Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / scsi / cxlflash / main.c
CommitLineData
c21e0bbf
MO
1/*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/delay.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/pci.h>
19
20#include <asm/unaligned.h>
21
22#include <misc/cxl.h>
23
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_host.h>
65be2c79 26#include <uapi/scsi/cxlflash_ioctl.h>
c21e0bbf
MO
27
28#include "main.h"
29#include "sislite.h"
30#include "common.h"
31
32MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35MODULE_LICENSE("GPL");
36
c21e0bbf 37/**
15305514 38 * cmd_checkout() - checks out an AFU command
c21e0bbf
MO
39 * @afu: AFU to checkout from.
40 *
41 * Commands are checked out in a round-robin fashion. Note that since
42 * the command pool is larger than the hardware queue, the majority of
43 * times we will only loop once or twice before getting a command. The
44 * buffer and CDB within the command are initialized (zeroed) prior to
45 * returning.
46 *
47 * Return: The checked out command or NULL when command pool is empty.
48 */
15305514 49static struct afu_cmd *cmd_checkout(struct afu *afu)
c21e0bbf
MO
50{
51 int k, dec = CXLFLASH_NUM_CMDS;
52 struct afu_cmd *cmd;
53
54 while (dec--) {
55 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
56
57 cmd = &afu->cmd[k];
58
59 if (!atomic_dec_if_positive(&cmd->free)) {
4392ba49
MO
60 pr_devel("%s: returning found index=%d cmd=%p\n",
61 __func__, cmd->slot, cmd);
c21e0bbf
MO
62 memset(cmd->buf, 0, CMD_BUFSIZE);
63 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
64 return cmd;
65 }
66 }
67
68 return NULL;
69}
70
71/**
15305514 72 * cmd_checkin() - checks in an AFU command
c21e0bbf
MO
73 * @cmd: AFU command to checkin.
74 *
75 * Safe to pass commands that have already been checked in. Several
76 * internal tracking fields are reset as part of the checkin. Note
77 * that these are intentionally reset prior to toggling the free bit
78 * to avoid clobbering values in the event that the command is checked
79 * out right away.
80 */
15305514 81static void cmd_checkin(struct afu_cmd *cmd)
c21e0bbf
MO
82{
83 cmd->rcb.scp = NULL;
84 cmd->rcb.timeout = 0;
85 cmd->sa.ioasc = 0;
86 cmd->cmd_tmf = false;
87 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
88
89 if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
90 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
91 __func__, cmd->slot);
92 return;
93 }
94
4392ba49 95 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
c21e0bbf
MO
96}
97
98/**
99 * process_cmd_err() - command error handler
100 * @cmd: AFU command that experienced the error.
101 * @scp: SCSI command associated with the AFU command in error.
102 *
103 * Translates error bits from AFU command to SCSI command results.
104 */
105static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
106{
107 struct sisl_ioarcb *ioarcb;
108 struct sisl_ioasa *ioasa;
8396012f 109 u32 resid;
c21e0bbf
MO
110
111 if (unlikely(!cmd))
112 return;
113
114 ioarcb = &(cmd->rcb);
115 ioasa = &(cmd->sa);
116
117 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
8396012f
MO
118 resid = ioasa->resid;
119 scsi_set_resid(scp, resid);
120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 __func__, cmd, scp, resid);
c21e0bbf
MO
122 }
123
124 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
126 __func__, cmd, scp);
127 scp->result = (DID_ERROR << 16);
128 }
129
130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
4392ba49 131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
c21e0bbf
MO
132 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
133 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
134 ioasa->fc_extra);
135
136 if (ioasa->rc.scsi_rc) {
137 /* We have a SCSI status */
138 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
139 memcpy(scp->sense_buffer, ioasa->sense_data,
140 SISL_SENSE_DATA_LEN);
141 scp->result = ioasa->rc.scsi_rc;
142 } else
143 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
144 }
145
146 /*
147 * We encountered an error. Set scp->result based on nature
148 * of error.
149 */
150 if (ioasa->rc.fc_rc) {
151 /* We have an FC status */
152 switch (ioasa->rc.fc_rc) {
153 case SISL_FC_RC_LINKDOWN:
154 scp->result = (DID_REQUEUE << 16);
155 break;
156 case SISL_FC_RC_RESID:
157 /* This indicates an FCP resid underrun */
158 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
159 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 * then we will handle this error else where.
161 * If not then we must handle it here.
8396012f 162 * This is probably an AFU bug.
c21e0bbf
MO
163 */
164 scp->result = (DID_ERROR << 16);
165 }
166 break;
167 case SISL_FC_RC_RESIDERR:
168 /* Resid mismatch between adapter and device */
169 case SISL_FC_RC_TGTABORT:
170 case SISL_FC_RC_ABORTOK:
171 case SISL_FC_RC_ABORTFAIL:
172 case SISL_FC_RC_NOLOGI:
173 case SISL_FC_RC_ABORTPEND:
174 case SISL_FC_RC_WRABORTPEND:
175 case SISL_FC_RC_NOEXP:
176 case SISL_FC_RC_INUSE:
177 scp->result = (DID_ERROR << 16);
178 break;
179 }
180 }
181
182 if (ioasa->rc.afu_rc) {
183 /* We have an AFU error */
184 switch (ioasa->rc.afu_rc) {
185 case SISL_AFU_RC_NO_CHANNELS:
8396012f 186 scp->result = (DID_NO_CONNECT << 16);
c21e0bbf
MO
187 break;
188 case SISL_AFU_RC_DATA_DMA_ERR:
189 switch (ioasa->afu_extra) {
190 case SISL_AFU_DMA_ERR_PAGE_IN:
191 /* Retry */
192 scp->result = (DID_IMM_RETRY << 16);
193 break;
194 case SISL_AFU_DMA_ERR_INVALID_EA:
195 default:
196 scp->result = (DID_ERROR << 16);
197 }
198 break;
199 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
200 /* Retry */
201 scp->result = (DID_ALLOC_FAILURE << 16);
202 break;
203 default:
204 scp->result = (DID_ERROR << 16);
205 }
206 }
207}
208
209/**
210 * cmd_complete() - command completion handler
211 * @cmd: AFU command that has completed.
212 *
213 * Prepares and submits command that has either completed or timed out to
214 * the SCSI stack. Checks AFU command back into command pool for non-internal
215 * (rcb.scp populated) commands.
216 */
217static void cmd_complete(struct afu_cmd *cmd)
218{
219 struct scsi_cmnd *scp;
c21e0bbf
MO
220 ulong lock_flags;
221 struct afu *afu = cmd->parent;
222 struct cxlflash_cfg *cfg = afu->parent;
223 bool cmd_is_tmf;
224
225 spin_lock_irqsave(&cmd->slock, lock_flags);
226 cmd->sa.host_use_b[0] |= B_DONE;
227 spin_unlock_irqrestore(&cmd->slock, lock_flags);
228
229 if (cmd->rcb.scp) {
230 scp = cmd->rcb.scp;
8396012f 231 if (unlikely(cmd->sa.ioasc))
c21e0bbf
MO
232 process_cmd_err(cmd, scp);
233 else
234 scp->result = (DID_OK << 16);
235
c21e0bbf 236 cmd_is_tmf = cmd->cmd_tmf;
15305514 237 cmd_checkin(cmd); /* Don't use cmd after here */
c21e0bbf 238
4392ba49
MO
239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 "ioasc=%d\n", __func__, scp, scp->result,
241 cmd->sa.ioasc);
c21e0bbf 242
c21e0bbf
MO
243 scsi_dma_unmap(scp);
244 scp->scsi_done(scp);
245
246 if (cmd_is_tmf) {
018d1dc9 247 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
248 cfg->tmf_active = false;
249 wake_up_all_locked(&cfg->tmf_waitq);
018d1dc9 250 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
251 }
252 } else
253 complete(&cmd->cevent);
254}
255
15305514
MO
256/**
257 * context_reset() - timeout handler for AFU commands
258 * @cmd: AFU command that timed out.
259 *
260 * Sends a reset to the AFU.
261 */
262static void context_reset(struct afu_cmd *cmd)
263{
264 int nretry = 0;
265 u64 rrin = 0x1;
266 u64 room = 0;
267 struct afu *afu = cmd->parent;
268 ulong lock_flags;
269
270 pr_debug("%s: cmd=%p\n", __func__, cmd);
271
272 spin_lock_irqsave(&cmd->slock, lock_flags);
273
274 /* Already completed? */
275 if (cmd->sa.host_use_b[0] & B_DONE) {
276 spin_unlock_irqrestore(&cmd->slock, lock_flags);
277 return;
278 }
279
280 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
281 spin_unlock_irqrestore(&cmd->slock, lock_flags);
282
283 /*
284 * We really want to send this reset at all costs, so spread
285 * out wait time on successive retries for available room.
286 */
287 do {
288 room = readq_be(&afu->host_map->cmd_room);
289 atomic64_set(&afu->room, room);
290 if (room)
291 goto write_rrin;
ea765431 292 udelay(1 << nretry);
15305514
MO
293 } while (nretry++ < MC_ROOM_RETRY_CNT);
294
295 pr_err("%s: no cmd_room to send reset\n", __func__);
296 return;
297
298write_rrin:
299 nretry = 0;
300 writeq_be(rrin, &afu->host_map->ioarrin);
301 do {
302 rrin = readq_be(&afu->host_map->ioarrin);
303 if (rrin != 0x1)
304 break;
305 /* Double delay each time */
ea765431 306 udelay(1 << nretry);
15305514
MO
307 } while (nretry++ < MC_ROOM_RETRY_CNT);
308}
309
310/**
311 * send_cmd() - sends an AFU command
312 * @afu: AFU associated with the host.
313 * @cmd: AFU command to send.
314 *
315 * Return:
1284fb0c 316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
15305514
MO
317 */
318static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
319{
320 struct cxlflash_cfg *cfg = afu->parent;
321 struct device *dev = &cfg->dev->dev;
322 int nretry = 0;
323 int rc = 0;
324 u64 room;
325 long newval;
326
327 /*
328 * This routine is used by critical users such an AFU sync and to
329 * send a task management function (TMF). Thus we want to retry a
330 * bit before returning an error. To avoid the performance penalty
331 * of MMIO, we spread the update of 'room' over multiple commands.
332 */
333retry:
334 newval = atomic64_dec_if_positive(&afu->room);
335 if (!newval) {
336 do {
337 room = readq_be(&afu->host_map->cmd_room);
338 atomic64_set(&afu->room, room);
339 if (room)
340 goto write_ioarrin;
ea765431 341 udelay(1 << nretry);
15305514
MO
342 } while (nretry++ < MC_ROOM_RETRY_CNT);
343
344 dev_err(dev, "%s: no cmd_room to send 0x%X\n",
345 __func__, cmd->rcb.cdb[0]);
346
347 goto no_room;
348 } else if (unlikely(newval < 0)) {
349 /* This should be rare. i.e. Only if two threads race and
350 * decrement before the MMIO read is done. In this case
351 * just benefit from the other thread having updated
352 * afu->room.
353 */
354 if (nretry++ < MC_ROOM_RETRY_CNT) {
ea765431 355 udelay(1 << nretry);
15305514
MO
356 goto retry;
357 }
358
359 goto no_room;
360 }
361
362write_ioarrin:
363 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
364out:
365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
366 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
367 return rc;
368
369no_room:
370 afu->read_room = true;
b45cdbaf 371 kref_get(&cfg->afu->mapcount);
15305514
MO
372 schedule_work(&cfg->work_q);
373 rc = SCSI_MLQUEUE_HOST_BUSY;
374 goto out;
375}
376
377/**
378 * wait_resp() - polls for a response or timeout to a sent AFU command
379 * @afu: AFU associated with the host.
380 * @cmd: AFU command that was sent.
381 */
382static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383{
384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385
386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 if (!timeout)
388 context_reset(cmd);
389
390 if (unlikely(cmd->sa.ioasc != 0))
391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 cmd->sa.rc.fc_rc);
395}
396
c21e0bbf
MO
397/**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
1284fb0c 404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
405 */
406static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407{
408 struct afu_cmd *cmd;
409
410 u32 port_sel = scp->device->channel + 1;
411 short lflag = 0;
412 struct Scsi_Host *host = scp->device->host;
413 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
4392ba49 414 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
415 ulong lock_flags;
416 int rc = 0;
018d1dc9 417 ulong to;
c21e0bbf 418
15305514 419 cmd = cmd_checkout(afu);
c21e0bbf 420 if (unlikely(!cmd)) {
4392ba49 421 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
422 rc = SCSI_MLQUEUE_HOST_BUSY;
423 goto out;
424 }
425
018d1dc9
MO
426 /* When Task Management Function is active do not send another */
427 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 428 if (cfg->tmf_active)
018d1dc9
MO
429 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
430 !cfg->tmf_active,
431 cfg->tmf_slock);
c21e0bbf
MO
432 cfg->tmf_active = true;
433 cmd->cmd_tmf = true;
018d1dc9 434 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
435
436 cmd->rcb.ctx_id = afu->ctx_hndl;
437 cmd->rcb.port_sel = port_sel;
438 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
439
440 lflag = SISL_REQ_FLAGS_TMF_CMD;
441
442 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
443 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
444
445 /* Stash the scp in the reserved field, for reuse during interrupt */
446 cmd->rcb.scp = scp;
447
448 /* Copy the CDB from the cmd passed in */
449 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
450
451 /* Send the command */
15305514 452 rc = send_cmd(afu, cmd);
c21e0bbf 453 if (unlikely(rc)) {
15305514 454 cmd_checkin(cmd);
018d1dc9 455 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 456 cfg->tmf_active = false;
018d1dc9 457 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
458 goto out;
459 }
460
018d1dc9
MO
461 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
462 to = msecs_to_jiffies(5000);
463 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
464 !cfg->tmf_active,
465 cfg->tmf_slock,
466 to);
467 if (!to) {
468 cfg->tmf_active = false;
469 dev_err(dev, "%s: TMF timed out!\n", __func__);
470 rc = -1;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
473out:
474 return rc;
475}
476
b45cdbaf
MK
477static void afu_unmap(struct kref *ref)
478{
479 struct afu *afu = container_of(ref, struct afu, mapcount);
480
481 if (likely(afu->afu_map)) {
482 cxl_psa_unmap((void __iomem *)afu->afu_map);
483 afu->afu_map = NULL;
484 }
485}
486
c21e0bbf
MO
487/**
488 * cxlflash_driver_info() - information handler for this host driver
489 * @host: SCSI host associated with device.
490 *
491 * Return: A string describing the device.
492 */
493static const char *cxlflash_driver_info(struct Scsi_Host *host)
494{
495 return CXLFLASH_ADAPTER_NAME;
496}
497
498/**
499 * cxlflash_queuecommand() - sends a mid-layer request
500 * @host: SCSI host associated with device.
501 * @scp: SCSI command to send.
502 *
1284fb0c 503 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
504 */
505static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
506{
507 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
508 struct afu *afu = cfg->afu;
4392ba49 509 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
510 struct afu_cmd *cmd;
511 u32 port_sel = scp->device->channel + 1;
512 int nseg, i, ncount;
513 struct scatterlist *sg;
514 ulong lock_flags;
515 short lflag = 0;
516 int rc = 0;
b45cdbaf 517 int kref_got = 0;
c21e0bbf 518
4392ba49
MO
519 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
520 "cdb=(%08X-%08X-%08X-%08X)\n",
521 __func__, scp, host->host_no, scp->device->channel,
522 scp->device->id, scp->device->lun,
523 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
524 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
525 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
526 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
c21e0bbf 527
018d1dc9
MO
528 /*
529 * If a Task Management Function is active, wait for it to complete
c21e0bbf
MO
530 * before continuing with regular commands.
531 */
018d1dc9 532 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 533 if (cfg->tmf_active) {
018d1dc9 534 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
535 rc = SCSI_MLQUEUE_HOST_BUSY;
536 goto out;
537 }
018d1dc9 538 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 539
5cdac81a 540 switch (cfg->state) {
439e85c1 541 case STATE_RESET:
4392ba49 542 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
5cdac81a
MO
543 rc = SCSI_MLQUEUE_HOST_BUSY;
544 goto out;
545 case STATE_FAILTERM:
4392ba49 546 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
5cdac81a
MO
547 scp->result = (DID_NO_CONNECT << 16);
548 scp->scsi_done(scp);
549 rc = 0;
550 goto out;
551 default:
552 break;
553 }
554
15305514 555 cmd = cmd_checkout(afu);
c21e0bbf 556 if (unlikely(!cmd)) {
4392ba49 557 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
558 rc = SCSI_MLQUEUE_HOST_BUSY;
559 goto out;
560 }
561
b45cdbaf
MK
562 kref_get(&cfg->afu->mapcount);
563 kref_got = 1;
564
c21e0bbf
MO
565 cmd->rcb.ctx_id = afu->ctx_hndl;
566 cmd->rcb.port_sel = port_sel;
567 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
568
569 if (scp->sc_data_direction == DMA_TO_DEVICE)
570 lflag = SISL_REQ_FLAGS_HOST_WRITE;
571 else
572 lflag = SISL_REQ_FLAGS_HOST_READ;
573
574 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
575 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
576
577 /* Stash the scp in the reserved field, for reuse during interrupt */
578 cmd->rcb.scp = scp;
579
580 nseg = scsi_dma_map(scp);
581 if (unlikely(nseg < 0)) {
4392ba49 582 dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
c21e0bbf
MO
583 __func__, nseg);
584 rc = SCSI_MLQUEUE_HOST_BUSY;
585 goto out;
586 }
587
588 ncount = scsi_sg_count(scp);
589 scsi_for_each_sg(scp, sg, ncount, i) {
590 cmd->rcb.data_len = sg_dma_len(sg);
591 cmd->rcb.data_ea = sg_dma_address(sg);
592 }
593
594 /* Copy the CDB from the scsi_cmnd passed in */
595 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
596
597 /* Send the command */
15305514 598 rc = send_cmd(afu, cmd);
c21e0bbf 599 if (unlikely(rc)) {
15305514 600 cmd_checkin(cmd);
c21e0bbf
MO
601 scsi_dma_unmap(scp);
602 }
603
604out:
b45cdbaf
MK
605 if (kref_got)
606 kref_put(&afu->mapcount, afu_unmap);
4392ba49 607 pr_devel("%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
608 return rc;
609}
610
611/**
15305514 612 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
1284fb0c 613 * @cfg: Internal structure associated with the host.
c21e0bbf 614 */
15305514 615static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
c21e0bbf 616{
15305514 617 struct pci_dev *pdev = cfg->dev;
c21e0bbf 618
15305514
MO
619 if (pci_channel_offline(pdev))
620 wait_event_timeout(cfg->reset_waitq,
621 !pci_channel_offline(pdev),
622 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
c21e0bbf
MO
623}
624
625/**
15305514 626 * free_mem() - free memory associated with the AFU
1284fb0c 627 * @cfg: Internal structure associated with the host.
c21e0bbf 628 */
15305514 629static void free_mem(struct cxlflash_cfg *cfg)
c21e0bbf 630{
15305514
MO
631 int i;
632 char *buf = NULL;
633 struct afu *afu = cfg->afu;
c21e0bbf 634
15305514
MO
635 if (cfg->afu) {
636 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
637 buf = afu->cmd[i].buf;
638 if (!((u64)buf & (PAGE_SIZE - 1)))
639 free_page((ulong)buf);
640 }
c21e0bbf 641
15305514
MO
642 free_pages((ulong)afu, get_order(sizeof(struct afu)));
643 cfg->afu = NULL;
5cdac81a 644 }
c21e0bbf
MO
645}
646
647/**
15305514 648 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
1284fb0c 649 * @cfg: Internal structure associated with the host.
c21e0bbf 650 *
15305514 651 * Safe to call with AFU in a partially allocated/initialized state.
ee91e332
MK
652 *
653 * Cleans up all state associated with the command queue, and unmaps
654 * the MMIO space.
655 *
656 * - complete() will take care of commands we initiated (they'll be checked
657 * in as part of the cleanup that occurs after the completion)
658 *
659 * - cmd_checkin() will take care of entries that we did not initiate and that
660 * have not (and will not) complete because they are sitting on a [now stale]
661 * hardware queue
c21e0bbf 662 */
15305514 663static void stop_afu(struct cxlflash_cfg *cfg)
c21e0bbf 664{
15305514
MO
665 int i;
666 struct afu *afu = cfg->afu;
ee91e332 667 struct afu_cmd *cmd;
c21e0bbf 668
15305514 669 if (likely(afu)) {
ee91e332
MK
670 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
671 cmd = &afu->cmd[i];
672 complete(&cmd->cevent);
673 if (!atomic_read(&cmd->free))
674 cmd_checkin(cmd);
675 }
c21e0bbf
MO
676
677 if (likely(afu->afu_map)) {
1786f4a0 678 cxl_psa_unmap((void __iomem *)afu->afu_map);
c21e0bbf
MO
679 afu->afu_map = NULL;
680 }
b45cdbaf 681 kref_put(&afu->mapcount, afu_unmap);
c21e0bbf
MO
682 }
683}
684
685/**
9526f360 686 * term_intr() - disables all AFU interrupts
1284fb0c 687 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
688 * @level: Depth of allocation, where to begin waterfall tear down.
689 *
690 * Safe to call with AFU/MC in partially allocated/initialized state.
691 */
9526f360 692static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
c21e0bbf 693{
c21e0bbf 694 struct afu *afu = cfg->afu;
4392ba49 695 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
696
697 if (!afu || !cfg->mcctx) {
9526f360 698 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
c21e0bbf
MO
699 return;
700 }
701
702 switch (level) {
c21e0bbf
MO
703 case UNMAP_THREE:
704 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
705 case UNMAP_TWO:
706 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
707 case UNMAP_ONE:
708 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
709 case FREE_IRQ:
710 cxl_free_afu_irqs(cfg->mcctx);
9526f360
MK
711 /* fall through */
712 case UNDO_NOOP:
713 /* No action required */
714 break;
715 }
716}
717
718/**
719 * term_mc() - terminates the master context
720 * @cfg: Internal structure associated with the host.
721 * @level: Depth of allocation, where to begin waterfall tear down.
722 *
723 * Safe to call with AFU/MC in partially allocated/initialized state.
724 */
725static void term_mc(struct cxlflash_cfg *cfg)
726{
727 int rc = 0;
728 struct afu *afu = cfg->afu;
729 struct device *dev = &cfg->dev->dev;
730
731 if (!afu || !cfg->mcctx) {
732 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
733 return;
c21e0bbf 734 }
9526f360
MK
735
736 rc = cxl_stop_context(cfg->mcctx);
737 WARN_ON(rc);
738 cfg->mcctx = NULL;
c21e0bbf
MO
739}
740
741/**
742 * term_afu() - terminates the AFU
1284fb0c 743 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
744 *
745 * Safe to call with AFU/MC in partially allocated/initialized state.
746 */
747static void term_afu(struct cxlflash_cfg *cfg)
748{
9526f360
MK
749 /*
750 * Tear down is carefully orchestrated to ensure
751 * no interrupts can come in when the problem state
752 * area is unmapped.
753 *
754 * 1) Disable all AFU interrupts
755 * 2) Unmap the problem state area
756 * 3) Stop the master context
757 */
758 term_intr(cfg, UNMAP_THREE);
c21e0bbf
MO
759 if (cfg->afu)
760 stop_afu(cfg);
761
9526f360 762 term_mc(cfg);
6ded8b3c 763
c21e0bbf
MO
764 pr_debug("%s: returning\n", __func__);
765}
766
767/**
768 * cxlflash_remove() - PCI entry point to tear down host
769 * @pdev: PCI device associated with the host.
770 *
771 * Safe to use as a cleanup in partially allocated/initialized state.
772 */
773static void cxlflash_remove(struct pci_dev *pdev)
774{
775 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
776 ulong lock_flags;
777
778 /* If a Task Management Function is active, wait for it to complete
779 * before continuing with remove.
780 */
018d1dc9 781 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 782 if (cfg->tmf_active)
018d1dc9
MO
783 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
784 !cfg->tmf_active,
785 cfg->tmf_slock);
786 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 787
5cdac81a 788 cfg->state = STATE_FAILTERM;
65be2c79 789 cxlflash_stop_term_user_contexts(cfg);
5cdac81a 790
c21e0bbf
MO
791 switch (cfg->init_state) {
792 case INIT_STATE_SCSI:
65be2c79 793 cxlflash_term_local_luns(cfg);
c21e0bbf 794 scsi_remove_host(cfg->host);
f15fbf8d 795 /* fall through */
c21e0bbf 796 case INIT_STATE_AFU:
d804621d 797 cancel_work_sync(&cfg->work_q);
b45cdbaf 798 term_afu(cfg);
c21e0bbf 799 case INIT_STATE_PCI:
c21e0bbf
MO
800 pci_disable_device(pdev);
801 case INIT_STATE_NONE:
c21e0bbf 802 free_mem(cfg);
8b5b1e87 803 scsi_host_put(cfg->host);
c21e0bbf
MO
804 break;
805 }
806
807 pr_debug("%s: returning\n", __func__);
808}
809
810/**
811 * alloc_mem() - allocates the AFU and its command pool
1284fb0c 812 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
813 *
814 * A partially allocated state remains on failure.
815 *
816 * Return:
817 * 0 on success
818 * -ENOMEM on failure to allocate memory
819 */
820static int alloc_mem(struct cxlflash_cfg *cfg)
821{
822 int rc = 0;
823 int i;
824 char *buf = NULL;
4392ba49 825 struct device *dev = &cfg->dev->dev;
c21e0bbf 826
f15fbf8d 827 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
c21e0bbf
MO
828 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
829 get_order(sizeof(struct afu)));
830 if (unlikely(!cfg->afu)) {
4392ba49
MO
831 dev_err(dev, "%s: cannot get %d free pages\n",
832 __func__, get_order(sizeof(struct afu)));
c21e0bbf
MO
833 rc = -ENOMEM;
834 goto out;
835 }
836 cfg->afu->parent = cfg;
837 cfg->afu->afu_map = NULL;
838
839 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
840 if (!((u64)buf & (PAGE_SIZE - 1))) {
841 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
842 if (unlikely(!buf)) {
4392ba49
MO
843 dev_err(dev,
844 "%s: Allocate command buffers fail!\n",
c21e0bbf
MO
845 __func__);
846 rc = -ENOMEM;
847 free_mem(cfg);
848 goto out;
849 }
850 }
851
852 cfg->afu->cmd[i].buf = buf;
853 atomic_set(&cfg->afu->cmd[i].free, 1);
854 cfg->afu->cmd[i].slot = i;
855 }
856
857out:
858 return rc;
859}
860
861/**
862 * init_pci() - initializes the host as a PCI device
1284fb0c 863 * @cfg: Internal structure associated with the host.
c21e0bbf 864 *
1284fb0c 865 * Return: 0 on success, -errno on failure
c21e0bbf
MO
866 */
867static int init_pci(struct cxlflash_cfg *cfg)
868{
869 struct pci_dev *pdev = cfg->dev;
870 int rc = 0;
871
c21e0bbf
MO
872 rc = pci_enable_device(pdev);
873 if (rc || pci_channel_offline(pdev)) {
874 if (pci_channel_offline(pdev)) {
875 cxlflash_wait_for_pci_err_recovery(cfg);
876 rc = pci_enable_device(pdev);
877 }
878
879 if (rc) {
880 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
881 __func__);
882 cxlflash_wait_for_pci_err_recovery(cfg);
961487e4 883 goto out;
c21e0bbf
MO
884 }
885 }
886
c21e0bbf
MO
887out:
888 pr_debug("%s: returning rc=%d\n", __func__, rc);
889 return rc;
c21e0bbf
MO
890}
891
892/**
893 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1284fb0c 894 * @cfg: Internal structure associated with the host.
c21e0bbf 895 *
1284fb0c 896 * Return: 0 on success, -errno on failure
c21e0bbf
MO
897 */
898static int init_scsi(struct cxlflash_cfg *cfg)
899{
900 struct pci_dev *pdev = cfg->dev;
901 int rc = 0;
902
903 rc = scsi_add_host(cfg->host, &pdev->dev);
904 if (rc) {
905 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
906 __func__, rc);
907 goto out;
908 }
909
910 scsi_scan_host(cfg->host);
911
912out:
913 pr_debug("%s: returning rc=%d\n", __func__, rc);
914 return rc;
915}
916
917/**
918 * set_port_online() - transitions the specified host FC port to online state
919 * @fc_regs: Top of MMIO region defined for specified port.
920 *
921 * The provided MMIO region must be mapped prior to call. Online state means
922 * that the FC link layer has synced, completed the handshaking process, and
923 * is ready for login to start.
924 */
1786f4a0 925static void set_port_online(__be64 __iomem *fc_regs)
c21e0bbf
MO
926{
927 u64 cmdcfg;
928
929 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
930 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
931 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
932 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
933}
934
935/**
936 * set_port_offline() - transitions the specified host FC port to offline state
937 * @fc_regs: Top of MMIO region defined for specified port.
938 *
939 * The provided MMIO region must be mapped prior to call.
940 */
1786f4a0 941static void set_port_offline(__be64 __iomem *fc_regs)
c21e0bbf
MO
942{
943 u64 cmdcfg;
944
945 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
946 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
947 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
948 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
949}
950
951/**
952 * wait_port_online() - waits for the specified host FC port come online
953 * @fc_regs: Top of MMIO region defined for specified port.
954 * @delay_us: Number of microseconds to delay between reading port status.
955 * @nretry: Number of cycles to retry reading port status.
956 *
957 * The provided MMIO region must be mapped prior to call. This will timeout
958 * when the cable is not plugged in.
959 *
960 * Return:
961 * TRUE (1) when the specified port is online
962 * FALSE (0) when the specified port fails to come online after timeout
963 * -EINVAL when @delay_us is less than 1000
964 */
1786f4a0 965static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
966{
967 u64 status;
968
969 if (delay_us < 1000) {
970 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
971 return -EINVAL;
972 }
973
974 do {
975 msleep(delay_us / 1000);
976 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
977 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
978 nretry--);
979
980 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
981}
982
983/**
984 * wait_port_offline() - waits for the specified host FC port go offline
985 * @fc_regs: Top of MMIO region defined for specified port.
986 * @delay_us: Number of microseconds to delay between reading port status.
987 * @nretry: Number of cycles to retry reading port status.
988 *
989 * The provided MMIO region must be mapped prior to call.
990 *
991 * Return:
992 * TRUE (1) when the specified port is offline
993 * FALSE (0) when the specified port fails to go offline after timeout
994 * -EINVAL when @delay_us is less than 1000
995 */
1786f4a0 996static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
997{
998 u64 status;
999
1000 if (delay_us < 1000) {
1001 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
1002 return -EINVAL;
1003 }
1004
1005 do {
1006 msleep(delay_us / 1000);
1007 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1008 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1009 nretry--);
1010
1011 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1012}
1013
1014/**
1015 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1016 * @afu: AFU associated with the host that owns the specified FC port.
1017 * @port: Port number being configured.
1018 * @fc_regs: Top of MMIO region defined for specified port.
1019 * @wwpn: The world-wide-port-number previously discovered for port.
1020 *
1021 * The provided MMIO region must be mapped prior to call. As part of the
1022 * sequence to configure the WWPN, the port is toggled offline and then back
1023 * online. This toggling action can cause this routine to delay up to a few
1024 * seconds. When configured to use the internal LUN feature of the AFU, a
1025 * failure to come online is overridden.
1026 *
1027 * Return:
1028 * 0 when the WWPN is successfully written and the port comes back online
1029 * -1 when the port fails to go offline or come back up online
1030 */
1786f4a0
MO
1031static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1032 u64 wwpn)
c21e0bbf 1033{
964497b3 1034 int rc = 0;
c21e0bbf
MO
1035
1036 set_port_offline(fc_regs);
1037
1038 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1039 FC_PORT_STATUS_RETRY_CNT)) {
1040 pr_debug("%s: wait on port %d to go offline timed out\n",
1041 __func__, port);
964497b3 1042 rc = -1; /* but continue on to leave the port back online */
c21e0bbf
MO
1043 }
1044
964497b3 1045 if (rc == 0)
c21e0bbf
MO
1046 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1047
964497b3
MO
1048 /* Always return success after programming WWPN */
1049 rc = 0;
1050
c21e0bbf
MO
1051 set_port_online(fc_regs);
1052
1053 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1054 FC_PORT_STATUS_RETRY_CNT)) {
964497b3
MO
1055 pr_err("%s: wait on port %d to go online timed out\n",
1056 __func__, port);
c21e0bbf
MO
1057 }
1058
964497b3 1059 pr_debug("%s: returning rc=%d\n", __func__, rc);
c21e0bbf 1060
964497b3 1061 return rc;
c21e0bbf
MO
1062}
1063
1064/**
1065 * afu_link_reset() - resets the specified host FC port
1066 * @afu: AFU associated with the host that owns the specified FC port.
1067 * @port: Port number being configured.
1068 * @fc_regs: Top of MMIO region defined for specified port.
1069 *
1070 * The provided MMIO region must be mapped prior to call. The sequence to
1071 * reset the port involves toggling it offline and then back online. This
1072 * action can cause this routine to delay up to a few seconds. An effort
1073 * is made to maintain link with the device by switching to host to use
1074 * the alternate port exclusively while the reset takes place.
1075 * failure to come online is overridden.
1076 */
1786f4a0 1077static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
c21e0bbf
MO
1078{
1079 u64 port_sel;
1080
1081 /* first switch the AFU to the other links, if any */
1082 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
4da74db0 1083 port_sel &= ~(1ULL << port);
c21e0bbf
MO
1084 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1085 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1086
1087 set_port_offline(fc_regs);
1088 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1089 FC_PORT_STATUS_RETRY_CNT))
1090 pr_err("%s: wait on port %d to go offline timed out\n",
1091 __func__, port);
1092
1093 set_port_online(fc_regs);
1094 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1095 FC_PORT_STATUS_RETRY_CNT))
1096 pr_err("%s: wait on port %d to go online timed out\n",
1097 __func__, port);
1098
1099 /* switch back to include this port */
4da74db0 1100 port_sel |= (1ULL << port);
c21e0bbf
MO
1101 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1102 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1103
1104 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1105}
1106
1107/*
1108 * Asynchronous interrupt information table
1109 */
1110static const struct asyc_intr_info ainfo[] = {
1111 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1112 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1113 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
e6e6df3f 1114 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
c21e0bbf 1115 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
ef51074a 1116 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
c21e0bbf 1117 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
ef51074a 1118 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
c21e0bbf
MO
1119 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1120 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1121 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
a9be294e 1122 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
c21e0bbf 1123 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
ef51074a 1124 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
c21e0bbf 1125 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
ef51074a 1126 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
c21e0bbf
MO
1127 {0x0, "", 0, 0} /* terminator */
1128};
1129
1130/**
1131 * find_ainfo() - locates and returns asynchronous interrupt information
1132 * @status: Status code set by AFU on error.
1133 *
1134 * Return: The located information or NULL when the status code is invalid.
1135 */
1136static const struct asyc_intr_info *find_ainfo(u64 status)
1137{
1138 const struct asyc_intr_info *info;
1139
1140 for (info = &ainfo[0]; info->status; info++)
1141 if (info->status == status)
1142 return info;
1143
1144 return NULL;
1145}
1146
1147/**
1148 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1149 * @afu: AFU associated with the host.
1150 */
1151static void afu_err_intr_init(struct afu *afu)
1152{
1153 int i;
1154 u64 reg;
1155
1156 /* global async interrupts: AFU clears afu_ctrl on context exit
1157 * if async interrupts were sent to that context. This prevents
1158 * the AFU form sending further async interrupts when
1159 * there is
1160 * nobody to receive them.
1161 */
1162
1163 /* mask all */
1164 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1165 /* set LISN# to send and point to master context */
1166 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1167
1168 if (afu->internal_lun)
1169 reg |= 1; /* Bit 63 indicates local lun */
1170 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1171 /* clear all */
1172 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1173 /* unmask bits that are of interest */
1174 /* note: afu can send an interrupt after this step */
1175 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1176 /* clear again in case a bit came on after previous clear but before */
1177 /* unmask */
1178 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1179
1180 /* Clear/Set internal lun bits */
1181 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1182 reg &= SISL_FC_INTERNAL_MASK;
1183 if (afu->internal_lun)
1184 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1185 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1186
1187 /* now clear FC errors */
1188 for (i = 0; i < NUM_FC_PORTS; i++) {
1189 writeq_be(0xFFFFFFFFU,
1190 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1191 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1192 }
1193
1194 /* sync interrupts for master's IOARRIN write */
1195 /* note that unlike asyncs, there can be no pending sync interrupts */
1196 /* at this time (this is a fresh context and master has not written */
1197 /* IOARRIN yet), so there is nothing to clear. */
1198
1199 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1200 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1201 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1202}
1203
1204/**
1205 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1206 * @irq: Interrupt number.
1207 * @data: Private data provided at interrupt registration, the AFU.
1208 *
1209 * Return: Always return IRQ_HANDLED.
1210 */
1211static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1212{
1213 struct afu *afu = (struct afu *)data;
1214 u64 reg;
1215 u64 reg_unmasked;
1216
1217 reg = readq_be(&afu->host_map->intr_status);
1218 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1219
1220 if (reg_unmasked == 0UL) {
1221 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1222 __func__, (u64)afu, reg);
1223 goto cxlflash_sync_err_irq_exit;
1224 }
1225
1226 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1227 __func__, (u64)afu, reg);
1228
1229 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1230
1231cxlflash_sync_err_irq_exit:
1232 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1233 return IRQ_HANDLED;
1234}
1235
1236/**
1237 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1238 * @irq: Interrupt number.
1239 * @data: Private data provided at interrupt registration, the AFU.
1240 *
1241 * Return: Always return IRQ_HANDLED.
1242 */
1243static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1244{
1245 struct afu *afu = (struct afu *)data;
1246 struct afu_cmd *cmd;
1247 bool toggle = afu->toggle;
1248 u64 entry,
1249 *hrrq_start = afu->hrrq_start,
1250 *hrrq_end = afu->hrrq_end,
1251 *hrrq_curr = afu->hrrq_curr;
1252
1253 /* Process however many RRQ entries that are ready */
1254 while (true) {
1255 entry = *hrrq_curr;
1256
1257 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1258 break;
1259
1260 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1261 cmd_complete(cmd);
1262
1263 /* Advance to next entry or wrap and flip the toggle bit */
1264 if (hrrq_curr < hrrq_end)
1265 hrrq_curr++;
1266 else {
1267 hrrq_curr = hrrq_start;
1268 toggle ^= SISL_RESP_HANDLE_T_BIT;
1269 }
1270 }
1271
1272 afu->hrrq_curr = hrrq_curr;
1273 afu->toggle = toggle;
1274
1275 return IRQ_HANDLED;
1276}
1277
1278/**
1279 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1280 * @irq: Interrupt number.
1281 * @data: Private data provided at interrupt registration, the AFU.
1282 *
1283 * Return: Always return IRQ_HANDLED.
1284 */
1285static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1286{
1287 struct afu *afu = (struct afu *)data;
4392ba49
MO
1288 struct cxlflash_cfg *cfg = afu->parent;
1289 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1290 u64 reg_unmasked;
1291 const struct asyc_intr_info *info;
1786f4a0 1292 struct sisl_global_map __iomem *global = &afu->afu_map->global;
c21e0bbf
MO
1293 u64 reg;
1294 u8 port;
1295 int i;
1296
c21e0bbf
MO
1297 reg = readq_be(&global->regs.aintr_status);
1298 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1299
1300 if (reg_unmasked == 0) {
4392ba49
MO
1301 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1302 __func__, reg);
c21e0bbf
MO
1303 goto out;
1304 }
1305
f15fbf8d 1306 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
c21e0bbf
MO
1307 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1308
f15fbf8d 1309 /* Check each bit that is on */
c21e0bbf
MO
1310 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1311 info = find_ainfo(1ULL << i);
16798d34 1312 if (((reg_unmasked & 0x1) == 0) || !info)
c21e0bbf
MO
1313 continue;
1314
1315 port = info->port;
1316
4392ba49
MO
1317 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1318 __func__, port, info->desc,
c21e0bbf
MO
1319 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1320
1321 /*
f15fbf8d 1322 * Do link reset first, some OTHER errors will set FC_ERROR
c21e0bbf
MO
1323 * again if cleared before or w/o a reset
1324 */
1325 if (info->action & LINK_RESET) {
4392ba49
MO
1326 dev_err(dev, "%s: FC Port %d: resetting link\n",
1327 __func__, port);
c21e0bbf
MO
1328 cfg->lr_state = LINK_RESET_REQUIRED;
1329 cfg->lr_port = port;
b45cdbaf 1330 kref_get(&cfg->afu->mapcount);
c21e0bbf
MO
1331 schedule_work(&cfg->work_q);
1332 }
1333
1334 if (info->action & CLR_FC_ERROR) {
1335 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1336
1337 /*
f15fbf8d 1338 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
c21e0bbf
MO
1339 * should be the same and tracing one is sufficient.
1340 */
1341
4392ba49
MO
1342 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1343 __func__, port, reg);
c21e0bbf
MO
1344
1345 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1346 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1347 }
ef51074a
MO
1348
1349 if (info->action & SCAN_HOST) {
1350 atomic_inc(&cfg->scan_host_needed);
b45cdbaf 1351 kref_get(&cfg->afu->mapcount);
ef51074a
MO
1352 schedule_work(&cfg->work_q);
1353 }
c21e0bbf
MO
1354 }
1355
1356out:
4392ba49 1357 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
c21e0bbf
MO
1358 return IRQ_HANDLED;
1359}
1360
1361/**
1362 * start_context() - starts the master context
1284fb0c 1363 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1364 *
1365 * Return: A success or failure value from CXL services.
1366 */
1367static int start_context(struct cxlflash_cfg *cfg)
1368{
1369 int rc = 0;
1370
1371 rc = cxl_start_context(cfg->mcctx,
1372 cfg->afu->work.work_element_descriptor,
1373 NULL);
1374
1375 pr_debug("%s: returning rc=%d\n", __func__, rc);
1376 return rc;
1377}
1378
1379/**
1380 * read_vpd() - obtains the WWPNs from VPD
1284fb0c 1381 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1382 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1383 *
1284fb0c 1384 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1385 */
1386static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1387{
ca946d4e 1388 struct pci_dev *dev = cfg->dev;
c21e0bbf
MO
1389 int rc = 0;
1390 int ro_start, ro_size, i, j, k;
1391 ssize_t vpd_size;
1392 char vpd_data[CXLFLASH_VPD_LEN];
1393 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1394 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1395
1396 /* Get the VPD data from the device */
ca946d4e 1397 vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data));
c21e0bbf 1398 if (unlikely(vpd_size <= 0)) {
4392ba49 1399 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
c21e0bbf
MO
1400 __func__, vpd_size);
1401 rc = -ENODEV;
1402 goto out;
1403 }
1404
1405 /* Get the read only section offset */
1406 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1407 PCI_VPD_LRDT_RO_DATA);
1408 if (unlikely(ro_start < 0)) {
4392ba49
MO
1409 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1410 __func__);
c21e0bbf
MO
1411 rc = -ENODEV;
1412 goto out;
1413 }
1414
1415 /* Get the read only section size, cap when extends beyond read VPD */
1416 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1417 j = ro_size;
1418 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1419 if (unlikely((i + j) > vpd_size)) {
1420 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1421 __func__, (i + j), vpd_size);
1422 ro_size = vpd_size - i;
1423 }
1424
1425 /*
1426 * Find the offset of the WWPN tag within the read only
1427 * VPD data and validate the found field (partials are
1428 * no good to us). Convert the ASCII data to an integer
1429 * value. Note that we must copy to a temporary buffer
1430 * because the conversion service requires that the ASCII
1431 * string be terminated.
1432 */
1433 for (k = 0; k < NUM_FC_PORTS; k++) {
1434 j = ro_size;
1435 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1436
1437 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1438 if (unlikely(i < 0)) {
4392ba49
MO
1439 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1440 "in VPD\n", __func__, k);
c21e0bbf
MO
1441 rc = -ENODEV;
1442 goto out;
1443 }
1444
1445 j = pci_vpd_info_field_size(&vpd_data[i]);
1446 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1447 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
4392ba49
MO
1448 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1449 "VPD corrupt\n",
c21e0bbf
MO
1450 __func__, k);
1451 rc = -ENODEV;
1452 goto out;
1453 }
1454
1455 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1456 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1457 if (unlikely(rc)) {
4392ba49
MO
1458 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1459 "to integer\n", __func__, k);
c21e0bbf
MO
1460 rc = -ENODEV;
1461 goto out;
1462 }
1463 }
1464
1465out:
1466 pr_debug("%s: returning rc=%d\n", __func__, rc);
1467 return rc;
1468}
1469
1470/**
15305514 1471 * init_pcr() - initialize the provisioning and control registers
1284fb0c 1472 * @cfg: Internal structure associated with the host.
c21e0bbf 1473 *
15305514
MO
1474 * Also sets up fast access to the mapped registers and initializes AFU
1475 * command fields that never change.
c21e0bbf 1476 */
15305514 1477static void init_pcr(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1478{
1479 struct afu *afu = cfg->afu;
1786f4a0 1480 struct sisl_ctrl_map __iomem *ctrl_map;
c21e0bbf
MO
1481 int i;
1482
1483 for (i = 0; i < MAX_CONTEXT; i++) {
1484 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
f15fbf8d
MO
1485 /* Disrupt any clients that could be running */
1486 /* e.g. clients that survived a master restart */
c21e0bbf
MO
1487 writeq_be(0, &ctrl_map->rht_start);
1488 writeq_be(0, &ctrl_map->rht_cnt_id);
1489 writeq_be(0, &ctrl_map->ctx_cap);
1490 }
1491
f15fbf8d 1492 /* Copy frequently used fields into afu */
c21e0bbf 1493 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
c21e0bbf
MO
1494 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1495 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1496
1497 /* Program the Endian Control for the master context */
1498 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1499
f15fbf8d 1500 /* Initialize cmd fields that never change */
c21e0bbf
MO
1501 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1502 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1503 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1504 afu->cmd[i].rcb.rrq = 0x0;
1505 }
1506}
1507
1508/**
1509 * init_global() - initialize AFU global registers
1284fb0c 1510 * @cfg: Internal structure associated with the host.
c21e0bbf 1511 */
15305514 1512static int init_global(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1513{
1514 struct afu *afu = cfg->afu;
4392ba49 1515 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1516 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1517 int i = 0, num_ports = 0;
1518 int rc = 0;
1519 u64 reg;
1520
1521 rc = read_vpd(cfg, &wwpn[0]);
1522 if (rc) {
4392ba49 1523 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
c21e0bbf
MO
1524 goto out;
1525 }
1526
1527 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1528
f15fbf8d 1529 /* Set up RRQ in AFU for master issued cmds */
c21e0bbf
MO
1530 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1531 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1532
1533 /* AFU configuration */
1534 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1535 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1536 /* enable all auto retry options and control endianness */
1537 /* leave others at default: */
1538 /* CTX_CAP write protected, mbox_r does not clear on read and */
1539 /* checker on if dual afu */
1540 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1541
f15fbf8d 1542 /* Global port select: select either port */
c21e0bbf 1543 if (afu->internal_lun) {
f15fbf8d 1544 /* Only use port 0 */
c21e0bbf
MO
1545 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1546 num_ports = NUM_FC_PORTS - 1;
1547 } else {
1548 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1549 num_ports = NUM_FC_PORTS;
1550 }
1551
1552 for (i = 0; i < num_ports; i++) {
f15fbf8d 1553 /* Unmask all errors (but they are still masked at AFU) */
c21e0bbf 1554 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
f15fbf8d 1555 /* Clear CRC error cnt & set a threshold */
c21e0bbf
MO
1556 (void)readq_be(&afu->afu_map->global.
1557 fc_regs[i][FC_CNT_CRCERR / 8]);
1558 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1559 [FC_CRC_THRESH / 8]);
1560
f15fbf8d 1561 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
c21e0bbf
MO
1562 if (wwpn[i] != 0 &&
1563 afu_set_wwpn(afu, i,
1564 &afu->afu_map->global.fc_regs[i][0],
1565 wwpn[i])) {
4392ba49 1566 dev_err(dev, "%s: failed to set WWPN on port %d\n",
c21e0bbf
MO
1567 __func__, i);
1568 rc = -EIO;
1569 goto out;
1570 }
1571 /* Programming WWPN back to back causes additional
1572 * offline/online transitions and a PLOGI
1573 */
1574 msleep(100);
c21e0bbf
MO
1575 }
1576
f15fbf8d
MO
1577 /* Set up master's own CTX_CAP to allow real mode, host translation */
1578 /* tables, afu cmds and read/write GSCSI cmds. */
c21e0bbf
MO
1579 /* First, unlock ctx_cap write by reading mbox */
1580 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1581 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1582 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1583 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1584 &afu->ctrl_map->ctx_cap);
f15fbf8d 1585 /* Initialize heartbeat */
c21e0bbf
MO
1586 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1587
1588out:
1589 return rc;
1590}
1591
1592/**
1593 * start_afu() - initializes and starts the AFU
1284fb0c 1594 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1595 */
1596static int start_afu(struct cxlflash_cfg *cfg)
1597{
1598 struct afu *afu = cfg->afu;
1599 struct afu_cmd *cmd;
1600
1601 int i = 0;
1602 int rc = 0;
1603
1604 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1605 cmd = &afu->cmd[i];
1606
1607 init_completion(&cmd->cevent);
1608 spin_lock_init(&cmd->slock);
1609 cmd->parent = afu;
1610 }
1611
1612 init_pcr(cfg);
1613
af10483e
MO
1614 /* After an AFU reset, RRQ entries are stale, clear them */
1615 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1616
f15fbf8d 1617 /* Initialize RRQ pointers */
c21e0bbf
MO
1618 afu->hrrq_start = &afu->rrq_entry[0];
1619 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1620 afu->hrrq_curr = afu->hrrq_start;
1621 afu->toggle = 1;
1622
1623 rc = init_global(cfg);
1624
1625 pr_debug("%s: returning rc=%d\n", __func__, rc);
1626 return rc;
1627}
1628
1629/**
9526f360 1630 * init_intr() - setup interrupt handlers for the master context
1284fb0c 1631 * @cfg: Internal structure associated with the host.
c21e0bbf 1632 *
1284fb0c 1633 * Return: 0 on success, -errno on failure
c21e0bbf 1634 */
9526f360
MK
1635static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1636 struct cxl_context *ctx)
c21e0bbf 1637{
c21e0bbf 1638 struct afu *afu = cfg->afu;
9526f360 1639 struct device *dev = &cfg->dev->dev;
c21e0bbf 1640 int rc = 0;
9526f360 1641 enum undo_level level = UNDO_NOOP;
c21e0bbf
MO
1642
1643 rc = cxl_allocate_afu_irqs(ctx, 3);
1644 if (unlikely(rc)) {
1645 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1646 __func__, rc);
9526f360 1647 level = UNDO_NOOP;
c21e0bbf
MO
1648 goto out;
1649 }
1650
1651 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1652 "SISL_MSI_SYNC_ERROR");
1653 if (unlikely(rc <= 0)) {
1654 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1655 __func__);
1656 level = FREE_IRQ;
1657 goto out;
1658 }
1659
1660 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1661 "SISL_MSI_RRQ_UPDATED");
1662 if (unlikely(rc <= 0)) {
1663 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1664 __func__);
1665 level = UNMAP_ONE;
1666 goto out;
1667 }
1668
1669 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1670 "SISL_MSI_ASYNC_ERROR");
1671 if (unlikely(rc <= 0)) {
1672 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1673 __func__);
1674 level = UNMAP_TWO;
1675 goto out;
1676 }
9526f360
MK
1677out:
1678 return level;
1679}
c21e0bbf 1680
9526f360
MK
1681/**
1682 * init_mc() - create and register as the master context
1683 * @cfg: Internal structure associated with the host.
1684 *
1685 * Return: 0 on success, -errno on failure
1686 */
1687static int init_mc(struct cxlflash_cfg *cfg)
1688{
1689 struct cxl_context *ctx;
1690 struct device *dev = &cfg->dev->dev;
1691 int rc = 0;
1692 enum undo_level level;
1693
1694 ctx = cxl_get_context(cfg->dev);
1695 if (unlikely(!ctx)) {
1696 rc = -ENOMEM;
1697 goto ret;
1698 }
1699 cfg->mcctx = ctx;
1700
1701 /* Set it up as a master with the CXL */
1702 cxl_set_master(ctx);
1703
1704 /* During initialization reset the AFU to start from a clean slate */
1705 rc = cxl_afu_reset(cfg->mcctx);
1706 if (unlikely(rc)) {
1707 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1708 __func__, rc);
1709 goto ret;
1710 }
1711
1712 level = init_intr(cfg, ctx);
1713 if (unlikely(level)) {
1714 dev_err(dev, "%s: setting up interrupts failed rc=%d\n",
1715 __func__, rc);
1716 goto out;
1717 }
c21e0bbf
MO
1718
1719 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1720 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1721 * element (pe) that is embedded in the context (ctx)
1722 */
1723 rc = start_context(cfg);
1724 if (unlikely(rc)) {
1725 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1726 level = UNMAP_THREE;
1727 goto out;
1728 }
1729ret:
1730 pr_debug("%s: returning rc=%d\n", __func__, rc);
1731 return rc;
1732out:
9526f360 1733 term_intr(cfg, level);
c21e0bbf
MO
1734 goto ret;
1735}
1736
1737/**
1738 * init_afu() - setup as master context and start AFU
1284fb0c 1739 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1740 *
1741 * This routine is a higher level of control for configuring the
1742 * AFU on probe and reset paths.
1743 *
1284fb0c 1744 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1745 */
1746static int init_afu(struct cxlflash_cfg *cfg)
1747{
1748 u64 reg;
1749 int rc = 0;
1750 struct afu *afu = cfg->afu;
1751 struct device *dev = &cfg->dev->dev;
1752
5cdac81a
MO
1753 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1754
c21e0bbf
MO
1755 rc = init_mc(cfg);
1756 if (rc) {
1757 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1758 __func__, rc);
ee3491ba 1759 goto out;
c21e0bbf
MO
1760 }
1761
f15fbf8d 1762 /* Map the entire MMIO space of the AFU */
c21e0bbf
MO
1763 afu->afu_map = cxl_psa_map(cfg->mcctx);
1764 if (!afu->afu_map) {
c21e0bbf 1765 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
ee3491ba 1766 rc = -ENOMEM;
c21e0bbf
MO
1767 goto err1;
1768 }
b45cdbaf 1769 kref_init(&afu->mapcount);
c21e0bbf 1770
e5ce067b
MO
1771 /* No byte reverse on reading afu_version or string will be backwards */
1772 reg = readq(&afu->afu_map->global.regs.afu_version);
1773 memcpy(afu->version, &reg, sizeof(reg));
c21e0bbf
MO
1774 afu->interface_version =
1775 readq_be(&afu->afu_map->global.regs.interface_version);
e5ce067b
MO
1776 if ((afu->interface_version + 1) == 0) {
1777 pr_err("Back level AFU, please upgrade. AFU version %s "
1778 "interface version 0x%llx\n", afu->version,
1779 afu->interface_version);
1780 rc = -EINVAL;
ee3491ba
MO
1781 goto err2;
1782 }
1783
1784 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1785 afu->version, afu->interface_version);
c21e0bbf
MO
1786
1787 rc = start_afu(cfg);
1788 if (rc) {
1789 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1790 __func__, rc);
ee3491ba 1791 goto err2;
c21e0bbf
MO
1792 }
1793
1794 afu_err_intr_init(cfg->afu);
1795 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1796
2cb79266
MO
1797 /* Restore the LUN mappings */
1798 cxlflash_restore_luntable(cfg);
ee3491ba 1799out:
c21e0bbf
MO
1800 pr_debug("%s: returning rc=%d\n", __func__, rc);
1801 return rc;
ee3491ba
MO
1802
1803err2:
b45cdbaf 1804 kref_put(&afu->mapcount, afu_unmap);
ee3491ba 1805err1:
9526f360
MK
1806 term_intr(cfg, UNMAP_THREE);
1807 term_mc(cfg);
ee3491ba 1808 goto out;
c21e0bbf
MO
1809}
1810
c21e0bbf
MO
1811/**
1812 * cxlflash_afu_sync() - builds and sends an AFU sync command
1813 * @afu: AFU associated with the host.
1814 * @ctx_hndl_u: Identifies context requesting sync.
1815 * @res_hndl_u: Identifies resource requesting sync.
1816 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1817 *
1818 * The AFU can only take 1 sync command at a time. This routine enforces this
f15fbf8d 1819 * limitation by using a mutex to provide exclusive access to the AFU during
c21e0bbf
MO
1820 * the sync. This design point requires calling threads to not be on interrupt
1821 * context due to the possibility of sleeping during concurrent sync operations.
1822 *
5cdac81a
MO
1823 * AFU sync operations are only necessary and allowed when the device is
1824 * operating normally. When not operating normally, sync requests can occur as
1825 * part of cleaning up resources associated with an adapter prior to removal.
1826 * In this scenario, these requests are simply ignored (safe due to the AFU
1827 * going away).
1828 *
c21e0bbf
MO
1829 * Return:
1830 * 0 on success
1831 * -1 on failure
1832 */
1833int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1834 res_hndl_t res_hndl_u, u8 mode)
1835{
5cdac81a 1836 struct cxlflash_cfg *cfg = afu->parent;
4392ba49 1837 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1838 struct afu_cmd *cmd = NULL;
1839 int rc = 0;
1840 int retry_cnt = 0;
1841 static DEFINE_MUTEX(sync_active);
1842
5cdac81a
MO
1843 if (cfg->state != STATE_NORMAL) {
1844 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1845 return 0;
1846 }
1847
c21e0bbf
MO
1848 mutex_lock(&sync_active);
1849retry:
15305514 1850 cmd = cmd_checkout(afu);
c21e0bbf
MO
1851 if (unlikely(!cmd)) {
1852 retry_cnt++;
1853 udelay(1000 * retry_cnt);
1854 if (retry_cnt < MC_RETRY_CNT)
1855 goto retry;
4392ba49 1856 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
1857 rc = -1;
1858 goto out;
1859 }
1860
1861 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1862
1863 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1864
1865 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1866 cmd->rcb.port_sel = 0x0; /* NA */
1867 cmd->rcb.lun_id = 0x0; /* NA */
1868 cmd->rcb.data_len = 0x0;
1869 cmd->rcb.data_ea = 0x0;
1870 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1871
1872 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1873 cmd->rcb.cdb[1] = mode;
1874
1875 /* The cdb is aligned, no unaligned accessors required */
1786f4a0
MO
1876 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1877 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
c21e0bbf 1878
15305514 1879 rc = send_cmd(afu, cmd);
c21e0bbf
MO
1880 if (unlikely(rc))
1881 goto out;
1882
15305514 1883 wait_resp(afu, cmd);
c21e0bbf 1884
f15fbf8d 1885 /* Set on timeout */
c21e0bbf
MO
1886 if (unlikely((cmd->sa.ioasc != 0) ||
1887 (cmd->sa.host_use_b[0] & B_ERROR)))
1888 rc = -1;
1889out:
1890 mutex_unlock(&sync_active);
1891 if (cmd)
15305514 1892 cmd_checkin(cmd);
c21e0bbf
MO
1893 pr_debug("%s: returning rc=%d\n", __func__, rc);
1894 return rc;
1895}
1896
1897/**
15305514
MO
1898 * afu_reset() - resets the AFU
1899 * @cfg: Internal structure associated with the host.
c21e0bbf 1900 *
1284fb0c 1901 * Return: 0 on success, -errno on failure
c21e0bbf 1902 */
15305514 1903static int afu_reset(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1904{
1905 int rc = 0;
1906 /* Stop the context before the reset. Since the context is
1907 * no longer available restart it after the reset is complete
1908 */
1909
1910 term_afu(cfg);
1911
1912 rc = init_afu(cfg);
1913
1914 pr_debug("%s: returning rc=%d\n", __func__, rc);
1915 return rc;
1916}
1917
15305514
MO
1918/**
1919 * cxlflash_eh_device_reset_handler() - reset a single LUN
1920 * @scp: SCSI command to send.
1921 *
1922 * Return:
1923 * SUCCESS as defined in scsi/scsi.h
1924 * FAILED as defined in scsi/scsi.h
1925 */
1926static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1927{
1928 int rc = SUCCESS;
1929 struct Scsi_Host *host = scp->device->host;
1930 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1931 struct afu *afu = cfg->afu;
1932 int rcr = 0;
1933
1934 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1935 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1936 host->host_no, scp->device->channel,
1937 scp->device->id, scp->device->lun,
1938 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1939 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1940 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1941 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1942
ed486daa 1943retry:
15305514
MO
1944 switch (cfg->state) {
1945 case STATE_NORMAL:
1946 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1947 if (unlikely(rcr))
1948 rc = FAILED;
1949 break;
1950 case STATE_RESET:
1951 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
ed486daa 1952 goto retry;
15305514
MO
1953 default:
1954 rc = FAILED;
1955 break;
1956 }
1957
1958 pr_debug("%s: returning rc=%d\n", __func__, rc);
1959 return rc;
1960}
1961
1962/**
1963 * cxlflash_eh_host_reset_handler() - reset the host adapter
1964 * @scp: SCSI command from stack identifying host.
1965 *
1966 * Return:
1967 * SUCCESS as defined in scsi/scsi.h
1968 * FAILED as defined in scsi/scsi.h
1969 */
1970static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1971{
1972 int rc = SUCCESS;
1973 int rcr = 0;
1974 struct Scsi_Host *host = scp->device->host;
1975 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1976
1977 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1978 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1979 host->host_no, scp->device->channel,
1980 scp->device->id, scp->device->lun,
1981 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1982 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1983 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1984 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1985
1986 switch (cfg->state) {
1987 case STATE_NORMAL:
1988 cfg->state = STATE_RESET;
15305514
MO
1989 cxlflash_mark_contexts_error(cfg);
1990 rcr = afu_reset(cfg);
1991 if (rcr) {
1992 rc = FAILED;
1993 cfg->state = STATE_FAILTERM;
1994 } else
1995 cfg->state = STATE_NORMAL;
1996 wake_up_all(&cfg->reset_waitq);
15305514
MO
1997 break;
1998 case STATE_RESET:
1999 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2000 if (cfg->state == STATE_NORMAL)
2001 break;
2002 /* fall through */
2003 default:
2004 rc = FAILED;
2005 break;
2006 }
2007
2008 pr_debug("%s: returning rc=%d\n", __func__, rc);
2009 return rc;
2010}
2011
2012/**
2013 * cxlflash_change_queue_depth() - change the queue depth for the device
2014 * @sdev: SCSI device destined for queue depth change.
2015 * @qdepth: Requested queue depth value to set.
2016 *
2017 * The requested queue depth is capped to the maximum supported value.
2018 *
2019 * Return: The actual queue depth set.
2020 */
2021static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2022{
2023
2024 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2025 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2026
2027 scsi_change_queue_depth(sdev, qdepth);
2028 return sdev->queue_depth;
2029}
2030
2031/**
2032 * cxlflash_show_port_status() - queries and presents the current port status
e0f01a21
MO
2033 * @port: Desired port for status reporting.
2034 * @afu: AFU owning the specified port.
15305514
MO
2035 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2036 *
2037 * Return: The size of the ASCII string returned in @buf.
2038 */
e0f01a21 2039static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
15305514 2040{
15305514 2041 char *disp_status;
15305514 2042 u64 status;
e0f01a21 2043 __be64 __iomem *fc_regs;
15305514 2044
e0f01a21 2045 if (port >= NUM_FC_PORTS)
15305514
MO
2046 return 0;
2047
2048 fc_regs = &afu->afu_map->global.fc_regs[port][0];
e0f01a21
MO
2049 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2050 status &= FC_MTIP_STATUS_MASK;
15305514
MO
2051
2052 if (status == FC_MTIP_STATUS_ONLINE)
2053 disp_status = "online";
2054 else if (status == FC_MTIP_STATUS_OFFLINE)
2055 disp_status = "offline";
2056 else
2057 disp_status = "unknown";
2058
e0f01a21
MO
2059 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2060}
2061
2062/**
2063 * port0_show() - queries and presents the current status of port 0
2064 * @dev: Generic device associated with the host owning the port.
2065 * @attr: Device attribute representing the port.
2066 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2067 *
2068 * Return: The size of the ASCII string returned in @buf.
2069 */
2070static ssize_t port0_show(struct device *dev,
2071 struct device_attribute *attr,
2072 char *buf)
2073{
2074 struct Scsi_Host *shost = class_to_shost(dev);
2075 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2076 struct afu *afu = cfg->afu;
2077
2078 return cxlflash_show_port_status(0, afu, buf);
15305514
MO
2079}
2080
2081/**
e0f01a21
MO
2082 * port1_show() - queries and presents the current status of port 1
2083 * @dev: Generic device associated with the host owning the port.
2084 * @attr: Device attribute representing the port.
2085 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2086 *
2087 * Return: The size of the ASCII string returned in @buf.
2088 */
2089static ssize_t port1_show(struct device *dev,
2090 struct device_attribute *attr,
2091 char *buf)
2092{
2093 struct Scsi_Host *shost = class_to_shost(dev);
2094 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2095 struct afu *afu = cfg->afu;
2096
2097 return cxlflash_show_port_status(1, afu, buf);
2098}
2099
2100/**
2101 * lun_mode_show() - presents the current LUN mode of the host
15305514 2102 * @dev: Generic device associated with the host.
e0f01a21 2103 * @attr: Device attribute representing the LUN mode.
15305514
MO
2104 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2105 *
2106 * Return: The size of the ASCII string returned in @buf.
2107 */
e0f01a21
MO
2108static ssize_t lun_mode_show(struct device *dev,
2109 struct device_attribute *attr, char *buf)
15305514
MO
2110{
2111 struct Scsi_Host *shost = class_to_shost(dev);
2112 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2113 struct afu *afu = cfg->afu;
2114
e0f01a21 2115 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
15305514
MO
2116}
2117
2118/**
e0f01a21 2119 * lun_mode_store() - sets the LUN mode of the host
15305514 2120 * @dev: Generic device associated with the host.
e0f01a21 2121 * @attr: Device attribute representing the LUN mode.
15305514
MO
2122 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2123 * @count: Length of data resizing in @buf.
2124 *
2125 * The CXL Flash AFU supports a dummy LUN mode where the external
2126 * links and storage are not required. Space on the FPGA is used
2127 * to create 1 or 2 small LUNs which are presented to the system
2128 * as if they were a normal storage device. This feature is useful
2129 * during development and also provides manufacturing with a way
2130 * to test the AFU without an actual device.
2131 *
2132 * 0 = external LUN[s] (default)
2133 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2134 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2135 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2136 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2137 *
2138 * Return: The size of the ASCII string returned in @buf.
2139 */
e0f01a21
MO
2140static ssize_t lun_mode_store(struct device *dev,
2141 struct device_attribute *attr,
2142 const char *buf, size_t count)
15305514
MO
2143{
2144 struct Scsi_Host *shost = class_to_shost(dev);
2145 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2146 struct afu *afu = cfg->afu;
2147 int rc;
2148 u32 lun_mode;
2149
2150 rc = kstrtouint(buf, 10, &lun_mode);
2151 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2152 afu->internal_lun = lun_mode;
603ecce9
MK
2153
2154 /*
2155 * When configured for internal LUN, there is only one channel,
2156 * channel number 0, else there will be 2 (default).
2157 */
2158 if (afu->internal_lun)
2159 shost->max_channel = 0;
2160 else
2161 shost->max_channel = NUM_FC_PORTS - 1;
2162
15305514
MO
2163 afu_reset(cfg);
2164 scsi_scan_host(cfg->host);
2165 }
2166
2167 return count;
2168}
2169
2170/**
e0f01a21 2171 * ioctl_version_show() - presents the current ioctl version of the host
15305514
MO
2172 * @dev: Generic device associated with the host.
2173 * @attr: Device attribute representing the ioctl version.
2174 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2175 *
2176 * Return: The size of the ASCII string returned in @buf.
2177 */
e0f01a21
MO
2178static ssize_t ioctl_version_show(struct device *dev,
2179 struct device_attribute *attr, char *buf)
15305514
MO
2180{
2181 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2182}
2183
2184/**
e0f01a21
MO
2185 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2186 * @port: Desired port for status reporting.
2187 * @afu: AFU owning the specified port.
2188 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2189 *
2190 * Return: The size of the ASCII string returned in @buf.
2191 */
2192static ssize_t cxlflash_show_port_lun_table(u32 port,
2193 struct afu *afu,
2194 char *buf)
2195{
2196 int i;
2197 ssize_t bytes = 0;
2198 __be64 __iomem *fc_port;
2199
2200 if (port >= NUM_FC_PORTS)
2201 return 0;
2202
2203 fc_port = &afu->afu_map->global.fc_port[port][0];
2204
2205 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2206 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2207 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2208 return bytes;
2209}
2210
2211/**
2212 * port0_lun_table_show() - presents the current LUN table of port 0
2213 * @dev: Generic device associated with the host owning the port.
2214 * @attr: Device attribute representing the port.
2215 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2216 *
2217 * Return: The size of the ASCII string returned in @buf.
2218 */
2219static ssize_t port0_lun_table_show(struct device *dev,
2220 struct device_attribute *attr,
2221 char *buf)
2222{
2223 struct Scsi_Host *shost = class_to_shost(dev);
2224 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2225 struct afu *afu = cfg->afu;
2226
2227 return cxlflash_show_port_lun_table(0, afu, buf);
2228}
2229
2230/**
2231 * port1_lun_table_show() - presents the current LUN table of port 1
2232 * @dev: Generic device associated with the host owning the port.
2233 * @attr: Device attribute representing the port.
2234 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2235 *
2236 * Return: The size of the ASCII string returned in @buf.
2237 */
2238static ssize_t port1_lun_table_show(struct device *dev,
2239 struct device_attribute *attr,
2240 char *buf)
2241{
2242 struct Scsi_Host *shost = class_to_shost(dev);
2243 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2244 struct afu *afu = cfg->afu;
2245
2246 return cxlflash_show_port_lun_table(1, afu, buf);
2247}
2248
2249/**
2250 * mode_show() - presents the current mode of the device
15305514
MO
2251 * @dev: Generic device associated with the device.
2252 * @attr: Device attribute representing the device mode.
2253 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2254 *
2255 * Return: The size of the ASCII string returned in @buf.
2256 */
e0f01a21
MO
2257static ssize_t mode_show(struct device *dev,
2258 struct device_attribute *attr, char *buf)
15305514
MO
2259{
2260 struct scsi_device *sdev = to_scsi_device(dev);
2261
e0f01a21
MO
2262 return scnprintf(buf, PAGE_SIZE, "%s\n",
2263 sdev->hostdata ? "superpipe" : "legacy");
15305514
MO
2264}
2265
2266/*
2267 * Host attributes
2268 */
e0f01a21
MO
2269static DEVICE_ATTR_RO(port0);
2270static DEVICE_ATTR_RO(port1);
2271static DEVICE_ATTR_RW(lun_mode);
2272static DEVICE_ATTR_RO(ioctl_version);
2273static DEVICE_ATTR_RO(port0_lun_table);
2274static DEVICE_ATTR_RO(port1_lun_table);
15305514
MO
2275
2276static struct device_attribute *cxlflash_host_attrs[] = {
2277 &dev_attr_port0,
2278 &dev_attr_port1,
2279 &dev_attr_lun_mode,
2280 &dev_attr_ioctl_version,
e0f01a21
MO
2281 &dev_attr_port0_lun_table,
2282 &dev_attr_port1_lun_table,
15305514
MO
2283 NULL
2284};
2285
2286/*
2287 * Device attributes
2288 */
e0f01a21 2289static DEVICE_ATTR_RO(mode);
15305514
MO
2290
2291static struct device_attribute *cxlflash_dev_attrs[] = {
2292 &dev_attr_mode,
2293 NULL
2294};
2295
2296/*
2297 * Host template
2298 */
2299static struct scsi_host_template driver_template = {
2300 .module = THIS_MODULE,
2301 .name = CXLFLASH_ADAPTER_NAME,
2302 .info = cxlflash_driver_info,
2303 .ioctl = cxlflash_ioctl,
2304 .proc_name = CXLFLASH_NAME,
2305 .queuecommand = cxlflash_queuecommand,
2306 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2307 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2308 .change_queue_depth = cxlflash_change_queue_depth,
83430833 2309 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
15305514
MO
2310 .can_queue = CXLFLASH_MAX_CMDS,
2311 .this_id = -1,
f15fbf8d 2312 .sg_tablesize = SG_NONE, /* No scatter gather support */
15305514
MO
2313 .max_sectors = CXLFLASH_MAX_SECTORS,
2314 .use_clustering = ENABLE_CLUSTERING,
2315 .shost_attrs = cxlflash_host_attrs,
2316 .sdev_attrs = cxlflash_dev_attrs,
2317};
2318
2319/*
2320 * Device dependent values
2321 */
2322static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
a2746fb1 2323static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS };
15305514
MO
2324
2325/*
2326 * PCI device binding table
2327 */
2328static struct pci_device_id cxlflash_pci_table[] = {
2329 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2330 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
a2746fb1
MK
2331 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2332 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
15305514
MO
2333 {}
2334};
2335
2336MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2337
c21e0bbf
MO
2338/**
2339 * cxlflash_worker_thread() - work thread handler for the AFU
2340 * @work: Work structure contained within cxlflash associated with host.
2341 *
2342 * Handles the following events:
2343 * - Link reset which cannot be performed on interrupt context due to
2344 * blocking up to a few seconds
2345 * - Read AFU command room
ef51074a 2346 * - Rescan the host
c21e0bbf
MO
2347 */
2348static void cxlflash_worker_thread(struct work_struct *work)
2349{
5cdac81a
MO
2350 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2351 work_q);
c21e0bbf 2352 struct afu *afu = cfg->afu;
4392ba49 2353 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
2354 int port;
2355 ulong lock_flags;
2356
5cdac81a
MO
2357 /* Avoid MMIO if the device has failed */
2358
2359 if (cfg->state != STATE_NORMAL)
2360 return;
2361
c21e0bbf
MO
2362 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2363
2364 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2365 port = cfg->lr_port;
2366 if (port < 0)
4392ba49
MO
2367 dev_err(dev, "%s: invalid port index %d\n",
2368 __func__, port);
c21e0bbf
MO
2369 else {
2370 spin_unlock_irqrestore(cfg->host->host_lock,
2371 lock_flags);
2372
2373 /* The reset can block... */
2374 afu_link_reset(afu, port,
f15fbf8d 2375 &afu->afu_map->global.fc_regs[port][0]);
c21e0bbf
MO
2376 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2377 }
2378
2379 cfg->lr_state = LINK_RESET_COMPLETE;
2380 }
2381
2382 if (afu->read_room) {
2383 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2384 afu->read_room = false;
2385 }
2386
2387 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
ef51074a
MO
2388
2389 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2390 scsi_scan_host(cfg->host);
b45cdbaf 2391 kref_put(&afu->mapcount, afu_unmap);
c21e0bbf
MO
2392}
2393
2394/**
2395 * cxlflash_probe() - PCI entry point to add host
2396 * @pdev: PCI device associated with the host.
2397 * @dev_id: PCI device id associated with device.
2398 *
1284fb0c 2399 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2400 */
2401static int cxlflash_probe(struct pci_dev *pdev,
2402 const struct pci_device_id *dev_id)
2403{
2404 struct Scsi_Host *host;
2405 struct cxlflash_cfg *cfg = NULL;
c21e0bbf
MO
2406 struct dev_dependent_vals *ddv;
2407 int rc = 0;
2408
2409 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2410 __func__, pdev->irq);
2411
2412 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2413 driver_template.max_sectors = ddv->max_sectors;
2414
2415 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2416 if (!host) {
2417 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2418 __func__);
2419 rc = -ENOMEM;
2420 goto out;
2421 }
2422
2423 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2424 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2425 host->max_channel = NUM_FC_PORTS - 1;
2426 host->unique_id = host->host_no;
2427 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2428
2429 cfg = (struct cxlflash_cfg *)host->hostdata;
2430 cfg->host = host;
2431 rc = alloc_mem(cfg);
2432 if (rc) {
fa3f2c6e 2433 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
c21e0bbf
MO
2434 __func__);
2435 rc = -ENOMEM;
8b5b1e87 2436 scsi_host_put(cfg->host);
c21e0bbf
MO
2437 goto out;
2438 }
2439
2440 cfg->init_state = INIT_STATE_NONE;
2441 cfg->dev = pdev;
17ead26f 2442 cfg->cxl_fops = cxlflash_cxl_fops;
2cb79266
MO
2443
2444 /*
2445 * The promoted LUNs move to the top of the LUN table. The rest stay
2446 * on the bottom half. The bottom half grows from the end
2447 * (index = 255), whereas the top half grows from the beginning
2448 * (index = 0).
2449 */
2450 cfg->promote_lun_index = 0;
2451 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2452 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2453
c21e0bbf 2454 cfg->dev_id = (struct pci_device_id *)dev_id;
c21e0bbf
MO
2455
2456 init_waitqueue_head(&cfg->tmf_waitq);
439e85c1 2457 init_waitqueue_head(&cfg->reset_waitq);
c21e0bbf
MO
2458
2459 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2460 cfg->lr_state = LINK_RESET_INVALID;
2461 cfg->lr_port = -1;
0d73122c 2462 spin_lock_init(&cfg->tmf_slock);
65be2c79
MO
2463 mutex_init(&cfg->ctx_tbl_list_mutex);
2464 mutex_init(&cfg->ctx_recovery_mutex);
0a27ae51 2465 init_rwsem(&cfg->ioctl_rwsem);
65be2c79
MO
2466 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2467 INIT_LIST_HEAD(&cfg->lluns);
c21e0bbf
MO
2468
2469 pci_set_drvdata(pdev, cfg);
2470
c21e0bbf
MO
2471 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2472
2473 rc = init_pci(cfg);
2474 if (rc) {
2475 dev_err(&pdev->dev, "%s: call to init_pci "
2476 "failed rc=%d!\n", __func__, rc);
2477 goto out_remove;
2478 }
2479 cfg->init_state = INIT_STATE_PCI;
2480
2481 rc = init_afu(cfg);
2482 if (rc) {
2483 dev_err(&pdev->dev, "%s: call to init_afu "
2484 "failed rc=%d!\n", __func__, rc);
2485 goto out_remove;
2486 }
2487 cfg->init_state = INIT_STATE_AFU;
2488
c21e0bbf
MO
2489 rc = init_scsi(cfg);
2490 if (rc) {
2491 dev_err(&pdev->dev, "%s: call to init_scsi "
2492 "failed rc=%d!\n", __func__, rc);
2493 goto out_remove;
2494 }
2495 cfg->init_state = INIT_STATE_SCSI;
2496
2497out:
2498 pr_debug("%s: returning rc=%d\n", __func__, rc);
2499 return rc;
2500
2501out_remove:
2502 cxlflash_remove(pdev);
2503 goto out;
2504}
2505
0a27ae51
MO
2506/**
2507 * drain_ioctls() - wait until all currently executing ioctls have completed
2508 * @cfg: Internal structure associated with the host.
2509 *
2510 * Obtain write access to read/write semaphore that wraps ioctl
2511 * handling to 'drain' ioctls currently executing.
2512 */
2513static void drain_ioctls(struct cxlflash_cfg *cfg)
2514{
2515 down_write(&cfg->ioctl_rwsem);
2516 up_write(&cfg->ioctl_rwsem);
2517}
2518
5cdac81a
MO
2519/**
2520 * cxlflash_pci_error_detected() - called when a PCI error is detected
2521 * @pdev: PCI device struct.
2522 * @state: PCI channel state.
2523 *
2524 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2525 */
2526static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2527 pci_channel_state_t state)
2528{
65be2c79 2529 int rc = 0;
5cdac81a
MO
2530 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2531 struct device *dev = &cfg->dev->dev;
2532
2533 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2534
2535 switch (state) {
2536 case pci_channel_io_frozen:
439e85c1 2537 cfg->state = STATE_RESET;
5cdac81a 2538 scsi_block_requests(cfg->host);
0a27ae51 2539 drain_ioctls(cfg);
65be2c79
MO
2540 rc = cxlflash_mark_contexts_error(cfg);
2541 if (unlikely(rc))
2542 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2543 __func__, rc);
9526f360 2544 term_afu(cfg);
5cdac81a
MO
2545 return PCI_ERS_RESULT_NEED_RESET;
2546 case pci_channel_io_perm_failure:
2547 cfg->state = STATE_FAILTERM;
439e85c1 2548 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2549 scsi_unblock_requests(cfg->host);
2550 return PCI_ERS_RESULT_DISCONNECT;
2551 default:
2552 break;
2553 }
2554 return PCI_ERS_RESULT_NEED_RESET;
2555}
2556
2557/**
2558 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2559 * @pdev: PCI device struct.
2560 *
2561 * This routine is called by the pci error recovery code after the PCI
2562 * slot has been reset, just before we should resume normal operations.
2563 *
2564 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2565 */
2566static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2567{
2568 int rc = 0;
2569 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2570 struct device *dev = &cfg->dev->dev;
2571
2572 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2573
2574 rc = init_afu(cfg);
2575 if (unlikely(rc)) {
2576 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2577 return PCI_ERS_RESULT_DISCONNECT;
2578 }
2579
2580 return PCI_ERS_RESULT_RECOVERED;
2581}
2582
2583/**
2584 * cxlflash_pci_resume() - called when normal operation can resume
2585 * @pdev: PCI device struct
2586 */
2587static void cxlflash_pci_resume(struct pci_dev *pdev)
2588{
2589 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2590 struct device *dev = &cfg->dev->dev;
2591
2592 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2593
2594 cfg->state = STATE_NORMAL;
439e85c1 2595 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2596 scsi_unblock_requests(cfg->host);
2597}
2598
2599static const struct pci_error_handlers cxlflash_err_handler = {
2600 .error_detected = cxlflash_pci_error_detected,
2601 .slot_reset = cxlflash_pci_slot_reset,
2602 .resume = cxlflash_pci_resume,
2603};
2604
c21e0bbf
MO
2605/*
2606 * PCI device structure
2607 */
2608static struct pci_driver cxlflash_driver = {
2609 .name = CXLFLASH_NAME,
2610 .id_table = cxlflash_pci_table,
2611 .probe = cxlflash_probe,
2612 .remove = cxlflash_remove,
5cdac81a 2613 .err_handler = &cxlflash_err_handler,
c21e0bbf
MO
2614};
2615
2616/**
2617 * init_cxlflash() - module entry point
2618 *
1284fb0c 2619 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2620 */
2621static int __init init_cxlflash(void)
2622{
85599218 2623 pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
c21e0bbf 2624
65be2c79
MO
2625 cxlflash_list_init();
2626
c21e0bbf
MO
2627 return pci_register_driver(&cxlflash_driver);
2628}
2629
2630/**
2631 * exit_cxlflash() - module exit point
2632 */
2633static void __exit exit_cxlflash(void)
2634{
65be2c79
MO
2635 cxlflash_term_global_luns();
2636 cxlflash_free_errpage();
2637
c21e0bbf
MO
2638 pci_unregister_driver(&cxlflash_driver);
2639}
2640
2641module_init(init_cxlflash);
2642module_exit(exit_cxlflash);