dm thin: split discards on block boundary
[linux-2.6-block.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
7768ed33 22#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0
JT
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
a24c2569 114struct dm_bio_prison_cell {
991d9fa0
JT
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
a24c2569
MS
144static struct kmem_cache *_cell_cache;
145
991d9fa0
JT
146/*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150static struct bio_prison *prison_create(unsigned nr_cells)
151{
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
a24c2569 162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
991d9fa0
JT
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175}
176
177static void prison_destroy(struct bio_prison *prison)
178{
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181}
182
183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184{
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189}
190
191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192{
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196}
197
a24c2569
MS
198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
991d9fa0 200{
a24c2569 201 struct dm_bio_prison_cell *cell;
991d9fa0
JT
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209}
210
211/*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
6f94a4c4 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
216 */
217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
a24c2569 218 struct bio *inmate, struct dm_bio_prison_cell **ref)
991d9fa0 219{
6f94a4c4 220 int r = 1;
991d9fa0
JT
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
a24c2569 223 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 228
6f94a4c4
JT
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
991d9fa0
JT
233 }
234
6f94a4c4
JT
235 /*
236 * Allocate a new cell
237 */
991d9fa0 238 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 241
6f94a4c4
JT
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
991d9fa0 248 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266out:
267 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
268
269 *ref = cell;
270
271 return r;
272}
273
274/*
275 * @inmates must have been initialised prior to this call
276 */
a24c2569 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
991d9fa0
JT
278{
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
03aaae7c
MS
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
991d9fa0
JT
287
288 mempool_free(cell, prison->cell_pool);
289}
290
a24c2569 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
991d9fa0
JT
292{
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299}
300
301/*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
a24c2569 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
6f94a4c4 308{
6f94a4c4
JT
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
311
312 __cell_release(cell, NULL);
6f94a4c4
JT
313}
314
a24c2569 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0 316{
991d9fa0 317 unsigned long flags;
6f94a4c4 318 struct bio_prison *prison = cell->prison;
991d9fa0
JT
319
320 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 321 __cell_release_singleton(cell, bio);
991d9fa0 322 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
323}
324
325/*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
a24c2569
MS
328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
6f94a4c4
JT
330{
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337}
338
a24c2569
MS
339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
6f94a4c4
JT
341{
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
991d9fa0 344
6f94a4c4
JT
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
348}
349
a24c2569 350static void cell_error(struct dm_bio_prison_cell *cell)
991d9fa0
JT
351{
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365}
366
367/*----------------------------------------------------------------*/
368
369/*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376struct deferred_set;
377struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381};
382
383struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388};
389
390static void ds_init(struct deferred_set *ds)
391{
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402}
403
404static struct deferred_entry *ds_inc(struct deferred_set *ds)
405{
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415}
416
417static unsigned ds_next(unsigned index)
418{
419 return (index + 1) % DEFERRED_SET_SIZE;
420}
421
422static void __sweep(struct deferred_set *ds, struct list_head *head)
423{
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432}
433
434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435{
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443}
444
445/*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449{
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467}
468
469/*----------------------------------------------------------------*/
470
471/*
472 * Key building.
473 */
474static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476{
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480}
481
482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484{
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488}
489
490/*----------------------------------------------------------------*/
491
492/*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
a24c2569 497struct dm_thin_new_mapping;
67e2e2b2
JT
498
499struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503};
504
991d9fa0
JT
505struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
991d9fa0 513 dm_block_t low_water_blocks;
55f2b8bd 514 uint32_t sectors_per_block;
991d9fa0 515
67e2e2b2 516 struct pool_features pf;
991d9fa0
JT
517 unsigned low_water_triggered:1; /* A dm event has been sent */
518 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
519
520 struct bio_prison *prison;
521 struct dm_kcopyd_client *copier;
522
523 struct workqueue_struct *wq;
524 struct work_struct worker;
905e51b3 525 struct delayed_work waker;
991d9fa0 526
905e51b3 527 unsigned long last_commit_jiffies;
55f2b8bd 528 unsigned ref_count;
991d9fa0
JT
529
530 spinlock_t lock;
531 struct bio_list deferred_bios;
532 struct bio_list deferred_flush_bios;
533 struct list_head prepared_mappings;
104655fd 534 struct list_head prepared_discards;
991d9fa0
JT
535
536 struct bio_list retry_on_resume_list;
537
eb2aa48d 538 struct deferred_set shared_read_ds;
104655fd 539 struct deferred_set all_io_ds;
991d9fa0 540
a24c2569 541 struct dm_thin_new_mapping *next_mapping;
991d9fa0
JT
542 mempool_t *mapping_pool;
543 mempool_t *endio_hook_pool;
544};
545
546/*
547 * Target context for a pool.
548 */
549struct pool_c {
550 struct dm_target *ti;
551 struct pool *pool;
552 struct dm_dev *data_dev;
553 struct dm_dev *metadata_dev;
554 struct dm_target_callbacks callbacks;
555
556 dm_block_t low_water_blocks;
67e2e2b2 557 struct pool_features pf;
991d9fa0
JT
558};
559
560/*
561 * Target context for a thin.
562 */
563struct thin_c {
564 struct dm_dev *pool_dev;
2dd9c257 565 struct dm_dev *origin_dev;
991d9fa0
JT
566 dm_thin_id dev_id;
567
568 struct pool *pool;
569 struct dm_thin_device *td;
570};
571
572/*----------------------------------------------------------------*/
573
574/*
575 * A global list of pools that uses a struct mapped_device as a key.
576 */
577static struct dm_thin_pool_table {
578 struct mutex mutex;
579 struct list_head pools;
580} dm_thin_pool_table;
581
582static void pool_table_init(void)
583{
584 mutex_init(&dm_thin_pool_table.mutex);
585 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
586}
587
588static void __pool_table_insert(struct pool *pool)
589{
590 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
591 list_add(&pool->list, &dm_thin_pool_table.pools);
592}
593
594static void __pool_table_remove(struct pool *pool)
595{
596 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
597 list_del(&pool->list);
598}
599
600static struct pool *__pool_table_lookup(struct mapped_device *md)
601{
602 struct pool *pool = NULL, *tmp;
603
604 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
605
606 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
607 if (tmp->pool_md == md) {
608 pool = tmp;
609 break;
610 }
611 }
612
613 return pool;
614}
615
616static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
617{
618 struct pool *pool = NULL, *tmp;
619
620 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
621
622 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
623 if (tmp->md_dev == md_dev) {
624 pool = tmp;
625 break;
626 }
627 }
628
629 return pool;
630}
631
632/*----------------------------------------------------------------*/
633
a24c2569 634struct dm_thin_endio_hook {
eb2aa48d
JT
635 struct thin_c *tc;
636 struct deferred_entry *shared_read_entry;
104655fd 637 struct deferred_entry *all_io_entry;
a24c2569 638 struct dm_thin_new_mapping *overwrite_mapping;
eb2aa48d
JT
639};
640
991d9fa0
JT
641static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
642{
643 struct bio *bio;
644 struct bio_list bios;
645
646 bio_list_init(&bios);
647 bio_list_merge(&bios, master);
648 bio_list_init(master);
649
650 while ((bio = bio_list_pop(&bios))) {
a24c2569
MS
651 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
652
eb2aa48d 653 if (h->tc == tc)
991d9fa0
JT
654 bio_endio(bio, DM_ENDIO_REQUEUE);
655 else
656 bio_list_add(master, bio);
657 }
658}
659
660static void requeue_io(struct thin_c *tc)
661{
662 struct pool *pool = tc->pool;
663 unsigned long flags;
664
665 spin_lock_irqsave(&pool->lock, flags);
666 __requeue_bio_list(tc, &pool->deferred_bios);
667 __requeue_bio_list(tc, &pool->retry_on_resume_list);
668 spin_unlock_irqrestore(&pool->lock, flags);
669}
670
671/*
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
675 * target.
676 */
677
678static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679{
55f2b8bd
MS
680 sector_t block_nr = bio->bi_sector;
681
682 (void) sector_div(block_nr, tc->pool->sectors_per_block);
683
684 return block_nr;
991d9fa0
JT
685}
686
687static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
688{
689 struct pool *pool = tc->pool;
55f2b8bd 690 sector_t bi_sector = bio->bi_sector;
991d9fa0
JT
691
692 bio->bi_bdev = tc->pool_dev->bdev;
55f2b8bd
MS
693 bio->bi_sector = (block * pool->sectors_per_block) +
694 sector_div(bi_sector, pool->sectors_per_block);
991d9fa0
JT
695}
696
2dd9c257
JT
697static void remap_to_origin(struct thin_c *tc, struct bio *bio)
698{
699 bio->bi_bdev = tc->origin_dev->bdev;
700}
701
702static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
703{
704 struct pool *pool = tc->pool;
705 unsigned long flags;
706
991d9fa0
JT
707 /*
708 * Batch together any FUA/FLUSH bios we find and then issue
709 * a single commit for them in process_deferred_bios().
710 */
711 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
712 spin_lock_irqsave(&pool->lock, flags);
713 bio_list_add(&pool->deferred_flush_bios, bio);
714 spin_unlock_irqrestore(&pool->lock, flags);
715 } else
716 generic_make_request(bio);
717}
718
2dd9c257
JT
719static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
720{
721 remap_to_origin(tc, bio);
722 issue(tc, bio);
723}
724
725static void remap_and_issue(struct thin_c *tc, struct bio *bio,
726 dm_block_t block)
727{
728 remap(tc, bio, block);
729 issue(tc, bio);
730}
731
991d9fa0
JT
732/*
733 * wake_worker() is used when new work is queued and when pool_resume is
734 * ready to continue deferred IO processing.
735 */
736static void wake_worker(struct pool *pool)
737{
738 queue_work(pool->wq, &pool->worker);
739}
740
741/*----------------------------------------------------------------*/
742
743/*
744 * Bio endio functions.
745 */
a24c2569 746struct dm_thin_new_mapping {
991d9fa0
JT
747 struct list_head list;
748
eb2aa48d
JT
749 unsigned quiesced:1;
750 unsigned prepared:1;
104655fd 751 unsigned pass_discard:1;
991d9fa0
JT
752
753 struct thin_c *tc;
754 dm_block_t virt_block;
755 dm_block_t data_block;
a24c2569 756 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
757 int err;
758
759 /*
760 * If the bio covers the whole area of a block then we can avoid
761 * zeroing or copying. Instead this bio is hooked. The bio will
762 * still be in the cell, so care has to be taken to avoid issuing
763 * the bio twice.
764 */
765 struct bio *bio;
766 bio_end_io_t *saved_bi_end_io;
767};
768
a24c2569 769static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
770{
771 struct pool *pool = m->tc->pool;
772
eb2aa48d 773 if (m->quiesced && m->prepared) {
991d9fa0
JT
774 list_add(&m->list, &pool->prepared_mappings);
775 wake_worker(pool);
776 }
777}
778
779static void copy_complete(int read_err, unsigned long write_err, void *context)
780{
781 unsigned long flags;
a24c2569 782 struct dm_thin_new_mapping *m = context;
991d9fa0
JT
783 struct pool *pool = m->tc->pool;
784
785 m->err = read_err || write_err ? -EIO : 0;
786
787 spin_lock_irqsave(&pool->lock, flags);
788 m->prepared = 1;
789 __maybe_add_mapping(m);
790 spin_unlock_irqrestore(&pool->lock, flags);
791}
792
793static void overwrite_endio(struct bio *bio, int err)
794{
795 unsigned long flags;
a24c2569
MS
796 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
797 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
798 struct pool *pool = m->tc->pool;
799
800 m->err = err;
801
802 spin_lock_irqsave(&pool->lock, flags);
803 m->prepared = 1;
804 __maybe_add_mapping(m);
805 spin_unlock_irqrestore(&pool->lock, flags);
806}
807
991d9fa0
JT
808/*----------------------------------------------------------------*/
809
810/*
811 * Workqueue.
812 */
813
814/*
815 * Prepared mapping jobs.
816 */
817
818/*
819 * This sends the bios in the cell back to the deferred_bios list.
820 */
a24c2569 821static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
991d9fa0
JT
822 dm_block_t data_block)
823{
824 struct pool *pool = tc->pool;
825 unsigned long flags;
826
827 spin_lock_irqsave(&pool->lock, flags);
828 cell_release(cell, &pool->deferred_bios);
829 spin_unlock_irqrestore(&tc->pool->lock, flags);
830
831 wake_worker(pool);
832}
833
834/*
835 * Same as cell_defer above, except it omits one particular detainee,
836 * a write bio that covers the block and has already been processed.
837 */
a24c2569 838static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
839{
840 struct bio_list bios;
991d9fa0
JT
841 struct pool *pool = tc->pool;
842 unsigned long flags;
843
844 bio_list_init(&bios);
991d9fa0
JT
845
846 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 847 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
848 spin_unlock_irqrestore(&pool->lock, flags);
849
850 wake_worker(pool);
851}
852
a24c2569 853static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
854{
855 struct thin_c *tc = m->tc;
856 struct bio *bio;
857 int r;
858
859 bio = m->bio;
860 if (bio)
861 bio->bi_end_io = m->saved_bi_end_io;
862
863 if (m->err) {
864 cell_error(m->cell);
865 return;
866 }
867
868 /*
869 * Commit the prepared block into the mapping btree.
870 * Any I/O for this block arriving after this point will get
871 * remapped to it directly.
872 */
873 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
874 if (r) {
875 DMERR("dm_thin_insert_block() failed");
876 cell_error(m->cell);
877 return;
878 }
879
880 /*
881 * Release any bios held while the block was being provisioned.
882 * If we are processing a write bio that completely covers the block,
883 * we already processed it so can ignore it now when processing
884 * the bios in the cell.
885 */
886 if (bio) {
6f94a4c4 887 cell_defer_except(tc, m->cell);
991d9fa0
JT
888 bio_endio(bio, 0);
889 } else
890 cell_defer(tc, m->cell, m->data_block);
891
892 list_del(&m->list);
893 mempool_free(m, tc->pool->mapping_pool);
894}
895
a24c2569 896static void process_prepared_discard(struct dm_thin_new_mapping *m)
104655fd
JT
897{
898 int r;
899 struct thin_c *tc = m->tc;
900
901 r = dm_thin_remove_block(tc->td, m->virt_block);
902 if (r)
903 DMERR("dm_thin_remove_block() failed");
904
905 /*
906 * Pass the discard down to the underlying device?
907 */
908 if (m->pass_discard)
909 remap_and_issue(tc, m->bio, m->data_block);
910 else
911 bio_endio(m->bio, 0);
912
913 cell_defer_except(tc, m->cell);
914 cell_defer_except(tc, m->cell2);
915 mempool_free(m, tc->pool->mapping_pool);
916}
917
918static void process_prepared(struct pool *pool, struct list_head *head,
a24c2569 919 void (*fn)(struct dm_thin_new_mapping *))
991d9fa0
JT
920{
921 unsigned long flags;
922 struct list_head maps;
a24c2569 923 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
924
925 INIT_LIST_HEAD(&maps);
926 spin_lock_irqsave(&pool->lock, flags);
104655fd 927 list_splice_init(head, &maps);
991d9fa0
JT
928 spin_unlock_irqrestore(&pool->lock, flags);
929
930 list_for_each_entry_safe(m, tmp, &maps, list)
104655fd 931 fn(m);
991d9fa0
JT
932}
933
934/*
935 * Deferred bio jobs.
936 */
104655fd 937static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 938{
55f2b8bd 939 sector_t bi_sector = bio->bi_sector;
104655fd 940
55f2b8bd
MS
941 return !sector_div(bi_sector, pool->sectors_per_block) &&
942 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
104655fd
JT
943}
944
945static int io_overwrites_block(struct pool *pool, struct bio *bio)
946{
947 return (bio_data_dir(bio) == WRITE) &&
948 io_overlaps_block(pool, bio);
991d9fa0
JT
949}
950
951static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
952 bio_end_io_t *fn)
953{
954 *save = bio->bi_end_io;
955 bio->bi_end_io = fn;
956}
957
958static int ensure_next_mapping(struct pool *pool)
959{
960 if (pool->next_mapping)
961 return 0;
962
963 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
964
965 return pool->next_mapping ? 0 : -ENOMEM;
966}
967
a24c2569 968static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 969{
a24c2569 970 struct dm_thin_new_mapping *r = pool->next_mapping;
991d9fa0
JT
971
972 BUG_ON(!pool->next_mapping);
973
974 pool->next_mapping = NULL;
975
976 return r;
977}
978
979static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
980 struct dm_dev *origin, dm_block_t data_origin,
981 dm_block_t data_dest,
a24c2569 982 struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0
JT
983{
984 int r;
985 struct pool *pool = tc->pool;
a24c2569 986 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
987
988 INIT_LIST_HEAD(&m->list);
eb2aa48d 989 m->quiesced = 0;
991d9fa0
JT
990 m->prepared = 0;
991 m->tc = tc;
992 m->virt_block = virt_block;
993 m->data_block = data_dest;
994 m->cell = cell;
995 m->err = 0;
996 m->bio = NULL;
997
eb2aa48d
JT
998 if (!ds_add_work(&pool->shared_read_ds, &m->list))
999 m->quiesced = 1;
991d9fa0
JT
1000
1001 /*
1002 * IO to pool_dev remaps to the pool target's data_dev.
1003 *
1004 * If the whole block of data is being overwritten, we can issue the
1005 * bio immediately. Otherwise we use kcopyd to clone the data first.
1006 */
1007 if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1008 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1009
eb2aa48d 1010 h->overwrite_mapping = m;
991d9fa0
JT
1011 m->bio = bio;
1012 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1013 remap_and_issue(tc, bio, data_dest);
1014 } else {
1015 struct dm_io_region from, to;
1016
2dd9c257 1017 from.bdev = origin->bdev;
991d9fa0
JT
1018 from.sector = data_origin * pool->sectors_per_block;
1019 from.count = pool->sectors_per_block;
1020
1021 to.bdev = tc->pool_dev->bdev;
1022 to.sector = data_dest * pool->sectors_per_block;
1023 to.count = pool->sectors_per_block;
1024
1025 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1026 0, copy_complete, m);
1027 if (r < 0) {
1028 mempool_free(m, pool->mapping_pool);
1029 DMERR("dm_kcopyd_copy() failed");
1030 cell_error(cell);
1031 }
1032 }
1033}
1034
2dd9c257
JT
1035static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1036 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1037 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1038{
1039 schedule_copy(tc, virt_block, tc->pool_dev,
1040 data_origin, data_dest, cell, bio);
1041}
1042
1043static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1044 dm_block_t data_dest,
a24c2569 1045 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1046{
1047 schedule_copy(tc, virt_block, tc->origin_dev,
1048 virt_block, data_dest, cell, bio);
1049}
1050
991d9fa0 1051static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1052 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1053 struct bio *bio)
1054{
1055 struct pool *pool = tc->pool;
a24c2569 1056 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1057
1058 INIT_LIST_HEAD(&m->list);
eb2aa48d 1059 m->quiesced = 1;
991d9fa0
JT
1060 m->prepared = 0;
1061 m->tc = tc;
1062 m->virt_block = virt_block;
1063 m->data_block = data_block;
1064 m->cell = cell;
1065 m->err = 0;
1066 m->bio = NULL;
1067
1068 /*
1069 * If the whole block of data is being overwritten or we are not
1070 * zeroing pre-existing data, we can issue the bio immediately.
1071 * Otherwise we use kcopyd to zero the data first.
1072 */
67e2e2b2 1073 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1074 process_prepared_mapping(m);
1075
1076 else if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1077 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1078
eb2aa48d 1079 h->overwrite_mapping = m;
991d9fa0
JT
1080 m->bio = bio;
1081 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0 1082 remap_and_issue(tc, bio, data_block);
991d9fa0
JT
1083 } else {
1084 int r;
1085 struct dm_io_region to;
1086
1087 to.bdev = tc->pool_dev->bdev;
1088 to.sector = data_block * pool->sectors_per_block;
1089 to.count = pool->sectors_per_block;
1090
1091 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1092 if (r < 0) {
1093 mempool_free(m, pool->mapping_pool);
1094 DMERR("dm_kcopyd_zero() failed");
1095 cell_error(cell);
1096 }
1097 }
1098}
1099
1100static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1101{
1102 int r;
1103 dm_block_t free_blocks;
1104 unsigned long flags;
1105 struct pool *pool = tc->pool;
1106
1107 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1108 if (r)
1109 return r;
1110
1111 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1112 DMWARN("%s: reached low water mark, sending event.",
1113 dm_device_name(pool->pool_md));
1114 spin_lock_irqsave(&pool->lock, flags);
1115 pool->low_water_triggered = 1;
1116 spin_unlock_irqrestore(&pool->lock, flags);
1117 dm_table_event(pool->ti->table);
1118 }
1119
1120 if (!free_blocks) {
1121 if (pool->no_free_space)
1122 return -ENOSPC;
1123 else {
1124 /*
1125 * Try to commit to see if that will free up some
1126 * more space.
1127 */
1128 r = dm_pool_commit_metadata(pool->pmd);
1129 if (r) {
1130 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1131 __func__, r);
1132 return r;
1133 }
1134
1135 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1136 if (r)
1137 return r;
1138
1139 /*
1140 * If we still have no space we set a flag to avoid
1141 * doing all this checking and return -ENOSPC.
1142 */
1143 if (!free_blocks) {
1144 DMWARN("%s: no free space available.",
1145 dm_device_name(pool->pool_md));
1146 spin_lock_irqsave(&pool->lock, flags);
1147 pool->no_free_space = 1;
1148 spin_unlock_irqrestore(&pool->lock, flags);
1149 return -ENOSPC;
1150 }
1151 }
1152 }
1153
1154 r = dm_pool_alloc_data_block(pool->pmd, result);
1155 if (r)
1156 return r;
1157
1158 return 0;
1159}
1160
1161/*
1162 * If we have run out of space, queue bios until the device is
1163 * resumed, presumably after having been reloaded with more space.
1164 */
1165static void retry_on_resume(struct bio *bio)
1166{
a24c2569 1167 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d 1168 struct thin_c *tc = h->tc;
991d9fa0
JT
1169 struct pool *pool = tc->pool;
1170 unsigned long flags;
1171
1172 spin_lock_irqsave(&pool->lock, flags);
1173 bio_list_add(&pool->retry_on_resume_list, bio);
1174 spin_unlock_irqrestore(&pool->lock, flags);
1175}
1176
a24c2569 1177static void no_space(struct dm_bio_prison_cell *cell)
991d9fa0
JT
1178{
1179 struct bio *bio;
1180 struct bio_list bios;
1181
1182 bio_list_init(&bios);
1183 cell_release(cell, &bios);
1184
1185 while ((bio = bio_list_pop(&bios)))
1186 retry_on_resume(bio);
1187}
1188
104655fd
JT
1189static void process_discard(struct thin_c *tc, struct bio *bio)
1190{
1191 int r;
c3a0ce2e 1192 unsigned long flags;
104655fd 1193 struct pool *pool = tc->pool;
a24c2569 1194 struct dm_bio_prison_cell *cell, *cell2;
104655fd
JT
1195 struct cell_key key, key2;
1196 dm_block_t block = get_bio_block(tc, bio);
1197 struct dm_thin_lookup_result lookup_result;
a24c2569 1198 struct dm_thin_new_mapping *m;
104655fd
JT
1199
1200 build_virtual_key(tc->td, block, &key);
1201 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1202 return;
1203
1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 switch (r) {
1206 case 0:
1207 /*
1208 * Check nobody is fiddling with this pool block. This can
1209 * happen if someone's in the process of breaking sharing
1210 * on this block.
1211 */
1212 build_data_key(tc->td, lookup_result.block, &key2);
1213 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1214 cell_release_singleton(cell, bio);
1215 break;
1216 }
1217
1218 if (io_overlaps_block(pool, bio)) {
1219 /*
1220 * IO may still be going to the destination block. We must
1221 * quiesce before we can do the removal.
1222 */
1223 m = get_next_mapping(pool);
1224 m->tc = tc;
17b7d63f 1225 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
104655fd
JT
1226 m->virt_block = block;
1227 m->data_block = lookup_result.block;
1228 m->cell = cell;
1229 m->cell2 = cell2;
1230 m->err = 0;
1231 m->bio = bio;
1232
1233 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1234 spin_lock_irqsave(&pool->lock, flags);
104655fd 1235 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1236 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1237 wake_worker(pool);
1238 }
1239 } else {
1240 /*
49296309
MP
1241 * The DM core makes sure that the discard doesn't span
1242 * a block boundary. So we submit the discard of a
1243 * partial block appropriately.
104655fd 1244 */
104655fd
JT
1245 cell_release_singleton(cell, bio);
1246 cell_release_singleton(cell2, bio);
650d2a06
MP
1247 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1248 remap_and_issue(tc, bio, lookup_result.block);
1249 else
1250 bio_endio(bio, 0);
104655fd
JT
1251 }
1252 break;
1253
1254 case -ENODATA:
1255 /*
1256 * It isn't provisioned, just forget it.
1257 */
1258 cell_release_singleton(cell, bio);
1259 bio_endio(bio, 0);
1260 break;
1261
1262 default:
1263 DMERR("discard: find block unexpectedly returned %d", r);
1264 cell_release_singleton(cell, bio);
1265 bio_io_error(bio);
1266 break;
1267 }
1268}
1269
991d9fa0
JT
1270static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1271 struct cell_key *key,
1272 struct dm_thin_lookup_result *lookup_result,
a24c2569 1273 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1274{
1275 int r;
1276 dm_block_t data_block;
1277
1278 r = alloc_data_block(tc, &data_block);
1279 switch (r) {
1280 case 0:
2dd9c257
JT
1281 schedule_internal_copy(tc, block, lookup_result->block,
1282 data_block, cell, bio);
991d9fa0
JT
1283 break;
1284
1285 case -ENOSPC:
1286 no_space(cell);
1287 break;
1288
1289 default:
1290 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1291 cell_error(cell);
1292 break;
1293 }
1294}
1295
1296static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1297 dm_block_t block,
1298 struct dm_thin_lookup_result *lookup_result)
1299{
a24c2569 1300 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1301 struct pool *pool = tc->pool;
1302 struct cell_key key;
1303
1304 /*
1305 * If cell is already occupied, then sharing is already in the process
1306 * of being broken so we have nothing further to do here.
1307 */
1308 build_data_key(tc->td, lookup_result->block, &key);
1309 if (bio_detain(pool->prison, &key, bio, &cell))
1310 return;
1311
1312 if (bio_data_dir(bio) == WRITE)
1313 break_sharing(tc, bio, block, &key, lookup_result, cell);
1314 else {
a24c2569 1315 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1316
eb2aa48d 1317 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1318
1319 cell_release_singleton(cell, bio);
1320 remap_and_issue(tc, bio, lookup_result->block);
1321 }
1322}
1323
1324static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1325 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1326{
1327 int r;
1328 dm_block_t data_block;
1329
1330 /*
1331 * Remap empty bios (flushes) immediately, without provisioning.
1332 */
1333 if (!bio->bi_size) {
1334 cell_release_singleton(cell, bio);
1335 remap_and_issue(tc, bio, 0);
1336 return;
1337 }
1338
1339 /*
1340 * Fill read bios with zeroes and complete them immediately.
1341 */
1342 if (bio_data_dir(bio) == READ) {
1343 zero_fill_bio(bio);
1344 cell_release_singleton(cell, bio);
1345 bio_endio(bio, 0);
1346 return;
1347 }
1348
1349 r = alloc_data_block(tc, &data_block);
1350 switch (r) {
1351 case 0:
2dd9c257
JT
1352 if (tc->origin_dev)
1353 schedule_external_copy(tc, block, data_block, cell, bio);
1354 else
1355 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1356 break;
1357
1358 case -ENOSPC:
1359 no_space(cell);
1360 break;
1361
1362 default:
1363 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1364 cell_error(cell);
1365 break;
1366 }
1367}
1368
1369static void process_bio(struct thin_c *tc, struct bio *bio)
1370{
1371 int r;
1372 dm_block_t block = get_bio_block(tc, bio);
a24c2569 1373 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1374 struct cell_key key;
1375 struct dm_thin_lookup_result lookup_result;
1376
1377 /*
1378 * If cell is already occupied, then the block is already
1379 * being provisioned so we have nothing further to do here.
1380 */
1381 build_virtual_key(tc->td, block, &key);
1382 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1383 return;
1384
1385 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1386 switch (r) {
1387 case 0:
1388 /*
1389 * We can release this cell now. This thread is the only
1390 * one that puts bios into a cell, and we know there were
1391 * no preceding bios.
1392 */
1393 /*
1394 * TODO: this will probably have to change when discard goes
1395 * back in.
1396 */
1397 cell_release_singleton(cell, bio);
1398
1399 if (lookup_result.shared)
1400 process_shared_bio(tc, bio, block, &lookup_result);
1401 else
1402 remap_and_issue(tc, bio, lookup_result.block);
1403 break;
1404
1405 case -ENODATA:
2dd9c257
JT
1406 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1407 cell_release_singleton(cell, bio);
1408 remap_to_origin_and_issue(tc, bio);
1409 } else
1410 provision_block(tc, bio, block, cell);
991d9fa0
JT
1411 break;
1412
1413 default:
1414 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1415 cell_release_singleton(cell, bio);
991d9fa0
JT
1416 bio_io_error(bio);
1417 break;
1418 }
1419}
1420
905e51b3
JT
1421static int need_commit_due_to_time(struct pool *pool)
1422{
1423 return jiffies < pool->last_commit_jiffies ||
1424 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1425}
1426
991d9fa0
JT
1427static void process_deferred_bios(struct pool *pool)
1428{
1429 unsigned long flags;
1430 struct bio *bio;
1431 struct bio_list bios;
1432 int r;
1433
1434 bio_list_init(&bios);
1435
1436 spin_lock_irqsave(&pool->lock, flags);
1437 bio_list_merge(&bios, &pool->deferred_bios);
1438 bio_list_init(&pool->deferred_bios);
1439 spin_unlock_irqrestore(&pool->lock, flags);
1440
1441 while ((bio = bio_list_pop(&bios))) {
a24c2569 1442 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d
JT
1443 struct thin_c *tc = h->tc;
1444
991d9fa0
JT
1445 /*
1446 * If we've got no free new_mapping structs, and processing
1447 * this bio might require one, we pause until there are some
1448 * prepared mappings to process.
1449 */
1450 if (ensure_next_mapping(pool)) {
1451 spin_lock_irqsave(&pool->lock, flags);
1452 bio_list_merge(&pool->deferred_bios, &bios);
1453 spin_unlock_irqrestore(&pool->lock, flags);
1454
1455 break;
1456 }
104655fd
JT
1457
1458 if (bio->bi_rw & REQ_DISCARD)
1459 process_discard(tc, bio);
1460 else
1461 process_bio(tc, bio);
991d9fa0
JT
1462 }
1463
1464 /*
1465 * If there are any deferred flush bios, we must commit
1466 * the metadata before issuing them.
1467 */
1468 bio_list_init(&bios);
1469 spin_lock_irqsave(&pool->lock, flags);
1470 bio_list_merge(&bios, &pool->deferred_flush_bios);
1471 bio_list_init(&pool->deferred_flush_bios);
1472 spin_unlock_irqrestore(&pool->lock, flags);
1473
905e51b3 1474 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1475 return;
1476
1477 r = dm_pool_commit_metadata(pool->pmd);
1478 if (r) {
1479 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1480 __func__, r);
1481 while ((bio = bio_list_pop(&bios)))
1482 bio_io_error(bio);
1483 return;
1484 }
905e51b3 1485 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1486
1487 while ((bio = bio_list_pop(&bios)))
1488 generic_make_request(bio);
1489}
1490
1491static void do_worker(struct work_struct *ws)
1492{
1493 struct pool *pool = container_of(ws, struct pool, worker);
1494
104655fd
JT
1495 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1496 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
991d9fa0
JT
1497 process_deferred_bios(pool);
1498}
1499
905e51b3
JT
1500/*
1501 * We want to commit periodically so that not too much
1502 * unwritten data builds up.
1503 */
1504static void do_waker(struct work_struct *ws)
1505{
1506 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1507 wake_worker(pool);
1508 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1509}
1510
991d9fa0
JT
1511/*----------------------------------------------------------------*/
1512
1513/*
1514 * Mapping functions.
1515 */
1516
1517/*
1518 * Called only while mapping a thin bio to hand it over to the workqueue.
1519 */
1520static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1521{
1522 unsigned long flags;
1523 struct pool *pool = tc->pool;
1524
1525 spin_lock_irqsave(&pool->lock, flags);
1526 bio_list_add(&pool->deferred_bios, bio);
1527 spin_unlock_irqrestore(&pool->lock, flags);
1528
1529 wake_worker(pool);
1530}
1531
a24c2569 1532static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d
JT
1533{
1534 struct pool *pool = tc->pool;
a24c2569 1535 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
eb2aa48d
JT
1536
1537 h->tc = tc;
1538 h->shared_read_entry = NULL;
104655fd 1539 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1540 h->overwrite_mapping = NULL;
1541
1542 return h;
1543}
1544
991d9fa0
JT
1545/*
1546 * Non-blocking function called from the thin target's map function.
1547 */
1548static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1549 union map_info *map_context)
1550{
1551 int r;
1552 struct thin_c *tc = ti->private;
1553 dm_block_t block = get_bio_block(tc, bio);
1554 struct dm_thin_device *td = tc->td;
1555 struct dm_thin_lookup_result result;
1556
eb2aa48d 1557 map_context->ptr = thin_hook_bio(tc, bio);
104655fd 1558 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1559 thin_defer_bio(tc, bio);
1560 return DM_MAPIO_SUBMITTED;
1561 }
1562
1563 r = dm_thin_find_block(td, block, 0, &result);
1564
1565 /*
1566 * Note that we defer readahead too.
1567 */
1568 switch (r) {
1569 case 0:
1570 if (unlikely(result.shared)) {
1571 /*
1572 * We have a race condition here between the
1573 * result.shared value returned by the lookup and
1574 * snapshot creation, which may cause new
1575 * sharing.
1576 *
1577 * To avoid this always quiesce the origin before
1578 * taking the snap. You want to do this anyway to
1579 * ensure a consistent application view
1580 * (i.e. lockfs).
1581 *
1582 * More distant ancestors are irrelevant. The
1583 * shared flag will be set in their case.
1584 */
1585 thin_defer_bio(tc, bio);
1586 r = DM_MAPIO_SUBMITTED;
1587 } else {
1588 remap(tc, bio, result.block);
1589 r = DM_MAPIO_REMAPPED;
1590 }
1591 break;
1592
1593 case -ENODATA:
1594 /*
1595 * In future, the failed dm_thin_find_block above could
1596 * provide the hint to load the metadata into cache.
1597 */
1598 case -EWOULDBLOCK:
1599 thin_defer_bio(tc, bio);
1600 r = DM_MAPIO_SUBMITTED;
1601 break;
1602 }
1603
1604 return r;
1605}
1606
1607static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1608{
1609 int r;
1610 unsigned long flags;
1611 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1612
1613 spin_lock_irqsave(&pt->pool->lock, flags);
1614 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1615 spin_unlock_irqrestore(&pt->pool->lock, flags);
1616
1617 if (!r) {
1618 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1619 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1620 }
1621
1622 return r;
1623}
1624
1625static void __requeue_bios(struct pool *pool)
1626{
1627 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1628 bio_list_init(&pool->retry_on_resume_list);
1629}
1630
1631/*----------------------------------------------------------------
1632 * Binding of control targets to a pool object
1633 *--------------------------------------------------------------*/
1634static int bind_control_target(struct pool *pool, struct dm_target *ti)
1635{
1636 struct pool_c *pt = ti->private;
1637
1638 pool->ti = ti;
1639 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1640 pool->pf = pt->pf;
991d9fa0 1641
f402693d
MS
1642 /*
1643 * If discard_passdown was enabled verify that the data device
1644 * supports discards. Disable discard_passdown if not; otherwise
1645 * -EOPNOTSUPP will be returned.
1646 */
1647 if (pt->pf.discard_passdown) {
1648 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1649 if (!q || !blk_queue_discard(q)) {
1650 char buf[BDEVNAME_SIZE];
1651 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1652 bdevname(pt->data_dev->bdev, buf));
1653 pool->pf.discard_passdown = 0;
1654 }
1655 }
1656
991d9fa0
JT
1657 return 0;
1658}
1659
1660static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1661{
1662 if (pool->ti == ti)
1663 pool->ti = NULL;
1664}
1665
1666/*----------------------------------------------------------------
1667 * Pool creation
1668 *--------------------------------------------------------------*/
67e2e2b2
JT
1669/* Initialize pool features. */
1670static void pool_features_init(struct pool_features *pf)
1671{
1672 pf->zero_new_blocks = 1;
1673 pf->discard_enabled = 1;
1674 pf->discard_passdown = 1;
1675}
1676
991d9fa0
JT
1677static void __pool_destroy(struct pool *pool)
1678{
1679 __pool_table_remove(pool);
1680
1681 if (dm_pool_metadata_close(pool->pmd) < 0)
1682 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1683
1684 prison_destroy(pool->prison);
1685 dm_kcopyd_client_destroy(pool->copier);
1686
1687 if (pool->wq)
1688 destroy_workqueue(pool->wq);
1689
1690 if (pool->next_mapping)
1691 mempool_free(pool->next_mapping, pool->mapping_pool);
1692 mempool_destroy(pool->mapping_pool);
1693 mempool_destroy(pool->endio_hook_pool);
1694 kfree(pool);
1695}
1696
a24c2569
MS
1697static struct kmem_cache *_new_mapping_cache;
1698static struct kmem_cache *_endio_hook_cache;
1699
991d9fa0
JT
1700static struct pool *pool_create(struct mapped_device *pool_md,
1701 struct block_device *metadata_dev,
1702 unsigned long block_size, char **error)
1703{
1704 int r;
1705 void *err_p;
1706 struct pool *pool;
1707 struct dm_pool_metadata *pmd;
1708
1709 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1710 if (IS_ERR(pmd)) {
1711 *error = "Error creating metadata object";
1712 return (struct pool *)pmd;
1713 }
1714
1715 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1716 if (!pool) {
1717 *error = "Error allocating memory for pool";
1718 err_p = ERR_PTR(-ENOMEM);
1719 goto bad_pool;
1720 }
1721
1722 pool->pmd = pmd;
1723 pool->sectors_per_block = block_size;
991d9fa0 1724 pool->low_water_blocks = 0;
67e2e2b2 1725 pool_features_init(&pool->pf);
991d9fa0
JT
1726 pool->prison = prison_create(PRISON_CELLS);
1727 if (!pool->prison) {
1728 *error = "Error creating pool's bio prison";
1729 err_p = ERR_PTR(-ENOMEM);
1730 goto bad_prison;
1731 }
1732
1733 pool->copier = dm_kcopyd_client_create();
1734 if (IS_ERR(pool->copier)) {
1735 r = PTR_ERR(pool->copier);
1736 *error = "Error creating pool's kcopyd client";
1737 err_p = ERR_PTR(r);
1738 goto bad_kcopyd_client;
1739 }
1740
1741 /*
1742 * Create singlethreaded workqueue that will service all devices
1743 * that use this metadata.
1744 */
1745 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1746 if (!pool->wq) {
1747 *error = "Error creating pool's workqueue";
1748 err_p = ERR_PTR(-ENOMEM);
1749 goto bad_wq;
1750 }
1751
1752 INIT_WORK(&pool->worker, do_worker);
905e51b3 1753 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1754 spin_lock_init(&pool->lock);
1755 bio_list_init(&pool->deferred_bios);
1756 bio_list_init(&pool->deferred_flush_bios);
1757 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1758 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1759 pool->low_water_triggered = 0;
1760 pool->no_free_space = 0;
1761 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1762 ds_init(&pool->shared_read_ds);
104655fd 1763 ds_init(&pool->all_io_ds);
991d9fa0
JT
1764
1765 pool->next_mapping = NULL;
a24c2569
MS
1766 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1767 _new_mapping_cache);
991d9fa0
JT
1768 if (!pool->mapping_pool) {
1769 *error = "Error creating pool's mapping mempool";
1770 err_p = ERR_PTR(-ENOMEM);
1771 goto bad_mapping_pool;
1772 }
1773
a24c2569
MS
1774 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1775 _endio_hook_cache);
991d9fa0
JT
1776 if (!pool->endio_hook_pool) {
1777 *error = "Error creating pool's endio_hook mempool";
1778 err_p = ERR_PTR(-ENOMEM);
1779 goto bad_endio_hook_pool;
1780 }
1781 pool->ref_count = 1;
905e51b3 1782 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1783 pool->pool_md = pool_md;
1784 pool->md_dev = metadata_dev;
1785 __pool_table_insert(pool);
1786
1787 return pool;
1788
1789bad_endio_hook_pool:
1790 mempool_destroy(pool->mapping_pool);
1791bad_mapping_pool:
1792 destroy_workqueue(pool->wq);
1793bad_wq:
1794 dm_kcopyd_client_destroy(pool->copier);
1795bad_kcopyd_client:
1796 prison_destroy(pool->prison);
1797bad_prison:
1798 kfree(pool);
1799bad_pool:
1800 if (dm_pool_metadata_close(pmd))
1801 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1802
1803 return err_p;
1804}
1805
1806static void __pool_inc(struct pool *pool)
1807{
1808 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1809 pool->ref_count++;
1810}
1811
1812static void __pool_dec(struct pool *pool)
1813{
1814 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1815 BUG_ON(!pool->ref_count);
1816 if (!--pool->ref_count)
1817 __pool_destroy(pool);
1818}
1819
1820static struct pool *__pool_find(struct mapped_device *pool_md,
1821 struct block_device *metadata_dev,
67e2e2b2
JT
1822 unsigned long block_size, char **error,
1823 int *created)
991d9fa0
JT
1824{
1825 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1826
1827 if (pool) {
f09996c9
MS
1828 if (pool->pool_md != pool_md) {
1829 *error = "metadata device already in use by a pool";
991d9fa0 1830 return ERR_PTR(-EBUSY);
f09996c9 1831 }
991d9fa0
JT
1832 __pool_inc(pool);
1833
1834 } else {
1835 pool = __pool_table_lookup(pool_md);
1836 if (pool) {
f09996c9
MS
1837 if (pool->md_dev != metadata_dev) {
1838 *error = "different pool cannot replace a pool";
991d9fa0 1839 return ERR_PTR(-EINVAL);
f09996c9 1840 }
991d9fa0
JT
1841 __pool_inc(pool);
1842
67e2e2b2 1843 } else {
991d9fa0 1844 pool = pool_create(pool_md, metadata_dev, block_size, error);
67e2e2b2
JT
1845 *created = 1;
1846 }
991d9fa0
JT
1847 }
1848
1849 return pool;
1850}
1851
1852/*----------------------------------------------------------------
1853 * Pool target methods
1854 *--------------------------------------------------------------*/
1855static void pool_dtr(struct dm_target *ti)
1856{
1857 struct pool_c *pt = ti->private;
1858
1859 mutex_lock(&dm_thin_pool_table.mutex);
1860
1861 unbind_control_target(pt->pool, ti);
1862 __pool_dec(pt->pool);
1863 dm_put_device(ti, pt->metadata_dev);
1864 dm_put_device(ti, pt->data_dev);
1865 kfree(pt);
1866
1867 mutex_unlock(&dm_thin_pool_table.mutex);
1868}
1869
991d9fa0
JT
1870static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1871 struct dm_target *ti)
1872{
1873 int r;
1874 unsigned argc;
1875 const char *arg_name;
1876
1877 static struct dm_arg _args[] = {
67e2e2b2 1878 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
1879 };
1880
1881 /*
1882 * No feature arguments supplied.
1883 */
1884 if (!as->argc)
1885 return 0;
1886
1887 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1888 if (r)
1889 return -EINVAL;
1890
1891 while (argc && !r) {
1892 arg_name = dm_shift_arg(as);
1893 argc--;
1894
1895 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1896 pf->zero_new_blocks = 0;
1897 continue;
67e2e2b2
JT
1898 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1899 pf->discard_enabled = 0;
1900 continue;
1901 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1902 pf->discard_passdown = 0;
1903 continue;
991d9fa0
JT
1904 }
1905
1906 ti->error = "Unrecognised pool feature requested";
1907 r = -EINVAL;
1908 }
1909
1910 return r;
1911}
1912
1913/*
1914 * thin-pool <metadata dev> <data dev>
1915 * <data block size (sectors)>
1916 * <low water mark (blocks)>
1917 * [<#feature args> [<arg>]*]
1918 *
1919 * Optional feature arguments are:
1920 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
1921 * ignore_discard: disable discard
1922 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
1923 */
1924static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1925{
67e2e2b2 1926 int r, pool_created = 0;
991d9fa0
JT
1927 struct pool_c *pt;
1928 struct pool *pool;
1929 struct pool_features pf;
1930 struct dm_arg_set as;
1931 struct dm_dev *data_dev;
1932 unsigned long block_size;
1933 dm_block_t low_water_blocks;
1934 struct dm_dev *metadata_dev;
1935 sector_t metadata_dev_size;
c4a69ecd 1936 char b[BDEVNAME_SIZE];
991d9fa0
JT
1937
1938 /*
1939 * FIXME Remove validation from scope of lock.
1940 */
1941 mutex_lock(&dm_thin_pool_table.mutex);
1942
1943 if (argc < 4) {
1944 ti->error = "Invalid argument count";
1945 r = -EINVAL;
1946 goto out_unlock;
1947 }
1948 as.argc = argc;
1949 as.argv = argv;
1950
1951 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1952 if (r) {
1953 ti->error = "Error opening metadata block device";
1954 goto out_unlock;
1955 }
1956
1957 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1958 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1959 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1960 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1961
1962 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1963 if (r) {
1964 ti->error = "Error getting data device";
1965 goto out_metadata;
1966 }
1967
1968 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1969 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1970 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 1971 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
1972 ti->error = "Invalid block size";
1973 r = -EINVAL;
1974 goto out;
1975 }
1976
1977 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1978 ti->error = "Invalid low water mark";
1979 r = -EINVAL;
1980 goto out;
1981 }
1982
1983 /*
1984 * Set default pool features.
1985 */
67e2e2b2 1986 pool_features_init(&pf);
991d9fa0
JT
1987
1988 dm_consume_args(&as, 4);
1989 r = parse_pool_features(&as, &pf, ti);
1990 if (r)
1991 goto out;
1992
1993 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1994 if (!pt) {
1995 r = -ENOMEM;
1996 goto out;
1997 }
1998
1999 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
67e2e2b2 2000 block_size, &ti->error, &pool_created);
991d9fa0
JT
2001 if (IS_ERR(pool)) {
2002 r = PTR_ERR(pool);
2003 goto out_free_pt;
2004 }
2005
67e2e2b2
JT
2006 /*
2007 * 'pool_created' reflects whether this is the first table load.
2008 * Top level discard support is not allowed to be changed after
2009 * initial load. This would require a pool reload to trigger thin
2010 * device changes.
2011 */
2012 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2013 ti->error = "Discard support cannot be disabled once enabled";
2014 r = -EINVAL;
2015 goto out_flags_changed;
2016 }
2017
55f2b8bd
MS
2018 /*
2019 * The block layer requires discard_granularity to be a power of 2.
2020 */
2021 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2022 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2023 r = -EINVAL;
2024 goto out_flags_changed;
2025 }
2026
991d9fa0
JT
2027 pt->pool = pool;
2028 pt->ti = ti;
2029 pt->metadata_dev = metadata_dev;
2030 pt->data_dev = data_dev;
2031 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2032 pt->pf = pf;
991d9fa0 2033 ti->num_flush_requests = 1;
67e2e2b2
JT
2034 /*
2035 * Only need to enable discards if the pool should pass
2036 * them down to the data device. The thin device's discard
2037 * processing will cause mappings to be removed from the btree.
2038 */
2039 if (pf.discard_enabled && pf.discard_passdown) {
2040 ti->num_discard_requests = 1;
2041 /*
2042 * Setting 'discards_supported' circumvents the normal
2043 * stacking of discard limits (this keeps the pool and
2044 * thin devices' discard limits consistent).
2045 */
2046 ti->discards_supported = 1;
2047 }
991d9fa0
JT
2048 ti->private = pt;
2049
2050 pt->callbacks.congested_fn = pool_is_congested;
2051 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2052
2053 mutex_unlock(&dm_thin_pool_table.mutex);
2054
2055 return 0;
2056
67e2e2b2
JT
2057out_flags_changed:
2058 __pool_dec(pool);
991d9fa0
JT
2059out_free_pt:
2060 kfree(pt);
2061out:
2062 dm_put_device(ti, data_dev);
2063out_metadata:
2064 dm_put_device(ti, metadata_dev);
2065out_unlock:
2066 mutex_unlock(&dm_thin_pool_table.mutex);
2067
2068 return r;
2069}
2070
2071static int pool_map(struct dm_target *ti, struct bio *bio,
2072 union map_info *map_context)
2073{
2074 int r;
2075 struct pool_c *pt = ti->private;
2076 struct pool *pool = pt->pool;
2077 unsigned long flags;
2078
2079 /*
2080 * As this is a singleton target, ti->begin is always zero.
2081 */
2082 spin_lock_irqsave(&pool->lock, flags);
2083 bio->bi_bdev = pt->data_dev->bdev;
2084 r = DM_MAPIO_REMAPPED;
2085 spin_unlock_irqrestore(&pool->lock, flags);
2086
2087 return r;
2088}
2089
2090/*
2091 * Retrieves the number of blocks of the data device from
2092 * the superblock and compares it to the actual device size,
2093 * thus resizing the data device in case it has grown.
2094 *
2095 * This both copes with opening preallocated data devices in the ctr
2096 * being followed by a resume
2097 * -and-
2098 * calling the resume method individually after userspace has
2099 * grown the data device in reaction to a table event.
2100 */
2101static int pool_preresume(struct dm_target *ti)
2102{
2103 int r;
2104 struct pool_c *pt = ti->private;
2105 struct pool *pool = pt->pool;
55f2b8bd
MS
2106 sector_t data_size = ti->len;
2107 dm_block_t sb_data_size;
991d9fa0
JT
2108
2109 /*
2110 * Take control of the pool object.
2111 */
2112 r = bind_control_target(pool, ti);
2113 if (r)
2114 return r;
2115
55f2b8bd
MS
2116 (void) sector_div(data_size, pool->sectors_per_block);
2117
991d9fa0
JT
2118 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2119 if (r) {
2120 DMERR("failed to retrieve data device size");
2121 return r;
2122 }
2123
2124 if (data_size < sb_data_size) {
2125 DMERR("pool target too small, is %llu blocks (expected %llu)",
55f2b8bd 2126 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
2127 return -EINVAL;
2128
2129 } else if (data_size > sb_data_size) {
2130 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2131 if (r) {
2132 DMERR("failed to resize data device");
2133 return r;
2134 }
2135
2136 r = dm_pool_commit_metadata(pool->pmd);
2137 if (r) {
2138 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2139 __func__, r);
2140 return r;
2141 }
2142 }
2143
2144 return 0;
2145}
2146
2147static void pool_resume(struct dm_target *ti)
2148{
2149 struct pool_c *pt = ti->private;
2150 struct pool *pool = pt->pool;
2151 unsigned long flags;
2152
2153 spin_lock_irqsave(&pool->lock, flags);
2154 pool->low_water_triggered = 0;
2155 pool->no_free_space = 0;
2156 __requeue_bios(pool);
2157 spin_unlock_irqrestore(&pool->lock, flags);
2158
905e51b3 2159 do_waker(&pool->waker.work);
991d9fa0
JT
2160}
2161
2162static void pool_postsuspend(struct dm_target *ti)
2163{
2164 int r;
2165 struct pool_c *pt = ti->private;
2166 struct pool *pool = pt->pool;
2167
905e51b3 2168 cancel_delayed_work(&pool->waker);
991d9fa0
JT
2169 flush_workqueue(pool->wq);
2170
2171 r = dm_pool_commit_metadata(pool->pmd);
2172 if (r < 0) {
2173 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2174 __func__, r);
2175 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2176 }
2177}
2178
2179static int check_arg_count(unsigned argc, unsigned args_required)
2180{
2181 if (argc != args_required) {
2182 DMWARN("Message received with %u arguments instead of %u.",
2183 argc, args_required);
2184 return -EINVAL;
2185 }
2186
2187 return 0;
2188}
2189
2190static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2191{
2192 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2193 *dev_id <= MAX_DEV_ID)
2194 return 0;
2195
2196 if (warning)
2197 DMWARN("Message received with invalid device id: %s", arg);
2198
2199 return -EINVAL;
2200}
2201
2202static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2203{
2204 dm_thin_id dev_id;
2205 int r;
2206
2207 r = check_arg_count(argc, 2);
2208 if (r)
2209 return r;
2210
2211 r = read_dev_id(argv[1], &dev_id, 1);
2212 if (r)
2213 return r;
2214
2215 r = dm_pool_create_thin(pool->pmd, dev_id);
2216 if (r) {
2217 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2218 argv[1]);
2219 return r;
2220 }
2221
2222 return 0;
2223}
2224
2225static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2226{
2227 dm_thin_id dev_id;
2228 dm_thin_id origin_dev_id;
2229 int r;
2230
2231 r = check_arg_count(argc, 3);
2232 if (r)
2233 return r;
2234
2235 r = read_dev_id(argv[1], &dev_id, 1);
2236 if (r)
2237 return r;
2238
2239 r = read_dev_id(argv[2], &origin_dev_id, 1);
2240 if (r)
2241 return r;
2242
2243 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2244 if (r) {
2245 DMWARN("Creation of new snapshot %s of device %s failed.",
2246 argv[1], argv[2]);
2247 return r;
2248 }
2249
2250 return 0;
2251}
2252
2253static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2254{
2255 dm_thin_id dev_id;
2256 int r;
2257
2258 r = check_arg_count(argc, 2);
2259 if (r)
2260 return r;
2261
2262 r = read_dev_id(argv[1], &dev_id, 1);
2263 if (r)
2264 return r;
2265
2266 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2267 if (r)
2268 DMWARN("Deletion of thin device %s failed.", argv[1]);
2269
2270 return r;
2271}
2272
2273static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2274{
2275 dm_thin_id old_id, new_id;
2276 int r;
2277
2278 r = check_arg_count(argc, 3);
2279 if (r)
2280 return r;
2281
2282 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2283 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2284 return -EINVAL;
2285 }
2286
2287 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2288 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2289 return -EINVAL;
2290 }
2291
2292 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2293 if (r) {
2294 DMWARN("Failed to change transaction id from %s to %s.",
2295 argv[1], argv[2]);
2296 return r;
2297 }
2298
2299 return 0;
2300}
2301
cc8394d8
JT
2302static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2303{
2304 int r;
2305
2306 r = check_arg_count(argc, 1);
2307 if (r)
2308 return r;
2309
0d200aef
JT
2310 r = dm_pool_commit_metadata(pool->pmd);
2311 if (r) {
2312 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2313 __func__, r);
2314 return r;
2315 }
2316
cc8394d8
JT
2317 r = dm_pool_reserve_metadata_snap(pool->pmd);
2318 if (r)
2319 DMWARN("reserve_metadata_snap message failed.");
2320
2321 return r;
2322}
2323
2324static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2325{
2326 int r;
2327
2328 r = check_arg_count(argc, 1);
2329 if (r)
2330 return r;
2331
2332 r = dm_pool_release_metadata_snap(pool->pmd);
2333 if (r)
2334 DMWARN("release_metadata_snap message failed.");
2335
2336 return r;
2337}
2338
991d9fa0
JT
2339/*
2340 * Messages supported:
2341 * create_thin <dev_id>
2342 * create_snap <dev_id> <origin_id>
2343 * delete <dev_id>
2344 * trim <dev_id> <new_size_in_sectors>
2345 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
2346 * reserve_metadata_snap
2347 * release_metadata_snap
991d9fa0
JT
2348 */
2349static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2350{
2351 int r = -EINVAL;
2352 struct pool_c *pt = ti->private;
2353 struct pool *pool = pt->pool;
2354
2355 if (!strcasecmp(argv[0], "create_thin"))
2356 r = process_create_thin_mesg(argc, argv, pool);
2357
2358 else if (!strcasecmp(argv[0], "create_snap"))
2359 r = process_create_snap_mesg(argc, argv, pool);
2360
2361 else if (!strcasecmp(argv[0], "delete"))
2362 r = process_delete_mesg(argc, argv, pool);
2363
2364 else if (!strcasecmp(argv[0], "set_transaction_id"))
2365 r = process_set_transaction_id_mesg(argc, argv, pool);
2366
cc8394d8
JT
2367 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2368 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2369
2370 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2371 r = process_release_metadata_snap_mesg(argc, argv, pool);
2372
991d9fa0
JT
2373 else
2374 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2375
2376 if (!r) {
2377 r = dm_pool_commit_metadata(pool->pmd);
2378 if (r)
2379 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2380 argv[0], r);
2381 }
2382
2383 return r;
2384}
2385
2386/*
2387 * Status line is:
2388 * <transaction id> <used metadata sectors>/<total metadata sectors>
2389 * <used data sectors>/<total data sectors> <held metadata root>
2390 */
2391static int pool_status(struct dm_target *ti, status_type_t type,
2392 char *result, unsigned maxlen)
2393{
67e2e2b2 2394 int r, count;
991d9fa0
JT
2395 unsigned sz = 0;
2396 uint64_t transaction_id;
2397 dm_block_t nr_free_blocks_data;
2398 dm_block_t nr_free_blocks_metadata;
2399 dm_block_t nr_blocks_data;
2400 dm_block_t nr_blocks_metadata;
2401 dm_block_t held_root;
2402 char buf[BDEVNAME_SIZE];
2403 char buf2[BDEVNAME_SIZE];
2404 struct pool_c *pt = ti->private;
2405 struct pool *pool = pt->pool;
2406
2407 switch (type) {
2408 case STATUSTYPE_INFO:
2409 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2410 &transaction_id);
2411 if (r)
2412 return r;
2413
2414 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2415 &nr_free_blocks_metadata);
2416 if (r)
2417 return r;
2418
2419 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2420 if (r)
2421 return r;
2422
2423 r = dm_pool_get_free_block_count(pool->pmd,
2424 &nr_free_blocks_data);
2425 if (r)
2426 return r;
2427
2428 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2429 if (r)
2430 return r;
2431
cc8394d8 2432 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
991d9fa0
JT
2433 if (r)
2434 return r;
2435
2436 DMEMIT("%llu %llu/%llu %llu/%llu ",
2437 (unsigned long long)transaction_id,
2438 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2439 (unsigned long long)nr_blocks_metadata,
2440 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2441 (unsigned long long)nr_blocks_data);
2442
2443 if (held_root)
2444 DMEMIT("%llu", held_root);
2445 else
2446 DMEMIT("-");
2447
2448 break;
2449
2450 case STATUSTYPE_TABLE:
2451 DMEMIT("%s %s %lu %llu ",
2452 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2453 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2454 (unsigned long)pool->sectors_per_block,
2455 (unsigned long long)pt->low_water_blocks);
2456
67e2e2b2 2457 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
f402693d 2458 !pt->pf.discard_passdown;
67e2e2b2 2459 DMEMIT("%u ", count);
991d9fa0 2460
67e2e2b2 2461 if (!pool->pf.zero_new_blocks)
991d9fa0 2462 DMEMIT("skip_block_zeroing ");
67e2e2b2
JT
2463
2464 if (!pool->pf.discard_enabled)
2465 DMEMIT("ignore_discard ");
2466
f402693d 2467 if (!pt->pf.discard_passdown)
67e2e2b2
JT
2468 DMEMIT("no_discard_passdown ");
2469
991d9fa0
JT
2470 break;
2471 }
2472
2473 return 0;
2474}
2475
2476static int pool_iterate_devices(struct dm_target *ti,
2477 iterate_devices_callout_fn fn, void *data)
2478{
2479 struct pool_c *pt = ti->private;
2480
2481 return fn(ti, pt->data_dev, 0, ti->len, data);
2482}
2483
2484static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2485 struct bio_vec *biovec, int max_size)
2486{
2487 struct pool_c *pt = ti->private;
2488 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2489
2490 if (!q->merge_bvec_fn)
2491 return max_size;
2492
2493 bvm->bi_bdev = pt->data_dev->bdev;
2494
2495 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2496}
2497
104655fd
JT
2498static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2499{
67e2e2b2
JT
2500 /*
2501 * FIXME: these limits may be incompatible with the pool's data device
2502 */
104655fd
JT
2503 limits->max_discard_sectors = pool->sectors_per_block;
2504
2505 /*
2506 * This is just a hint, and not enforced. We have to cope with
49296309
MP
2507 * bios that cover a block partially. A discard that spans a block
2508 * boundary is not sent to this target.
104655fd
JT
2509 */
2510 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2511 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2512}
2513
991d9fa0
JT
2514static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2515{
2516 struct pool_c *pt = ti->private;
2517 struct pool *pool = pt->pool;
2518
2519 blk_limits_io_min(limits, 0);
2520 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2521 if (pool->pf.discard_enabled)
2522 set_discard_limits(pool, limits);
991d9fa0
JT
2523}
2524
2525static struct target_type pool_target = {
2526 .name = "thin-pool",
2527 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2528 DM_TARGET_IMMUTABLE,
cc8394d8 2529 .version = {1, 2, 0},
991d9fa0
JT
2530 .module = THIS_MODULE,
2531 .ctr = pool_ctr,
2532 .dtr = pool_dtr,
2533 .map = pool_map,
2534 .postsuspend = pool_postsuspend,
2535 .preresume = pool_preresume,
2536 .resume = pool_resume,
2537 .message = pool_message,
2538 .status = pool_status,
2539 .merge = pool_merge,
2540 .iterate_devices = pool_iterate_devices,
2541 .io_hints = pool_io_hints,
2542};
2543
2544/*----------------------------------------------------------------
2545 * Thin target methods
2546 *--------------------------------------------------------------*/
2547static void thin_dtr(struct dm_target *ti)
2548{
2549 struct thin_c *tc = ti->private;
2550
2551 mutex_lock(&dm_thin_pool_table.mutex);
2552
2553 __pool_dec(tc->pool);
2554 dm_pool_close_thin_device(tc->td);
2555 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2556 if (tc->origin_dev)
2557 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2558 kfree(tc);
2559
2560 mutex_unlock(&dm_thin_pool_table.mutex);
2561}
2562
2563/*
2564 * Thin target parameters:
2565 *
2dd9c257 2566 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2567 *
2568 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2569 * dev_id: the internal device identifier
2dd9c257 2570 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2571 *
2572 * If the pool device has discards disabled, they get disabled for the thin
2573 * device as well.
991d9fa0
JT
2574 */
2575static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2576{
2577 int r;
2578 struct thin_c *tc;
2dd9c257 2579 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2580 struct mapped_device *pool_md;
2581
2582 mutex_lock(&dm_thin_pool_table.mutex);
2583
2dd9c257 2584 if (argc != 2 && argc != 3) {
991d9fa0
JT
2585 ti->error = "Invalid argument count";
2586 r = -EINVAL;
2587 goto out_unlock;
2588 }
2589
2590 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2591 if (!tc) {
2592 ti->error = "Out of memory";
2593 r = -ENOMEM;
2594 goto out_unlock;
2595 }
2596
2dd9c257
JT
2597 if (argc == 3) {
2598 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2599 if (r) {
2600 ti->error = "Error opening origin device";
2601 goto bad_origin_dev;
2602 }
2603 tc->origin_dev = origin_dev;
2604 }
2605
991d9fa0
JT
2606 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2607 if (r) {
2608 ti->error = "Error opening pool device";
2609 goto bad_pool_dev;
2610 }
2611 tc->pool_dev = pool_dev;
2612
2613 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2614 ti->error = "Invalid device id";
2615 r = -EINVAL;
2616 goto bad_common;
2617 }
2618
2619 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2620 if (!pool_md) {
2621 ti->error = "Couldn't get pool mapped device";
2622 r = -EINVAL;
2623 goto bad_common;
2624 }
2625
2626 tc->pool = __pool_table_lookup(pool_md);
2627 if (!tc->pool) {
2628 ti->error = "Couldn't find pool object";
2629 r = -EINVAL;
2630 goto bad_pool_lookup;
2631 }
2632 __pool_inc(tc->pool);
2633
2634 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2635 if (r) {
2636 ti->error = "Couldn't open thin internal device";
2637 goto bad_thin_open;
2638 }
2639
542f9038
MS
2640 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2641 if (r)
2642 goto bad_thin_open;
2643
991d9fa0 2644 ti->num_flush_requests = 1;
67e2e2b2
JT
2645
2646 /* In case the pool supports discards, pass them on. */
2647 if (tc->pool->pf.discard_enabled) {
2648 ti->discards_supported = 1;
2649 ti->num_discard_requests = 1;
650d2a06 2650 ti->discard_zeroes_data_unsupported = 1;
49296309
MP
2651 /* Discard requests must be split on a block boundary */
2652 ti->split_discard_requests = 1;
67e2e2b2 2653 }
991d9fa0
JT
2654
2655 dm_put(pool_md);
2656
2657 mutex_unlock(&dm_thin_pool_table.mutex);
2658
2659 return 0;
2660
2661bad_thin_open:
2662 __pool_dec(tc->pool);
2663bad_pool_lookup:
2664 dm_put(pool_md);
2665bad_common:
2666 dm_put_device(ti, tc->pool_dev);
2667bad_pool_dev:
2dd9c257
JT
2668 if (tc->origin_dev)
2669 dm_put_device(ti, tc->origin_dev);
2670bad_origin_dev:
991d9fa0
JT
2671 kfree(tc);
2672out_unlock:
2673 mutex_unlock(&dm_thin_pool_table.mutex);
2674
2675 return r;
2676}
2677
2678static int thin_map(struct dm_target *ti, struct bio *bio,
2679 union map_info *map_context)
2680{
6efd6e83 2681 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2682
2683 return thin_bio_map(ti, bio, map_context);
2684}
2685
eb2aa48d
JT
2686static int thin_endio(struct dm_target *ti,
2687 struct bio *bio, int err,
2688 union map_info *map_context)
2689{
2690 unsigned long flags;
a24c2569 2691 struct dm_thin_endio_hook *h = map_context->ptr;
eb2aa48d 2692 struct list_head work;
a24c2569 2693 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
2694 struct pool *pool = h->tc->pool;
2695
2696 if (h->shared_read_entry) {
2697 INIT_LIST_HEAD(&work);
2698 ds_dec(h->shared_read_entry, &work);
2699
2700 spin_lock_irqsave(&pool->lock, flags);
2701 list_for_each_entry_safe(m, tmp, &work, list) {
2702 list_del(&m->list);
2703 m->quiesced = 1;
2704 __maybe_add_mapping(m);
2705 }
2706 spin_unlock_irqrestore(&pool->lock, flags);
2707 }
2708
104655fd
JT
2709 if (h->all_io_entry) {
2710 INIT_LIST_HEAD(&work);
2711 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2712 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2713 list_for_each_entry_safe(m, tmp, &work, list)
2714 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2715 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2716 }
2717
eb2aa48d
JT
2718 mempool_free(h, pool->endio_hook_pool);
2719
2720 return 0;
2721}
2722
991d9fa0
JT
2723static void thin_postsuspend(struct dm_target *ti)
2724{
2725 if (dm_noflush_suspending(ti))
2726 requeue_io((struct thin_c *)ti->private);
2727}
2728
2729/*
2730 * <nr mapped sectors> <highest mapped sector>
2731 */
2732static int thin_status(struct dm_target *ti, status_type_t type,
2733 char *result, unsigned maxlen)
2734{
2735 int r;
2736 ssize_t sz = 0;
2737 dm_block_t mapped, highest;
2738 char buf[BDEVNAME_SIZE];
2739 struct thin_c *tc = ti->private;
2740
2741 if (!tc->td)
2742 DMEMIT("-");
2743 else {
2744 switch (type) {
2745 case STATUSTYPE_INFO:
2746 r = dm_thin_get_mapped_count(tc->td, &mapped);
2747 if (r)
2748 return r;
2749
2750 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2751 if (r < 0)
2752 return r;
2753
2754 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2755 if (r)
2756 DMEMIT("%llu", ((highest + 1) *
2757 tc->pool->sectors_per_block) - 1);
2758 else
2759 DMEMIT("-");
2760 break;
2761
2762 case STATUSTYPE_TABLE:
2763 DMEMIT("%s %lu",
2764 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2765 (unsigned long) tc->dev_id);
2dd9c257
JT
2766 if (tc->origin_dev)
2767 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2768 break;
2769 }
2770 }
2771
2772 return 0;
2773}
2774
2775static int thin_iterate_devices(struct dm_target *ti,
2776 iterate_devices_callout_fn fn, void *data)
2777{
55f2b8bd 2778 sector_t blocks;
991d9fa0 2779 struct thin_c *tc = ti->private;
55f2b8bd 2780 struct pool *pool = tc->pool;
991d9fa0
JT
2781
2782 /*
2783 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2784 * we follow a more convoluted path through to the pool's target.
2785 */
55f2b8bd 2786 if (!pool->ti)
991d9fa0
JT
2787 return 0; /* nothing is bound */
2788
55f2b8bd
MS
2789 blocks = pool->ti->len;
2790 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 2791 if (blocks)
55f2b8bd 2792 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
2793
2794 return 0;
2795}
2796
2797static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2798{
2799 struct thin_c *tc = ti->private;
104655fd 2800 struct pool *pool = tc->pool;
991d9fa0
JT
2801
2802 blk_limits_io_min(limits, 0);
104655fd
JT
2803 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2804 set_discard_limits(pool, limits);
991d9fa0
JT
2805}
2806
2807static struct target_type thin_target = {
2808 .name = "thin",
55f2b8bd 2809 .version = {1, 2, 0},
991d9fa0
JT
2810 .module = THIS_MODULE,
2811 .ctr = thin_ctr,
2812 .dtr = thin_dtr,
2813 .map = thin_map,
eb2aa48d 2814 .end_io = thin_endio,
991d9fa0
JT
2815 .postsuspend = thin_postsuspend,
2816 .status = thin_status,
2817 .iterate_devices = thin_iterate_devices,
2818 .io_hints = thin_io_hints,
2819};
2820
2821/*----------------------------------------------------------------*/
2822
2823static int __init dm_thin_init(void)
2824{
2825 int r;
2826
2827 pool_table_init();
2828
2829 r = dm_register_target(&thin_target);
2830 if (r)
2831 return r;
2832
2833 r = dm_register_target(&pool_target);
2834 if (r)
a24c2569
MS
2835 goto bad_pool_target;
2836
2837 r = -ENOMEM;
2838
2839 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2840 if (!_cell_cache)
2841 goto bad_cell_cache;
2842
2843 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2844 if (!_new_mapping_cache)
2845 goto bad_new_mapping_cache;
2846
2847 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2848 if (!_endio_hook_cache)
2849 goto bad_endio_hook_cache;
2850
2851 return 0;
2852
2853bad_endio_hook_cache:
2854 kmem_cache_destroy(_new_mapping_cache);
2855bad_new_mapping_cache:
2856 kmem_cache_destroy(_cell_cache);
2857bad_cell_cache:
2858 dm_unregister_target(&pool_target);
2859bad_pool_target:
2860 dm_unregister_target(&thin_target);
991d9fa0
JT
2861
2862 return r;
2863}
2864
2865static void dm_thin_exit(void)
2866{
2867 dm_unregister_target(&thin_target);
2868 dm_unregister_target(&pool_target);
a24c2569
MS
2869
2870 kmem_cache_destroy(_cell_cache);
2871 kmem_cache_destroy(_new_mapping_cache);
2872 kmem_cache_destroy(_endio_hook_cache);
991d9fa0
JT
2873}
2874
2875module_init(dm_thin_init);
2876module_exit(dm_thin_exit);
2877
7cab8bf1 2878MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
2879MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2880MODULE_LICENSE("GPL");