Merge tag 'sound-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
306b0c95 28#include <linux/string.h>
306b0c95 29#include <linux/vmalloc.h>
fcfa8d95 30#include <linux/err.h>
85508ec6 31#include <linux/idr.h>
6566d1a3 32#include <linux/sysfs.h>
306b0c95 33
16a4bfb9 34#include "zram_drv.h"
306b0c95 35
85508ec6 36static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
37/* idr index must be protected */
38static DEFINE_MUTEX(zram_index_mutex);
39
f1e3cfff 40static int zram_major;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
8f7d282c
SS
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
a68eb3b6 55#define ZRAM_ATTR_RO(name) \
3bca3ef7 56static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
8f7d282c
SS
60 \
61 deprecated_attr_warn(__stringify(name)); \
56b4e8cb 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
083914ea 65static DEVICE_ATTR_RO(name);
a68eb3b6 66
08eee69f 67static inline bool init_done(struct zram *zram)
be2d1d56 68{
08eee69f 69 return zram->disksize;
be2d1d56
SS
70}
71
9b3bb7ab
SS
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
b31177f2 77/* flag operations require table entry bit_spin_lock() being held */
522698d7
SS
78static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
99ebbd30 80{
522698d7
SS
81 return meta->table[index].value & BIT(flag);
82}
99ebbd30 83
522698d7
SS
84static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86{
87 meta->table[index].value |= BIT(flag);
88}
99ebbd30 89
522698d7
SS
90static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92{
93 meta->table[index].value &= ~BIT(flag);
94}
99ebbd30 95
522698d7
SS
96static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97{
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
99}
100
522698d7
SS
101static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
9b3bb7ab 103{
522698d7 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 105
522698d7
SS
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107}
108
109static inline int is_partial_io(struct bio_vec *bvec)
110{
111 return bvec->bv_len != PAGE_SIZE;
112}
113
114/*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117static inline int valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119{
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return 0;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return 0;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return 0;
133
134 /* I/O request is valid */
135 return 1;
136}
137
138static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139{
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143}
144
145static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147{
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158}
159
160static int page_zero_filled(void *ptr)
161{
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return 0;
170 }
171
172 return 1;
173}
174
175static void handle_zero_page(struct bio_vec *bvec)
176{
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
9b3bb7ab
SS
188}
189
190static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
a68eb3b6 193 u32 val;
9b3bb7ab
SS
194 struct zram *zram = dev_to_zram(dev);
195
a68eb3b6
SS
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
9b3bb7ab 199
56b4e8cb 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
201}
202
522698d7
SS
203static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209}
210
9b3bb7ab
SS
211static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct zram *zram = dev_to_zram(dev);
215
8f7d282c 216 deprecated_attr_warn("orig_data_size");
56b4e8cb 217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
219}
220
9b3bb7ab
SS
221static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
9b3bb7ab 226
8f7d282c 227 deprecated_attr_warn("mem_used_total");
9b3bb7ab 228 down_read(&zram->init_lock);
5a99e95b
WY
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
722cdc17 231 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 232 }
9b3bb7ab
SS
233 up_read(&zram->init_lock);
234
722cdc17 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
236}
237
9ada9da9
MK
238static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
8f7d282c 244 deprecated_attr_warn("mem_limit");
9ada9da9
MK
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250}
251
252static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268}
269
461a8eee
MK
270static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
8f7d282c 276 deprecated_attr_warn("mem_used_max");
461a8eee
MK
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283}
284
285static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287{
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
5a99e95b
WY
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
461a8eee
MK
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
5a99e95b 301 }
461a8eee
MK
302 up_read(&zram->init_lock);
303
304 return len;
305}
306
522698d7
SS
307static ssize_t max_comp_streams_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309{
310 int val;
311 struct zram *zram = dev_to_zram(dev);
312
313 down_read(&zram->init_lock);
314 val = zram->max_comp_streams;
315 up_read(&zram->init_lock);
316
317 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318}
319
beca3ec7
SS
320static ssize_t max_comp_streams_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
322{
323 int num;
324 struct zram *zram = dev_to_zram(dev);
60a726e3 325 int ret;
beca3ec7 326
60a726e3
MK
327 ret = kstrtoint(buf, 0, &num);
328 if (ret < 0)
329 return ret;
beca3ec7
SS
330 if (num < 1)
331 return -EINVAL;
60a726e3 332
beca3ec7
SS
333 down_write(&zram->init_lock);
334 if (init_done(zram)) {
60a726e3 335 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 336 pr_info("Cannot change max compression streams\n");
60a726e3
MK
337 ret = -EINVAL;
338 goto out;
339 }
beca3ec7 340 }
60a726e3 341
beca3ec7 342 zram->max_comp_streams = num;
60a726e3
MK
343 ret = len;
344out:
beca3ec7 345 up_write(&zram->init_lock);
60a726e3 346 return ret;
beca3ec7
SS
347}
348
e46b8a03
SS
349static ssize_t comp_algorithm_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351{
352 size_t sz;
353 struct zram *zram = dev_to_zram(dev);
354
355 down_read(&zram->init_lock);
356 sz = zcomp_available_show(zram->compressor, buf);
357 up_read(&zram->init_lock);
358
359 return sz;
360}
361
362static ssize_t comp_algorithm_store(struct device *dev,
363 struct device_attribute *attr, const char *buf, size_t len)
364{
365 struct zram *zram = dev_to_zram(dev);
4bbacd51
SS
366 size_t sz;
367
e46b8a03
SS
368 down_write(&zram->init_lock);
369 if (init_done(zram)) {
370 up_write(&zram->init_lock);
371 pr_info("Can't change algorithm for initialized device\n");
372 return -EBUSY;
373 }
374 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
4bbacd51
SS
375
376 /* ignore trailing newline */
377 sz = strlen(zram->compressor);
378 if (sz > 0 && zram->compressor[sz - 1] == '\n')
379 zram->compressor[sz - 1] = 0x00;
380
d93435c3
SS
381 if (!zcomp_available_algorithm(zram->compressor))
382 len = -EINVAL;
383
e46b8a03
SS
384 up_write(&zram->init_lock);
385 return len;
386}
387
522698d7
SS
388static ssize_t compact_store(struct device *dev,
389 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 390{
522698d7
SS
391 unsigned long nr_migrated;
392 struct zram *zram = dev_to_zram(dev);
393 struct zram_meta *meta;
306b0c95 394
522698d7
SS
395 down_read(&zram->init_lock);
396 if (!init_done(zram)) {
397 up_read(&zram->init_lock);
398 return -EINVAL;
399 }
306b0c95 400
522698d7
SS
401 meta = zram->meta;
402 nr_migrated = zs_compact(meta->mem_pool);
403 atomic64_add(nr_migrated, &zram->stats.num_migrated);
404 up_read(&zram->init_lock);
d2d5e762 405
522698d7 406 return len;
d2d5e762
WY
407}
408
522698d7
SS
409static ssize_t io_stat_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
d2d5e762 411{
522698d7
SS
412 struct zram *zram = dev_to_zram(dev);
413 ssize_t ret;
d2d5e762 414
522698d7
SS
415 down_read(&zram->init_lock);
416 ret = scnprintf(buf, PAGE_SIZE,
417 "%8llu %8llu %8llu %8llu\n",
418 (u64)atomic64_read(&zram->stats.failed_reads),
419 (u64)atomic64_read(&zram->stats.failed_writes),
420 (u64)atomic64_read(&zram->stats.invalid_io),
421 (u64)atomic64_read(&zram->stats.notify_free));
422 up_read(&zram->init_lock);
306b0c95 423
522698d7 424 return ret;
9b3bb7ab
SS
425}
426
522698d7
SS
427static ssize_t mm_stat_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
9b3bb7ab 429{
522698d7
SS
430 struct zram *zram = dev_to_zram(dev);
431 u64 orig_size, mem_used = 0;
432 long max_used;
433 ssize_t ret;
a539c72a 434
522698d7
SS
435 down_read(&zram->init_lock);
436 if (init_done(zram))
437 mem_used = zs_get_total_pages(zram->meta->mem_pool);
9b3bb7ab 438
522698d7
SS
439 orig_size = atomic64_read(&zram->stats.pages_stored);
440 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 441
522698d7
SS
442 ret = scnprintf(buf, PAGE_SIZE,
443 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
444 orig_size << PAGE_SHIFT,
445 (u64)atomic64_read(&zram->stats.compr_data_size),
446 mem_used << PAGE_SHIFT,
447 zram->limit_pages << PAGE_SHIFT,
448 max_used << PAGE_SHIFT,
449 (u64)atomic64_read(&zram->stats.zero_pages),
450 (u64)atomic64_read(&zram->stats.num_migrated));
451 up_read(&zram->init_lock);
9b3bb7ab 452
522698d7
SS
453 return ret;
454}
455
456static DEVICE_ATTR_RO(io_stat);
457static DEVICE_ATTR_RO(mm_stat);
458ZRAM_ATTR_RO(num_reads);
459ZRAM_ATTR_RO(num_writes);
460ZRAM_ATTR_RO(failed_reads);
461ZRAM_ATTR_RO(failed_writes);
462ZRAM_ATTR_RO(invalid_io);
463ZRAM_ATTR_RO(notify_free);
464ZRAM_ATTR_RO(zero_pages);
465ZRAM_ATTR_RO(compr_data_size);
466
467static inline bool zram_meta_get(struct zram *zram)
468{
469 if (atomic_inc_not_zero(&zram->refcount))
470 return true;
471 return false;
472}
473
474static inline void zram_meta_put(struct zram *zram)
475{
476 atomic_dec(&zram->refcount);
477}
478
479static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480{
481 size_t num_pages = disksize >> PAGE_SHIFT;
482 size_t index;
1fec1172
GM
483
484 /* Free all pages that are still in this zram device */
485 for (index = 0; index < num_pages; index++) {
486 unsigned long handle = meta->table[index].handle;
487
488 if (!handle)
489 continue;
490
491 zs_free(meta->mem_pool, handle);
492 }
493
9b3bb7ab 494 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
495 vfree(meta->table);
496 kfree(meta);
497}
498
4ce321f5 499static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
9b3bb7ab
SS
500{
501 size_t num_pages;
502 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 503
9b3bb7ab 504 if (!meta)
b8179958 505 return NULL;
9b3bb7ab 506
9b3bb7ab
SS
507 num_pages = disksize >> PAGE_SHIFT;
508 meta->table = vzalloc(num_pages * sizeof(*meta->table));
509 if (!meta->table) {
510 pr_err("Error allocating zram address table\n");
b8179958 511 goto out_error;
9b3bb7ab
SS
512 }
513
3eba0c6a 514 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
9b3bb7ab
SS
515 if (!meta->mem_pool) {
516 pr_err("Error creating memory pool\n");
b8179958 517 goto out_error;
9b3bb7ab
SS
518 }
519
520 return meta;
521
b8179958 522out_error:
9b3bb7ab 523 vfree(meta->table);
9b3bb7ab 524 kfree(meta);
b8179958 525 return NULL;
9b3bb7ab
SS
526}
527
d2d5e762
WY
528/*
529 * To protect concurrent access to the same index entry,
530 * caller should hold this table index entry's bit_spinlock to
531 * indicate this index entry is accessing.
532 */
f1e3cfff 533static void zram_free_page(struct zram *zram, size_t index)
306b0c95 534{
8b3cc3ed
MK
535 struct zram_meta *meta = zram->meta;
536 unsigned long handle = meta->table[index].handle;
306b0c95 537
fd1a30de 538 if (unlikely(!handle)) {
2e882281
NG
539 /*
540 * No memory is allocated for zero filled pages.
541 * Simply clear zero page flag.
542 */
8b3cc3ed
MK
543 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
544 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 545 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
546 }
547 return;
548 }
549
8b3cc3ed 550 zs_free(meta->mem_pool, handle);
306b0c95 551
d2d5e762
WY
552 atomic64_sub(zram_get_obj_size(meta, index),
553 &zram->stats.compr_data_size);
90a7806e 554 atomic64_dec(&zram->stats.pages_stored);
306b0c95 555
8b3cc3ed 556 meta->table[index].handle = 0;
d2d5e762 557 zram_set_obj_size(meta, index, 0);
306b0c95
NG
558}
559
37b51fdd 560static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 561{
b7ca232e 562 int ret = 0;
37b51fdd 563 unsigned char *cmem;
8b3cc3ed 564 struct zram_meta *meta = zram->meta;
92967471 565 unsigned long handle;
023b409f 566 size_t size;
92967471 567
d2d5e762 568 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 569 handle = meta->table[index].handle;
d2d5e762 570 size = zram_get_obj_size(meta, index);
306b0c95 571
8b3cc3ed 572 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 573 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 574 clear_page(mem);
8c921b2b
JM
575 return 0;
576 }
306b0c95 577
8b3cc3ed 578 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 579 if (size == PAGE_SIZE)
42e99bd9 580 copy_page(mem, cmem);
37b51fdd 581 else
b7ca232e 582 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 583 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 584 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 585
8c921b2b 586 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 587 if (unlikely(ret)) {
8c921b2b 588 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 589 return ret;
a1dd52af 590 }
306b0c95 591
8c921b2b 592 return 0;
306b0c95
NG
593}
594
37b51fdd 595static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 596 u32 index, int offset)
924bd88d
JM
597{
598 int ret;
37b51fdd
SS
599 struct page *page;
600 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 601 struct zram_meta *meta = zram->meta;
37b51fdd
SS
602 page = bvec->bv_page;
603
d2d5e762 604 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
605 if (unlikely(!meta->table[index].handle) ||
606 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 607 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 608 handle_zero_page(bvec);
924bd88d
JM
609 return 0;
610 }
d2d5e762 611 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 612
37b51fdd
SS
613 if (is_partial_io(bvec))
614 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
615 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
616
617 user_mem = kmap_atomic(page);
618 if (!is_partial_io(bvec))
37b51fdd
SS
619 uncmem = user_mem;
620
621 if (!uncmem) {
622 pr_info("Unable to allocate temp memory\n");
623 ret = -ENOMEM;
624 goto out_cleanup;
625 }
924bd88d 626
37b51fdd 627 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 628 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 629 if (unlikely(ret))
37b51fdd 630 goto out_cleanup;
924bd88d 631
37b51fdd
SS
632 if (is_partial_io(bvec))
633 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
634 bvec->bv_len);
635
636 flush_dcache_page(page);
637 ret = 0;
638out_cleanup:
639 kunmap_atomic(user_mem);
640 if (is_partial_io(bvec))
641 kfree(uncmem);
642 return ret;
924bd88d
JM
643}
644
645static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
646 int offset)
306b0c95 647{
397c6066 648 int ret = 0;
8c921b2b 649 size_t clen;
c2344348 650 unsigned long handle;
130f315a 651 struct page *page;
924bd88d 652 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 653 struct zram_meta *meta = zram->meta;
17162f41 654 struct zcomp_strm *zstrm = NULL;
461a8eee 655 unsigned long alloced_pages;
306b0c95 656
8c921b2b 657 page = bvec->bv_page;
924bd88d
JM
658 if (is_partial_io(bvec)) {
659 /*
660 * This is a partial IO. We need to read the full page
661 * before to write the changes.
662 */
7e5a5104 663 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 664 if (!uncmem) {
924bd88d
JM
665 ret = -ENOMEM;
666 goto out;
667 }
37b51fdd 668 ret = zram_decompress_page(zram, uncmem, index);
397c6066 669 if (ret)
924bd88d 670 goto out;
924bd88d
JM
671 }
672
b7ca232e 673 zstrm = zcomp_strm_find(zram->comp);
ba82fe2e 674 user_mem = kmap_atomic(page);
924bd88d 675
397c6066 676 if (is_partial_io(bvec)) {
924bd88d
JM
677 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
678 bvec->bv_len);
397c6066
NG
679 kunmap_atomic(user_mem);
680 user_mem = NULL;
681 } else {
924bd88d 682 uncmem = user_mem;
397c6066 683 }
924bd88d
JM
684
685 if (page_zero_filled(uncmem)) {
c4065152
WY
686 if (user_mem)
687 kunmap_atomic(user_mem);
f40ac2ae 688 /* Free memory associated with this sector now. */
d2d5e762 689 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 690 zram_free_page(zram, index);
92967471 691 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 692 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 693
90a7806e 694 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
695 ret = 0;
696 goto out;
8c921b2b 697 }
306b0c95 698
b7ca232e 699 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
700 if (!is_partial_io(bvec)) {
701 kunmap_atomic(user_mem);
702 user_mem = NULL;
703 uncmem = NULL;
704 }
306b0c95 705
b7ca232e 706 if (unlikely(ret)) {
8c921b2b 707 pr_err("Compression failed! err=%d\n", ret);
924bd88d 708 goto out;
8c921b2b 709 }
b7ca232e 710 src = zstrm->buffer;
c8f2f0db 711 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 712 clen = PAGE_SIZE;
397c6066
NG
713 if (is_partial_io(bvec))
714 src = uncmem;
c8f2f0db 715 }
a1dd52af 716
8b3cc3ed 717 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 718 if (!handle) {
596b3dd4
MR
719 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
720 index, clen);
924bd88d
JM
721 ret = -ENOMEM;
722 goto out;
8c921b2b 723 }
9ada9da9 724
461a8eee
MK
725 alloced_pages = zs_get_total_pages(meta->mem_pool);
726 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
727 zs_free(meta->mem_pool, handle);
728 ret = -ENOMEM;
729 goto out;
730 }
731
461a8eee
MK
732 update_used_max(zram, alloced_pages);
733
8b3cc3ed 734 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 735
42e99bd9 736 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 737 src = kmap_atomic(page);
42e99bd9 738 copy_page(cmem, src);
397c6066 739 kunmap_atomic(src);
42e99bd9
JL
740 } else {
741 memcpy(cmem, src, clen);
742 }
306b0c95 743
b7ca232e 744 zcomp_strm_release(zram->comp, zstrm);
17162f41 745 zstrm = NULL;
8b3cc3ed 746 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 747
f40ac2ae
SS
748 /*
749 * Free memory associated with this sector
750 * before overwriting unused sectors.
751 */
d2d5e762 752 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
753 zram_free_page(zram, index);
754
8b3cc3ed 755 meta->table[index].handle = handle;
d2d5e762
WY
756 zram_set_obj_size(meta, index, clen);
757 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 758
8c921b2b 759 /* Update stats */
90a7806e
SS
760 atomic64_add(clen, &zram->stats.compr_data_size);
761 atomic64_inc(&zram->stats.pages_stored);
924bd88d 762out:
17162f41 763 if (zstrm)
b7ca232e 764 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
765 if (is_partial_io(bvec))
766 kfree(uncmem);
924bd88d 767 return ret;
8c921b2b
JM
768}
769
f4659d8e
JK
770/*
771 * zram_bio_discard - handler on discard request
772 * @index: physical block index in PAGE_SIZE units
773 * @offset: byte offset within physical block
774 */
775static void zram_bio_discard(struct zram *zram, u32 index,
776 int offset, struct bio *bio)
777{
778 size_t n = bio->bi_iter.bi_size;
d2d5e762 779 struct zram_meta *meta = zram->meta;
f4659d8e
JK
780
781 /*
782 * zram manages data in physical block size units. Because logical block
783 * size isn't identical with physical block size on some arch, we
784 * could get a discard request pointing to a specific offset within a
785 * certain physical block. Although we can handle this request by
786 * reading that physiclal block and decompressing and partially zeroing
787 * and re-compressing and then re-storing it, this isn't reasonable
788 * because our intent with a discard request is to save memory. So
789 * skipping this logical block is appropriate here.
790 */
791 if (offset) {
38515c73 792 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
793 return;
794
38515c73 795 n -= (PAGE_SIZE - offset);
f4659d8e
JK
796 index++;
797 }
798
799 while (n >= PAGE_SIZE) {
d2d5e762 800 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 801 zram_free_page(zram, index);
d2d5e762 802 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 803 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
804 index++;
805 n -= PAGE_SIZE;
806 }
807}
808
522698d7
SS
809static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
810 int offset, int rw)
9b3bb7ab 811{
522698d7 812 unsigned long start_time = jiffies;
9b3bb7ab 813 int ret;
9b3bb7ab 814
522698d7
SS
815 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
816 &zram->disk->part0);
46a51c80 817
522698d7
SS
818 if (rw == READ) {
819 atomic64_inc(&zram->stats.num_reads);
820 ret = zram_bvec_read(zram, bvec, index, offset);
821 } else {
822 atomic64_inc(&zram->stats.num_writes);
823 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 824 }
9b3bb7ab 825
522698d7 826 generic_end_io_acct(rw, &zram->disk->part0, start_time);
9b3bb7ab 827
522698d7
SS
828 if (unlikely(ret)) {
829 if (rw == READ)
830 atomic64_inc(&zram->stats.failed_reads);
831 else
832 atomic64_inc(&zram->stats.failed_writes);
1b672224 833 }
9b3bb7ab 834
1b672224 835 return ret;
8c921b2b
JM
836}
837
be257c61 838static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 839{
b627cff3 840 int offset, rw;
8c921b2b 841 u32 index;
7988613b
KO
842 struct bio_vec bvec;
843 struct bvec_iter iter;
8c921b2b 844
4f024f37
KO
845 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
846 offset = (bio->bi_iter.bi_sector &
847 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 848
f4659d8e
JK
849 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
850 zram_bio_discard(zram, index, offset, bio);
851 bio_endio(bio, 0);
852 return;
853 }
854
b627cff3 855 rw = bio_data_dir(bio);
7988613b 856 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
857 int max_transfer_size = PAGE_SIZE - offset;
858
7988613b 859 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
860 /*
861 * zram_bvec_rw() can only make operation on a single
862 * zram page. Split the bio vector.
863 */
864 struct bio_vec bv;
865
7988613b 866 bv.bv_page = bvec.bv_page;
924bd88d 867 bv.bv_len = max_transfer_size;
7988613b 868 bv.bv_offset = bvec.bv_offset;
924bd88d 869
b627cff3 870 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
871 goto out;
872
7988613b 873 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 874 bv.bv_offset += max_transfer_size;
b627cff3 875 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
876 goto out;
877 } else
b627cff3 878 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
879 goto out;
880
7988613b 881 update_position(&index, &offset, &bvec);
a1dd52af 882 }
306b0c95
NG
883
884 set_bit(BIO_UPTODATE, &bio->bi_flags);
885 bio_endio(bio, 0);
7d7854b4 886 return;
306b0c95
NG
887
888out:
306b0c95 889 bio_io_error(bio);
306b0c95
NG
890}
891
306b0c95 892/*
f1e3cfff 893 * Handler function for all zram I/O requests.
306b0c95 894 */
5a7bbad2 895static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 896{
f1e3cfff 897 struct zram *zram = queue->queuedata;
306b0c95 898
08eee69f 899 if (unlikely(!zram_meta_get(zram)))
3de738cd 900 goto error;
0900beae 901
54850e73 902 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
903 bio->bi_iter.bi_size)) {
da5cc7d3 904 atomic64_inc(&zram->stats.invalid_io);
08eee69f 905 goto put_zram;
6642a67c
JM
906 }
907
be257c61 908 __zram_make_request(zram, bio);
08eee69f 909 zram_meta_put(zram);
b4fdcb02 910 return;
08eee69f
MK
911put_zram:
912 zram_meta_put(zram);
0900beae
JM
913error:
914 bio_io_error(bio);
306b0c95
NG
915}
916
2ccbec05
NG
917static void zram_slot_free_notify(struct block_device *bdev,
918 unsigned long index)
107c161b 919{
f1e3cfff 920 struct zram *zram;
f614a9f4 921 struct zram_meta *meta;
107c161b 922
f1e3cfff 923 zram = bdev->bd_disk->private_data;
f614a9f4 924 meta = zram->meta;
a0c516cb 925
d2d5e762 926 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 927 zram_free_page(zram, index);
d2d5e762 928 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 929 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
930}
931
8c7f0102 932static int zram_rw_page(struct block_device *bdev, sector_t sector,
933 struct page *page, int rw)
934{
08eee69f 935 int offset, err = -EIO;
8c7f0102 936 u32 index;
937 struct zram *zram;
938 struct bio_vec bv;
939
940 zram = bdev->bd_disk->private_data;
08eee69f
MK
941 if (unlikely(!zram_meta_get(zram)))
942 goto out;
943
8c7f0102 944 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
945 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
946 err = -EINVAL;
947 goto put_zram;
8c7f0102 948 }
949
950 index = sector >> SECTORS_PER_PAGE_SHIFT;
951 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
952
953 bv.bv_page = page;
954 bv.bv_len = PAGE_SIZE;
955 bv.bv_offset = 0;
956
957 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
958put_zram:
959 zram_meta_put(zram);
960out:
8c7f0102 961 /*
962 * If I/O fails, just return error(ie, non-zero) without
963 * calling page_endio.
964 * It causes resubmit the I/O with bio request by upper functions
965 * of rw_page(e.g., swap_readpage, __swap_writepage) and
966 * bio->bi_end_io does things to handle the error
967 * (e.g., SetPageError, set_page_dirty and extra works).
968 */
969 if (err == 0)
970 page_endio(page, rw, 0);
971 return err;
972}
973
522698d7
SS
974static void zram_reset_device(struct zram *zram)
975{
976 struct zram_meta *meta;
977 struct zcomp *comp;
978 u64 disksize;
306b0c95 979
522698d7 980 down_write(&zram->init_lock);
9b3bb7ab 981
522698d7
SS
982 zram->limit_pages = 0;
983
984 if (!init_done(zram)) {
985 up_write(&zram->init_lock);
986 return;
987 }
988
989 meta = zram->meta;
990 comp = zram->comp;
991 disksize = zram->disksize;
992 /*
993 * Refcount will go down to 0 eventually and r/w handler
994 * cannot handle further I/O so it will bail out by
995 * check zram_meta_get.
996 */
997 zram_meta_put(zram);
998 /*
999 * We want to free zram_meta in process context to avoid
1000 * deadlock between reclaim path and any other locks.
1001 */
1002 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1003
1004 /* Reset stats */
1005 memset(&zram->stats, 0, sizeof(zram->stats));
1006 zram->disksize = 0;
1007 zram->max_comp_streams = 1;
1008
1009 set_capacity(zram->disk, 0);
1010 part_stat_set_all(&zram->disk->part0, 0);
1011
1012 up_write(&zram->init_lock);
1013 /* I/O operation under all of CPU are done so let's free */
1014 zram_meta_free(meta, disksize);
1015 zcomp_destroy(comp);
1016}
1017
1018static ssize_t disksize_store(struct device *dev,
1019 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1020{
522698d7
SS
1021 u64 disksize;
1022 struct zcomp *comp;
1023 struct zram_meta *meta;
2f6a3bed 1024 struct zram *zram = dev_to_zram(dev);
522698d7 1025 int err;
2f6a3bed 1026
522698d7
SS
1027 disksize = memparse(buf, NULL);
1028 if (!disksize)
1029 return -EINVAL;
2f6a3bed 1030
522698d7 1031 disksize = PAGE_ALIGN(disksize);
4ce321f5 1032 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
522698d7
SS
1033 if (!meta)
1034 return -ENOMEM;
1035
1036 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1037 if (IS_ERR(comp)) {
1038 pr_info("Cannot initialise %s compressing backend\n",
1039 zram->compressor);
1040 err = PTR_ERR(comp);
1041 goto out_free_meta;
1042 }
1043
1044 down_write(&zram->init_lock);
1045 if (init_done(zram)) {
1046 pr_info("Cannot change disksize for initialized device\n");
1047 err = -EBUSY;
1048 goto out_destroy_comp;
1049 }
1050
1051 init_waitqueue_head(&zram->io_done);
1052 atomic_set(&zram->refcount, 1);
1053 zram->meta = meta;
1054 zram->comp = comp;
1055 zram->disksize = disksize;
1056 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1057 up_write(&zram->init_lock);
1058
1059 /*
1060 * Revalidate disk out of the init_lock to avoid lockdep splat.
1061 * It's okay because disk's capacity is protected by init_lock
1062 * so that revalidate_disk always sees up-to-date capacity.
1063 */
1064 revalidate_disk(zram->disk);
1065
1066 return len;
1067
1068out_destroy_comp:
1069 up_write(&zram->init_lock);
1070 zcomp_destroy(comp);
1071out_free_meta:
1072 zram_meta_free(meta, disksize);
1073 return err;
2f6a3bed
SS
1074}
1075
522698d7
SS
1076static ssize_t reset_store(struct device *dev,
1077 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1078{
522698d7
SS
1079 int ret;
1080 unsigned short do_reset;
1081 struct zram *zram;
1082 struct block_device *bdev;
4f2109f6 1083
f405c445
SS
1084 ret = kstrtou16(buf, 10, &do_reset);
1085 if (ret)
1086 return ret;
1087
1088 if (!do_reset)
1089 return -EINVAL;
1090
522698d7
SS
1091 zram = dev_to_zram(dev);
1092 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1093 if (!bdev)
1094 return -ENOMEM;
4f2109f6 1095
522698d7 1096 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1097 /* Do not reset an active device or claimed device */
1098 if (bdev->bd_openers || zram->claim) {
1099 mutex_unlock(&bdev->bd_mutex);
1100 bdput(bdev);
1101 return -EBUSY;
522698d7
SS
1102 }
1103
f405c445
SS
1104 /* From now on, anyone can't open /dev/zram[0-9] */
1105 zram->claim = true;
1106 mutex_unlock(&bdev->bd_mutex);
522698d7 1107
f405c445 1108 /* Make sure all the pending I/O are finished */
522698d7
SS
1109 fsync_bdev(bdev);
1110 zram_reset_device(zram);
522698d7
SS
1111 revalidate_disk(zram->disk);
1112 bdput(bdev);
1113
f405c445
SS
1114 mutex_lock(&bdev->bd_mutex);
1115 zram->claim = false;
1116 mutex_unlock(&bdev->bd_mutex);
1117
522698d7 1118 return len;
f405c445
SS
1119}
1120
1121static int zram_open(struct block_device *bdev, fmode_t mode)
1122{
1123 int ret = 0;
1124 struct zram *zram;
1125
1126 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1127
1128 zram = bdev->bd_disk->private_data;
1129 /* zram was claimed to reset so open request fails */
1130 if (zram->claim)
1131 ret = -EBUSY;
4f2109f6
SS
1132
1133 return ret;
1134}
1135
522698d7 1136static const struct block_device_operations zram_devops = {
f405c445 1137 .open = zram_open,
522698d7
SS
1138 .swap_slot_free_notify = zram_slot_free_notify,
1139 .rw_page = zram_rw_page,
1140 .owner = THIS_MODULE
1141};
1142
1143static DEVICE_ATTR_WO(compact);
1144static DEVICE_ATTR_RW(disksize);
1145static DEVICE_ATTR_RO(initstate);
1146static DEVICE_ATTR_WO(reset);
1147static DEVICE_ATTR_RO(orig_data_size);
1148static DEVICE_ATTR_RO(mem_used_total);
1149static DEVICE_ATTR_RW(mem_limit);
1150static DEVICE_ATTR_RW(mem_used_max);
1151static DEVICE_ATTR_RW(max_comp_streams);
1152static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1153
9b3bb7ab
SS
1154static struct attribute *zram_disk_attrs[] = {
1155 &dev_attr_disksize.attr,
1156 &dev_attr_initstate.attr,
1157 &dev_attr_reset.attr,
1158 &dev_attr_num_reads.attr,
1159 &dev_attr_num_writes.attr,
64447249
SS
1160 &dev_attr_failed_reads.attr,
1161 &dev_attr_failed_writes.attr,
99ebbd30 1162 &dev_attr_compact.attr,
9b3bb7ab
SS
1163 &dev_attr_invalid_io.attr,
1164 &dev_attr_notify_free.attr,
1165 &dev_attr_zero_pages.attr,
1166 &dev_attr_orig_data_size.attr,
1167 &dev_attr_compr_data_size.attr,
1168 &dev_attr_mem_used_total.attr,
9ada9da9 1169 &dev_attr_mem_limit.attr,
461a8eee 1170 &dev_attr_mem_used_max.attr,
beca3ec7 1171 &dev_attr_max_comp_streams.attr,
e46b8a03 1172 &dev_attr_comp_algorithm.attr,
2f6a3bed 1173 &dev_attr_io_stat.attr,
4f2109f6 1174 &dev_attr_mm_stat.attr,
9b3bb7ab
SS
1175 NULL,
1176};
1177
1178static struct attribute_group zram_disk_attr_group = {
1179 .attrs = zram_disk_attrs,
1180};
1181
92ff1528
SS
1182/*
1183 * Allocate and initialize new zram device. the function returns
1184 * '>= 0' device_id upon success, and negative value otherwise.
1185 */
1186static int zram_add(void)
306b0c95 1187{
85508ec6 1188 struct zram *zram;
ee980160 1189 struct request_queue *queue;
92ff1528 1190 int ret, device_id;
85508ec6
SS
1191
1192 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1193 if (!zram)
1194 return -ENOMEM;
1195
92ff1528 1196 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1197 if (ret < 0)
1198 goto out_free_dev;
92ff1528 1199 device_id = ret;
de1a21a0 1200
0900beae 1201 init_rwsem(&zram->init_lock);
306b0c95 1202
ee980160
SS
1203 queue = blk_alloc_queue(GFP_KERNEL);
1204 if (!queue) {
306b0c95
NG
1205 pr_err("Error allocating disk queue for device %d\n",
1206 device_id);
85508ec6
SS
1207 ret = -ENOMEM;
1208 goto out_free_idr;
306b0c95
NG
1209 }
1210
ee980160 1211 blk_queue_make_request(queue, zram_make_request);
306b0c95 1212
85508ec6 1213 /* gendisk structure */
f1e3cfff
NG
1214 zram->disk = alloc_disk(1);
1215 if (!zram->disk) {
94b8435f 1216 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1217 device_id);
201c7b72 1218 ret = -ENOMEM;
39a9b8ac 1219 goto out_free_queue;
306b0c95
NG
1220 }
1221
f1e3cfff
NG
1222 zram->disk->major = zram_major;
1223 zram->disk->first_minor = device_id;
1224 zram->disk->fops = &zram_devops;
ee980160
SS
1225 zram->disk->queue = queue;
1226 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1227 zram->disk->private_data = zram;
1228 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1229
33863c21 1230 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1231 set_capacity(zram->disk, 0);
b67d1ec1
SS
1232 /* zram devices sort of resembles non-rotational disks */
1233 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1234 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1235 /*
1236 * To ensure that we always get PAGE_SIZE aligned
1237 * and n*PAGE_SIZED sized I/O requests.
1238 */
f1e3cfff 1239 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1240 blk_queue_logical_block_size(zram->disk->queue,
1241 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1242 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1243 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
1244 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1245 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1246 /*
1247 * zram_bio_discard() will clear all logical blocks if logical block
1248 * size is identical with physical block size(PAGE_SIZE). But if it is
1249 * different, we will skip discarding some parts of logical blocks in
1250 * the part of the request range which isn't aligned to physical block
1251 * size. So we can't ensure that all discarded logical blocks are
1252 * zeroed.
1253 */
1254 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1255 zram->disk->queue->limits.discard_zeroes_data = 1;
1256 else
1257 zram->disk->queue->limits.discard_zeroes_data = 0;
1258 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1259
f1e3cfff 1260 add_disk(zram->disk);
306b0c95 1261
33863c21
NG
1262 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1263 &zram_disk_attr_group);
1264 if (ret < 0) {
94b8435f 1265 pr_warn("Error creating sysfs group");
39a9b8ac 1266 goto out_free_disk;
33863c21 1267 }
e46b8a03 1268 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1269 zram->meta = NULL;
beca3ec7 1270 zram->max_comp_streams = 1;
d12b63c9
SS
1271
1272 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1273 return device_id;
de1a21a0 1274
39a9b8ac
JL
1275out_free_disk:
1276 del_gendisk(zram->disk);
1277 put_disk(zram->disk);
1278out_free_queue:
ee980160 1279 blk_cleanup_queue(queue);
85508ec6
SS
1280out_free_idr:
1281 idr_remove(&zram_index_idr, device_id);
1282out_free_dev:
1283 kfree(zram);
de1a21a0 1284 return ret;
306b0c95
NG
1285}
1286
6566d1a3 1287static int zram_remove(struct zram *zram)
306b0c95 1288{
6566d1a3
SS
1289 struct block_device *bdev;
1290
1291 bdev = bdget_disk(zram->disk, 0);
1292 if (!bdev)
1293 return -ENOMEM;
1294
1295 mutex_lock(&bdev->bd_mutex);
1296 if (bdev->bd_openers || zram->claim) {
1297 mutex_unlock(&bdev->bd_mutex);
1298 bdput(bdev);
1299 return -EBUSY;
1300 }
1301
1302 zram->claim = true;
1303 mutex_unlock(&bdev->bd_mutex);
1304
85508ec6
SS
1305 /*
1306 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1307 * store while we destroy the devices. This also helps during
1308 * hot_remove -- zram_reset_device() is the last holder of
1309 * ->init_lock, no later/concurrent disksize_store() or any
1310 * other sysfs handlers are possible.
85508ec6
SS
1311 */
1312 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1313 &zram_disk_attr_group);
306b0c95 1314
6566d1a3
SS
1315 /* Make sure all the pending I/O are finished */
1316 fsync_bdev(bdev);
85508ec6 1317 zram_reset_device(zram);
6566d1a3
SS
1318 bdput(bdev);
1319
1320 pr_info("Removed device: %s\n", zram->disk->disk_name);
1321
85508ec6
SS
1322 idr_remove(&zram_index_idr, zram->disk->first_minor);
1323 blk_cleanup_queue(zram->disk->queue);
1324 del_gendisk(zram->disk);
1325 put_disk(zram->disk);
1326 kfree(zram);
6566d1a3
SS
1327 return 0;
1328}
1329
1330/* zram-control sysfs attributes */
1331static ssize_t hot_add_show(struct class *class,
1332 struct class_attribute *attr,
1333 char *buf)
1334{
1335 int ret;
1336
1337 mutex_lock(&zram_index_mutex);
1338 ret = zram_add();
1339 mutex_unlock(&zram_index_mutex);
1340
1341 if (ret < 0)
1342 return ret;
1343 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1344}
1345
1346static ssize_t hot_remove_store(struct class *class,
1347 struct class_attribute *attr,
1348 const char *buf,
1349 size_t count)
1350{
1351 struct zram *zram;
1352 int ret, dev_id;
1353
1354 /* dev_id is gendisk->first_minor, which is `int' */
1355 ret = kstrtoint(buf, 10, &dev_id);
1356 if (ret)
1357 return ret;
1358 if (dev_id < 0)
1359 return -EINVAL;
1360
1361 mutex_lock(&zram_index_mutex);
1362
1363 zram = idr_find(&zram_index_idr, dev_id);
1364 if (zram)
1365 ret = zram_remove(zram);
1366 else
1367 ret = -ENODEV;
1368
1369 mutex_unlock(&zram_index_mutex);
1370 return ret ? ret : count;
85508ec6 1371}
a096cafc 1372
6566d1a3
SS
1373static struct class_attribute zram_control_class_attrs[] = {
1374 __ATTR_RO(hot_add),
1375 __ATTR_WO(hot_remove),
1376 __ATTR_NULL,
1377};
1378
1379static struct class zram_control_class = {
1380 .name = "zram-control",
1381 .owner = THIS_MODULE,
1382 .class_attrs = zram_control_class_attrs,
1383};
1384
85508ec6
SS
1385static int zram_remove_cb(int id, void *ptr, void *data)
1386{
1387 zram_remove(ptr);
1388 return 0;
1389}
a096cafc 1390
85508ec6
SS
1391static void destroy_devices(void)
1392{
6566d1a3 1393 class_unregister(&zram_control_class);
85508ec6
SS
1394 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1395 idr_destroy(&zram_index_idr);
a096cafc 1396 unregister_blkdev(zram_major, "zram");
306b0c95
NG
1397}
1398
f1e3cfff 1399static int __init zram_init(void)
306b0c95 1400{
92ff1528 1401 int ret;
306b0c95 1402
6566d1a3
SS
1403 ret = class_register(&zram_control_class);
1404 if (ret) {
1405 pr_warn("Unable to register zram-control class\n");
1406 return ret;
1407 }
1408
f1e3cfff
NG
1409 zram_major = register_blkdev(0, "zram");
1410 if (zram_major <= 0) {
94b8435f 1411 pr_warn("Unable to get major number\n");
6566d1a3 1412 class_unregister(&zram_control_class);
a096cafc 1413 return -EBUSY;
306b0c95
NG
1414 }
1415
92ff1528 1416 while (num_devices != 0) {
6566d1a3 1417 mutex_lock(&zram_index_mutex);
92ff1528 1418 ret = zram_add();
6566d1a3 1419 mutex_unlock(&zram_index_mutex);
92ff1528 1420 if (ret < 0)
a096cafc 1421 goto out_error;
92ff1528 1422 num_devices--;
de1a21a0
NG
1423 }
1424
306b0c95 1425 return 0;
de1a21a0 1426
a096cafc 1427out_error:
85508ec6 1428 destroy_devices();
306b0c95
NG
1429 return ret;
1430}
1431
f1e3cfff 1432static void __exit zram_exit(void)
306b0c95 1433{
85508ec6 1434 destroy_devices();
306b0c95
NG
1435}
1436
f1e3cfff
NG
1437module_init(zram_init);
1438module_exit(zram_exit);
306b0c95 1439
9b3bb7ab 1440module_param(num_devices, uint, 0);
c3cdb40e 1441MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1442
306b0c95
NG
1443MODULE_LICENSE("Dual BSD/GPL");
1444MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1445MODULE_DESCRIPTION("Compressed RAM Block Device");