loop: fastfs support
[linux-2.6-block.git] / drivers / block / loop.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
96de0e25 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
1da177e4
LT
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
4e02ed4b 43 * operations write_begin is not available on the backing filesystem.
1da177e4
LT
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
1da177e4
LT
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
1da177e4
LT
64#include <linux/smp_lock.h>
65#include <linux/swap.h>
66#include <linux/slab.h>
67#include <linux/loop.h>
863d5b82 68#include <linux/compat.h>
1da177e4 69#include <linux/suspend.h>
83144186 70#include <linux/freezer.h>
1da177e4
LT
71#include <linux/writeback.h>
72#include <linux/buffer_head.h> /* for invalidate_bdev() */
73#include <linux/completion.h>
74#include <linux/highmem.h>
75#include <linux/gfp.h>
6c997918 76#include <linux/kthread.h>
d6b29d7c 77#include <linux/splice.h>
e85a418c 78#include <linux/extent_map.h>
1da177e4
LT
79
80#include <asm/uaccess.h>
81
73285082
KC
82static LIST_HEAD(loop_devices);
83static DEFINE_MUTEX(loop_devices_mutex);
1da177e4 84
476a4813
LV
85static int max_part;
86static int part_shift;
87
1da177e4
LT
88/*
89 * Transfer functions
90 */
91static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95{
96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
104 kunmap_atomic(raw_buf, KM_USER0);
105 kunmap_atomic(loop_buf, KM_USER1);
106 cond_resched();
107 return 0;
108}
109
110static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114{
115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
133 kunmap_atomic(raw_buf, KM_USER0);
134 kunmap_atomic(loop_buf, KM_USER1);
135 cond_resched();
136 return 0;
137}
138
139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140{
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144}
145
146static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149};
150
151static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155};
156
157/* xfer_funcs[0] is special - its release function is never called */
158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161};
162
163static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164{
165 loff_t size, offset, loopsize;
166
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 offset = lo->lo_offset;
170 loopsize = size - offset;
171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 loopsize = lo->lo_sizelimit;
173
174 /*
175 * Unfortunately, if we want to do I/O on the device,
176 * the number of 512-byte sectors has to fit into a sector_t.
177 */
178 return loopsize >> 9;
179}
180
181static int
182figure_loop_size(struct loop_device *lo)
183{
184 loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 sector_t x = (sector_t)size;
186
187 if (unlikely((loff_t)x != size))
188 return -EFBIG;
189
73285082 190 set_capacity(lo->lo_disk, x);
1da177e4
LT
191 return 0;
192}
193
194static inline int
195lo_do_transfer(struct loop_device *lo, int cmd,
196 struct page *rpage, unsigned roffs,
197 struct page *lpage, unsigned loffs,
198 int size, sector_t rblock)
199{
200 if (unlikely(!lo->transfer))
201 return 0;
202
203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204}
205
206/**
207 * do_lo_send_aops - helper for writing data to a loop device
208 *
209 * This is the fast version for backing filesystems which implement the address
afddba49 210 * space operations write_begin and write_end.
1da177e4
LT
211 */
212static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
511de73f 213 loff_t pos, struct page *unused)
1da177e4
LT
214{
215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 struct address_space *mapping = file->f_mapping;
1da177e4
LT
217 pgoff_t index;
218 unsigned offset, bv_offs;
994fc28c 219 int len, ret;
1da177e4 220
1b1dcc1b 221 mutex_lock(&mapping->host->i_mutex);
1da177e4
LT
222 index = pos >> PAGE_CACHE_SHIFT;
223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 bv_offs = bvec->bv_offset;
225 len = bvec->bv_len;
226 while (len > 0) {
227 sector_t IV;
afddba49 228 unsigned size, copied;
1da177e4 229 int transfer_result;
afddba49
NP
230 struct page *page;
231 void *fsdata;
1da177e4
LT
232
233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 size = PAGE_CACHE_SIZE - offset;
235 if (size > len)
236 size = len;
afddba49
NP
237
238 ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 &page, &fsdata);
240 if (ret)
1da177e4 241 goto fail;
afddba49 242
1da177e4
LT
243 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 bvec->bv_page, bv_offs, size, IV);
afddba49 245 copied = size;
1da177e4 246 if (unlikely(transfer_result))
afddba49
NP
247 copied = 0;
248
249 ret = pagecache_write_end(file, mapping, pos, size, copied,
250 page, fsdata);
8268f5a7 251 if (ret < 0 || ret != copied)
afddba49 252 goto fail;
afddba49
NP
253
254 if (unlikely(transfer_result))
255 goto fail;
256
257 bv_offs += copied;
258 len -= copied;
1da177e4
LT
259 offset = 0;
260 index++;
afddba49 261 pos += copied;
1da177e4 262 }
994fc28c 263 ret = 0;
1da177e4 264out:
1b1dcc1b 265 mutex_unlock(&mapping->host->i_mutex);
1da177e4 266 return ret;
1da177e4
LT
267fail:
268 ret = -1;
269 goto out;
270}
271
272/**
273 * __do_lo_send_write - helper for writing data to a loop device
274 *
275 * This helper just factors out common code between do_lo_send_direct_write()
276 * and do_lo_send_write().
277 */
858119e1 278static int __do_lo_send_write(struct file *file,
98ae6ccd 279 u8 *buf, const int len, loff_t pos)
1da177e4
LT
280{
281 ssize_t bw;
282 mm_segment_t old_fs = get_fs();
283
284 set_fs(get_ds());
285 bw = file->f_op->write(file, buf, len, &pos);
286 set_fs(old_fs);
287 if (likely(bw == len))
288 return 0;
289 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
290 (unsigned long long)pos, len);
291 if (bw >= 0)
292 bw = -EIO;
293 return bw;
294}
295
296/**
297 * do_lo_send_direct_write - helper for writing data to a loop device
298 *
299 * This is the fast, non-transforming version for backing filesystems which do
afddba49 300 * not implement the address space operations write_begin and write_end.
1da177e4
LT
301 * It uses the write file operation which should be present on all writeable
302 * filesystems.
303 */
304static int do_lo_send_direct_write(struct loop_device *lo,
511de73f 305 struct bio_vec *bvec, loff_t pos, struct page *page)
1da177e4
LT
306{
307 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
98ae6ccd 308 kmap(bvec->bv_page) + bvec->bv_offset,
1da177e4
LT
309 bvec->bv_len, pos);
310 kunmap(bvec->bv_page);
311 cond_resched();
312 return bw;
313}
314
315/**
316 * do_lo_send_write - helper for writing data to a loop device
317 *
318 * This is the slow, transforming version for filesystems which do not
afddba49 319 * implement the address space operations write_begin and write_end. It
1da177e4
LT
320 * uses the write file operation which should be present on all writeable
321 * filesystems.
322 *
323 * Using fops->write is slower than using aops->{prepare,commit}_write in the
324 * transforming case because we need to double buffer the data as we cannot do
325 * the transformations in place as we do not have direct access to the
326 * destination pages of the backing file.
327 */
328static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
511de73f 329 loff_t pos, struct page *page)
1da177e4
LT
330{
331 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
332 bvec->bv_offset, bvec->bv_len, pos >> 9);
333 if (likely(!ret))
334 return __do_lo_send_write(lo->lo_backing_file,
98ae6ccd 335 page_address(page), bvec->bv_len,
1da177e4
LT
336 pos);
337 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
338 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
339 if (ret > 0)
340 ret = -EIO;
341 return ret;
342}
343
511de73f 344static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
1da177e4 345{
511de73f 346 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
1da177e4
LT
347 struct page *page);
348 struct bio_vec *bvec;
349 struct page *page = NULL;
350 int i, ret = 0;
351
352 do_lo_send = do_lo_send_aops;
353 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
354 do_lo_send = do_lo_send_direct_write;
355 if (lo->transfer != transfer_none) {
356 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
357 if (unlikely(!page))
358 goto fail;
359 kmap(page);
360 do_lo_send = do_lo_send_write;
361 }
362 }
363 bio_for_each_segment(bvec, bio, i) {
511de73f 364 ret = do_lo_send(lo, bvec, pos, page);
1da177e4
LT
365 if (ret < 0)
366 break;
367 pos += bvec->bv_len;
368 }
369 if (page) {
370 kunmap(page);
371 __free_page(page);
372 }
373out:
374 return ret;
375fail:
376 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
377 ret = -ENOMEM;
378 goto out;
379}
380
381struct lo_read_data {
382 struct loop_device *lo;
383 struct page *page;
384 unsigned offset;
385 int bsize;
386};
387
388static int
fd582140
JA
389lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
390 struct splice_desc *sd)
1da177e4 391{
fd582140 392 struct lo_read_data *p = sd->u.data;
1da177e4 393 struct loop_device *lo = p->lo;
fd582140 394 struct page *page = buf->page;
1da177e4 395 sector_t IV;
fd582140
JA
396 size_t size;
397 int ret;
1da177e4 398
cac36bb0 399 ret = buf->ops->confirm(pipe, buf);
fd582140
JA
400 if (unlikely(ret))
401 return ret;
1da177e4 402
fd582140
JA
403 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
404 (buf->offset >> 9);
405 size = sd->len;
406 if (size > p->bsize)
407 size = p->bsize;
1da177e4 408
fd582140 409 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
1da177e4
LT
410 printk(KERN_ERR "loop: transfer error block %ld\n",
411 page->index);
fd582140 412 size = -EINVAL;
1da177e4
LT
413 }
414
415 flush_dcache_page(p->page);
416
fd582140
JA
417 if (size > 0)
418 p->offset += size;
419
1da177e4
LT
420 return size;
421}
422
fd582140
JA
423static int
424lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
425{
426 return __splice_from_pipe(pipe, sd, lo_splice_actor);
427}
428
1da177e4
LT
429static int
430do_lo_receive(struct loop_device *lo,
431 struct bio_vec *bvec, int bsize, loff_t pos)
432{
433 struct lo_read_data cookie;
fd582140 434 struct splice_desc sd;
1da177e4 435 struct file *file;
fd582140 436 long retval;
1da177e4
LT
437
438 cookie.lo = lo;
439 cookie.page = bvec->bv_page;
440 cookie.offset = bvec->bv_offset;
441 cookie.bsize = bsize;
fd582140
JA
442
443 sd.len = 0;
444 sd.total_len = bvec->bv_len;
445 sd.flags = 0;
446 sd.pos = pos;
447 sd.u.data = &cookie;
448
1da177e4 449 file = lo->lo_backing_file;
fd582140
JA
450 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
451
452 if (retval < 0)
453 return retval;
454
455 return 0;
1da177e4
LT
456}
457
458static int
459lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
460{
461 struct bio_vec *bvec;
462 int i, ret = 0;
463
464 bio_for_each_segment(bvec, bio, i) {
465 ret = do_lo_receive(lo, bvec, bsize, pos);
466 if (ret < 0)
467 break;
468 pos += bvec->bv_len;
469 }
470 return ret;
471}
472
473static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
474{
475 loff_t pos;
476 int ret;
477
478 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
479 if (bio_rw(bio) == WRITE)
511de73f 480 ret = lo_send(lo, bio, pos);
1da177e4
LT
481 else
482 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
483 return ret;
484}
485
e85a418c
JA
486#define __lo_throttle(wq, lock, condition) \
487do { \
488 DEFINE_WAIT(__wait); \
489 for (;;) { \
490 prepare_to_wait((wq), &__wait, TASK_UNINTERRUPTIBLE); \
491 if (condition) \
492 break; \
493 spin_unlock_irq((lock)); \
494 wake_up(&lo->lo_event); \
495 io_schedule(); \
496 spin_lock_irq((lock)); \
497 } \
498 finish_wait((wq), &__wait); \
499} while (0) \
500
501#define LO_BIO_THROTTLE 128
502#define LO_BIO_THROTTLE_LOW (LO_BIO_THROTTLE / 2)
503
1da177e4 504/*
e85a418c
JA
505 * A normal block device will throttle on request allocation. Do the same
506 * for loop to prevent millions of bio's queued internally.
507 */
508static void loop_bio_throttle(struct loop_device *lo, struct bio *bio)
509{
510 __lo_throttle(&lo->lo_bio_wait, &lo->lo_lock,
511 lo->lo_bio_cnt < LO_BIO_THROTTLE);
512}
513
514static void loop_bio_timer(unsigned long data)
515{
516 struct loop_device *lo = (struct loop_device *) data;
517
518 wake_up(&lo->lo_event);
519}
520
521/*
522 * Add bio to back of pending list and wakeup thread
1da177e4
LT
523 */
524static void loop_add_bio(struct loop_device *lo, struct bio *bio)
525{
e85a418c
JA
526 loop_bio_throttle(lo, bio);
527
1da177e4
LT
528 if (lo->lo_biotail) {
529 lo->lo_biotail->bi_next = bio;
530 lo->lo_biotail = bio;
531 } else
532 lo->lo_bio = lo->lo_biotail = bio;
e85a418c
JA
533
534 lo->lo_bio_cnt++;
535
536 smp_mb();
537 if (lo->lo_bio_cnt > 8) {
538 if (timer_pending(&lo->lo_bio_timer))
539 del_timer(&lo->lo_bio_timer);
540
541 if (waitqueue_active(&lo->lo_event))
542 wake_up(&lo->lo_event);
543 } else if (!timer_pending(&lo->lo_bio_timer)) {
544 lo->lo_bio_timer.expires = jiffies + 1;
545 add_timer(&lo->lo_bio_timer);
546 }
1da177e4
LT
547}
548
549/*
550 * Grab first pending buffer
551 */
552static struct bio *loop_get_bio(struct loop_device *lo)
553{
554 struct bio *bio;
555
1da177e4
LT
556 if ((bio = lo->lo_bio)) {
557 if (bio == lo->lo_biotail)
558 lo->lo_biotail = NULL;
559 lo->lo_bio = bio->bi_next;
560 bio->bi_next = NULL;
561 }
1da177e4
LT
562
563 return bio;
564}
565
e85a418c
JA
566static void loop_exit_fastfs(struct loop_device *lo)
567{
568 struct inode *inode = lo->lo_backing_file->f_mapping->host;
569
570 /*
571 * drop what page cache we instantiated filling holes
572 */
573 invalidate_inode_pages2(lo->lo_backing_file->f_mapping);
574
575 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_NONE, NULL);
576
577 mutex_lock(&inode->i_mutex);
578 inode->i_flags &= ~S_SWAPFILE;
579 mutex_unlock(&inode->i_mutex);
580}
581
582static inline u64 lo_bio_offset(struct loop_device *lo, struct bio *bio)
583{
584 return (u64)lo->lo_offset + ((u64)bio->bi_sector << 9);
585}
586
587/*
588 * Find extent mapping this lo device block to the file block on the real
589 * device
590 */
591static struct extent_map *loop_lookup_extent(struct loop_device *lo,
592 u64 offset, gfp_t gfp_mask)
593{
594 struct address_space *mapping = lo->lo_backing_file->f_mapping;
595 u64 len = 1 << lo->blkbits;
596
597 return mapping->a_ops->map_extent(mapping, NULL, 0, offset, len, 0,
598 gfp_mask);
599}
600
601static void end_bio_hole_filling(struct bio *bio, int err)
602{
603 struct address_space *mapping = bio->bi_bdev->bd_inode->i_mapping;
604 struct bio *orig_bio = bio->bi_private;
605
606 if (mapping->a_ops->extent_io_complete) {
607 u64 start = orig_bio->bi_sector << 9;
608 u64 len = bio->bi_size;
609
610 mapping->a_ops->extent_io_complete(mapping, start, len);
611 }
612
613 bio_put(bio);
614 bio_endio(orig_bio, err);
615}
616
617static void fill_extent_hole(struct loop_device *lo, struct bio *bio)
618{
619 struct address_space *mapping = lo->lo_backing_file->f_mapping;
620 struct bio *new_bio;
621 struct extent_map *em;
622 u64 len = bio->bi_size;
623 u64 start = lo_bio_offset(lo, bio);
624 u64 disk_block;
625 u64 extent_off;
626
627 /*
628 * change the sector so we can find the correct file offset in our
629 * endio
630 */
631 bio->bi_sector = start >> 9;
632
633 mutex_lock(&mapping->host->i_mutex);
634
635 em = mapping->a_ops->map_extent(mapping, NULL, 0,
636 start, len, 1, GFP_KERNEL);
637 mark_inode_dirty(mapping->host);
638 mutex_unlock(&mapping->host->i_mutex);
639
640 if (em && !IS_ERR(em)) {
641 disk_block = em->block_start;
642 extent_off = start - em->start;
643
644 /*
645 * bio_clone() is mempool backed, so if __GFP_WAIT is set
646 * it wont ever fail
647 */
648 new_bio = bio_clone(bio, GFP_NOIO);
649 new_bio->bi_sector = (disk_block + extent_off) >> 9;
650 new_bio->bi_bdev = em->bdev;
651 new_bio->bi_private = bio;
652 new_bio->bi_size = bio->bi_size;
653 new_bio->bi_end_io = end_bio_hole_filling;
654 free_extent_map(em);
655
656 generic_make_request(new_bio);
657 } else
658 bio_endio(bio, -EIO);
659}
660
661static void loop_bio_destructor(struct bio *bio)
662{
663 struct completion *c = (struct completion *) bio->bi_flags;
664
665 complete(c);
666}
667
668/*
669 * Alloc a hint bio to tell the loop thread to read file blocks for a given
670 * range
671 */
672static void loop_schedule_extent_mapping(struct loop_device *lo,
673 struct bio *old_bio)
674{
675 DECLARE_COMPLETION_ONSTACK(comp);
676 struct bio *bio, stackbio;
677 int do_sync = 0;
678
679 bio = bio_alloc(GFP_ATOMIC, 0);
680 if (!bio) {
681 bio = &stackbio;
682 bio_init(bio);
683 bio->bi_destructor = loop_bio_destructor;
684 bio->bi_flags = (unsigned long) &comp;
685 do_sync = 1;
686 }
687
688 bio->bi_rw = LOOP_EXTENT_RW_MAGIC;
689 bio->bi_private = old_bio;
690
691 loop_add_bio(lo, bio);
692
693 if (do_sync) {
694 spin_unlock_irq(&lo->lo_lock);
695 wait_for_completion(&comp);
696 spin_lock_irq(&lo->lo_lock);
697 }
698}
699
700static void loop_handle_extent_hole(struct loop_device *lo, struct bio *bio,
701 int sync)
702{
703 /*
704 * for a read, just zero the data and end the io
705 */
706 if (bio_data_dir(bio) == READ) {
707 struct bio_vec *bvec;
708 unsigned long flags;
709 int i;
710
711 bio_for_each_segment(bvec, bio, i) {
712 char *dst = bvec_kmap_irq(bvec, &flags);
713
714 memset(dst, 0, bvec->bv_len);
715 bvec_kunmap_irq(dst, &flags);
716 }
717 bio_endio(bio, 0);
718 } else {
719 /*
720 * let the page cache handling path do this bio, and then
721 * lookup the mapped blocks after the io has been issued to
722 * instantiate extents.
723 */
724 if (!sync)
725 loop_add_bio(lo, bio);
726 else
727 fill_extent_hole(lo, bio);
728 }
729}
730
731static inline int lo_is_switch_bio(struct bio *bio)
732{
733 return !bio->bi_bdev && bio->bi_rw == LOOP_SWITCH_RW_MAGIC;
734}
735
736static inline int lo_is_map_bio(struct bio *bio)
737{
738 return !bio->bi_bdev && bio->bi_rw == LOOP_EXTENT_RW_MAGIC;
739}
740
741static int __loop_redirect_bio(struct loop_device *lo, struct extent_map *em,
742 struct bio *bio, int sync)
743{
744 u64 extent_off;
745 u64 disk_block;
746
747 /*
748 * handle sparse io
749 */
750 if (em->block_start == EXTENT_MAP_HOLE) {
751 loop_handle_extent_hole(lo, bio, sync);
752 free_extent_map(em);
753 return 0;
754 }
755
756 /*
757 * not a hole, redirect
758 */
759 disk_block = em->block_start;
760 extent_off = lo_bio_offset(lo, bio) - em->start;
761 bio->bi_bdev = em->bdev;
762 bio->bi_sector = (disk_block + extent_off) >> 9;
763 free_extent_map(em);
764 return 1;
765}
766
767/*
768 * Change mapping of the bio, so that it points to the real bdev and offset
769 */
770static int loop_redirect_bio(struct loop_device *lo, struct bio *bio)
771{
772 u64 start = lo_bio_offset(lo, bio);
773 struct extent_map *em;
774
775 em = loop_lookup_extent(lo, start, GFP_ATOMIC);
776 if (IS_ERR(em)) {
777 bio_endio(bio, PTR_ERR(em));
778 return 0;
779 } else if (!em) {
780 loop_schedule_extent_mapping(lo, bio);
781 return 0;
782 }
783
784 return __loop_redirect_bio(lo, em, bio, 0);
785}
786
787/*
788 * Wait on bio's on our list to complete before sending a barrier bio
789 * to the below device. Called with lo_lock held.
790 */
791static void loop_wait_on_bios(struct loop_device *lo)
792{
793 __lo_throttle(&lo->lo_bio_wait, &lo->lo_lock, !lo->lo_bio);
794}
795
796static void loop_wait_on_switch(struct loop_device *lo)
797{
798 __lo_throttle(&lo->lo_bio_wait, &lo->lo_lock, !lo->lo_switch);
799}
800
165125e1 801static int loop_make_request(struct request_queue *q, struct bio *old_bio)
1da177e4
LT
802{
803 struct loop_device *lo = q->queuedata;
804 int rw = bio_rw(old_bio);
805
35a82d1a
NP
806 if (rw == READA)
807 rw = READ;
808
809 BUG_ON(!lo || (rw != READ && rw != WRITE));
1da177e4
LT
810
811 spin_lock_irq(&lo->lo_lock);
812 if (lo->lo_state != Lo_bound)
35a82d1a
NP
813 goto out;
814 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
815 goto out;
e85a418c
JA
816 if (lo->lo_flags & LO_FLAGS_FASTFS) {
817 /*
818 * If we get a barrier bio, then we just need to wait for
819 * existing bio's to be complete. This can only happen
820 * on the 'new' extent mapped loop, since that is the only
821 * one that supports barriers.
822 */
823 if (bio_barrier(old_bio))
824 loop_wait_on_bios(lo);
825
826 /*
827 * if file switch is in progress, wait for it to complete
828 */
829 if (!lo_is_switch_bio(old_bio) && lo->lo_switch)
830 loop_wait_on_switch(lo);
831
832 if (loop_redirect_bio(lo, old_bio))
833 goto out_redir;
834 goto out_end;
835 }
1da177e4 836 loop_add_bio(lo, old_bio);
35a82d1a 837 spin_unlock_irq(&lo->lo_lock);
1da177e4 838 return 0;
35a82d1a 839
1da177e4 840out:
6712ecf8 841 bio_io_error(old_bio);
e85a418c
JA
842out_end:
843 spin_unlock_irq(&lo->lo_lock);
1da177e4 844 return 0;
e85a418c
JA
845
846out_redir:
847 spin_unlock_irq(&lo->lo_lock);
848 return 1;
1da177e4
LT
849}
850
851/*
852 * kick off io on the underlying address space
853 */
165125e1 854static void loop_unplug(struct request_queue *q)
1da177e4
LT
855{
856 struct loop_device *lo = q->queuedata;
857
75ad23bc 858 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
1da177e4
LT
859 blk_run_address_space(lo->lo_backing_file->f_mapping);
860}
861
e85a418c
JA
862static void loop_unplug_fastfs(struct request_queue *q)
863{
864 struct loop_device *lo = q->queuedata;
865 struct request_queue *rq = bdev_get_queue(lo->fs_bdev);
866 unsigned long flags;
867
868 local_irq_save(flags);
869
870 if (blk_remove_plug(q) && rq->unplug_fn)
871 rq->unplug_fn(rq);
872
873 local_irq_restore(flags);
874}
875
1da177e4
LT
876struct switch_request {
877 struct file *file;
878 struct completion wait;
879};
880
881static void do_loop_switch(struct loop_device *, struct switch_request *);
e85a418c 882static int loop_init_fastfs(struct loop_device *);
1da177e4
LT
883
884static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
885{
e85a418c
JA
886 if (lo_is_map_bio(bio)) {
887 struct bio *org_bio = bio->bi_private;
888 struct extent_map *em;
889
890 em = loop_lookup_extent(lo, lo_bio_offset(lo, org_bio),
891 GFP_KERNEL);
892
893 if (__loop_redirect_bio(lo, em, org_bio, 1))
894 generic_make_request(org_bio);
895
896 bio_put(bio);
897 } else if (lo_is_switch_bio(bio)) {
1da177e4
LT
898 do_loop_switch(lo, bio->bi_private);
899 bio_put(bio);
900 } else {
e85a418c
JA
901 if (lo->lo_flags & LO_FLAGS_FASTFS) {
902 /* we only get here when filling holes */
903 fill_extent_hole(lo, bio);
904 } else {
905 int ret = do_bio_filebacked(lo, bio);
906
907 bio_endio(bio, ret);
908 }
1da177e4
LT
909 }
910}
911
912/*
913 * worker thread that handles reads/writes to file backed loop devices,
914 * to avoid blocking in our make_request_fn. it also does loop decrypting
915 * on reads for block backed loop, as that is too heavy to do from
916 * b_end_io context where irqs may be disabled.
6c997918
SH
917 *
918 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
919 * calling kthread_stop(). Therefore once kthread_should_stop() is
920 * true, make_request will not place any more requests. Therefore
921 * once kthread_should_stop() is true and lo_bio is NULL, we are
922 * done with the loop.
1da177e4
LT
923 */
924static int loop_thread(void *data)
925{
926 struct loop_device *lo = data;
927 struct bio *bio;
928
1da177e4
LT
929 set_user_nice(current, -20);
930
6c997918 931 while (!kthread_should_stop() || lo->lo_bio) {
09c0dc68 932
6c997918
SH
933 wait_event_interruptible(lo->lo_event,
934 lo->lo_bio || kthread_should_stop());
6c997918 935 if (!lo->lo_bio)
35a82d1a 936 continue;
35a82d1a 937 spin_lock_irq(&lo->lo_lock);
1da177e4 938 bio = loop_get_bio(lo);
35a82d1a
NP
939 spin_unlock_irq(&lo->lo_lock);
940
941 BUG_ON(!bio);
e85a418c 942
1da177e4 943 loop_handle_bio(lo, bio);
e85a418c
JA
944
945 spin_lock_irq(&lo->lo_lock);
946 if (--lo->lo_bio_cnt < LO_BIO_THROTTLE_LOW || !lo->lo_bio)
947 wake_up(&lo->lo_bio_wait);
948 spin_unlock_irq(&lo->lo_lock);
1da177e4
LT
949 }
950
1da177e4
LT
951 return 0;
952}
953
954/*
955 * loop_switch performs the hard work of switching a backing store.
956 * First it needs to flush existing IO, it does this by sending a magic
957 * BIO down the pipe. The completion of this BIO does the actual switch.
958 */
959static int loop_switch(struct loop_device *lo, struct file *file)
960{
961 struct switch_request w;
a24eab1e 962 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
1da177e4
LT
963 if (!bio)
964 return -ENOMEM;
965 init_completion(&w.wait);
966 w.file = file;
967 bio->bi_private = &w;
968 bio->bi_bdev = NULL;
e85a418c
JA
969 bio->bi_rw = LOOP_SWITCH_RW_MAGIC;
970 lo->lo_switch = 1;
1da177e4
LT
971 loop_make_request(lo->lo_queue, bio);
972 wait_for_completion(&w.wait);
973 return 0;
974}
975
14f27939
MB
976/*
977 * Helper to flush the IOs in loop, but keeping loop thread running
978 */
979static int loop_flush(struct loop_device *lo)
980{
981 /* loop not yet configured, no running thread, nothing to flush */
982 if (!lo->lo_thread)
983 return 0;
984
985 return loop_switch(lo, NULL);
986}
987
1da177e4
LT
988/*
989 * Do the actual switch; called from the BIO completion routine
990 */
991static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
992{
993 struct file *file = p->file;
994 struct file *old_file = lo->lo_backing_file;
14f27939 995 struct address_space *mapping;
e85a418c 996 const int fastfs = lo->lo_flags & LO_FLAGS_FASTFS;
14f27939
MB
997
998 /* if no new file, only flush of queued bios requested */
999 if (!file)
1000 goto out;
1da177e4 1001
e85a418c
JA
1002 if (fastfs)
1003 loop_exit_fastfs(lo);
1004
14f27939 1005 mapping = file->f_mapping;
1da177e4
LT
1006 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
1007 lo->lo_backing_file = file;
ba52de12
TT
1008 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
1009 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
1da177e4
LT
1010 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1011 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
e85a418c
JA
1012
1013 if (fastfs)
1014 loop_init_fastfs(lo);
1015
1016 lo->lo_switch = 0;
1017 wake_up(&lo->lo_bio_wait);
14f27939 1018out:
1da177e4
LT
1019 complete(&p->wait);
1020}
1021
1022
1023/*
1024 * loop_change_fd switched the backing store of a loopback device to
1025 * a new file. This is useful for operating system installers to free up
1026 * the original file and in High Availability environments to switch to
1027 * an alternative location for the content in case of server meltdown.
1028 * This can only work if the loop device is used read-only, and if the
1029 * new backing store is the same size and type as the old backing store.
1030 */
bb214884
AV
1031static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
1032 unsigned int arg)
1da177e4
LT
1033{
1034 struct file *file, *old_file;
1035 struct inode *inode;
1036 int error;
1037
1038 error = -ENXIO;
1039 if (lo->lo_state != Lo_bound)
1040 goto out;
1041
1042 /* the loop device has to be read-only */
1043 error = -EINVAL;
1044 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
1045 goto out;
1046
1047 error = -EBADF;
1048 file = fget(arg);
1049 if (!file)
1050 goto out;
1051
1052 inode = file->f_mapping->host;
1053 old_file = lo->lo_backing_file;
1054
1055 error = -EINVAL;
1056
1057 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
1058 goto out_putf;
1059
fd582140
JA
1060 /* new backing store needs to support loop (eg splice_read) */
1061 if (!inode->i_fop->splice_read)
1da177e4
LT
1062 goto out_putf;
1063
1064 /* size of the new backing store needs to be the same */
1065 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
1066 goto out_putf;
1067
1068 /* and ... switch */
1069 error = loop_switch(lo, file);
1070 if (error)
1071 goto out_putf;
1072
1073 fput(old_file);
476a4813
LV
1074 if (max_part > 0)
1075 ioctl_by_bdev(bdev, BLKRRPART, 0);
1da177e4
LT
1076 return 0;
1077
1078 out_putf:
1079 fput(file);
1080 out:
1081 return error;
1082}
1083
e85a418c
JA
1084/*
1085 * See if adding this bvec would cause us to spill into a new extent. If so,
1086 * disallow the add to start a new bio. This ensures that the bio we receive
1087 * in loop_make_request() never spans two extents or more.
1088 */
1089static int loop_merge_bvec(struct request_queue *q, struct bvec_merge_data *bvm,
1090 struct bio_vec *bvec)
1091{
1092 struct loop_device *lo = q->queuedata;
1093 struct extent_map *em;
1094 unsigned int ret;
1095 u64 start;
1096 u64 len;
1097
1098 if (!bvm->bi_size)
1099 return bvec->bv_len;
1100
1101 start = (u64) lo->lo_offset + ((u64)bvm->bi_sector << 9);
1102 len = bvm->bi_size + bvec->bv_len;
1103 ret = bvec->bv_len;
1104
1105 em = loop_lookup_extent(lo, start, GFP_ATOMIC);
1106 if (em && !IS_ERR(em)) {
1107 /*
1108 * have extent, disallow if outside that extent
1109 */
1110 if (start + len > em->start + em->len || start < em->start)
1111 ret = 0;
1112
1113 free_extent_map(em);
1114 } else
1115 ret = 0;
1116
1117 return ret;
1118}
1119
1120/*
1121 * Initialize the members pertaining to extent mapping. We will populate
1122 * the tree lazily on demand, as a full scan of a big file can take some
1123 * time.
1124 */
1125static int loop_init_fastfs(struct loop_device *lo)
1126{
1127 struct file *file = lo->lo_backing_file;
1128 struct inode *inode = file->f_mapping->host;
1129 struct request_queue *fs_q;
1130 int ret;
1131
1132 if (!S_ISREG(inode->i_mode))
1133 return -EINVAL;
1134
1135 /*
1136 * Need a working extent_map
1137 */
1138 if (inode->i_mapping->a_ops->map_extent == NULL)
1139 return -EINVAL;
1140 /*
1141 * invalidate all page cache belonging to this file, it could become
1142 * stale when we directly overwrite blocks.
1143 */
1144 ret = invalidate_inode_pages2(file->f_mapping);
1145 if (unlikely(ret))
1146 return ret;
1147
1148 /*
1149 * disable truncate on this file
1150 */
1151 mutex_lock(&inode->i_mutex);
1152 inode->i_flags |= S_SWAPFILE;
1153 mutex_unlock(&inode->i_mutex);
1154
1155 lo->blkbits = inode->i_blkbits;
1156 lo->fs_bdev = file->f_mapping->host->i_sb->s_bdev;
1157 lo->lo_flags |= LO_FLAGS_FASTFS;
1158 lo->lo_queue->unplug_fn = loop_unplug_fastfs;
1159
1160 blk_queue_merge_bvec(lo->lo_queue, loop_merge_bvec);
1161 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL);
1162
1163 fs_q = bdev_get_queue(lo->fs_bdev);
1164 blk_queue_stack_limits(lo->lo_queue, fs_q);
1165
1166 printk(KERN_INFO "loop%d: fast redirect\n", lo->lo_number);
1167 return 0;
1168}
1169
1da177e4
LT
1170static inline int is_loop_device(struct file *file)
1171{
1172 struct inode *i = file->f_mapping->host;
1173
1174 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
1175}
1176
bb214884 1177static int loop_set_fd(struct loop_device *lo, fmode_t mode,
1da177e4
LT
1178 struct block_device *bdev, unsigned int arg)
1179{
1180 struct file *file, *f;
1181 struct inode *inode;
1182 struct address_space *mapping;
1183 unsigned lo_blocksize;
1184 int lo_flags = 0;
1185 int error;
1186 loff_t size;
1187
1188 /* This is safe, since we have a reference from open(). */
1189 __module_get(THIS_MODULE);
1190
1191 error = -EBADF;
1192 file = fget(arg);
1193 if (!file)
1194 goto out;
1195
1196 error = -EBUSY;
1197 if (lo->lo_state != Lo_unbound)
1198 goto out_putf;
1199
1200 /* Avoid recursion */
1201 f = file;
1202 while (is_loop_device(f)) {
1203 struct loop_device *l;
1204
bb214884 1205 if (f->f_mapping->host->i_bdev == bdev)
1da177e4
LT
1206 goto out_putf;
1207
1208 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
1209 if (l->lo_state == Lo_unbound) {
1210 error = -EINVAL;
1211 goto out_putf;
1212 }
1213 f = l->lo_backing_file;
1214 }
1215
1216 mapping = file->f_mapping;
1217 inode = mapping->host;
e85a418c 1218 lo->lo_flags = 0;
1da177e4
LT
1219
1220 if (!(file->f_mode & FMODE_WRITE))
1221 lo_flags |= LO_FLAGS_READ_ONLY;
1222
1223 error = -EINVAL;
1224 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
f5e54d6e 1225 const struct address_space_operations *aops = mapping->a_ops;
1da177e4
LT
1226 /*
1227 * If we can't read - sorry. If we only can't write - well,
1228 * it's going to be read-only.
1229 */
fd582140 1230 if (!file->f_op->splice_read)
1da177e4 1231 goto out_putf;
4e02ed4b 1232 if (aops->write_begin)
1da177e4
LT
1233 lo_flags |= LO_FLAGS_USE_AOPS;
1234 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
1235 lo_flags |= LO_FLAGS_READ_ONLY;
1236
ba52de12
TT
1237 lo_blocksize = S_ISBLK(inode->i_mode) ?
1238 inode->i_bdev->bd_block_size : PAGE_SIZE;
1239
1da177e4
LT
1240 error = 0;
1241 } else {
1242 goto out_putf;
1243 }
1244
1245 size = get_loop_size(lo, file);
1246
1247 if ((loff_t)(sector_t)size != size) {
1248 error = -EFBIG;
1249 goto out_putf;
1250 }
1251
bb214884 1252 if (!(mode & FMODE_WRITE))
1da177e4
LT
1253 lo_flags |= LO_FLAGS_READ_ONLY;
1254
1255 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
1256
1257 lo->lo_blocksize = lo_blocksize;
1258 lo->lo_device = bdev;
1259 lo->lo_flags = lo_flags;
1260 lo->lo_backing_file = file;
eefe85ee 1261 lo->transfer = transfer_none;
1da177e4
LT
1262 lo->ioctl = NULL;
1263 lo->lo_sizelimit = 0;
1264 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1265 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1266
1267 lo->lo_bio = lo->lo_biotail = NULL;
1268
1269 /*
1270 * set queue make_request_fn, and add limits based on lower level
1271 * device
1272 */
1273 blk_queue_make_request(lo->lo_queue, loop_make_request);
1274 lo->lo_queue->queuedata = lo;
1275 lo->lo_queue->unplug_fn = loop_unplug;
1276
73285082 1277 set_capacity(lo->lo_disk, size);
1da177e4
LT
1278 bd_set_size(bdev, size << 9);
1279
1280 set_blocksize(bdev, lo_blocksize);
1281
e85a418c
JA
1282 /*
1283 * This needs to be done after setup with another ioctl,
1284 * not automatically like this.
1285 */
1286 loop_init_fastfs(lo);
1287
6c997918
SH
1288 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
1289 lo->lo_number);
1290 if (IS_ERR(lo->lo_thread)) {
1291 error = PTR_ERR(lo->lo_thread);
a7422bf8 1292 goto out_clr;
6c997918
SH
1293 }
1294 lo->lo_state = Lo_bound;
1295 wake_up_process(lo->lo_thread);
476a4813
LV
1296 if (max_part > 0)
1297 ioctl_by_bdev(bdev, BLKRRPART, 0);
1da177e4
LT
1298 return 0;
1299
a7422bf8
SH
1300out_clr:
1301 lo->lo_thread = NULL;
1302 lo->lo_device = NULL;
1303 lo->lo_backing_file = NULL;
1304 lo->lo_flags = 0;
73285082 1305 set_capacity(lo->lo_disk, 0);
f98393a6 1306 invalidate_bdev(bdev);
a7422bf8
SH
1307 bd_set_size(bdev, 0);
1308 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
1309 lo->lo_state = Lo_unbound;
1da177e4
LT
1310 out_putf:
1311 fput(file);
1312 out:
1313 /* This is safe: open() is still holding a reference. */
1314 module_put(THIS_MODULE);
1315 return error;
1316}
1317
1318static int
1319loop_release_xfer(struct loop_device *lo)
1320{
1321 int err = 0;
1322 struct loop_func_table *xfer = lo->lo_encryption;
1323
1324 if (xfer) {
1325 if (xfer->release)
1326 err = xfer->release(lo);
1327 lo->transfer = NULL;
1328 lo->lo_encryption = NULL;
1329 module_put(xfer->owner);
1330 }
1331 return err;
1332}
1333
1334static int
1335loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1336 const struct loop_info64 *i)
1337{
1338 int err = 0;
1339
1340 if (xfer) {
1341 struct module *owner = xfer->owner;
1342
1343 if (!try_module_get(owner))
1344 return -EINVAL;
1345 if (xfer->init)
1346 err = xfer->init(lo, i);
1347 if (err)
1348 module_put(owner);
1349 else
1350 lo->lo_encryption = xfer;
1351 }
1352 return err;
1353}
1354
1355static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1356{
1357 struct file *filp = lo->lo_backing_file;
b4e3ca1a 1358 gfp_t gfp = lo->old_gfp_mask;
1da177e4
LT
1359
1360 if (lo->lo_state != Lo_bound)
1361 return -ENXIO;
1362
1363 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
1364 return -EBUSY;
1365
1366 if (filp == NULL)
1367 return -EINVAL;
1368
1369 spin_lock_irq(&lo->lo_lock);
1370 lo->lo_state = Lo_rundown;
1da177e4
LT
1371 spin_unlock_irq(&lo->lo_lock);
1372
6c997918 1373 kthread_stop(lo->lo_thread);
1da177e4 1374
e85a418c
JA
1375 if (lo->lo_flags & LO_FLAGS_FASTFS)
1376 loop_exit_fastfs(lo);
1377
8ae30b89 1378 lo->lo_queue->unplug_fn = NULL;
1da177e4
LT
1379 lo->lo_backing_file = NULL;
1380
1381 loop_release_xfer(lo);
1382 lo->transfer = NULL;
1383 lo->ioctl = NULL;
1384 lo->lo_device = NULL;
1385 lo->lo_encryption = NULL;
1386 lo->lo_offset = 0;
1387 lo->lo_sizelimit = 0;
1388 lo->lo_encrypt_key_size = 0;
1389 lo->lo_flags = 0;
6c997918 1390 lo->lo_thread = NULL;
1da177e4
LT
1391 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1392 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1393 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
bb214884
AV
1394 if (bdev)
1395 invalidate_bdev(bdev);
73285082 1396 set_capacity(lo->lo_disk, 0);
bb214884
AV
1397 if (bdev)
1398 bd_set_size(bdev, 0);
1da177e4
LT
1399 mapping_set_gfp_mask(filp->f_mapping, gfp);
1400 lo->lo_state = Lo_unbound;
1401 fput(filp);
1402 /* This is safe: open() is still holding a reference. */
1403 module_put(THIS_MODULE);
476a4813
LV
1404 if (max_part > 0)
1405 ioctl_by_bdev(bdev, BLKRRPART, 0);
1da177e4
LT
1406 return 0;
1407}
1408
1409static int
1410loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1411{
1412 int err;
1413 struct loop_func_table *xfer;
b0fafa81 1414 uid_t uid = current_uid();
1da177e4 1415
b0fafa81
DH
1416 if (lo->lo_encrypt_key_size &&
1417 lo->lo_key_owner != uid &&
1da177e4
LT
1418 !capable(CAP_SYS_ADMIN))
1419 return -EPERM;
1420 if (lo->lo_state != Lo_bound)
1421 return -ENXIO;
1422 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1423 return -EINVAL;
1424
1425 err = loop_release_xfer(lo);
1426 if (err)
1427 return err;
1428
1429 if (info->lo_encrypt_type) {
1430 unsigned int type = info->lo_encrypt_type;
1431
e85a418c
JA
1432 if (lo->lo_flags & LO_FLAGS_FASTFS)
1433 return -EINVAL;
1434
1da177e4
LT
1435 if (type >= MAX_LO_CRYPT)
1436 return -EINVAL;
1437 xfer = xfer_funcs[type];
1438 if (xfer == NULL)
1439 return -EINVAL;
1440 } else
1441 xfer = NULL;
1442
e85a418c
JA
1443 /*
1444 * for remaps, offset must be a multiple of full blocks
1445 */
1446 if ((lo->lo_flags & LO_FLAGS_FASTFS) &&
1447 (((1 << lo->blkbits) - 1) & info->lo_offset))
1448 return -EINVAL;
1449
1da177e4
LT
1450 err = loop_init_xfer(lo, xfer, info);
1451 if (err)
1452 return err;
1453
1454 if (lo->lo_offset != info->lo_offset ||
1455 lo->lo_sizelimit != info->lo_sizelimit) {
1456 lo->lo_offset = info->lo_offset;
1457 lo->lo_sizelimit = info->lo_sizelimit;
1458 if (figure_loop_size(lo))
1459 return -EFBIG;
1460 }
1461
1462 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1463 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1464 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1465 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1466
1467 if (!xfer)
1468 xfer = &none_funcs;
1469 lo->transfer = xfer->transfer;
1470 lo->ioctl = xfer->ioctl;
1471
96c58655
DW
1472 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1473 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1474 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1475
1da177e4
LT
1476 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1477 lo->lo_init[0] = info->lo_init[0];
1478 lo->lo_init[1] = info->lo_init[1];
1479 if (info->lo_encrypt_key_size) {
1480 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1481 info->lo_encrypt_key_size);
b0fafa81 1482 lo->lo_key_owner = uid;
1da177e4
LT
1483 }
1484
1485 return 0;
1486}
1487
1488static int
1489loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1490{
1491 struct file *file = lo->lo_backing_file;
1492 struct kstat stat;
1493 int error;
1494
1495 if (lo->lo_state != Lo_bound)
1496 return -ENXIO;
6c648be6 1497 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1da177e4
LT
1498 if (error)
1499 return error;
1500 memset(info, 0, sizeof(*info));
1501 info->lo_number = lo->lo_number;
1502 info->lo_device = huge_encode_dev(stat.dev);
1503 info->lo_inode = stat.ino;
1504 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1505 info->lo_offset = lo->lo_offset;
1506 info->lo_sizelimit = lo->lo_sizelimit;
1507 info->lo_flags = lo->lo_flags;
1508 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1509 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1510 info->lo_encrypt_type =
1511 lo->lo_encryption ? lo->lo_encryption->number : 0;
1512 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1513 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1514 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1515 lo->lo_encrypt_key_size);
1516 }
1517 return 0;
1518}
1519
1520static void
1521loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1522{
1523 memset(info64, 0, sizeof(*info64));
1524 info64->lo_number = info->lo_number;
1525 info64->lo_device = info->lo_device;
1526 info64->lo_inode = info->lo_inode;
1527 info64->lo_rdevice = info->lo_rdevice;
1528 info64->lo_offset = info->lo_offset;
1529 info64->lo_sizelimit = 0;
1530 info64->lo_encrypt_type = info->lo_encrypt_type;
1531 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1532 info64->lo_flags = info->lo_flags;
1533 info64->lo_init[0] = info->lo_init[0];
1534 info64->lo_init[1] = info->lo_init[1];
1535 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1536 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1537 else
1538 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1539 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1540}
1541
1542static int
1543loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1544{
1545 memset(info, 0, sizeof(*info));
1546 info->lo_number = info64->lo_number;
1547 info->lo_device = info64->lo_device;
1548 info->lo_inode = info64->lo_inode;
1549 info->lo_rdevice = info64->lo_rdevice;
1550 info->lo_offset = info64->lo_offset;
1551 info->lo_encrypt_type = info64->lo_encrypt_type;
1552 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1553 info->lo_flags = info64->lo_flags;
1554 info->lo_init[0] = info64->lo_init[0];
1555 info->lo_init[1] = info64->lo_init[1];
1556 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1557 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1558 else
1559 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1560 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1561
1562 /* error in case values were truncated */
1563 if (info->lo_device != info64->lo_device ||
1564 info->lo_rdevice != info64->lo_rdevice ||
1565 info->lo_inode != info64->lo_inode ||
1566 info->lo_offset != info64->lo_offset)
1567 return -EOVERFLOW;
1568
1569 return 0;
1570}
1571
1572static int
1573loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1574{
1575 struct loop_info info;
1576 struct loop_info64 info64;
1577
1578 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1579 return -EFAULT;
1580 loop_info64_from_old(&info, &info64);
1581 return loop_set_status(lo, &info64);
1582}
1583
1584static int
1585loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1586{
1587 struct loop_info64 info64;
1588
1589 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1590 return -EFAULT;
1591 return loop_set_status(lo, &info64);
1592}
1593
1594static int
1595loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1596 struct loop_info info;
1597 struct loop_info64 info64;
1598 int err = 0;
1599
1600 if (!arg)
1601 err = -EINVAL;
1602 if (!err)
1603 err = loop_get_status(lo, &info64);
1604 if (!err)
1605 err = loop_info64_to_old(&info64, &info);
1606 if (!err && copy_to_user(arg, &info, sizeof(info)))
1607 err = -EFAULT;
1608
1609 return err;
1610}
1611
1612static int
1613loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1614 struct loop_info64 info64;
1615 int err = 0;
1616
1617 if (!arg)
1618 err = -EINVAL;
1619 if (!err)
1620 err = loop_get_status(lo, &info64);
1621 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1622 err = -EFAULT;
1623
1624 return err;
1625}
1626
bb214884 1627static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1da177e4
LT
1628 unsigned int cmd, unsigned long arg)
1629{
bb214884 1630 struct loop_device *lo = bdev->bd_disk->private_data;
1da177e4
LT
1631 int err;
1632
f85221dd 1633 mutex_lock(&lo->lo_ctl_mutex);
1da177e4
LT
1634 switch (cmd) {
1635 case LOOP_SET_FD:
bb214884 1636 err = loop_set_fd(lo, mode, bdev, arg);
1da177e4
LT
1637 break;
1638 case LOOP_CHANGE_FD:
bb214884 1639 err = loop_change_fd(lo, bdev, arg);
1da177e4
LT
1640 break;
1641 case LOOP_CLR_FD:
bb214884 1642 err = loop_clr_fd(lo, bdev);
1da177e4
LT
1643 break;
1644 case LOOP_SET_STATUS:
1645 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1646 break;
1647 case LOOP_GET_STATUS:
1648 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1649 break;
1650 case LOOP_SET_STATUS64:
1651 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1652 break;
1653 case LOOP_GET_STATUS64:
1654 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1655 break;
e85a418c
JA
1656 case LOOP_SET_FASTFS:
1657 err = loop_init_fastfs(lo);
1658 break;
1da177e4
LT
1659 default:
1660 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1661 }
f85221dd 1662 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1663 return err;
1664}
1665
863d5b82
DH
1666#ifdef CONFIG_COMPAT
1667struct compat_loop_info {
1668 compat_int_t lo_number; /* ioctl r/o */
1669 compat_dev_t lo_device; /* ioctl r/o */
1670 compat_ulong_t lo_inode; /* ioctl r/o */
1671 compat_dev_t lo_rdevice; /* ioctl r/o */
1672 compat_int_t lo_offset;
1673 compat_int_t lo_encrypt_type;
1674 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1675 compat_int_t lo_flags; /* ioctl r/o */
1676 char lo_name[LO_NAME_SIZE];
1677 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1678 compat_ulong_t lo_init[2];
1679 char reserved[4];
1680};
1681
1682/*
1683 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1684 * - noinlined to reduce stack space usage in main part of driver
1685 */
1686static noinline int
ba674cfc 1687loop_info64_from_compat(const struct compat_loop_info __user *arg,
863d5b82
DH
1688 struct loop_info64 *info64)
1689{
1690 struct compat_loop_info info;
1691
1692 if (copy_from_user(&info, arg, sizeof(info)))
1693 return -EFAULT;
1694
1695 memset(info64, 0, sizeof(*info64));
1696 info64->lo_number = info.lo_number;
1697 info64->lo_device = info.lo_device;
1698 info64->lo_inode = info.lo_inode;
1699 info64->lo_rdevice = info.lo_rdevice;
1700 info64->lo_offset = info.lo_offset;
1701 info64->lo_sizelimit = 0;
1702 info64->lo_encrypt_type = info.lo_encrypt_type;
1703 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1704 info64->lo_flags = info.lo_flags;
1705 info64->lo_init[0] = info.lo_init[0];
1706 info64->lo_init[1] = info.lo_init[1];
1707 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1708 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1709 else
1710 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1711 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1712 return 0;
1713}
1714
1715/*
1716 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1717 * - noinlined to reduce stack space usage in main part of driver
1718 */
1719static noinline int
1720loop_info64_to_compat(const struct loop_info64 *info64,
1721 struct compat_loop_info __user *arg)
1722{
1723 struct compat_loop_info info;
1724
1725 memset(&info, 0, sizeof(info));
1726 info.lo_number = info64->lo_number;
1727 info.lo_device = info64->lo_device;
1728 info.lo_inode = info64->lo_inode;
1729 info.lo_rdevice = info64->lo_rdevice;
1730 info.lo_offset = info64->lo_offset;
1731 info.lo_encrypt_type = info64->lo_encrypt_type;
1732 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1733 info.lo_flags = info64->lo_flags;
1734 info.lo_init[0] = info64->lo_init[0];
1735 info.lo_init[1] = info64->lo_init[1];
1736 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1737 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1738 else
1739 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1740 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1741
1742 /* error in case values were truncated */
1743 if (info.lo_device != info64->lo_device ||
1744 info.lo_rdevice != info64->lo_rdevice ||
1745 info.lo_inode != info64->lo_inode ||
1746 info.lo_offset != info64->lo_offset ||
1747 info.lo_init[0] != info64->lo_init[0] ||
1748 info.lo_init[1] != info64->lo_init[1])
1749 return -EOVERFLOW;
1750
1751 if (copy_to_user(arg, &info, sizeof(info)))
1752 return -EFAULT;
1753 return 0;
1754}
1755
1756static int
1757loop_set_status_compat(struct loop_device *lo,
1758 const struct compat_loop_info __user *arg)
1759{
1760 struct loop_info64 info64;
1761 int ret;
1762
1763 ret = loop_info64_from_compat(arg, &info64);
1764 if (ret < 0)
1765 return ret;
1766 return loop_set_status(lo, &info64);
1767}
1768
1769static int
1770loop_get_status_compat(struct loop_device *lo,
1771 struct compat_loop_info __user *arg)
1772{
1773 struct loop_info64 info64;
1774 int err = 0;
1775
1776 if (!arg)
1777 err = -EINVAL;
1778 if (!err)
1779 err = loop_get_status(lo, &info64);
1780 if (!err)
1781 err = loop_info64_to_compat(&info64, arg);
1782 return err;
1783}
1784
bb214884
AV
1785static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1786 unsigned int cmd, unsigned long arg)
863d5b82 1787{
bb214884 1788 struct loop_device *lo = bdev->bd_disk->private_data;
863d5b82
DH
1789 int err;
1790
863d5b82
DH
1791 switch(cmd) {
1792 case LOOP_SET_STATUS:
1793 mutex_lock(&lo->lo_ctl_mutex);
1794 err = loop_set_status_compat(
1795 lo, (const struct compat_loop_info __user *) arg);
1796 mutex_unlock(&lo->lo_ctl_mutex);
1797 break;
1798 case LOOP_GET_STATUS:
1799 mutex_lock(&lo->lo_ctl_mutex);
1800 err = loop_get_status_compat(
1801 lo, (struct compat_loop_info __user *) arg);
1802 mutex_unlock(&lo->lo_ctl_mutex);
1803 break;
1804 case LOOP_CLR_FD:
1805 case LOOP_GET_STATUS64:
1806 case LOOP_SET_STATUS64:
1807 arg = (unsigned long) compat_ptr(arg);
1808 case LOOP_SET_FD:
1809 case LOOP_CHANGE_FD:
bb214884 1810 err = lo_ioctl(bdev, mode, cmd, arg);
863d5b82
DH
1811 break;
1812 default:
1813 err = -ENOIOCTLCMD;
1814 break;
1815 }
863d5b82
DH
1816 return err;
1817}
1818#endif
1819
bb214884 1820static int lo_open(struct block_device *bdev, fmode_t mode)
1da177e4 1821{
bb214884 1822 struct loop_device *lo = bdev->bd_disk->private_data;
1da177e4 1823
f85221dd 1824 mutex_lock(&lo->lo_ctl_mutex);
1da177e4 1825 lo->lo_refcnt++;
f85221dd 1826 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1827
1828 return 0;
1829}
1830
bb214884 1831static int lo_release(struct gendisk *disk, fmode_t mode)
1da177e4 1832{
bb214884 1833 struct loop_device *lo = disk->private_data;
1da177e4 1834
f85221dd 1835 mutex_lock(&lo->lo_ctl_mutex);
96c58655 1836
14f27939
MB
1837 if (--lo->lo_refcnt)
1838 goto out;
1839
1840 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1841 /*
1842 * In autoclear mode, stop the loop thread
1843 * and remove configuration after last close.
1844 */
bb214884 1845 loop_clr_fd(lo, NULL);
14f27939
MB
1846 } else {
1847 /*
1848 * Otherwise keep thread (if running) and config,
1849 * but flush possible ongoing bios in thread.
1850 */
1851 loop_flush(lo);
1852 }
96c58655 1853
14f27939 1854out:
f85221dd 1855 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1856
1857 return 0;
1858}
1859
1860static struct block_device_operations lo_fops = {
1861 .owner = THIS_MODULE,
bb214884
AV
1862 .open = lo_open,
1863 .release = lo_release,
1864 .ioctl = lo_ioctl,
863d5b82 1865#ifdef CONFIG_COMPAT
bb214884 1866 .compat_ioctl = lo_compat_ioctl,
863d5b82 1867#endif
1da177e4
LT
1868};
1869
1870/*
1871 * And now the modules code and kernel interface.
1872 */
73285082 1873static int max_loop;
1da177e4 1874module_param(max_loop, int, 0);
a47653fc 1875MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
476a4813
LV
1876module_param(max_part, int, 0);
1877MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1da177e4
LT
1878MODULE_LICENSE("GPL");
1879MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1880
1881int loop_register_transfer(struct loop_func_table *funcs)
1882{
1883 unsigned int n = funcs->number;
1884
1885 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1886 return -EINVAL;
1887 xfer_funcs[n] = funcs;
1888 return 0;
1889}
1890
1891int loop_unregister_transfer(int number)
1892{
1893 unsigned int n = number;
1894 struct loop_device *lo;
1895 struct loop_func_table *xfer;
1896
1897 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1898 return -EINVAL;
1899
1900 xfer_funcs[n] = NULL;
1901
73285082 1902 list_for_each_entry(lo, &loop_devices, lo_list) {
f85221dd 1903 mutex_lock(&lo->lo_ctl_mutex);
1da177e4
LT
1904
1905 if (lo->lo_encryption == xfer)
1906 loop_release_xfer(lo);
1907
f85221dd 1908 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1909 }
1910
1911 return 0;
1912}
1913
1914EXPORT_SYMBOL(loop_register_transfer);
1915EXPORT_SYMBOL(loop_unregister_transfer);
1916
a47653fc 1917static struct loop_device *loop_alloc(int i)
73285082
KC
1918{
1919 struct loop_device *lo;
1920 struct gendisk *disk;
1921
1922 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1923 if (!lo)
1924 goto out;
1925
1926 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1927 if (!lo->lo_queue)
1928 goto out_free_dev;
1929
476a4813 1930 disk = lo->lo_disk = alloc_disk(1 << part_shift);
73285082
KC
1931 if (!disk)
1932 goto out_free_queue;
1933
1934 mutex_init(&lo->lo_ctl_mutex);
1935 lo->lo_number = i;
1936 lo->lo_thread = NULL;
1937 init_waitqueue_head(&lo->lo_event);
e85a418c
JA
1938 init_waitqueue_head(&lo->lo_bio_wait);
1939 setup_timer(&lo->lo_bio_timer, loop_bio_timer, (unsigned long) lo);
73285082
KC
1940 spin_lock_init(&lo->lo_lock);
1941 disk->major = LOOP_MAJOR;
476a4813 1942 disk->first_minor = i << part_shift;
73285082
KC
1943 disk->fops = &lo_fops;
1944 disk->private_data = lo;
1945 disk->queue = lo->lo_queue;
1946 sprintf(disk->disk_name, "loop%d", i);
73285082
KC
1947 return lo;
1948
1949out_free_queue:
1950 blk_cleanup_queue(lo->lo_queue);
1951out_free_dev:
1952 kfree(lo);
1953out:
07002e99 1954 return NULL;
73285082
KC
1955}
1956
a47653fc 1957static void loop_free(struct loop_device *lo)
1da177e4 1958{
73285082
KC
1959 blk_cleanup_queue(lo->lo_queue);
1960 put_disk(lo->lo_disk);
1961 list_del(&lo->lo_list);
1962 kfree(lo);
1963}
1da177e4 1964
a47653fc
KC
1965static struct loop_device *loop_init_one(int i)
1966{
1967 struct loop_device *lo;
1968
1969 list_for_each_entry(lo, &loop_devices, lo_list) {
1970 if (lo->lo_number == i)
1971 return lo;
1972 }
1973
1974 lo = loop_alloc(i);
1975 if (lo) {
1976 add_disk(lo->lo_disk);
1977 list_add_tail(&lo->lo_list, &loop_devices);
1978 }
1979 return lo;
1980}
1981
1982static void loop_del_one(struct loop_device *lo)
1983{
1984 del_gendisk(lo->lo_disk);
1985 loop_free(lo);
1986}
1987
73285082
KC
1988static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1989{
705962cc 1990 struct loop_device *lo;
07002e99 1991 struct kobject *kobj;
73285082 1992
705962cc
AV
1993 mutex_lock(&loop_devices_mutex);
1994 lo = loop_init_one(dev & MINORMASK);
07002e99 1995 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
73285082
KC
1996 mutex_unlock(&loop_devices_mutex);
1997
1998 *part = 0;
07002e99 1999 return kobj;
73285082
KC
2000}
2001
2002static int __init loop_init(void)
2003{
a47653fc
KC
2004 int i, nr;
2005 unsigned long range;
2006 struct loop_device *lo, *next;
2007
2008 /*
2009 * loop module now has a feature to instantiate underlying device
2010 * structure on-demand, provided that there is an access dev node.
2011 * However, this will not work well with user space tool that doesn't
2012 * know about such "feature". In order to not break any existing
2013 * tool, we do the following:
2014 *
2015 * (1) if max_loop is specified, create that many upfront, and this
2016 * also becomes a hard limit.
2017 * (2) if max_loop is not specified, create 8 loop device on module
2018 * load, user can further extend loop device by create dev node
2019 * themselves and have kernel automatically instantiate actual
2020 * device on-demand.
2021 */
476a4813
LV
2022
2023 part_shift = 0;
2024 if (max_part > 0)
2025 part_shift = fls(max_part);
2026
2027 if (max_loop > 1UL << (MINORBITS - part_shift))
a47653fc 2028 return -EINVAL;
1da177e4 2029
73285082 2030 if (max_loop) {
a47653fc
KC
2031 nr = max_loop;
2032 range = max_loop;
2033 } else {
2034 nr = 8;
476a4813 2035 range = 1UL << (MINORBITS - part_shift);
a47653fc
KC
2036 }
2037
2038 if (register_blkdev(LOOP_MAJOR, "loop"))
2039 return -EIO;
1da177e4 2040
a47653fc
KC
2041 for (i = 0; i < nr; i++) {
2042 lo = loop_alloc(i);
2043 if (!lo)
2044 goto Enomem;
2045 list_add_tail(&lo->lo_list, &loop_devices);
1da177e4 2046 }
a47653fc
KC
2047
2048 /* point of no return */
2049
2050 list_for_each_entry(lo, &loop_devices, lo_list)
2051 add_disk(lo->lo_disk);
2052
2053 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2054 THIS_MODULE, loop_probe, NULL, NULL);
2055
73285082 2056 printk(KERN_INFO "loop: module loaded\n");
1da177e4 2057 return 0;
a47653fc
KC
2058
2059Enomem:
2060 printk(KERN_INFO "loop: out of memory\n");
2061
2062 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
2063 loop_free(lo);
2064
2065 unregister_blkdev(LOOP_MAJOR, "loop");
2066 return -ENOMEM;
1da177e4
LT
2067}
2068
73285082 2069static void __exit loop_exit(void)
1da177e4 2070{
a47653fc 2071 unsigned long range;
73285082 2072 struct loop_device *lo, *next;
1da177e4 2073
476a4813 2074 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift);
a47653fc 2075
73285082
KC
2076 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
2077 loop_del_one(lo);
2078
a47653fc 2079 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
00d59405 2080 unregister_blkdev(LOOP_MAJOR, "loop");
1da177e4
LT
2081}
2082
2083module_init(loop_init);
2084module_exit(loop_exit);
2085
2086#ifndef MODULE
2087static int __init max_loop_setup(char *str)
2088{
2089 max_loop = simple_strtol(str, NULL, 0);
2090 return 1;
2091}
2092
2093__setup("max_loop=", max_loop_setup);
2094#endif