry;
834
1da177e4
LT
835 /* Flush all traces of the currently running executable */
836 retval = flush_old_exec(bprm);
837 if (retval)
838 goto out_free_dentry;
839
1da177e4
LT
840 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
841 may depend on the personality. */
774c105e 842 SET_PERSONALITY2(loc->elf_ex, &arch_state);
1da177e4
LT
843 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
844 current->personality |= READ_IMPLIES_EXEC;
845
f4e5cc2c 846 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1da177e4 847 current->flags |= PF_RANDOMIZE;
221af7f8
LT
848
849 setup_new_exec(bprm);
1da177e4
LT
850
851 /* Do this so that we can load the interpreter, if need be. We will
852 change some of these later */
1da177e4
LT
853 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
854 executable_stack);
19d860a1 855 if (retval < 0)
1da177e4 856 goto out_free_dentry;
1da177e4 857
1da177e4
LT
858 current->mm->start_stack = bprm->p;
859
af901ca1 860 /* Now we do a little grungy work by mmapping the ELF image into
cc503c1b 861 the correct location in memory. */
f4e5cc2c
JJ
862 for(i = 0, elf_ppnt = elf_phdata;
863 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
1da177e4
LT
864 int elf_prot = 0, elf_flags;
865 unsigned long k, vaddr;
a87938b2 866 unsigned long total_size = 0;
1da177e4
LT
867
868 if (elf_ppnt->p_type != PT_LOAD)
869 continue;
870
871 if (unlikely (elf_brk > elf_bss)) {
872 unsigned long nbyte;
873
874 /* There was a PT_LOAD segment with p_memsz > p_filesz
875 before this one. Map anonymous pages, if needed,
876 and clear the area. */
f670d0ec
MP
877 retval = set_brk(elf_bss + load_bias,
878 elf_brk + load_bias);
19d860a1 879 if (retval)
1da177e4 880 goto out_free_dentry;
1da177e4
LT
881 nbyte = ELF_PAGEOFFSET(elf_bss);
882 if (nbyte) {
883 nbyte = ELF_MIN_ALIGN - nbyte;
884 if (nbyte > elf_brk - elf_bss)
885 nbyte = elf_brk - elf_bss;
886 if (clear_user((void __user *)elf_bss +
887 load_bias, nbyte)) {
888 /*
889 * This bss-zeroing can fail if the ELF
f4e5cc2c 890 * file specifies odd protections. So
1da177e4
LT
891 * we don't check the return value
892 */
893 }
894 }
895 }
896
f4e5cc2c
JJ
897 if (elf_ppnt->p_flags & PF_R)
898 elf_prot |= PROT_READ;
899 if (elf_ppnt->p_flags & PF_W)
900 elf_prot |= PROT_WRITE;
901 if (elf_ppnt->p_flags & PF_X)
902 elf_prot |= PROT_EXEC;
1da177e4 903
f4e5cc2c 904 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1da177e4
LT
905
906 vaddr = elf_ppnt->p_vaddr;
907 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
908 elf_flags |= MAP_FIXED;
909 } else if (loc->elf_ex.e_type == ET_DYN) {
f4e5cc2c
JJ
910 /* Try and get dynamic programs out of the way of the
911 * default mmap base, as well as whatever program they
912 * might try to exec. This is because the brk will
913 * follow the loader, and is not movable. */
d1fd836d 914 load_bias = ELF_ET_DYN_BASE - vaddr;
a3defbe5 915 if (current->flags & PF_RANDOMIZE)
d1fd836d
KC
916 load_bias += arch_mmap_rnd();
917 load_bias = ELF_PAGESTART(load_bias);
a87938b2
MD
918 total_size = total_mapping_size(elf_phdata,
919 loc->elf_ex.e_phnum);
920 if (!total_size) {
921 error = -EINVAL;
922 goto out_free_dentry;
923 }
1da177e4
LT
924 }
925
f4e5cc2c 926 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
a87938b2 927 elf_prot, elf_flags, total_size);
1da177e4 928 if (BAD_ADDR(error)) {
b140f251
AK
929 retval = IS_ERR((void *)error) ?
930 PTR_ERR((void*)error) : -EINVAL;
1da177e4
LT
931 goto out_free_dentry;
932 }
933
934 if (!load_addr_set) {
935 load_addr_set = 1;
936 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
937 if (loc->elf_ex.e_type == ET_DYN) {
938 load_bias += error -
939 ELF_PAGESTART(load_bias + vaddr);
940 load_addr += load_bias;
941 reloc_func_desc = load_bias;
942 }
943 }
944 k = elf_ppnt->p_vaddr;
f4e5cc2c
JJ
945 if (k < start_code)
946 start_code = k;
947 if (start_data < k)
948 start_data = k;
1da177e4
LT
949
950 /*
951 * Check to see if the section's size will overflow the
952 * allowed task size. Note that p_filesz must always be
953 * <= p_memsz so it is only necessary to check p_memsz.
954 */
ce51059b 955 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1da177e4
LT
956 elf_ppnt->p_memsz > TASK_SIZE ||
957 TASK_SIZE - elf_ppnt->p_memsz < k) {
f4e5cc2c 958 /* set_brk can never work. Avoid overflows. */
b140f251 959 retval = -EINVAL;
1da177e4
LT
960 goto out_free_dentry;
961 }
962
963 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
964
965 if (k > elf_bss)
966 elf_bss = k;
967 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
968 end_code = k;
969 if (end_data < k)
970 end_data = k;
971 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
972 if (k > elf_brk)
973 elf_brk = k;
974 }
975
976 loc->elf_ex.e_entry += load_bias;
977 elf_bss += load_bias;
978 elf_brk += load_bias;
979 start_code += load_bias;
980 end_code += load_bias;
981 start_data += load_bias;
982 end_data += load_bias;
983
984 /* Calling set_brk effectively mmaps the pages that we need
985 * for the bss and break sections. We must do this before
986 * mapping in the interpreter, to make sure it doesn't wind
987 * up getting placed where the bss needs to go.
988 */
989 retval = set_brk(elf_bss, elf_brk);
19d860a1 990 if (retval)
1da177e4 991 goto out_free_dentry;
6de50517 992 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1da177e4
LT
993 retval = -EFAULT; /* Nobody gets to see this, but.. */
994 goto out_free_dentry;
995 }
996
997 if (elf_interpreter) {
6eec482f 998 unsigned long interp_map_addr = 0;
d20894a2
AK
999
1000 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1001 interpreter,
1002 &interp_map_addr,
a9d9ef13 1003 load_bias, interp_elf_phdata);
d20894a2
AK
1004 if (!IS_ERR((void *)elf_entry)) {
1005 /*
1006 * load_elf_interp() returns relocation
1007 * adjustment
1008 */
1009 interp_load_addr = elf_entry;
1010 elf_entry += loc->interp_elf_ex.e_entry;
cc503c1b 1011 }
1da177e4 1012 if (BAD_ADDR(elf_entry)) {
ce51059b
CE
1013 retval = IS_ERR((void *)elf_entry) ?
1014 (int)elf_entry : -EINVAL;
1da177e4
LT
1015 goto out_free_dentry;
1016 }
1017 reloc_func_desc = interp_load_addr;
1018
1019 allow_write_access(interpreter);
1020 fput(interpreter);
1021 kfree(elf_interpreter);
1022 } else {
1023 elf_entry = loc->elf_ex.e_entry;
5342fba5 1024 if (BAD_ADDR(elf_entry)) {
ce51059b 1025 retval = -EINVAL;
5342fba5
SS
1026 goto out_free_dentry;
1027 }
1da177e4
LT
1028 }
1029
774c105e 1030 kfree(interp_elf_phdata);
1da177e4
LT
1031 kfree(elf_phdata);
1032
1da177e4
LT
1033 set_binfmt(&elf_format);
1034
547ee84c 1035#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
fc5243d9 1036 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
19d860a1 1037 if (retval < 0)
18c8baff 1038 goto out;
547ee84c
BH
1039#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1040
a6f76f23 1041 install_exec_creds(bprm);
b6a2fea3 1042 retval = create_elf_tables(bprm, &loc->elf_ex,
f4e5cc2c 1043 load_addr, interp_load_addr);
19d860a1 1044 if (retval < 0)
b6a2fea3 1045 goto out;
1da177e4 1046 /* N.B. passed_fileno might not be initialized? */
1da177e4
LT
1047 current->mm->end_code = end_code;
1048 current->mm->start_code = start_code;
1049 current->mm->start_data = start_data;
1050 current->mm->end_data = end_data;
1051 current->mm->start_stack = bprm->p;
1052
4471a675 1053 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
c1d171a0
JK
1054 current->mm->brk = current->mm->start_brk =
1055 arch_randomize_brk(current->mm);
204db6ed 1056#ifdef compat_brk_randomized
4471a675
JK
1057 current->brk_randomized = 1;
1058#endif
1059 }
c1d171a0 1060
1da177e4
LT
1061 if (current->personality & MMAP_PAGE_ZERO) {
1062 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1063 and some applications "depend" upon this behavior.
1064 Since we do not have the power to recompile these, we
f4e5cc2c 1065 emulate the SVr4 behavior. Sigh. */
6be5ceb0 1066 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1da177e4 1067 MAP_FIXED | MAP_PRIVATE, 0);
1da177e4
LT
1068 }
1069
1070#ifdef ELF_PLAT_INIT
1071 /*
1072 * The ABI may specify that certain registers be set up in special
1073 * ways (on i386 %edx is the address of a DT_FINI function, for
1074 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1075 * that the e_entry field is the address of the function descriptor
1076 * for the startup routine, rather than the address of the startup
1077 * routine itself. This macro performs whatever initialization to
1078 * the regs structure is required as well as any relocations to the
1079 * function descriptor entries when executing dynamically links apps.
1080 */
1081 ELF_PLAT_INIT(regs, reloc_func_desc);
1082#endif
1083
1084 start_thread(regs, elf_entry, bprm->p);
1da177e4
LT
1085 retval = 0;
1086out:
1087 kfree(loc);
1088out_ret:
1089 return retval;
1090
1091 /* error cleanup */
1092out_free_dentry:
a9d9ef13 1093 kfree(interp_elf_phdata);
1da177e4
LT
1094 allow_write_access(interpreter);
1095 if (interpreter)
1096 fput(interpreter);
1097out_free_interp:
f99d49ad 1098 kfree(elf_interpreter);
1da177e4
LT
1099out_free_ph:
1100 kfree(elf_phdata);
1101 goto out;
1102}
1103
69369a70 1104#ifdef CONFIG_USELIB
1da177e4
LT
1105/* This is really simpleminded and specialized - we are loading an
1106 a.out library that is given an ELF header. */
1da177e4
LT
1107static int load_elf_library(struct file *file)
1108{
1109 struct elf_phdr *elf_phdata;
1110 struct elf_phdr *eppnt;
1111 unsigned long elf_bss, bss, len;
1112 int retval, error, i, j;
1113 struct elfhdr elf_ex;
1114
1115 error = -ENOEXEC;
f4e5cc2c 1116 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1da177e4
LT
1117 if (retval != sizeof(elf_ex))
1118 goto out;
1119
1120 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1121 goto out;
1122
1123 /* First of all, some simple consistency checks */
1124 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
72c2d531 1125 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1da177e4
LT
1126 goto out;
1127
1128 /* Now read in all of the header information */
1129
1130 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1131 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1132
1133 error = -ENOMEM;
1134 elf_phdata = kmalloc(j, GFP_KERNEL);
1135 if (!elf_phdata)
1136 goto out;
1137
1138 eppnt = elf_phdata;
1139 error = -ENOEXEC;
1140 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1141 if (retval != j)
1142 goto out_free_ph;
1143
1144 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1145 if ((eppnt + i)->p_type == PT_LOAD)
1146 j++;
1147 if (j != 1)
1148 goto out_free_ph;
1149
1150 while (eppnt->p_type != PT_LOAD)
1151 eppnt++;
1152
1153 /* Now use mmap to map the library into memory. */
6be5ceb0 1154 error = vm_mmap(file,
1da177e4
LT
1155 ELF_PAGESTART(eppnt->p_vaddr),
1156 (eppnt->p_filesz +
1157 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1158 PROT_READ | PROT_WRITE | PROT_EXEC,
1159 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1160 (eppnt->p_offset -
1161 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1da177e4
LT
1162 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1163 goto out_free_ph;
1164
1165 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1166 if (padzero(elf_bss)) {
1167 error = -EFAULT;
1168 goto out_free_ph;
1169 }
1170
f4e5cc2c
JJ
1171 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1172 ELF_MIN_ALIGN - 1);
1da177e4 1173 bss = eppnt->p_memsz + eppnt->p_vaddr;
e4eb1ff6
LT
1174 if (bss > len)
1175 vm_brk(len, bss - len);
1da177e4
LT
1176 error = 0;
1177
1178out_free_ph:
1179 kfree(elf_phdata);
1180out:
1181 return error;
1182}
69369a70 1183#endif /* #ifdef CONFIG_USELIB */
1da177e4 1184
698ba7b5 1185#ifdef CONFIG_ELF_CORE
1da177e4
LT
1186/*
1187 * ELF core dumper
1188 *
1189 * Modelled on fs/exec.c:aout_core_dump()
1190 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1191 */
1da177e4 1192
909af768
JB
1193/*
1194 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1195 * that are useful for post-mortem analysis are included in every core dump.
1196 * In that way we ensure that the core dump is fully interpretable later
1197 * without matching up the same kernel and hardware config to see what PC values
1198 * meant. These special mappings include - vDSO, vsyscall, and other
1199 * architecture specific mappings
1200 */
1201static bool always_dump_vma(struct vm_area_struct *vma)
1202{
1203 /* Any vsyscall mappings? */
1204 if (vma == get_gate_vma(vma->vm_mm))
1205 return true;
78d683e8
AL
1206
1207 /*
1208 * Assume that all vmas with a .name op should always be dumped.
1209 * If this changes, a new vm_ops field can easily be added.
1210 */
1211 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1212 return true;
1213
909af768
JB
1214 /*
1215 * arch_vma_name() returns non-NULL for special architecture mappings,
1216 * such as vDSO sections.
1217 */
1218 if (arch_vma_name(vma))
1219 return true;
1220
1221 return false;
1222}
1223
1da177e4 1224/*
82df3973 1225 * Decide what to dump of a segment, part, all or none.
1da177e4 1226 */
82df3973
RM
1227static unsigned long vma_dump_size(struct vm_area_struct *vma,
1228 unsigned long mm_flags)
1da177e4 1229{
e575f111
KM
1230#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1231
909af768
JB
1232 /* always dump the vdso and vsyscall sections */
1233 if (always_dump_vma(vma))
82df3973 1234 goto whole;
e5b97dde 1235
0103bd16 1236 if (vma->vm_flags & VM_DONTDUMP)
accb61fe
JB
1237 return 0;
1238
e575f111
KM
1239 /* Hugetlb memory check */
1240 if (vma->vm_flags & VM_HUGETLB) {
1241 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1242 goto whole;
1243 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1244 goto whole;
23d9e482 1245 return 0;
e575f111
KM
1246 }
1247
1da177e4 1248 /* Do not dump I/O mapped devices or special mappings */
314e51b9 1249 if (vma->vm_flags & VM_IO)
1da177e4
LT
1250 return 0;
1251
a1b59e80
KH
1252 /* By default, dump shared memory if mapped from an anonymous file. */
1253 if (vma->vm_flags & VM_SHARED) {
496ad9aa 1254 if (file_inode(vma->vm_file)->i_nlink == 0 ?
82df3973
RM
1255 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1256 goto whole;
1257 return 0;
a1b59e80 1258 }
1da177e4 1259
82df3973
RM
1260 /* Dump segments that have been written to. */
1261 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1262 goto whole;
1263 if (vma->vm_file == NULL)
1264 return 0;
1da177e4 1265
82df3973
RM
1266 if (FILTER(MAPPED_PRIVATE))
1267 goto whole;
1268
1269 /*
1270 * If this looks like the beginning of a DSO or executable mapping,
1271 * check for an ELF header. If we find one, dump the first page to
1272 * aid in determining what was mapped here.
1273 */
92dc07b1
RM
1274 if (FILTER(ELF_HEADERS) &&
1275 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
82df3973
RM
1276 u32 __user *header = (u32 __user *) vma->vm_start;
1277 u32 word;
92dc07b1 1278 mm_segment_t fs = get_fs();
82df3973
RM
1279 /*
1280 * Doing it this way gets the constant folded by GCC.
1281 */
1282 union {
1283 u32 cmp;
1284 char elfmag[SELFMAG];
1285 } magic;
1286 BUILD_BUG_ON(SELFMAG != sizeof word);
1287 magic.elfmag[EI_MAG0] = ELFMAG0;
1288 magic.elfmag[EI_MAG1] = ELFMAG1;
1289 magic.elfmag[EI_MAG2] = ELFMAG2;
1290 magic.elfmag[EI_MAG3] = ELFMAG3;
92dc07b1
RM
1291 /*
1292 * Switch to the user "segment" for get_user(),
1293 * then put back what elf_core_dump() had in place.
1294 */
1295 set_fs(USER_DS);
1296 if (unlikely(get_user(word, header)))
1297 word = 0;
1298 set_fs(fs);
1299 if (word == magic.cmp)
82df3973
RM
1300 return PAGE_SIZE;
1301 }
1302
1303#undef FILTER
1304
1305 return 0;
1306
1307whole:
1308 return vma->vm_end - vma->vm_start;
1da177e4
LT
1309}
1310
1da177e4
LT
1311/* An ELF note in memory */
1312struct memelfnote
1313{
1314 const char *name;
1315 int type;
1316 unsigned int datasz;
1317 void *data;
1318};
1319
1320static int notesize(struct memelfnote *en)
1321{
1322 int sz;
1323
1324 sz = sizeof(struct elf_note);
1325 sz += roundup(strlen(en->name) + 1, 4);
1326 sz += roundup(en->datasz, 4);
1327
1328 return sz;
1329}
1330
ecc8c772 1331static int writenote(struct memelfnote *men, struct coredump_params *cprm)
d025c9db
AK
1332{
1333 struct elf_note en;
1da177e4
LT
1334 en.n_namesz = strlen(men->name) + 1;
1335 en.n_descsz = men->datasz;
1336 en.n_type = men->type;
1337
ecc8c772 1338 return dump_emit(cprm, &en, sizeof(en)) &&
22a8cb82
AV
1339 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1340 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1da177e4 1341}
1da177e4 1342
3aba481f 1343static void fill_elf_header(struct elfhdr *elf, int segs,
d3330cf0 1344 u16 machine, u32 flags)
1da177e4 1345{
6970c8ef
CG
1346 memset(elf, 0, sizeof(*elf));
1347
1da177e4
LT
1348 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1349 elf->e_ident[EI_CLASS] = ELF_CLASS;
1350 elf->e_ident[EI_DATA] = ELF_DATA;
1351 elf->e_ident[EI_VERSION] = EV_CURRENT;
1352 elf->e_ident[EI_OSABI] = ELF_OSABI;
1da177e4
LT
1353
1354 elf->e_type = ET_CORE;
3aba481f 1355 elf->e_machine = machine;
1da177e4 1356 elf->e_version = EV_CURRENT;
1da177e4 1357 elf->e_phoff = sizeof(struct elfhdr);
3aba481f 1358 elf->e_flags = flags;
1da177e4
LT
1359 elf->e_ehsize = sizeof(struct elfhdr);
1360 elf->e_phentsize = sizeof(struct elf_phdr);
1361 elf->e_phnum = segs;
6970c8ef 1362
1da177e4
LT
1363 return;
1364}
1365
8d6b5eee 1366static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1da177e4
LT
1367{
1368 phdr->p_type = PT_NOTE;
1369 phdr->p_offset = offset;
1370 phdr->p_vaddr = 0;
1371 phdr->p_paddr = 0;
1372 phdr->p_filesz = sz;
1373 phdr->p_memsz = 0;
1374 phdr->p_flags = 0;
1375 phdr->p_align = 0;
1376 return;
1377}
1378
1379static void fill_note(struct memelfnote *note, const char *name, int type,
1380 unsigned int sz, void *data)
1381{
1382 note->name = name;
1383 note->type = type;
1384 note->datasz = sz;
1385 note->data = data;
1386 return;
1387}
1388
1389/*
f4e5cc2c
JJ
1390 * fill up all the fields in prstatus from the given task struct, except
1391 * registers which need to be filled up separately.
1da177e4
LT
1392 */
1393static void fill_prstatus(struct elf_prstatus *prstatus,
f4e5cc2c 1394 struct task_struct *p, long signr)
1da177e4
LT
1395{
1396 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1397 prstatus->pr_sigpend = p->pending.signal.sig[0];
1398 prstatus->pr_sighold = p->blocked.sig[0];
3b34fc58
ON
1399 rcu_read_lock();
1400 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1401 rcu_read_unlock();
b488893a 1402 prstatus->pr_pid = task_pid_vnr(p);
b488893a
PE
1403 prstatus->pr_pgrp = task_pgrp_vnr(p);
1404 prstatus->pr_sid = task_session_vnr(p);
1da177e4 1405 if (thread_group_leader(p)) {
f06febc9
FM
1406 struct task_cputime cputime;
1407
1da177e4 1408 /*
f06febc9
FM
1409 * This is the record for the group leader. It shows the
1410 * group-wide total, not its individual thread total.
1da177e4 1411 */
f06febc9
FM
1412 thread_group_cputime(p, &cputime);
1413 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1414 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1da177e4 1415 } else {
6fac4829
FW
1416 cputime_t utime, stime;
1417
1418 task_cputime(p, &utime, &stime);
1419 cputime_to_timeval(utime, &prstatus->pr_utime);
1420 cputime_to_timeval(stime, &prstatus->pr_stime);
1da177e4
LT
1421 }
1422 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1423 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1424}
1425
1426static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1427 struct mm_struct *mm)
1428{
c69e8d9c 1429 const struct cred *cred;
a84a5059 1430 unsigned int i, len;
1da177e4
LT
1431
1432 /* first copy the parameters from user space */
1433 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1434
1435 len = mm->arg_end - mm->arg_start;
1436 if (len >= ELF_PRARGSZ)
1437 len = ELF_PRARGSZ-1;
1438 if (copy_from_user(&psinfo->pr_psargs,
1439 (const char __user *)mm->arg_start, len))
1440 return -EFAULT;
1441 for(i = 0; i < len; i++)
1442 if (psinfo->pr_psargs[i] == 0)
1443 psinfo->pr_psargs[i] = ' ';
1444 psinfo->pr_psargs[len] = 0;
1445
3b34fc58
ON
1446 rcu_read_lock();
1447 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1448 rcu_read_unlock();
b488893a 1449 psinfo->pr_pid = task_pid_vnr(p);
b488893a
PE
1450 psinfo->pr_pgrp = task_pgrp_vnr(p);
1451 psinfo->pr_sid = task_session_vnr(p);
1da177e4
LT
1452
1453 i = p->state ? ffz(~p->state) + 1 : 0;
1454 psinfo->pr_state = i;
55148548 1455 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1da177e4
LT
1456 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1457 psinfo->pr_nice = task_nice(p);
1458 psinfo->pr_flag = p->flags;
c69e8d9c
DH
1459 rcu_read_lock();
1460 cred = __task_cred(p);
ebc887b2
EB
1461 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1462 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
c69e8d9c 1463 rcu_read_unlock();
1da177e4
LT
1464 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1465
1466 return 0;
1467}
1468
3aba481f
RM
1469static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1470{
1471 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1472 int i = 0;
1473 do
1474 i += 2;
1475 while (auxv[i - 2] != AT_NULL);
1476 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1477}
1478
49ae4d4b 1479static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
ce395960 1480 const siginfo_t *siginfo)
49ae4d4b
DV
1481{
1482 mm_segment_t old_fs = get_fs();
1483 set_fs(KERNEL_DS);
1484 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1485 set_fs(old_fs);
1486 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1487}
1488
2aa362c4
DV
1489#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1490/*
1491 * Format of NT_FILE note:
1492 *
1493 * long count -- how many files are mapped
1494 * long page_size -- units for file_ofs
1495 * array of [COUNT] elements of
1496 * long start
1497 * long end
1498 * long file_ofs
1499 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1500 */
72023656 1501static int fill_files_note(struct memelfnote *note)
2aa362c4
DV
1502{
1503 struct vm_area_struct *vma;
1504 unsigned count, size, names_ofs, remaining, n;
1505 user_long_t *data;
1506 user_long_t *start_end_ofs;
1507 char *name_base, *name_curpos;
1508
1509 /* *Estimated* file count and total data size needed */
1510 count = current->mm->map_count;
1511 size = count * 64;
1512
1513 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1514 alloc:
1515 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
72023656 1516 return -EINVAL;
2aa362c4
DV
1517 size = round_up(size, PAGE_SIZE);
1518 data = vmalloc(size);
1519 if (!data)
72023656 1520 return -ENOMEM;
2aa362c4
DV
1521
1522 start_end_ofs = data + 2;
1523 name_base = name_curpos = ((char *)data) + names_ofs;
1524 remaining = size - names_ofs;
1525 count = 0;
1526 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1527 struct file *file;
1528 const char *filename;
1529
1530 file = vma->vm_file;
1531 if (!file)
1532 continue;
1533 filename = d_path(&file->f_path, name_curpos, remaining);
1534 if (IS_ERR(filename)) {
1535 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1536 vfree(data);
1537 size = size * 5 / 4;
1538 goto alloc;
1539 }
1540 continue;
1541 }
1542
1543 /* d_path() fills at the end, move name down */
1544 /* n = strlen(filename) + 1: */
1545 n = (name_curpos + remaining) - filename;
1546 remaining = filename - name_curpos;
1547 memmove(name_curpos, filename, n);
1548 name_curpos += n;
1549
1550 *start_end_ofs++ = vma->vm_start;
1551 *start_end_ofs++ = vma->vm_end;
1552 *start_end_ofs++ = vma->vm_pgoff;
1553 count++;
1554 }
1555
1556 /* Now we know exact count of files, can store it */
1557 data[0] = count;
1558 data[1] = PAGE_SIZE;
1559 /*
1560 * Count usually is less than current->mm->map_count,
1561 * we need to move filenames down.
1562 */
1563 n = current->mm->map_count - count;
1564 if (n != 0) {
1565 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1566 memmove(name_base - shift_bytes, name_base,
1567 name_curpos - name_base);
1568 name_curpos -= shift_bytes;
1569 }
1570
1571 size = name_curpos - (char *)data;
1572 fill_note(note, "CORE", NT_FILE, size, data);
72023656 1573 return 0;
2aa362c4
DV
1574}
1575
4206d3aa
RM
1576#ifdef CORE_DUMP_USE_REGSET
1577#include <linux/regset.h>
1578
1579struct elf_thread_core_info {
1580 struct elf_thread_core_info *next;
1581 struct task_struct *task;
1582 struct elf_prstatus prstatus;
1583 struct memelfnote notes[0];
1584};
1585
1586struct elf_note_info {
1587 struct elf_thread_core_info *thread;
1588 struct memelfnote psinfo;
49ae4d4b 1589 struct memelfnote signote;
4206d3aa 1590 struct memelfnote auxv;
2aa362c4 1591 struct memelfnote files;
49ae4d4b 1592 user_siginfo_t csigdata;
4206d3aa
RM
1593 size_t size;
1594 int thread_notes;
1595};
1596
d31472b6
RM
1597/*
1598 * When a regset has a writeback hook, we call it on each thread before
1599 * dumping user memory. On register window machines, this makes sure the
1600 * user memory backing the register data is up to date before we read it.
1601 */
1602static void do_thread_regset_writeback(struct task_struct *task,
1603 const struct user_regset *regset)
1604{
1605 if (regset->writeback)
1606 regset->writeback(task, regset, 1);
1607}
1608
0953f65d
L
1609#ifndef PR_REG_SIZE
1610#define PR_REG_SIZE(S) sizeof(S)
1611#endif
1612
1613#ifndef PRSTATUS_SIZE
1614#define PRSTATUS_SIZE(S) sizeof(S)
1615#endif
1616
1617#ifndef PR_REG_PTR
1618#define PR_REG_PTR(S) (&((S)->pr_reg))
1619#endif
1620
1621#ifndef SET_PR_FPVALID
1622#define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1623#endif
1624
4206d3aa
RM
1625static int fill_thread_core_info(struct elf_thread_core_info *t,
1626 const struct user_regset_view *view,
1627 long signr, size_t *total)
1628{
1629 unsigned int i;
1630
1631 /*
1632 * NT_PRSTATUS is the one special case, because the regset data
1633 * goes into the pr_reg field inside the note contents, rather
1634 * than being the whole note contents. We fill the reset in here.
1635 * We assume that regset 0 is NT_PRSTATUS.
1636 */
1637 fill_prstatus(&t->prstatus, t->task, signr);
1638 (void) view->regsets[0].get(t->task, &view->regsets[0],
0953f65d
L
1639 0, PR_REG_SIZE(t->prstatus.pr_reg),
1640 PR_REG_PTR(&t->prstatus), NULL);
4206d3aa
RM
1641
1642 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
0953f65d 1643 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
4206d3aa
RM
1644 *total += notesize(&t->notes[0]);
1645
d31472b6
RM
1646 do_thread_regset_writeback(t->task, &view->regsets[0]);
1647
4206d3aa
RM
1648 /*
1649 * Each other regset might generate a note too. For each regset
1650 * that has no core_note_type or is inactive, we leave t->notes[i]
1651 * all zero and we'll know to skip writing it later.
1652 */
1653 for (i = 1; i < view->n; ++i) {
1654 const struct user_regset *regset = &view->regsets[i];
d31472b6 1655 do_thread_regset_writeback(t->task, regset);
c8e25258 1656 if (regset->core_note_type && regset->get &&
4206d3aa
RM
1657 (!regset->active || regset->active(t->task, regset))) {
1658 int ret;
1659 size_t size = regset->n * regset->size;
1660 void *data = kmalloc(size, GFP_KERNEL);
1661 if (unlikely(!data))
1662 return 0;
1663 ret = regset->get(t->task, regset,
1664 0, size, data, NULL);
1665 if (unlikely(ret))
1666 kfree(data);
1667 else {
1668 if (regset->core_note_type != NT_PRFPREG)
1669 fill_note(&t->notes[i], "LINUX",
1670 regset->core_note_type,
1671 size, data);
1672 else {
0953f65d 1673 SET_PR_FPVALID(&t->prstatus, 1);
4206d3aa
RM
1674 fill_note(&t->notes[i], "CORE",
1675 NT_PRFPREG, size, data);
1676 }
1677 *total += notesize(&t->notes[i]);
1678 }
1679 }
1680 }
1681
1682 return 1;
1683}
1684
1685static int fill_note_info(struct elfhdr *elf, int phdrs,
1686 struct elf_note_info *info,
ec57941e 1687 const siginfo_t *siginfo, struct pt_regs *regs)
4206d3aa
RM
1688{
1689 struct task_struct *dump_task = current;
1690 const struct user_regset_view *view = task_user_regset_view(dump_task);
1691 struct elf_thread_core_info *t;
1692 struct elf_prpsinfo *psinfo;
83914441 1693 struct core_thread *ct;
4206d3aa
RM
1694 unsigned int i;
1695
1696 info->size = 0;
1697 info->thread = NULL;
1698
1699 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
6899e92d
AC
1700 if (psinfo == NULL) {
1701 info->psinfo.data = NULL; /* So we don't free this wrongly */
4206d3aa 1702 return 0;
6899e92d 1703 }
4206d3aa 1704
e2dbe125
AW
1705 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1706
4206d3aa
RM
1707 /*
1708 * Figure out how many notes we're going to need for each thread.
1709 */
1710 info->thread_notes = 0;
1711 for (i = 0; i < view->n; ++i)
1712 if (view->regsets[i].core_note_type != 0)
1713 ++info->thread_notes;
1714
1715 /*
1716 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1717 * since it is our one special case.
1718 */
1719 if (unlikely(info->thread_notes == 0) ||
1720 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1721 WARN_ON(1);
1722 return 0;
1723 }
1724
1725 /*
1726 * Initialize the ELF file header.
1727 */
1728 fill_elf_header(elf, phdrs,
d3330cf0 1729 view->e_machine, view->e_flags);
4206d3aa
RM
1730
1731 /*
1732 * Allocate a structure for each thread.
1733 */
83914441
ON
1734 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1735 t = kzalloc(offsetof(struct elf_thread_core_info,
1736 notes[info->thread_notes]),
1737 GFP_KERNEL);
1738 if (unlikely(!t))
1739 return 0;
1740
1741 t->task = ct->task;
1742 if (ct->task == dump_task || !info->thread) {
1743 t->next = info->thread;
1744 info->thread = t;
1745 } else {
1746 /*
1747 * Make sure to keep the original task at
1748 * the head of the list.
1749 */
1750 t->next = info->thread->next;
1751 info->thread->next = t;
4206d3aa 1752 }
83914441 1753 }
4206d3aa
RM
1754
1755 /*
1756 * Now fill in each thread's information.
1757 */
1758 for (t = info->thread; t != NULL; t = t->next)
5ab1c309 1759 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
4206d3aa
RM
1760 return 0;
1761
1762 /*
1763 * Fill in the two process-wide notes.
1764 */
1765 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1766 info->size += notesize(&info->psinfo);
1767
49ae4d4b
DV
1768 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1769 info->size += notesize(&info->signote);
1770
4206d3aa
RM
1771 fill_auxv_note(&info->auxv, current->mm);
1772 info->size += notesize(&info->auxv);
1773
72023656
DA
1774 if (fill_files_note(&info->files) == 0)
1775 info->size += notesize(&info->files);
2aa362c4 1776
4206d3aa
RM
1777 return 1;
1778}
1779
1780static size_t get_note_info_size(struct elf_note_info *info)
1781{
1782 return info->size;
1783}
1784
1785/*
1786 * Write all the notes for each thread. When writing the first thread, the
1787 * process-wide notes are interleaved after the first thread-specific note.
1788 */
1789static int write_note_info(struct elf_note_info *info,
ecc8c772 1790 struct coredump_params *cprm)
4206d3aa 1791{
b219e25f 1792 bool first = true;
4206d3aa
RM
1793 struct elf_thread_core_info *t = info->thread;
1794
1795 do {
1796 int i;
1797
ecc8c772 1798 if (!writenote(&t->notes[0], cprm))
4206d3aa
RM
1799 return 0;
1800
ecc8c772 1801 if (first && !writenote(&info->psinfo, cprm))
4206d3aa 1802 return 0;
ecc8c772 1803 if (first && !writenote(&info->signote, cprm))
49ae4d4b 1804 return 0;
ecc8c772 1805 if (first && !writenote(&info->auxv, cprm))
4206d3aa 1806 return 0;
72023656 1807 if (first && info->files.data &&
ecc8c772 1808 !writenote(&info->files, cprm))
2aa362c4 1809 return 0;
4206d3aa
RM
1810
1811 for (i = 1; i < info->thread_notes; ++i)
1812 if (t->notes[i].data &&
ecc8c772 1813 !writenote(&t->notes[i], cprm))
4206d3aa
RM
1814 return 0;
1815
b219e25f 1816 first = false;
4206d3aa
RM
1817 t = t->next;
1818 } while (t);
1819
1820 return 1;
1821}
1822
1823static void free_note_info(struct elf_note_info *info)
1824{
1825 struct elf_thread_core_info *threads = info->thread;
1826 while (threads) {
1827 unsigned int i;
1828 struct elf_thread_core_info *t = threads;
1829 threads = t->next;
1830 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1831 for (i = 1; i < info->thread_notes; ++i)
1832 kfree(t->notes[i].data);
1833 kfree(t);
1834 }
1835 kfree(info->psinfo.data);
2aa362c4 1836 vfree(info->files.data);
4206d3aa
RM
1837}
1838
1839#else
1840
1da177e4
LT
1841/* Here is the structure in which status of each thread is captured. */
1842struct elf_thread_status
1843{
1844 struct list_head list;
1845 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1846 elf_fpregset_t fpu; /* NT_PRFPREG */
1847 struct task_struct *thread;
1848#ifdef ELF_CORE_COPY_XFPREGS
5b20cd80 1849 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1da177e4
LT
1850#endif
1851 struct memelfnote notes[3];
1852 int num_notes;
1853};
1854
1855/*
1856 * In order to add the specific thread information for the elf file format,
f4e5cc2c
JJ
1857 * we need to keep a linked list of every threads pr_status and then create
1858 * a single section for them in the final core file.
1da177e4
LT
1859 */
1860static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1861{
1862 int sz = 0;
1863 struct task_struct *p = t->thread;
1864 t->num_notes = 0;
1865
1866 fill_prstatus(&t->prstatus, p, signr);
1867 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1868
f4e5cc2c
JJ
1869 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1870 &(t->prstatus));
1da177e4
LT
1871 t->num_notes++;
1872 sz += notesize(&t->notes[0]);
1873
f4e5cc2c
JJ
1874 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1875 &t->fpu))) {
1876 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1877 &(t->fpu));
1da177e4
LT
1878 t->num_notes++;
1879 sz += notesize(&t->notes[1]);
1880 }
1881
1882#ifdef ELF_CORE_COPY_XFPREGS
1883 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
5b20cd80
MN
1884 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1885 sizeof(t->xfpu), &t->xfpu);
1da177e4
LT
1886 t->num_notes++;
1887 sz += notesize(&t->notes[2]);
1888 }
1889#endif
1890 return sz;
1891}
1892
3aba481f
RM
1893struct elf_note_info {
1894 struct memelfnote *notes;
72023656 1895 struct memelfnote *notes_files;
3aba481f
RM
1896 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1897 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1898 struct list_head thread_list;
1899 elf_fpregset_t *fpu;
1900#ifdef ELF_CORE_COPY_XFPREGS
1901 elf_fpxregset_t *xfpu;
1902#endif
49ae4d4b 1903 user_siginfo_t csigdata;
3aba481f
RM
1904 int thread_status_size;
1905 int numnote;
1906};
1907
0cf062d0 1908static int elf_note_info_init(struct elf_note_info *info)
3aba481f 1909{
0cf062d0 1910 memset(info, 0, sizeof(*info));
3aba481f
RM
1911 INIT_LIST_HEAD(&info->thread_list);
1912
49ae4d4b 1913 /* Allocate space for ELF notes */
2aa362c4 1914 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
3aba481f
RM
1915 if (!info->notes)
1916 return 0;
1917 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1918 if (!info->psinfo)
f34f9d18 1919 return 0;
3aba481f
RM
1920 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1921 if (!info->prstatus)
f34f9d18 1922 return 0;
3aba481f
RM
1923 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1924 if (!info->fpu)
f34f9d18 1925 return 0;
3aba481f
RM
1926#ifdef ELF_CORE_COPY_XFPREGS
1927 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1928 if (!info->xfpu)
f34f9d18 1929 return 0;
3aba481f 1930#endif
0cf062d0 1931 return 1;
0cf062d0
AW
1932}
1933
1934static int fill_note_info(struct elfhdr *elf, int phdrs,
1935 struct elf_note_info *info,
ec57941e 1936 const siginfo_t *siginfo, struct pt_regs *regs)
0cf062d0
AW
1937{
1938 struct list_head *t;
afabada9
AV
1939 struct core_thread *ct;
1940 struct elf_thread_status *ets;
0cf062d0
AW
1941
1942 if (!elf_note_info_init(info))
1943 return 0;
3aba481f 1944
afabada9
AV
1945 for (ct = current->mm->core_state->dumper.next;
1946 ct; ct = ct->next) {
1947 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1948 if (!ets)
1949 return 0;
83914441 1950
afabada9
AV
1951 ets->thread = ct->task;
1952 list_add(&ets->list, &info->thread_list);
1953 }
83914441 1954
afabada9
AV
1955 list_for_each(t, &info->thread_list) {
1956 int sz;
3aba481f 1957
afabada9
AV
1958 ets = list_entry(t, struct elf_thread_status, list);
1959 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1960 info->thread_status_size += sz;
3aba481f
RM
1961 }
1962 /* now collect the dump for the current */
1963 memset(info->prstatus, 0, sizeof(*info->prstatus));
5ab1c309 1964 fill_prstatus(info->prstatus, current, siginfo->si_signo);
3aba481f
RM
1965 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1966
1967 /* Set up header */
d3330cf0 1968 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
3aba481f
RM
1969
1970 /*
1971 * Set up the notes in similar form to SVR4 core dumps made
1972 * with info from their /proc.
1973 */
1974
1975 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1976 sizeof(*info->prstatus), info->prstatus);
1977 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1978 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1979 sizeof(*info->psinfo), info->psinfo);
1980
2aa362c4
DV
1981 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1982 fill_auxv_note(info->notes + 3, current->mm);
72023656 1983 info->numnote = 4;
3aba481f 1984
72023656
DA
1985 if (fill_files_note(info->notes + info->numnote) == 0) {
1986 info->notes_files = info->notes + info->numnote;
1987 info->numnote++;
1988 }
3aba481f
RM
1989
1990 /* Try to dump the FPU. */
1991 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1992 info->fpu);
1993 if (info->prstatus->pr_fpvalid)
1994 fill_note(info->notes + info->numnote++,
1995 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1996#ifdef ELF_CORE_COPY_XFPREGS
1997 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1998 fill_note(info->notes + info->numnote++,
1999 "LINUX", ELF_CORE_XFPREG_TYPE,
2000 sizeof(*info->xfpu), info->xfpu);
2001#endif
2002
2003 return 1;
3aba481f
RM
2004}
2005
2006static size_t get_note_info_size(struct elf_note_info *info)
2007{
2008 int sz = 0;
2009 int i;
2010
2011 for (i = 0; i < info->numnote; i++)
2012 sz += notesize(info->notes + i);
2013
2014 sz += info->thread_status_size;
2015
2016 return sz;
2017}
2018
2019static int write_note_info(struct elf_note_info *info,
ecc8c772 2020 struct coredump_params *cprm)
3aba481f
RM
2021{
2022 int i;
2023 struct list_head *t;
2024
2025 for (i = 0; i < info->numnote; i++)
ecc8c772 2026 if (!writenote(info->notes + i, cprm))
3aba481f
RM
2027 return 0;
2028
2029 /* write out the thread status notes section */
2030 list_for_each(t, &info->thread_list) {
2031 struct elf_thread_status *tmp =
2032 list_entry(t, struct elf_thread_status, list);
2033
2034 for (i = 0; i < tmp->num_notes; i++)
ecc8c772 2035 if (!writenote(&tmp->notes[i], cprm))
3aba481f
RM
2036 return 0;
2037 }
2038
2039 return 1;
2040}
2041
2042static void free_note_info(struct elf_note_info *info)
2043{
2044 while (!list_empty(&info->thread_list)) {
2045 struct list_head *tmp = info->thread_list.next;
2046 list_del(tmp);
2047 kfree(list_entry(tmp, struct elf_thread_status, list));
2048 }
2049
72023656
DA
2050 /* Free data possibly allocated by fill_files_note(): */
2051 if (info->notes_files)
2052 vfree(info->notes_files->data);
2aa362c4 2053
3aba481f
RM
2054 kfree(info->prstatus);
2055 kfree(info->psinfo);
2056 kfree(info->notes);
2057 kfree(info->fpu);
2058#ifdef ELF_CORE_COPY_XFPREGS
2059 kfree(info->xfpu);
2060#endif
2061}
2062
4206d3aa
RM
2063#endif
2064
f47aef55
RM
2065static struct vm_area_struct *first_vma(struct task_struct *tsk,
2066 struct vm_area_struct *gate_vma)
2067{
2068 struct vm_area_struct *ret = tsk->mm->mmap;
2069
2070 if (ret)
2071 return ret;
2072 return gate_vma;
2073}
2074/*
2075 * Helper function for iterating across a vma list. It ensures that the caller
2076 * will visit `gate_vma' prior to terminating the search.
2077 */
2078static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2079 struct vm_area_struct *gate_vma)
2080{
2081 struct vm_area_struct *ret;
2082
2083 ret = this_vma->vm_next;
2084 if (ret)
2085 return ret;
2086 if (this_vma == gate_vma)
2087 return NULL;
2088 return gate_vma;
2089}
2090
8d9032bb
DH
2091static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2092 elf_addr_t e_shoff, int segs)
2093{
2094 elf->e_shoff = e_shoff;
2095 elf->e_shentsize = sizeof(*shdr4extnum);
2096 elf->e_shnum = 1;
2097 elf->e_shstrndx = SHN_UNDEF;
2098
2099 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2100
2101 shdr4extnum->sh_type = SHT_NULL;
2102 shdr4extnum->sh_size = elf->e_shnum;
2103 shdr4extnum->sh_link = elf->e_shstrndx;
2104 shdr4extnum->sh_info = segs;
2105}
2106
1da177e4
LT
2107/*
2108 * Actual dumper
2109 *
2110 * This is a two-pass process; first we find the offsets of the bits,
2111 * and then they are actually written out. If we run out of core limit
2112 * we just truncate.
2113 */
f6151dfe 2114static int elf_core_dump(struct coredump_params *cprm)
1da177e4 2115{
1da177e4
LT
2116 int has_dumped = 0;
2117 mm_segment_t fs;
52f5592e
JL
2118 int segs, i;
2119 size_t vma_data_size = 0;
f47aef55 2120 struct vm_area_struct *vma, *gate_vma;
1da177e4 2121 struct elfhdr *elf = NULL;
cdc3d562 2122 loff_t offset = 0, dataoff;
72023656 2123 struct elf_note_info info = { };
93eb211e 2124 struct elf_phdr *phdr4note = NULL;
8d9032bb
DH
2125 struct elf_shdr *shdr4extnum = NULL;
2126 Elf_Half e_phnum;
2127 elf_addr_t e_shoff;
52f5592e 2128 elf_addr_t *vma_filesz = NULL;
1da177e4
LT
2129
2130 /*
2131 * We no longer stop all VM operations.
2132 *
f4e5cc2c
JJ
2133 * This is because those proceses that could possibly change map_count
2134 * or the mmap / vma pages are now blocked in do_exit on current
2135 * finishing this core dump.
1da177e4
LT
2136 *
2137 * Only ptrace can touch these memory addresses, but it doesn't change
f4e5cc2c 2138 * the map_count or the pages allocated. So no possibility of crashing
1da177e4
LT
2139 * exists while dumping the mm->vm_next areas to the core file.
2140 */
2141
2142 /* alloc memory for large data structures: too large to be on stack */
2143 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2144 if (!elf)
5f719558 2145 goto out;
341c87bf
KH
2146 /*
2147 * The number of segs are recored into ELF header as 16bit value.
2148 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2149 */
1da177e4 2150 segs = current->mm->map_count;
1fcccbac 2151 segs += elf_core_extra_phdrs();
1da177e4 2152
31db58b3 2153 gate_vma = get_gate_vma(current->mm);
f47aef55
RM
2154 if (gate_vma != NULL)
2155 segs++;
2156
8d9032bb
DH
2157 /* for notes section */
2158 segs++;
2159
2160 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2161 * this, kernel supports extended numbering. Have a look at
2162 * include/linux/elf.h for further information. */
2163 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2164
1da177e4 2165 /*
3aba481f
RM
2166 * Collect all the non-memory information about the process for the
2167 * notes. This also sets up the file header.
1da177e4 2168 */
5ab1c309 2169 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
3aba481f 2170 goto cleanup;
1da177e4 2171
3aba481f 2172 has_dumped = 1;
079148b9 2173
1da177e4
LT
2174 fs = get_fs();
2175 set_fs(KERNEL_DS);
2176
1da177e4 2177 offset += sizeof(*elf); /* Elf header */
8d9032bb 2178 offset += segs * sizeof(struct elf_phdr); /* Program headers */
1da177e4
LT
2179
2180 /* Write notes phdr entry */
2181 {
3aba481f 2182 size_t sz = get_note_info_size(&info);
1da177e4 2183
e5501492 2184 sz += elf_coredump_extra_notes_size();
bf1ab978 2185
93eb211e
DH
2186 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2187 if (!phdr4note)
088e7af7 2188 goto end_coredump;
93eb211e
DH
2189
2190 fill_elf_note_phdr(phdr4note, sz, offset);
2191 offset += sz;
1da177e4
LT
2192 }
2193
1da177e4
LT
2194 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2195
52f5592e
JL
2196 vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2197 if (!vma_filesz)
2198 goto end_coredump;
2199
2200 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2201 vma = next_vma(vma, gate_vma)) {
2202 unsigned long dump_size;
2203
2204 dump_size = vma_dump_size(vma, cprm->mm_flags);
2205 vma_filesz[i++] = dump_size;
2206 vma_data_size += dump_size;
2207 }
2208
2209 offset += vma_data_size;
8d9032bb
DH
2210 offset += elf_core_extra_data_size();
2211 e_shoff = offset;
2212
2213 if (e_phnum == PN_XNUM) {
2214 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2215 if (!shdr4extnum)
2216 goto end_coredump;
2217 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2218 }
2219
2220 offset = dataoff;
2221
ecc8c772 2222 if (!dump_emit(cprm, elf, sizeof(*elf)))
93eb211e
DH
2223 goto end_coredump;
2224
ecc8c772 2225 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
93eb211e
DH
2226 goto end_coredump;
2227
1da177e4 2228 /* Write program headers for segments dump */
52f5592e 2229 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
f47aef55 2230 vma = next_vma(vma, gate_vma)) {
1da177e4 2231 struct elf_phdr phdr;
1da177e4
LT
2232
2233 phdr.p_type = PT_LOAD;
2234 phdr.p_offset = offset;
2235 phdr.p_vaddr = vma->vm_start;
2236 phdr.p_paddr = 0;
52f5592e 2237 phdr.p_filesz = vma_filesz[i++];
82df3973 2238 phdr.p_memsz = vma->vm_end - vma->vm_start;
1da177e4
LT
2239 offset += phdr.p_filesz;
2240 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
f4e5cc2c
JJ
2241 if (vma->vm_flags & VM_WRITE)
2242 phdr.p_flags |= PF_W;
2243 if (vma->vm_flags & VM_EXEC)
2244 phdr.p_flags |= PF_X;
1da177e4
LT
2245 phdr.p_align = ELF_EXEC_PAGESIZE;
2246
ecc8c772 2247 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
088e7af7 2248 goto end_coredump;
1da177e4
LT
2249 }
2250
506f21c5 2251 if (!elf_core_write_extra_phdrs(cprm, offset))
1fcccbac 2252 goto end_coredump;
1da177e4
LT
2253
2254 /* write out the notes section */
ecc8c772 2255 if (!write_note_info(&info, cprm))
3aba481f 2256 goto end_coredump;
1da177e4 2257
cdc3d562 2258 if (elf_coredump_extra_notes_write(cprm))
e5501492 2259 goto end_coredump;
bf1ab978 2260
d025c9db 2261 /* Align to page */
9b56d543 2262 if (!dump_skip(cprm, dataoff - cprm->written))
f3e8fccd 2263 goto end_coredump;
1da177e4 2264
52f5592e 2265 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
f47aef55 2266 vma = next_vma(vma, gate_vma)) {
1da177e4 2267 unsigned long addr;
82df3973 2268 unsigned long end;
1da177e4 2269
52f5592e 2270 end = vma->vm_start + vma_filesz[i++];
1da177e4 2271
82df3973 2272 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
f4e5cc2c 2273 struct page *page;
f3e8fccd
HD
2274 int stop;
2275
2276 page = get_dump_page(addr);
2277 if (page) {
2278 void *kaddr = kmap(page);
13046ece 2279 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
f3e8fccd 2280 kunmap(page);
1da177e4 2281 page_cache_release(page);
f3e8fccd 2282 } else
9b56d543 2283 stop = !dump_skip(cprm, PAGE_SIZE);
f3e8fccd
HD
2284 if (stop)
2285 goto end_coredump;
1da177e4
LT
2286 }
2287 }
2288
aa3e7eaf 2289 if (!elf_core_write_extra_data(cprm))
1fcccbac 2290 goto end_coredump;
1da177e4 2291
8d9032bb 2292 if (e_phnum == PN_XNUM) {
13046ece 2293 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
8d9032bb
DH
2294 goto end_coredump;
2295 }
2296
1da177e4
LT
2297end_coredump:
2298 set_fs(fs);
2299
2300cleanup:
3aba481f 2301 free_note_info(&info);
8d9032bb 2302 kfree(shdr4extnum);
52f5592e 2303 kfree(vma_filesz);
93eb211e 2304 kfree(phdr4note);
5f719558
WC
2305 kfree(elf);
2306out:
1da177e4 2307 return has_dumped;
1da177e4
LT
2308}
2309
698ba7b5 2310#endif /* CONFIG_ELF_CORE */
1da177e4
LT
2311
2312static int __init init_elf_binfmt(void)
2313{
8fc3dc5a
AV
2314 register_binfmt(&elf_format);
2315 return 0;
1da177e4
LT
2316}
2317
2318static void __exit exit_elf_binfmt(void)
2319{
2320 /* Remove the COFF and ELF loaders. */
2321 unregister_binfmt(&elf_format);
2322}
2323
2324core_initcall(init_elf_binfmt);
2325module_exit(exit_elf_binfmt);
2326MODULE_LICENSE("GPL");