Merge branch 'bkl/procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[linux-2.6-block.git] / drivers / net / wimax / i2400m / tx.c
CommitLineData
aa5a7aca
IPG
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic (non-bus specific) TX handling
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 *
39 * Intel Corporation <linux-wimax@intel.com>
40 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
41 * - Rewritten to use a single FIFO to lower the memory allocation
42 * pressure and optimize cache hits when copying to the queue, as
43 * well as splitting out bus-specific code.
44 *
45 *
46 * Implements data transmission to the device; this is done through a
47 * software FIFO, as data/control frames can be coalesced (while the
48 * device is reading the previous tx transaction, others accumulate).
49 *
50 * A FIFO is used because at the end it is resource-cheaper that trying
51 * to implement scatter/gather over USB. As well, most traffic is going
52 * to be download (vs upload).
53 *
54 * The format for sending/receiving data to/from the i2400m is
55 * described in detail in rx.c:PROTOCOL FORMAT. In here we implement
56 * the transmission of that. This is split between a bus-independent
57 * part that just prepares everything and a bus-specific part that
58 * does the actual transmission over the bus to the device (in the
59 * bus-specific driver).
60 *
61 *
62 * The general format of a device-host transaction is MSG-HDR, PLD1,
63 * PLD2...PLDN, PL1, PL2,...PLN, PADDING.
64 *
65 * Because we need the send payload descriptors and then payloads and
66 * because it is kind of expensive to do scatterlists in USB (one URB
67 * per node), it becomes cheaper to append all the data to a FIFO
68 * (copying to a FIFO potentially in cache is cheaper).
69 *
70 * Then the bus-specific code takes the parts of that FIFO that are
71 * written and passes them to the device.
72 *
73 * So the concepts to keep in mind there are:
74 *
75 * We use a FIFO to queue the data in a linear buffer. We first append
76 * a MSG-HDR, space for I2400M_TX_PLD_MAX payload descriptors and then
77 * go appending payloads until we run out of space or of payload
78 * descriptors. Then we append padding to make the whole transaction a
79 * multiple of i2400m->bus_tx_block_size (as defined by the bus layer).
80 *
81 * - A TX message: a combination of a message header, payload
82 * descriptors and payloads.
83 *
84 * Open: it is marked as active (i2400m->tx_msg is valid) and we
85 * can keep adding payloads to it.
86 *
87 * Closed: we are not appending more payloads to this TX message
88 * (exahusted space in the queue, too many payloads or
89 * whichever). We have appended padding so the whole message
90 * length is aligned to i2400m->bus_tx_block_size (as set by the
91 * bus/transport layer).
92 *
93 * - Most of the time we keep a TX message open to which we append
94 * payloads.
95 *
96 * - If we are going to append and there is no more space (we are at
97 * the end of the FIFO), we close the message, mark the rest of the
98 * FIFO space unusable (skip_tail), create a new message at the
99 * beginning of the FIFO (if there is space) and append the message
100 * there.
101 *
102 * This is because we need to give linear TX messages to the bus
103 * engine. So we don't write a message to the remaining FIFO space
104 * until the tail and continue at the head of it.
105 *
106 * - We overload one of the fields in the message header to use it as
107 * 'size' of the TX message, so we can iterate over them. It also
108 * contains a flag that indicates if we have to skip it or not.
109 * When we send the buffer, we update that to its real on-the-wire
110 * value.
111 *
112 * - The MSG-HDR PLD1...PLD2 stuff has to be a size multiple of 16.
113 *
114 * It follows that if MSG-HDR says we have N messages, the whole
115 * header + descriptors is 16 + 4*N; for those to be a multiple of
116 * 16, it follows that N can be 4, 8, 12, ... (32, 48, 64, 80...
117 * bytes).
118 *
119 * So if we have only 1 payload, we have to submit a header that in
120 * all truth has space for 4.
121 *
122 * The implication is that we reserve space for 12 (64 bytes); but
123 * if we fill up only (eg) 2, our header becomes 32 bytes only. So
124 * the TX engine has to shift those 32 bytes of msg header and 2
125 * payloads and padding so that right after it the payloads start
126 * and the TX engine has to know about that.
127 *
128 * It is cheaper to move the header up than the whole payloads down.
129 *
130 * We do this in i2400m_tx_close(). See 'i2400m_msg_hdr->offset'.
131 *
132 * - Each payload has to be size-padded to 16 bytes; before appending
133 * it, we just do it.
134 *
135 * - The whole message has to be padded to i2400m->bus_tx_block_size;
136 * we do this at close time. Thus, when reserving space for the
137 * payload, we always make sure there is also free space for this
138 * padding that sooner or later will happen.
139 *
140 * When we append a message, we tell the bus specific code to kick in
141 * TXs. It will TX (in parallel) until the buffer is exhausted--hence
142 * the lockin we do. The TX code will only send a TX message at the
143 * time (which remember, might contain more than one payload). Of
144 * course, when the bus-specific driver attempts to TX a message that
145 * is still open, it gets closed first.
146 *
147 * Gee, this is messy; well a picture. In the example below we have a
148 * partially full FIFO, with a closed message ready to be delivered
149 * (with a moved message header to make sure it is size-aligned to
150 * 16), TAIL room that was unusable (and thus is marked with a message
151 * header that says 'skip this') and at the head of the buffer, an
152 * imcomplete message with a couple of payloads.
153 *
154 * N ___________________________________________________
155 * | |
156 * | TAIL room |
157 * | |
158 * | msg_hdr to skip (size |= 0x80000) |
159 * |---------------------------------------------------|-------
160 * | | /|\
161 * | | |
162 * | TX message padding | |
163 * | | |
164 * | | |
165 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
166 * | | |
167 * | payload 1 | |
168 * | | N * tx_block_size
169 * | | |
170 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
171 * | | |
172 * | payload 1 | |
173 * | | |
174 * | | |
175 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|- -|- - - -
176 * | padding 3 /|\ | | /|\
177 * | padding 2 | | | |
178 * | pld 1 32 bytes (2 * 16) | | |
179 * | pld 0 | | | |
180 * | moved msg_hdr \|/ | \|/ |
181 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|- - - |
182 * | | _PLD_SIZE
183 * | unused | |
184 * | | |
185 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
186 * | msg_hdr (size X) [this message is closed] | \|/
187 * |===================================================|========== <=== OUT
188 * | |
189 * | |
190 * | |
191 * | Free rooom |
192 * | |
193 * | |
194 * | |
195 * | |
196 * | |
197 * | |
198 * | |
199 * | |
200 * | |
201 * |===================================================|========== <=== IN
202 * | |
203 * | |
204 * | |
205 * | |
206 * | payload 1 |
207 * | |
208 * | |
209 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|
210 * | |
211 * | payload 0 |
212 * | |
213 * | |
214 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|
215 * | pld 11 /|\ |
216 * | ... | |
217 * | pld 1 64 bytes (2 * 16) |
218 * | pld 0 | |
219 * | msg_hdr (size X) \|/ [message is open] |
220 * 0 ---------------------------------------------------
221 *
222 *
223 * ROADMAP
224 *
225 * i2400m_tx_setup() Called by i2400m_setup
226 * i2400m_tx_release() Called by i2400m_release()
227 *
228 * i2400m_tx() Called to send data or control frames
229 * i2400m_tx_fifo_push() Allocates append-space in the FIFO
230 * i2400m_tx_new() Opens a new message in the FIFO
231 * i2400m_tx_fits() Checks if a new payload fits in the message
232 * i2400m_tx_close() Closes an open message in the FIFO
233 * i2400m_tx_skip_tail() Marks unusable FIFO tail space
234 * i2400m->bus_tx_kick()
235 *
236 * Now i2400m->bus_tx_kick() is the the bus-specific driver backend
237 * implementation; that would do:
238 *
239 * i2400m->bus_tx_kick()
240 * i2400m_tx_msg_get() Gets first message ready to go
241 * ...sends it...
242 * i2400m_tx_msg_sent() Ack the message is sent; repeat from
243 * _tx_msg_get() until it returns NULL
244 * (FIFO empty).
245 */
246#include <linux/netdevice.h>
5a0e3ad6 247#include <linux/slab.h>
aa5a7aca
IPG
248#include "i2400m.h"
249
250
251#define D_SUBMODULE tx
252#include "debug-levels.h"
253
254enum {
255 /**
256 * TX Buffer size
257 *
258 * Doc says maximum transaction is 16KiB. If we had 16KiB en
259 * route and 16KiB being queued, it boils down to needing
260 * 32KiB.
261 */
262 I2400M_TX_BUF_SIZE = 32768,
263 /**
264 * Message header and payload descriptors have to be 16
265 * aligned (16 + 4 * N = 16 * M). If we take that average sent
266 * packets are MTU size (~1400-~1500) it follows that we could
267 * fit at most 10-11 payloads in one transaction. To meet the
268 * alignment requirement, that means we need to leave space
269 * for 12 (64 bytes). To simplify, we leave space for that. If
270 * at the end there are less, we pad up to the nearest
271 * multiple of 16.
272 */
273 I2400M_TX_PLD_MAX = 12,
274 I2400M_TX_PLD_SIZE = sizeof(struct i2400m_msg_hdr)
275 + I2400M_TX_PLD_MAX * sizeof(struct i2400m_pld),
276 I2400M_TX_SKIP = 0x80000000,
277};
278
279#define TAIL_FULL ((void *)~(unsigned long)NULL)
280
2971a5ba
IPG
281/*
282 * Calculate how much tail room is available
283 *
284 * Note the trick here. This path is ONLY caleed for Case A (see
285 * i2400m_tx_fifo_push() below), where we have:
286 *
287 * Case A
288 * N ___________
289 * | tail room |
290 * | |
291 * |<- IN ->|
292 * | |
293 * | data |
294 * | |
295 * |<- OUT ->|
296 * | |
297 * | head room |
298 * 0 -----------
299 *
300 * When calculating the tail_room, tx_in might get to be zero if
301 * i2400m->tx_in is right at the end of the buffer (really full
302 * buffer) if there is no head room. In this case, tail_room would be
303 * I2400M_TX_BUF_SIZE, although it is actually zero. Hence the final
304 * mod (%) operation. However, when doing this kind of optimization,
305 * i2400m->tx_in being zero would fail, so we treat is an a special
306 * case.
307 */
308static inline
309size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
310{
311 size_t tail_room;
312 size_t tx_in;
313
2d44f204 314 if (unlikely(i2400m->tx_in == 0))
2971a5ba
IPG
315 return I2400M_TX_BUF_SIZE;
316 tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
317 tail_room = I2400M_TX_BUF_SIZE - tx_in;
318 tail_room %= I2400M_TX_BUF_SIZE;
319 return tail_room;
320}
321
322
aa5a7aca
IPG
323/*
324 * Allocate @size bytes in the TX fifo, return a pointer to it
325 *
326 * @i2400m: device descriptor
327 * @size: size of the buffer we need to allocate
328 * @padding: ensure that there is at least this many bytes of free
329 * contiguous space in the fifo. This is needed because later on
330 * we might need to add padding.
331 *
332 * Returns:
333 *
334 * Pointer to the allocated space. NULL if there is no
335 * space. TAIL_FULL if there is no space at the tail but there is at
336 * the head (Case B below).
337 *
338 * These are the two basic cases we need to keep an eye for -- it is
339 * much better explained in linux/kernel/kfifo.c, but this code
340 * basically does the same. No rocket science here.
341 *
342 * Case A Case B
343 * N ___________ ___________
344 * | tail room | | data |
345 * | | | |
346 * |<- IN ->| |<- OUT ->|
347 * | | | |
348 * | data | | room |
349 * | | | |
350 * |<- OUT ->| |<- IN ->|
351 * | | | |
352 * | head room | | data |
353 * 0 ----------- -----------
354 *
355 * We allocate only *contiguous* space.
356 *
357 * We can allocate only from 'room'. In Case B, it is simple; in case
358 * A, we only try from the tail room; if it is not enough, we just
359 * fail and return TAIL_FULL and let the caller figure out if we wants to
360 * skip the tail room and try to allocate from the head.
361 *
362 * Note:
363 *
364 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
365 *
366 * The indexes keep increasing and we reset them to zero when we
367 * pop data off the queue
368 */
369static
370void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size, size_t padding)
371{
372 struct device *dev = i2400m_dev(i2400m);
373 size_t room, tail_room, needed_size;
374 void *ptr;
375
376 needed_size = size + padding;
377 room = I2400M_TX_BUF_SIZE - (i2400m->tx_in - i2400m->tx_out);
378 if (room < needed_size) { /* this takes care of Case B */
379 d_printf(2, dev, "fifo push %zu/%zu: no space\n",
380 size, padding);
381 return NULL;
382 }
383 /* Is there space at the tail? */
2971a5ba 384 tail_room = __i2400m_tx_tail_room(i2400m);
aa5a7aca
IPG
385 if (tail_room < needed_size) {
386 if (i2400m->tx_out % I2400M_TX_BUF_SIZE
387 < i2400m->tx_in % I2400M_TX_BUF_SIZE) {
388 d_printf(2, dev, "fifo push %zu/%zu: tail full\n",
389 size, padding);
390 return TAIL_FULL; /* There might be head space */
391 } else {
392 d_printf(2, dev, "fifo push %zu/%zu: no head space\n",
393 size, padding);
394 return NULL; /* There is no space */
395 }
396 }
397 ptr = i2400m->tx_buf + i2400m->tx_in % I2400M_TX_BUF_SIZE;
398 d_printf(2, dev, "fifo push %zu/%zu: at @%zu\n", size, padding,
399 i2400m->tx_in % I2400M_TX_BUF_SIZE);
400 i2400m->tx_in += size;
401 return ptr;
402}
403
404
405/*
406 * Mark the tail of the FIFO buffer as 'to-skip'
407 *
408 * We should never hit the BUG_ON() because all the sizes we push to
409 * the FIFO are padded to be a multiple of 16 -- the size of *msg
410 * (I2400M_PL_PAD for the payloads, I2400M_TX_PLD_SIZE for the
411 * header).
412 *
2971a5ba
IPG
413 * Tail room can get to be zero if a message was opened when there was
414 * space only for a header. _tx_close() will mark it as to-skip (as it
415 * will have no payloads) and there will be no more space to flush, so
416 * nothing has to be done here. This is probably cheaper than ensuring
417 * in _tx_new() that there is some space for payloads...as we could
418 * always possibly hit the same problem if the payload wouldn't fit.
419 *
aa5a7aca
IPG
420 * Note:
421 *
422 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
2971a5ba
IPG
423 *
424 * This path is only taken for Case A FIFO situations [see
425 * i2400m_tx_fifo_push()]
aa5a7aca
IPG
426 */
427static
428void i2400m_tx_skip_tail(struct i2400m *i2400m)
429{
430 struct device *dev = i2400m_dev(i2400m);
431 size_t tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
2971a5ba 432 size_t tail_room = __i2400m_tx_tail_room(i2400m);
aa5a7aca 433 struct i2400m_msg_hdr *msg = i2400m->tx_buf + tx_in;
2971a5ba
IPG
434 if (unlikely(tail_room == 0))
435 return;
aa5a7aca
IPG
436 BUG_ON(tail_room < sizeof(*msg));
437 msg->size = tail_room | I2400M_TX_SKIP;
438 d_printf(2, dev, "skip tail: skipping %zu bytes @%zu\n",
439 tail_room, tx_in);
440 i2400m->tx_in += tail_room;
441}
442
443
444/*
445 * Check if a skb will fit in the TX queue's current active TX
446 * message (if there are still descriptors left unused).
447 *
448 * Returns:
449 * 0 if the message won't fit, 1 if it will.
450 *
451 * Note:
452 *
453 * Assumes a TX message is active (i2400m->tx_msg).
454 *
455 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
456 */
457static
458unsigned i2400m_tx_fits(struct i2400m *i2400m)
459{
460 struct i2400m_msg_hdr *msg_hdr = i2400m->tx_msg;
461 return le16_to_cpu(msg_hdr->num_pls) < I2400M_TX_PLD_MAX;
462
463}
464
465
466/*
467 * Start a new TX message header in the queue.
468 *
469 * Reserve memory from the base FIFO engine and then just initialize
470 * the message header.
471 *
472 * We allocate the biggest TX message header we might need (one that'd
473 * fit I2400M_TX_PLD_MAX payloads) -- when it is closed it will be
474 * 'ironed it out' and the unneeded parts removed.
475 *
476 * NOTE:
477 *
478 * Assumes that the previous message is CLOSED (eg: either
479 * there was none or 'i2400m_tx_close()' was called on it).
480 *
481 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
482 */
483static
484void i2400m_tx_new(struct i2400m *i2400m)
485{
486 struct device *dev = i2400m_dev(i2400m);
487 struct i2400m_msg_hdr *tx_msg;
488 BUG_ON(i2400m->tx_msg != NULL);
489try_head:
490 tx_msg = i2400m_tx_fifo_push(i2400m, I2400M_TX_PLD_SIZE, 0);
491 if (tx_msg == NULL)
492 goto out;
493 else if (tx_msg == TAIL_FULL) {
494 i2400m_tx_skip_tail(i2400m);
495 d_printf(2, dev, "new TX message: tail full, trying head\n");
496 goto try_head;
497 }
498 memset(tx_msg, 0, I2400M_TX_PLD_SIZE);
499 tx_msg->size = I2400M_TX_PLD_SIZE;
500out:
501 i2400m->tx_msg = tx_msg;
502 d_printf(2, dev, "new TX message: %p @%zu\n",
503 tx_msg, (void *) tx_msg - i2400m->tx_buf);
504}
505
506
507/*
508 * Finalize the current TX message header
509 *
510 * Sets the message header to be at the proper location depending on
511 * how many descriptors we have (check documentation at the file's
512 * header for more info on that).
513 *
514 * Appends padding bytes to make sure the whole TX message (counting
515 * from the 'relocated' message header) is aligned to
516 * tx_block_size. We assume the _append() code has left enough space
517 * in the FIFO for that. If there are no payloads, just pass, as it
518 * won't be transferred.
519 *
520 * The amount of padding bytes depends on how many payloads are in the
521 * TX message, as the "msg header and payload descriptors" will be
522 * shifted up in the buffer.
523 */
524static
525void i2400m_tx_close(struct i2400m *i2400m)
526{
527 struct device *dev = i2400m_dev(i2400m);
528 struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
529 struct i2400m_msg_hdr *tx_msg_moved;
530 size_t aligned_size, padding, hdr_size;
531 void *pad_buf;
c56affaf 532 unsigned num_pls;
aa5a7aca
IPG
533
534 if (tx_msg->size & I2400M_TX_SKIP) /* a skipper? nothing to do */
535 goto out;
c56affaf
IPG
536 num_pls = le16_to_cpu(tx_msg->num_pls);
537 /* We can get this situation when a new message was started
538 * and there was no space to add payloads before hitting the
539 tail (and taking padding into consideration). */
540 if (num_pls == 0) {
541 tx_msg->size |= I2400M_TX_SKIP;
542 goto out;
543 }
aa5a7aca
IPG
544 /* Relocate the message header
545 *
546 * Find the current header size, align it to 16 and if we need
547 * to move it so the tail is next to the payloads, move it and
548 * set the offset.
549 *
550 * If it moved, this header is good only for transmission; the
551 * original one (it is kept if we moved) is still used to
552 * figure out where the next TX message starts (and where the
553 * offset to the moved header is).
554 */
555 hdr_size = sizeof(*tx_msg)
556 + le16_to_cpu(tx_msg->num_pls) * sizeof(tx_msg->pld[0]);
8593a196 557 hdr_size = ALIGN(hdr_size, I2400M_PL_ALIGN);
aa5a7aca
IPG
558 tx_msg->offset = I2400M_TX_PLD_SIZE - hdr_size;
559 tx_msg_moved = (void *) tx_msg + tx_msg->offset;
560 memmove(tx_msg_moved, tx_msg, hdr_size);
561 tx_msg_moved->size -= tx_msg->offset;
562 /*
563 * Now figure out how much we have to add to the (moved!)
564 * message so the size is a multiple of i2400m->bus_tx_block_size.
565 */
566 aligned_size = ALIGN(tx_msg_moved->size, i2400m->bus_tx_block_size);
567 padding = aligned_size - tx_msg_moved->size;
568 if (padding > 0) {
569 pad_buf = i2400m_tx_fifo_push(i2400m, padding, 0);
570 if (unlikely(WARN_ON(pad_buf == NULL
571 || pad_buf == TAIL_FULL))) {
572 /* This should not happen -- append should verify
573 * there is always space left at least to append
574 * tx_block_size */
575 dev_err(dev,
576 "SW BUG! Possible data leakage from memory the "
577 "device should not read for padding - "
578 "size %lu aligned_size %zu tx_buf %p in "
579 "%zu out %zu\n",
580 (unsigned long) tx_msg_moved->size,
581 aligned_size, i2400m->tx_buf, i2400m->tx_in,
582 i2400m->tx_out);
583 } else
584 memset(pad_buf, 0xad, padding);
585 }
586 tx_msg_moved->padding = cpu_to_le16(padding);
587 tx_msg_moved->size += padding;
588 if (tx_msg != tx_msg_moved)
589 tx_msg->size += padding;
590out:
591 i2400m->tx_msg = NULL;
592}
593
594
595/**
596 * i2400m_tx - send the data in a buffer to the device
597 *
598 * @buf: pointer to the buffer to transmit
599 *
600 * @buf_len: buffer size
601 *
602 * @pl_type: type of the payload we are sending.
603 *
604 * Returns:
605 * 0 if ok, < 0 errno code on error (-ENOSPC, if there is no more
606 * room for the message in the queue).
607 *
608 * Appends the buffer to the TX FIFO and notifies the bus-specific
609 * part of the driver that there is new data ready to transmit.
610 * Once this function returns, the buffer has been copied, so it can
611 * be reused.
612 *
613 * The steps followed to append are explained in detail in the file
614 * header.
615 *
616 * Whenever we write to a message, we increase msg->size, so it
617 * reflects exactly how big the message is. This is needed so that if
618 * we concatenate two messages before they can be sent, the code that
619 * sends the messages can find the boundaries (and it will replace the
620 * size with the real barker before sending).
621 *
622 * Note:
623 *
624 * Cold and warm reset payloads need to be sent as a single
625 * payload, so we handle that.
626 */
627int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
628 enum i2400m_pt pl_type)
629{
630 int result = -ENOSPC;
631 struct device *dev = i2400m_dev(i2400m);
632 unsigned long flags;
633 size_t padded_len;
634 void *ptr;
635 unsigned is_singleton = pl_type == I2400M_PT_RESET_WARM
636 || pl_type == I2400M_PT_RESET_COLD;
637
638 d_fnstart(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u)\n",
639 i2400m, buf, buf_len, pl_type);
8593a196 640 padded_len = ALIGN(buf_len, I2400M_PL_ALIGN);
aa5a7aca
IPG
641 d_printf(5, dev, "padded_len %zd buf_len %zd\n", padded_len, buf_len);
642 /* If there is no current TX message, create one; if the
643 * current one is out of payload slots or we have a singleton,
644 * close it and start a new one */
645 spin_lock_irqsave(&i2400m->tx_lock, flags);
46c50147
IPG
646 result = -ESHUTDOWN;
647 if (i2400m->tx_buf == NULL)
648 goto error_tx_new;
aa5a7aca
IPG
649try_new:
650 if (unlikely(i2400m->tx_msg == NULL))
651 i2400m_tx_new(i2400m);
652 else if (unlikely(!i2400m_tx_fits(i2400m)
653 || (is_singleton && i2400m->tx_msg->num_pls != 0))) {
654 d_printf(2, dev, "closing TX message (fits %u singleton "
655 "%u num_pls %u)\n", i2400m_tx_fits(i2400m),
656 is_singleton, i2400m->tx_msg->num_pls);
657 i2400m_tx_close(i2400m);
658 i2400m_tx_new(i2400m);
659 }
59063afa
IPG
660 if (i2400m->tx_msg == NULL)
661 goto error_tx_new;
aa5a7aca
IPG
662 if (i2400m->tx_msg->size + padded_len > I2400M_TX_BUF_SIZE / 2) {
663 d_printf(2, dev, "TX: message too big, going new\n");
664 i2400m_tx_close(i2400m);
665 i2400m_tx_new(i2400m);
666 }
667 if (i2400m->tx_msg == NULL)
668 goto error_tx_new;
669 /* So we have a current message header; now append space for
670 * the message -- if there is not enough, try the head */
671 ptr = i2400m_tx_fifo_push(i2400m, padded_len,
672 i2400m->bus_tx_block_size);
673 if (ptr == TAIL_FULL) { /* Tail is full, try head */
674 d_printf(2, dev, "pl append: tail full\n");
675 i2400m_tx_close(i2400m);
676 i2400m_tx_skip_tail(i2400m);
677 goto try_new;
678 } else if (ptr == NULL) { /* All full */
679 result = -ENOSPC;
680 d_printf(2, dev, "pl append: all full\n");
681 } else { /* Got space, copy it, set padding */
682 struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
683 unsigned num_pls = le16_to_cpu(tx_msg->num_pls);
684 memcpy(ptr, buf, buf_len);
685 memset(ptr + buf_len, 0xad, padded_len - buf_len);
686 i2400m_pld_set(&tx_msg->pld[num_pls], buf_len, pl_type);
687 d_printf(3, dev, "pld 0x%08x (type 0x%1x len 0x%04zx\n",
688 le32_to_cpu(tx_msg->pld[num_pls].val),
689 pl_type, buf_len);
690 tx_msg->num_pls = le16_to_cpu(num_pls+1);
691 tx_msg->size += padded_len;
692 d_printf(2, dev, "TX: appended %zu b (up to %u b) pl #%u \n",
693 padded_len, tx_msg->size, num_pls+1);
694 d_printf(2, dev,
695 "TX: appended hdr @%zu %zu b pl #%u @%zu %zu/%zu b\n",
696 (void *)tx_msg - i2400m->tx_buf, (size_t)tx_msg->size,
697 num_pls+1, ptr - i2400m->tx_buf, buf_len, padded_len);
698 result = 0;
699 if (is_singleton)
700 i2400m_tx_close(i2400m);
701 }
702error_tx_new:
703 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
46c50147
IPG
704 /* kick in most cases, except when the TX subsys is down, as
705 * it might free space */
706 if (likely(result != -ESHUTDOWN))
707 i2400m->bus_tx_kick(i2400m);
aa5a7aca
IPG
708 d_fnend(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u) = %d\n",
709 i2400m, buf, buf_len, pl_type, result);
710 return result;
711}
712EXPORT_SYMBOL_GPL(i2400m_tx);
713
714
715/**
716 * i2400m_tx_msg_get - Get the first TX message in the FIFO to start sending it
717 *
718 * @i2400m: device descriptors
719 * @bus_size: where to place the size of the TX message
720 *
721 * Called by the bus-specific driver to get the first TX message at
722 * the FIF that is ready for transmission.
723 *
724 * It sets the state in @i2400m to indicate the bus-specific driver is
725 * transfering that message (i2400m->tx_msg_size).
726 *
727 * Once the transfer is completed, call i2400m_tx_msg_sent().
728 *
729 * Notes:
730 *
731 * The size of the TX message to be transmitted might be smaller than
732 * that of the TX message in the FIFO (in case the header was
733 * shorter). Hence, we copy it in @bus_size, for the bus layer to
734 * use. We keep the message's size in i2400m->tx_msg_size so that
735 * when the bus later is done transferring we know how much to
736 * advance the fifo.
737 *
738 * We collect statistics here as all the data is available and we
739 * assume it is going to work [see i2400m_tx_msg_sent()].
740 */
741struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *i2400m,
742 size_t *bus_size)
743{
744 struct device *dev = i2400m_dev(i2400m);
745 struct i2400m_msg_hdr *tx_msg, *tx_msg_moved;
746 unsigned long flags, pls;
747
748 d_fnstart(3, dev, "(i2400m %p bus_size %p)\n", i2400m, bus_size);
749 spin_lock_irqsave(&i2400m->tx_lock, flags);
46c50147
IPG
750 tx_msg_moved = NULL;
751 if (i2400m->tx_buf == NULL)
752 goto out_unlock;
aa5a7aca
IPG
753skip:
754 tx_msg_moved = NULL;
755 if (i2400m->tx_in == i2400m->tx_out) { /* Empty FIFO? */
756 i2400m->tx_in = 0;
757 i2400m->tx_out = 0;
758 d_printf(2, dev, "TX: FIFO empty: resetting\n");
759 goto out_unlock;
760 }
761 tx_msg = i2400m->tx_buf + i2400m->tx_out % I2400M_TX_BUF_SIZE;
762 if (tx_msg->size & I2400M_TX_SKIP) { /* skip? */
763 d_printf(2, dev, "TX: skip: msg @%zu (%zu b)\n",
764 i2400m->tx_out % I2400M_TX_BUF_SIZE,
765 (size_t) tx_msg->size & ~I2400M_TX_SKIP);
766 i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
767 goto skip;
768 }
769
770 if (tx_msg->num_pls == 0) { /* No payloads? */
771 if (tx_msg == i2400m->tx_msg) { /* open, we are done */
772 d_printf(2, dev,
773 "TX: FIFO empty: open msg w/o payloads @%zu\n",
774 (void *) tx_msg - i2400m->tx_buf);
775 tx_msg = NULL;
776 goto out_unlock;
777 } else { /* closed, skip it */
778 d_printf(2, dev,
779 "TX: skip msg w/o payloads @%zu (%zu b)\n",
780 (void *) tx_msg - i2400m->tx_buf,
781 (size_t) tx_msg->size);
782 i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
783 goto skip;
784 }
785 }
786 if (tx_msg == i2400m->tx_msg) /* open msg? */
787 i2400m_tx_close(i2400m);
788
789 /* Now we have a valid TX message (with payloads) to TX */
790 tx_msg_moved = (void *) tx_msg + tx_msg->offset;
791 i2400m->tx_msg_size = tx_msg->size;
792 *bus_size = tx_msg_moved->size;
793 d_printf(2, dev, "TX: pid %d msg hdr at @%zu offset +@%zu "
794 "size %zu bus_size %zu\n",
795 current->pid, (void *) tx_msg - i2400m->tx_buf,
796 (size_t) tx_msg->offset, (size_t) tx_msg->size,
797 (size_t) tx_msg_moved->size);
798 tx_msg_moved->barker = le32_to_cpu(I2400M_H2D_PREVIEW_BARKER);
799 tx_msg_moved->sequence = le32_to_cpu(i2400m->tx_sequence++);
800
801 pls = le32_to_cpu(tx_msg_moved->num_pls);
802 i2400m->tx_pl_num += pls; /* Update stats */
803 if (pls > i2400m->tx_pl_max)
804 i2400m->tx_pl_max = pls;
805 if (pls < i2400m->tx_pl_min)
806 i2400m->tx_pl_min = pls;
807 i2400m->tx_num++;
808 i2400m->tx_size_acc += *bus_size;
809 if (*bus_size < i2400m->tx_size_min)
810 i2400m->tx_size_min = *bus_size;
811 if (*bus_size > i2400m->tx_size_max)
812 i2400m->tx_size_max = *bus_size;
813out_unlock:
814 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
815 d_fnstart(3, dev, "(i2400m %p bus_size %p [%zu]) = %p\n",
816 i2400m, bus_size, *bus_size, tx_msg_moved);
817 return tx_msg_moved;
818}
819EXPORT_SYMBOL_GPL(i2400m_tx_msg_get);
820
821
822/**
823 * i2400m_tx_msg_sent - indicate the transmission of a TX message
824 *
825 * @i2400m: device descriptor
826 *
827 * Called by the bus-specific driver when a message has been sent;
828 * this pops it from the FIFO; and as there is space, start the queue
829 * in case it was stopped.
830 *
831 * Should be called even if the message send failed and we are
832 * dropping this TX message.
833 */
834void i2400m_tx_msg_sent(struct i2400m *i2400m)
835{
836 unsigned n;
837 unsigned long flags;
838 struct device *dev = i2400m_dev(i2400m);
839
840 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
841 spin_lock_irqsave(&i2400m->tx_lock, flags);
46c50147
IPG
842 if (i2400m->tx_buf == NULL)
843 goto out_unlock;
aa5a7aca
IPG
844 i2400m->tx_out += i2400m->tx_msg_size;
845 d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
846 i2400m->tx_msg_size = 0;
847 BUG_ON(i2400m->tx_out > i2400m->tx_in);
848 /* level them FIFO markers off */
849 n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
850 i2400m->tx_out %= I2400M_TX_BUF_SIZE;
851 i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
46c50147 852out_unlock:
aa5a7aca
IPG
853 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
854 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
855}
856EXPORT_SYMBOL_GPL(i2400m_tx_msg_sent);
857
858
859/**
860 * i2400m_tx_setup - Initialize the TX queue and infrastructure
861 *
862 * Make sure we reset the TX sequence to zero, as when this function
863 * is called, the firmware has been just restarted.
864 */
865int i2400m_tx_setup(struct i2400m *i2400m)
866{
867 int result;
868
869 /* Do this here only once -- can't do on
870 * i2400m_hard_start_xmit() as we'll cause race conditions if
871 * the WS was scheduled on another CPU */
872 INIT_WORK(&i2400m->wake_tx_ws, i2400m_wake_tx_work);
873
874 i2400m->tx_sequence = 0;
875 i2400m->tx_buf = kmalloc(I2400M_TX_BUF_SIZE, GFP_KERNEL);
876 if (i2400m->tx_buf == NULL)
877 result = -ENOMEM;
878 else
879 result = 0;
880 /* Huh? the bus layer has to define this... */
881 BUG_ON(i2400m->bus_tx_block_size == 0);
882 return result;
883
884}
885
886
887/**
888 * i2400m_tx_release - Tear down the TX queue and infrastructure
889 */
890void i2400m_tx_release(struct i2400m *i2400m)
891{
46c50147
IPG
892 unsigned long flags;
893 spin_lock_irqsave(&i2400m->tx_lock, flags);
aa5a7aca 894 kfree(i2400m->tx_buf);
46c50147
IPG
895 i2400m->tx_buf = NULL;
896 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
aa5a7aca 897}