Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
CommitLineData
b6fec18f 1/* Intel Ethernet Switch Host Interface Driver
9d4955b4 2 * Copyright(c) 2013 - 2015 Intel Corporation.
b6fec18f
AD
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
c2653865 22#include "fm10k_vf.h"
b6fec18f
AD
23
24/**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err)
55 return err;
56
57 /* Verify that DMA is no longer active */
58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 return FM10K_ERR_DMA_PENDING;
61
ac981003
AD
62 /* verify the switch is ready for reset */
63 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
64 if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
65 goto out;
66
b6fec18f
AD
67 /* Inititate data path reset */
68 reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
75 /* Verify we made it out of reset */
76 reg = fm10k_read_reg(hw, FM10K_IP);
77 if (!(reg & FM10K_IP_NOTINRESET))
78 err = FM10K_ERR_RESET_FAILED;
79
ac981003 80out:
b6fec18f
AD
81 return err;
82}
83
c2653865
AD
84/**
85 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86 * @hw: pointer to hardware structure
87 *
88 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89 **/
90static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91{
92 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93
94 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95}
96
b6fec18f
AD
97/**
98 * fm10k_init_hw_pf - PF hardware initialization
99 * @hw: pointer to hardware structure
100 *
101 **/
102static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103{
104 u32 dma_ctrl, txqctl;
105 u16 i;
106
107 /* Establish default VSI as valid */
108 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 FM10K_DGLORTMAP_ANY);
111
112 /* Invalidate all other GLORT entries */
113 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115
116 /* reset ITR2(0) to point to itself */
117 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118
119 /* reset VF ITR2(0) to point to 0 avoid PF registers */
120 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121
122 /* loop through all PF ITR2 registers pointing them to the previous */
123 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125
126 /* Enable interrupt moderator if not already enabled */
127 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128
129 /* compute the default txqctl configuration */
130 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132
133 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 /* configure rings for 256 Queue / 32 Descriptor cache mode */
135 fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 (i * FM10K_TQDLOC_BASE_32_DESC) |
137 FM10K_TQDLOC_SIZE_32_DESC);
138 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139
140 /* configure rings to provide TPH processing hints */
141 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 FM10K_TPH_TXCTRL_DESC_TPHEN |
143 FM10K_TPH_TXCTRL_DESC_RROEN |
144 FM10K_TPH_TXCTRL_DESC_WROEN |
145 FM10K_TPH_TXCTRL_DATA_RROEN);
146 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 FM10K_TPH_RXCTRL_DESC_TPHEN |
148 FM10K_TPH_RXCTRL_DESC_RROEN |
149 FM10K_TPH_RXCTRL_DATA_WROEN |
150 FM10K_TPH_RXCTRL_HDR_WROEN);
151 }
152
20076fa1
JK
153 /* set max hold interval to align with 1.024 usec in all modes and
154 * store ITR scale
155 */
b6fec18f
AD
156 switch (hw->bus.speed) {
157 case fm10k_bus_speed_2500:
158 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
20076fa1 159 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
b6fec18f
AD
160 break;
161 case fm10k_bus_speed_5000:
162 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
20076fa1 163 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
b6fec18f
AD
164 break;
165 case fm10k_bus_speed_8000:
166 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
20076fa1 167 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
b6fec18f
AD
168 break;
169 default:
170 dma_ctrl = 0;
20076fa1
JK
171 /* just in case, assume Gen3 ITR scale */
172 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
b6fec18f
AD
173 break;
174 }
175
176 /* Configure TSO flags */
177 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179
180 /* Enable DMA engine
181 * Set Rx Descriptor size to 32
182 * Set Minimum MSS to 64
183 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 */
185 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 FM10K_DMA_CTRL_32_DESC;
188
189 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190
191 /* record maximum queue count, we limit ourselves to 128 */
192 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193
c2653865
AD
194 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196
b6fec18f
AD
197 return 0;
198}
199
401b5383
AD
200/**
201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202 * @hw: pointer to hardware structure
203 * @vid: VLAN ID to add to table
204 * @vsi: Index indicating VF ID or PF ID in table
205 * @set: Indicates if this is a set or clear operation
206 *
207 * This function adds or removes the corresponding VLAN ID from the VLAN
208 * filter table for the corresponding function. In addition to the
209 * standard set/clear that supports one bit a multi-bit write is
210 * supported to set 64 bits at a time.
211 **/
212static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213{
214 u32 vlan_table, reg, mask, bit, len;
215
216 /* verify the VSI index is valid */
217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 return FM10K_ERR_PARAM;
219
220 /* VLAN multi-bit write:
221 * The multi-bit write has several parts to it.
222 * 3 2 1 0
223 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 * | RSVD0 | Length |C|RSVD0| VLAN ID |
226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 *
228 * VLAN ID: Vlan Starting value
229 * RSVD0: Reserved section, must be 0
230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 * Length: Number of times to repeat the bit being set
232 */
233 len = vid >> 16;
234 vid = (vid << 17) >> 17;
235
236 /* verify the reserved 0 fields are 0 */
eca32047 237 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
238 return FM10K_ERR_PARAM;
239
240 /* Loop through the table updating all required VLANs */
241 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 len < FM10K_VLAN_TABLE_VID_MAX;
243 len -= 32 - bit, reg++, bit = 0) {
244 /* record the initial state of the register */
245 vlan_table = fm10k_read_reg(hw, reg);
246
247 /* truncate mask if we are at the start or end of the run */
248 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249
250 /* make necessary modifications to the register */
251 mask &= set ? ~vlan_table : vlan_table;
252 if (mask)
253 fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 }
255
256 return 0;
257}
258
b6fec18f
AD
259/**
260 * fm10k_read_mac_addr_pf - Read device MAC address
261 * @hw: pointer to the HW structure
262 *
263 * Reads the device MAC address from the SM_AREA and stores the value.
264 **/
265static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266{
267 u8 perm_addr[ETH_ALEN];
268 u32 serial_num;
b6fec18f
AD
269
270 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271
272 /* last byte should be all 1's */
273 if ((~serial_num) << 24)
274 return FM10K_ERR_INVALID_MAC_ADDR;
275
276 perm_addr[0] = (u8)(serial_num >> 24);
277 perm_addr[1] = (u8)(serial_num >> 16);
278 perm_addr[2] = (u8)(serial_num >> 8);
279
280 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281
282 /* first byte should be all 1's */
283 if ((~serial_num) >> 24)
284 return FM10K_ERR_INVALID_MAC_ADDR;
285
286 perm_addr[3] = (u8)(serial_num >> 16);
287 perm_addr[4] = (u8)(serial_num >> 8);
288 perm_addr[5] = (u8)(serial_num);
289
f0cf5c98
JK
290 ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 ether_addr_copy(hw->mac.addr, perm_addr);
b6fec18f
AD
292
293 return 0;
294}
295
401b5383
AD
296/**
297 * fm10k_glort_valid_pf - Validate that the provided glort is valid
298 * @hw: pointer to the HW structure
299 * @glort: base glort to be validated
300 *
301 * This function will return an error if the provided glort is invalid
302 **/
303bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304{
305 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306
307 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308}
309
310/**
eca32047 311 * fm10k_update_xc_addr_pf - Update device addresses
401b5383
AD
312 * @hw: pointer to the HW structure
313 * @glort: base resource tag for this request
314 * @mac: MAC address to add/remove from table
315 * @vid: VLAN ID to add/remove from table
316 * @add: Indicates if this is an add or remove operation
317 * @flags: flags field to indicate add and secure
318 *
319 * This function generates a message to the Switch API requesting
320 * that the given logical port add/remove the given L2 MAC/VLAN address.
321 **/
322static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 const u8 *mac, u16 vid, bool add, u8 flags)
324{
325 struct fm10k_mbx_info *mbx = &hw->mbx;
326 struct fm10k_mac_update mac_update;
327 u32 msg[5];
328
b32d15b9
JK
329 /* clear set bit from VLAN ID */
330 vid &= ~FM10K_VLAN_CLEAR;
331
aa502b4a 332 /* if glort or VLAN are not valid return error */
33a44c28 333 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
334 return FM10K_ERR_PARAM;
335
401b5383
AD
336 /* record fields */
337 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 ((u32)mac[3] << 16) |
339 ((u32)mac[4] << 8) |
340 ((u32)mac[5]));
9d4955b4
JK
341 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 ((u16)mac[1]));
401b5383
AD
343 mac_update.vlan = cpu_to_le16(vid);
344 mac_update.glort = cpu_to_le16(glort);
345 mac_update.action = add ? 0 : 1;
346 mac_update.flags = flags;
347
348 /* populate mac_update fields */
349 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 &mac_update, sizeof(mac_update));
352
353 /* load onto outgoing mailbox */
354 return mbx->ops.enqueue_tx(hw, mbx, msg);
355}
356
357/**
eca32047 358 * fm10k_update_uc_addr_pf - Update device unicast addresses
401b5383
AD
359 * @hw: pointer to the HW structure
360 * @glort: base resource tag for this request
361 * @mac: MAC address to add/remove from table
362 * @vid: VLAN ID to add/remove from table
363 * @add: Indicates if this is an add or remove operation
364 * @flags: flags field to indicate add and secure
365 *
366 * This function is used to add or remove unicast addresses for
367 * the PF.
368 **/
369static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 const u8 *mac, u16 vid, bool add, u8 flags)
371{
372 /* verify MAC address is valid */
373 if (!is_valid_ether_addr(mac))
374 return FM10K_ERR_PARAM;
375
376 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377}
378
379/**
380 * fm10k_update_mc_addr_pf - Update device multicast addresses
381 * @hw: pointer to the HW structure
382 * @glort: base resource tag for this request
383 * @mac: MAC address to add/remove from table
384 * @vid: VLAN ID to add/remove from table
385 * @add: Indicates if this is an add or remove operation
386 *
387 * This function is used to add or remove multicast MAC addresses for
388 * the PF.
389 **/
390static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 const u8 *mac, u16 vid, bool add)
392{
393 /* verify multicast address is valid */
394 if (!is_multicast_ether_addr(mac))
395 return FM10K_ERR_PARAM;
396
397 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398}
399
400/**
401 * fm10k_update_xcast_mode_pf - Request update of multicast mode
402 * @hw: pointer to hardware structure
403 * @glort: base resource tag for this request
404 * @mode: integer value indicating mode being requested
405 *
406 * This function will attempt to request a higher mode for the port
407 * so that it can enable either multicast, multicast promiscuous, or
408 * promiscuous mode of operation.
409 **/
410static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411{
412 struct fm10k_mbx_info *mbx = &hw->mbx;
413 u32 msg[3], xcast_mode;
414
415 if (mode > FM10K_XCAST_MODE_NONE)
416 return FM10K_ERR_PARAM;
a4fcad65 417
401b5383
AD
418 /* if glort is not valid return error */
419 if (!fm10k_glort_valid_pf(hw, glort))
420 return FM10K_ERR_PARAM;
421
422 /* write xcast mode as a single u32 value,
423 * lower 16 bits: glort
424 * upper 16 bits: mode
425 */
426 xcast_mode = ((u32)mode << 16) | glort;
427
428 /* generate message requesting to change xcast mode */
429 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431
432 /* load onto outgoing mailbox */
433 return mbx->ops.enqueue_tx(hw, mbx, msg);
434}
435
436/**
437 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438 * @hw: pointer to hardware structure
439 *
440 * This function walks through the MSI-X vector table to determine the
441 * number of active interrupts and based on that information updates the
442 * interrupt moderator linked list.
443 **/
444static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445{
446 u32 i;
447
448 /* Disable interrupt moderator */
449 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450
451 /* loop through PF from last to first looking enabled vectors */
452 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 break;
455 }
456
eca32047 457 /* always reset VFITR2[0] to point to last enabled PF vector */
401b5383
AD
458 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459
460 /* reset ITR2[0] to point to last enabled PF vector */
c2653865
AD
461 if (!hw->iov.num_vfs)
462 fm10k_write_reg(hw, FM10K_ITR2(0), i);
401b5383
AD
463
464 /* Enable interrupt moderator */
465 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466}
467
468/**
469 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
470 * @hw: pointer to the HW structure
471 * @glort: base resource tag for this request
472 * @count: number of logical ports being updated
473 * @enable: boolean value indicating enable or disable
474 *
475 * This function is used to add/remove a logical port from the switch.
476 **/
477static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 u16 count, bool enable)
479{
480 struct fm10k_mbx_info *mbx = &hw->mbx;
481 u32 msg[3], lport_msg;
482
483 /* do nothing if we are being asked to create or destroy 0 ports */
484 if (!count)
485 return 0;
486
487 /* if glort is not valid return error */
488 if (!fm10k_glort_valid_pf(hw, glort))
489 return FM10K_ERR_PARAM;
490
491 /* construct the lport message from the 2 pieces of data we have */
492 lport_msg = ((u32)count << 16) | glort;
493
494 /* generate lport create/delete message */
495 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
496 FM10K_PF_MSG_ID_LPORT_DELETE);
497 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
498
499 /* load onto outgoing mailbox */
500 return mbx->ops.enqueue_tx(hw, mbx, msg);
501}
502
503/**
504 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
505 * @hw: pointer to hardware structure
506 * @dglort: pointer to dglort configuration structure
507 *
508 * Reads the configuration structure contained in dglort_cfg and uses
509 * that information to then populate a DGLORTMAP/DEC entry and the queues
510 * to which it has been assigned.
511 **/
512static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
513 struct fm10k_dglort_cfg *dglort)
514{
515 u16 glort, queue_count, vsi_count, pc_count;
516 u16 vsi, queue, pc, q_idx;
517 u32 txqctl, dglortdec, dglortmap;
518
519 /* verify the dglort pointer */
520 if (!dglort)
521 return FM10K_ERR_PARAM;
522
523 /* verify the dglort values */
524 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
525 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
526 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
527 return FM10K_ERR_PARAM;
528
529 /* determine count of VSIs and queues */
530 queue_count = 1 << (dglort->rss_l + dglort->pc_l);
531 vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
532 glort = dglort->glort;
533 q_idx = dglort->queue_b;
534
535 /* configure SGLORT for queues */
536 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
537 for (queue = 0; queue < queue_count; queue++, q_idx++) {
538 if (q_idx >= FM10K_MAX_QUEUES)
539 break;
540
541 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
542 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
543 }
544 }
545
546 /* determine count of PCs and queues */
547 queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
548 pc_count = 1 << dglort->pc_l;
549
550 /* configure PC for Tx queues */
551 for (pc = 0; pc < pc_count; pc++) {
552 q_idx = pc + dglort->queue_b;
553 for (queue = 0; queue < queue_count; queue++) {
554 if (q_idx >= FM10K_MAX_QUEUES)
555 break;
556
557 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
558 txqctl &= ~FM10K_TXQCTL_PC_MASK;
559 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
560 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
561
562 q_idx += pc_count;
563 }
564 }
565
566 /* configure DGLORTDEC */
567 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
568 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
569 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
570 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
571 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
572 ((u32)(dglort->queue_l));
573 if (dglort->inner_rss)
574 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
575
576 /* configure DGLORTMAP */
577 dglortmap = (dglort->idx == fm10k_dglort_default) ?
578 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
579 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
580 dglortmap |= dglort->glort;
581
582 /* write values to hardware */
583 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
584 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
585
586 return 0;
587}
588
c2653865
AD
589u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
590{
591 u16 num_pools = hw->iov.num_pools;
592
593 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
594 8 : FM10K_MAX_QUEUES_POOL;
595}
596
597u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
598{
599 u16 num_vfs = hw->iov.num_vfs;
600 u16 vf_q_idx = FM10K_MAX_QUEUES;
601
602 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
603
604 return vf_q_idx;
605}
606
607static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
608{
609 u16 num_pools = hw->iov.num_pools;
610
611 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
612 FM10K_MAX_VECTORS_POOL;
613}
614
615static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
616{
617 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
618
619 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
620
621 return vf_v_idx;
622}
623
624/**
625 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
626 * @hw: pointer to the HW structure
627 * @num_vfs: number of VFs to be allocated
628 * @num_pools: number of virtualization pools to be allocated
629 *
630 * Allocates queues and traffic classes to virtualization entities to prepare
631 * the PF for SR-IOV and VMDq
632 **/
633static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
634 u16 num_pools)
635{
636 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
637 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
638 int i, j;
639
640 /* hardware only supports up to 64 pools */
641 if (num_pools > 64)
642 return FM10K_ERR_PARAM;
643
644 /* the number of VFs cannot exceed the number of pools */
645 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
646 return FM10K_ERR_PARAM;
647
648 /* record number of virtualization entities */
649 hw->iov.num_vfs = num_vfs;
650 hw->iov.num_pools = num_pools;
651
652 /* determine qmap offsets and counts */
653 qmap_stride = (num_vfs > 8) ? 32 : 256;
654 qpp = fm10k_queues_per_pool(hw);
655 vpp = fm10k_vectors_per_pool(hw);
656
657 /* calculate starting index for queues */
658 vf_q_idx = fm10k_vf_queue_index(hw, 0);
659 qmap_idx = 0;
660
661 /* establish TCs with -1 credits and no quanta to prevent transmit */
662 for (i = 0; i < num_vfs; i++) {
663 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
664 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
665 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
666 FM10K_TC_CREDIT_CREDIT_MASK);
667 }
668
669 /* zero out all mbmem registers */
670 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
671 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
672
673 /* clear event notification of VF FLR */
674 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
675 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
676
677 /* loop through unallocated rings assigning them back to PF */
678 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
679 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
ded8b20d
JK
680 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
681 FM10K_TXQCTL_UNLIMITED_BW | vid);
c2653865
AD
682 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
683 }
684
685 /* PF should have already updated VFITR2[0] */
686
687 /* update all ITR registers to flow to VFITR2[0] */
688 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
689 if (!(i & (vpp - 1)))
690 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
691 else
692 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
693 }
694
695 /* update PF ITR2[0] to reference the last vector */
696 fm10k_write_reg(hw, FM10K_ITR2(0),
697 fm10k_vf_vector_index(hw, num_vfs - 1));
698
699 /* loop through rings populating rings and TCs */
700 for (i = 0; i < num_vfs; i++) {
701 /* record index for VF queue 0 for use in end of loop */
702 vf_q_idx0 = vf_q_idx;
703
704 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
705 /* assign VF and locked TC to queues */
706 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
707 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
708 (i << FM10K_TXQCTL_TC_SHIFT) | i |
709 FM10K_TXQCTL_VF | vid);
710 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
711 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
712 FM10K_RXDCTL_DROP_ON_EMPTY);
713 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
714 FM10K_RXQCTL_VF |
715 (i << FM10K_RXQCTL_VF_SHIFT));
716
717 /* map queue pair to VF */
718 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
719 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
720 }
721
722 /* repeat the first ring for all of the remaining VF rings */
723 for (; j < qmap_stride; j++, qmap_idx++) {
724 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
725 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
726 }
727 }
728
729 /* loop through remaining indexes assigning all to queue 0 */
730 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
731 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
732 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
733 qmap_idx++;
734 }
735
736 return 0;
737}
738
739/**
740 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
741 * @hw: pointer to the HW structure
742 * @vf_idx: index of VF receiving GLORT
743 * @rate: Rate indicated in Mb/s
744 *
745 * Configured the TC for a given VF to allow only up to a given number
746 * of Mb/s of outgoing Tx throughput.
747 **/
748static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
749{
750 /* configure defaults */
751 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
752 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
753
754 /* verify vf is in range */
755 if (vf_idx >= hw->iov.num_vfs)
756 return FM10K_ERR_PARAM;
757
758 /* set interval to align with 4.096 usec in all modes */
759 switch (hw->bus.speed) {
760 case fm10k_bus_speed_2500:
761 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
762 break;
763 case fm10k_bus_speed_5000:
764 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
765 break;
766 default:
767 break;
768 }
769
770 if (rate) {
771 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
772 return FM10K_ERR_PARAM;
773
774 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
775 * The rate is provided in Mbits per second
776 * To tralslate from rate to quanta we need to multiply the
777 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
778 * dealing with floating point we can round the values up
779 * to the nearest whole number ratio which gives us 128 / 125.
780 */
781 tc_rate = (rate * 128) / 125;
782
783 /* try to keep the rate limiting accurate by increasing
784 * the number of credits and interval for rates less than 4Gb/s
785 */
786 if (rate < 4000)
787 interval <<= 1;
788 else
789 tc_rate >>= 1;
790 }
791
792 /* update rate limiter with new values */
793 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
794 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
795 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
796
797 return 0;
798}
799
800/**
801 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
802 * @hw: pointer to the HW structure
803 * @vf_idx: index of VF receiving GLORT
804 *
805 * Update the interrupt moderator linked list to include any MSI-X
806 * interrupts which the VF has enabled in the MSI-X vector table.
807 **/
808static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
809{
810 u16 vf_v_idx, vf_v_limit, i;
811
812 /* verify vf is in range */
813 if (vf_idx >= hw->iov.num_vfs)
814 return FM10K_ERR_PARAM;
815
eca32047 816 /* determine vector offset and count */
c2653865
AD
817 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
818 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
819
820 /* search for first vector that is not masked */
821 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
822 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
823 break;
824 }
825
826 /* reset linked list so it now includes our active vectors */
827 if (vf_idx == (hw->iov.num_vfs - 1))
828 fm10k_write_reg(hw, FM10K_ITR2(0), i);
829 else
830 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
831
832 return 0;
833}
834
835/**
836 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
837 * @hw: pointer to the HW structure
838 * @vf_info: pointer to VF information structure
839 *
840 * Assign a MAC address and default VLAN to a VF and notify it of the update
841 **/
842static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
843 struct fm10k_vf_info *vf_info)
844{
845 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
846 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
847 s32 err = 0;
848 u16 vf_idx, vf_vid;
849
850 /* verify vf is in range */
851 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
852 return FM10K_ERR_PARAM;
853
854 /* determine qmap offsets and counts */
855 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
856 queues_per_pool = fm10k_queues_per_pool(hw);
857
858 /* calculate starting index for queues */
859 vf_idx = vf_info->vf_idx;
860 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
861 qmap_idx = qmap_stride * vf_idx;
862
863 /* MAP Tx queue back to 0 temporarily, and disable it */
864 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
865 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
866
867 /* determine correct default VLAN ID */
868 if (vf_info->pf_vid)
869 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
870 else
871 vf_vid = vf_info->sw_vid;
872
873 /* generate MAC_ADDR request */
874 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
875 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
876 vf_info->mac, vf_vid);
877
878 /* load onto outgoing mailbox, ignore any errors on enqueue */
879 if (vf_info->mbx.ops.enqueue_tx)
880 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
881
882 /* verify ring has disabled before modifying base address registers */
883 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
884 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
885 /* limit ourselves to a 1ms timeout */
886 if (timeout == 10) {
887 err = FM10K_ERR_DMA_PENDING;
888 goto err_out;
889 }
890
891 usleep_range(100, 200);
892 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
893 }
894
895 /* Update base address registers to contain MAC address */
896 if (is_valid_ether_addr(vf_info->mac)) {
897 tdbal = (((u32)vf_info->mac[3]) << 24) |
898 (((u32)vf_info->mac[4]) << 16) |
899 (((u32)vf_info->mac[5]) << 8);
900
901 tdbah = (((u32)0xFF) << 24) |
902 (((u32)vf_info->mac[0]) << 16) |
903 (((u32)vf_info->mac[1]) << 8) |
904 ((u32)vf_info->mac[2]);
905 }
906
907 /* Record the base address into queue 0 */
908 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
909 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
910
20076fa1
JK
911 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
912 * to pass the information during VF initialization. See definition of
913 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
914 */
915 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
916 FM10K_TDLEN_ITR_SCALE_SHIFT);
917
c2653865
AD
918err_out:
919 /* configure Queue control register */
920 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
921 FM10K_TXQCTL_VID_MASK;
922 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
923 FM10K_TXQCTL_VF | vf_idx;
924
aa502b4a 925 /* assign VLAN ID */
c2653865
AD
926 for (i = 0; i < queues_per_pool; i++)
927 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
928
929 /* restore the queue back to VF ownership */
930 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
931 return err;
932}
933
934/**
935 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
936 * @hw: pointer to the HW structure
937 * @vf_info: pointer to VF information structure
938 *
939 * Reassign the interrupts and queues to a VF following an FLR
940 **/
941static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
942 struct fm10k_vf_info *vf_info)
943{
944 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
945 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
946 u16 vf_v_idx, vf_v_limit, vf_vid;
947 u8 vf_idx = vf_info->vf_idx;
948 int i;
949
950 /* verify vf is in range */
951 if (vf_idx >= hw->iov.num_vfs)
952 return FM10K_ERR_PARAM;
953
954 /* clear event notification of VF FLR */
955 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
956
957 /* force timeout and then disconnect the mailbox */
958 vf_info->mbx.timeout = 0;
959 if (vf_info->mbx.ops.disconnect)
960 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
961
eca32047 962 /* determine vector offset and count */
c2653865
AD
963 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
964 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
965
966 /* determine qmap offsets and counts */
967 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
968 queues_per_pool = fm10k_queues_per_pool(hw);
969 qmap_idx = qmap_stride * vf_idx;
970
971 /* make all the queues inaccessible to the VF */
972 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
973 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
974 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
975 }
976
977 /* calculate starting index for queues */
978 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
979
980 /* determine correct default VLAN ID */
981 if (vf_info->pf_vid)
982 vf_vid = vf_info->pf_vid;
983 else
984 vf_vid = vf_info->sw_vid;
985
986 /* configure Queue control register */
987 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
988 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
989 FM10K_TXQCTL_VF | vf_idx;
990 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
991
992 /* stop further DMA and reset queue ownership back to VF */
993 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
994 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
995 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
996 fm10k_write_reg(hw, FM10K_RXDCTL(i),
997 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
998 FM10K_RXDCTL_DROP_ON_EMPTY);
999 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1000 }
1001
1002 /* reset TC with -1 credits and no quanta to prevent transmit */
1003 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1004 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1005 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1006 FM10K_TC_CREDIT_CREDIT_MASK);
1007
1008 /* update our first entry in the table based on previous VF */
1009 if (!vf_idx)
1010 hw->mac.ops.update_int_moderator(hw);
1011 else
1012 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1013
1014 /* reset linked list so it now includes our active vectors */
1015 if (vf_idx == (hw->iov.num_vfs - 1))
1016 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1017 else
1018 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1019
1020 /* link remaining vectors so that next points to previous */
1021 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1022 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1023
1024 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1025 for (i = FM10K_VFMBMEM_LEN; i--;)
1026 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1027 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1028 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1029 for (i = FM10K_RETA_SIZE; i--;)
1030 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1031 for (i = FM10K_RSSRK_SIZE; i--;)
1032 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1033 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1034
1035 /* Update base address registers to contain MAC address */
1036 if (is_valid_ether_addr(vf_info->mac)) {
1037 tdbal = (((u32)vf_info->mac[3]) << 24) |
1038 (((u32)vf_info->mac[4]) << 16) |
1039 (((u32)vf_info->mac[5]) << 8);
1040 tdbah = (((u32)0xFF) << 24) |
1041 (((u32)vf_info->mac[0]) << 16) |
1042 (((u32)vf_info->mac[1]) << 8) |
1043 ((u32)vf_info->mac[2]);
1044 }
1045
eca32047 1046 /* map queue pairs back to VF from last to first */
c2653865
AD
1047 for (i = queues_per_pool; i--;) {
1048 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1049 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
20076fa1
JK
1050 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1051 * explanation of how TDLEN is used.
1052 */
1053 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1054 hw->mac.itr_scale <<
1055 FM10K_TDLEN_ITR_SCALE_SHIFT);
c2653865
AD
1056 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1057 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1058 }
1059
fba341d5
JK
1060 /* repeat the first ring for all the remaining VF rings */
1061 for (i = queues_per_pool; i < qmap_stride; i++) {
1062 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1063 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1064 }
1065
c2653865
AD
1066 return 0;
1067}
1068
1069/**
1070 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1071 * @hw: pointer to hardware structure
1072 * @vf_info: pointer to VF information structure
1073 * @lport_idx: Logical port offset from the hardware glort
1074 * @flags: Set of capability flags to extend port beyond basic functionality
1075 *
1076 * This function allows enabling a VF port by assigning it a GLORT and
1077 * setting the flags so that it can enable an Rx mode.
1078 **/
1079static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1080 struct fm10k_vf_info *vf_info,
1081 u16 lport_idx, u8 flags)
1082{
1083 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1084
1085 /* if glort is not valid return error */
1086 if (!fm10k_glort_valid_pf(hw, glort))
1087 return FM10K_ERR_PARAM;
1088
1089 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1090 vf_info->glort = glort;
1091
1092 return 0;
1093}
1094
1095/**
1096 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1097 * @hw: pointer to hardware structure
1098 * @vf_info: pointer to VF information structure
1099 *
1100 * This function disables a VF port by stripping it of a GLORT and
1101 * setting the flags so that it cannot enable any Rx mode.
1102 **/
1103static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1104 struct fm10k_vf_info *vf_info)
1105{
1106 u32 msg[1];
1107
1108 /* need to disable the port if it is already enabled */
1109 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1110 /* notify switch that this port has been disabled */
1111 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1112
1113 /* generate port state response to notify VF it is not ready */
1114 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1115 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1116 }
1117
1118 /* clear flags and glort if it exists */
1119 vf_info->vf_flags = 0;
1120 vf_info->glort = 0;
1121}
1122
1123/**
1124 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1125 * @hw: pointer to hardware structure
1126 * @q: stats for all queues of a VF
1127 * @vf_idx: index of VF
1128 *
1129 * This function collects queue stats for VFs.
1130 **/
1131static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1132 struct fm10k_hw_stats_q *q,
1133 u16 vf_idx)
1134{
1135 u32 idx, qpp;
1136
1137 /* get stats for all of the queues */
1138 qpp = fm10k_queues_per_pool(hw);
1139 idx = fm10k_vf_queue_index(hw, vf_idx);
1140 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1141}
1142
5f226ddb
AD
1143static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1144 struct fm10k_vf_info *vf_info,
1145 u64 timestamp)
1146{
1147 u32 msg[4];
1148
1149 /* generate port state response to notify VF it is not ready */
1150 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1151 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1152
1153 return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1154}
1155
c2653865
AD
1156/**
1157 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1158 * @hw: Pointer to hardware structure
1159 * @results: Pointer array to message, results[0] is pointer to message
1160 * @mbx: Pointer to mailbox information structure
1161 *
1162 * This function is a default handler for MSI-X requests from the VF. The
1163 * assumption is that in this case it is acceptable to just directly
eca32047 1164 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1165 **/
1166s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1167 struct fm10k_mbx_info *mbx)
1168{
1169 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1170 u8 vf_idx = vf_info->vf_idx;
1171
1172 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1173}
1174
9adbac59 1175/**
aa502b4a 1176 * fm10k_iov_select_vid - Select correct default VLAN ID
9adbac59 1177 * @hw: Pointer to hardware structure
aa502b4a 1178 * @vid: VLAN ID to correct
9adbac59 1179 *
aa502b4a
JK
1180 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1181 * return either the pf_vid or sw_vid depending on which one is set.
9adbac59 1182 */
e214d85b 1183static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
9adbac59
JK
1184{
1185 if (!vid)
1186 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1187 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1188 return FM10K_ERR_PARAM;
1189 else
1190 return vid;
1191}
1192
c2653865
AD
1193/**
1194 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1195 * @hw: Pointer to hardware structure
1196 * @results: Pointer array to message, results[0] is pointer to message
1197 * @mbx: Pointer to mailbox information structure
1198 *
1199 * This function is a default handler for MAC/VLAN requests from the VF.
1200 * The assumption is that in this case it is acceptable to just directly
eca32047 1201 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1202 **/
1203s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1204 struct fm10k_mbx_info *mbx)
1205{
1206 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
c2653865
AD
1207 u8 mac[ETH_ALEN];
1208 u32 *result;
9adbac59
JK
1209 int err = 0;
1210 bool set;
c2653865
AD
1211 u16 vlan;
1212 u32 vid;
1213
1214 /* we shouldn't be updating rules on a disabled interface */
1215 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1216 err = FM10K_ERR_PARAM;
1217
1218 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1219 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1220
1221 /* record VLAN id requested */
1222 err = fm10k_tlv_attr_get_u32(result, &vid);
1223 if (err)
1224 return err;
1225
9adbac59
JK
1226 set = !(vid & FM10K_VLAN_CLEAR);
1227 vid &= ~FM10K_VLAN_CLEAR;
1228
f808c5db
JK
1229 /* if the length field has been set, this is a multi-bit
1230 * update request. For multi-bit requests, simply disallow
1231 * them when the pf_vid has been set. In this case, the PF
1232 * should have already cleared the VLAN_TABLE, and if we
1233 * allowed them, it could allow a rogue VF to receive traffic
1234 * on a VLAN it was not assigned. In the single-bit case, we
1235 * need to modify requests for VLAN 0 to use the default PF or
1236 * SW vid when assigned.
1237 */
4ab0f79b 1238
f808c5db
JK
1239 if (vid >> 16) {
1240 /* prevent multi-bit requests when PF has
1241 * administratively set the VLAN for this VF
1242 */
1243 if (vf_info->pf_vid)
1244 return FM10K_ERR_PARAM;
1245 } else {
1246 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1247 if (err < 0)
1248 return err;
1249
1250 vid = err;
1251 }
c2653865
AD
1252
1253 /* update VSI info for VF in regards to VLAN table */
9adbac59 1254 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
c2653865
AD
1255 }
1256
1257 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1258 result = results[FM10K_MAC_VLAN_MSG_MAC];
1259
1260 /* record unicast MAC address requested */
1261 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1262 if (err)
1263 return err;
1264
1265 /* block attempts to set MAC for a locked device */
1266 if (is_valid_ether_addr(vf_info->mac) &&
6186ddf0 1267 !ether_addr_equal(mac, vf_info->mac))
c2653865
AD
1268 return FM10K_ERR_PARAM;
1269
9adbac59
JK
1270 set = !(vlan & FM10K_VLAN_CLEAR);
1271 vlan &= ~FM10K_VLAN_CLEAR;
1272
1273 err = fm10k_iov_select_vid(vf_info, vlan);
1274 if (err < 0)
1275 return err;
4ab0f79b
JK
1276
1277 vlan = (u16)err;
c2653865
AD
1278
1279 /* notify switch of request for new unicast address */
9adbac59
JK
1280 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1281 mac, vlan, set, 0);
c2653865
AD
1282 }
1283
1284 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1285 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1286
1287 /* record multicast MAC address requested */
1288 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1289 if (err)
1290 return err;
1291
1292 /* verify that the VF is allowed to request multicast */
1293 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1294 return FM10K_ERR_PARAM;
1295
9adbac59
JK
1296 set = !(vlan & FM10K_VLAN_CLEAR);
1297 vlan &= ~FM10K_VLAN_CLEAR;
1298
1299 err = fm10k_iov_select_vid(vf_info, vlan);
1300 if (err < 0)
1301 return err;
4ab0f79b
JK
1302
1303 vlan = (u16)err;
c2653865
AD
1304
1305 /* notify switch of request for new multicast address */
9adbac59
JK
1306 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1307 mac, vlan, set);
c2653865
AD
1308 }
1309
1310 return err;
1311}
1312
1313/**
1314 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1315 * @vf_info: VF info structure containing capability flags
1316 * @mode: Requested xcast mode
1317 *
1318 * This function outputs the mode that most closely matches the requested
1319 * mode. If not modes match it will request we disable the port
1320 **/
1321static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1322 u8 mode)
1323{
1324 u8 vf_flags = vf_info->vf_flags;
1325
1326 /* match up mode to capabilities as best as possible */
1327 switch (mode) {
1328 case FM10K_XCAST_MODE_PROMISC:
1329 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1330 return FM10K_XCAST_MODE_PROMISC;
1331 /* fallthough */
1332 case FM10K_XCAST_MODE_ALLMULTI:
1333 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1334 return FM10K_XCAST_MODE_ALLMULTI;
1335 /* fallthough */
1336 case FM10K_XCAST_MODE_MULTI:
1337 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1338 return FM10K_XCAST_MODE_MULTI;
1339 /* fallthough */
1340 case FM10K_XCAST_MODE_NONE:
1341 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1342 return FM10K_XCAST_MODE_NONE;
1343 /* fallthough */
1344 default:
1345 break;
1346 }
1347
1348 /* disable interface as it should not be able to request any */
1349 return FM10K_XCAST_MODE_DISABLE;
1350}
1351
1352/**
1353 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1354 * @hw: Pointer to hardware structure
1355 * @results: Pointer array to message, results[0] is pointer to message
1356 * @mbx: Pointer to mailbox information structure
1357 *
1358 * This function is a default handler for port state requests. The port
1359 * state requests for now are basic and consist of enabling or disabling
1360 * the port.
1361 **/
1362s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1363 struct fm10k_mbx_info *mbx)
1364{
1365 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1366 u32 *result;
1367 s32 err = 0;
1368 u32 msg[2];
1369 u8 mode = 0;
1370
1371 /* verify VF is allowed to enable even minimal mode */
1372 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1373 return FM10K_ERR_PARAM;
1374
1375 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1376 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1377
1378 /* XCAST mode update requested */
1379 err = fm10k_tlv_attr_get_u8(result, &mode);
1380 if (err)
1381 return FM10K_ERR_PARAM;
1382
1383 /* prep for possible demotion depending on capabilities */
1384 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1385
1386 /* if mode is not currently enabled, enable it */
1387 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1388 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1389
1390 /* swap mode back to a bit flag */
1391 mode = FM10K_VF_FLAG_SET_MODE(mode);
1392 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1393 /* need to disable the port if it is already enabled */
1394 if (FM10K_VF_FLAG_ENABLED(vf_info))
1395 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1396 1, false);
1397
ee4373e7
JK
1398 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1399 * that we actually re-enable the LPORT state below. Note that
1400 * this has no impact if the VF is already disabled, as the
1401 * flags are already cleared.
1402 */
1403 if (!err)
1404 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1405
c2653865
AD
1406 /* when enabling the port we should reset the rate limiters */
1407 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1408
1409 /* set mode for minimal functionality */
1410 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1411
1412 /* generate port state response to notify VF it is ready */
1413 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1414 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1415 mbx->ops.enqueue_tx(hw, mbx, msg);
1416 }
1417
1418 /* if enable state toggled note the update */
1419 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1420 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1421 !!mode);
1422
1423 /* if state change succeeded, then update our stored state */
1424 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1425 if (!err)
1426 vf_info->vf_flags = mode;
1427
1428 return err;
1429}
1430
b6fec18f
AD
1431/**
1432 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1433 * @hw: pointer to hardware structure
1434 * @stats: pointer to the stats structure to update
1435 *
1436 * This function collects and aggregates global and per queue hardware
1437 * statistics.
1438 **/
1439static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1440 struct fm10k_hw_stats *stats)
1441{
1442 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1443 u32 id, id_prev;
1444
1445 /* Use Tx queue 0 as a canary to detect a reset */
1446 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1447
1448 /* Read Global Statistics */
1449 do {
1450 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1451 &stats->timeout);
1452 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1453 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1454 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1455 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1456 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1457 &stats->vlan_drop);
3d02b3df
BA
1458 loopback_drop =
1459 fm10k_read_hw_stats_32b(hw,
1460 FM10K_STATS_LOOPBACK_DROP,
1461 &stats->loopback_drop);
b6fec18f
AD
1462 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1463 FM10K_STATS_NODESC_DROP,
1464 &stats->nodesc_drop);
1465
1466 /* if value has not changed then we have consistent data */
1467 id_prev = id;
1468 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1469 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1470
1471 /* drop non-ID bits and set VALID ID bit */
1472 id &= FM10K_TXQCTL_ID_MASK;
1473 id |= FM10K_STAT_VALID;
1474
1475 /* Update Global Statistics */
1476 if (stats->stats_idx == id) {
1477 stats->timeout.count += timeout;
1478 stats->ur.count += ur;
1479 stats->ca.count += ca;
1480 stats->um.count += um;
1481 stats->xec.count += xec;
1482 stats->vlan_drop.count += vlan_drop;
1483 stats->loopback_drop.count += loopback_drop;
1484 stats->nodesc_drop.count += nodesc_drop;
1485 }
1486
1487 /* Update bases and record current PF id */
1488 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1489 fm10k_update_hw_base_32b(&stats->ur, ur);
1490 fm10k_update_hw_base_32b(&stats->ca, ca);
1491 fm10k_update_hw_base_32b(&stats->um, um);
1492 fm10k_update_hw_base_32b(&stats->xec, xec);
1493 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1494 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1495 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1496 stats->stats_idx = id;
1497
1498 /* Update Queue Statistics */
1499 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1500}
1501
1502/**
1503 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1504 * @hw: pointer to hardware structure
1505 * @stats: pointer to the stats structure to update
1506 *
1507 * This function resets the base for global and per queue hardware
1508 * statistics.
1509 **/
1510static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1511 struct fm10k_hw_stats *stats)
1512{
1513 /* Unbind Global Statistics */
1514 fm10k_unbind_hw_stats_32b(&stats->timeout);
1515 fm10k_unbind_hw_stats_32b(&stats->ur);
1516 fm10k_unbind_hw_stats_32b(&stats->ca);
1517 fm10k_unbind_hw_stats_32b(&stats->um);
1518 fm10k_unbind_hw_stats_32b(&stats->xec);
1519 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1520 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1521 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1522
1523 /* Unbind Queue Statistics */
1524 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1525
1526 /* Reinitialize bases for all stats */
1527 fm10k_update_hw_stats_pf(hw, stats);
1528}
1529
401b5383
AD
1530/**
1531 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1532 * @hw: pointer to hardware structure
1533 * @dma_mask: 64 bit DMA mask required for platform
1534 *
1535 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1536 * to limit the access to memory beyond what is physically in the system.
1537 **/
1538static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1539{
1540 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1541 u32 phyaddr = (u32)(dma_mask >> 32);
1542
1543 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1544}
1545
b6fec18f
AD
1546/**
1547 * fm10k_get_fault_pf - Record a fault in one of the interface units
1548 * @hw: pointer to hardware structure
1549 * @type: pointer to fault type register offset
1550 * @fault: pointer to memory location to record the fault
1551 *
1552 * Record the fault register contents to the fault data structure and
1553 * clear the entry from the register.
1554 *
1555 * Returns ERR_PARAM if invalid register is specified or no error is present.
1556 **/
1557static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1558 struct fm10k_fault *fault)
1559{
1560 u32 func;
1561
1562 /* verify the fault register is in range and is aligned */
1563 switch (type) {
1564 case FM10K_PCA_FAULT:
1565 case FM10K_THI_FAULT:
1566 case FM10K_FUM_FAULT:
1567 break;
1568 default:
1569 return FM10K_ERR_PARAM;
1570 }
1571
1572 /* only service faults that are valid */
1573 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1574 if (!(func & FM10K_FAULT_FUNC_VALID))
1575 return FM10K_ERR_PARAM;
1576
1577 /* read remaining fields */
1578 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1579 fault->address <<= 32;
1580 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1581 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1582
1583 /* clear valid bit to allow for next error */
1584 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1585
1586 /* Record which function triggered the error */
1587 if (func & FM10K_FAULT_FUNC_PF)
1588 fault->func = 0;
1589 else
1590 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1591 FM10K_FAULT_FUNC_VF_SHIFT);
1592
1593 /* record fault type */
1594 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1595
1596 return 0;
1597}
1598
401b5383
AD
1599/**
1600 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1601 * @hw: pointer to hardware structure
1602 *
1603 **/
1604static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1605{
1606 struct fm10k_mbx_info *mbx = &hw->mbx;
1607 u32 msg[1];
1608
1609 /* issue request asking for LPORT map */
1610 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1611
1612 /* load onto outgoing mailbox */
1613 return mbx->ops.enqueue_tx(hw, mbx, msg);
1614}
1615
1616/**
1617 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1618 * @hw: pointer to hardware structure
1619 * @switch_ready: pointer to boolean value that will record switch state
1620 *
1621 * This funciton will check the DMA_CTRL2 register and mailbox in order
1622 * to determine if the switch is ready for the PF to begin requesting
1623 * addresses and mapping traffic to the local interface.
1624 **/
1625static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1626{
1627 s32 ret_val = 0;
1628 u32 dma_ctrl2;
1629
eca32047 1630 /* verify the switch is ready for interaction */
401b5383
AD
1631 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1632 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1633 goto out;
1634
1635 /* retrieve generic host state info */
1636 ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1637 if (ret_val)
1638 goto out;
1639
1640 /* interface cannot receive traffic without logical ports */
1641 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1642 ret_val = fm10k_request_lport_map_pf(hw);
1643
1644out:
1645 return ret_val;
1646}
1647
1648/* This structure defines the attibutes to be parsed below */
1649const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1651 FM10K_TLV_ATTR_LAST
1652};
1653
1654/**
1655 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1656 * @hw: Pointer to hardware structure
1657 * @results: pointer array containing parsed data
1658 * @mbx: Pointer to mailbox information structure
1659 *
1660 * This handler configures the lport mapping based on the reply from the
1661 * switch API.
1662 **/
1663s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1664 struct fm10k_mbx_info *mbx)
1665{
1666 u16 glort, mask;
1667 u32 dglort_map;
1668 s32 err;
1669
1670 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1671 &dglort_map);
1672 if (err)
1673 return err;
1674
1675 /* extract values out of the header */
1676 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1677 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1678
1679 /* verify mask is set and none of the masked bits in glort are set */
1680 if (!mask || (glort & ~mask))
1681 return FM10K_ERR_PARAM;
1682
1683 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1684 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1685 return FM10K_ERR_PARAM;
1686
1687 /* record the glort, mask, and port count */
1688 hw->mac.dglort_map = dglort_map;
1689
1690 return 0;
1691}
1692
1693const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1694 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1695 FM10K_TLV_ATTR_LAST
1696};
1697
1698/**
1699 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1700 * @hw: Pointer to hardware structure
1701 * @results: pointer array containing parsed data
1702 * @mbx: Pointer to mailbox information structure
1703 *
1704 * This handler configures the default VLAN for the PF
1705 **/
bb269e8b
BA
1706static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1707 struct fm10k_mbx_info *mbx)
401b5383
AD
1708{
1709 u16 glort, pvid;
1710 u32 pvid_update;
1711 s32 err;
1712
1713 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1714 &pvid_update);
1715 if (err)
1716 return err;
1717
1718 /* extract values from the pvid update */
1719 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1720 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1721
1722 /* if glort is not valid return error */
1723 if (!fm10k_glort_valid_pf(hw, glort))
1724 return FM10K_ERR_PARAM;
1725
aa502b4a 1726 /* verify VLAN ID is valid */
401b5383
AD
1727 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1728 return FM10K_ERR_PARAM;
1729
1730 /* record the port VLAN ID value */
1731 hw->mac.default_vid = pvid;
1732
1733 return 0;
1734}
1735
1736/**
1737 * fm10k_record_global_table_data - Move global table data to swapi table info
1738 * @from: pointer to source table data structure
1739 * @to: pointer to destination table info structure
1740 *
1741 * This function is will copy table_data to the table_info contained in
1742 * the hw struct.
1743 **/
1744static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1745 struct fm10k_swapi_table_info *to)
1746{
1747 /* convert from le32 struct to CPU byte ordered values */
1748 to->used = le32_to_cpu(from->used);
1749 to->avail = le32_to_cpu(from->avail);
1750}
1751
1752const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1753 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1754 sizeof(struct fm10k_swapi_error)),
1755 FM10K_TLV_ATTR_LAST
1756};
1757
1758/**
1759 * fm10k_msg_err_pf - Message handler for error reply
1760 * @hw: Pointer to hardware structure
1761 * @results: pointer array containing parsed data
1762 * @mbx: Pointer to mailbox information structure
1763 *
1764 * This handler will capture the data for any error replies to previous
1765 * messages that the PF has sent.
1766 **/
1767s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1768 struct fm10k_mbx_info *mbx)
1769{
1770 struct fm10k_swapi_error err_msg;
1771 s32 err;
1772
1773 /* extract structure from message */
1774 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1775 &err_msg, sizeof(err_msg));
1776 if (err)
1777 return err;
1778
1779 /* record table status */
1780 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1781 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1782 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1783
1784 /* record SW API status value */
1785 hw->swapi.status = le32_to_cpu(err_msg.status);
1786
1787 return 0;
1788}
1789
5f226ddb
AD
1790const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1791 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1792 sizeof(struct fm10k_swapi_1588_timestamp)),
1793 FM10K_TLV_ATTR_LAST
1794};
1795
1796/* currently there is no shared 1588 timestamp handler */
1797
1798/**
1799 * fm10k_adjust_systime_pf - Adjust systime frequency
1800 * @hw: pointer to hardware structure
1801 * @ppb: adjustment rate in parts per billion
1802 *
1803 * This function will adjust the SYSTIME_CFG register contained in BAR 4
1804 * if this function is supported for BAR 4 access. The adjustment amount
1805 * is based on the parts per billion value provided and adjusted to a
1806 * value based on parts per 2^48 clock cycles.
1807 *
1808 * If adjustment is not supported or the requested value is too large
1809 * we will return an error.
1810 **/
1811static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1812{
1813 u64 systime_adjust;
1814
1815 /* if sw_addr is not set we don't have switch register access */
1816 if (!hw->sw_addr)
1817 return ppb ? FM10K_ERR_PARAM : 0;
1818
1819 /* we must convert the value from parts per billion to parts per
1820 * 2^48 cycles. In addition I have opted to only use the 30 most
1821 * significant bits of the adjustment value as the 8 least
1822 * significant bits are located in another register and represent
1823 * a value significantly less than a part per billion, the result
1824 * of dropping the 8 least significant bits is that the adjustment
1825 * value is effectively multiplied by 2^8 when we write it.
1826 *
1827 * As a result of all this the math for this breaks down as follows:
1828 * ppb / 10^9 == adjust * 2^8 / 2^48
1829 * If we solve this for adjust, and simplify it comes out as:
1830 * ppb * 2^31 / 5^9 == adjust
1831 */
1832 systime_adjust = (ppb < 0) ? -ppb : ppb;
1833 systime_adjust <<= 31;
1834 do_div(systime_adjust, 1953125);
1835
1836 /* verify the requested adjustment value is in range */
1837 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1838 return FM10K_ERR_PARAM;
1839
646725a7
JK
1840 if (ppb > 0)
1841 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
5f226ddb
AD
1842
1843 fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1844
1845 return 0;
1846}
1847
1848/**
1849 * fm10k_read_systime_pf - Reads value of systime registers
1850 * @hw: pointer to the hardware structure
1851 *
1852 * Function reads the content of 2 registers, combined to represent a 64 bit
1853 * value measured in nanosecods. In order to guarantee the value is accurate
1854 * we check the 32 most significant bits both before and after reading the
1855 * 32 least significant bits to verify they didn't change as we were reading
1856 * the registers.
1857 **/
1858static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1859{
1860 u32 systime_l, systime_h, systime_tmp;
1861
1862 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1863
1864 do {
1865 systime_tmp = systime_h;
1866 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1867 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1868 } while (systime_tmp != systime_h);
1869
1870 return ((u64)systime_h << 32) | systime_l;
1871}
1872
401b5383
AD
1873static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1874 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1875 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1876 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1877 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1878 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1879 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1880 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1881};
1882
f329ad73 1883static const struct fm10k_mac_ops mac_ops_pf = {
4e458cfb
BA
1884 .get_bus_info = fm10k_get_bus_info_generic,
1885 .reset_hw = fm10k_reset_hw_pf,
1886 .init_hw = fm10k_init_hw_pf,
1887 .start_hw = fm10k_start_hw_generic,
1888 .stop_hw = fm10k_stop_hw_generic,
1889 .update_vlan = fm10k_update_vlan_pf,
1890 .read_mac_addr = fm10k_read_mac_addr_pf,
1891 .update_uc_addr = fm10k_update_uc_addr_pf,
1892 .update_mc_addr = fm10k_update_mc_addr_pf,
1893 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1894 .update_int_moderator = fm10k_update_int_moderator_pf,
1895 .update_lport_state = fm10k_update_lport_state_pf,
1896 .update_hw_stats = fm10k_update_hw_stats_pf,
1897 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1898 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1899 .set_dma_mask = fm10k_set_dma_mask_pf,
1900 .get_fault = fm10k_get_fault_pf,
1901 .get_host_state = fm10k_get_host_state_pf,
1902 .adjust_systime = fm10k_adjust_systime_pf,
1903 .read_systime = fm10k_read_systime_pf,
b6fec18f
AD
1904};
1905
f329ad73 1906static const struct fm10k_iov_ops iov_ops_pf = {
4e458cfb
BA
1907 .assign_resources = fm10k_iov_assign_resources_pf,
1908 .configure_tc = fm10k_iov_configure_tc_pf,
1909 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
c2653865 1910 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
4e458cfb
BA
1911 .reset_resources = fm10k_iov_reset_resources_pf,
1912 .set_lport = fm10k_iov_set_lport_pf,
1913 .reset_lport = fm10k_iov_reset_lport_pf,
1914 .update_stats = fm10k_iov_update_stats_pf,
1915 .report_timestamp = fm10k_iov_report_timestamp_pf,
c2653865
AD
1916};
1917
401b5383
AD
1918static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1919{
1920 fm10k_get_invariants_generic(hw);
1921
1922 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1923}
1924
f329ad73 1925const struct fm10k_info fm10k_pf_info = {
b6fec18f 1926 .mac = fm10k_mac_pf,
4e458cfb 1927 .get_invariants = fm10k_get_invariants_pf,
b6fec18f 1928 .mac_ops = &mac_ops_pf,
c2653865 1929 .iov_ops = &iov_ops_pf,
b6fec18f 1930};