Merge tag 'sound-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
1768aa2f 27#include <linux/of.h>
e7a9bcc2 28#include <linux/platform_device.h>
615a445f 29#include <linux/pm_domain.h>
bad81383 30#include <linux/pm_runtime.h>
e7a9bcc2
LP
31#include <linux/sh_timer.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
3fb1b6ad 34
2653caf4 35struct sh_cmt_device;
7269f933 36
2cda3ac4
LP
37/*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
42 * 16B 32B 32B-F 48B 48B-2
43 * -----------------------------------------------------------------------------
44 * Channels 2 1/4 1 6 2/8
45 * Control Width 16 16 16 16 32
46 * Counter Width 16 32 32 32/48 32/48
47 * Shared Start/Stop Y Y Y Y N
48 *
49 * The 48-bit gen2 version has a per-channel start/stop register located in the
50 * channel registers block. All other versions have a shared start/stop register
51 * located in the global space.
52 *
81b3b271
LP
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66enum sh_cmt_model {
67 SH_CMT_16BIT,
68 SH_CMT_32BIT,
69 SH_CMT_32BIT_FAST,
70 SH_CMT_48BIT,
71 SH_CMT_48BIT_GEN2,
72};
73
74struct sh_cmt_info {
75 enum sh_cmt_model model;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 unsigned long overflow_bit;
79 unsigned long clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 unsigned long value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs,
89 unsigned long value);
90};
91
7269f933 92struct sh_cmt_channel {
2653caf4 93 struct sh_cmt_device *cmt;
3fb1b6ad 94
81b3b271
LP
95 unsigned int index; /* Index in the documentation */
96 unsigned int hwidx; /* Real hardware index */
97
98 void __iomem *iostart;
99 void __iomem *ioctrl;
c924d2d2 100
81b3b271 101 unsigned int timer_bit;
3fb1b6ad
MD
102 unsigned long flags;
103 unsigned long match_value;
104 unsigned long next_match_value;
105 unsigned long max_match_value;
106 unsigned long rate;
7d0c399f 107 raw_spinlock_t lock;
3fb1b6ad 108 struct clock_event_device ced;
19bdc9d0 109 struct clocksource cs;
3fb1b6ad 110 unsigned long total_cycles;
bad81383 111 bool cs_enabled;
7269f933
LP
112};
113
2653caf4 114struct sh_cmt_device {
7269f933
LP
115 struct platform_device *pdev;
116
2cda3ac4
LP
117 const struct sh_cmt_info *info;
118
7269f933 119 void __iomem *mapbase;
7269f933
LP
120 struct clk *clk;
121
de599c88
LP
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
f5ec9b19
LP
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
1768aa2f 126 unsigned int hw_channels;
81b3b271
LP
127
128 bool has_clockevent;
129 bool has_clocksource;
3fb1b6ad
MD
130};
131
d14be99b
LP
132#define SH_CMT16_CMCSR_CMF (1 << 7)
133#define SH_CMT16_CMCSR_CMIE (1 << 6)
134#define SH_CMT16_CMCSR_CKS8 (0 << 0)
135#define SH_CMT16_CMCSR_CKS32 (1 << 0)
136#define SH_CMT16_CMCSR_CKS128 (2 << 0)
137#define SH_CMT16_CMCSR_CKS512 (3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140#define SH_CMT32_CMCSR_CMF (1 << 15)
141#define SH_CMT32_CMCSR_OVF (1 << 14)
142#define SH_CMT32_CMCSR_WRFLG (1 << 13)
143#define SH_CMT32_CMCSR_STTF (1 << 12)
144#define SH_CMT32_CMCSR_STPF (1 << 11)
145#define SH_CMT32_CMCSR_SSIE (1 << 10)
146#define SH_CMT32_CMCSR_CMS (1 << 9)
147#define SH_CMT32_CMCSR_CMM (1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
a6a912ca 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
161{
162 return ioread16(base + (offs << 1));
163}
164
a6a912ca
MD
165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167 return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 unsigned long value)
587acb3d
MD
172{
173 iowrite16(value, base + (offs << 1));
174}
3fb1b6ad 175
a6a912ca
MD
176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 unsigned long value)
178{
179 iowrite32(value, base + (offs << 2));
180}
181
2cda3ac4
LP
182static const struct sh_cmt_info sh_cmt_info[] = {
183 [SH_CMT_16BIT] = {
184 .model = SH_CMT_16BIT,
185 .width = 16,
d14be99b
LP
186 .overflow_bit = SH_CMT16_CMCSR_CMF,
187 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
188 .read_control = sh_cmt_read16,
189 .write_control = sh_cmt_write16,
190 .read_count = sh_cmt_read16,
191 .write_count = sh_cmt_write16,
192 },
193 [SH_CMT_32BIT] = {
194 .model = SH_CMT_32BIT,
195 .width = 32,
d14be99b
LP
196 .overflow_bit = SH_CMT32_CMCSR_CMF,
197 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
198 .read_control = sh_cmt_read16,
199 .write_control = sh_cmt_write16,
200 .read_count = sh_cmt_read32,
201 .write_count = sh_cmt_write32,
202 },
203 [SH_CMT_32BIT_FAST] = {
204 .model = SH_CMT_32BIT_FAST,
205 .width = 32,
d14be99b
LP
206 .overflow_bit = SH_CMT32_CMCSR_CMF,
207 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
208 .read_control = sh_cmt_read16,
209 .write_control = sh_cmt_write16,
210 .read_count = sh_cmt_read32,
211 .write_count = sh_cmt_write32,
212 },
213 [SH_CMT_48BIT] = {
214 .model = SH_CMT_48BIT,
215 .width = 32,
d14be99b
LP
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT_48BIT_GEN2] = {
224 .model = SH_CMT_48BIT_GEN2,
225 .width = 32,
d14be99b
LP
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
232 },
233};
234
3fb1b6ad
MD
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
7269f933 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 240{
81b3b271
LP
241 if (ch->iostart)
242 return ch->cmt->info->read_control(ch->iostart, 0);
243 else
244 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
245}
246
81b3b271
LP
247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 unsigned long value)
1b56b96b 249{
81b3b271
LP
250 if (ch->iostart)
251 ch->cmt->info->write_control(ch->iostart, 0, value);
252 else
253 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
254}
255
81b3b271 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 257{
81b3b271 258 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
259}
260
81b3b271 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
262 unsigned long value)
263{
81b3b271 264 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
265}
266
81b3b271 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 268{
81b3b271 269 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
270}
271
7269f933 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
273 unsigned long value)
274{
81b3b271 275 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
276}
277
7269f933 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
279 unsigned long value)
280{
81b3b271 281 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
282}
283
7269f933 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
285 int *has_wrapped)
286{
287 unsigned long v1, v2, v3;
5b644c7a
MD
288 int o1, o2;
289
2cda3ac4 290 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
291
292 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 do {
5b644c7a 294 o2 = o1;
7269f933
LP
295 v1 = sh_cmt_read_cmcnt(ch);
296 v2 = sh_cmt_read_cmcnt(ch);
297 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 298 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
299 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 301
5b644c7a 302 *has_wrapped = o1;
3fb1b6ad
MD
303 return v2;
304}
305
7269f933 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 307{
3fb1b6ad
MD
308 unsigned long flags, value;
309
310 /* start stop register shared by multiple timer channels */
de599c88 311 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 312 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
313
314 if (start)
81b3b271 315 value |= 1 << ch->timer_bit;
3fb1b6ad 316 else
81b3b271 317 value &= ~(1 << ch->timer_bit);
3fb1b6ad 318
7269f933 319 sh_cmt_write_cmstr(ch, value);
de599c88 320 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
321}
322
7269f933 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
3fb1b6ad 324{
3f7e5e24 325 int k, ret;
3fb1b6ad 326
7269f933
LP
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 329
9436b4ab 330 /* enable clock */
7269f933 331 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 332 if (ret) {
740a9518
LP
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
3f7e5e24 335 goto err0;
3fb1b6ad 336 }
3fb1b6ad
MD
337
338 /* make sure channel is disabled */
7269f933 339 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
340
341 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 342 if (ch->cmt->info->width == 16) {
7269f933 343 *rate = clk_get_rate(ch->cmt->clk) / 512;
d14be99b
LP
344 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 SH_CMT16_CMCSR_CKS512);
3014f474 346 } else {
7269f933 347 *rate = clk_get_rate(ch->cmt->clk) / 8;
d14be99b
LP
348 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 SH_CMT32_CMCSR_CMTOUT_IE |
350 SH_CMT32_CMCSR_CMR_IRQ |
351 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 352 }
3fb1b6ad 353
7269f933
LP
354 sh_cmt_write_cmcor(ch, 0xffffffff);
355 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 356
3f7e5e24
MD
357 /*
358 * According to the sh73a0 user's manual, as CMCNT can be operated
359 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 * modifying CMCNT register; two RCLK cycles are necessary before
361 * this register is either read or any modification of the value
362 * it holds is reflected in the LSI's actual operation.
363 *
364 * While at it, we're supposed to clear out the CMCNT as of this
365 * moment, so make sure it's processed properly here. This will
366 * take RCLKx2 at maximum.
367 */
368 for (k = 0; k < 100; k++) {
7269f933 369 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
370 break;
371 udelay(1);
372 }
373
7269f933 374 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
375 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 ch->index);
3f7e5e24
MD
377 ret = -ETIMEDOUT;
378 goto err1;
379 }
380
3fb1b6ad 381 /* enable channel */
7269f933 382 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 383 return 0;
3f7e5e24
MD
384 err1:
385 /* stop clock */
7269f933 386 clk_disable(ch->cmt->clk);
3f7e5e24
MD
387
388 err0:
389 return ret;
3fb1b6ad
MD
390}
391
7269f933 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
393{
394 /* disable channel */
7269f933 395 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 396
be890a1a 397 /* disable interrupts in CMT block */
7269f933 398 sh_cmt_write_cmcsr(ch, 0);
be890a1a 399
9436b4ab 400 /* stop clock */
7269f933 401 clk_disable(ch->cmt->clk);
bad81383 402
7269f933
LP
403 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
405}
406
407/* private flags */
408#define FLAG_CLOCKEVENT (1 << 0)
409#define FLAG_CLOCKSOURCE (1 << 1)
410#define FLAG_REPROGRAM (1 << 2)
411#define FLAG_SKIPEVENT (1 << 3)
412#define FLAG_IRQCONTEXT (1 << 4)
413
7269f933 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
415 int absolute)
416{
417 unsigned long new_match;
7269f933 418 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
419 unsigned long delay = 0;
420 unsigned long now = 0;
421 int has_wrapped;
422
7269f933
LP
423 now = sh_cmt_get_counter(ch, &has_wrapped);
424 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
425
426 if (has_wrapped) {
427 /* we're competing with the interrupt handler.
428 * -> let the interrupt handler reprogram the timer.
429 * -> interrupt number two handles the event.
430 */
7269f933 431 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
432 return;
433 }
434
435 if (absolute)
436 now = 0;
437
438 do {
439 /* reprogram the timer hardware,
440 * but don't save the new match value yet.
441 */
442 new_match = now + value + delay;
7269f933
LP
443 if (new_match > ch->max_match_value)
444 new_match = ch->max_match_value;
3fb1b6ad 445
7269f933 446 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 447
7269f933
LP
448 now = sh_cmt_get_counter(ch, &has_wrapped);
449 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
450 /* we are changing to a greater match value,
451 * so this wrap must be caused by the counter
452 * matching the old value.
453 * -> first interrupt reprograms the timer.
454 * -> interrupt number two handles the event.
455 */
7269f933 456 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
457 break;
458 }
459
460 if (has_wrapped) {
461 /* we are changing to a smaller match value,
462 * so the wrap must be caused by the counter
463 * matching the new value.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
7269f933 467 ch->match_value = new_match;
3fb1b6ad
MD
468 break;
469 }
470
471 /* be safe: verify hardware settings */
472 if (now < new_match) {
473 /* timer value is below match value, all good.
474 * this makes sure we won't miss any match events.
475 * -> save programmed match value.
476 * -> let isr handle the event.
477 */
7269f933 478 ch->match_value = new_match;
3fb1b6ad
MD
479 break;
480 }
481
482 /* the counter has reached a value greater
483 * than our new match value. and since the
484 * has_wrapped flag isn't set we must have
485 * programmed a too close event.
486 * -> increase delay and retry.
487 */
488 if (delay)
489 delay <<= 1;
490 else
491 delay = 1;
492
493 if (!delay)
740a9518
LP
494 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 ch->index);
3fb1b6ad
MD
496
497 } while (delay);
498}
499
7269f933 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 501{
7269f933 502 if (delta > ch->max_match_value)
740a9518
LP
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 ch->index);
3fb1b6ad 505
7269f933
LP
506 ch->next_match_value = delta;
507 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
508}
509
7269f933 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
511{
512 unsigned long flags;
513
7269f933
LP
514 raw_spin_lock_irqsave(&ch->lock, flags);
515 __sh_cmt_set_next(ch, delta);
516 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
517}
518
519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520{
7269f933 521 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
522
523 /* clear flags */
2cda3ac4
LP
524 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 ch->cmt->info->clear_bits);
3fb1b6ad
MD
526
527 /* update clock source counter to begin with if enabled
528 * the wrap flag should be cleared by the timer specific
529 * isr before we end up here.
530 */
7269f933
LP
531 if (ch->flags & FLAG_CLOCKSOURCE)
532 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 533
7269f933
LP
534 if (!(ch->flags & FLAG_REPROGRAM))
535 ch->next_match_value = ch->max_match_value;
3fb1b6ad 536
7269f933 537 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 538
7269f933
LP
539 if (ch->flags & FLAG_CLOCKEVENT) {
540 if (!(ch->flags & FLAG_SKIPEVENT)) {
541 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542 ch->next_match_value = ch->max_match_value;
543 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
544 }
545
7269f933 546 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
547 }
548 }
549
7269f933 550 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 551
7269f933
LP
552 if (ch->flags & FLAG_REPROGRAM) {
553 ch->flags &= ~FLAG_REPROGRAM;
554 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 555
7269f933
LP
556 if (ch->flags & FLAG_CLOCKEVENT)
557 if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558 || (ch->match_value == ch->next_match_value))
559 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
560 }
561
7269f933 562 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
563
564 return IRQ_HANDLED;
565}
566
7269f933 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
568{
569 int ret = 0;
570 unsigned long flags;
571
7269f933 572 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 573
7269f933
LP
574 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 ret = sh_cmt_enable(ch, &ch->rate);
3fb1b6ad
MD
576
577 if (ret)
578 goto out;
7269f933 579 ch->flags |= flag;
3fb1b6ad
MD
580
581 /* setup timeout if no clockevent */
7269f933
LP
582 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 584 out:
7269f933 585 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
586
587 return ret;
588}
589
7269f933 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
591{
592 unsigned long flags;
593 unsigned long f;
594
7269f933 595 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 596
7269f933
LP
597 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 ch->flags &= ~flag;
3fb1b6ad 599
7269f933
LP
600 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 sh_cmt_disable(ch);
3fb1b6ad
MD
602
603 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
604 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 606
7269f933 607 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
608}
609
7269f933 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 611{
7269f933 612 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
613}
614
615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616{
7269f933 617 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
618 unsigned long flags, raw;
619 unsigned long value;
620 int has_wrapped;
621
7269f933
LP
622 raw_spin_lock_irqsave(&ch->lock, flags);
623 value = ch->total_cycles;
624 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
625
626 if (unlikely(has_wrapped))
7269f933
LP
627 raw += ch->match_value + 1;
628 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
629
630 return value + raw;
631}
632
633static int sh_cmt_clocksource_enable(struct clocksource *cs)
634{
3593f5fe 635 int ret;
7269f933 636 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 637
7269f933 638 WARN_ON(ch->cs_enabled);
bad81383 639
7269f933 640 ch->total_cycles = 0;
19bdc9d0 641
7269f933 642 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
bad81383 643 if (!ret) {
fba9e072 644 __clocksource_update_freq_hz(cs, ch->rate);
7269f933 645 ch->cs_enabled = true;
bad81383 646 }
3593f5fe 647 return ret;
19bdc9d0
MD
648}
649
650static void sh_cmt_clocksource_disable(struct clocksource *cs)
651{
7269f933 652 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 653
7269f933 654 WARN_ON(!ch->cs_enabled);
bad81383 655
7269f933
LP
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 ch->cs_enabled = false;
19bdc9d0
MD
658}
659
9bb5ec88
RW
660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661{
7269f933 662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 663
54d46b7f
GU
664 if (!ch->cs_enabled)
665 return;
666
7269f933
LP
667 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
668 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
669}
670
c8162884
MD
671static void sh_cmt_clocksource_resume(struct clocksource *cs)
672{
7269f933 673 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 674
54d46b7f
GU
675 if (!ch->cs_enabled)
676 return;
677
7269f933
LP
678 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
679 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
680}
681
7269f933 682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 683 const char *name)
19bdc9d0 684{
7269f933 685 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
686
687 cs->name = name;
fb28a659 688 cs->rating = 125;
19bdc9d0
MD
689 cs->read = sh_cmt_clocksource_read;
690 cs->enable = sh_cmt_clocksource_enable;
691 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 692 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 693 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
694 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
695 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 696
740a9518
LP
697 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
698 ch->index);
f4d7c356 699
3593f5fe
MD
700 /* Register with dummy 1 Hz value, gets updated in ->enable() */
701 clocksource_register_hz(cs, 1);
19bdc9d0
MD
702 return 0;
703}
704
7269f933 705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 706{
7269f933 707 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
708}
709
7269f933 710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 711{
7269f933 712 struct clock_event_device *ced = &ch->ced;
3fb1b6ad 713
7269f933 714 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
715
716 /* TODO: calculate good shift from rate and counter bit width */
717
718 ced->shift = 32;
7269f933
LP
719 ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
720 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
3fb1b6ad
MD
721 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
722
723 if (periodic)
7269f933 724 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
3fb1b6ad 725 else
7269f933 726 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
727}
728
729static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
730 struct clock_event_device *ced)
731{
7269f933 732 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
733
734 /* deal with old setting first */
735 switch (ced->mode) {
736 case CLOCK_EVT_MODE_PERIODIC:
737 case CLOCK_EVT_MODE_ONESHOT:
7269f933 738 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
739 break;
740 default:
741 break;
742 }
743
744 switch (mode) {
745 case CLOCK_EVT_MODE_PERIODIC:
7269f933 746 dev_info(&ch->cmt->pdev->dev,
740a9518 747 "ch%u: used for periodic clock events\n", ch->index);
7269f933 748 sh_cmt_clock_event_start(ch, 1);
3fb1b6ad
MD
749 break;
750 case CLOCK_EVT_MODE_ONESHOT:
7269f933 751 dev_info(&ch->cmt->pdev->dev,
740a9518 752 "ch%u: used for oneshot clock events\n", ch->index);
7269f933 753 sh_cmt_clock_event_start(ch, 0);
3fb1b6ad
MD
754 break;
755 case CLOCK_EVT_MODE_SHUTDOWN:
756 case CLOCK_EVT_MODE_UNUSED:
7269f933 757 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
758 break;
759 default:
760 break;
761 }
762}
763
764static int sh_cmt_clock_event_next(unsigned long delta,
765 struct clock_event_device *ced)
766{
7269f933 767 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
768
769 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
7269f933
LP
770 if (likely(ch->flags & FLAG_IRQCONTEXT))
771 ch->next_match_value = delta - 1;
3fb1b6ad 772 else
7269f933 773 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
774
775 return 0;
776}
777
9bb5ec88
RW
778static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
779{
7269f933 780 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 781
7269f933
LP
782 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
783 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
784}
785
786static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
787{
7269f933 788 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 789
7269f933
LP
790 clk_prepare(ch->cmt->clk);
791 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
792}
793
bfa76bb1
LP
794static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
795 const char *name)
3fb1b6ad 796{
7269f933 797 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
798 int irq;
799 int ret;
800
31e912f5 801 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
802 if (irq < 0) {
803 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
804 ch->index);
805 return irq;
806 }
807
808 ret = request_irq(irq, sh_cmt_interrupt,
809 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
810 dev_name(&ch->cmt->pdev->dev), ch);
811 if (ret) {
812 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
813 ch->index, irq);
814 return ret;
815 }
3fb1b6ad 816
3fb1b6ad
MD
817 ced->name = name;
818 ced->features = CLOCK_EVT_FEAT_PERIODIC;
819 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 820 ced->rating = 125;
f1ebe1e4 821 ced->cpumask = cpu_possible_mask;
3fb1b6ad
MD
822 ced->set_next_event = sh_cmt_clock_event_next;
823 ced->set_mode = sh_cmt_clock_event_mode;
9bb5ec88
RW
824 ced->suspend = sh_cmt_clock_event_suspend;
825 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 826
740a9518
LP
827 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
828 ch->index);
3fb1b6ad 829 clockevents_register_device(ced);
bfa76bb1
LP
830
831 return 0;
3fb1b6ad
MD
832}
833
1d053e1d 834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 835 bool clockevent, bool clocksource)
3fb1b6ad 836{
bfa76bb1
LP
837 int ret;
838
81b3b271
LP
839 if (clockevent) {
840 ch->cmt->has_clockevent = true;
bfa76bb1
LP
841 ret = sh_cmt_register_clockevent(ch, name);
842 if (ret < 0)
843 return ret;
81b3b271 844 }
3fb1b6ad 845
81b3b271
LP
846 if (clocksource) {
847 ch->cmt->has_clocksource = true;
fb28a659 848 sh_cmt_register_clocksource(ch, name);
81b3b271 849 }
19bdc9d0 850
3fb1b6ad
MD
851 return 0;
852}
853
740a9518 854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
855 unsigned int hwidx, bool clockevent,
856 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 857{
b882e7b1
LP
858 int ret;
859
81b3b271
LP
860 /* Skip unused channels. */
861 if (!clockevent && !clocksource)
862 return 0;
863
b882e7b1 864 ch->cmt = cmt;
740a9518 865 ch->index = index;
81b3b271
LP
866 ch->hwidx = hwidx;
867
868 /*
869 * Compute the address of the channel control register block. For the
870 * timers with a per-channel start/stop register, compute its address
871 * as well.
81b3b271 872 */
31e912f5
LP
873 switch (cmt->info->model) {
874 case SH_CMT_16BIT:
875 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
876 break;
877 case SH_CMT_32BIT:
878 case SH_CMT_48BIT:
879 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
880 break;
881 case SH_CMT_32BIT_FAST:
882 /*
883 * The 32-bit "fast" timer has a single channel at hwidx 5 but
884 * is located at offset 0x40 instead of 0x60 for some reason.
885 */
886 ch->ioctrl = cmt->mapbase + 0x40;
887 break;
888 case SH_CMT_48BIT_GEN2:
889 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 ch->ioctrl = ch->iostart + 0x10;
891 break;
81b3b271
LP
892 }
893
2cda3ac4 894 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
895 ch->max_match_value = ~0;
896 else
2cda3ac4 897 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
898
899 ch->match_value = ch->max_match_value;
900 raw_spin_lock_init(&ch->lock);
901
31e912f5 902 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
81b3b271 903
1d053e1d 904 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 905 clockevent, clocksource);
b882e7b1 906 if (ret) {
740a9518
LP
907 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
908 ch->index);
b882e7b1
LP
909 return ret;
910 }
911 ch->cs_enabled = false;
912
b882e7b1
LP
913 return 0;
914}
915
81b3b271 916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 917{
81b3b271 918 struct resource *mem;
3fb1b6ad 919
81b3b271
LP
920 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
921 if (!mem) {
922 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
923 return -ENXIO;
924 }
3fb1b6ad 925
81b3b271
LP
926 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
927 if (cmt->mapbase == NULL) {
928 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
929 return -ENXIO;
3fb1b6ad
MD
930 }
931
81b3b271
LP
932 return 0;
933}
934
1768aa2f
LP
935static const struct platform_device_id sh_cmt_id_table[] = {
936 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
937 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
938 { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
939 { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
940 { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
941 { }
942};
943MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
944
945static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
946 { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
947 { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
948 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
949 { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
950 { }
951};
952MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
953
954static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
955{
956 struct device_node *np = cmt->pdev->dev.of_node;
957
958 return of_property_read_u32(np, "renesas,channels-mask",
959 &cmt->hw_channels);
960}
961
81b3b271
LP
962static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
963{
31e912f5
LP
964 unsigned int mask;
965 unsigned int i;
81b3b271
LP
966 int ret;
967
968 memset(cmt, 0, sizeof(*cmt));
969 cmt->pdev = pdev;
de599c88 970 raw_spin_lock_init(&cmt->lock);
81b3b271 971
1768aa2f
LP
972 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 const struct of_device_id *id;
974
975 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
976 cmt->info = id->data;
977
978 ret = sh_cmt_parse_dt(cmt);
979 if (ret < 0)
980 return ret;
981 } else if (pdev->dev.platform_data) {
982 struct sh_timer_config *cfg = pdev->dev.platform_data;
983 const struct platform_device_id *id = pdev->id_entry;
984
985 cmt->info = (const struct sh_cmt_info *)id->driver_data;
986 cmt->hw_channels = cfg->channels_mask;
987 } else {
81b3b271
LP
988 dev_err(&cmt->pdev->dev, "missing platform data\n");
989 return -ENXIO;
990 }
991
81b3b271 992 /* Get hold of clock. */
31e912f5 993 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
994 if (IS_ERR(cmt->clk)) {
995 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 996 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
997 }
998
2653caf4 999 ret = clk_prepare(cmt->clk);
57dee992 1000 if (ret < 0)
81b3b271 1001 goto err_clk_put;
57dee992 1002
31e912f5
LP
1003 /* Map the memory resource(s). */
1004 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
1005 if (ret < 0)
1006 goto err_clk_unprepare;
1007
1008 /* Allocate and setup the channels. */
1768aa2f 1009 cmt->num_channels = hweight8(cmt->hw_channels);
81b3b271
LP
1010 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1011 GFP_KERNEL);
f5ec9b19
LP
1012 if (cmt->channels == NULL) {
1013 ret = -ENOMEM;
81b3b271 1014 goto err_unmap;
f5ec9b19
LP
1015 }
1016
31e912f5
LP
1017 /*
1018 * Use the first channel as a clock event device and the second channel
1019 * as a clock source. If only one channel is available use it for both.
1020 */
1768aa2f 1021 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1022 unsigned int hwidx = ffs(mask) - 1;
1023 bool clocksource = i == 1 || cmt->num_channels == 1;
1024 bool clockevent = i == 0;
1025
1026 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1027 clockevent, clocksource, cmt);
81b3b271
LP
1028 if (ret < 0)
1029 goto err_unmap;
f5ec9b19 1030
31e912f5 1031 mask &= ~(1 << hwidx);
81b3b271 1032 }
da64c2a8 1033
2653caf4 1034 platform_set_drvdata(pdev, cmt);
adccc69e 1035
da64c2a8 1036 return 0;
81b3b271
LP
1037
1038err_unmap:
f5ec9b19 1039 kfree(cmt->channels);
31e912f5 1040 iounmap(cmt->mapbase);
81b3b271 1041err_clk_unprepare:
2653caf4 1042 clk_unprepare(cmt->clk);
81b3b271 1043err_clk_put:
2653caf4 1044 clk_put(cmt->clk);
3fb1b6ad
MD
1045 return ret;
1046}
1047
1850514b 1048static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1049{
2653caf4 1050 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1051 int ret;
1052
9bb5ec88 1053 if (!is_early_platform_device(pdev)) {
bad81383
RW
1054 pm_runtime_set_active(&pdev->dev);
1055 pm_runtime_enable(&pdev->dev);
9bb5ec88 1056 }
615a445f 1057
2653caf4 1058 if (cmt) {
214a607a 1059 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1060 goto out;
e475eedb
MD
1061 }
1062
b262bc74 1063 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1064 if (cmt == NULL)
3fb1b6ad 1065 return -ENOMEM;
3fb1b6ad 1066
2653caf4 1067 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1068 if (ret) {
2653caf4 1069 kfree(cmt);
bad81383
RW
1070 pm_runtime_idle(&pdev->dev);
1071 return ret;
3fb1b6ad 1072 }
bad81383
RW
1073 if (is_early_platform_device(pdev))
1074 return 0;
1075
1076 out:
81b3b271 1077 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1078 pm_runtime_irq_safe(&pdev->dev);
1079 else
1080 pm_runtime_idle(&pdev->dev);
1081
1082 return 0;
3fb1b6ad
MD
1083}
1084
1850514b 1085static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1086{
1087 return -EBUSY; /* cannot unregister clockevent and clocksource */
1088}
1089
1090static struct platform_driver sh_cmt_device_driver = {
1091 .probe = sh_cmt_probe,
1850514b 1092 .remove = sh_cmt_remove,
3fb1b6ad
MD
1093 .driver = {
1094 .name = "sh_cmt",
1768aa2f 1095 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1096 },
1097 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1098};
1099
1100static int __init sh_cmt_init(void)
1101{
1102 return platform_driver_register(&sh_cmt_device_driver);
1103}
1104
1105static void __exit sh_cmt_exit(void)
1106{
1107 platform_driver_unregister(&sh_cmt_device_driver);
1108}
1109
e475eedb 1110early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1111subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1112module_exit(sh_cmt_exit);
1113
1114MODULE_AUTHOR("Magnus Damm");
1115MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1116MODULE_LICENSE("GPL v2");