sparc: switch to using asm-generic for seccomp.h
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
027445c3 21#include <linux/uio.h>
1da177e4 22
1da177e4
LT
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
3d2d827f 28#include <linux/mmu_context.h>
e1bdd5f2 29#include <linux/percpu.h>
1da177e4
LT
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
9c3060be 36#include <linux/eventfd.h>
cfb1e33e 37#include <linux/blkdev.h>
9d85cba7 38#include <linux/compat.h>
36bc08cc
GZ
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
723be6e3 41#include <linux/percpu-refcount.h>
71ad7490 42#include <linux/mount.h>
1da177e4
LT
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
1da177e4 46
68d70d03
AV
47#include "internal.h"
48
4e179bca
KO
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
fa8a53c3
BL
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
4e179bca
KO
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
4e179bca 69
db446a08
BL
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
e1bdd5f2
KO
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
4e179bca 80struct kioctx {
723be6e3 81 struct percpu_ref users;
36f55889 82 atomic_t dead;
4e179bca 83
e34ecee2
KO
84 struct percpu_ref reqs;
85
4e179bca 86 unsigned long user_id;
4e179bca 87
e1bdd5f2
KO
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
3e845ce0
KO
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
58c85dc2 99 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
100 * aio_setup_ring())
101 */
4e179bca
KO
102 unsigned max_reqs;
103
58c85dc2
KO
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
4e179bca 106
58c85dc2
KO
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
723be6e3 113 struct work_struct free_work;
4e23bcae 114
e02ba72a
AP
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
4e23bcae 120 struct {
34e83fc6
KO
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
126 *
127 * We batch accesses to it with a percpu version.
34e83fc6
KO
128 */
129 atomic_t reqs_available;
4e23bcae
KO
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
58c85dc2
KO
137 struct {
138 struct mutex ring_lock;
4e23bcae
KO
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
58c85dc2
KO
141
142 struct {
143 unsigned tail;
d856f32a 144 unsigned completed_events;
58c85dc2 145 spinlock_t completion_lock;
4e23bcae 146 } ____cacheline_aligned_in_smp;
58c85dc2
KO
147
148 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 149 struct file *aio_ring_file;
db446a08
BL
150
151 unsigned id;
4e179bca
KO
152};
153
04b2fa9f
CH
154/*
155 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
156 * cancelled or completed (this makes a certain amount of sense because
157 * successful cancellation - io_cancel() - does deliver the completion to
158 * userspace).
159 *
160 * And since most things don't implement kiocb cancellation and we'd really like
161 * kiocb completion to be lockless when possible, we use ki_cancel to
162 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
163 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
164 */
165#define KIOCB_CANCELLED ((void *) (~0ULL))
166
167struct aio_kiocb {
168 struct kiocb common;
169
170 struct kioctx *ki_ctx;
171 kiocb_cancel_fn *ki_cancel;
172
173 struct iocb __user *ki_user_iocb; /* user's aiocb */
174 __u64 ki_user_data; /* user's data for completion */
175
176 struct list_head ki_list; /* the aio core uses this
177 * for cancellation */
178
179 /*
180 * If the aio_resfd field of the userspace iocb is not zero,
181 * this is the underlying eventfd context to deliver events to.
182 */
183 struct eventfd_ctx *ki_eventfd;
184};
185
1da177e4 186/*------ sysctl variables----*/
d55b5fda
ZB
187static DEFINE_SPINLOCK(aio_nr_lock);
188unsigned long aio_nr; /* current system wide number of aio requests */
189unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
190/*----end sysctl variables---*/
191
e18b890b
CL
192static struct kmem_cache *kiocb_cachep;
193static struct kmem_cache *kioctx_cachep;
1da177e4 194
71ad7490
BL
195static struct vfsmount *aio_mnt;
196
197static const struct file_operations aio_ring_fops;
198static const struct address_space_operations aio_ctx_aops;
199
200static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
201{
202 struct qstr this = QSTR_INIT("[aio]", 5);
203 struct file *file;
204 struct path path;
205 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
206 if (IS_ERR(inode))
207 return ERR_CAST(inode);
71ad7490
BL
208
209 inode->i_mapping->a_ops = &aio_ctx_aops;
210 inode->i_mapping->private_data = ctx;
211 inode->i_size = PAGE_SIZE * nr_pages;
212
213 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
214 if (!path.dentry) {
215 iput(inode);
216 return ERR_PTR(-ENOMEM);
217 }
218 path.mnt = mntget(aio_mnt);
219
220 d_instantiate(path.dentry, inode);
221 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
222 if (IS_ERR(file)) {
223 path_put(&path);
224 return file;
225 }
226
227 file->f_flags = O_RDWR;
71ad7490
BL
228 return file;
229}
230
231static struct dentry *aio_mount(struct file_system_type *fs_type,
232 int flags, const char *dev_name, void *data)
233{
234 static const struct dentry_operations ops = {
235 .d_dname = simple_dname,
236 };
8dc4379e 237 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
71ad7490
BL
238}
239
1da177e4
LT
240/* aio_setup
241 * Creates the slab caches used by the aio routines, panic on
242 * failure as this is done early during the boot sequence.
243 */
244static int __init aio_setup(void)
245{
71ad7490
BL
246 static struct file_system_type aio_fs = {
247 .name = "aio",
248 .mount = aio_mount,
249 .kill_sb = kill_anon_super,
250 };
251 aio_mnt = kern_mount(&aio_fs);
252 if (IS_ERR(aio_mnt))
253 panic("Failed to create aio fs mount.");
254
04b2fa9f 255 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 256 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 257
caf4167a 258 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
1da177e4
LT
259
260 return 0;
261}
385773e0 262__initcall(aio_setup);
1da177e4 263
5e9ae2e5
BL
264static void put_aio_ring_file(struct kioctx *ctx)
265{
266 struct file *aio_ring_file = ctx->aio_ring_file;
267 if (aio_ring_file) {
268 truncate_setsize(aio_ring_file->f_inode, 0);
269
270 /* Prevent further access to the kioctx from migratepages */
271 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
272 aio_ring_file->f_inode->i_mapping->private_data = NULL;
273 ctx->aio_ring_file = NULL;
274 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
275
276 fput(aio_ring_file);
277 }
278}
279
1da177e4
LT
280static void aio_free_ring(struct kioctx *ctx)
281{
36bc08cc 282 int i;
1da177e4 283
fa8a53c3
BL
284 /* Disconnect the kiotx from the ring file. This prevents future
285 * accesses to the kioctx from page migration.
286 */
287 put_aio_ring_file(ctx);
288
36bc08cc 289 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 290 struct page *page;
36bc08cc
GZ
291 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
292 page_count(ctx->ring_pages[i]));
8e321fef
BL
293 page = ctx->ring_pages[i];
294 if (!page)
295 continue;
296 ctx->ring_pages[i] = NULL;
297 put_page(page);
36bc08cc 298 }
1da177e4 299
ddb8c45b 300 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 301 kfree(ctx->ring_pages);
ddb8c45b
SL
302 ctx->ring_pages = NULL;
303 }
36bc08cc
GZ
304}
305
306static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
307{
e4a0d3e7 308 vma->vm_flags |= VM_DONTEXPAND;
36bc08cc
GZ
309 vma->vm_ops = &generic_file_vm_ops;
310 return 0;
311}
312
b2edffdd 313static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
e4a0d3e7
PE
314{
315 struct mm_struct *mm = vma->vm_mm;
316 struct kioctx_table *table;
b2edffdd 317 int i, res = -EINVAL;
e4a0d3e7
PE
318
319 spin_lock(&mm->ioctx_lock);
320 rcu_read_lock();
321 table = rcu_dereference(mm->ioctx_table);
322 for (i = 0; i < table->nr; i++) {
323 struct kioctx *ctx;
324
325 ctx = table->table[i];
326 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
327 if (!atomic_read(&ctx->dead)) {
328 ctx->user_id = ctx->mmap_base = vma->vm_start;
329 res = 0;
330 }
e4a0d3e7
PE
331 break;
332 }
333 }
334
335 rcu_read_unlock();
336 spin_unlock(&mm->ioctx_lock);
b2edffdd 337 return res;
e4a0d3e7
PE
338}
339
36bc08cc
GZ
340static const struct file_operations aio_ring_fops = {
341 .mmap = aio_ring_mmap,
e4a0d3e7 342 .mremap = aio_ring_remap,
36bc08cc
GZ
343};
344
0c45355f 345#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
346static int aio_migratepage(struct address_space *mapping, struct page *new,
347 struct page *old, enum migrate_mode mode)
348{
5e9ae2e5 349 struct kioctx *ctx;
36bc08cc 350 unsigned long flags;
fa8a53c3 351 pgoff_t idx;
36bc08cc
GZ
352 int rc;
353
8e321fef
BL
354 rc = 0;
355
fa8a53c3 356 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
357 spin_lock(&mapping->private_lock);
358 ctx = mapping->private_data;
fa8a53c3
BL
359 if (!ctx) {
360 rc = -EINVAL;
361 goto out;
362 }
363
364 /* The ring_lock mutex. The prevents aio_read_events() from writing
365 * to the ring's head, and prevents page migration from mucking in
366 * a partially initialized kiotx.
367 */
368 if (!mutex_trylock(&ctx->ring_lock)) {
369 rc = -EAGAIN;
370 goto out;
371 }
372
373 idx = old->index;
374 if (idx < (pgoff_t)ctx->nr_pages) {
375 /* Make sure the old page hasn't already been changed */
376 if (ctx->ring_pages[idx] != old)
377 rc = -EAGAIN;
8e321fef
BL
378 } else
379 rc = -EINVAL;
8e321fef
BL
380
381 if (rc != 0)
fa8a53c3 382 goto out_unlock;
8e321fef 383
36bc08cc
GZ
384 /* Writeback must be complete */
385 BUG_ON(PageWriteback(old));
8e321fef 386 get_page(new);
36bc08cc 387
8e321fef 388 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 389 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 390 put_page(new);
fa8a53c3 391 goto out_unlock;
36bc08cc
GZ
392 }
393
fa8a53c3
BL
394 /* Take completion_lock to prevent other writes to the ring buffer
395 * while the old page is copied to the new. This prevents new
396 * events from being lost.
5e9ae2e5 397 */
fa8a53c3
BL
398 spin_lock_irqsave(&ctx->completion_lock, flags);
399 migrate_page_copy(new, old);
400 BUG_ON(ctx->ring_pages[idx] != old);
401 ctx->ring_pages[idx] = new;
402 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 403
fa8a53c3
BL
404 /* The old page is no longer accessible. */
405 put_page(old);
8e321fef 406
fa8a53c3
BL
407out_unlock:
408 mutex_unlock(&ctx->ring_lock);
409out:
410 spin_unlock(&mapping->private_lock);
36bc08cc 411 return rc;
1da177e4 412}
0c45355f 413#endif
1da177e4 414
36bc08cc 415static const struct address_space_operations aio_ctx_aops = {
835f252c 416 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 417#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 418 .migratepage = aio_migratepage,
0c45355f 419#endif
36bc08cc
GZ
420};
421
1da177e4
LT
422static int aio_setup_ring(struct kioctx *ctx)
423{
424 struct aio_ring *ring;
1da177e4 425 unsigned nr_events = ctx->max_reqs;
41003a7b 426 struct mm_struct *mm = current->mm;
3dc9acb6 427 unsigned long size, unused;
1da177e4 428 int nr_pages;
36bc08cc
GZ
429 int i;
430 struct file *file;
1da177e4
LT
431
432 /* Compensate for the ring buffer's head/tail overlap entry */
433 nr_events += 2; /* 1 is required, 2 for good luck */
434
435 size = sizeof(struct aio_ring);
436 size += sizeof(struct io_event) * nr_events;
1da177e4 437
36bc08cc 438 nr_pages = PFN_UP(size);
1da177e4
LT
439 if (nr_pages < 0)
440 return -EINVAL;
441
71ad7490 442 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
443 if (IS_ERR(file)) {
444 ctx->aio_ring_file = NULL;
fa8a53c3 445 return -ENOMEM;
36bc08cc
GZ
446 }
447
3dc9acb6
LT
448 ctx->aio_ring_file = file;
449 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
450 / sizeof(struct io_event);
451
452 ctx->ring_pages = ctx->internal_pages;
453 if (nr_pages > AIO_RING_PAGES) {
454 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
455 GFP_KERNEL);
456 if (!ctx->ring_pages) {
457 put_aio_ring_file(ctx);
458 return -ENOMEM;
459 }
460 }
461
36bc08cc
GZ
462 for (i = 0; i < nr_pages; i++) {
463 struct page *page;
464 page = find_or_create_page(file->f_inode->i_mapping,
465 i, GFP_HIGHUSER | __GFP_ZERO);
466 if (!page)
467 break;
468 pr_debug("pid(%d) page[%d]->count=%d\n",
469 current->pid, i, page_count(page));
470 SetPageUptodate(page);
36bc08cc 471 unlock_page(page);
3dc9acb6
LT
472
473 ctx->ring_pages[i] = page;
36bc08cc 474 }
3dc9acb6 475 ctx->nr_pages = i;
1da177e4 476
3dc9acb6
LT
477 if (unlikely(i != nr_pages)) {
478 aio_free_ring(ctx);
fa8a53c3 479 return -ENOMEM;
1da177e4
LT
480 }
481
58c85dc2
KO
482 ctx->mmap_size = nr_pages * PAGE_SIZE;
483 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 484
41003a7b 485 down_write(&mm->mmap_sem);
36bc08cc
GZ
486 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
487 PROT_READ | PROT_WRITE,
3dc9acb6
LT
488 MAP_SHARED, 0, &unused);
489 up_write(&mm->mmap_sem);
58c85dc2 490 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 491 ctx->mmap_size = 0;
1da177e4 492 aio_free_ring(ctx);
fa8a53c3 493 return -ENOMEM;
1da177e4
LT
494 }
495
58c85dc2 496 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 497
58c85dc2
KO
498 ctx->user_id = ctx->mmap_base;
499 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 500
58c85dc2 501 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 502 ring->nr = nr_events; /* user copy */
db446a08 503 ring->id = ~0U;
1da177e4
LT
504 ring->head = ring->tail = 0;
505 ring->magic = AIO_RING_MAGIC;
506 ring->compat_features = AIO_RING_COMPAT_FEATURES;
507 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
508 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 509 kunmap_atomic(ring);
58c85dc2 510 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
511
512 return 0;
513}
514
1da177e4
LT
515#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
516#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
517#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
518
04b2fa9f 519void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 520{
04b2fa9f 521 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
0460fef2
KO
522 struct kioctx *ctx = req->ki_ctx;
523 unsigned long flags;
524
525 spin_lock_irqsave(&ctx->ctx_lock, flags);
526
527 if (!req->ki_list.next)
528 list_add(&req->ki_list, &ctx->active_reqs);
529
530 req->ki_cancel = cancel;
531
532 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
533}
534EXPORT_SYMBOL(kiocb_set_cancel_fn);
535
04b2fa9f 536static int kiocb_cancel(struct aio_kiocb *kiocb)
906b973c 537{
0460fef2 538 kiocb_cancel_fn *old, *cancel;
906b973c 539
0460fef2
KO
540 /*
541 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
542 * actually has a cancel function, hence the cmpxchg()
543 */
544
545 cancel = ACCESS_ONCE(kiocb->ki_cancel);
546 do {
547 if (!cancel || cancel == KIOCB_CANCELLED)
57282d8f 548 return -EINVAL;
906b973c 549
0460fef2
KO
550 old = cancel;
551 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
552 } while (cancel != old);
906b973c 553
04b2fa9f 554 return cancel(&kiocb->common);
906b973c
KO
555}
556
e34ecee2 557static void free_ioctx(struct work_struct *work)
36f55889 558{
e34ecee2 559 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
e1bdd5f2 560
e34ecee2 561 pr_debug("freeing %p\n", ctx);
e1bdd5f2 562
e34ecee2 563 aio_free_ring(ctx);
e1bdd5f2 564 free_percpu(ctx->cpu);
9a1049da
TH
565 percpu_ref_exit(&ctx->reqs);
566 percpu_ref_exit(&ctx->users);
36f55889
KO
567 kmem_cache_free(kioctx_cachep, ctx);
568}
569
e34ecee2
KO
570static void free_ioctx_reqs(struct percpu_ref *ref)
571{
572 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
573
e02ba72a
AP
574 /* At this point we know that there are no any in-flight requests */
575 if (ctx->requests_done)
576 complete(ctx->requests_done);
577
e34ecee2
KO
578 INIT_WORK(&ctx->free_work, free_ioctx);
579 schedule_work(&ctx->free_work);
580}
581
36f55889
KO
582/*
583 * When this function runs, the kioctx has been removed from the "hash table"
584 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
585 * now it's safe to cancel any that need to be.
586 */
e34ecee2 587static void free_ioctx_users(struct percpu_ref *ref)
36f55889 588{
e34ecee2 589 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 590 struct aio_kiocb *req;
36f55889
KO
591
592 spin_lock_irq(&ctx->ctx_lock);
593
594 while (!list_empty(&ctx->active_reqs)) {
595 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 596 struct aio_kiocb, ki_list);
36f55889
KO
597
598 list_del_init(&req->ki_list);
d52a8f9e 599 kiocb_cancel(req);
36f55889
KO
600 }
601
602 spin_unlock_irq(&ctx->ctx_lock);
603
e34ecee2
KO
604 percpu_ref_kill(&ctx->reqs);
605 percpu_ref_put(&ctx->reqs);
36f55889
KO
606}
607
db446a08
BL
608static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
609{
610 unsigned i, new_nr;
611 struct kioctx_table *table, *old;
612 struct aio_ring *ring;
613
614 spin_lock(&mm->ioctx_lock);
855ef0de 615 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
616
617 while (1) {
618 if (table)
619 for (i = 0; i < table->nr; i++)
620 if (!table->table[i]) {
621 ctx->id = i;
622 table->table[i] = ctx;
623 spin_unlock(&mm->ioctx_lock);
624
fa8a53c3
BL
625 /* While kioctx setup is in progress,
626 * we are protected from page migration
627 * changes ring_pages by ->ring_lock.
628 */
db446a08
BL
629 ring = kmap_atomic(ctx->ring_pages[0]);
630 ring->id = ctx->id;
631 kunmap_atomic(ring);
632 return 0;
633 }
634
635 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
636 spin_unlock(&mm->ioctx_lock);
637
638 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
639 new_nr, GFP_KERNEL);
640 if (!table)
641 return -ENOMEM;
642
643 table->nr = new_nr;
644
645 spin_lock(&mm->ioctx_lock);
855ef0de 646 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
647
648 if (!old) {
649 rcu_assign_pointer(mm->ioctx_table, table);
650 } else if (table->nr > old->nr) {
651 memcpy(table->table, old->table,
652 old->nr * sizeof(struct kioctx *));
653
654 rcu_assign_pointer(mm->ioctx_table, table);
655 kfree_rcu(old, rcu);
656 } else {
657 kfree(table);
658 table = old;
659 }
660 }
661}
662
e34ecee2
KO
663static void aio_nr_sub(unsigned nr)
664{
665 spin_lock(&aio_nr_lock);
666 if (WARN_ON(aio_nr - nr > aio_nr))
667 aio_nr = 0;
668 else
669 aio_nr -= nr;
670 spin_unlock(&aio_nr_lock);
671}
672
1da177e4
LT
673/* ioctx_alloc
674 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
675 */
676static struct kioctx *ioctx_alloc(unsigned nr_events)
677{
41003a7b 678 struct mm_struct *mm = current->mm;
1da177e4 679 struct kioctx *ctx;
e23754f8 680 int err = -ENOMEM;
1da177e4 681
e1bdd5f2
KO
682 /*
683 * We keep track of the number of available ringbuffer slots, to prevent
684 * overflow (reqs_available), and we also use percpu counters for this.
685 *
686 * So since up to half the slots might be on other cpu's percpu counters
687 * and unavailable, double nr_events so userspace sees what they
688 * expected: additionally, we move req_batch slots to/from percpu
689 * counters at a time, so make sure that isn't 0:
690 */
691 nr_events = max(nr_events, num_possible_cpus() * 4);
692 nr_events *= 2;
693
1da177e4 694 /* Prevent overflows */
08397acd 695 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
696 pr_debug("ENOMEM: nr_events too high\n");
697 return ERR_PTR(-EINVAL);
698 }
699
4cd81c3d 700 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
1da177e4
LT
701 return ERR_PTR(-EAGAIN);
702
c3762229 703 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
704 if (!ctx)
705 return ERR_PTR(-ENOMEM);
706
1da177e4 707 ctx->max_reqs = nr_events;
1da177e4 708
1da177e4 709 spin_lock_init(&ctx->ctx_lock);
0460fef2 710 spin_lock_init(&ctx->completion_lock);
58c85dc2 711 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
712 /* Protect against page migration throughout kiotx setup by keeping
713 * the ring_lock mutex held until setup is complete. */
714 mutex_lock(&ctx->ring_lock);
1da177e4
LT
715 init_waitqueue_head(&ctx->wait);
716
717 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 718
2aad2a86 719 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
720 goto err;
721
2aad2a86 722 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
723 goto err;
724
e1bdd5f2
KO
725 ctx->cpu = alloc_percpu(struct kioctx_cpu);
726 if (!ctx->cpu)
e34ecee2 727 goto err;
1da177e4 728
fa8a53c3
BL
729 err = aio_setup_ring(ctx);
730 if (err < 0)
e34ecee2 731 goto err;
e1bdd5f2 732
34e83fc6 733 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 734 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
735 if (ctx->req_batch < 1)
736 ctx->req_batch = 1;
34e83fc6 737
1da177e4 738 /* limit the number of system wide aios */
9fa1cb39 739 spin_lock(&aio_nr_lock);
4cd81c3d 740 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
2dd542b7 741 aio_nr + nr_events < aio_nr) {
9fa1cb39 742 spin_unlock(&aio_nr_lock);
e34ecee2 743 err = -EAGAIN;
d1b94327 744 goto err_ctx;
2dd542b7
AV
745 }
746 aio_nr += ctx->max_reqs;
9fa1cb39 747 spin_unlock(&aio_nr_lock);
1da177e4 748
1881686f
BL
749 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
750 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 751
da90382c
BL
752 err = ioctx_add_table(ctx, mm);
753 if (err)
e34ecee2 754 goto err_cleanup;
da90382c 755
fa8a53c3
BL
756 /* Release the ring_lock mutex now that all setup is complete. */
757 mutex_unlock(&ctx->ring_lock);
758
caf4167a 759 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 760 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
761 return ctx;
762
e34ecee2
KO
763err_cleanup:
764 aio_nr_sub(ctx->max_reqs);
d1b94327 765err_ctx:
deeb8525
AV
766 atomic_set(&ctx->dead, 1);
767 if (ctx->mmap_size)
768 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 769 aio_free_ring(ctx);
e34ecee2 770err:
fa8a53c3 771 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 772 free_percpu(ctx->cpu);
9a1049da
TH
773 percpu_ref_exit(&ctx->reqs);
774 percpu_ref_exit(&ctx->users);
1da177e4 775 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 776 pr_debug("error allocating ioctx %d\n", err);
e23754f8 777 return ERR_PTR(err);
1da177e4
LT
778}
779
36f55889
KO
780/* kill_ioctx
781 * Cancels all outstanding aio requests on an aio context. Used
782 * when the processes owning a context have all exited to encourage
783 * the rapid destruction of the kioctx.
784 */
fb2d4483 785static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
e02ba72a 786 struct completion *requests_done)
36f55889 787{
fa88b6f8 788 struct kioctx_table *table;
db446a08 789
b2edffdd
AV
790 spin_lock(&mm->ioctx_lock);
791 if (atomic_xchg(&ctx->dead, 1)) {
792 spin_unlock(&mm->ioctx_lock);
fa88b6f8 793 return -EINVAL;
b2edffdd 794 }
db446a08 795
855ef0de 796 table = rcu_dereference_raw(mm->ioctx_table);
fa88b6f8
BL
797 WARN_ON(ctx != table->table[ctx->id]);
798 table->table[ctx->id] = NULL;
fa88b6f8 799 spin_unlock(&mm->ioctx_lock);
4fcc712f 800
fa88b6f8
BL
801 /* percpu_ref_kill() will do the necessary call_rcu() */
802 wake_up_all(&ctx->wait);
4fcc712f 803
fa88b6f8
BL
804 /*
805 * It'd be more correct to do this in free_ioctx(), after all
806 * the outstanding kiocbs have finished - but by then io_destroy
807 * has already returned, so io_setup() could potentially return
808 * -EAGAIN with no ioctxs actually in use (as far as userspace
809 * could tell).
810 */
811 aio_nr_sub(ctx->max_reqs);
4fcc712f 812
fa88b6f8
BL
813 if (ctx->mmap_size)
814 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 815
fa88b6f8
BL
816 ctx->requests_done = requests_done;
817 percpu_ref_kill(&ctx->users);
818 return 0;
1da177e4
LT
819}
820
36f55889
KO
821/*
822 * exit_aio: called when the last user of mm goes away. At this point, there is
823 * no way for any new requests to be submited or any of the io_* syscalls to be
824 * called on the context.
825 *
826 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
827 * them.
1da177e4 828 */
fc9b52cd 829void exit_aio(struct mm_struct *mm)
1da177e4 830{
4b70ac5f
ON
831 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
832 int i;
db446a08 833
4b70ac5f
ON
834 if (!table)
835 return;
db446a08 836
4b70ac5f
ON
837 for (i = 0; i < table->nr; ++i) {
838 struct kioctx *ctx = table->table[i];
6098b45b
GZ
839 struct completion requests_done =
840 COMPLETION_INITIALIZER_ONSTACK(requests_done);
abf137dd 841
4b70ac5f
ON
842 if (!ctx)
843 continue;
936af157 844 /*
4b70ac5f
ON
845 * We don't need to bother with munmap() here - exit_mmap(mm)
846 * is coming and it'll unmap everything. And we simply can't,
847 * this is not necessarily our ->mm.
848 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
849 * that it needs to unmap the area, just set it to 0.
936af157 850 */
58c85dc2 851 ctx->mmap_size = 0;
6098b45b 852 kill_ioctx(mm, ctx, &requests_done);
36f55889 853
6098b45b
GZ
854 /* Wait until all IO for the context are done. */
855 wait_for_completion(&requests_done);
1da177e4 856 }
4b70ac5f
ON
857
858 RCU_INIT_POINTER(mm->ioctx_table, NULL);
859 kfree(table);
1da177e4
LT
860}
861
e1bdd5f2
KO
862static void put_reqs_available(struct kioctx *ctx, unsigned nr)
863{
864 struct kioctx_cpu *kcpu;
263782c1 865 unsigned long flags;
e1bdd5f2 866
263782c1 867 local_irq_save(flags);
be6fb451 868 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 869 kcpu->reqs_available += nr;
263782c1 870
e1bdd5f2
KO
871 while (kcpu->reqs_available >= ctx->req_batch * 2) {
872 kcpu->reqs_available -= ctx->req_batch;
873 atomic_add(ctx->req_batch, &ctx->reqs_available);
874 }
875
263782c1 876 local_irq_restore(flags);
e1bdd5f2
KO
877}
878
879static bool get_reqs_available(struct kioctx *ctx)
880{
881 struct kioctx_cpu *kcpu;
882 bool ret = false;
263782c1 883 unsigned long flags;
e1bdd5f2 884
263782c1 885 local_irq_save(flags);
be6fb451 886 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
887 if (!kcpu->reqs_available) {
888 int old, avail = atomic_read(&ctx->reqs_available);
889
890 do {
891 if (avail < ctx->req_batch)
892 goto out;
893
894 old = avail;
895 avail = atomic_cmpxchg(&ctx->reqs_available,
896 avail, avail - ctx->req_batch);
897 } while (avail != old);
898
899 kcpu->reqs_available += ctx->req_batch;
900 }
901
902 ret = true;
903 kcpu->reqs_available--;
904out:
263782c1 905 local_irq_restore(flags);
e1bdd5f2
KO
906 return ret;
907}
908
d856f32a
BL
909/* refill_reqs_available
910 * Updates the reqs_available reference counts used for tracking the
911 * number of free slots in the completion ring. This can be called
912 * from aio_complete() (to optimistically update reqs_available) or
913 * from aio_get_req() (the we're out of events case). It must be
914 * called holding ctx->completion_lock.
915 */
916static void refill_reqs_available(struct kioctx *ctx, unsigned head,
917 unsigned tail)
918{
919 unsigned events_in_ring, completed;
920
921 /* Clamp head since userland can write to it. */
922 head %= ctx->nr_events;
923 if (head <= tail)
924 events_in_ring = tail - head;
925 else
926 events_in_ring = ctx->nr_events - (head - tail);
927
928 completed = ctx->completed_events;
929 if (events_in_ring < completed)
930 completed -= events_in_ring;
931 else
932 completed = 0;
933
934 if (!completed)
935 return;
936
937 ctx->completed_events -= completed;
938 put_reqs_available(ctx, completed);
939}
940
941/* user_refill_reqs_available
942 * Called to refill reqs_available when aio_get_req() encounters an
943 * out of space in the completion ring.
944 */
945static void user_refill_reqs_available(struct kioctx *ctx)
946{
947 spin_lock_irq(&ctx->completion_lock);
948 if (ctx->completed_events) {
949 struct aio_ring *ring;
950 unsigned head;
951
952 /* Access of ring->head may race with aio_read_events_ring()
953 * here, but that's okay since whether we read the old version
954 * or the new version, and either will be valid. The important
955 * part is that head cannot pass tail since we prevent
956 * aio_complete() from updating tail by holding
957 * ctx->completion_lock. Even if head is invalid, the check
958 * against ctx->completed_events below will make sure we do the
959 * safe/right thing.
960 */
961 ring = kmap_atomic(ctx->ring_pages[0]);
962 head = ring->head;
963 kunmap_atomic(ring);
964
965 refill_reqs_available(ctx, head, ctx->tail);
966 }
967
968 spin_unlock_irq(&ctx->completion_lock);
969}
970
1da177e4 971/* aio_get_req
57282d8f
KO
972 * Allocate a slot for an aio request.
973 * Returns NULL if no requests are free.
1da177e4 974 */
04b2fa9f 975static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 976{
04b2fa9f 977 struct aio_kiocb *req;
a1c8eae7 978
d856f32a
BL
979 if (!get_reqs_available(ctx)) {
980 user_refill_reqs_available(ctx);
981 if (!get_reqs_available(ctx))
982 return NULL;
983 }
a1c8eae7 984
0460fef2 985 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 986 if (unlikely(!req))
a1c8eae7 987 goto out_put;
1da177e4 988
e34ecee2
KO
989 percpu_ref_get(&ctx->reqs);
990
1da177e4 991 req->ki_ctx = ctx;
080d676d 992 return req;
a1c8eae7 993out_put:
e1bdd5f2 994 put_reqs_available(ctx, 1);
a1c8eae7 995 return NULL;
1da177e4
LT
996}
997
04b2fa9f 998static void kiocb_free(struct aio_kiocb *req)
1da177e4 999{
04b2fa9f
CH
1000 if (req->common.ki_filp)
1001 fput(req->common.ki_filp);
13389010
DL
1002 if (req->ki_eventfd != NULL)
1003 eventfd_ctx_put(req->ki_eventfd);
1da177e4 1004 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1005}
1006
d5470b59 1007static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1008{
db446a08 1009 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1010 struct mm_struct *mm = current->mm;
65c24491 1011 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1012 struct kioctx_table *table;
1013 unsigned id;
1014
1015 if (get_user(id, &ring->id))
1016 return NULL;
1da177e4 1017
abf137dd 1018 rcu_read_lock();
db446a08 1019 table = rcu_dereference(mm->ioctx_table);
abf137dd 1020
db446a08
BL
1021 if (!table || id >= table->nr)
1022 goto out;
1da177e4 1023
db446a08 1024 ctx = table->table[id];
f30d704f 1025 if (ctx && ctx->user_id == ctx_id) {
db446a08
BL
1026 percpu_ref_get(&ctx->users);
1027 ret = ctx;
1028 }
1029out:
abf137dd 1030 rcu_read_unlock();
65c24491 1031 return ret;
1da177e4
LT
1032}
1033
1da177e4
LT
1034/* aio_complete
1035 * Called when the io request on the given iocb is complete.
1da177e4 1036 */
04b2fa9f 1037static void aio_complete(struct kiocb *kiocb, long res, long res2)
1da177e4 1038{
04b2fa9f 1039 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1da177e4 1040 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1041 struct aio_ring *ring;
21b40200 1042 struct io_event *ev_page, *event;
d856f32a 1043 unsigned tail, pos, head;
1da177e4 1044 unsigned long flags;
1da177e4 1045
20dcae32
ZB
1046 /*
1047 * Special case handling for sync iocbs:
1048 * - events go directly into the iocb for fast handling
1049 * - the sync task with the iocb in its stack holds the single iocb
1050 * ref, no other paths have a way to get another ref
1051 * - the sync task helpfully left a reference to itself in the iocb
1da177e4 1052 */
04b2fa9f 1053 BUG_ON(is_sync_kiocb(kiocb));
1da177e4 1054
0460fef2
KO
1055 if (iocb->ki_list.next) {
1056 unsigned long flags;
1057
1058 spin_lock_irqsave(&ctx->ctx_lock, flags);
1059 list_del(&iocb->ki_list);
1060 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1061 }
11599eba 1062
0460fef2
KO
1063 /*
1064 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1065 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1066 * pointer since we might be called from irq context.
1067 */
1068 spin_lock_irqsave(&ctx->completion_lock, flags);
1069
58c85dc2 1070 tail = ctx->tail;
21b40200
KO
1071 pos = tail + AIO_EVENTS_OFFSET;
1072
58c85dc2 1073 if (++tail >= ctx->nr_events)
4bf69b2a 1074 tail = 0;
1da177e4 1075
58c85dc2 1076 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1077 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1078
04b2fa9f 1079 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1080 event->data = iocb->ki_user_data;
1081 event->res = res;
1082 event->res2 = res2;
1083
21b40200 1084 kunmap_atomic(ev_page);
58c85dc2 1085 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1086
1087 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1088 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1089 res, res2);
1da177e4
LT
1090
1091 /* after flagging the request as done, we
1092 * must never even look at it again
1093 */
1094 smp_wmb(); /* make event visible before updating tail */
1095
58c85dc2 1096 ctx->tail = tail;
1da177e4 1097
58c85dc2 1098 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1099 head = ring->head;
21b40200 1100 ring->tail = tail;
e8e3c3d6 1101 kunmap_atomic(ring);
58c85dc2 1102 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1103
d856f32a
BL
1104 ctx->completed_events++;
1105 if (ctx->completed_events > 1)
1106 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1107 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1108
21b40200 1109 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1110
1111 /*
1112 * Check if the user asked us to deliver the result through an
1113 * eventfd. The eventfd_signal() function is safe to be called
1114 * from IRQ context.
1115 */
87c3a86e 1116 if (iocb->ki_eventfd != NULL)
8d1c98b0
DL
1117 eventfd_signal(iocb->ki_eventfd, 1);
1118
1da177e4 1119 /* everything turned out well, dispose of the aiocb. */
57282d8f 1120 kiocb_free(iocb);
1da177e4 1121
6cb2a210
QB
1122 /*
1123 * We have to order our ring_info tail store above and test
1124 * of the wait list below outside the wait lock. This is
1125 * like in wake_up_bit() where clearing a bit has to be
1126 * ordered with the unlocked test.
1127 */
1128 smp_mb();
1129
1da177e4
LT
1130 if (waitqueue_active(&ctx->wait))
1131 wake_up(&ctx->wait);
1132
e34ecee2 1133 percpu_ref_put(&ctx->reqs);
1da177e4
LT
1134}
1135
2be4e7de 1136/* aio_read_events_ring
a31ad380
KO
1137 * Pull an event off of the ioctx's event ring. Returns the number of
1138 * events fetched
1da177e4 1139 */
a31ad380
KO
1140static long aio_read_events_ring(struct kioctx *ctx,
1141 struct io_event __user *event, long nr)
1da177e4 1142{
1da177e4 1143 struct aio_ring *ring;
5ffac122 1144 unsigned head, tail, pos;
a31ad380
KO
1145 long ret = 0;
1146 int copy_ret;
1147
9c9ce763
DC
1148 /*
1149 * The mutex can block and wake us up and that will cause
1150 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1151 * and repeat. This should be rare enough that it doesn't cause
1152 * peformance issues. See the comment in read_events() for more detail.
1153 */
1154 sched_annotate_sleep();
58c85dc2 1155 mutex_lock(&ctx->ring_lock);
1da177e4 1156
fa8a53c3 1157 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1158 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1159 head = ring->head;
5ffac122 1160 tail = ring->tail;
a31ad380
KO
1161 kunmap_atomic(ring);
1162
2ff396be
JM
1163 /*
1164 * Ensure that once we've read the current tail pointer, that
1165 * we also see the events that were stored up to the tail.
1166 */
1167 smp_rmb();
1168
5ffac122 1169 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1170
5ffac122 1171 if (head == tail)
1da177e4
LT
1172 goto out;
1173
edfbbf38
BL
1174 head %= ctx->nr_events;
1175 tail %= ctx->nr_events;
1176
a31ad380
KO
1177 while (ret < nr) {
1178 long avail;
1179 struct io_event *ev;
1180 struct page *page;
1181
5ffac122
KO
1182 avail = (head <= tail ? tail : ctx->nr_events) - head;
1183 if (head == tail)
a31ad380
KO
1184 break;
1185
1186 avail = min(avail, nr - ret);
1187 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1188 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1189
1190 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1191 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1192 pos %= AIO_EVENTS_PER_PAGE;
1193
1194 ev = kmap(page);
1195 copy_ret = copy_to_user(event + ret, ev + pos,
1196 sizeof(*ev) * avail);
1197 kunmap(page);
1198
1199 if (unlikely(copy_ret)) {
1200 ret = -EFAULT;
1201 goto out;
1202 }
1203
1204 ret += avail;
1205 head += avail;
58c85dc2 1206 head %= ctx->nr_events;
1da177e4 1207 }
1da177e4 1208
58c85dc2 1209 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1210 ring->head = head;
91d80a84 1211 kunmap_atomic(ring);
58c85dc2 1212 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1213
5ffac122 1214 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1215out:
58c85dc2 1216 mutex_unlock(&ctx->ring_lock);
a31ad380 1217
1da177e4
LT
1218 return ret;
1219}
1220
a31ad380
KO
1221static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 struct io_event __user *event, long *i)
1da177e4 1223{
a31ad380 1224 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1225
a31ad380
KO
1226 if (ret > 0)
1227 *i += ret;
1da177e4 1228
a31ad380
KO
1229 if (unlikely(atomic_read(&ctx->dead)))
1230 ret = -EINVAL;
1da177e4 1231
a31ad380
KO
1232 if (!*i)
1233 *i = ret;
1da177e4 1234
a31ad380 1235 return ret < 0 || *i >= min_nr;
1da177e4
LT
1236}
1237
a31ad380 1238static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4
LT
1239 struct io_event __user *event,
1240 struct timespec __user *timeout)
1241{
a31ad380
KO
1242 ktime_t until = { .tv64 = KTIME_MAX };
1243 long ret = 0;
1da177e4 1244
1da177e4
LT
1245 if (timeout) {
1246 struct timespec ts;
a31ad380 1247
1da177e4 1248 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
a31ad380 1249 return -EFAULT;
1da177e4 1250
a31ad380 1251 until = timespec_to_ktime(ts);
1da177e4
LT
1252 }
1253
a31ad380
KO
1254 /*
1255 * Note that aio_read_events() is being called as the conditional - i.e.
1256 * we're calling it after prepare_to_wait() has set task state to
1257 * TASK_INTERRUPTIBLE.
1258 *
1259 * But aio_read_events() can block, and if it blocks it's going to flip
1260 * the task state back to TASK_RUNNING.
1261 *
1262 * This should be ok, provided it doesn't flip the state back to
1263 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1264 * will only happen if the mutex_lock() call blocks, and we then find
1265 * the ringbuffer empty. So in practice we should be ok, but it's
1266 * something to be aware of when touching this code.
1267 */
5f785de5
FZ
1268 if (until.tv64 == 0)
1269 aio_read_events(ctx, min_nr, nr, event, &ret);
1270 else
1271 wait_event_interruptible_hrtimeout(ctx->wait,
1272 aio_read_events(ctx, min_nr, nr, event, &ret),
1273 until);
1da177e4 1274
a31ad380
KO
1275 if (!ret && signal_pending(current))
1276 ret = -EINTR;
1da177e4 1277
a31ad380 1278 return ret;
1da177e4
LT
1279}
1280
1da177e4
LT
1281/* sys_io_setup:
1282 * Create an aio_context capable of receiving at least nr_events.
1283 * ctxp must not point to an aio_context that already exists, and
1284 * must be initialized to 0 prior to the call. On successful
1285 * creation of the aio_context, *ctxp is filled in with the resulting
1286 * handle. May fail with -EINVAL if *ctxp is not initialized,
1287 * if the specified nr_events exceeds internal limits. May fail
1288 * with -EAGAIN if the specified nr_events exceeds the user's limit
1289 * of available events. May fail with -ENOMEM if insufficient kernel
1290 * resources are available. May fail with -EFAULT if an invalid
1291 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1292 * implemented.
1293 */
002c8976 1294SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1295{
1296 struct kioctx *ioctx = NULL;
1297 unsigned long ctx;
1298 long ret;
1299
1300 ret = get_user(ctx, ctxp);
1301 if (unlikely(ret))
1302 goto out;
1303
1304 ret = -EINVAL;
d55b5fda 1305 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1306 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1307 ctx, nr_events);
1da177e4
LT
1308 goto out;
1309 }
1310
1311 ioctx = ioctx_alloc(nr_events);
1312 ret = PTR_ERR(ioctx);
1313 if (!IS_ERR(ioctx)) {
1314 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1315 if (ret)
e02ba72a 1316 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1317 percpu_ref_put(&ioctx->users);
1da177e4
LT
1318 }
1319
1320out:
1321 return ret;
1322}
1323
1324/* sys_io_destroy:
1325 * Destroy the aio_context specified. May cancel any outstanding
1326 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1327 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1328 * is invalid.
1329 */
002c8976 1330SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1331{
1332 struct kioctx *ioctx = lookup_ioctx(ctx);
1333 if (likely(NULL != ioctx)) {
e02ba72a
AP
1334 struct completion requests_done =
1335 COMPLETION_INITIALIZER_ONSTACK(requests_done);
fb2d4483 1336 int ret;
e02ba72a
AP
1337
1338 /* Pass requests_done to kill_ioctx() where it can be set
1339 * in a thread-safe way. If we try to set it here then we have
1340 * a race condition if two io_destroy() called simultaneously.
1341 */
fb2d4483 1342 ret = kill_ioctx(current->mm, ioctx, &requests_done);
723be6e3 1343 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1344
1345 /* Wait until all IO for the context are done. Otherwise kernel
1346 * keep using user-space buffers even if user thinks the context
1347 * is destroyed.
1348 */
fb2d4483
BL
1349 if (!ret)
1350 wait_for_completion(&requests_done);
e02ba72a 1351
fb2d4483 1352 return ret;
1da177e4 1353 }
acd88d4e 1354 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1355 return -EINVAL;
1356}
1357
293bc982 1358typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
41ef4eb8 1359
a96114fa
AV
1360static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1361 struct iovec **iovec,
1362 bool compat,
1363 struct iov_iter *iter)
eed4e51f 1364{
9d85cba7
JM
1365#ifdef CONFIG_COMPAT
1366 if (compat)
32a56afa 1367 return compat_import_iovec(rw,
8bc92afc 1368 (struct compat_iovec __user *)buf,
32a56afa 1369 len, UIO_FASTIOV, iovec, iter);
9d85cba7 1370#endif
32a56afa
AV
1371 return import_iovec(rw, (struct iovec __user *)buf,
1372 len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1373}
1374
1da177e4 1375/*
2be4e7de
GZ
1376 * aio_run_iocb:
1377 * Performs the initial checks and io submission.
1da177e4 1378 */
8bc92afc 1379static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
66ee59af 1380 char __user *buf, size_t len, bool compat)
1da177e4 1381{
41ef4eb8
KO
1382 struct file *file = req->ki_filp;
1383 ssize_t ret;
1384 int rw;
1385 fmode_t mode;
293bc982 1386 rw_iter_op *iter_op;
00fefb9c 1387 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1388 struct iov_iter iter;
1da177e4 1389
8bc92afc 1390 switch (opcode) {
1da177e4 1391 case IOCB_CMD_PREAD:
eed4e51f 1392 case IOCB_CMD_PREADV:
41ef4eb8
KO
1393 mode = FMODE_READ;
1394 rw = READ;
293bc982 1395 iter_op = file->f_op->read_iter;
41ef4eb8
KO
1396 goto rw_common;
1397
1398 case IOCB_CMD_PWRITE:
eed4e51f 1399 case IOCB_CMD_PWRITEV:
41ef4eb8
KO
1400 mode = FMODE_WRITE;
1401 rw = WRITE;
293bc982 1402 iter_op = file->f_op->write_iter;
41ef4eb8
KO
1403 goto rw_common;
1404rw_common:
1405 if (unlikely(!(file->f_mode & mode)))
1406 return -EBADF;
1407
84363182 1408 if (!iter_op)
41ef4eb8
KO
1409 return -EINVAL;
1410
66ee59af 1411 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
a96114fa
AV
1412 ret = aio_setup_vectored_rw(rw, buf, len,
1413 &iovec, compat, &iter);
32a56afa 1414 else {
d4fb392f 1415 ret = import_single_range(rw, buf, len, iovec, &iter);
32a56afa
AV
1416 iovec = NULL;
1417 }
754320d6 1418 if (!ret)
a96114fa
AV
1419 ret = rw_verify_area(rw, file, &req->ki_pos,
1420 iov_iter_count(&iter));
8bc92afc 1421 if (ret < 0) {
32a56afa 1422 kfree(iovec);
41ef4eb8 1423 return ret;
8bc92afc 1424 }
41ef4eb8 1425
66ee59af 1426 len = ret;
41ef4eb8 1427
73a7075e
KO
1428 if (rw == WRITE)
1429 file_start_write(file);
1430
84363182 1431 ret = iter_op(req, &iter);
73a7075e
KO
1432
1433 if (rw == WRITE)
1434 file_end_write(file);
32a56afa 1435 kfree(iovec);
1da177e4 1436 break;
41ef4eb8 1437
1da177e4 1438 case IOCB_CMD_FDSYNC:
41ef4eb8
KO
1439 if (!file->f_op->aio_fsync)
1440 return -EINVAL;
1441
1442 ret = file->f_op->aio_fsync(req, 1);
1da177e4 1443 break;
41ef4eb8 1444
1da177e4 1445 case IOCB_CMD_FSYNC:
41ef4eb8
KO
1446 if (!file->f_op->aio_fsync)
1447 return -EINVAL;
1448
1449 ret = file->f_op->aio_fsync(req, 0);
1da177e4 1450 break;
41ef4eb8 1451
1da177e4 1452 default:
caf4167a 1453 pr_debug("EINVAL: no operation provided\n");
41ef4eb8 1454 return -EINVAL;
1da177e4
LT
1455 }
1456
41ef4eb8
KO
1457 if (ret != -EIOCBQUEUED) {
1458 /*
1459 * There's no easy way to restart the syscall since other AIO's
1460 * may be already running. Just fail this IO with EINTR.
1461 */
1462 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1463 ret == -ERESTARTNOHAND ||
1464 ret == -ERESTART_RESTARTBLOCK))
1465 ret = -EINTR;
1466 aio_complete(req, ret, 0);
1467 }
1da177e4
LT
1468
1469 return 0;
1470}
1471
d5470b59 1472static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
a1c8eae7 1473 struct iocb *iocb, bool compat)
1da177e4 1474{
04b2fa9f 1475 struct aio_kiocb *req;
1da177e4
LT
1476 ssize_t ret;
1477
1478 /* enforce forwards compatibility on users */
9c3060be 1479 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
caf4167a 1480 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1481 return -EINVAL;
1482 }
1483
1484 /* prevent overflows */
1485 if (unlikely(
1486 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1487 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1488 ((ssize_t)iocb->aio_nbytes < 0)
1489 )) {
acd88d4e 1490 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1491 return -EINVAL;
1492 }
1493
41ef4eb8 1494 req = aio_get_req(ctx);
1d98ebfc 1495 if (unlikely(!req))
1da177e4 1496 return -EAGAIN;
1d98ebfc 1497
04b2fa9f
CH
1498 req->common.ki_filp = fget(iocb->aio_fildes);
1499 if (unlikely(!req->common.ki_filp)) {
1d98ebfc
KO
1500 ret = -EBADF;
1501 goto out_put_req;
1da177e4 1502 }
04b2fa9f
CH
1503 req->common.ki_pos = iocb->aio_offset;
1504 req->common.ki_complete = aio_complete;
1505 req->common.ki_flags = 0;
1d98ebfc 1506
9c3060be
DL
1507 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1508 /*
1509 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1510 * instance of the file* now. The file descriptor must be
1511 * an eventfd() fd, and will be signaled for each completed
1512 * event using the eventfd_signal() function.
1513 */
13389010 1514 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
801678c5 1515 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1516 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1517 req->ki_eventfd = NULL;
9c3060be
DL
1518 goto out_put_req;
1519 }
04b2fa9f
CH
1520
1521 req->common.ki_flags |= IOCB_EVENTFD;
9c3060be 1522 }
1da177e4 1523
8a660890 1524 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1525 if (unlikely(ret)) {
caf4167a 1526 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1527 goto out_put_req;
1528 }
1529
04b2fa9f 1530 req->ki_user_iocb = user_iocb;
1da177e4 1531 req->ki_user_data = iocb->aio_data;
1da177e4 1532
04b2fa9f 1533 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
8bc92afc 1534 (char __user *)(unsigned long)iocb->aio_buf,
66ee59af 1535 iocb->aio_nbytes,
8bc92afc 1536 compat);
41003a7b 1537 if (ret)
7137c6bd 1538 goto out_put_req;
41003a7b 1539
1da177e4 1540 return 0;
1da177e4 1541out_put_req:
e1bdd5f2 1542 put_reqs_available(ctx, 1);
e34ecee2 1543 percpu_ref_put(&ctx->reqs);
57282d8f 1544 kiocb_free(req);
1da177e4
LT
1545 return ret;
1546}
1547
9d85cba7
JM
1548long do_io_submit(aio_context_t ctx_id, long nr,
1549 struct iocb __user *__user *iocbpp, bool compat)
1da177e4
LT
1550{
1551 struct kioctx *ctx;
1552 long ret = 0;
080d676d 1553 int i = 0;
9f5b9425 1554 struct blk_plug plug;
1da177e4
LT
1555
1556 if (unlikely(nr < 0))
1557 return -EINVAL;
1558
75e1c70f
JM
1559 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1560 nr = LONG_MAX/sizeof(*iocbpp);
1561
1da177e4
LT
1562 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1563 return -EFAULT;
1564
1565 ctx = lookup_ioctx(ctx_id);
1566 if (unlikely(!ctx)) {
caf4167a 1567 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1568 return -EINVAL;
1569 }
1570
9f5b9425
SL
1571 blk_start_plug(&plug);
1572
1da177e4
LT
1573 /*
1574 * AKPM: should this return a partial result if some of the IOs were
1575 * successfully submitted?
1576 */
1577 for (i=0; i<nr; i++) {
1578 struct iocb __user *user_iocb;
1579 struct iocb tmp;
1580
1581 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1582 ret = -EFAULT;
1583 break;
1584 }
1585
1586 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1587 ret = -EFAULT;
1588 break;
1589 }
1590
a1c8eae7 1591 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1da177e4
LT
1592 if (ret)
1593 break;
1594 }
9f5b9425 1595 blk_finish_plug(&plug);
1da177e4 1596
723be6e3 1597 percpu_ref_put(&ctx->users);
1da177e4
LT
1598 return i ? i : ret;
1599}
1600
9d85cba7
JM
1601/* sys_io_submit:
1602 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1603 * the number of iocbs queued. May return -EINVAL if the aio_context
1604 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1605 * *iocbpp[0] is not properly initialized, if the operation specified
1606 * is invalid for the file descriptor in the iocb. May fail with
1607 * -EFAULT if any of the data structures point to invalid data. May
1608 * fail with -EBADF if the file descriptor specified in the first
1609 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1610 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1611 * fail with -ENOSYS if not implemented.
1612 */
1613SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1614 struct iocb __user * __user *, iocbpp)
1615{
1616 return do_io_submit(ctx_id, nr, iocbpp, 0);
1617}
1618
1da177e4
LT
1619/* lookup_kiocb
1620 * Finds a given iocb for cancellation.
1da177e4 1621 */
04b2fa9f
CH
1622static struct aio_kiocb *
1623lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1da177e4 1624{
04b2fa9f 1625 struct aio_kiocb *kiocb;
d00689af
ZB
1626
1627 assert_spin_locked(&ctx->ctx_lock);
1628
8a660890
KO
1629 if (key != KIOCB_KEY)
1630 return NULL;
1631
1da177e4 1632 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1633 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1634 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1635 return kiocb;
1636 }
1637 return NULL;
1638}
1639
1640/* sys_io_cancel:
1641 * Attempts to cancel an iocb previously passed to io_submit. If
1642 * the operation is successfully cancelled, the resulting event is
1643 * copied into the memory pointed to by result without being placed
1644 * into the completion queue and 0 is returned. May fail with
1645 * -EFAULT if any of the data structures pointed to are invalid.
1646 * May fail with -EINVAL if aio_context specified by ctx_id is
1647 * invalid. May fail with -EAGAIN if the iocb specified was not
1648 * cancelled. Will fail with -ENOSYS if not implemented.
1649 */
002c8976
HC
1650SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1651 struct io_event __user *, result)
1da177e4 1652{
1da177e4 1653 struct kioctx *ctx;
04b2fa9f 1654 struct aio_kiocb *kiocb;
1da177e4
LT
1655 u32 key;
1656 int ret;
1657
1658 ret = get_user(key, &iocb->aio_key);
1659 if (unlikely(ret))
1660 return -EFAULT;
1661
1662 ctx = lookup_ioctx(ctx_id);
1663 if (unlikely(!ctx))
1664 return -EINVAL;
1665
1666 spin_lock_irq(&ctx->ctx_lock);
906b973c 1667
1da177e4 1668 kiocb = lookup_kiocb(ctx, iocb, key);
906b973c 1669 if (kiocb)
d52a8f9e 1670 ret = kiocb_cancel(kiocb);
906b973c
KO
1671 else
1672 ret = -EINVAL;
1673
1da177e4
LT
1674 spin_unlock_irq(&ctx->ctx_lock);
1675
906b973c 1676 if (!ret) {
bec68faa
KO
1677 /*
1678 * The result argument is no longer used - the io_event is
1679 * always delivered via the ring buffer. -EINPROGRESS indicates
1680 * cancellation is progress:
906b973c 1681 */
bec68faa 1682 ret = -EINPROGRESS;
906b973c 1683 }
1da177e4 1684
723be6e3 1685 percpu_ref_put(&ctx->users);
1da177e4
LT
1686
1687 return ret;
1688}
1689
1690/* io_getevents:
1691 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1692 * the completion queue for the aio_context specified by ctx_id. If
1693 * it succeeds, the number of read events is returned. May fail with
1694 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1695 * out of range, if timeout is out of range. May fail with -EFAULT
1696 * if any of the memory specified is invalid. May return 0 or
1697 * < min_nr if the timeout specified by timeout has elapsed
1698 * before sufficient events are available, where timeout == NULL
1699 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1700 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1701 */
002c8976
HC
1702SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1703 long, min_nr,
1704 long, nr,
1705 struct io_event __user *, events,
1706 struct timespec __user *, timeout)
1da177e4
LT
1707{
1708 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1709 long ret = -EINVAL;
1710
1711 if (likely(ioctx)) {
2e410255 1712 if (likely(min_nr <= nr && min_nr >= 0))
1da177e4 1713 ret = read_events(ioctx, min_nr, nr, events, timeout);
723be6e3 1714 percpu_ref_put(&ioctx->users);
1da177e4 1715 }
1da177e4
LT
1716 return ret;
1717}